xref: /linux/mm/shmem.c (revision 656fe3ee455e8d8dfa1c18292c508da26b29a39c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140 
141 #ifdef CONFIG_TMPFS
142 static unsigned long shmem_default_max_blocks(void)
143 {
144 	return totalram_pages() / 2;
145 }
146 
147 static unsigned long shmem_default_max_inodes(void)
148 {
149 	unsigned long nr_pages = totalram_pages();
150 
151 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 			ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155 
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 			struct mm_struct *fault_mm, vm_fault_t *fault_type);
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 static inline int shmem_reacct_size(unsigned long flags,
184 		loff_t oldsize, loff_t newsize)
185 {
186 	if (!(flags & VM_NORESERVE)) {
187 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 			return security_vm_enough_memory_mm(current->mm,
189 					VM_ACCT(newsize) - VM_ACCT(oldsize));
190 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 	}
193 	return 0;
194 }
195 
196 /*
197  * ... whereas tmpfs objects are accounted incrementally as
198  * pages are allocated, in order to allow large sparse files.
199  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201  */
202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 	if (!(flags & VM_NORESERVE))
205 		return 0;
206 
207 	return security_vm_enough_memory_mm(current->mm,
208 			pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 	if (flags & VM_NORESERVE)
214 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_inode_info *info = SHMEM_I(inode);
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	int err = -ENOSPC;
222 
223 	if (shmem_acct_blocks(info->flags, pages))
224 		return err;
225 
226 	might_sleep();	/* when quotas */
227 	if (sbinfo->max_blocks) {
228 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 						sbinfo->max_blocks, pages))
230 			goto unacct;
231 
232 		err = dquot_alloc_block_nodirty(inode, pages);
233 		if (err) {
234 			percpu_counter_sub(&sbinfo->used_blocks, pages);
235 			goto unacct;
236 		}
237 	} else {
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err)
240 			goto unacct;
241 	}
242 
243 	return 0;
244 
245 unacct:
246 	shmem_unacct_blocks(info->flags, pages);
247 	return err;
248 }
249 
250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 	struct shmem_inode_info *info = SHMEM_I(inode);
253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 
255 	might_sleep();	/* when quotas */
256 	dquot_free_block_nodirty(inode, pages);
257 
258 	if (sbinfo->max_blocks)
259 		percpu_counter_sub(&sbinfo->used_blocks, pages);
260 	shmem_unacct_blocks(info->flags, pages);
261 }
262 
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272 
273 bool shmem_mapping(struct address_space *mapping)
274 {
275 	return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278 
279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 	return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283 
284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288 
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291 
292 #ifdef CONFIG_TMPFS_QUOTA
293 
294 static int shmem_enable_quotas(struct super_block *sb,
295 			       unsigned short quota_types)
296 {
297 	int type, err = 0;
298 
299 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 		if (!(quota_types & (1 << type)))
302 			continue;
303 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 					  DQUOT_USAGE_ENABLED |
305 					  DQUOT_LIMITS_ENABLED);
306 		if (err)
307 			goto out_err;
308 	}
309 	return 0;
310 
311 out_err:
312 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 		type, err);
314 	for (type--; type >= 0; type--)
315 		dquot_quota_off(sb, type);
316 	return err;
317 }
318 
319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 	int type;
322 
323 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 		dquot_quota_off(sb, type);
325 }
326 
327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 	return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332 
333 /*
334  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335  * produces a novel ino for the newly allocated inode.
336  *
337  * It may also be called when making a hard link to permit the space needed by
338  * each dentry. However, in that case, no new inode number is needed since that
339  * internally draws from another pool of inode numbers (currently global
340  * get_next_ino()). This case is indicated by passing NULL as inop.
341  */
342 #define SHMEM_INO_BATCH 1024
343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 	ino_t ino;
347 
348 	if (!(sb->s_flags & SB_KERNMOUNT)) {
349 		raw_spin_lock(&sbinfo->stat_lock);
350 		if (sbinfo->max_inodes) {
351 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 				raw_spin_unlock(&sbinfo->stat_lock);
353 				return -ENOSPC;
354 			}
355 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 		}
357 		if (inop) {
358 			ino = sbinfo->next_ino++;
359 			if (unlikely(is_zero_ino(ino)))
360 				ino = sbinfo->next_ino++;
361 			if (unlikely(!sbinfo->full_inums &&
362 				     ino > UINT_MAX)) {
363 				/*
364 				 * Emulate get_next_ino uint wraparound for
365 				 * compatibility
366 				 */
367 				if (IS_ENABLED(CONFIG_64BIT))
368 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 						__func__, MINOR(sb->s_dev));
370 				sbinfo->next_ino = 1;
371 				ino = sbinfo->next_ino++;
372 			}
373 			*inop = ino;
374 		}
375 		raw_spin_unlock(&sbinfo->stat_lock);
376 	} else if (inop) {
377 		/*
378 		 * __shmem_file_setup, one of our callers, is lock-free: it
379 		 * doesn't hold stat_lock in shmem_reserve_inode since
380 		 * max_inodes is always 0, and is called from potentially
381 		 * unknown contexts. As such, use a per-cpu batched allocator
382 		 * which doesn't require the per-sb stat_lock unless we are at
383 		 * the batch boundary.
384 		 *
385 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 		 * shmem mounts are not exposed to userspace, so we don't need
387 		 * to worry about things like glibc compatibility.
388 		 */
389 		ino_t *next_ino;
390 
391 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 		ino = *next_ino;
393 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 			raw_spin_lock(&sbinfo->stat_lock);
395 			ino = sbinfo->next_ino;
396 			sbinfo->next_ino += SHMEM_INO_BATCH;
397 			raw_spin_unlock(&sbinfo->stat_lock);
398 			if (unlikely(is_zero_ino(ino)))
399 				ino++;
400 		}
401 		*inop = ino;
402 		*next_ino = ++ino;
403 		put_cpu();
404 	}
405 
406 	return 0;
407 }
408 
409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 	if (sbinfo->max_inodes) {
413 		raw_spin_lock(&sbinfo->stat_lock);
414 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 		raw_spin_unlock(&sbinfo->stat_lock);
416 	}
417 }
418 
419 /**
420  * shmem_recalc_inode - recalculate the block usage of an inode
421  * @inode: inode to recalc
422  * @alloced: the change in number of pages allocated to inode
423  * @swapped: the change in number of pages swapped from inode
424  *
425  * We have to calculate the free blocks since the mm can drop
426  * undirtied hole pages behind our back.
427  *
428  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430  */
431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	long freed;
435 
436 	spin_lock(&info->lock);
437 	info->alloced += alloced;
438 	info->swapped += swapped;
439 	freed = info->alloced - info->swapped -
440 		READ_ONCE(inode->i_mapping->nrpages);
441 	/*
442 	 * Special case: whereas normally shmem_recalc_inode() is called
443 	 * after i_mapping->nrpages has already been adjusted (up or down),
444 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 	 * been freed.  Compensate here, to avoid the need for a followup call.
447 	 */
448 	if (swapped > 0)
449 		freed += swapped;
450 	if (freed > 0)
451 		info->alloced -= freed;
452 	spin_unlock(&info->lock);
453 
454 	/* The quota case may block */
455 	if (freed > 0)
456 		shmem_inode_unacct_blocks(inode, freed);
457 }
458 
459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 	struct address_space *mapping = inode->i_mapping;
462 
463 	if (shmem_inode_acct_blocks(inode, pages))
464 		return false;
465 
466 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 	xa_lock_irq(&mapping->i_pages);
468 	mapping->nrpages += pages;
469 	xa_unlock_irq(&mapping->i_pages);
470 
471 	shmem_recalc_inode(inode, pages, 0);
472 	return true;
473 }
474 
475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 	/* pages argument is currently unused: keep it to help debugging */
478 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479 
480 	shmem_recalc_inode(inode, 0, 0);
481 }
482 
483 /*
484  * Replace item expected in xarray by a new item, while holding xa_lock.
485  */
486 static int shmem_replace_entry(struct address_space *mapping,
487 			pgoff_t index, void *expected, void *replacement)
488 {
489 	XA_STATE(xas, &mapping->i_pages, index);
490 	void *item;
491 
492 	VM_BUG_ON(!expected);
493 	VM_BUG_ON(!replacement);
494 	item = xas_load(&xas);
495 	if (item != expected)
496 		return -ENOENT;
497 	xas_store(&xas, replacement);
498 	return 0;
499 }
500 
501 /*
502  * Sometimes, before we decide whether to proceed or to fail, we must check
503  * that an entry was not already brought back from swap by a racing thread.
504  *
505  * Checking page is not enough: by the time a SwapCache page is locked, it
506  * might be reused, and again be SwapCache, using the same swap as before.
507  */
508 static bool shmem_confirm_swap(struct address_space *mapping,
509 			       pgoff_t index, swp_entry_t swap)
510 {
511 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513 
514 /*
515  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516  *
517  * SHMEM_HUGE_NEVER:
518  *	disables huge pages for the mount;
519  * SHMEM_HUGE_ALWAYS:
520  *	enables huge pages for the mount;
521  * SHMEM_HUGE_WITHIN_SIZE:
522  *	only allocate huge pages if the page will be fully within i_size,
523  *	also respect fadvise()/madvise() hints;
524  * SHMEM_HUGE_ADVISE:
525  *	only allocate huge pages if requested with fadvise()/madvise();
526  */
527 
528 #define SHMEM_HUGE_NEVER	0
529 #define SHMEM_HUGE_ALWAYS	1
530 #define SHMEM_HUGE_WITHIN_SIZE	2
531 #define SHMEM_HUGE_ADVISE	3
532 
533 /*
534  * Special values.
535  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536  *
537  * SHMEM_HUGE_DENY:
538  *	disables huge on shm_mnt and all mounts, for emergency use;
539  * SHMEM_HUGE_FORCE:
540  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541  *
542  */
543 #define SHMEM_HUGE_DENY		(-1)
544 #define SHMEM_HUGE_FORCE	(-2)
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548 
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550 
551 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
552 		   struct mm_struct *mm, unsigned long vm_flags)
553 {
554 	loff_t i_size;
555 
556 	if (!S_ISREG(inode->i_mode))
557 		return false;
558 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
559 		return false;
560 	if (shmem_huge == SHMEM_HUGE_DENY)
561 		return false;
562 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
563 		return true;
564 
565 	switch (SHMEM_SB(inode->i_sb)->huge) {
566 	case SHMEM_HUGE_ALWAYS:
567 		return true;
568 	case SHMEM_HUGE_WITHIN_SIZE:
569 		index = round_up(index + 1, HPAGE_PMD_NR);
570 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
571 		if (i_size >> PAGE_SHIFT >= index)
572 			return true;
573 		fallthrough;
574 	case SHMEM_HUGE_ADVISE:
575 		if (mm && (vm_flags & VM_HUGEPAGE))
576 			return true;
577 		fallthrough;
578 	default:
579 		return false;
580 	}
581 }
582 
583 #if defined(CONFIG_SYSFS)
584 static int shmem_parse_huge(const char *str)
585 {
586 	if (!strcmp(str, "never"))
587 		return SHMEM_HUGE_NEVER;
588 	if (!strcmp(str, "always"))
589 		return SHMEM_HUGE_ALWAYS;
590 	if (!strcmp(str, "within_size"))
591 		return SHMEM_HUGE_WITHIN_SIZE;
592 	if (!strcmp(str, "advise"))
593 		return SHMEM_HUGE_ADVISE;
594 	if (!strcmp(str, "deny"))
595 		return SHMEM_HUGE_DENY;
596 	if (!strcmp(str, "force"))
597 		return SHMEM_HUGE_FORCE;
598 	return -EINVAL;
599 }
600 #endif
601 
602 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
603 static const char *shmem_format_huge(int huge)
604 {
605 	switch (huge) {
606 	case SHMEM_HUGE_NEVER:
607 		return "never";
608 	case SHMEM_HUGE_ALWAYS:
609 		return "always";
610 	case SHMEM_HUGE_WITHIN_SIZE:
611 		return "within_size";
612 	case SHMEM_HUGE_ADVISE:
613 		return "advise";
614 	case SHMEM_HUGE_DENY:
615 		return "deny";
616 	case SHMEM_HUGE_FORCE:
617 		return "force";
618 	default:
619 		VM_BUG_ON(1);
620 		return "bad_val";
621 	}
622 }
623 #endif
624 
625 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
626 		struct shrink_control *sc, unsigned long nr_to_split)
627 {
628 	LIST_HEAD(list), *pos, *next;
629 	LIST_HEAD(to_remove);
630 	struct inode *inode;
631 	struct shmem_inode_info *info;
632 	struct folio *folio;
633 	unsigned long batch = sc ? sc->nr_to_scan : 128;
634 	int split = 0;
635 
636 	if (list_empty(&sbinfo->shrinklist))
637 		return SHRINK_STOP;
638 
639 	spin_lock(&sbinfo->shrinklist_lock);
640 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
641 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
642 
643 		/* pin the inode */
644 		inode = igrab(&info->vfs_inode);
645 
646 		/* inode is about to be evicted */
647 		if (!inode) {
648 			list_del_init(&info->shrinklist);
649 			goto next;
650 		}
651 
652 		/* Check if there's anything to gain */
653 		if (round_up(inode->i_size, PAGE_SIZE) ==
654 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
655 			list_move(&info->shrinklist, &to_remove);
656 			goto next;
657 		}
658 
659 		list_move(&info->shrinklist, &list);
660 next:
661 		sbinfo->shrinklist_len--;
662 		if (!--batch)
663 			break;
664 	}
665 	spin_unlock(&sbinfo->shrinklist_lock);
666 
667 	list_for_each_safe(pos, next, &to_remove) {
668 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
669 		inode = &info->vfs_inode;
670 		list_del_init(&info->shrinklist);
671 		iput(inode);
672 	}
673 
674 	list_for_each_safe(pos, next, &list) {
675 		int ret;
676 		pgoff_t index;
677 
678 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
679 		inode = &info->vfs_inode;
680 
681 		if (nr_to_split && split >= nr_to_split)
682 			goto move_back;
683 
684 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
685 		folio = filemap_get_folio(inode->i_mapping, index);
686 		if (IS_ERR(folio))
687 			goto drop;
688 
689 		/* No huge page at the end of the file: nothing to split */
690 		if (!folio_test_large(folio)) {
691 			folio_put(folio);
692 			goto drop;
693 		}
694 
695 		/*
696 		 * Move the inode on the list back to shrinklist if we failed
697 		 * to lock the page at this time.
698 		 *
699 		 * Waiting for the lock may lead to deadlock in the
700 		 * reclaim path.
701 		 */
702 		if (!folio_trylock(folio)) {
703 			folio_put(folio);
704 			goto move_back;
705 		}
706 
707 		ret = split_folio(folio);
708 		folio_unlock(folio);
709 		folio_put(folio);
710 
711 		/* If split failed move the inode on the list back to shrinklist */
712 		if (ret)
713 			goto move_back;
714 
715 		split++;
716 drop:
717 		list_del_init(&info->shrinklist);
718 		goto put;
719 move_back:
720 		/*
721 		 * Make sure the inode is either on the global list or deleted
722 		 * from any local list before iput() since it could be deleted
723 		 * in another thread once we put the inode (then the local list
724 		 * is corrupted).
725 		 */
726 		spin_lock(&sbinfo->shrinklist_lock);
727 		list_move(&info->shrinklist, &sbinfo->shrinklist);
728 		sbinfo->shrinklist_len++;
729 		spin_unlock(&sbinfo->shrinklist_lock);
730 put:
731 		iput(inode);
732 	}
733 
734 	return split;
735 }
736 
737 static long shmem_unused_huge_scan(struct super_block *sb,
738 		struct shrink_control *sc)
739 {
740 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
741 
742 	if (!READ_ONCE(sbinfo->shrinklist_len))
743 		return SHRINK_STOP;
744 
745 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
746 }
747 
748 static long shmem_unused_huge_count(struct super_block *sb,
749 		struct shrink_control *sc)
750 {
751 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
752 	return READ_ONCE(sbinfo->shrinklist_len);
753 }
754 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
755 
756 #define shmem_huge SHMEM_HUGE_DENY
757 
758 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
759 		struct shrink_control *sc, unsigned long nr_to_split)
760 {
761 	return 0;
762 }
763 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
764 
765 /*
766  * Somewhat like filemap_add_folio, but error if expected item has gone.
767  */
768 static int shmem_add_to_page_cache(struct folio *folio,
769 				   struct address_space *mapping,
770 				   pgoff_t index, void *expected, gfp_t gfp)
771 {
772 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
773 	long nr = folio_nr_pages(folio);
774 
775 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 	VM_BUG_ON(expected && folio_test_large(folio));
779 
780 	folio_ref_add(folio, nr);
781 	folio->mapping = mapping;
782 	folio->index = index;
783 
784 	gfp &= GFP_RECLAIM_MASK;
785 	folio_throttle_swaprate(folio, gfp);
786 
787 	do {
788 		xas_lock_irq(&xas);
789 		if (expected != xas_find_conflict(&xas)) {
790 			xas_set_err(&xas, -EEXIST);
791 			goto unlock;
792 		}
793 		if (expected && xas_find_conflict(&xas)) {
794 			xas_set_err(&xas, -EEXIST);
795 			goto unlock;
796 		}
797 		xas_store(&xas, folio);
798 		if (xas_error(&xas))
799 			goto unlock;
800 		if (folio_test_pmd_mappable(folio))
801 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
802 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
803 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
804 		mapping->nrpages += nr;
805 unlock:
806 		xas_unlock_irq(&xas);
807 	} while (xas_nomem(&xas, gfp));
808 
809 	if (xas_error(&xas)) {
810 		folio->mapping = NULL;
811 		folio_ref_sub(folio, nr);
812 		return xas_error(&xas);
813 	}
814 
815 	return 0;
816 }
817 
818 /*
819  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
820  */
821 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
822 {
823 	struct address_space *mapping = folio->mapping;
824 	long nr = folio_nr_pages(folio);
825 	int error;
826 
827 	xa_lock_irq(&mapping->i_pages);
828 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
829 	folio->mapping = NULL;
830 	mapping->nrpages -= nr;
831 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
832 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
833 	xa_unlock_irq(&mapping->i_pages);
834 	folio_put(folio);
835 	BUG_ON(error);
836 }
837 
838 /*
839  * Remove swap entry from page cache, free the swap and its page cache.
840  */
841 static int shmem_free_swap(struct address_space *mapping,
842 			   pgoff_t index, void *radswap)
843 {
844 	void *old;
845 
846 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
847 	if (old != radswap)
848 		return -ENOENT;
849 	free_swap_and_cache(radix_to_swp_entry(radswap));
850 	return 0;
851 }
852 
853 /*
854  * Determine (in bytes) how many of the shmem object's pages mapped by the
855  * given offsets are swapped out.
856  *
857  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
858  * as long as the inode doesn't go away and racy results are not a problem.
859  */
860 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
861 						pgoff_t start, pgoff_t end)
862 {
863 	XA_STATE(xas, &mapping->i_pages, start);
864 	struct page *page;
865 	unsigned long swapped = 0;
866 	unsigned long max = end - 1;
867 
868 	rcu_read_lock();
869 	xas_for_each(&xas, page, max) {
870 		if (xas_retry(&xas, page))
871 			continue;
872 		if (xa_is_value(page))
873 			swapped++;
874 		if (xas.xa_index == max)
875 			break;
876 		if (need_resched()) {
877 			xas_pause(&xas);
878 			cond_resched_rcu();
879 		}
880 	}
881 	rcu_read_unlock();
882 
883 	return swapped << PAGE_SHIFT;
884 }
885 
886 /*
887  * Determine (in bytes) how many of the shmem object's pages mapped by the
888  * given vma is swapped out.
889  *
890  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
891  * as long as the inode doesn't go away and racy results are not a problem.
892  */
893 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
894 {
895 	struct inode *inode = file_inode(vma->vm_file);
896 	struct shmem_inode_info *info = SHMEM_I(inode);
897 	struct address_space *mapping = inode->i_mapping;
898 	unsigned long swapped;
899 
900 	/* Be careful as we don't hold info->lock */
901 	swapped = READ_ONCE(info->swapped);
902 
903 	/*
904 	 * The easier cases are when the shmem object has nothing in swap, or
905 	 * the vma maps it whole. Then we can simply use the stats that we
906 	 * already track.
907 	 */
908 	if (!swapped)
909 		return 0;
910 
911 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
912 		return swapped << PAGE_SHIFT;
913 
914 	/* Here comes the more involved part */
915 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
916 					vma->vm_pgoff + vma_pages(vma));
917 }
918 
919 /*
920  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
921  */
922 void shmem_unlock_mapping(struct address_space *mapping)
923 {
924 	struct folio_batch fbatch;
925 	pgoff_t index = 0;
926 
927 	folio_batch_init(&fbatch);
928 	/*
929 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
930 	 */
931 	while (!mapping_unevictable(mapping) &&
932 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
933 		check_move_unevictable_folios(&fbatch);
934 		folio_batch_release(&fbatch);
935 		cond_resched();
936 	}
937 }
938 
939 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
940 {
941 	struct folio *folio;
942 
943 	/*
944 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
945 	 * beyond i_size, and reports fallocated folios as holes.
946 	 */
947 	folio = filemap_get_entry(inode->i_mapping, index);
948 	if (!folio)
949 		return folio;
950 	if (!xa_is_value(folio)) {
951 		folio_lock(folio);
952 		if (folio->mapping == inode->i_mapping)
953 			return folio;
954 		/* The folio has been swapped out */
955 		folio_unlock(folio);
956 		folio_put(folio);
957 	}
958 	/*
959 	 * But read a folio back from swap if any of it is within i_size
960 	 * (although in some cases this is just a waste of time).
961 	 */
962 	folio = NULL;
963 	shmem_get_folio(inode, index, &folio, SGP_READ);
964 	return folio;
965 }
966 
967 /*
968  * Remove range of pages and swap entries from page cache, and free them.
969  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
970  */
971 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
972 								 bool unfalloc)
973 {
974 	struct address_space *mapping = inode->i_mapping;
975 	struct shmem_inode_info *info = SHMEM_I(inode);
976 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
977 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
978 	struct folio_batch fbatch;
979 	pgoff_t indices[PAGEVEC_SIZE];
980 	struct folio *folio;
981 	bool same_folio;
982 	long nr_swaps_freed = 0;
983 	pgoff_t index;
984 	int i;
985 
986 	if (lend == -1)
987 		end = -1;	/* unsigned, so actually very big */
988 
989 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
990 		info->fallocend = start;
991 
992 	folio_batch_init(&fbatch);
993 	index = start;
994 	while (index < end && find_lock_entries(mapping, &index, end - 1,
995 			&fbatch, indices)) {
996 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
997 			folio = fbatch.folios[i];
998 
999 			if (xa_is_value(folio)) {
1000 				if (unfalloc)
1001 					continue;
1002 				nr_swaps_freed += !shmem_free_swap(mapping,
1003 							indices[i], folio);
1004 				continue;
1005 			}
1006 
1007 			if (!unfalloc || !folio_test_uptodate(folio))
1008 				truncate_inode_folio(mapping, folio);
1009 			folio_unlock(folio);
1010 		}
1011 		folio_batch_remove_exceptionals(&fbatch);
1012 		folio_batch_release(&fbatch);
1013 		cond_resched();
1014 	}
1015 
1016 	/*
1017 	 * When undoing a failed fallocate, we want none of the partial folio
1018 	 * zeroing and splitting below, but shall want to truncate the whole
1019 	 * folio when !uptodate indicates that it was added by this fallocate,
1020 	 * even when [lstart, lend] covers only a part of the folio.
1021 	 */
1022 	if (unfalloc)
1023 		goto whole_folios;
1024 
1025 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1026 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1027 	if (folio) {
1028 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1029 		folio_mark_dirty(folio);
1030 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1031 			start = folio_next_index(folio);
1032 			if (same_folio)
1033 				end = folio->index;
1034 		}
1035 		folio_unlock(folio);
1036 		folio_put(folio);
1037 		folio = NULL;
1038 	}
1039 
1040 	if (!same_folio)
1041 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1042 	if (folio) {
1043 		folio_mark_dirty(folio);
1044 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1045 			end = folio->index;
1046 		folio_unlock(folio);
1047 		folio_put(folio);
1048 	}
1049 
1050 whole_folios:
1051 
1052 	index = start;
1053 	while (index < end) {
1054 		cond_resched();
1055 
1056 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1057 				indices)) {
1058 			/* If all gone or hole-punch or unfalloc, we're done */
1059 			if (index == start || end != -1)
1060 				break;
1061 			/* But if truncating, restart to make sure all gone */
1062 			index = start;
1063 			continue;
1064 		}
1065 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1066 			folio = fbatch.folios[i];
1067 
1068 			if (xa_is_value(folio)) {
1069 				if (unfalloc)
1070 					continue;
1071 				if (shmem_free_swap(mapping, indices[i], folio)) {
1072 					/* Swap was replaced by page: retry */
1073 					index = indices[i];
1074 					break;
1075 				}
1076 				nr_swaps_freed++;
1077 				continue;
1078 			}
1079 
1080 			folio_lock(folio);
1081 
1082 			if (!unfalloc || !folio_test_uptodate(folio)) {
1083 				if (folio_mapping(folio) != mapping) {
1084 					/* Page was replaced by swap: retry */
1085 					folio_unlock(folio);
1086 					index = indices[i];
1087 					break;
1088 				}
1089 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1090 						folio);
1091 
1092 				if (!folio_test_large(folio)) {
1093 					truncate_inode_folio(mapping, folio);
1094 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1095 					/*
1096 					 * If we split a page, reset the loop so
1097 					 * that we pick up the new sub pages.
1098 					 * Otherwise the THP was entirely
1099 					 * dropped or the target range was
1100 					 * zeroed, so just continue the loop as
1101 					 * is.
1102 					 */
1103 					if (!folio_test_large(folio)) {
1104 						folio_unlock(folio);
1105 						index = start;
1106 						break;
1107 					}
1108 				}
1109 			}
1110 			folio_unlock(folio);
1111 		}
1112 		folio_batch_remove_exceptionals(&fbatch);
1113 		folio_batch_release(&fbatch);
1114 	}
1115 
1116 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1117 }
1118 
1119 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1120 {
1121 	shmem_undo_range(inode, lstart, lend, false);
1122 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1123 	inode_inc_iversion(inode);
1124 }
1125 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1126 
1127 static int shmem_getattr(struct mnt_idmap *idmap,
1128 			 const struct path *path, struct kstat *stat,
1129 			 u32 request_mask, unsigned int query_flags)
1130 {
1131 	struct inode *inode = path->dentry->d_inode;
1132 	struct shmem_inode_info *info = SHMEM_I(inode);
1133 
1134 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1135 		shmem_recalc_inode(inode, 0, 0);
1136 
1137 	if (info->fsflags & FS_APPEND_FL)
1138 		stat->attributes |= STATX_ATTR_APPEND;
1139 	if (info->fsflags & FS_IMMUTABLE_FL)
1140 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1141 	if (info->fsflags & FS_NODUMP_FL)
1142 		stat->attributes |= STATX_ATTR_NODUMP;
1143 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1144 			STATX_ATTR_IMMUTABLE |
1145 			STATX_ATTR_NODUMP);
1146 	generic_fillattr(idmap, request_mask, inode, stat);
1147 
1148 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1149 		stat->blksize = HPAGE_PMD_SIZE;
1150 
1151 	if (request_mask & STATX_BTIME) {
1152 		stat->result_mask |= STATX_BTIME;
1153 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1154 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 static int shmem_setattr(struct mnt_idmap *idmap,
1161 			 struct dentry *dentry, struct iattr *attr)
1162 {
1163 	struct inode *inode = d_inode(dentry);
1164 	struct shmem_inode_info *info = SHMEM_I(inode);
1165 	int error;
1166 	bool update_mtime = false;
1167 	bool update_ctime = true;
1168 
1169 	error = setattr_prepare(idmap, dentry, attr);
1170 	if (error)
1171 		return error;
1172 
1173 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1174 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1175 			return -EPERM;
1176 		}
1177 	}
1178 
1179 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1180 		loff_t oldsize = inode->i_size;
1181 		loff_t newsize = attr->ia_size;
1182 
1183 		/* protected by i_rwsem */
1184 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1185 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1186 			return -EPERM;
1187 
1188 		if (newsize != oldsize) {
1189 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1190 					oldsize, newsize);
1191 			if (error)
1192 				return error;
1193 			i_size_write(inode, newsize);
1194 			update_mtime = true;
1195 		} else {
1196 			update_ctime = false;
1197 		}
1198 		if (newsize <= oldsize) {
1199 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1200 			if (oldsize > holebegin)
1201 				unmap_mapping_range(inode->i_mapping,
1202 							holebegin, 0, 1);
1203 			if (info->alloced)
1204 				shmem_truncate_range(inode,
1205 							newsize, (loff_t)-1);
1206 			/* unmap again to remove racily COWed private pages */
1207 			if (oldsize > holebegin)
1208 				unmap_mapping_range(inode->i_mapping,
1209 							holebegin, 0, 1);
1210 		}
1211 	}
1212 
1213 	if (is_quota_modification(idmap, inode, attr)) {
1214 		error = dquot_initialize(inode);
1215 		if (error)
1216 			return error;
1217 	}
1218 
1219 	/* Transfer quota accounting */
1220 	if (i_uid_needs_update(idmap, attr, inode) ||
1221 	    i_gid_needs_update(idmap, attr, inode)) {
1222 		error = dquot_transfer(idmap, inode, attr);
1223 		if (error)
1224 			return error;
1225 	}
1226 
1227 	setattr_copy(idmap, inode, attr);
1228 	if (attr->ia_valid & ATTR_MODE)
1229 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1230 	if (!error && update_ctime) {
1231 		inode_set_ctime_current(inode);
1232 		if (update_mtime)
1233 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1234 		inode_inc_iversion(inode);
1235 	}
1236 	return error;
1237 }
1238 
1239 static void shmem_evict_inode(struct inode *inode)
1240 {
1241 	struct shmem_inode_info *info = SHMEM_I(inode);
1242 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1243 	size_t freed = 0;
1244 
1245 	if (shmem_mapping(inode->i_mapping)) {
1246 		shmem_unacct_size(info->flags, inode->i_size);
1247 		inode->i_size = 0;
1248 		mapping_set_exiting(inode->i_mapping);
1249 		shmem_truncate_range(inode, 0, (loff_t)-1);
1250 		if (!list_empty(&info->shrinklist)) {
1251 			spin_lock(&sbinfo->shrinklist_lock);
1252 			if (!list_empty(&info->shrinklist)) {
1253 				list_del_init(&info->shrinklist);
1254 				sbinfo->shrinklist_len--;
1255 			}
1256 			spin_unlock(&sbinfo->shrinklist_lock);
1257 		}
1258 		while (!list_empty(&info->swaplist)) {
1259 			/* Wait while shmem_unuse() is scanning this inode... */
1260 			wait_var_event(&info->stop_eviction,
1261 				       !atomic_read(&info->stop_eviction));
1262 			mutex_lock(&shmem_swaplist_mutex);
1263 			/* ...but beware of the race if we peeked too early */
1264 			if (!atomic_read(&info->stop_eviction))
1265 				list_del_init(&info->swaplist);
1266 			mutex_unlock(&shmem_swaplist_mutex);
1267 		}
1268 	}
1269 
1270 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1271 	shmem_free_inode(inode->i_sb, freed);
1272 	WARN_ON(inode->i_blocks);
1273 	clear_inode(inode);
1274 #ifdef CONFIG_TMPFS_QUOTA
1275 	dquot_free_inode(inode);
1276 	dquot_drop(inode);
1277 #endif
1278 }
1279 
1280 static int shmem_find_swap_entries(struct address_space *mapping,
1281 				   pgoff_t start, struct folio_batch *fbatch,
1282 				   pgoff_t *indices, unsigned int type)
1283 {
1284 	XA_STATE(xas, &mapping->i_pages, start);
1285 	struct folio *folio;
1286 	swp_entry_t entry;
1287 
1288 	rcu_read_lock();
1289 	xas_for_each(&xas, folio, ULONG_MAX) {
1290 		if (xas_retry(&xas, folio))
1291 			continue;
1292 
1293 		if (!xa_is_value(folio))
1294 			continue;
1295 
1296 		entry = radix_to_swp_entry(folio);
1297 		/*
1298 		 * swapin error entries can be found in the mapping. But they're
1299 		 * deliberately ignored here as we've done everything we can do.
1300 		 */
1301 		if (swp_type(entry) != type)
1302 			continue;
1303 
1304 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1305 		if (!folio_batch_add(fbatch, folio))
1306 			break;
1307 
1308 		if (need_resched()) {
1309 			xas_pause(&xas);
1310 			cond_resched_rcu();
1311 		}
1312 	}
1313 	rcu_read_unlock();
1314 
1315 	return xas.xa_index;
1316 }
1317 
1318 /*
1319  * Move the swapped pages for an inode to page cache. Returns the count
1320  * of pages swapped in, or the error in case of failure.
1321  */
1322 static int shmem_unuse_swap_entries(struct inode *inode,
1323 		struct folio_batch *fbatch, pgoff_t *indices)
1324 {
1325 	int i = 0;
1326 	int ret = 0;
1327 	int error = 0;
1328 	struct address_space *mapping = inode->i_mapping;
1329 
1330 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1331 		struct folio *folio = fbatch->folios[i];
1332 
1333 		if (!xa_is_value(folio))
1334 			continue;
1335 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1336 					mapping_gfp_mask(mapping), NULL, NULL);
1337 		if (error == 0) {
1338 			folio_unlock(folio);
1339 			folio_put(folio);
1340 			ret++;
1341 		}
1342 		if (error == -ENOMEM)
1343 			break;
1344 		error = 0;
1345 	}
1346 	return error ? error : ret;
1347 }
1348 
1349 /*
1350  * If swap found in inode, free it and move page from swapcache to filecache.
1351  */
1352 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1353 {
1354 	struct address_space *mapping = inode->i_mapping;
1355 	pgoff_t start = 0;
1356 	struct folio_batch fbatch;
1357 	pgoff_t indices[PAGEVEC_SIZE];
1358 	int ret = 0;
1359 
1360 	do {
1361 		folio_batch_init(&fbatch);
1362 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1363 		if (folio_batch_count(&fbatch) == 0) {
1364 			ret = 0;
1365 			break;
1366 		}
1367 
1368 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1369 		if (ret < 0)
1370 			break;
1371 
1372 		start = indices[folio_batch_count(&fbatch) - 1];
1373 	} while (true);
1374 
1375 	return ret;
1376 }
1377 
1378 /*
1379  * Read all the shared memory data that resides in the swap
1380  * device 'type' back into memory, so the swap device can be
1381  * unused.
1382  */
1383 int shmem_unuse(unsigned int type)
1384 {
1385 	struct shmem_inode_info *info, *next;
1386 	int error = 0;
1387 
1388 	if (list_empty(&shmem_swaplist))
1389 		return 0;
1390 
1391 	mutex_lock(&shmem_swaplist_mutex);
1392 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1393 		if (!info->swapped) {
1394 			list_del_init(&info->swaplist);
1395 			continue;
1396 		}
1397 		/*
1398 		 * Drop the swaplist mutex while searching the inode for swap;
1399 		 * but before doing so, make sure shmem_evict_inode() will not
1400 		 * remove placeholder inode from swaplist, nor let it be freed
1401 		 * (igrab() would protect from unlink, but not from unmount).
1402 		 */
1403 		atomic_inc(&info->stop_eviction);
1404 		mutex_unlock(&shmem_swaplist_mutex);
1405 
1406 		error = shmem_unuse_inode(&info->vfs_inode, type);
1407 		cond_resched();
1408 
1409 		mutex_lock(&shmem_swaplist_mutex);
1410 		next = list_next_entry(info, swaplist);
1411 		if (!info->swapped)
1412 			list_del_init(&info->swaplist);
1413 		if (atomic_dec_and_test(&info->stop_eviction))
1414 			wake_up_var(&info->stop_eviction);
1415 		if (error)
1416 			break;
1417 	}
1418 	mutex_unlock(&shmem_swaplist_mutex);
1419 
1420 	return error;
1421 }
1422 
1423 /*
1424  * Move the page from the page cache to the swap cache.
1425  */
1426 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1427 {
1428 	struct folio *folio = page_folio(page);
1429 	struct address_space *mapping = folio->mapping;
1430 	struct inode *inode = mapping->host;
1431 	struct shmem_inode_info *info = SHMEM_I(inode);
1432 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1433 	swp_entry_t swap;
1434 	pgoff_t index;
1435 
1436 	/*
1437 	 * Our capabilities prevent regular writeback or sync from ever calling
1438 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1439 	 * its underlying filesystem, in which case tmpfs should write out to
1440 	 * swap only in response to memory pressure, and not for the writeback
1441 	 * threads or sync.
1442 	 */
1443 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1444 		goto redirty;
1445 
1446 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1447 		goto redirty;
1448 
1449 	if (!total_swap_pages)
1450 		goto redirty;
1451 
1452 	/*
1453 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1454 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1455 	 * and its shmem_writeback() needs them to be split when swapping.
1456 	 */
1457 	if (folio_test_large(folio)) {
1458 		/* Ensure the subpages are still dirty */
1459 		folio_test_set_dirty(folio);
1460 		if (split_huge_page(page) < 0)
1461 			goto redirty;
1462 		folio = page_folio(page);
1463 		folio_clear_dirty(folio);
1464 	}
1465 
1466 	index = folio->index;
1467 
1468 	/*
1469 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1470 	 * value into swapfile.c, the only way we can correctly account for a
1471 	 * fallocated folio arriving here is now to initialize it and write it.
1472 	 *
1473 	 * That's okay for a folio already fallocated earlier, but if we have
1474 	 * not yet completed the fallocation, then (a) we want to keep track
1475 	 * of this folio in case we have to undo it, and (b) it may not be a
1476 	 * good idea to continue anyway, once we're pushing into swap.  So
1477 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1478 	 */
1479 	if (!folio_test_uptodate(folio)) {
1480 		if (inode->i_private) {
1481 			struct shmem_falloc *shmem_falloc;
1482 			spin_lock(&inode->i_lock);
1483 			shmem_falloc = inode->i_private;
1484 			if (shmem_falloc &&
1485 			    !shmem_falloc->waitq &&
1486 			    index >= shmem_falloc->start &&
1487 			    index < shmem_falloc->next)
1488 				shmem_falloc->nr_unswapped++;
1489 			else
1490 				shmem_falloc = NULL;
1491 			spin_unlock(&inode->i_lock);
1492 			if (shmem_falloc)
1493 				goto redirty;
1494 		}
1495 		folio_zero_range(folio, 0, folio_size(folio));
1496 		flush_dcache_folio(folio);
1497 		folio_mark_uptodate(folio);
1498 	}
1499 
1500 	swap = folio_alloc_swap(folio);
1501 	if (!swap.val)
1502 		goto redirty;
1503 
1504 	/*
1505 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1506 	 * if it's not already there.  Do it now before the folio is
1507 	 * moved to swap cache, when its pagelock no longer protects
1508 	 * the inode from eviction.  But don't unlock the mutex until
1509 	 * we've incremented swapped, because shmem_unuse_inode() will
1510 	 * prune a !swapped inode from the swaplist under this mutex.
1511 	 */
1512 	mutex_lock(&shmem_swaplist_mutex);
1513 	if (list_empty(&info->swaplist))
1514 		list_add(&info->swaplist, &shmem_swaplist);
1515 
1516 	if (add_to_swap_cache(folio, swap,
1517 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1518 			NULL) == 0) {
1519 		shmem_recalc_inode(inode, 0, 1);
1520 		swap_shmem_alloc(swap);
1521 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1522 
1523 		mutex_unlock(&shmem_swaplist_mutex);
1524 		BUG_ON(folio_mapped(folio));
1525 		return swap_writepage(&folio->page, wbc);
1526 	}
1527 
1528 	mutex_unlock(&shmem_swaplist_mutex);
1529 	put_swap_folio(folio, swap);
1530 redirty:
1531 	folio_mark_dirty(folio);
1532 	if (wbc->for_reclaim)
1533 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1534 	folio_unlock(folio);
1535 	return 0;
1536 }
1537 
1538 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1539 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1540 {
1541 	char buffer[64];
1542 
1543 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1544 		return;		/* show nothing */
1545 
1546 	mpol_to_str(buffer, sizeof(buffer), mpol);
1547 
1548 	seq_printf(seq, ",mpol=%s", buffer);
1549 }
1550 
1551 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1552 {
1553 	struct mempolicy *mpol = NULL;
1554 	if (sbinfo->mpol) {
1555 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1556 		mpol = sbinfo->mpol;
1557 		mpol_get(mpol);
1558 		raw_spin_unlock(&sbinfo->stat_lock);
1559 	}
1560 	return mpol;
1561 }
1562 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1563 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1564 {
1565 }
1566 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1567 {
1568 	return NULL;
1569 }
1570 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1571 
1572 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1573 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1574 
1575 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1576 			struct shmem_inode_info *info, pgoff_t index)
1577 {
1578 	struct mempolicy *mpol;
1579 	pgoff_t ilx;
1580 	struct folio *folio;
1581 
1582 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1583 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1584 	mpol_cond_put(mpol);
1585 
1586 	return folio;
1587 }
1588 
1589 /*
1590  * Make sure huge_gfp is always more limited than limit_gfp.
1591  * Some of the flags set permissions, while others set limitations.
1592  */
1593 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1594 {
1595 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1596 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1597 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1598 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1599 
1600 	/* Allow allocations only from the originally specified zones. */
1601 	result |= zoneflags;
1602 
1603 	/*
1604 	 * Minimize the result gfp by taking the union with the deny flags,
1605 	 * and the intersection of the allow flags.
1606 	 */
1607 	result |= (limit_gfp & denyflags);
1608 	result |= (huge_gfp & limit_gfp) & allowflags;
1609 
1610 	return result;
1611 }
1612 
1613 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1614 static unsigned long shmem_allowable_huge_orders(struct inode *inode,
1615 				struct vm_area_struct *vma, pgoff_t index,
1616 				bool global_huge)
1617 {
1618 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1619 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1620 	unsigned long vm_flags = vma->vm_flags;
1621 	/*
1622 	 * Check all the (large) orders below HPAGE_PMD_ORDER + 1 that
1623 	 * are enabled for this vma.
1624 	 */
1625 	unsigned long orders = BIT(PMD_ORDER + 1) - 1;
1626 	loff_t i_size;
1627 	int order;
1628 
1629 	if ((vm_flags & VM_NOHUGEPAGE) ||
1630 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1631 		return 0;
1632 
1633 	/* If the hardware/firmware marked hugepage support disabled. */
1634 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
1635 		return 0;
1636 
1637 	/*
1638 	 * Following the 'deny' semantics of the top level, force the huge
1639 	 * option off from all mounts.
1640 	 */
1641 	if (shmem_huge == SHMEM_HUGE_DENY)
1642 		return 0;
1643 
1644 	/*
1645 	 * Only allow inherit orders if the top-level value is 'force', which
1646 	 * means non-PMD sized THP can not override 'huge' mount option now.
1647 	 */
1648 	if (shmem_huge == SHMEM_HUGE_FORCE)
1649 		return READ_ONCE(huge_shmem_orders_inherit);
1650 
1651 	/* Allow mTHP that will be fully within i_size. */
1652 	order = highest_order(within_size_orders);
1653 	while (within_size_orders) {
1654 		index = round_up(index + 1, order);
1655 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1656 		if (i_size >> PAGE_SHIFT >= index) {
1657 			mask |= within_size_orders;
1658 			break;
1659 		}
1660 
1661 		order = next_order(&within_size_orders, order);
1662 	}
1663 
1664 	if (vm_flags & VM_HUGEPAGE)
1665 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1666 
1667 	if (global_huge)
1668 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1669 
1670 	return orders & mask;
1671 }
1672 
1673 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1674 					   struct address_space *mapping, pgoff_t index,
1675 					   unsigned long orders)
1676 {
1677 	struct vm_area_struct *vma = vmf->vma;
1678 	unsigned long pages;
1679 	int order;
1680 
1681 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1682 	if (!orders)
1683 		return 0;
1684 
1685 	/* Find the highest order that can add into the page cache */
1686 	order = highest_order(orders);
1687 	while (orders) {
1688 		pages = 1UL << order;
1689 		index = round_down(index, pages);
1690 		if (!xa_find(&mapping->i_pages, &index,
1691 			     index + pages - 1, XA_PRESENT))
1692 			break;
1693 		order = next_order(&orders, order);
1694 	}
1695 
1696 	return orders;
1697 }
1698 #else
1699 static unsigned long shmem_allowable_huge_orders(struct inode *inode,
1700 				struct vm_area_struct *vma, pgoff_t index,
1701 				bool global_huge)
1702 {
1703 	return 0;
1704 }
1705 
1706 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1707 					   struct address_space *mapping, pgoff_t index,
1708 					   unsigned long orders)
1709 {
1710 	return 0;
1711 }
1712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1713 
1714 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1715 		struct shmem_inode_info *info, pgoff_t index)
1716 {
1717 	struct mempolicy *mpol;
1718 	pgoff_t ilx;
1719 	struct folio *folio;
1720 
1721 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1722 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1723 	mpol_cond_put(mpol);
1724 
1725 	return folio;
1726 }
1727 
1728 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1729 		gfp_t gfp, struct inode *inode, pgoff_t index,
1730 		struct mm_struct *fault_mm, unsigned long orders)
1731 {
1732 	struct address_space *mapping = inode->i_mapping;
1733 	struct shmem_inode_info *info = SHMEM_I(inode);
1734 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1735 	unsigned long suitable_orders = 0;
1736 	struct folio *folio = NULL;
1737 	long pages;
1738 	int error, order;
1739 
1740 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1741 		orders = 0;
1742 
1743 	if (orders > 0) {
1744 		if (vma && vma_is_anon_shmem(vma)) {
1745 			suitable_orders = shmem_suitable_orders(inode, vmf,
1746 							mapping, index, orders);
1747 		} else if (orders & BIT(HPAGE_PMD_ORDER)) {
1748 			pages = HPAGE_PMD_NR;
1749 			suitable_orders = BIT(HPAGE_PMD_ORDER);
1750 			index = round_down(index, HPAGE_PMD_NR);
1751 
1752 			/*
1753 			 * Check for conflict before waiting on a huge allocation.
1754 			 * Conflict might be that a huge page has just been allocated
1755 			 * and added to page cache by a racing thread, or that there
1756 			 * is already at least one small page in the huge extent.
1757 			 * Be careful to retry when appropriate, but not forever!
1758 			 * Elsewhere -EEXIST would be the right code, but not here.
1759 			 */
1760 			if (xa_find(&mapping->i_pages, &index,
1761 				    index + HPAGE_PMD_NR - 1, XA_PRESENT))
1762 				return ERR_PTR(-E2BIG);
1763 		}
1764 
1765 		order = highest_order(suitable_orders);
1766 		while (suitable_orders) {
1767 			pages = 1UL << order;
1768 			index = round_down(index, pages);
1769 			folio = shmem_alloc_folio(gfp, order, info, index);
1770 			if (folio)
1771 				goto allocated;
1772 
1773 			if (pages == HPAGE_PMD_NR)
1774 				count_vm_event(THP_FILE_FALLBACK);
1775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1776 			count_mthp_stat(order, MTHP_STAT_FILE_FALLBACK);
1777 #endif
1778 			order = next_order(&suitable_orders, order);
1779 		}
1780 	} else {
1781 		pages = 1;
1782 		folio = shmem_alloc_folio(gfp, 0, info, index);
1783 	}
1784 	if (!folio)
1785 		return ERR_PTR(-ENOMEM);
1786 
1787 allocated:
1788 	__folio_set_locked(folio);
1789 	__folio_set_swapbacked(folio);
1790 
1791 	gfp &= GFP_RECLAIM_MASK;
1792 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1793 	if (error) {
1794 		if (xa_find(&mapping->i_pages, &index,
1795 				index + pages - 1, XA_PRESENT)) {
1796 			error = -EEXIST;
1797 		} else if (pages > 1) {
1798 			if (pages == HPAGE_PMD_NR) {
1799 				count_vm_event(THP_FILE_FALLBACK);
1800 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1801 			}
1802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1803 			count_mthp_stat(folio_order(folio), MTHP_STAT_FILE_FALLBACK);
1804 			count_mthp_stat(folio_order(folio), MTHP_STAT_FILE_FALLBACK_CHARGE);
1805 #endif
1806 		}
1807 		goto unlock;
1808 	}
1809 
1810 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1811 	if (error)
1812 		goto unlock;
1813 
1814 	error = shmem_inode_acct_blocks(inode, pages);
1815 	if (error) {
1816 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1817 		long freed;
1818 		/*
1819 		 * Try to reclaim some space by splitting a few
1820 		 * large folios beyond i_size on the filesystem.
1821 		 */
1822 		shmem_unused_huge_shrink(sbinfo, NULL, 2);
1823 		/*
1824 		 * And do a shmem_recalc_inode() to account for freed pages:
1825 		 * except our folio is there in cache, so not quite balanced.
1826 		 */
1827 		spin_lock(&info->lock);
1828 		freed = pages + info->alloced - info->swapped -
1829 			READ_ONCE(mapping->nrpages);
1830 		if (freed > 0)
1831 			info->alloced -= freed;
1832 		spin_unlock(&info->lock);
1833 		if (freed > 0)
1834 			shmem_inode_unacct_blocks(inode, freed);
1835 		error = shmem_inode_acct_blocks(inode, pages);
1836 		if (error) {
1837 			filemap_remove_folio(folio);
1838 			goto unlock;
1839 		}
1840 	}
1841 
1842 	shmem_recalc_inode(inode, pages, 0);
1843 	folio_add_lru(folio);
1844 	return folio;
1845 
1846 unlock:
1847 	folio_unlock(folio);
1848 	folio_put(folio);
1849 	return ERR_PTR(error);
1850 }
1851 
1852 /*
1853  * When a page is moved from swapcache to shmem filecache (either by the
1854  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1855  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1856  * ignorance of the mapping it belongs to.  If that mapping has special
1857  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1858  * we may need to copy to a suitable page before moving to filecache.
1859  *
1860  * In a future release, this may well be extended to respect cpuset and
1861  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1862  * but for now it is a simple matter of zone.
1863  */
1864 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1865 {
1866 	return folio_zonenum(folio) > gfp_zone(gfp);
1867 }
1868 
1869 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1870 				struct shmem_inode_info *info, pgoff_t index)
1871 {
1872 	struct folio *old, *new;
1873 	struct address_space *swap_mapping;
1874 	swp_entry_t entry;
1875 	pgoff_t swap_index;
1876 	int error;
1877 
1878 	old = *foliop;
1879 	entry = old->swap;
1880 	swap_index = swap_cache_index(entry);
1881 	swap_mapping = swap_address_space(entry);
1882 
1883 	/*
1884 	 * We have arrived here because our zones are constrained, so don't
1885 	 * limit chance of success by further cpuset and node constraints.
1886 	 */
1887 	gfp &= ~GFP_CONSTRAINT_MASK;
1888 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1889 	new = shmem_alloc_folio(gfp, 0, info, index);
1890 	if (!new)
1891 		return -ENOMEM;
1892 
1893 	folio_get(new);
1894 	folio_copy(new, old);
1895 	flush_dcache_folio(new);
1896 
1897 	__folio_set_locked(new);
1898 	__folio_set_swapbacked(new);
1899 	folio_mark_uptodate(new);
1900 	new->swap = entry;
1901 	folio_set_swapcache(new);
1902 
1903 	/*
1904 	 * Our caller will very soon move newpage out of swapcache, but it's
1905 	 * a nice clean interface for us to replace oldpage by newpage there.
1906 	 */
1907 	xa_lock_irq(&swap_mapping->i_pages);
1908 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1909 	if (!error) {
1910 		mem_cgroup_replace_folio(old, new);
1911 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1912 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1913 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1914 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1915 	}
1916 	xa_unlock_irq(&swap_mapping->i_pages);
1917 
1918 	if (unlikely(error)) {
1919 		/*
1920 		 * Is this possible?  I think not, now that our callers check
1921 		 * both PageSwapCache and page_private after getting page lock;
1922 		 * but be defensive.  Reverse old to newpage for clear and free.
1923 		 */
1924 		old = new;
1925 	} else {
1926 		folio_add_lru(new);
1927 		*foliop = new;
1928 	}
1929 
1930 	folio_clear_swapcache(old);
1931 	old->private = NULL;
1932 
1933 	folio_unlock(old);
1934 	folio_put_refs(old, 2);
1935 	return error;
1936 }
1937 
1938 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1939 					 struct folio *folio, swp_entry_t swap)
1940 {
1941 	struct address_space *mapping = inode->i_mapping;
1942 	swp_entry_t swapin_error;
1943 	void *old;
1944 
1945 	swapin_error = make_poisoned_swp_entry();
1946 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1947 			     swp_to_radix_entry(swap),
1948 			     swp_to_radix_entry(swapin_error), 0);
1949 	if (old != swp_to_radix_entry(swap))
1950 		return;
1951 
1952 	folio_wait_writeback(folio);
1953 	delete_from_swap_cache(folio);
1954 	/*
1955 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1956 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1957 	 * in shmem_evict_inode().
1958 	 */
1959 	shmem_recalc_inode(inode, -1, -1);
1960 	swap_free(swap);
1961 }
1962 
1963 /*
1964  * Swap in the folio pointed to by *foliop.
1965  * Caller has to make sure that *foliop contains a valid swapped folio.
1966  * Returns 0 and the folio in foliop if success. On failure, returns the
1967  * error code and NULL in *foliop.
1968  */
1969 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1970 			     struct folio **foliop, enum sgp_type sgp,
1971 			     gfp_t gfp, struct mm_struct *fault_mm,
1972 			     vm_fault_t *fault_type)
1973 {
1974 	struct address_space *mapping = inode->i_mapping;
1975 	struct shmem_inode_info *info = SHMEM_I(inode);
1976 	struct swap_info_struct *si;
1977 	struct folio *folio = NULL;
1978 	swp_entry_t swap;
1979 	int error;
1980 
1981 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1982 	swap = radix_to_swp_entry(*foliop);
1983 	*foliop = NULL;
1984 
1985 	if (is_poisoned_swp_entry(swap))
1986 		return -EIO;
1987 
1988 	si = get_swap_device(swap);
1989 	if (!si) {
1990 		if (!shmem_confirm_swap(mapping, index, swap))
1991 			return -EEXIST;
1992 		else
1993 			return -EINVAL;
1994 	}
1995 
1996 	/* Look it up and read it in.. */
1997 	folio = swap_cache_get_folio(swap, NULL, 0);
1998 	if (!folio) {
1999 		/* Or update major stats only when swapin succeeds?? */
2000 		if (fault_type) {
2001 			*fault_type |= VM_FAULT_MAJOR;
2002 			count_vm_event(PGMAJFAULT);
2003 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2004 		}
2005 		/* Here we actually start the io */
2006 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2007 		if (!folio) {
2008 			error = -ENOMEM;
2009 			goto failed;
2010 		}
2011 	}
2012 
2013 	/* We have to do this with folio locked to prevent races */
2014 	folio_lock(folio);
2015 	if (!folio_test_swapcache(folio) ||
2016 	    folio->swap.val != swap.val ||
2017 	    !shmem_confirm_swap(mapping, index, swap)) {
2018 		error = -EEXIST;
2019 		goto unlock;
2020 	}
2021 	if (!folio_test_uptodate(folio)) {
2022 		error = -EIO;
2023 		goto failed;
2024 	}
2025 	folio_wait_writeback(folio);
2026 
2027 	/*
2028 	 * Some architectures may have to restore extra metadata to the
2029 	 * folio after reading from swap.
2030 	 */
2031 	arch_swap_restore(folio_swap(swap, folio), folio);
2032 
2033 	if (shmem_should_replace_folio(folio, gfp)) {
2034 		error = shmem_replace_folio(&folio, gfp, info, index);
2035 		if (error)
2036 			goto failed;
2037 	}
2038 
2039 	error = shmem_add_to_page_cache(folio, mapping, index,
2040 					swp_to_radix_entry(swap), gfp);
2041 	if (error)
2042 		goto failed;
2043 
2044 	shmem_recalc_inode(inode, 0, -1);
2045 
2046 	if (sgp == SGP_WRITE)
2047 		folio_mark_accessed(folio);
2048 
2049 	delete_from_swap_cache(folio);
2050 	folio_mark_dirty(folio);
2051 	swap_free(swap);
2052 	put_swap_device(si);
2053 
2054 	*foliop = folio;
2055 	return 0;
2056 failed:
2057 	if (!shmem_confirm_swap(mapping, index, swap))
2058 		error = -EEXIST;
2059 	if (error == -EIO)
2060 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2061 unlock:
2062 	if (folio) {
2063 		folio_unlock(folio);
2064 		folio_put(folio);
2065 	}
2066 	put_swap_device(si);
2067 
2068 	return error;
2069 }
2070 
2071 /*
2072  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2073  *
2074  * If we allocate a new one we do not mark it dirty. That's up to the
2075  * vm. If we swap it in we mark it dirty since we also free the swap
2076  * entry since a page cannot live in both the swap and page cache.
2077  *
2078  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2079  */
2080 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2081 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
2082 		struct vm_fault *vmf, vm_fault_t *fault_type)
2083 {
2084 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2085 	struct mm_struct *fault_mm;
2086 	struct folio *folio;
2087 	int error;
2088 	bool alloced, huge;
2089 	unsigned long orders = 0;
2090 
2091 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2092 		return -EINVAL;
2093 
2094 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2095 		return -EFBIG;
2096 repeat:
2097 	if (sgp <= SGP_CACHE &&
2098 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2099 		return -EINVAL;
2100 
2101 	alloced = false;
2102 	fault_mm = vma ? vma->vm_mm : NULL;
2103 
2104 	folio = filemap_get_entry(inode->i_mapping, index);
2105 	if (folio && vma && userfaultfd_minor(vma)) {
2106 		if (!xa_is_value(folio))
2107 			folio_put(folio);
2108 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2109 		return 0;
2110 	}
2111 
2112 	if (xa_is_value(folio)) {
2113 		error = shmem_swapin_folio(inode, index, &folio,
2114 					   sgp, gfp, fault_mm, fault_type);
2115 		if (error == -EEXIST)
2116 			goto repeat;
2117 
2118 		*foliop = folio;
2119 		return error;
2120 	}
2121 
2122 	if (folio) {
2123 		folio_lock(folio);
2124 
2125 		/* Has the folio been truncated or swapped out? */
2126 		if (unlikely(folio->mapping != inode->i_mapping)) {
2127 			folio_unlock(folio);
2128 			folio_put(folio);
2129 			goto repeat;
2130 		}
2131 		if (sgp == SGP_WRITE)
2132 			folio_mark_accessed(folio);
2133 		if (folio_test_uptodate(folio))
2134 			goto out;
2135 		/* fallocated folio */
2136 		if (sgp != SGP_READ)
2137 			goto clear;
2138 		folio_unlock(folio);
2139 		folio_put(folio);
2140 	}
2141 
2142 	/*
2143 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2144 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2145 	 */
2146 	*foliop = NULL;
2147 	if (sgp == SGP_READ)
2148 		return 0;
2149 	if (sgp == SGP_NOALLOC)
2150 		return -ENOENT;
2151 
2152 	/*
2153 	 * Fast cache lookup and swap lookup did not find it: allocate.
2154 	 */
2155 
2156 	if (vma && userfaultfd_missing(vma)) {
2157 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2158 		return 0;
2159 	}
2160 
2161 	huge = shmem_is_huge(inode, index, false, fault_mm,
2162 			     vma ? vma->vm_flags : 0);
2163 	/* Find hugepage orders that are allowed for anonymous shmem. */
2164 	if (vma && vma_is_anon_shmem(vma))
2165 		orders = shmem_allowable_huge_orders(inode, vma, index, huge);
2166 	else if (huge)
2167 		orders = BIT(HPAGE_PMD_ORDER);
2168 
2169 	if (orders > 0) {
2170 		gfp_t huge_gfp;
2171 
2172 		huge_gfp = vma_thp_gfp_mask(vma);
2173 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2174 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2175 				inode, index, fault_mm, orders);
2176 		if (!IS_ERR(folio)) {
2177 			if (folio_test_pmd_mappable(folio))
2178 				count_vm_event(THP_FILE_ALLOC);
2179 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2180 			count_mthp_stat(folio_order(folio), MTHP_STAT_FILE_ALLOC);
2181 #endif
2182 			goto alloced;
2183 		}
2184 		if (PTR_ERR(folio) == -EEXIST)
2185 			goto repeat;
2186 	}
2187 
2188 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2189 	if (IS_ERR(folio)) {
2190 		error = PTR_ERR(folio);
2191 		if (error == -EEXIST)
2192 			goto repeat;
2193 		folio = NULL;
2194 		goto unlock;
2195 	}
2196 
2197 alloced:
2198 	alloced = true;
2199 	if (folio_test_large(folio) &&
2200 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2201 					folio_next_index(folio) - 1) {
2202 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2203 		struct shmem_inode_info *info = SHMEM_I(inode);
2204 		/*
2205 		 * Part of the large folio is beyond i_size: subject
2206 		 * to shrink under memory pressure.
2207 		 */
2208 		spin_lock(&sbinfo->shrinklist_lock);
2209 		/*
2210 		 * _careful to defend against unlocked access to
2211 		 * ->shrink_list in shmem_unused_huge_shrink()
2212 		 */
2213 		if (list_empty_careful(&info->shrinklist)) {
2214 			list_add_tail(&info->shrinklist,
2215 				      &sbinfo->shrinklist);
2216 			sbinfo->shrinklist_len++;
2217 		}
2218 		spin_unlock(&sbinfo->shrinklist_lock);
2219 	}
2220 
2221 	if (sgp == SGP_WRITE)
2222 		folio_set_referenced(folio);
2223 	/*
2224 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2225 	 */
2226 	if (sgp == SGP_FALLOC)
2227 		sgp = SGP_WRITE;
2228 clear:
2229 	/*
2230 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2231 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2232 	 * it now, lest undo on failure cancel our earlier guarantee.
2233 	 */
2234 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2235 		long i, n = folio_nr_pages(folio);
2236 
2237 		for (i = 0; i < n; i++)
2238 			clear_highpage(folio_page(folio, i));
2239 		flush_dcache_folio(folio);
2240 		folio_mark_uptodate(folio);
2241 	}
2242 
2243 	/* Perhaps the file has been truncated since we checked */
2244 	if (sgp <= SGP_CACHE &&
2245 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2246 		error = -EINVAL;
2247 		goto unlock;
2248 	}
2249 out:
2250 	*foliop = folio;
2251 	return 0;
2252 
2253 	/*
2254 	 * Error recovery.
2255 	 */
2256 unlock:
2257 	if (alloced)
2258 		filemap_remove_folio(folio);
2259 	shmem_recalc_inode(inode, 0, 0);
2260 	if (folio) {
2261 		folio_unlock(folio);
2262 		folio_put(folio);
2263 	}
2264 	return error;
2265 }
2266 
2267 /**
2268  * shmem_get_folio - find, and lock a shmem folio.
2269  * @inode:	inode to search
2270  * @index:	the page index.
2271  * @foliop:	pointer to the folio if found
2272  * @sgp:	SGP_* flags to control behavior
2273  *
2274  * Looks up the page cache entry at @inode & @index.  If a folio is
2275  * present, it is returned locked with an increased refcount.
2276  *
2277  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2278  * before unlocking the folio to ensure that the folio is not reclaimed.
2279  * There is no need to reserve space before calling folio_mark_dirty().
2280  *
2281  * When no folio is found, the behavior depends on @sgp:
2282  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2283  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2284  *  - for all other flags a new folio is allocated, inserted into the
2285  *    page cache and returned locked in @foliop.
2286  *
2287  * Context: May sleep.
2288  * Return: 0 if successful, else a negative error code.
2289  */
2290 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2291 		enum sgp_type sgp)
2292 {
2293 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2294 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2295 }
2296 EXPORT_SYMBOL_GPL(shmem_get_folio);
2297 
2298 /*
2299  * This is like autoremove_wake_function, but it removes the wait queue
2300  * entry unconditionally - even if something else had already woken the
2301  * target.
2302  */
2303 static int synchronous_wake_function(wait_queue_entry_t *wait,
2304 			unsigned int mode, int sync, void *key)
2305 {
2306 	int ret = default_wake_function(wait, mode, sync, key);
2307 	list_del_init(&wait->entry);
2308 	return ret;
2309 }
2310 
2311 /*
2312  * Trinity finds that probing a hole which tmpfs is punching can
2313  * prevent the hole-punch from ever completing: which in turn
2314  * locks writers out with its hold on i_rwsem.  So refrain from
2315  * faulting pages into the hole while it's being punched.  Although
2316  * shmem_undo_range() does remove the additions, it may be unable to
2317  * keep up, as each new page needs its own unmap_mapping_range() call,
2318  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2319  *
2320  * It does not matter if we sometimes reach this check just before the
2321  * hole-punch begins, so that one fault then races with the punch:
2322  * we just need to make racing faults a rare case.
2323  *
2324  * The implementation below would be much simpler if we just used a
2325  * standard mutex or completion: but we cannot take i_rwsem in fault,
2326  * and bloating every shmem inode for this unlikely case would be sad.
2327  */
2328 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2329 {
2330 	struct shmem_falloc *shmem_falloc;
2331 	struct file *fpin = NULL;
2332 	vm_fault_t ret = 0;
2333 
2334 	spin_lock(&inode->i_lock);
2335 	shmem_falloc = inode->i_private;
2336 	if (shmem_falloc &&
2337 	    shmem_falloc->waitq &&
2338 	    vmf->pgoff >= shmem_falloc->start &&
2339 	    vmf->pgoff < shmem_falloc->next) {
2340 		wait_queue_head_t *shmem_falloc_waitq;
2341 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2342 
2343 		ret = VM_FAULT_NOPAGE;
2344 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2345 		shmem_falloc_waitq = shmem_falloc->waitq;
2346 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2347 				TASK_UNINTERRUPTIBLE);
2348 		spin_unlock(&inode->i_lock);
2349 		schedule();
2350 
2351 		/*
2352 		 * shmem_falloc_waitq points into the shmem_fallocate()
2353 		 * stack of the hole-punching task: shmem_falloc_waitq
2354 		 * is usually invalid by the time we reach here, but
2355 		 * finish_wait() does not dereference it in that case;
2356 		 * though i_lock needed lest racing with wake_up_all().
2357 		 */
2358 		spin_lock(&inode->i_lock);
2359 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2360 	}
2361 	spin_unlock(&inode->i_lock);
2362 	if (fpin) {
2363 		fput(fpin);
2364 		ret = VM_FAULT_RETRY;
2365 	}
2366 	return ret;
2367 }
2368 
2369 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2370 {
2371 	struct inode *inode = file_inode(vmf->vma->vm_file);
2372 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2373 	struct folio *folio = NULL;
2374 	vm_fault_t ret = 0;
2375 	int err;
2376 
2377 	/*
2378 	 * Trinity finds that probing a hole which tmpfs is punching can
2379 	 * prevent the hole-punch from ever completing: noted in i_private.
2380 	 */
2381 	if (unlikely(inode->i_private)) {
2382 		ret = shmem_falloc_wait(vmf, inode);
2383 		if (ret)
2384 			return ret;
2385 	}
2386 
2387 	WARN_ON_ONCE(vmf->page != NULL);
2388 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2389 				  gfp, vmf, &ret);
2390 	if (err)
2391 		return vmf_error(err);
2392 	if (folio) {
2393 		vmf->page = folio_file_page(folio, vmf->pgoff);
2394 		ret |= VM_FAULT_LOCKED;
2395 	}
2396 	return ret;
2397 }
2398 
2399 unsigned long shmem_get_unmapped_area(struct file *file,
2400 				      unsigned long uaddr, unsigned long len,
2401 				      unsigned long pgoff, unsigned long flags)
2402 {
2403 	unsigned long addr;
2404 	unsigned long offset;
2405 	unsigned long inflated_len;
2406 	unsigned long inflated_addr;
2407 	unsigned long inflated_offset;
2408 	unsigned long hpage_size;
2409 
2410 	if (len > TASK_SIZE)
2411 		return -ENOMEM;
2412 
2413 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2414 				    flags);
2415 
2416 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2417 		return addr;
2418 	if (IS_ERR_VALUE(addr))
2419 		return addr;
2420 	if (addr & ~PAGE_MASK)
2421 		return addr;
2422 	if (addr > TASK_SIZE - len)
2423 		return addr;
2424 
2425 	if (shmem_huge == SHMEM_HUGE_DENY)
2426 		return addr;
2427 	if (flags & MAP_FIXED)
2428 		return addr;
2429 	/*
2430 	 * Our priority is to support MAP_SHARED mapped hugely;
2431 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2432 	 * But if caller specified an address hint and we allocated area there
2433 	 * successfully, respect that as before.
2434 	 */
2435 	if (uaddr == addr)
2436 		return addr;
2437 
2438 	hpage_size = HPAGE_PMD_SIZE;
2439 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2440 		struct super_block *sb;
2441 		unsigned long __maybe_unused hpage_orders;
2442 		int order = 0;
2443 
2444 		if (file) {
2445 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2446 			sb = file_inode(file)->i_sb;
2447 		} else {
2448 			/*
2449 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2450 			 * for "/dev/zero", to create a shared anonymous object.
2451 			 */
2452 			if (IS_ERR(shm_mnt))
2453 				return addr;
2454 			sb = shm_mnt->mnt_sb;
2455 
2456 			/*
2457 			 * Find the highest mTHP order used for anonymous shmem to
2458 			 * provide a suitable alignment address.
2459 			 */
2460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2461 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2462 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2463 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2464 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2465 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2466 
2467 			if (hpage_orders > 0) {
2468 				order = highest_order(hpage_orders);
2469 				hpage_size = PAGE_SIZE << order;
2470 			}
2471 #endif
2472 		}
2473 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2474 			return addr;
2475 	}
2476 
2477 	if (len < hpage_size)
2478 		return addr;
2479 
2480 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2481 	if (offset && offset + len < 2 * hpage_size)
2482 		return addr;
2483 	if ((addr & (hpage_size - 1)) == offset)
2484 		return addr;
2485 
2486 	inflated_len = len + hpage_size - PAGE_SIZE;
2487 	if (inflated_len > TASK_SIZE)
2488 		return addr;
2489 	if (inflated_len < len)
2490 		return addr;
2491 
2492 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2493 					     inflated_len, 0, flags);
2494 	if (IS_ERR_VALUE(inflated_addr))
2495 		return addr;
2496 	if (inflated_addr & ~PAGE_MASK)
2497 		return addr;
2498 
2499 	inflated_offset = inflated_addr & (hpage_size - 1);
2500 	inflated_addr += offset - inflated_offset;
2501 	if (inflated_offset > offset)
2502 		inflated_addr += hpage_size;
2503 
2504 	if (inflated_addr > TASK_SIZE - len)
2505 		return addr;
2506 	return inflated_addr;
2507 }
2508 
2509 #ifdef CONFIG_NUMA
2510 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2511 {
2512 	struct inode *inode = file_inode(vma->vm_file);
2513 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2514 }
2515 
2516 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2517 					  unsigned long addr, pgoff_t *ilx)
2518 {
2519 	struct inode *inode = file_inode(vma->vm_file);
2520 	pgoff_t index;
2521 
2522 	/*
2523 	 * Bias interleave by inode number to distribute better across nodes;
2524 	 * but this interface is independent of which page order is used, so
2525 	 * supplies only that bias, letting caller apply the offset (adjusted
2526 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2527 	 */
2528 	*ilx = inode->i_ino;
2529 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2530 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2531 }
2532 
2533 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2534 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2535 {
2536 	struct mempolicy *mpol;
2537 
2538 	/* Bias interleave by inode number to distribute better across nodes */
2539 	*ilx = info->vfs_inode.i_ino + (index >> order);
2540 
2541 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2542 	return mpol ? mpol : get_task_policy(current);
2543 }
2544 #else
2545 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2546 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2547 {
2548 	*ilx = 0;
2549 	return NULL;
2550 }
2551 #endif /* CONFIG_NUMA */
2552 
2553 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2554 {
2555 	struct inode *inode = file_inode(file);
2556 	struct shmem_inode_info *info = SHMEM_I(inode);
2557 	int retval = -ENOMEM;
2558 
2559 	/*
2560 	 * What serializes the accesses to info->flags?
2561 	 * ipc_lock_object() when called from shmctl_do_lock(),
2562 	 * no serialization needed when called from shm_destroy().
2563 	 */
2564 	if (lock && !(info->flags & VM_LOCKED)) {
2565 		if (!user_shm_lock(inode->i_size, ucounts))
2566 			goto out_nomem;
2567 		info->flags |= VM_LOCKED;
2568 		mapping_set_unevictable(file->f_mapping);
2569 	}
2570 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2571 		user_shm_unlock(inode->i_size, ucounts);
2572 		info->flags &= ~VM_LOCKED;
2573 		mapping_clear_unevictable(file->f_mapping);
2574 	}
2575 	retval = 0;
2576 
2577 out_nomem:
2578 	return retval;
2579 }
2580 
2581 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2582 {
2583 	struct inode *inode = file_inode(file);
2584 	struct shmem_inode_info *info = SHMEM_I(inode);
2585 	int ret;
2586 
2587 	ret = seal_check_write(info->seals, vma);
2588 	if (ret)
2589 		return ret;
2590 
2591 	/* arm64 - allow memory tagging on RAM-based files */
2592 	vm_flags_set(vma, VM_MTE_ALLOWED);
2593 
2594 	file_accessed(file);
2595 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2596 	if (inode->i_nlink)
2597 		vma->vm_ops = &shmem_vm_ops;
2598 	else
2599 		vma->vm_ops = &shmem_anon_vm_ops;
2600 	return 0;
2601 }
2602 
2603 static int shmem_file_open(struct inode *inode, struct file *file)
2604 {
2605 	file->f_mode |= FMODE_CAN_ODIRECT;
2606 	return generic_file_open(inode, file);
2607 }
2608 
2609 #ifdef CONFIG_TMPFS_XATTR
2610 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2611 
2612 /*
2613  * chattr's fsflags are unrelated to extended attributes,
2614  * but tmpfs has chosen to enable them under the same config option.
2615  */
2616 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2617 {
2618 	unsigned int i_flags = 0;
2619 
2620 	if (fsflags & FS_NOATIME_FL)
2621 		i_flags |= S_NOATIME;
2622 	if (fsflags & FS_APPEND_FL)
2623 		i_flags |= S_APPEND;
2624 	if (fsflags & FS_IMMUTABLE_FL)
2625 		i_flags |= S_IMMUTABLE;
2626 	/*
2627 	 * But FS_NODUMP_FL does not require any action in i_flags.
2628 	 */
2629 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2630 }
2631 #else
2632 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2633 {
2634 }
2635 #define shmem_initxattrs NULL
2636 #endif
2637 
2638 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2639 {
2640 	return &SHMEM_I(inode)->dir_offsets;
2641 }
2642 
2643 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2644 					     struct super_block *sb,
2645 					     struct inode *dir, umode_t mode,
2646 					     dev_t dev, unsigned long flags)
2647 {
2648 	struct inode *inode;
2649 	struct shmem_inode_info *info;
2650 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2651 	ino_t ino;
2652 	int err;
2653 
2654 	err = shmem_reserve_inode(sb, &ino);
2655 	if (err)
2656 		return ERR_PTR(err);
2657 
2658 	inode = new_inode(sb);
2659 	if (!inode) {
2660 		shmem_free_inode(sb, 0);
2661 		return ERR_PTR(-ENOSPC);
2662 	}
2663 
2664 	inode->i_ino = ino;
2665 	inode_init_owner(idmap, inode, dir, mode);
2666 	inode->i_blocks = 0;
2667 	simple_inode_init_ts(inode);
2668 	inode->i_generation = get_random_u32();
2669 	info = SHMEM_I(inode);
2670 	memset(info, 0, (char *)inode - (char *)info);
2671 	spin_lock_init(&info->lock);
2672 	atomic_set(&info->stop_eviction, 0);
2673 	info->seals = F_SEAL_SEAL;
2674 	info->flags = flags & VM_NORESERVE;
2675 	info->i_crtime = inode_get_mtime(inode);
2676 	info->fsflags = (dir == NULL) ? 0 :
2677 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2678 	if (info->fsflags)
2679 		shmem_set_inode_flags(inode, info->fsflags);
2680 	INIT_LIST_HEAD(&info->shrinklist);
2681 	INIT_LIST_HEAD(&info->swaplist);
2682 	simple_xattrs_init(&info->xattrs);
2683 	cache_no_acl(inode);
2684 	if (sbinfo->noswap)
2685 		mapping_set_unevictable(inode->i_mapping);
2686 	mapping_set_large_folios(inode->i_mapping);
2687 
2688 	switch (mode & S_IFMT) {
2689 	default:
2690 		inode->i_op = &shmem_special_inode_operations;
2691 		init_special_inode(inode, mode, dev);
2692 		break;
2693 	case S_IFREG:
2694 		inode->i_mapping->a_ops = &shmem_aops;
2695 		inode->i_op = &shmem_inode_operations;
2696 		inode->i_fop = &shmem_file_operations;
2697 		mpol_shared_policy_init(&info->policy,
2698 					 shmem_get_sbmpol(sbinfo));
2699 		break;
2700 	case S_IFDIR:
2701 		inc_nlink(inode);
2702 		/* Some things misbehave if size == 0 on a directory */
2703 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2704 		inode->i_op = &shmem_dir_inode_operations;
2705 		inode->i_fop = &simple_offset_dir_operations;
2706 		simple_offset_init(shmem_get_offset_ctx(inode));
2707 		break;
2708 	case S_IFLNK:
2709 		/*
2710 		 * Must not load anything in the rbtree,
2711 		 * mpol_free_shared_policy will not be called.
2712 		 */
2713 		mpol_shared_policy_init(&info->policy, NULL);
2714 		break;
2715 	}
2716 
2717 	lockdep_annotate_inode_mutex_key(inode);
2718 	return inode;
2719 }
2720 
2721 #ifdef CONFIG_TMPFS_QUOTA
2722 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2723 				     struct super_block *sb, struct inode *dir,
2724 				     umode_t mode, dev_t dev, unsigned long flags)
2725 {
2726 	int err;
2727 	struct inode *inode;
2728 
2729 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2730 	if (IS_ERR(inode))
2731 		return inode;
2732 
2733 	err = dquot_initialize(inode);
2734 	if (err)
2735 		goto errout;
2736 
2737 	err = dquot_alloc_inode(inode);
2738 	if (err) {
2739 		dquot_drop(inode);
2740 		goto errout;
2741 	}
2742 	return inode;
2743 
2744 errout:
2745 	inode->i_flags |= S_NOQUOTA;
2746 	iput(inode);
2747 	return ERR_PTR(err);
2748 }
2749 #else
2750 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2751 				     struct super_block *sb, struct inode *dir,
2752 				     umode_t mode, dev_t dev, unsigned long flags)
2753 {
2754 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2755 }
2756 #endif /* CONFIG_TMPFS_QUOTA */
2757 
2758 #ifdef CONFIG_USERFAULTFD
2759 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2760 			   struct vm_area_struct *dst_vma,
2761 			   unsigned long dst_addr,
2762 			   unsigned long src_addr,
2763 			   uffd_flags_t flags,
2764 			   struct folio **foliop)
2765 {
2766 	struct inode *inode = file_inode(dst_vma->vm_file);
2767 	struct shmem_inode_info *info = SHMEM_I(inode);
2768 	struct address_space *mapping = inode->i_mapping;
2769 	gfp_t gfp = mapping_gfp_mask(mapping);
2770 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2771 	void *page_kaddr;
2772 	struct folio *folio;
2773 	int ret;
2774 	pgoff_t max_off;
2775 
2776 	if (shmem_inode_acct_blocks(inode, 1)) {
2777 		/*
2778 		 * We may have got a page, returned -ENOENT triggering a retry,
2779 		 * and now we find ourselves with -ENOMEM. Release the page, to
2780 		 * avoid a BUG_ON in our caller.
2781 		 */
2782 		if (unlikely(*foliop)) {
2783 			folio_put(*foliop);
2784 			*foliop = NULL;
2785 		}
2786 		return -ENOMEM;
2787 	}
2788 
2789 	if (!*foliop) {
2790 		ret = -ENOMEM;
2791 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2792 		if (!folio)
2793 			goto out_unacct_blocks;
2794 
2795 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2796 			page_kaddr = kmap_local_folio(folio, 0);
2797 			/*
2798 			 * The read mmap_lock is held here.  Despite the
2799 			 * mmap_lock being read recursive a deadlock is still
2800 			 * possible if a writer has taken a lock.  For example:
2801 			 *
2802 			 * process A thread 1 takes read lock on own mmap_lock
2803 			 * process A thread 2 calls mmap, blocks taking write lock
2804 			 * process B thread 1 takes page fault, read lock on own mmap lock
2805 			 * process B thread 2 calls mmap, blocks taking write lock
2806 			 * process A thread 1 blocks taking read lock on process B
2807 			 * process B thread 1 blocks taking read lock on process A
2808 			 *
2809 			 * Disable page faults to prevent potential deadlock
2810 			 * and retry the copy outside the mmap_lock.
2811 			 */
2812 			pagefault_disable();
2813 			ret = copy_from_user(page_kaddr,
2814 					     (const void __user *)src_addr,
2815 					     PAGE_SIZE);
2816 			pagefault_enable();
2817 			kunmap_local(page_kaddr);
2818 
2819 			/* fallback to copy_from_user outside mmap_lock */
2820 			if (unlikely(ret)) {
2821 				*foliop = folio;
2822 				ret = -ENOENT;
2823 				/* don't free the page */
2824 				goto out_unacct_blocks;
2825 			}
2826 
2827 			flush_dcache_folio(folio);
2828 		} else {		/* ZEROPAGE */
2829 			clear_user_highpage(&folio->page, dst_addr);
2830 		}
2831 	} else {
2832 		folio = *foliop;
2833 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2834 		*foliop = NULL;
2835 	}
2836 
2837 	VM_BUG_ON(folio_test_locked(folio));
2838 	VM_BUG_ON(folio_test_swapbacked(folio));
2839 	__folio_set_locked(folio);
2840 	__folio_set_swapbacked(folio);
2841 	__folio_mark_uptodate(folio);
2842 
2843 	ret = -EFAULT;
2844 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2845 	if (unlikely(pgoff >= max_off))
2846 		goto out_release;
2847 
2848 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2849 	if (ret)
2850 		goto out_release;
2851 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
2852 	if (ret)
2853 		goto out_release;
2854 
2855 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2856 				       &folio->page, true, flags);
2857 	if (ret)
2858 		goto out_delete_from_cache;
2859 
2860 	shmem_recalc_inode(inode, 1, 0);
2861 	folio_unlock(folio);
2862 	return 0;
2863 out_delete_from_cache:
2864 	filemap_remove_folio(folio);
2865 out_release:
2866 	folio_unlock(folio);
2867 	folio_put(folio);
2868 out_unacct_blocks:
2869 	shmem_inode_unacct_blocks(inode, 1);
2870 	return ret;
2871 }
2872 #endif /* CONFIG_USERFAULTFD */
2873 
2874 #ifdef CONFIG_TMPFS
2875 static const struct inode_operations shmem_symlink_inode_operations;
2876 static const struct inode_operations shmem_short_symlink_operations;
2877 
2878 static int
2879 shmem_write_begin(struct file *file, struct address_space *mapping,
2880 			loff_t pos, unsigned len,
2881 			struct page **pagep, void **fsdata)
2882 {
2883 	struct inode *inode = mapping->host;
2884 	struct shmem_inode_info *info = SHMEM_I(inode);
2885 	pgoff_t index = pos >> PAGE_SHIFT;
2886 	struct folio *folio;
2887 	int ret = 0;
2888 
2889 	/* i_rwsem is held by caller */
2890 	if (unlikely(info->seals & (F_SEAL_GROW |
2891 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2892 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2893 			return -EPERM;
2894 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2895 			return -EPERM;
2896 	}
2897 
2898 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2899 	if (ret)
2900 		return ret;
2901 
2902 	*pagep = folio_file_page(folio, index);
2903 	if (PageHWPoison(*pagep)) {
2904 		folio_unlock(folio);
2905 		folio_put(folio);
2906 		*pagep = NULL;
2907 		return -EIO;
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 static int
2914 shmem_write_end(struct file *file, struct address_space *mapping,
2915 			loff_t pos, unsigned len, unsigned copied,
2916 			struct page *page, void *fsdata)
2917 {
2918 	struct folio *folio = page_folio(page);
2919 	struct inode *inode = mapping->host;
2920 
2921 	if (pos + copied > inode->i_size)
2922 		i_size_write(inode, pos + copied);
2923 
2924 	if (!folio_test_uptodate(folio)) {
2925 		if (copied < folio_size(folio)) {
2926 			size_t from = offset_in_folio(folio, pos);
2927 			folio_zero_segments(folio, 0, from,
2928 					from + copied, folio_size(folio));
2929 		}
2930 		folio_mark_uptodate(folio);
2931 	}
2932 	folio_mark_dirty(folio);
2933 	folio_unlock(folio);
2934 	folio_put(folio);
2935 
2936 	return copied;
2937 }
2938 
2939 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2940 {
2941 	struct file *file = iocb->ki_filp;
2942 	struct inode *inode = file_inode(file);
2943 	struct address_space *mapping = inode->i_mapping;
2944 	pgoff_t index;
2945 	unsigned long offset;
2946 	int error = 0;
2947 	ssize_t retval = 0;
2948 	loff_t *ppos = &iocb->ki_pos;
2949 
2950 	index = *ppos >> PAGE_SHIFT;
2951 	offset = *ppos & ~PAGE_MASK;
2952 
2953 	for (;;) {
2954 		struct folio *folio = NULL;
2955 		struct page *page = NULL;
2956 		pgoff_t end_index;
2957 		unsigned long nr, ret;
2958 		loff_t i_size = i_size_read(inode);
2959 
2960 		end_index = i_size >> PAGE_SHIFT;
2961 		if (index > end_index)
2962 			break;
2963 		if (index == end_index) {
2964 			nr = i_size & ~PAGE_MASK;
2965 			if (nr <= offset)
2966 				break;
2967 		}
2968 
2969 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2970 		if (error) {
2971 			if (error == -EINVAL)
2972 				error = 0;
2973 			break;
2974 		}
2975 		if (folio) {
2976 			folio_unlock(folio);
2977 
2978 			page = folio_file_page(folio, index);
2979 			if (PageHWPoison(page)) {
2980 				folio_put(folio);
2981 				error = -EIO;
2982 				break;
2983 			}
2984 		}
2985 
2986 		/*
2987 		 * We must evaluate after, since reads (unlike writes)
2988 		 * are called without i_rwsem protection against truncate
2989 		 */
2990 		nr = PAGE_SIZE;
2991 		i_size = i_size_read(inode);
2992 		end_index = i_size >> PAGE_SHIFT;
2993 		if (index == end_index) {
2994 			nr = i_size & ~PAGE_MASK;
2995 			if (nr <= offset) {
2996 				if (folio)
2997 					folio_put(folio);
2998 				break;
2999 			}
3000 		}
3001 		nr -= offset;
3002 
3003 		if (folio) {
3004 			/*
3005 			 * If users can be writing to this page using arbitrary
3006 			 * virtual addresses, take care about potential aliasing
3007 			 * before reading the page on the kernel side.
3008 			 */
3009 			if (mapping_writably_mapped(mapping))
3010 				flush_dcache_page(page);
3011 			/*
3012 			 * Mark the page accessed if we read the beginning.
3013 			 */
3014 			if (!offset)
3015 				folio_mark_accessed(folio);
3016 			/*
3017 			 * Ok, we have the page, and it's up-to-date, so
3018 			 * now we can copy it to user space...
3019 			 */
3020 			ret = copy_page_to_iter(page, offset, nr, to);
3021 			folio_put(folio);
3022 
3023 		} else if (user_backed_iter(to)) {
3024 			/*
3025 			 * Copy to user tends to be so well optimized, but
3026 			 * clear_user() not so much, that it is noticeably
3027 			 * faster to copy the zero page instead of clearing.
3028 			 */
3029 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3030 		} else {
3031 			/*
3032 			 * But submitting the same page twice in a row to
3033 			 * splice() - or others? - can result in confusion:
3034 			 * so don't attempt that optimization on pipes etc.
3035 			 */
3036 			ret = iov_iter_zero(nr, to);
3037 		}
3038 
3039 		retval += ret;
3040 		offset += ret;
3041 		index += offset >> PAGE_SHIFT;
3042 		offset &= ~PAGE_MASK;
3043 
3044 		if (!iov_iter_count(to))
3045 			break;
3046 		if (ret < nr) {
3047 			error = -EFAULT;
3048 			break;
3049 		}
3050 		cond_resched();
3051 	}
3052 
3053 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3054 	file_accessed(file);
3055 	return retval ? retval : error;
3056 }
3057 
3058 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3059 {
3060 	struct file *file = iocb->ki_filp;
3061 	struct inode *inode = file->f_mapping->host;
3062 	ssize_t ret;
3063 
3064 	inode_lock(inode);
3065 	ret = generic_write_checks(iocb, from);
3066 	if (ret <= 0)
3067 		goto unlock;
3068 	ret = file_remove_privs(file);
3069 	if (ret)
3070 		goto unlock;
3071 	ret = file_update_time(file);
3072 	if (ret)
3073 		goto unlock;
3074 	ret = generic_perform_write(iocb, from);
3075 unlock:
3076 	inode_unlock(inode);
3077 	return ret;
3078 }
3079 
3080 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3081 			      struct pipe_buffer *buf)
3082 {
3083 	return true;
3084 }
3085 
3086 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3087 				  struct pipe_buffer *buf)
3088 {
3089 }
3090 
3091 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3092 				    struct pipe_buffer *buf)
3093 {
3094 	return false;
3095 }
3096 
3097 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3098 	.release	= zero_pipe_buf_release,
3099 	.try_steal	= zero_pipe_buf_try_steal,
3100 	.get		= zero_pipe_buf_get,
3101 };
3102 
3103 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3104 					loff_t fpos, size_t size)
3105 {
3106 	size_t offset = fpos & ~PAGE_MASK;
3107 
3108 	size = min_t(size_t, size, PAGE_SIZE - offset);
3109 
3110 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3111 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3112 
3113 		*buf = (struct pipe_buffer) {
3114 			.ops	= &zero_pipe_buf_ops,
3115 			.page	= ZERO_PAGE(0),
3116 			.offset	= offset,
3117 			.len	= size,
3118 		};
3119 		pipe->head++;
3120 	}
3121 
3122 	return size;
3123 }
3124 
3125 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3126 				      struct pipe_inode_info *pipe,
3127 				      size_t len, unsigned int flags)
3128 {
3129 	struct inode *inode = file_inode(in);
3130 	struct address_space *mapping = inode->i_mapping;
3131 	struct folio *folio = NULL;
3132 	size_t total_spliced = 0, used, npages, n, part;
3133 	loff_t isize;
3134 	int error = 0;
3135 
3136 	/* Work out how much data we can actually add into the pipe */
3137 	used = pipe_occupancy(pipe->head, pipe->tail);
3138 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3139 	len = min_t(size_t, len, npages * PAGE_SIZE);
3140 
3141 	do {
3142 		if (*ppos >= i_size_read(inode))
3143 			break;
3144 
3145 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
3146 					SGP_READ);
3147 		if (error) {
3148 			if (error == -EINVAL)
3149 				error = 0;
3150 			break;
3151 		}
3152 		if (folio) {
3153 			folio_unlock(folio);
3154 
3155 			if (folio_test_hwpoison(folio) ||
3156 			    (folio_test_large(folio) &&
3157 			     folio_test_has_hwpoisoned(folio))) {
3158 				error = -EIO;
3159 				break;
3160 			}
3161 		}
3162 
3163 		/*
3164 		 * i_size must be checked after we know the pages are Uptodate.
3165 		 *
3166 		 * Checking i_size after the check allows us to calculate
3167 		 * the correct value for "nr", which means the zero-filled
3168 		 * part of the page is not copied back to userspace (unless
3169 		 * another truncate extends the file - this is desired though).
3170 		 */
3171 		isize = i_size_read(inode);
3172 		if (unlikely(*ppos >= isize))
3173 			break;
3174 		part = min_t(loff_t, isize - *ppos, len);
3175 
3176 		if (folio) {
3177 			/*
3178 			 * If users can be writing to this page using arbitrary
3179 			 * virtual addresses, take care about potential aliasing
3180 			 * before reading the page on the kernel side.
3181 			 */
3182 			if (mapping_writably_mapped(mapping))
3183 				flush_dcache_folio(folio);
3184 			folio_mark_accessed(folio);
3185 			/*
3186 			 * Ok, we have the page, and it's up-to-date, so we can
3187 			 * now splice it into the pipe.
3188 			 */
3189 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3190 			folio_put(folio);
3191 			folio = NULL;
3192 		} else {
3193 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3194 		}
3195 
3196 		if (!n)
3197 			break;
3198 		len -= n;
3199 		total_spliced += n;
3200 		*ppos += n;
3201 		in->f_ra.prev_pos = *ppos;
3202 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3203 			break;
3204 
3205 		cond_resched();
3206 	} while (len);
3207 
3208 	if (folio)
3209 		folio_put(folio);
3210 
3211 	file_accessed(in);
3212 	return total_spliced ? total_spliced : error;
3213 }
3214 
3215 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3216 {
3217 	struct address_space *mapping = file->f_mapping;
3218 	struct inode *inode = mapping->host;
3219 
3220 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3221 		return generic_file_llseek_size(file, offset, whence,
3222 					MAX_LFS_FILESIZE, i_size_read(inode));
3223 	if (offset < 0)
3224 		return -ENXIO;
3225 
3226 	inode_lock(inode);
3227 	/* We're holding i_rwsem so we can access i_size directly */
3228 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3229 	if (offset >= 0)
3230 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3231 	inode_unlock(inode);
3232 	return offset;
3233 }
3234 
3235 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3236 							 loff_t len)
3237 {
3238 	struct inode *inode = file_inode(file);
3239 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3240 	struct shmem_inode_info *info = SHMEM_I(inode);
3241 	struct shmem_falloc shmem_falloc;
3242 	pgoff_t start, index, end, undo_fallocend;
3243 	int error;
3244 
3245 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3246 		return -EOPNOTSUPP;
3247 
3248 	inode_lock(inode);
3249 
3250 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3251 		struct address_space *mapping = file->f_mapping;
3252 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3253 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3254 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3255 
3256 		/* protected by i_rwsem */
3257 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3258 			error = -EPERM;
3259 			goto out;
3260 		}
3261 
3262 		shmem_falloc.waitq = &shmem_falloc_waitq;
3263 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3264 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3265 		spin_lock(&inode->i_lock);
3266 		inode->i_private = &shmem_falloc;
3267 		spin_unlock(&inode->i_lock);
3268 
3269 		if ((u64)unmap_end > (u64)unmap_start)
3270 			unmap_mapping_range(mapping, unmap_start,
3271 					    1 + unmap_end - unmap_start, 0);
3272 		shmem_truncate_range(inode, offset, offset + len - 1);
3273 		/* No need to unmap again: hole-punching leaves COWed pages */
3274 
3275 		spin_lock(&inode->i_lock);
3276 		inode->i_private = NULL;
3277 		wake_up_all(&shmem_falloc_waitq);
3278 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3279 		spin_unlock(&inode->i_lock);
3280 		error = 0;
3281 		goto out;
3282 	}
3283 
3284 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3285 	error = inode_newsize_ok(inode, offset + len);
3286 	if (error)
3287 		goto out;
3288 
3289 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3290 		error = -EPERM;
3291 		goto out;
3292 	}
3293 
3294 	start = offset >> PAGE_SHIFT;
3295 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3296 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3297 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3298 		error = -ENOSPC;
3299 		goto out;
3300 	}
3301 
3302 	shmem_falloc.waitq = NULL;
3303 	shmem_falloc.start = start;
3304 	shmem_falloc.next  = start;
3305 	shmem_falloc.nr_falloced = 0;
3306 	shmem_falloc.nr_unswapped = 0;
3307 	spin_lock(&inode->i_lock);
3308 	inode->i_private = &shmem_falloc;
3309 	spin_unlock(&inode->i_lock);
3310 
3311 	/*
3312 	 * info->fallocend is only relevant when huge pages might be
3313 	 * involved: to prevent split_huge_page() freeing fallocated
3314 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3315 	 */
3316 	undo_fallocend = info->fallocend;
3317 	if (info->fallocend < end)
3318 		info->fallocend = end;
3319 
3320 	for (index = start; index < end; ) {
3321 		struct folio *folio;
3322 
3323 		/*
3324 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3325 		 * been interrupted because we are using up too much memory.
3326 		 */
3327 		if (signal_pending(current))
3328 			error = -EINTR;
3329 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3330 			error = -ENOMEM;
3331 		else
3332 			error = shmem_get_folio(inode, index, &folio,
3333 						SGP_FALLOC);
3334 		if (error) {
3335 			info->fallocend = undo_fallocend;
3336 			/* Remove the !uptodate folios we added */
3337 			if (index > start) {
3338 				shmem_undo_range(inode,
3339 				    (loff_t)start << PAGE_SHIFT,
3340 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3341 			}
3342 			goto undone;
3343 		}
3344 
3345 		/*
3346 		 * Here is a more important optimization than it appears:
3347 		 * a second SGP_FALLOC on the same large folio will clear it,
3348 		 * making it uptodate and un-undoable if we fail later.
3349 		 */
3350 		index = folio_next_index(folio);
3351 		/* Beware 32-bit wraparound */
3352 		if (!index)
3353 			index--;
3354 
3355 		/*
3356 		 * Inform shmem_writepage() how far we have reached.
3357 		 * No need for lock or barrier: we have the page lock.
3358 		 */
3359 		if (!folio_test_uptodate(folio))
3360 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3361 		shmem_falloc.next = index;
3362 
3363 		/*
3364 		 * If !uptodate, leave it that way so that freeable folios
3365 		 * can be recognized if we need to rollback on error later.
3366 		 * But mark it dirty so that memory pressure will swap rather
3367 		 * than free the folios we are allocating (and SGP_CACHE folios
3368 		 * might still be clean: we now need to mark those dirty too).
3369 		 */
3370 		folio_mark_dirty(folio);
3371 		folio_unlock(folio);
3372 		folio_put(folio);
3373 		cond_resched();
3374 	}
3375 
3376 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3377 		i_size_write(inode, offset + len);
3378 undone:
3379 	spin_lock(&inode->i_lock);
3380 	inode->i_private = NULL;
3381 	spin_unlock(&inode->i_lock);
3382 out:
3383 	if (!error)
3384 		file_modified(file);
3385 	inode_unlock(inode);
3386 	return error;
3387 }
3388 
3389 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3390 {
3391 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3392 
3393 	buf->f_type = TMPFS_MAGIC;
3394 	buf->f_bsize = PAGE_SIZE;
3395 	buf->f_namelen = NAME_MAX;
3396 	if (sbinfo->max_blocks) {
3397 		buf->f_blocks = sbinfo->max_blocks;
3398 		buf->f_bavail =
3399 		buf->f_bfree  = sbinfo->max_blocks -
3400 				percpu_counter_sum(&sbinfo->used_blocks);
3401 	}
3402 	if (sbinfo->max_inodes) {
3403 		buf->f_files = sbinfo->max_inodes;
3404 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3405 	}
3406 	/* else leave those fields 0 like simple_statfs */
3407 
3408 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3409 
3410 	return 0;
3411 }
3412 
3413 /*
3414  * File creation. Allocate an inode, and we're done..
3415  */
3416 static int
3417 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3418 	    struct dentry *dentry, umode_t mode, dev_t dev)
3419 {
3420 	struct inode *inode;
3421 	int error;
3422 
3423 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3424 	if (IS_ERR(inode))
3425 		return PTR_ERR(inode);
3426 
3427 	error = simple_acl_create(dir, inode);
3428 	if (error)
3429 		goto out_iput;
3430 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3431 					     shmem_initxattrs, NULL);
3432 	if (error && error != -EOPNOTSUPP)
3433 		goto out_iput;
3434 
3435 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3436 	if (error)
3437 		goto out_iput;
3438 
3439 	dir->i_size += BOGO_DIRENT_SIZE;
3440 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3441 	inode_inc_iversion(dir);
3442 	d_instantiate(dentry, inode);
3443 	dget(dentry); /* Extra count - pin the dentry in core */
3444 	return error;
3445 
3446 out_iput:
3447 	iput(inode);
3448 	return error;
3449 }
3450 
3451 static int
3452 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3453 	      struct file *file, umode_t mode)
3454 {
3455 	struct inode *inode;
3456 	int error;
3457 
3458 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3459 	if (IS_ERR(inode)) {
3460 		error = PTR_ERR(inode);
3461 		goto err_out;
3462 	}
3463 	error = security_inode_init_security(inode, dir, NULL,
3464 					     shmem_initxattrs, NULL);
3465 	if (error && error != -EOPNOTSUPP)
3466 		goto out_iput;
3467 	error = simple_acl_create(dir, inode);
3468 	if (error)
3469 		goto out_iput;
3470 	d_tmpfile(file, inode);
3471 
3472 err_out:
3473 	return finish_open_simple(file, error);
3474 out_iput:
3475 	iput(inode);
3476 	return error;
3477 }
3478 
3479 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3480 		       struct dentry *dentry, umode_t mode)
3481 {
3482 	int error;
3483 
3484 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3485 	if (error)
3486 		return error;
3487 	inc_nlink(dir);
3488 	return 0;
3489 }
3490 
3491 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3492 			struct dentry *dentry, umode_t mode, bool excl)
3493 {
3494 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3495 }
3496 
3497 /*
3498  * Link a file..
3499  */
3500 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3501 		      struct dentry *dentry)
3502 {
3503 	struct inode *inode = d_inode(old_dentry);
3504 	int ret = 0;
3505 
3506 	/*
3507 	 * No ordinary (disk based) filesystem counts links as inodes;
3508 	 * but each new link needs a new dentry, pinning lowmem, and
3509 	 * tmpfs dentries cannot be pruned until they are unlinked.
3510 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3511 	 * first link must skip that, to get the accounting right.
3512 	 */
3513 	if (inode->i_nlink) {
3514 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3515 		if (ret)
3516 			goto out;
3517 	}
3518 
3519 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3520 	if (ret) {
3521 		if (inode->i_nlink)
3522 			shmem_free_inode(inode->i_sb, 0);
3523 		goto out;
3524 	}
3525 
3526 	dir->i_size += BOGO_DIRENT_SIZE;
3527 	inode_set_mtime_to_ts(dir,
3528 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3529 	inode_inc_iversion(dir);
3530 	inc_nlink(inode);
3531 	ihold(inode);	/* New dentry reference */
3532 	dget(dentry);	/* Extra pinning count for the created dentry */
3533 	d_instantiate(dentry, inode);
3534 out:
3535 	return ret;
3536 }
3537 
3538 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3539 {
3540 	struct inode *inode = d_inode(dentry);
3541 
3542 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3543 		shmem_free_inode(inode->i_sb, 0);
3544 
3545 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3546 
3547 	dir->i_size -= BOGO_DIRENT_SIZE;
3548 	inode_set_mtime_to_ts(dir,
3549 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3550 	inode_inc_iversion(dir);
3551 	drop_nlink(inode);
3552 	dput(dentry);	/* Undo the count from "create" - does all the work */
3553 	return 0;
3554 }
3555 
3556 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3557 {
3558 	if (!simple_offset_empty(dentry))
3559 		return -ENOTEMPTY;
3560 
3561 	drop_nlink(d_inode(dentry));
3562 	drop_nlink(dir);
3563 	return shmem_unlink(dir, dentry);
3564 }
3565 
3566 static int shmem_whiteout(struct mnt_idmap *idmap,
3567 			  struct inode *old_dir, struct dentry *old_dentry)
3568 {
3569 	struct dentry *whiteout;
3570 	int error;
3571 
3572 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3573 	if (!whiteout)
3574 		return -ENOMEM;
3575 
3576 	error = shmem_mknod(idmap, old_dir, whiteout,
3577 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3578 	dput(whiteout);
3579 	if (error)
3580 		return error;
3581 
3582 	/*
3583 	 * Cheat and hash the whiteout while the old dentry is still in
3584 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3585 	 *
3586 	 * d_lookup() will consistently find one of them at this point,
3587 	 * not sure which one, but that isn't even important.
3588 	 */
3589 	d_rehash(whiteout);
3590 	return 0;
3591 }
3592 
3593 /*
3594  * The VFS layer already does all the dentry stuff for rename,
3595  * we just have to decrement the usage count for the target if
3596  * it exists so that the VFS layer correctly free's it when it
3597  * gets overwritten.
3598  */
3599 static int shmem_rename2(struct mnt_idmap *idmap,
3600 			 struct inode *old_dir, struct dentry *old_dentry,
3601 			 struct inode *new_dir, struct dentry *new_dentry,
3602 			 unsigned int flags)
3603 {
3604 	struct inode *inode = d_inode(old_dentry);
3605 	int they_are_dirs = S_ISDIR(inode->i_mode);
3606 	int error;
3607 
3608 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3609 		return -EINVAL;
3610 
3611 	if (flags & RENAME_EXCHANGE)
3612 		return simple_offset_rename_exchange(old_dir, old_dentry,
3613 						     new_dir, new_dentry);
3614 
3615 	if (!simple_offset_empty(new_dentry))
3616 		return -ENOTEMPTY;
3617 
3618 	if (flags & RENAME_WHITEOUT) {
3619 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3620 		if (error)
3621 			return error;
3622 	}
3623 
3624 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3625 	if (error)
3626 		return error;
3627 
3628 	if (d_really_is_positive(new_dentry)) {
3629 		(void) shmem_unlink(new_dir, new_dentry);
3630 		if (they_are_dirs) {
3631 			drop_nlink(d_inode(new_dentry));
3632 			drop_nlink(old_dir);
3633 		}
3634 	} else if (they_are_dirs) {
3635 		drop_nlink(old_dir);
3636 		inc_nlink(new_dir);
3637 	}
3638 
3639 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3640 	new_dir->i_size += BOGO_DIRENT_SIZE;
3641 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3642 	inode_inc_iversion(old_dir);
3643 	inode_inc_iversion(new_dir);
3644 	return 0;
3645 }
3646 
3647 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3648 			 struct dentry *dentry, const char *symname)
3649 {
3650 	int error;
3651 	int len;
3652 	struct inode *inode;
3653 	struct folio *folio;
3654 
3655 	len = strlen(symname) + 1;
3656 	if (len > PAGE_SIZE)
3657 		return -ENAMETOOLONG;
3658 
3659 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3660 				VM_NORESERVE);
3661 	if (IS_ERR(inode))
3662 		return PTR_ERR(inode);
3663 
3664 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3665 					     shmem_initxattrs, NULL);
3666 	if (error && error != -EOPNOTSUPP)
3667 		goto out_iput;
3668 
3669 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3670 	if (error)
3671 		goto out_iput;
3672 
3673 	inode->i_size = len-1;
3674 	if (len <= SHORT_SYMLINK_LEN) {
3675 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3676 		if (!inode->i_link) {
3677 			error = -ENOMEM;
3678 			goto out_remove_offset;
3679 		}
3680 		inode->i_op = &shmem_short_symlink_operations;
3681 	} else {
3682 		inode_nohighmem(inode);
3683 		inode->i_mapping->a_ops = &shmem_aops;
3684 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3685 		if (error)
3686 			goto out_remove_offset;
3687 		inode->i_op = &shmem_symlink_inode_operations;
3688 		memcpy(folio_address(folio), symname, len);
3689 		folio_mark_uptodate(folio);
3690 		folio_mark_dirty(folio);
3691 		folio_unlock(folio);
3692 		folio_put(folio);
3693 	}
3694 	dir->i_size += BOGO_DIRENT_SIZE;
3695 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3696 	inode_inc_iversion(dir);
3697 	d_instantiate(dentry, inode);
3698 	dget(dentry);
3699 	return 0;
3700 
3701 out_remove_offset:
3702 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3703 out_iput:
3704 	iput(inode);
3705 	return error;
3706 }
3707 
3708 static void shmem_put_link(void *arg)
3709 {
3710 	folio_mark_accessed(arg);
3711 	folio_put(arg);
3712 }
3713 
3714 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3715 				  struct delayed_call *done)
3716 {
3717 	struct folio *folio = NULL;
3718 	int error;
3719 
3720 	if (!dentry) {
3721 		folio = filemap_get_folio(inode->i_mapping, 0);
3722 		if (IS_ERR(folio))
3723 			return ERR_PTR(-ECHILD);
3724 		if (PageHWPoison(folio_page(folio, 0)) ||
3725 		    !folio_test_uptodate(folio)) {
3726 			folio_put(folio);
3727 			return ERR_PTR(-ECHILD);
3728 		}
3729 	} else {
3730 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3731 		if (error)
3732 			return ERR_PTR(error);
3733 		if (!folio)
3734 			return ERR_PTR(-ECHILD);
3735 		if (PageHWPoison(folio_page(folio, 0))) {
3736 			folio_unlock(folio);
3737 			folio_put(folio);
3738 			return ERR_PTR(-ECHILD);
3739 		}
3740 		folio_unlock(folio);
3741 	}
3742 	set_delayed_call(done, shmem_put_link, folio);
3743 	return folio_address(folio);
3744 }
3745 
3746 #ifdef CONFIG_TMPFS_XATTR
3747 
3748 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3749 {
3750 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3751 
3752 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3753 
3754 	return 0;
3755 }
3756 
3757 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3758 			      struct dentry *dentry, struct fileattr *fa)
3759 {
3760 	struct inode *inode = d_inode(dentry);
3761 	struct shmem_inode_info *info = SHMEM_I(inode);
3762 
3763 	if (fileattr_has_fsx(fa))
3764 		return -EOPNOTSUPP;
3765 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3766 		return -EOPNOTSUPP;
3767 
3768 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3769 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3770 
3771 	shmem_set_inode_flags(inode, info->fsflags);
3772 	inode_set_ctime_current(inode);
3773 	inode_inc_iversion(inode);
3774 	return 0;
3775 }
3776 
3777 /*
3778  * Superblocks without xattr inode operations may get some security.* xattr
3779  * support from the LSM "for free". As soon as we have any other xattrs
3780  * like ACLs, we also need to implement the security.* handlers at
3781  * filesystem level, though.
3782  */
3783 
3784 /*
3785  * Callback for security_inode_init_security() for acquiring xattrs.
3786  */
3787 static int shmem_initxattrs(struct inode *inode,
3788 			    const struct xattr *xattr_array, void *fs_info)
3789 {
3790 	struct shmem_inode_info *info = SHMEM_I(inode);
3791 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3792 	const struct xattr *xattr;
3793 	struct simple_xattr *new_xattr;
3794 	size_t ispace = 0;
3795 	size_t len;
3796 
3797 	if (sbinfo->max_inodes) {
3798 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3799 			ispace += simple_xattr_space(xattr->name,
3800 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3801 		}
3802 		if (ispace) {
3803 			raw_spin_lock(&sbinfo->stat_lock);
3804 			if (sbinfo->free_ispace < ispace)
3805 				ispace = 0;
3806 			else
3807 				sbinfo->free_ispace -= ispace;
3808 			raw_spin_unlock(&sbinfo->stat_lock);
3809 			if (!ispace)
3810 				return -ENOSPC;
3811 		}
3812 	}
3813 
3814 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3815 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3816 		if (!new_xattr)
3817 			break;
3818 
3819 		len = strlen(xattr->name) + 1;
3820 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3821 					  GFP_KERNEL_ACCOUNT);
3822 		if (!new_xattr->name) {
3823 			kvfree(new_xattr);
3824 			break;
3825 		}
3826 
3827 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3828 		       XATTR_SECURITY_PREFIX_LEN);
3829 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3830 		       xattr->name, len);
3831 
3832 		simple_xattr_add(&info->xattrs, new_xattr);
3833 	}
3834 
3835 	if (xattr->name != NULL) {
3836 		if (ispace) {
3837 			raw_spin_lock(&sbinfo->stat_lock);
3838 			sbinfo->free_ispace += ispace;
3839 			raw_spin_unlock(&sbinfo->stat_lock);
3840 		}
3841 		simple_xattrs_free(&info->xattrs, NULL);
3842 		return -ENOMEM;
3843 	}
3844 
3845 	return 0;
3846 }
3847 
3848 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3849 				   struct dentry *unused, struct inode *inode,
3850 				   const char *name, void *buffer, size_t size)
3851 {
3852 	struct shmem_inode_info *info = SHMEM_I(inode);
3853 
3854 	name = xattr_full_name(handler, name);
3855 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3856 }
3857 
3858 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3859 				   struct mnt_idmap *idmap,
3860 				   struct dentry *unused, struct inode *inode,
3861 				   const char *name, const void *value,
3862 				   size_t size, int flags)
3863 {
3864 	struct shmem_inode_info *info = SHMEM_I(inode);
3865 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3866 	struct simple_xattr *old_xattr;
3867 	size_t ispace = 0;
3868 
3869 	name = xattr_full_name(handler, name);
3870 	if (value && sbinfo->max_inodes) {
3871 		ispace = simple_xattr_space(name, size);
3872 		raw_spin_lock(&sbinfo->stat_lock);
3873 		if (sbinfo->free_ispace < ispace)
3874 			ispace = 0;
3875 		else
3876 			sbinfo->free_ispace -= ispace;
3877 		raw_spin_unlock(&sbinfo->stat_lock);
3878 		if (!ispace)
3879 			return -ENOSPC;
3880 	}
3881 
3882 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3883 	if (!IS_ERR(old_xattr)) {
3884 		ispace = 0;
3885 		if (old_xattr && sbinfo->max_inodes)
3886 			ispace = simple_xattr_space(old_xattr->name,
3887 						    old_xattr->size);
3888 		simple_xattr_free(old_xattr);
3889 		old_xattr = NULL;
3890 		inode_set_ctime_current(inode);
3891 		inode_inc_iversion(inode);
3892 	}
3893 	if (ispace) {
3894 		raw_spin_lock(&sbinfo->stat_lock);
3895 		sbinfo->free_ispace += ispace;
3896 		raw_spin_unlock(&sbinfo->stat_lock);
3897 	}
3898 	return PTR_ERR(old_xattr);
3899 }
3900 
3901 static const struct xattr_handler shmem_security_xattr_handler = {
3902 	.prefix = XATTR_SECURITY_PREFIX,
3903 	.get = shmem_xattr_handler_get,
3904 	.set = shmem_xattr_handler_set,
3905 };
3906 
3907 static const struct xattr_handler shmem_trusted_xattr_handler = {
3908 	.prefix = XATTR_TRUSTED_PREFIX,
3909 	.get = shmem_xattr_handler_get,
3910 	.set = shmem_xattr_handler_set,
3911 };
3912 
3913 static const struct xattr_handler shmem_user_xattr_handler = {
3914 	.prefix = XATTR_USER_PREFIX,
3915 	.get = shmem_xattr_handler_get,
3916 	.set = shmem_xattr_handler_set,
3917 };
3918 
3919 static const struct xattr_handler * const shmem_xattr_handlers[] = {
3920 	&shmem_security_xattr_handler,
3921 	&shmem_trusted_xattr_handler,
3922 	&shmem_user_xattr_handler,
3923 	NULL
3924 };
3925 
3926 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3927 {
3928 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3929 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3930 }
3931 #endif /* CONFIG_TMPFS_XATTR */
3932 
3933 static const struct inode_operations shmem_short_symlink_operations = {
3934 	.getattr	= shmem_getattr,
3935 	.setattr	= shmem_setattr,
3936 	.get_link	= simple_get_link,
3937 #ifdef CONFIG_TMPFS_XATTR
3938 	.listxattr	= shmem_listxattr,
3939 #endif
3940 };
3941 
3942 static const struct inode_operations shmem_symlink_inode_operations = {
3943 	.getattr	= shmem_getattr,
3944 	.setattr	= shmem_setattr,
3945 	.get_link	= shmem_get_link,
3946 #ifdef CONFIG_TMPFS_XATTR
3947 	.listxattr	= shmem_listxattr,
3948 #endif
3949 };
3950 
3951 static struct dentry *shmem_get_parent(struct dentry *child)
3952 {
3953 	return ERR_PTR(-ESTALE);
3954 }
3955 
3956 static int shmem_match(struct inode *ino, void *vfh)
3957 {
3958 	__u32 *fh = vfh;
3959 	__u64 inum = fh[2];
3960 	inum = (inum << 32) | fh[1];
3961 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3962 }
3963 
3964 /* Find any alias of inode, but prefer a hashed alias */
3965 static struct dentry *shmem_find_alias(struct inode *inode)
3966 {
3967 	struct dentry *alias = d_find_alias(inode);
3968 
3969 	return alias ?: d_find_any_alias(inode);
3970 }
3971 
3972 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3973 		struct fid *fid, int fh_len, int fh_type)
3974 {
3975 	struct inode *inode;
3976 	struct dentry *dentry = NULL;
3977 	u64 inum;
3978 
3979 	if (fh_len < 3)
3980 		return NULL;
3981 
3982 	inum = fid->raw[2];
3983 	inum = (inum << 32) | fid->raw[1];
3984 
3985 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3986 			shmem_match, fid->raw);
3987 	if (inode) {
3988 		dentry = shmem_find_alias(inode);
3989 		iput(inode);
3990 	}
3991 
3992 	return dentry;
3993 }
3994 
3995 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3996 				struct inode *parent)
3997 {
3998 	if (*len < 3) {
3999 		*len = 3;
4000 		return FILEID_INVALID;
4001 	}
4002 
4003 	if (inode_unhashed(inode)) {
4004 		/* Unfortunately insert_inode_hash is not idempotent,
4005 		 * so as we hash inodes here rather than at creation
4006 		 * time, we need a lock to ensure we only try
4007 		 * to do it once
4008 		 */
4009 		static DEFINE_SPINLOCK(lock);
4010 		spin_lock(&lock);
4011 		if (inode_unhashed(inode))
4012 			__insert_inode_hash(inode,
4013 					    inode->i_ino + inode->i_generation);
4014 		spin_unlock(&lock);
4015 	}
4016 
4017 	fh[0] = inode->i_generation;
4018 	fh[1] = inode->i_ino;
4019 	fh[2] = ((__u64)inode->i_ino) >> 32;
4020 
4021 	*len = 3;
4022 	return 1;
4023 }
4024 
4025 static const struct export_operations shmem_export_ops = {
4026 	.get_parent     = shmem_get_parent,
4027 	.encode_fh      = shmem_encode_fh,
4028 	.fh_to_dentry	= shmem_fh_to_dentry,
4029 };
4030 
4031 enum shmem_param {
4032 	Opt_gid,
4033 	Opt_huge,
4034 	Opt_mode,
4035 	Opt_mpol,
4036 	Opt_nr_blocks,
4037 	Opt_nr_inodes,
4038 	Opt_size,
4039 	Opt_uid,
4040 	Opt_inode32,
4041 	Opt_inode64,
4042 	Opt_noswap,
4043 	Opt_quota,
4044 	Opt_usrquota,
4045 	Opt_grpquota,
4046 	Opt_usrquota_block_hardlimit,
4047 	Opt_usrquota_inode_hardlimit,
4048 	Opt_grpquota_block_hardlimit,
4049 	Opt_grpquota_inode_hardlimit,
4050 };
4051 
4052 static const struct constant_table shmem_param_enums_huge[] = {
4053 	{"never",	SHMEM_HUGE_NEVER },
4054 	{"always",	SHMEM_HUGE_ALWAYS },
4055 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4056 	{"advise",	SHMEM_HUGE_ADVISE },
4057 	{}
4058 };
4059 
4060 const struct fs_parameter_spec shmem_fs_parameters[] = {
4061 	fsparam_u32   ("gid",		Opt_gid),
4062 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4063 	fsparam_u32oct("mode",		Opt_mode),
4064 	fsparam_string("mpol",		Opt_mpol),
4065 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4066 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4067 	fsparam_string("size",		Opt_size),
4068 	fsparam_u32   ("uid",		Opt_uid),
4069 	fsparam_flag  ("inode32",	Opt_inode32),
4070 	fsparam_flag  ("inode64",	Opt_inode64),
4071 	fsparam_flag  ("noswap",	Opt_noswap),
4072 #ifdef CONFIG_TMPFS_QUOTA
4073 	fsparam_flag  ("quota",		Opt_quota),
4074 	fsparam_flag  ("usrquota",	Opt_usrquota),
4075 	fsparam_flag  ("grpquota",	Opt_grpquota),
4076 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4077 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4078 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4079 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4080 #endif
4081 	{}
4082 };
4083 
4084 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4085 {
4086 	struct shmem_options *ctx = fc->fs_private;
4087 	struct fs_parse_result result;
4088 	unsigned long long size;
4089 	char *rest;
4090 	int opt;
4091 	kuid_t kuid;
4092 	kgid_t kgid;
4093 
4094 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4095 	if (opt < 0)
4096 		return opt;
4097 
4098 	switch (opt) {
4099 	case Opt_size:
4100 		size = memparse(param->string, &rest);
4101 		if (*rest == '%') {
4102 			size <<= PAGE_SHIFT;
4103 			size *= totalram_pages();
4104 			do_div(size, 100);
4105 			rest++;
4106 		}
4107 		if (*rest)
4108 			goto bad_value;
4109 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4110 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4111 		break;
4112 	case Opt_nr_blocks:
4113 		ctx->blocks = memparse(param->string, &rest);
4114 		if (*rest || ctx->blocks > LONG_MAX)
4115 			goto bad_value;
4116 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4117 		break;
4118 	case Opt_nr_inodes:
4119 		ctx->inodes = memparse(param->string, &rest);
4120 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4121 			goto bad_value;
4122 		ctx->seen |= SHMEM_SEEN_INODES;
4123 		break;
4124 	case Opt_mode:
4125 		ctx->mode = result.uint_32 & 07777;
4126 		break;
4127 	case Opt_uid:
4128 		kuid = make_kuid(current_user_ns(), result.uint_32);
4129 		if (!uid_valid(kuid))
4130 			goto bad_value;
4131 
4132 		/*
4133 		 * The requested uid must be representable in the
4134 		 * filesystem's idmapping.
4135 		 */
4136 		if (!kuid_has_mapping(fc->user_ns, kuid))
4137 			goto bad_value;
4138 
4139 		ctx->uid = kuid;
4140 		break;
4141 	case Opt_gid:
4142 		kgid = make_kgid(current_user_ns(), result.uint_32);
4143 		if (!gid_valid(kgid))
4144 			goto bad_value;
4145 
4146 		/*
4147 		 * The requested gid must be representable in the
4148 		 * filesystem's idmapping.
4149 		 */
4150 		if (!kgid_has_mapping(fc->user_ns, kgid))
4151 			goto bad_value;
4152 
4153 		ctx->gid = kgid;
4154 		break;
4155 	case Opt_huge:
4156 		ctx->huge = result.uint_32;
4157 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4158 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4159 		      has_transparent_hugepage()))
4160 			goto unsupported_parameter;
4161 		ctx->seen |= SHMEM_SEEN_HUGE;
4162 		break;
4163 	case Opt_mpol:
4164 		if (IS_ENABLED(CONFIG_NUMA)) {
4165 			mpol_put(ctx->mpol);
4166 			ctx->mpol = NULL;
4167 			if (mpol_parse_str(param->string, &ctx->mpol))
4168 				goto bad_value;
4169 			break;
4170 		}
4171 		goto unsupported_parameter;
4172 	case Opt_inode32:
4173 		ctx->full_inums = false;
4174 		ctx->seen |= SHMEM_SEEN_INUMS;
4175 		break;
4176 	case Opt_inode64:
4177 		if (sizeof(ino_t) < 8) {
4178 			return invalfc(fc,
4179 				       "Cannot use inode64 with <64bit inums in kernel\n");
4180 		}
4181 		ctx->full_inums = true;
4182 		ctx->seen |= SHMEM_SEEN_INUMS;
4183 		break;
4184 	case Opt_noswap:
4185 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4186 			return invalfc(fc,
4187 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4188 		}
4189 		ctx->noswap = true;
4190 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4191 		break;
4192 	case Opt_quota:
4193 		if (fc->user_ns != &init_user_ns)
4194 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4195 		ctx->seen |= SHMEM_SEEN_QUOTA;
4196 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4197 		break;
4198 	case Opt_usrquota:
4199 		if (fc->user_ns != &init_user_ns)
4200 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4201 		ctx->seen |= SHMEM_SEEN_QUOTA;
4202 		ctx->quota_types |= QTYPE_MASK_USR;
4203 		break;
4204 	case Opt_grpquota:
4205 		if (fc->user_ns != &init_user_ns)
4206 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4207 		ctx->seen |= SHMEM_SEEN_QUOTA;
4208 		ctx->quota_types |= QTYPE_MASK_GRP;
4209 		break;
4210 	case Opt_usrquota_block_hardlimit:
4211 		size = memparse(param->string, &rest);
4212 		if (*rest || !size)
4213 			goto bad_value;
4214 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4215 			return invalfc(fc,
4216 				       "User quota block hardlimit too large.");
4217 		ctx->qlimits.usrquota_bhardlimit = size;
4218 		break;
4219 	case Opt_grpquota_block_hardlimit:
4220 		size = memparse(param->string, &rest);
4221 		if (*rest || !size)
4222 			goto bad_value;
4223 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4224 			return invalfc(fc,
4225 				       "Group quota block hardlimit too large.");
4226 		ctx->qlimits.grpquota_bhardlimit = size;
4227 		break;
4228 	case Opt_usrquota_inode_hardlimit:
4229 		size = memparse(param->string, &rest);
4230 		if (*rest || !size)
4231 			goto bad_value;
4232 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4233 			return invalfc(fc,
4234 				       "User quota inode hardlimit too large.");
4235 		ctx->qlimits.usrquota_ihardlimit = size;
4236 		break;
4237 	case Opt_grpquota_inode_hardlimit:
4238 		size = memparse(param->string, &rest);
4239 		if (*rest || !size)
4240 			goto bad_value;
4241 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4242 			return invalfc(fc,
4243 				       "Group quota inode hardlimit too large.");
4244 		ctx->qlimits.grpquota_ihardlimit = size;
4245 		break;
4246 	}
4247 	return 0;
4248 
4249 unsupported_parameter:
4250 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4251 bad_value:
4252 	return invalfc(fc, "Bad value for '%s'", param->key);
4253 }
4254 
4255 static int shmem_parse_options(struct fs_context *fc, void *data)
4256 {
4257 	char *options = data;
4258 
4259 	if (options) {
4260 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4261 		if (err)
4262 			return err;
4263 	}
4264 
4265 	while (options != NULL) {
4266 		char *this_char = options;
4267 		for (;;) {
4268 			/*
4269 			 * NUL-terminate this option: unfortunately,
4270 			 * mount options form a comma-separated list,
4271 			 * but mpol's nodelist may also contain commas.
4272 			 */
4273 			options = strchr(options, ',');
4274 			if (options == NULL)
4275 				break;
4276 			options++;
4277 			if (!isdigit(*options)) {
4278 				options[-1] = '\0';
4279 				break;
4280 			}
4281 		}
4282 		if (*this_char) {
4283 			char *value = strchr(this_char, '=');
4284 			size_t len = 0;
4285 			int err;
4286 
4287 			if (value) {
4288 				*value++ = '\0';
4289 				len = strlen(value);
4290 			}
4291 			err = vfs_parse_fs_string(fc, this_char, value, len);
4292 			if (err < 0)
4293 				return err;
4294 		}
4295 	}
4296 	return 0;
4297 }
4298 
4299 /*
4300  * Reconfigure a shmem filesystem.
4301  */
4302 static int shmem_reconfigure(struct fs_context *fc)
4303 {
4304 	struct shmem_options *ctx = fc->fs_private;
4305 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4306 	unsigned long used_isp;
4307 	struct mempolicy *mpol = NULL;
4308 	const char *err;
4309 
4310 	raw_spin_lock(&sbinfo->stat_lock);
4311 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4312 
4313 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4314 		if (!sbinfo->max_blocks) {
4315 			err = "Cannot retroactively limit size";
4316 			goto out;
4317 		}
4318 		if (percpu_counter_compare(&sbinfo->used_blocks,
4319 					   ctx->blocks) > 0) {
4320 			err = "Too small a size for current use";
4321 			goto out;
4322 		}
4323 	}
4324 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4325 		if (!sbinfo->max_inodes) {
4326 			err = "Cannot retroactively limit inodes";
4327 			goto out;
4328 		}
4329 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4330 			err = "Too few inodes for current use";
4331 			goto out;
4332 		}
4333 	}
4334 
4335 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4336 	    sbinfo->next_ino > UINT_MAX) {
4337 		err = "Current inum too high to switch to 32-bit inums";
4338 		goto out;
4339 	}
4340 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4341 		err = "Cannot disable swap on remount";
4342 		goto out;
4343 	}
4344 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4345 		err = "Cannot enable swap on remount if it was disabled on first mount";
4346 		goto out;
4347 	}
4348 
4349 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4350 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4351 		err = "Cannot enable quota on remount";
4352 		goto out;
4353 	}
4354 
4355 #ifdef CONFIG_TMPFS_QUOTA
4356 #define CHANGED_LIMIT(name)						\
4357 	(ctx->qlimits.name## hardlimit &&				\
4358 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4359 
4360 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4361 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4362 		err = "Cannot change global quota limit on remount";
4363 		goto out;
4364 	}
4365 #endif /* CONFIG_TMPFS_QUOTA */
4366 
4367 	if (ctx->seen & SHMEM_SEEN_HUGE)
4368 		sbinfo->huge = ctx->huge;
4369 	if (ctx->seen & SHMEM_SEEN_INUMS)
4370 		sbinfo->full_inums = ctx->full_inums;
4371 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4372 		sbinfo->max_blocks  = ctx->blocks;
4373 	if (ctx->seen & SHMEM_SEEN_INODES) {
4374 		sbinfo->max_inodes  = ctx->inodes;
4375 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4376 	}
4377 
4378 	/*
4379 	 * Preserve previous mempolicy unless mpol remount option was specified.
4380 	 */
4381 	if (ctx->mpol) {
4382 		mpol = sbinfo->mpol;
4383 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4384 		ctx->mpol = NULL;
4385 	}
4386 
4387 	if (ctx->noswap)
4388 		sbinfo->noswap = true;
4389 
4390 	raw_spin_unlock(&sbinfo->stat_lock);
4391 	mpol_put(mpol);
4392 	return 0;
4393 out:
4394 	raw_spin_unlock(&sbinfo->stat_lock);
4395 	return invalfc(fc, "%s", err);
4396 }
4397 
4398 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4399 {
4400 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4401 	struct mempolicy *mpol;
4402 
4403 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4404 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4405 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4406 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4407 	if (sbinfo->mode != (0777 | S_ISVTX))
4408 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4409 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4410 		seq_printf(seq, ",uid=%u",
4411 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4412 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4413 		seq_printf(seq, ",gid=%u",
4414 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4415 
4416 	/*
4417 	 * Showing inode{64,32} might be useful even if it's the system default,
4418 	 * since then people don't have to resort to checking both here and
4419 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4420 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4421 	 *
4422 	 * We hide it when inode64 isn't the default and we are using 32-bit
4423 	 * inodes, since that probably just means the feature isn't even under
4424 	 * consideration.
4425 	 *
4426 	 * As such:
4427 	 *
4428 	 *                     +-----------------+-----------------+
4429 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4430 	 *  +------------------+-----------------+-----------------+
4431 	 *  | full_inums=true  | show            | show            |
4432 	 *  | full_inums=false | show            | hide            |
4433 	 *  +------------------+-----------------+-----------------+
4434 	 *
4435 	 */
4436 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4437 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4438 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4439 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4440 	if (sbinfo->huge)
4441 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4442 #endif
4443 	mpol = shmem_get_sbmpol(sbinfo);
4444 	shmem_show_mpol(seq, mpol);
4445 	mpol_put(mpol);
4446 	if (sbinfo->noswap)
4447 		seq_printf(seq, ",noswap");
4448 #ifdef CONFIG_TMPFS_QUOTA
4449 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4450 		seq_printf(seq, ",usrquota");
4451 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4452 		seq_printf(seq, ",grpquota");
4453 	if (sbinfo->qlimits.usrquota_bhardlimit)
4454 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4455 			   sbinfo->qlimits.usrquota_bhardlimit);
4456 	if (sbinfo->qlimits.grpquota_bhardlimit)
4457 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4458 			   sbinfo->qlimits.grpquota_bhardlimit);
4459 	if (sbinfo->qlimits.usrquota_ihardlimit)
4460 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4461 			   sbinfo->qlimits.usrquota_ihardlimit);
4462 	if (sbinfo->qlimits.grpquota_ihardlimit)
4463 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4464 			   sbinfo->qlimits.grpquota_ihardlimit);
4465 #endif
4466 	return 0;
4467 }
4468 
4469 #endif /* CONFIG_TMPFS */
4470 
4471 static void shmem_put_super(struct super_block *sb)
4472 {
4473 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4474 
4475 #ifdef CONFIG_TMPFS_QUOTA
4476 	shmem_disable_quotas(sb);
4477 #endif
4478 	free_percpu(sbinfo->ino_batch);
4479 	percpu_counter_destroy(&sbinfo->used_blocks);
4480 	mpol_put(sbinfo->mpol);
4481 	kfree(sbinfo);
4482 	sb->s_fs_info = NULL;
4483 }
4484 
4485 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4486 {
4487 	struct shmem_options *ctx = fc->fs_private;
4488 	struct inode *inode;
4489 	struct shmem_sb_info *sbinfo;
4490 	int error = -ENOMEM;
4491 
4492 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4493 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4494 				L1_CACHE_BYTES), GFP_KERNEL);
4495 	if (!sbinfo)
4496 		return error;
4497 
4498 	sb->s_fs_info = sbinfo;
4499 
4500 #ifdef CONFIG_TMPFS
4501 	/*
4502 	 * Per default we only allow half of the physical ram per
4503 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4504 	 * but the internal instance is left unlimited.
4505 	 */
4506 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4507 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4508 			ctx->blocks = shmem_default_max_blocks();
4509 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4510 			ctx->inodes = shmem_default_max_inodes();
4511 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4512 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4513 		sbinfo->noswap = ctx->noswap;
4514 	} else {
4515 		sb->s_flags |= SB_NOUSER;
4516 	}
4517 	sb->s_export_op = &shmem_export_ops;
4518 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4519 #else
4520 	sb->s_flags |= SB_NOUSER;
4521 #endif
4522 	sbinfo->max_blocks = ctx->blocks;
4523 	sbinfo->max_inodes = ctx->inodes;
4524 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4525 	if (sb->s_flags & SB_KERNMOUNT) {
4526 		sbinfo->ino_batch = alloc_percpu(ino_t);
4527 		if (!sbinfo->ino_batch)
4528 			goto failed;
4529 	}
4530 	sbinfo->uid = ctx->uid;
4531 	sbinfo->gid = ctx->gid;
4532 	sbinfo->full_inums = ctx->full_inums;
4533 	sbinfo->mode = ctx->mode;
4534 	sbinfo->huge = ctx->huge;
4535 	sbinfo->mpol = ctx->mpol;
4536 	ctx->mpol = NULL;
4537 
4538 	raw_spin_lock_init(&sbinfo->stat_lock);
4539 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4540 		goto failed;
4541 	spin_lock_init(&sbinfo->shrinklist_lock);
4542 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4543 
4544 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4545 	sb->s_blocksize = PAGE_SIZE;
4546 	sb->s_blocksize_bits = PAGE_SHIFT;
4547 	sb->s_magic = TMPFS_MAGIC;
4548 	sb->s_op = &shmem_ops;
4549 	sb->s_time_gran = 1;
4550 #ifdef CONFIG_TMPFS_XATTR
4551 	sb->s_xattr = shmem_xattr_handlers;
4552 #endif
4553 #ifdef CONFIG_TMPFS_POSIX_ACL
4554 	sb->s_flags |= SB_POSIXACL;
4555 #endif
4556 	uuid_t uuid;
4557 	uuid_gen(&uuid);
4558 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4559 
4560 #ifdef CONFIG_TMPFS_QUOTA
4561 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4562 		sb->dq_op = &shmem_quota_operations;
4563 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4564 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4565 
4566 		/* Copy the default limits from ctx into sbinfo */
4567 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4568 		       sizeof(struct shmem_quota_limits));
4569 
4570 		if (shmem_enable_quotas(sb, ctx->quota_types))
4571 			goto failed;
4572 	}
4573 #endif /* CONFIG_TMPFS_QUOTA */
4574 
4575 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4576 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4577 	if (IS_ERR(inode)) {
4578 		error = PTR_ERR(inode);
4579 		goto failed;
4580 	}
4581 	inode->i_uid = sbinfo->uid;
4582 	inode->i_gid = sbinfo->gid;
4583 	sb->s_root = d_make_root(inode);
4584 	if (!sb->s_root)
4585 		goto failed;
4586 	return 0;
4587 
4588 failed:
4589 	shmem_put_super(sb);
4590 	return error;
4591 }
4592 
4593 static int shmem_get_tree(struct fs_context *fc)
4594 {
4595 	return get_tree_nodev(fc, shmem_fill_super);
4596 }
4597 
4598 static void shmem_free_fc(struct fs_context *fc)
4599 {
4600 	struct shmem_options *ctx = fc->fs_private;
4601 
4602 	if (ctx) {
4603 		mpol_put(ctx->mpol);
4604 		kfree(ctx);
4605 	}
4606 }
4607 
4608 static const struct fs_context_operations shmem_fs_context_ops = {
4609 	.free			= shmem_free_fc,
4610 	.get_tree		= shmem_get_tree,
4611 #ifdef CONFIG_TMPFS
4612 	.parse_monolithic	= shmem_parse_options,
4613 	.parse_param		= shmem_parse_one,
4614 	.reconfigure		= shmem_reconfigure,
4615 #endif
4616 };
4617 
4618 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4619 
4620 static struct inode *shmem_alloc_inode(struct super_block *sb)
4621 {
4622 	struct shmem_inode_info *info;
4623 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4624 	if (!info)
4625 		return NULL;
4626 	return &info->vfs_inode;
4627 }
4628 
4629 static void shmem_free_in_core_inode(struct inode *inode)
4630 {
4631 	if (S_ISLNK(inode->i_mode))
4632 		kfree(inode->i_link);
4633 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4634 }
4635 
4636 static void shmem_destroy_inode(struct inode *inode)
4637 {
4638 	if (S_ISREG(inode->i_mode))
4639 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4640 	if (S_ISDIR(inode->i_mode))
4641 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4642 }
4643 
4644 static void shmem_init_inode(void *foo)
4645 {
4646 	struct shmem_inode_info *info = foo;
4647 	inode_init_once(&info->vfs_inode);
4648 }
4649 
4650 static void __init shmem_init_inodecache(void)
4651 {
4652 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4653 				sizeof(struct shmem_inode_info),
4654 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4655 }
4656 
4657 static void __init shmem_destroy_inodecache(void)
4658 {
4659 	kmem_cache_destroy(shmem_inode_cachep);
4660 }
4661 
4662 /* Keep the page in page cache instead of truncating it */
4663 static int shmem_error_remove_folio(struct address_space *mapping,
4664 				   struct folio *folio)
4665 {
4666 	return 0;
4667 }
4668 
4669 static const struct address_space_operations shmem_aops = {
4670 	.writepage	= shmem_writepage,
4671 	.dirty_folio	= noop_dirty_folio,
4672 #ifdef CONFIG_TMPFS
4673 	.write_begin	= shmem_write_begin,
4674 	.write_end	= shmem_write_end,
4675 #endif
4676 #ifdef CONFIG_MIGRATION
4677 	.migrate_folio	= migrate_folio,
4678 #endif
4679 	.error_remove_folio = shmem_error_remove_folio,
4680 };
4681 
4682 static const struct file_operations shmem_file_operations = {
4683 	.mmap		= shmem_mmap,
4684 	.open		= shmem_file_open,
4685 	.get_unmapped_area = shmem_get_unmapped_area,
4686 #ifdef CONFIG_TMPFS
4687 	.llseek		= shmem_file_llseek,
4688 	.read_iter	= shmem_file_read_iter,
4689 	.write_iter	= shmem_file_write_iter,
4690 	.fsync		= noop_fsync,
4691 	.splice_read	= shmem_file_splice_read,
4692 	.splice_write	= iter_file_splice_write,
4693 	.fallocate	= shmem_fallocate,
4694 #endif
4695 };
4696 
4697 static const struct inode_operations shmem_inode_operations = {
4698 	.getattr	= shmem_getattr,
4699 	.setattr	= shmem_setattr,
4700 #ifdef CONFIG_TMPFS_XATTR
4701 	.listxattr	= shmem_listxattr,
4702 	.set_acl	= simple_set_acl,
4703 	.fileattr_get	= shmem_fileattr_get,
4704 	.fileattr_set	= shmem_fileattr_set,
4705 #endif
4706 };
4707 
4708 static const struct inode_operations shmem_dir_inode_operations = {
4709 #ifdef CONFIG_TMPFS
4710 	.getattr	= shmem_getattr,
4711 	.create		= shmem_create,
4712 	.lookup		= simple_lookup,
4713 	.link		= shmem_link,
4714 	.unlink		= shmem_unlink,
4715 	.symlink	= shmem_symlink,
4716 	.mkdir		= shmem_mkdir,
4717 	.rmdir		= shmem_rmdir,
4718 	.mknod		= shmem_mknod,
4719 	.rename		= shmem_rename2,
4720 	.tmpfile	= shmem_tmpfile,
4721 	.get_offset_ctx	= shmem_get_offset_ctx,
4722 #endif
4723 #ifdef CONFIG_TMPFS_XATTR
4724 	.listxattr	= shmem_listxattr,
4725 	.fileattr_get	= shmem_fileattr_get,
4726 	.fileattr_set	= shmem_fileattr_set,
4727 #endif
4728 #ifdef CONFIG_TMPFS_POSIX_ACL
4729 	.setattr	= shmem_setattr,
4730 	.set_acl	= simple_set_acl,
4731 #endif
4732 };
4733 
4734 static const struct inode_operations shmem_special_inode_operations = {
4735 	.getattr	= shmem_getattr,
4736 #ifdef CONFIG_TMPFS_XATTR
4737 	.listxattr	= shmem_listxattr,
4738 #endif
4739 #ifdef CONFIG_TMPFS_POSIX_ACL
4740 	.setattr	= shmem_setattr,
4741 	.set_acl	= simple_set_acl,
4742 #endif
4743 };
4744 
4745 static const struct super_operations shmem_ops = {
4746 	.alloc_inode	= shmem_alloc_inode,
4747 	.free_inode	= shmem_free_in_core_inode,
4748 	.destroy_inode	= shmem_destroy_inode,
4749 #ifdef CONFIG_TMPFS
4750 	.statfs		= shmem_statfs,
4751 	.show_options	= shmem_show_options,
4752 #endif
4753 #ifdef CONFIG_TMPFS_QUOTA
4754 	.get_dquots	= shmem_get_dquots,
4755 #endif
4756 	.evict_inode	= shmem_evict_inode,
4757 	.drop_inode	= generic_delete_inode,
4758 	.put_super	= shmem_put_super,
4759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4760 	.nr_cached_objects	= shmem_unused_huge_count,
4761 	.free_cached_objects	= shmem_unused_huge_scan,
4762 #endif
4763 };
4764 
4765 static const struct vm_operations_struct shmem_vm_ops = {
4766 	.fault		= shmem_fault,
4767 	.map_pages	= filemap_map_pages,
4768 #ifdef CONFIG_NUMA
4769 	.set_policy     = shmem_set_policy,
4770 	.get_policy     = shmem_get_policy,
4771 #endif
4772 };
4773 
4774 static const struct vm_operations_struct shmem_anon_vm_ops = {
4775 	.fault		= shmem_fault,
4776 	.map_pages	= filemap_map_pages,
4777 #ifdef CONFIG_NUMA
4778 	.set_policy     = shmem_set_policy,
4779 	.get_policy     = shmem_get_policy,
4780 #endif
4781 };
4782 
4783 int shmem_init_fs_context(struct fs_context *fc)
4784 {
4785 	struct shmem_options *ctx;
4786 
4787 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4788 	if (!ctx)
4789 		return -ENOMEM;
4790 
4791 	ctx->mode = 0777 | S_ISVTX;
4792 	ctx->uid = current_fsuid();
4793 	ctx->gid = current_fsgid();
4794 
4795 	fc->fs_private = ctx;
4796 	fc->ops = &shmem_fs_context_ops;
4797 	return 0;
4798 }
4799 
4800 static struct file_system_type shmem_fs_type = {
4801 	.owner		= THIS_MODULE,
4802 	.name		= "tmpfs",
4803 	.init_fs_context = shmem_init_fs_context,
4804 #ifdef CONFIG_TMPFS
4805 	.parameters	= shmem_fs_parameters,
4806 #endif
4807 	.kill_sb	= kill_litter_super,
4808 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4809 };
4810 
4811 void __init shmem_init(void)
4812 {
4813 	int error;
4814 
4815 	shmem_init_inodecache();
4816 
4817 #ifdef CONFIG_TMPFS_QUOTA
4818 	error = register_quota_format(&shmem_quota_format);
4819 	if (error < 0) {
4820 		pr_err("Could not register quota format\n");
4821 		goto out3;
4822 	}
4823 #endif
4824 
4825 	error = register_filesystem(&shmem_fs_type);
4826 	if (error) {
4827 		pr_err("Could not register tmpfs\n");
4828 		goto out2;
4829 	}
4830 
4831 	shm_mnt = kern_mount(&shmem_fs_type);
4832 	if (IS_ERR(shm_mnt)) {
4833 		error = PTR_ERR(shm_mnt);
4834 		pr_err("Could not kern_mount tmpfs\n");
4835 		goto out1;
4836 	}
4837 
4838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4839 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4840 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4841 	else
4842 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4843 
4844 	/*
4845 	 * Default to setting PMD-sized THP to inherit the global setting and
4846 	 * disable all other multi-size THPs.
4847 	 */
4848 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
4849 #endif
4850 	return;
4851 
4852 out1:
4853 	unregister_filesystem(&shmem_fs_type);
4854 out2:
4855 #ifdef CONFIG_TMPFS_QUOTA
4856 	unregister_quota_format(&shmem_quota_format);
4857 out3:
4858 #endif
4859 	shmem_destroy_inodecache();
4860 	shm_mnt = ERR_PTR(error);
4861 }
4862 
4863 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4864 static ssize_t shmem_enabled_show(struct kobject *kobj,
4865 				  struct kobj_attribute *attr, char *buf)
4866 {
4867 	static const int values[] = {
4868 		SHMEM_HUGE_ALWAYS,
4869 		SHMEM_HUGE_WITHIN_SIZE,
4870 		SHMEM_HUGE_ADVISE,
4871 		SHMEM_HUGE_NEVER,
4872 		SHMEM_HUGE_DENY,
4873 		SHMEM_HUGE_FORCE,
4874 	};
4875 	int len = 0;
4876 	int i;
4877 
4878 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4879 		len += sysfs_emit_at(buf, len,
4880 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4881 				i ? " " : "", shmem_format_huge(values[i]));
4882 	}
4883 	len += sysfs_emit_at(buf, len, "\n");
4884 
4885 	return len;
4886 }
4887 
4888 static ssize_t shmem_enabled_store(struct kobject *kobj,
4889 		struct kobj_attribute *attr, const char *buf, size_t count)
4890 {
4891 	char tmp[16];
4892 	int huge;
4893 
4894 	if (count + 1 > sizeof(tmp))
4895 		return -EINVAL;
4896 	memcpy(tmp, buf, count);
4897 	tmp[count] = '\0';
4898 	if (count && tmp[count - 1] == '\n')
4899 		tmp[count - 1] = '\0';
4900 
4901 	huge = shmem_parse_huge(tmp);
4902 	if (huge == -EINVAL)
4903 		return -EINVAL;
4904 	if (!has_transparent_hugepage() &&
4905 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4906 		return -EINVAL;
4907 
4908 	/* Do not override huge allocation policy with non-PMD sized mTHP */
4909 	if (huge == SHMEM_HUGE_FORCE &&
4910 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
4911 		return -EINVAL;
4912 
4913 	shmem_huge = huge;
4914 	if (shmem_huge > SHMEM_HUGE_DENY)
4915 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4916 	return count;
4917 }
4918 
4919 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4920 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
4921 
4922 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
4923 					  struct kobj_attribute *attr, char *buf)
4924 {
4925 	int order = to_thpsize(kobj)->order;
4926 	const char *output;
4927 
4928 	if (test_bit(order, &huge_shmem_orders_always))
4929 		output = "[always] inherit within_size advise never";
4930 	else if (test_bit(order, &huge_shmem_orders_inherit))
4931 		output = "always [inherit] within_size advise never";
4932 	else if (test_bit(order, &huge_shmem_orders_within_size))
4933 		output = "always inherit [within_size] advise never";
4934 	else if (test_bit(order, &huge_shmem_orders_madvise))
4935 		output = "always inherit within_size [advise] never";
4936 	else
4937 		output = "always inherit within_size advise [never]";
4938 
4939 	return sysfs_emit(buf, "%s\n", output);
4940 }
4941 
4942 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
4943 					   struct kobj_attribute *attr,
4944 					   const char *buf, size_t count)
4945 {
4946 	int order = to_thpsize(kobj)->order;
4947 	ssize_t ret = count;
4948 
4949 	if (sysfs_streq(buf, "always")) {
4950 		spin_lock(&huge_shmem_orders_lock);
4951 		clear_bit(order, &huge_shmem_orders_inherit);
4952 		clear_bit(order, &huge_shmem_orders_madvise);
4953 		clear_bit(order, &huge_shmem_orders_within_size);
4954 		set_bit(order, &huge_shmem_orders_always);
4955 		spin_unlock(&huge_shmem_orders_lock);
4956 	} else if (sysfs_streq(buf, "inherit")) {
4957 		/* Do not override huge allocation policy with non-PMD sized mTHP */
4958 		if (shmem_huge == SHMEM_HUGE_FORCE &&
4959 		    order != HPAGE_PMD_ORDER)
4960 			return -EINVAL;
4961 
4962 		spin_lock(&huge_shmem_orders_lock);
4963 		clear_bit(order, &huge_shmem_orders_always);
4964 		clear_bit(order, &huge_shmem_orders_madvise);
4965 		clear_bit(order, &huge_shmem_orders_within_size);
4966 		set_bit(order, &huge_shmem_orders_inherit);
4967 		spin_unlock(&huge_shmem_orders_lock);
4968 	} else if (sysfs_streq(buf, "within_size")) {
4969 		spin_lock(&huge_shmem_orders_lock);
4970 		clear_bit(order, &huge_shmem_orders_always);
4971 		clear_bit(order, &huge_shmem_orders_inherit);
4972 		clear_bit(order, &huge_shmem_orders_madvise);
4973 		set_bit(order, &huge_shmem_orders_within_size);
4974 		spin_unlock(&huge_shmem_orders_lock);
4975 	} else if (sysfs_streq(buf, "madvise")) {
4976 		spin_lock(&huge_shmem_orders_lock);
4977 		clear_bit(order, &huge_shmem_orders_always);
4978 		clear_bit(order, &huge_shmem_orders_inherit);
4979 		clear_bit(order, &huge_shmem_orders_within_size);
4980 		set_bit(order, &huge_shmem_orders_madvise);
4981 		spin_unlock(&huge_shmem_orders_lock);
4982 	} else if (sysfs_streq(buf, "never")) {
4983 		spin_lock(&huge_shmem_orders_lock);
4984 		clear_bit(order, &huge_shmem_orders_always);
4985 		clear_bit(order, &huge_shmem_orders_inherit);
4986 		clear_bit(order, &huge_shmem_orders_within_size);
4987 		clear_bit(order, &huge_shmem_orders_madvise);
4988 		spin_unlock(&huge_shmem_orders_lock);
4989 	} else {
4990 		ret = -EINVAL;
4991 	}
4992 
4993 	return ret;
4994 }
4995 
4996 struct kobj_attribute thpsize_shmem_enabled_attr =
4997 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
4998 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4999 
5000 #else /* !CONFIG_SHMEM */
5001 
5002 /*
5003  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5004  *
5005  * This is intended for small system where the benefits of the full
5006  * shmem code (swap-backed and resource-limited) are outweighed by
5007  * their complexity. On systems without swap this code should be
5008  * effectively equivalent, but much lighter weight.
5009  */
5010 
5011 static struct file_system_type shmem_fs_type = {
5012 	.name		= "tmpfs",
5013 	.init_fs_context = ramfs_init_fs_context,
5014 	.parameters	= ramfs_fs_parameters,
5015 	.kill_sb	= ramfs_kill_sb,
5016 	.fs_flags	= FS_USERNS_MOUNT,
5017 };
5018 
5019 void __init shmem_init(void)
5020 {
5021 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5022 
5023 	shm_mnt = kern_mount(&shmem_fs_type);
5024 	BUG_ON(IS_ERR(shm_mnt));
5025 }
5026 
5027 int shmem_unuse(unsigned int type)
5028 {
5029 	return 0;
5030 }
5031 
5032 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5033 {
5034 	return 0;
5035 }
5036 
5037 void shmem_unlock_mapping(struct address_space *mapping)
5038 {
5039 }
5040 
5041 #ifdef CONFIG_MMU
5042 unsigned long shmem_get_unmapped_area(struct file *file,
5043 				      unsigned long addr, unsigned long len,
5044 				      unsigned long pgoff, unsigned long flags)
5045 {
5046 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5047 }
5048 #endif
5049 
5050 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5051 {
5052 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5053 }
5054 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5055 
5056 #define shmem_vm_ops				generic_file_vm_ops
5057 #define shmem_anon_vm_ops			generic_file_vm_ops
5058 #define shmem_file_operations			ramfs_file_operations
5059 #define shmem_acct_size(flags, size)		0
5060 #define shmem_unacct_size(flags, size)		do {} while (0)
5061 
5062 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5063 				struct super_block *sb, struct inode *dir,
5064 				umode_t mode, dev_t dev, unsigned long flags)
5065 {
5066 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5067 	return inode ? inode : ERR_PTR(-ENOSPC);
5068 }
5069 
5070 #endif /* CONFIG_SHMEM */
5071 
5072 /* common code */
5073 
5074 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5075 			loff_t size, unsigned long flags, unsigned int i_flags)
5076 {
5077 	struct inode *inode;
5078 	struct file *res;
5079 
5080 	if (IS_ERR(mnt))
5081 		return ERR_CAST(mnt);
5082 
5083 	if (size < 0 || size > MAX_LFS_FILESIZE)
5084 		return ERR_PTR(-EINVAL);
5085 
5086 	if (shmem_acct_size(flags, size))
5087 		return ERR_PTR(-ENOMEM);
5088 
5089 	if (is_idmapped_mnt(mnt))
5090 		return ERR_PTR(-EINVAL);
5091 
5092 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5093 				S_IFREG | S_IRWXUGO, 0, flags);
5094 	if (IS_ERR(inode)) {
5095 		shmem_unacct_size(flags, size);
5096 		return ERR_CAST(inode);
5097 	}
5098 	inode->i_flags |= i_flags;
5099 	inode->i_size = size;
5100 	clear_nlink(inode);	/* It is unlinked */
5101 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5102 	if (!IS_ERR(res))
5103 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5104 				&shmem_file_operations);
5105 	if (IS_ERR(res))
5106 		iput(inode);
5107 	return res;
5108 }
5109 
5110 /**
5111  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5112  * 	kernel internal.  There will be NO LSM permission checks against the
5113  * 	underlying inode.  So users of this interface must do LSM checks at a
5114  *	higher layer.  The users are the big_key and shm implementations.  LSM
5115  *	checks are provided at the key or shm level rather than the inode.
5116  * @name: name for dentry (to be seen in /proc/<pid>/maps
5117  * @size: size to be set for the file
5118  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5119  */
5120 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5121 {
5122 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5123 }
5124 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5125 
5126 /**
5127  * shmem_file_setup - get an unlinked file living in tmpfs
5128  * @name: name for dentry (to be seen in /proc/<pid>/maps
5129  * @size: size to be set for the file
5130  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5131  */
5132 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5133 {
5134 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5135 }
5136 EXPORT_SYMBOL_GPL(shmem_file_setup);
5137 
5138 /**
5139  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5140  * @mnt: the tmpfs mount where the file will be created
5141  * @name: name for dentry (to be seen in /proc/<pid>/maps
5142  * @size: size to be set for the file
5143  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5144  */
5145 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5146 				       loff_t size, unsigned long flags)
5147 {
5148 	return __shmem_file_setup(mnt, name, size, flags, 0);
5149 }
5150 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5151 
5152 /**
5153  * shmem_zero_setup - setup a shared anonymous mapping
5154  * @vma: the vma to be mmapped is prepared by do_mmap
5155  */
5156 int shmem_zero_setup(struct vm_area_struct *vma)
5157 {
5158 	struct file *file;
5159 	loff_t size = vma->vm_end - vma->vm_start;
5160 
5161 	/*
5162 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5163 	 * between XFS directory reading and selinux: since this file is only
5164 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5165 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5166 	 */
5167 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5168 	if (IS_ERR(file))
5169 		return PTR_ERR(file);
5170 
5171 	if (vma->vm_file)
5172 		fput(vma->vm_file);
5173 	vma->vm_file = file;
5174 	vma->vm_ops = &shmem_anon_vm_ops;
5175 
5176 	return 0;
5177 }
5178 
5179 /**
5180  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5181  * @mapping:	the folio's address_space
5182  * @index:	the folio index
5183  * @gfp:	the page allocator flags to use if allocating
5184  *
5185  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5186  * with any new page allocations done using the specified allocation flags.
5187  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5188  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5189  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5190  *
5191  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5192  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5193  */
5194 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5195 		pgoff_t index, gfp_t gfp)
5196 {
5197 #ifdef CONFIG_SHMEM
5198 	struct inode *inode = mapping->host;
5199 	struct folio *folio;
5200 	int error;
5201 
5202 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
5203 				    gfp, NULL, NULL);
5204 	if (error)
5205 		return ERR_PTR(error);
5206 
5207 	folio_unlock(folio);
5208 	return folio;
5209 #else
5210 	/*
5211 	 * The tiny !SHMEM case uses ramfs without swap
5212 	 */
5213 	return mapping_read_folio_gfp(mapping, index, gfp);
5214 #endif
5215 }
5216 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5217 
5218 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5219 					 pgoff_t index, gfp_t gfp)
5220 {
5221 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5222 	struct page *page;
5223 
5224 	if (IS_ERR(folio))
5225 		return &folio->page;
5226 
5227 	page = folio_file_page(folio, index);
5228 	if (PageHWPoison(page)) {
5229 		folio_put(folio);
5230 		return ERR_PTR(-EIO);
5231 	}
5232 
5233 	return page;
5234 }
5235 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5236