xref: /linux/mm/shmem.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/devfs_fs_kernel.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <linux/xattr.h>
49 #include <asm/uaccess.h>
50 #include <asm/div64.h>
51 #include <asm/pgtable.h>
52 
53 /* This magic number is used in glibc for posix shared memory */
54 #define TMPFS_MAGIC	0x01021994
55 
56 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
57 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
58 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
59 
60 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
61 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
62 
63 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
64 
65 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
66 #define SHMEM_PAGEIN	 VM_READ
67 #define SHMEM_TRUNCATE	 VM_WRITE
68 
69 /* Definition to limit shmem_truncate's steps between cond_rescheds */
70 #define LATENCY_LIMIT	 64
71 
72 /* Pretend that each entry is of this size in directory's i_size */
73 #define BOGO_DIRENT_SIZE 20
74 
75 /* Keep swapped page count in private field of indirect struct page */
76 #define nr_swapped		private
77 
78 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
79 enum sgp_type {
80 	SGP_QUICK,	/* don't try more than file page cache lookup */
81 	SGP_READ,	/* don't exceed i_size, don't allocate page */
82 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
83 	SGP_WRITE,	/* may exceed i_size, may allocate page */
84 };
85 
86 static int shmem_getpage(struct inode *inode, unsigned long idx,
87 			 struct page **pagep, enum sgp_type sgp, int *type);
88 
89 static inline struct page *shmem_dir_alloc(unsigned int gfp_mask)
90 {
91 	/*
92 	 * The above definition of ENTRIES_PER_PAGE, and the use of
93 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
94 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
95 	 */
96 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
97 }
98 
99 static inline void shmem_dir_free(struct page *page)
100 {
101 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
102 }
103 
104 static struct page **shmem_dir_map(struct page *page)
105 {
106 	return (struct page **)kmap_atomic(page, KM_USER0);
107 }
108 
109 static inline void shmem_dir_unmap(struct page **dir)
110 {
111 	kunmap_atomic(dir, KM_USER0);
112 }
113 
114 static swp_entry_t *shmem_swp_map(struct page *page)
115 {
116 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
117 }
118 
119 static inline void shmem_swp_balance_unmap(void)
120 {
121 	/*
122 	 * When passing a pointer to an i_direct entry, to code which
123 	 * also handles indirect entries and so will shmem_swp_unmap,
124 	 * we must arrange for the preempt count to remain in balance.
125 	 * What kmap_atomic of a lowmem page does depends on config
126 	 * and architecture, so pretend to kmap_atomic some lowmem page.
127 	 */
128 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
129 }
130 
131 static inline void shmem_swp_unmap(swp_entry_t *entry)
132 {
133 	kunmap_atomic(entry, KM_USER1);
134 }
135 
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 	return sb->s_fs_info;
139 }
140 
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 	return (flags & VM_ACCOUNT)?
150 		security_vm_enough_memory(VM_ACCT(size)): 0;
151 }
152 
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 	if (flags & VM_ACCOUNT)
156 		vm_unacct_memory(VM_ACCT(size));
157 }
158 
159 /*
160  * ... whereas tmpfs objects are accounted incrementally as
161  * pages are allocated, in order to allow huge sparse files.
162  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
163  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
164  */
165 static inline int shmem_acct_block(unsigned long flags)
166 {
167 	return (flags & VM_ACCOUNT)?
168 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
169 }
170 
171 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
172 {
173 	if (!(flags & VM_ACCOUNT))
174 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
175 }
176 
177 static struct super_operations shmem_ops;
178 static struct address_space_operations shmem_aops;
179 static struct file_operations shmem_file_operations;
180 static struct inode_operations shmem_inode_operations;
181 static struct inode_operations shmem_dir_inode_operations;
182 static struct inode_operations shmem_special_inode_operations;
183 static struct vm_operations_struct shmem_vm_ops;
184 
185 static struct backing_dev_info shmem_backing_dev_info = {
186 	.ra_pages	= 0,	/* No readahead */
187 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
188 	.unplug_io_fn	= default_unplug_io_fn,
189 };
190 
191 static LIST_HEAD(shmem_swaplist);
192 static DEFINE_SPINLOCK(shmem_swaplist_lock);
193 
194 static void shmem_free_blocks(struct inode *inode, long pages)
195 {
196 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 	if (sbinfo->max_blocks) {
198 		spin_lock(&sbinfo->stat_lock);
199 		sbinfo->free_blocks += pages;
200 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
201 		spin_unlock(&sbinfo->stat_lock);
202 	}
203 }
204 
205 /*
206  * shmem_recalc_inode - recalculate the size of an inode
207  *
208  * @inode: inode to recalc
209  *
210  * We have to calculate the free blocks since the mm can drop
211  * undirtied hole pages behind our back.
212  *
213  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
214  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
215  *
216  * It has to be called with the spinlock held.
217  */
218 static void shmem_recalc_inode(struct inode *inode)
219 {
220 	struct shmem_inode_info *info = SHMEM_I(inode);
221 	long freed;
222 
223 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
224 	if (freed > 0) {
225 		info->alloced -= freed;
226 		shmem_unacct_blocks(info->flags, freed);
227 		shmem_free_blocks(inode, freed);
228 	}
229 }
230 
231 /*
232  * shmem_swp_entry - find the swap vector position in the info structure
233  *
234  * @info:  info structure for the inode
235  * @index: index of the page to find
236  * @page:  optional page to add to the structure. Has to be preset to
237  *         all zeros
238  *
239  * If there is no space allocated yet it will return NULL when
240  * page is NULL, else it will use the page for the needed block,
241  * setting it to NULL on return to indicate that it has been used.
242  *
243  * The swap vector is organized the following way:
244  *
245  * There are SHMEM_NR_DIRECT entries directly stored in the
246  * shmem_inode_info structure. So small files do not need an addional
247  * allocation.
248  *
249  * For pages with index > SHMEM_NR_DIRECT there is the pointer
250  * i_indirect which points to a page which holds in the first half
251  * doubly indirect blocks, in the second half triple indirect blocks:
252  *
253  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
254  * following layout (for SHMEM_NR_DIRECT == 16):
255  *
256  * i_indirect -> dir --> 16-19
257  * 	      |	     +-> 20-23
258  * 	      |
259  * 	      +-->dir2 --> 24-27
260  * 	      |	       +-> 28-31
261  * 	      |	       +-> 32-35
262  * 	      |	       +-> 36-39
263  * 	      |
264  * 	      +-->dir3 --> 40-43
265  * 	       	       +-> 44-47
266  * 	      	       +-> 48-51
267  * 	      	       +-> 52-55
268  */
269 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
270 {
271 	unsigned long offset;
272 	struct page **dir;
273 	struct page *subdir;
274 
275 	if (index < SHMEM_NR_DIRECT) {
276 		shmem_swp_balance_unmap();
277 		return info->i_direct+index;
278 	}
279 	if (!info->i_indirect) {
280 		if (page) {
281 			info->i_indirect = *page;
282 			*page = NULL;
283 		}
284 		return NULL;			/* need another page */
285 	}
286 
287 	index -= SHMEM_NR_DIRECT;
288 	offset = index % ENTRIES_PER_PAGE;
289 	index /= ENTRIES_PER_PAGE;
290 	dir = shmem_dir_map(info->i_indirect);
291 
292 	if (index >= ENTRIES_PER_PAGE/2) {
293 		index -= ENTRIES_PER_PAGE/2;
294 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
295 		index %= ENTRIES_PER_PAGE;
296 		subdir = *dir;
297 		if (!subdir) {
298 			if (page) {
299 				*dir = *page;
300 				*page = NULL;
301 			}
302 			shmem_dir_unmap(dir);
303 			return NULL;		/* need another page */
304 		}
305 		shmem_dir_unmap(dir);
306 		dir = shmem_dir_map(subdir);
307 	}
308 
309 	dir += index;
310 	subdir = *dir;
311 	if (!subdir) {
312 		if (!page || !(subdir = *page)) {
313 			shmem_dir_unmap(dir);
314 			return NULL;		/* need a page */
315 		}
316 		*dir = subdir;
317 		*page = NULL;
318 	}
319 	shmem_dir_unmap(dir);
320 	return shmem_swp_map(subdir) + offset;
321 }
322 
323 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
324 {
325 	long incdec = value? 1: -1;
326 
327 	entry->val = value;
328 	info->swapped += incdec;
329 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT)
330 		kmap_atomic_to_page(entry)->nr_swapped += incdec;
331 }
332 
333 /*
334  * shmem_swp_alloc - get the position of the swap entry for the page.
335  *                   If it does not exist allocate the entry.
336  *
337  * @info:	info structure for the inode
338  * @index:	index of the page to find
339  * @sgp:	check and recheck i_size? skip allocation?
340  */
341 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
342 {
343 	struct inode *inode = &info->vfs_inode;
344 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
345 	struct page *page = NULL;
346 	swp_entry_t *entry;
347 
348 	if (sgp != SGP_WRITE &&
349 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
350 		return ERR_PTR(-EINVAL);
351 
352 	while (!(entry = shmem_swp_entry(info, index, &page))) {
353 		if (sgp == SGP_READ)
354 			return shmem_swp_map(ZERO_PAGE(0));
355 		/*
356 		 * Test free_blocks against 1 not 0, since we have 1 data
357 		 * page (and perhaps indirect index pages) yet to allocate:
358 		 * a waste to allocate index if we cannot allocate data.
359 		 */
360 		if (sbinfo->max_blocks) {
361 			spin_lock(&sbinfo->stat_lock);
362 			if (sbinfo->free_blocks <= 1) {
363 				spin_unlock(&sbinfo->stat_lock);
364 				return ERR_PTR(-ENOSPC);
365 			}
366 			sbinfo->free_blocks--;
367 			inode->i_blocks += BLOCKS_PER_PAGE;
368 			spin_unlock(&sbinfo->stat_lock);
369 		}
370 
371 		spin_unlock(&info->lock);
372 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
373 		if (page) {
374 			page->nr_swapped = 0;
375 		}
376 		spin_lock(&info->lock);
377 
378 		if (!page) {
379 			shmem_free_blocks(inode, 1);
380 			return ERR_PTR(-ENOMEM);
381 		}
382 		if (sgp != SGP_WRITE &&
383 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
384 			entry = ERR_PTR(-EINVAL);
385 			break;
386 		}
387 		if (info->next_index <= index)
388 			info->next_index = index + 1;
389 	}
390 	if (page) {
391 		/* another task gave its page, or truncated the file */
392 		shmem_free_blocks(inode, 1);
393 		shmem_dir_free(page);
394 	}
395 	if (info->next_index <= index && !IS_ERR(entry))
396 		info->next_index = index + 1;
397 	return entry;
398 }
399 
400 /*
401  * shmem_free_swp - free some swap entries in a directory
402  *
403  * @dir:   pointer to the directory
404  * @edir:  pointer after last entry of the directory
405  */
406 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
407 {
408 	swp_entry_t *ptr;
409 	int freed = 0;
410 
411 	for (ptr = dir; ptr < edir; ptr++) {
412 		if (ptr->val) {
413 			free_swap_and_cache(*ptr);
414 			*ptr = (swp_entry_t){0};
415 			freed++;
416 		}
417 	}
418 	return freed;
419 }
420 
421 static int shmem_map_and_free_swp(struct page *subdir,
422 		int offset, int limit, struct page ***dir)
423 {
424 	swp_entry_t *ptr;
425 	int freed = 0;
426 
427 	ptr = shmem_swp_map(subdir);
428 	for (; offset < limit; offset += LATENCY_LIMIT) {
429 		int size = limit - offset;
430 		if (size > LATENCY_LIMIT)
431 			size = LATENCY_LIMIT;
432 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
433 		if (need_resched()) {
434 			shmem_swp_unmap(ptr);
435 			if (*dir) {
436 				shmem_dir_unmap(*dir);
437 				*dir = NULL;
438 			}
439 			cond_resched();
440 			ptr = shmem_swp_map(subdir);
441 		}
442 	}
443 	shmem_swp_unmap(ptr);
444 	return freed;
445 }
446 
447 static void shmem_free_pages(struct list_head *next)
448 {
449 	struct page *page;
450 	int freed = 0;
451 
452 	do {
453 		page = container_of(next, struct page, lru);
454 		next = next->next;
455 		shmem_dir_free(page);
456 		freed++;
457 		if (freed >= LATENCY_LIMIT) {
458 			cond_resched();
459 			freed = 0;
460 		}
461 	} while (next);
462 }
463 
464 static void shmem_truncate(struct inode *inode)
465 {
466 	struct shmem_inode_info *info = SHMEM_I(inode);
467 	unsigned long idx;
468 	unsigned long size;
469 	unsigned long limit;
470 	unsigned long stage;
471 	unsigned long diroff;
472 	struct page **dir;
473 	struct page *topdir;
474 	struct page *middir;
475 	struct page *subdir;
476 	swp_entry_t *ptr;
477 	LIST_HEAD(pages_to_free);
478 	long nr_pages_to_free = 0;
479 	long nr_swaps_freed = 0;
480 	int offset;
481 	int freed;
482 
483 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
484 	idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
485 	if (idx >= info->next_index)
486 		return;
487 
488 	spin_lock(&info->lock);
489 	info->flags |= SHMEM_TRUNCATE;
490 	limit = info->next_index;
491 	info->next_index = idx;
492 	topdir = info->i_indirect;
493 	if (topdir && idx <= SHMEM_NR_DIRECT) {
494 		info->i_indirect = NULL;
495 		nr_pages_to_free++;
496 		list_add(&topdir->lru, &pages_to_free);
497 	}
498 	spin_unlock(&info->lock);
499 
500 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
501 		ptr = info->i_direct;
502 		size = limit;
503 		if (size > SHMEM_NR_DIRECT)
504 			size = SHMEM_NR_DIRECT;
505 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
506 	}
507 	if (!topdir)
508 		goto done2;
509 
510 	BUG_ON(limit <= SHMEM_NR_DIRECT);
511 	limit -= SHMEM_NR_DIRECT;
512 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
513 	offset = idx % ENTRIES_PER_PAGE;
514 	idx -= offset;
515 
516 	dir = shmem_dir_map(topdir);
517 	stage = ENTRIES_PER_PAGEPAGE/2;
518 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
519 		middir = topdir;
520 		diroff = idx/ENTRIES_PER_PAGE;
521 	} else {
522 		dir += ENTRIES_PER_PAGE/2;
523 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
524 		while (stage <= idx)
525 			stage += ENTRIES_PER_PAGEPAGE;
526 		middir = *dir;
527 		if (*dir) {
528 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
529 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
530 			if (!diroff && !offset) {
531 				*dir = NULL;
532 				nr_pages_to_free++;
533 				list_add(&middir->lru, &pages_to_free);
534 			}
535 			shmem_dir_unmap(dir);
536 			dir = shmem_dir_map(middir);
537 		} else {
538 			diroff = 0;
539 			offset = 0;
540 			idx = stage;
541 		}
542 	}
543 
544 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
545 		if (unlikely(idx == stage)) {
546 			shmem_dir_unmap(dir);
547 			dir = shmem_dir_map(topdir) +
548 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
549 			while (!*dir) {
550 				dir++;
551 				idx += ENTRIES_PER_PAGEPAGE;
552 				if (idx >= limit)
553 					goto done1;
554 			}
555 			stage = idx + ENTRIES_PER_PAGEPAGE;
556 			middir = *dir;
557 			*dir = NULL;
558 			nr_pages_to_free++;
559 			list_add(&middir->lru, &pages_to_free);
560 			shmem_dir_unmap(dir);
561 			cond_resched();
562 			dir = shmem_dir_map(middir);
563 			diroff = 0;
564 		}
565 		subdir = dir[diroff];
566 		if (subdir && subdir->nr_swapped) {
567 			size = limit - idx;
568 			if (size > ENTRIES_PER_PAGE)
569 				size = ENTRIES_PER_PAGE;
570 			freed = shmem_map_and_free_swp(subdir,
571 						offset, size, &dir);
572 			if (!dir)
573 				dir = shmem_dir_map(middir);
574 			nr_swaps_freed += freed;
575 			if (offset)
576 				spin_lock(&info->lock);
577 			subdir->nr_swapped -= freed;
578 			if (offset)
579 				spin_unlock(&info->lock);
580 			BUG_ON(subdir->nr_swapped > offset);
581 		}
582 		if (offset)
583 			offset = 0;
584 		else if (subdir) {
585 			dir[diroff] = NULL;
586 			nr_pages_to_free++;
587 			list_add(&subdir->lru, &pages_to_free);
588 		}
589 	}
590 done1:
591 	shmem_dir_unmap(dir);
592 done2:
593 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
594 		/*
595 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
596 		 * may have swizzled a page in from swap since vmtruncate or
597 		 * generic_delete_inode did it, before we lowered next_index.
598 		 * Also, though shmem_getpage checks i_size before adding to
599 		 * cache, no recheck after: so fix the narrow window there too.
600 		 */
601 		truncate_inode_pages(inode->i_mapping, inode->i_size);
602 	}
603 
604 	spin_lock(&info->lock);
605 	info->flags &= ~SHMEM_TRUNCATE;
606 	info->swapped -= nr_swaps_freed;
607 	if (nr_pages_to_free)
608 		shmem_free_blocks(inode, nr_pages_to_free);
609 	shmem_recalc_inode(inode);
610 	spin_unlock(&info->lock);
611 
612 	/*
613 	 * Empty swap vector directory pages to be freed?
614 	 */
615 	if (!list_empty(&pages_to_free)) {
616 		pages_to_free.prev->next = NULL;
617 		shmem_free_pages(pages_to_free.next);
618 	}
619 }
620 
621 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
622 {
623 	struct inode *inode = dentry->d_inode;
624 	struct page *page = NULL;
625 	int error;
626 
627 	if (attr->ia_valid & ATTR_SIZE) {
628 		if (attr->ia_size < inode->i_size) {
629 			/*
630 			 * If truncating down to a partial page, then
631 			 * if that page is already allocated, hold it
632 			 * in memory until the truncation is over, so
633 			 * truncate_partial_page cannnot miss it were
634 			 * it assigned to swap.
635 			 */
636 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
637 				(void) shmem_getpage(inode,
638 					attr->ia_size>>PAGE_CACHE_SHIFT,
639 						&page, SGP_READ, NULL);
640 			}
641 			/*
642 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
643 			 * detect if any pages might have been added to cache
644 			 * after truncate_inode_pages.  But we needn't bother
645 			 * if it's being fully truncated to zero-length: the
646 			 * nrpages check is efficient enough in that case.
647 			 */
648 			if (attr->ia_size) {
649 				struct shmem_inode_info *info = SHMEM_I(inode);
650 				spin_lock(&info->lock);
651 				info->flags &= ~SHMEM_PAGEIN;
652 				spin_unlock(&info->lock);
653 			}
654 		}
655 	}
656 
657 	error = inode_change_ok(inode, attr);
658 	if (!error)
659 		error = inode_setattr(inode, attr);
660 	if (page)
661 		page_cache_release(page);
662 	return error;
663 }
664 
665 static void shmem_delete_inode(struct inode *inode)
666 {
667 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
668 	struct shmem_inode_info *info = SHMEM_I(inode);
669 
670 	if (inode->i_op->truncate == shmem_truncate) {
671 		shmem_unacct_size(info->flags, inode->i_size);
672 		inode->i_size = 0;
673 		shmem_truncate(inode);
674 		if (!list_empty(&info->swaplist)) {
675 			spin_lock(&shmem_swaplist_lock);
676 			list_del_init(&info->swaplist);
677 			spin_unlock(&shmem_swaplist_lock);
678 		}
679 	}
680 	BUG_ON(inode->i_blocks);
681 	if (sbinfo->max_inodes) {
682 		spin_lock(&sbinfo->stat_lock);
683 		sbinfo->free_inodes++;
684 		spin_unlock(&sbinfo->stat_lock);
685 	}
686 	clear_inode(inode);
687 }
688 
689 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
690 {
691 	swp_entry_t *ptr;
692 
693 	for (ptr = dir; ptr < edir; ptr++) {
694 		if (ptr->val == entry.val)
695 			return ptr - dir;
696 	}
697 	return -1;
698 }
699 
700 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
701 {
702 	struct inode *inode;
703 	unsigned long idx;
704 	unsigned long size;
705 	unsigned long limit;
706 	unsigned long stage;
707 	struct page **dir;
708 	struct page *subdir;
709 	swp_entry_t *ptr;
710 	int offset;
711 
712 	idx = 0;
713 	ptr = info->i_direct;
714 	spin_lock(&info->lock);
715 	limit = info->next_index;
716 	size = limit;
717 	if (size > SHMEM_NR_DIRECT)
718 		size = SHMEM_NR_DIRECT;
719 	offset = shmem_find_swp(entry, ptr, ptr+size);
720 	if (offset >= 0) {
721 		shmem_swp_balance_unmap();
722 		goto found;
723 	}
724 	if (!info->i_indirect)
725 		goto lost2;
726 
727 	dir = shmem_dir_map(info->i_indirect);
728 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
729 
730 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
731 		if (unlikely(idx == stage)) {
732 			shmem_dir_unmap(dir-1);
733 			dir = shmem_dir_map(info->i_indirect) +
734 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
735 			while (!*dir) {
736 				dir++;
737 				idx += ENTRIES_PER_PAGEPAGE;
738 				if (idx >= limit)
739 					goto lost1;
740 			}
741 			stage = idx + ENTRIES_PER_PAGEPAGE;
742 			subdir = *dir;
743 			shmem_dir_unmap(dir);
744 			dir = shmem_dir_map(subdir);
745 		}
746 		subdir = *dir;
747 		if (subdir && subdir->nr_swapped) {
748 			ptr = shmem_swp_map(subdir);
749 			size = limit - idx;
750 			if (size > ENTRIES_PER_PAGE)
751 				size = ENTRIES_PER_PAGE;
752 			offset = shmem_find_swp(entry, ptr, ptr+size);
753 			if (offset >= 0) {
754 				shmem_dir_unmap(dir);
755 				goto found;
756 			}
757 			shmem_swp_unmap(ptr);
758 		}
759 	}
760 lost1:
761 	shmem_dir_unmap(dir-1);
762 lost2:
763 	spin_unlock(&info->lock);
764 	return 0;
765 found:
766 	idx += offset;
767 	inode = &info->vfs_inode;
768 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
769 		info->flags |= SHMEM_PAGEIN;
770 		shmem_swp_set(info, ptr + offset, 0);
771 	}
772 	shmem_swp_unmap(ptr);
773 	spin_unlock(&info->lock);
774 	/*
775 	 * Decrement swap count even when the entry is left behind:
776 	 * try_to_unuse will skip over mms, then reincrement count.
777 	 */
778 	swap_free(entry);
779 	return 1;
780 }
781 
782 /*
783  * shmem_unuse() search for an eventually swapped out shmem page.
784  */
785 int shmem_unuse(swp_entry_t entry, struct page *page)
786 {
787 	struct list_head *p, *next;
788 	struct shmem_inode_info *info;
789 	int found = 0;
790 
791 	spin_lock(&shmem_swaplist_lock);
792 	list_for_each_safe(p, next, &shmem_swaplist) {
793 		info = list_entry(p, struct shmem_inode_info, swaplist);
794 		if (!info->swapped)
795 			list_del_init(&info->swaplist);
796 		else if (shmem_unuse_inode(info, entry, page)) {
797 			/* move head to start search for next from here */
798 			list_move_tail(&shmem_swaplist, &info->swaplist);
799 			found = 1;
800 			break;
801 		}
802 	}
803 	spin_unlock(&shmem_swaplist_lock);
804 	return found;
805 }
806 
807 /*
808  * Move the page from the page cache to the swap cache.
809  */
810 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
811 {
812 	struct shmem_inode_info *info;
813 	swp_entry_t *entry, swap;
814 	struct address_space *mapping;
815 	unsigned long index;
816 	struct inode *inode;
817 
818 	BUG_ON(!PageLocked(page));
819 	BUG_ON(page_mapped(page));
820 
821 	mapping = page->mapping;
822 	index = page->index;
823 	inode = mapping->host;
824 	info = SHMEM_I(inode);
825 	if (info->flags & VM_LOCKED)
826 		goto redirty;
827 	swap = get_swap_page();
828 	if (!swap.val)
829 		goto redirty;
830 
831 	spin_lock(&info->lock);
832 	shmem_recalc_inode(inode);
833 	if (index >= info->next_index) {
834 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
835 		goto unlock;
836 	}
837 	entry = shmem_swp_entry(info, index, NULL);
838 	BUG_ON(!entry);
839 	BUG_ON(entry->val);
840 
841 	if (move_to_swap_cache(page, swap) == 0) {
842 		shmem_swp_set(info, entry, swap.val);
843 		shmem_swp_unmap(entry);
844 		spin_unlock(&info->lock);
845 		if (list_empty(&info->swaplist)) {
846 			spin_lock(&shmem_swaplist_lock);
847 			/* move instead of add in case we're racing */
848 			list_move_tail(&info->swaplist, &shmem_swaplist);
849 			spin_unlock(&shmem_swaplist_lock);
850 		}
851 		unlock_page(page);
852 		return 0;
853 	}
854 
855 	shmem_swp_unmap(entry);
856 unlock:
857 	spin_unlock(&info->lock);
858 	swap_free(swap);
859 redirty:
860 	set_page_dirty(page);
861 	return WRITEPAGE_ACTIVATE;	/* Return with the page locked */
862 }
863 
864 #ifdef CONFIG_NUMA
865 static struct page *shmem_swapin_async(struct shared_policy *p,
866 				       swp_entry_t entry, unsigned long idx)
867 {
868 	struct page *page;
869 	struct vm_area_struct pvma;
870 
871 	/* Create a pseudo vma that just contains the policy */
872 	memset(&pvma, 0, sizeof(struct vm_area_struct));
873 	pvma.vm_end = PAGE_SIZE;
874 	pvma.vm_pgoff = idx;
875 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
876 	page = read_swap_cache_async(entry, &pvma, 0);
877 	mpol_free(pvma.vm_policy);
878 	return page;
879 }
880 
881 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
882 			  unsigned long idx)
883 {
884 	struct shared_policy *p = &info->policy;
885 	int i, num;
886 	struct page *page;
887 	unsigned long offset;
888 
889 	num = valid_swaphandles(entry, &offset);
890 	for (i = 0; i < num; offset++, i++) {
891 		page = shmem_swapin_async(p,
892 				swp_entry(swp_type(entry), offset), idx);
893 		if (!page)
894 			break;
895 		page_cache_release(page);
896 	}
897 	lru_add_drain();	/* Push any new pages onto the LRU now */
898 	return shmem_swapin_async(p, entry, idx);
899 }
900 
901 static struct page *
902 shmem_alloc_page(unsigned long gfp, struct shmem_inode_info *info,
903 		 unsigned long idx)
904 {
905 	struct vm_area_struct pvma;
906 	struct page *page;
907 
908 	memset(&pvma, 0, sizeof(struct vm_area_struct));
909 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
910 	pvma.vm_pgoff = idx;
911 	pvma.vm_end = PAGE_SIZE;
912 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
913 	mpol_free(pvma.vm_policy);
914 	return page;
915 }
916 #else
917 static inline struct page *
918 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
919 {
920 	swapin_readahead(entry, 0, NULL);
921 	return read_swap_cache_async(entry, NULL, 0);
922 }
923 
924 static inline struct page *
925 shmem_alloc_page(unsigned int __nocast gfp,struct shmem_inode_info *info,
926 				 unsigned long idx)
927 {
928 	return alloc_page(gfp | __GFP_ZERO);
929 }
930 #endif
931 
932 /*
933  * shmem_getpage - either get the page from swap or allocate a new one
934  *
935  * If we allocate a new one we do not mark it dirty. That's up to the
936  * vm. If we swap it in we mark it dirty since we also free the swap
937  * entry since a page cannot live in both the swap and page cache
938  */
939 static int shmem_getpage(struct inode *inode, unsigned long idx,
940 			struct page **pagep, enum sgp_type sgp, int *type)
941 {
942 	struct address_space *mapping = inode->i_mapping;
943 	struct shmem_inode_info *info = SHMEM_I(inode);
944 	struct shmem_sb_info *sbinfo;
945 	struct page *filepage = *pagep;
946 	struct page *swappage;
947 	swp_entry_t *entry;
948 	swp_entry_t swap;
949 	int error;
950 
951 	if (idx >= SHMEM_MAX_INDEX)
952 		return -EFBIG;
953 	/*
954 	 * Normally, filepage is NULL on entry, and either found
955 	 * uptodate immediately, or allocated and zeroed, or read
956 	 * in under swappage, which is then assigned to filepage.
957 	 * But shmem_prepare_write passes in a locked filepage,
958 	 * which may be found not uptodate by other callers too,
959 	 * and may need to be copied from the swappage read in.
960 	 */
961 repeat:
962 	if (!filepage)
963 		filepage = find_lock_page(mapping, idx);
964 	if (filepage && PageUptodate(filepage))
965 		goto done;
966 	error = 0;
967 	if (sgp == SGP_QUICK)
968 		goto failed;
969 
970 	spin_lock(&info->lock);
971 	shmem_recalc_inode(inode);
972 	entry = shmem_swp_alloc(info, idx, sgp);
973 	if (IS_ERR(entry)) {
974 		spin_unlock(&info->lock);
975 		error = PTR_ERR(entry);
976 		goto failed;
977 	}
978 	swap = *entry;
979 
980 	if (swap.val) {
981 		/* Look it up and read it in.. */
982 		swappage = lookup_swap_cache(swap);
983 		if (!swappage) {
984 			shmem_swp_unmap(entry);
985 			spin_unlock(&info->lock);
986 			/* here we actually do the io */
987 			if (type && *type == VM_FAULT_MINOR) {
988 				inc_page_state(pgmajfault);
989 				*type = VM_FAULT_MAJOR;
990 			}
991 			swappage = shmem_swapin(info, swap, idx);
992 			if (!swappage) {
993 				spin_lock(&info->lock);
994 				entry = shmem_swp_alloc(info, idx, sgp);
995 				if (IS_ERR(entry))
996 					error = PTR_ERR(entry);
997 				else {
998 					if (entry->val == swap.val)
999 						error = -ENOMEM;
1000 					shmem_swp_unmap(entry);
1001 				}
1002 				spin_unlock(&info->lock);
1003 				if (error)
1004 					goto failed;
1005 				goto repeat;
1006 			}
1007 			wait_on_page_locked(swappage);
1008 			page_cache_release(swappage);
1009 			goto repeat;
1010 		}
1011 
1012 		/* We have to do this with page locked to prevent races */
1013 		if (TestSetPageLocked(swappage)) {
1014 			shmem_swp_unmap(entry);
1015 			spin_unlock(&info->lock);
1016 			wait_on_page_locked(swappage);
1017 			page_cache_release(swappage);
1018 			goto repeat;
1019 		}
1020 		if (PageWriteback(swappage)) {
1021 			shmem_swp_unmap(entry);
1022 			spin_unlock(&info->lock);
1023 			wait_on_page_writeback(swappage);
1024 			unlock_page(swappage);
1025 			page_cache_release(swappage);
1026 			goto repeat;
1027 		}
1028 		if (!PageUptodate(swappage)) {
1029 			shmem_swp_unmap(entry);
1030 			spin_unlock(&info->lock);
1031 			unlock_page(swappage);
1032 			page_cache_release(swappage);
1033 			error = -EIO;
1034 			goto failed;
1035 		}
1036 
1037 		if (filepage) {
1038 			shmem_swp_set(info, entry, 0);
1039 			shmem_swp_unmap(entry);
1040 			delete_from_swap_cache(swappage);
1041 			spin_unlock(&info->lock);
1042 			copy_highpage(filepage, swappage);
1043 			unlock_page(swappage);
1044 			page_cache_release(swappage);
1045 			flush_dcache_page(filepage);
1046 			SetPageUptodate(filepage);
1047 			set_page_dirty(filepage);
1048 			swap_free(swap);
1049 		} else if (!(error = move_from_swap_cache(
1050 				swappage, idx, mapping))) {
1051 			info->flags |= SHMEM_PAGEIN;
1052 			shmem_swp_set(info, entry, 0);
1053 			shmem_swp_unmap(entry);
1054 			spin_unlock(&info->lock);
1055 			filepage = swappage;
1056 			swap_free(swap);
1057 		} else {
1058 			shmem_swp_unmap(entry);
1059 			spin_unlock(&info->lock);
1060 			unlock_page(swappage);
1061 			page_cache_release(swappage);
1062 			if (error == -ENOMEM) {
1063 				/* let kswapd refresh zone for GFP_ATOMICs */
1064 				blk_congestion_wait(WRITE, HZ/50);
1065 			}
1066 			goto repeat;
1067 		}
1068 	} else if (sgp == SGP_READ && !filepage) {
1069 		shmem_swp_unmap(entry);
1070 		filepage = find_get_page(mapping, idx);
1071 		if (filepage &&
1072 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1073 			spin_unlock(&info->lock);
1074 			wait_on_page_locked(filepage);
1075 			page_cache_release(filepage);
1076 			filepage = NULL;
1077 			goto repeat;
1078 		}
1079 		spin_unlock(&info->lock);
1080 	} else {
1081 		shmem_swp_unmap(entry);
1082 		sbinfo = SHMEM_SB(inode->i_sb);
1083 		if (sbinfo->max_blocks) {
1084 			spin_lock(&sbinfo->stat_lock);
1085 			if (sbinfo->free_blocks == 0 ||
1086 			    shmem_acct_block(info->flags)) {
1087 				spin_unlock(&sbinfo->stat_lock);
1088 				spin_unlock(&info->lock);
1089 				error = -ENOSPC;
1090 				goto failed;
1091 			}
1092 			sbinfo->free_blocks--;
1093 			inode->i_blocks += BLOCKS_PER_PAGE;
1094 			spin_unlock(&sbinfo->stat_lock);
1095 		} else if (shmem_acct_block(info->flags)) {
1096 			spin_unlock(&info->lock);
1097 			error = -ENOSPC;
1098 			goto failed;
1099 		}
1100 
1101 		if (!filepage) {
1102 			spin_unlock(&info->lock);
1103 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1104 						    info,
1105 						    idx);
1106 			if (!filepage) {
1107 				shmem_unacct_blocks(info->flags, 1);
1108 				shmem_free_blocks(inode, 1);
1109 				error = -ENOMEM;
1110 				goto failed;
1111 			}
1112 
1113 			spin_lock(&info->lock);
1114 			entry = shmem_swp_alloc(info, idx, sgp);
1115 			if (IS_ERR(entry))
1116 				error = PTR_ERR(entry);
1117 			else {
1118 				swap = *entry;
1119 				shmem_swp_unmap(entry);
1120 			}
1121 			if (error || swap.val || 0 != add_to_page_cache_lru(
1122 					filepage, mapping, idx, GFP_ATOMIC)) {
1123 				spin_unlock(&info->lock);
1124 				page_cache_release(filepage);
1125 				shmem_unacct_blocks(info->flags, 1);
1126 				shmem_free_blocks(inode, 1);
1127 				filepage = NULL;
1128 				if (error)
1129 					goto failed;
1130 				goto repeat;
1131 			}
1132 			info->flags |= SHMEM_PAGEIN;
1133 		}
1134 
1135 		info->alloced++;
1136 		spin_unlock(&info->lock);
1137 		flush_dcache_page(filepage);
1138 		SetPageUptodate(filepage);
1139 	}
1140 done:
1141 	if (*pagep != filepage) {
1142 		unlock_page(filepage);
1143 		*pagep = filepage;
1144 	}
1145 	return 0;
1146 
1147 failed:
1148 	if (*pagep != filepage) {
1149 		unlock_page(filepage);
1150 		page_cache_release(filepage);
1151 	}
1152 	return error;
1153 }
1154 
1155 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1156 {
1157 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1158 	struct page *page = NULL;
1159 	unsigned long idx;
1160 	int error;
1161 
1162 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1163 	idx += vma->vm_pgoff;
1164 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1165 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1166 		return NOPAGE_SIGBUS;
1167 
1168 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1169 	if (error)
1170 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1171 
1172 	mark_page_accessed(page);
1173 	return page;
1174 }
1175 
1176 static int shmem_populate(struct vm_area_struct *vma,
1177 	unsigned long addr, unsigned long len,
1178 	pgprot_t prot, unsigned long pgoff, int nonblock)
1179 {
1180 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1181 	struct mm_struct *mm = vma->vm_mm;
1182 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1183 	unsigned long size;
1184 
1185 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1186 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1187 		return -EINVAL;
1188 
1189 	while ((long) len > 0) {
1190 		struct page *page = NULL;
1191 		int err;
1192 		/*
1193 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1194 		 */
1195 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1196 		if (err)
1197 			return err;
1198 		if (page) {
1199 			mark_page_accessed(page);
1200 			err = install_page(mm, vma, addr, page, prot);
1201 			if (err) {
1202 				page_cache_release(page);
1203 				return err;
1204 			}
1205 		} else if (nonblock) {
1206     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1207 			if (err)
1208 	    			return err;
1209 		}
1210 
1211 		len -= PAGE_SIZE;
1212 		addr += PAGE_SIZE;
1213 		pgoff++;
1214 	}
1215 	return 0;
1216 }
1217 
1218 #ifdef CONFIG_NUMA
1219 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1220 {
1221 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1222 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1223 }
1224 
1225 struct mempolicy *
1226 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1227 {
1228 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1229 	unsigned long idx;
1230 
1231 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1232 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1233 }
1234 #endif
1235 
1236 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1237 {
1238 	struct inode *inode = file->f_dentry->d_inode;
1239 	struct shmem_inode_info *info = SHMEM_I(inode);
1240 	int retval = -ENOMEM;
1241 
1242 	spin_lock(&info->lock);
1243 	if (lock && !(info->flags & VM_LOCKED)) {
1244 		if (!user_shm_lock(inode->i_size, user))
1245 			goto out_nomem;
1246 		info->flags |= VM_LOCKED;
1247 	}
1248 	if (!lock && (info->flags & VM_LOCKED) && user) {
1249 		user_shm_unlock(inode->i_size, user);
1250 		info->flags &= ~VM_LOCKED;
1251 	}
1252 	retval = 0;
1253 out_nomem:
1254 	spin_unlock(&info->lock);
1255 	return retval;
1256 }
1257 
1258 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1259 {
1260 	file_accessed(file);
1261 	vma->vm_ops = &shmem_vm_ops;
1262 	return 0;
1263 }
1264 
1265 static struct inode *
1266 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1267 {
1268 	struct inode *inode;
1269 	struct shmem_inode_info *info;
1270 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1271 
1272 	if (sbinfo->max_inodes) {
1273 		spin_lock(&sbinfo->stat_lock);
1274 		if (!sbinfo->free_inodes) {
1275 			spin_unlock(&sbinfo->stat_lock);
1276 			return NULL;
1277 		}
1278 		sbinfo->free_inodes--;
1279 		spin_unlock(&sbinfo->stat_lock);
1280 	}
1281 
1282 	inode = new_inode(sb);
1283 	if (inode) {
1284 		inode->i_mode = mode;
1285 		inode->i_uid = current->fsuid;
1286 		inode->i_gid = current->fsgid;
1287 		inode->i_blksize = PAGE_CACHE_SIZE;
1288 		inode->i_blocks = 0;
1289 		inode->i_mapping->a_ops = &shmem_aops;
1290 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1291 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1292 		info = SHMEM_I(inode);
1293 		memset(info, 0, (char *)inode - (char *)info);
1294 		spin_lock_init(&info->lock);
1295 		INIT_LIST_HEAD(&info->swaplist);
1296 
1297 		switch (mode & S_IFMT) {
1298 		default:
1299 			inode->i_op = &shmem_special_inode_operations;
1300 			init_special_inode(inode, mode, dev);
1301 			break;
1302 		case S_IFREG:
1303 			inode->i_op = &shmem_inode_operations;
1304 			inode->i_fop = &shmem_file_operations;
1305 			mpol_shared_policy_init(&info->policy);
1306 			break;
1307 		case S_IFDIR:
1308 			inode->i_nlink++;
1309 			/* Some things misbehave if size == 0 on a directory */
1310 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1311 			inode->i_op = &shmem_dir_inode_operations;
1312 			inode->i_fop = &simple_dir_operations;
1313 			break;
1314 		case S_IFLNK:
1315 			/*
1316 			 * Must not load anything in the rbtree,
1317 			 * mpol_free_shared_policy will not be called.
1318 			 */
1319 			mpol_shared_policy_init(&info->policy);
1320 			break;
1321 		}
1322 	} else if (sbinfo->max_inodes) {
1323 		spin_lock(&sbinfo->stat_lock);
1324 		sbinfo->free_inodes++;
1325 		spin_unlock(&sbinfo->stat_lock);
1326 	}
1327 	return inode;
1328 }
1329 
1330 #ifdef CONFIG_TMPFS
1331 static struct inode_operations shmem_symlink_inode_operations;
1332 static struct inode_operations shmem_symlink_inline_operations;
1333 
1334 /*
1335  * Normally tmpfs makes no use of shmem_prepare_write, but it
1336  * lets a tmpfs file be used read-write below the loop driver.
1337  */
1338 static int
1339 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1340 {
1341 	struct inode *inode = page->mapping->host;
1342 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1343 }
1344 
1345 static ssize_t
1346 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1347 {
1348 	struct inode	*inode = file->f_dentry->d_inode;
1349 	loff_t		pos;
1350 	unsigned long	written;
1351 	ssize_t		err;
1352 
1353 	if ((ssize_t) count < 0)
1354 		return -EINVAL;
1355 
1356 	if (!access_ok(VERIFY_READ, buf, count))
1357 		return -EFAULT;
1358 
1359 	down(&inode->i_sem);
1360 
1361 	pos = *ppos;
1362 	written = 0;
1363 
1364 	err = generic_write_checks(file, &pos, &count, 0);
1365 	if (err || !count)
1366 		goto out;
1367 
1368 	err = remove_suid(file->f_dentry);
1369 	if (err)
1370 		goto out;
1371 
1372 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1373 
1374 	do {
1375 		struct page *page = NULL;
1376 		unsigned long bytes, index, offset;
1377 		char *kaddr;
1378 		int left;
1379 
1380 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1381 		index = pos >> PAGE_CACHE_SHIFT;
1382 		bytes = PAGE_CACHE_SIZE - offset;
1383 		if (bytes > count)
1384 			bytes = count;
1385 
1386 		/*
1387 		 * We don't hold page lock across copy from user -
1388 		 * what would it guard against? - so no deadlock here.
1389 		 * But it still may be a good idea to prefault below.
1390 		 */
1391 
1392 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1393 		if (err)
1394 			break;
1395 
1396 		left = bytes;
1397 		if (PageHighMem(page)) {
1398 			volatile unsigned char dummy;
1399 			__get_user(dummy, buf);
1400 			__get_user(dummy, buf + bytes - 1);
1401 
1402 			kaddr = kmap_atomic(page, KM_USER0);
1403 			left = __copy_from_user_inatomic(kaddr + offset,
1404 							buf, bytes);
1405 			kunmap_atomic(kaddr, KM_USER0);
1406 		}
1407 		if (left) {
1408 			kaddr = kmap(page);
1409 			left = __copy_from_user(kaddr + offset, buf, bytes);
1410 			kunmap(page);
1411 		}
1412 
1413 		written += bytes;
1414 		count -= bytes;
1415 		pos += bytes;
1416 		buf += bytes;
1417 		if (pos > inode->i_size)
1418 			i_size_write(inode, pos);
1419 
1420 		flush_dcache_page(page);
1421 		set_page_dirty(page);
1422 		mark_page_accessed(page);
1423 		page_cache_release(page);
1424 
1425 		if (left) {
1426 			pos -= left;
1427 			written -= left;
1428 			err = -EFAULT;
1429 			break;
1430 		}
1431 
1432 		/*
1433 		 * Our dirty pages are not counted in nr_dirty,
1434 		 * and we do not attempt to balance dirty pages.
1435 		 */
1436 
1437 		cond_resched();
1438 	} while (count);
1439 
1440 	*ppos = pos;
1441 	if (written)
1442 		err = written;
1443 out:
1444 	up(&inode->i_sem);
1445 	return err;
1446 }
1447 
1448 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1449 {
1450 	struct inode *inode = filp->f_dentry->d_inode;
1451 	struct address_space *mapping = inode->i_mapping;
1452 	unsigned long index, offset;
1453 
1454 	index = *ppos >> PAGE_CACHE_SHIFT;
1455 	offset = *ppos & ~PAGE_CACHE_MASK;
1456 
1457 	for (;;) {
1458 		struct page *page = NULL;
1459 		unsigned long end_index, nr, ret;
1460 		loff_t i_size = i_size_read(inode);
1461 
1462 		end_index = i_size >> PAGE_CACHE_SHIFT;
1463 		if (index > end_index)
1464 			break;
1465 		if (index == end_index) {
1466 			nr = i_size & ~PAGE_CACHE_MASK;
1467 			if (nr <= offset)
1468 				break;
1469 		}
1470 
1471 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1472 		if (desc->error) {
1473 			if (desc->error == -EINVAL)
1474 				desc->error = 0;
1475 			break;
1476 		}
1477 
1478 		/*
1479 		 * We must evaluate after, since reads (unlike writes)
1480 		 * are called without i_sem protection against truncate
1481 		 */
1482 		nr = PAGE_CACHE_SIZE;
1483 		i_size = i_size_read(inode);
1484 		end_index = i_size >> PAGE_CACHE_SHIFT;
1485 		if (index == end_index) {
1486 			nr = i_size & ~PAGE_CACHE_MASK;
1487 			if (nr <= offset) {
1488 				if (page)
1489 					page_cache_release(page);
1490 				break;
1491 			}
1492 		}
1493 		nr -= offset;
1494 
1495 		if (page) {
1496 			/*
1497 			 * If users can be writing to this page using arbitrary
1498 			 * virtual addresses, take care about potential aliasing
1499 			 * before reading the page on the kernel side.
1500 			 */
1501 			if (mapping_writably_mapped(mapping))
1502 				flush_dcache_page(page);
1503 			/*
1504 			 * Mark the page accessed if we read the beginning.
1505 			 */
1506 			if (!offset)
1507 				mark_page_accessed(page);
1508 		} else
1509 			page = ZERO_PAGE(0);
1510 
1511 		/*
1512 		 * Ok, we have the page, and it's up-to-date, so
1513 		 * now we can copy it to user space...
1514 		 *
1515 		 * The actor routine returns how many bytes were actually used..
1516 		 * NOTE! This may not be the same as how much of a user buffer
1517 		 * we filled up (we may be padding etc), so we can only update
1518 		 * "pos" here (the actor routine has to update the user buffer
1519 		 * pointers and the remaining count).
1520 		 */
1521 		ret = actor(desc, page, offset, nr);
1522 		offset += ret;
1523 		index += offset >> PAGE_CACHE_SHIFT;
1524 		offset &= ~PAGE_CACHE_MASK;
1525 
1526 		page_cache_release(page);
1527 		if (ret != nr || !desc->count)
1528 			break;
1529 
1530 		cond_resched();
1531 	}
1532 
1533 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1534 	file_accessed(filp);
1535 }
1536 
1537 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1538 {
1539 	read_descriptor_t desc;
1540 
1541 	if ((ssize_t) count < 0)
1542 		return -EINVAL;
1543 	if (!access_ok(VERIFY_WRITE, buf, count))
1544 		return -EFAULT;
1545 	if (!count)
1546 		return 0;
1547 
1548 	desc.written = 0;
1549 	desc.count = count;
1550 	desc.arg.buf = buf;
1551 	desc.error = 0;
1552 
1553 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1554 	if (desc.written)
1555 		return desc.written;
1556 	return desc.error;
1557 }
1558 
1559 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1560 			 size_t count, read_actor_t actor, void *target)
1561 {
1562 	read_descriptor_t desc;
1563 
1564 	if (!count)
1565 		return 0;
1566 
1567 	desc.written = 0;
1568 	desc.count = count;
1569 	desc.arg.data = target;
1570 	desc.error = 0;
1571 
1572 	do_shmem_file_read(in_file, ppos, &desc, actor);
1573 	if (desc.written)
1574 		return desc.written;
1575 	return desc.error;
1576 }
1577 
1578 static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1579 {
1580 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1581 
1582 	buf->f_type = TMPFS_MAGIC;
1583 	buf->f_bsize = PAGE_CACHE_SIZE;
1584 	buf->f_namelen = NAME_MAX;
1585 	spin_lock(&sbinfo->stat_lock);
1586 	if (sbinfo->max_blocks) {
1587 		buf->f_blocks = sbinfo->max_blocks;
1588 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1589 	}
1590 	if (sbinfo->max_inodes) {
1591 		buf->f_files = sbinfo->max_inodes;
1592 		buf->f_ffree = sbinfo->free_inodes;
1593 	}
1594 	/* else leave those fields 0 like simple_statfs */
1595 	spin_unlock(&sbinfo->stat_lock);
1596 	return 0;
1597 }
1598 
1599 /*
1600  * File creation. Allocate an inode, and we're done..
1601  */
1602 static int
1603 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1604 {
1605 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1606 	int error = -ENOSPC;
1607 
1608 	if (inode) {
1609 		if (dir->i_mode & S_ISGID) {
1610 			inode->i_gid = dir->i_gid;
1611 			if (S_ISDIR(mode))
1612 				inode->i_mode |= S_ISGID;
1613 		}
1614 		dir->i_size += BOGO_DIRENT_SIZE;
1615 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1616 		d_instantiate(dentry, inode);
1617 		dget(dentry); /* Extra count - pin the dentry in core */
1618 		error = 0;
1619 	}
1620 	return error;
1621 }
1622 
1623 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1624 {
1625 	int error;
1626 
1627 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1628 		return error;
1629 	dir->i_nlink++;
1630 	return 0;
1631 }
1632 
1633 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1634 		struct nameidata *nd)
1635 {
1636 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1637 }
1638 
1639 /*
1640  * Link a file..
1641  */
1642 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1643 {
1644 	struct inode *inode = old_dentry->d_inode;
1645 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1646 
1647 	/*
1648 	 * No ordinary (disk based) filesystem counts links as inodes;
1649 	 * but each new link needs a new dentry, pinning lowmem, and
1650 	 * tmpfs dentries cannot be pruned until they are unlinked.
1651 	 */
1652 	if (sbinfo->max_inodes) {
1653 		spin_lock(&sbinfo->stat_lock);
1654 		if (!sbinfo->free_inodes) {
1655 			spin_unlock(&sbinfo->stat_lock);
1656 			return -ENOSPC;
1657 		}
1658 		sbinfo->free_inodes--;
1659 		spin_unlock(&sbinfo->stat_lock);
1660 	}
1661 
1662 	dir->i_size += BOGO_DIRENT_SIZE;
1663 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1664 	inode->i_nlink++;
1665 	atomic_inc(&inode->i_count);	/* New dentry reference */
1666 	dget(dentry);		/* Extra pinning count for the created dentry */
1667 	d_instantiate(dentry, inode);
1668 	return 0;
1669 }
1670 
1671 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1672 {
1673 	struct inode *inode = dentry->d_inode;
1674 
1675 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1676 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1677 		if (sbinfo->max_inodes) {
1678 			spin_lock(&sbinfo->stat_lock);
1679 			sbinfo->free_inodes++;
1680 			spin_unlock(&sbinfo->stat_lock);
1681 		}
1682 	}
1683 
1684 	dir->i_size -= BOGO_DIRENT_SIZE;
1685 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1686 	inode->i_nlink--;
1687 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1688 	return 0;
1689 }
1690 
1691 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1692 {
1693 	if (!simple_empty(dentry))
1694 		return -ENOTEMPTY;
1695 
1696 	dir->i_nlink--;
1697 	return shmem_unlink(dir, dentry);
1698 }
1699 
1700 /*
1701  * The VFS layer already does all the dentry stuff for rename,
1702  * we just have to decrement the usage count for the target if
1703  * it exists so that the VFS layer correctly free's it when it
1704  * gets overwritten.
1705  */
1706 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1707 {
1708 	struct inode *inode = old_dentry->d_inode;
1709 	int they_are_dirs = S_ISDIR(inode->i_mode);
1710 
1711 	if (!simple_empty(new_dentry))
1712 		return -ENOTEMPTY;
1713 
1714 	if (new_dentry->d_inode) {
1715 		(void) shmem_unlink(new_dir, new_dentry);
1716 		if (they_are_dirs)
1717 			old_dir->i_nlink--;
1718 	} else if (they_are_dirs) {
1719 		old_dir->i_nlink--;
1720 		new_dir->i_nlink++;
1721 	}
1722 
1723 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1724 	new_dir->i_size += BOGO_DIRENT_SIZE;
1725 	old_dir->i_ctime = old_dir->i_mtime =
1726 	new_dir->i_ctime = new_dir->i_mtime =
1727 	inode->i_ctime = CURRENT_TIME;
1728 	return 0;
1729 }
1730 
1731 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1732 {
1733 	int error;
1734 	int len;
1735 	struct inode *inode;
1736 	struct page *page = NULL;
1737 	char *kaddr;
1738 	struct shmem_inode_info *info;
1739 
1740 	len = strlen(symname) + 1;
1741 	if (len > PAGE_CACHE_SIZE)
1742 		return -ENAMETOOLONG;
1743 
1744 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1745 	if (!inode)
1746 		return -ENOSPC;
1747 
1748 	info = SHMEM_I(inode);
1749 	inode->i_size = len-1;
1750 	if (len <= (char *)inode - (char *)info) {
1751 		/* do it inline */
1752 		memcpy(info, symname, len);
1753 		inode->i_op = &shmem_symlink_inline_operations;
1754 	} else {
1755 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1756 		if (error) {
1757 			iput(inode);
1758 			return error;
1759 		}
1760 		inode->i_op = &shmem_symlink_inode_operations;
1761 		kaddr = kmap_atomic(page, KM_USER0);
1762 		memcpy(kaddr, symname, len);
1763 		kunmap_atomic(kaddr, KM_USER0);
1764 		set_page_dirty(page);
1765 		page_cache_release(page);
1766 	}
1767 	if (dir->i_mode & S_ISGID)
1768 		inode->i_gid = dir->i_gid;
1769 	dir->i_size += BOGO_DIRENT_SIZE;
1770 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1771 	d_instantiate(dentry, inode);
1772 	dget(dentry);
1773 	return 0;
1774 }
1775 
1776 static int shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1777 {
1778 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1779 	return 0;
1780 }
1781 
1782 static int shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1783 {
1784 	struct page *page = NULL;
1785 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1786 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1787 	return 0;
1788 }
1789 
1790 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd)
1791 {
1792 	if (!IS_ERR(nd_get_link(nd))) {
1793 		struct page *page;
1794 
1795 		page = find_get_page(dentry->d_inode->i_mapping, 0);
1796 		if (!page)
1797 			BUG();
1798 		kunmap(page);
1799 		mark_page_accessed(page);
1800 		page_cache_release(page);
1801 		page_cache_release(page);
1802 	}
1803 }
1804 
1805 static struct inode_operations shmem_symlink_inline_operations = {
1806 	.readlink	= generic_readlink,
1807 	.follow_link	= shmem_follow_link_inline,
1808 #ifdef CONFIG_TMPFS_XATTR
1809 	.setxattr       = generic_setxattr,
1810 	.getxattr       = generic_getxattr,
1811 	.listxattr      = generic_listxattr,
1812 	.removexattr    = generic_removexattr,
1813 #endif
1814 };
1815 
1816 static struct inode_operations shmem_symlink_inode_operations = {
1817 	.truncate	= shmem_truncate,
1818 	.readlink	= generic_readlink,
1819 	.follow_link	= shmem_follow_link,
1820 	.put_link	= shmem_put_link,
1821 #ifdef CONFIG_TMPFS_XATTR
1822 	.setxattr       = generic_setxattr,
1823 	.getxattr       = generic_getxattr,
1824 	.listxattr      = generic_listxattr,
1825 	.removexattr    = generic_removexattr,
1826 #endif
1827 };
1828 
1829 static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1830 {
1831 	char *this_char, *value, *rest;
1832 
1833 	while ((this_char = strsep(&options, ",")) != NULL) {
1834 		if (!*this_char)
1835 			continue;
1836 		if ((value = strchr(this_char,'=')) != NULL) {
1837 			*value++ = 0;
1838 		} else {
1839 			printk(KERN_ERR
1840 			    "tmpfs: No value for mount option '%s'\n",
1841 			    this_char);
1842 			return 1;
1843 		}
1844 
1845 		if (!strcmp(this_char,"size")) {
1846 			unsigned long long size;
1847 			size = memparse(value,&rest);
1848 			if (*rest == '%') {
1849 				size <<= PAGE_SHIFT;
1850 				size *= totalram_pages;
1851 				do_div(size, 100);
1852 				rest++;
1853 			}
1854 			if (*rest)
1855 				goto bad_val;
1856 			*blocks = size >> PAGE_CACHE_SHIFT;
1857 		} else if (!strcmp(this_char,"nr_blocks")) {
1858 			*blocks = memparse(value,&rest);
1859 			if (*rest)
1860 				goto bad_val;
1861 		} else if (!strcmp(this_char,"nr_inodes")) {
1862 			*inodes = memparse(value,&rest);
1863 			if (*rest)
1864 				goto bad_val;
1865 		} else if (!strcmp(this_char,"mode")) {
1866 			if (!mode)
1867 				continue;
1868 			*mode = simple_strtoul(value,&rest,8);
1869 			if (*rest)
1870 				goto bad_val;
1871 		} else if (!strcmp(this_char,"uid")) {
1872 			if (!uid)
1873 				continue;
1874 			*uid = simple_strtoul(value,&rest,0);
1875 			if (*rest)
1876 				goto bad_val;
1877 		} else if (!strcmp(this_char,"gid")) {
1878 			if (!gid)
1879 				continue;
1880 			*gid = simple_strtoul(value,&rest,0);
1881 			if (*rest)
1882 				goto bad_val;
1883 		} else {
1884 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1885 			       this_char);
1886 			return 1;
1887 		}
1888 	}
1889 	return 0;
1890 
1891 bad_val:
1892 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1893 	       value, this_char);
1894 	return 1;
1895 
1896 }
1897 
1898 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1899 {
1900 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1901 	unsigned long max_blocks = sbinfo->max_blocks;
1902 	unsigned long max_inodes = sbinfo->max_inodes;
1903 	unsigned long blocks;
1904 	unsigned long inodes;
1905 	int error = -EINVAL;
1906 
1907 	if (shmem_parse_options(data, NULL, NULL, NULL,
1908 				&max_blocks, &max_inodes))
1909 		return error;
1910 
1911 	spin_lock(&sbinfo->stat_lock);
1912 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1913 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1914 	if (max_blocks < blocks)
1915 		goto out;
1916 	if (max_inodes < inodes)
1917 		goto out;
1918 	/*
1919 	 * Those tests also disallow limited->unlimited while any are in
1920 	 * use, so i_blocks will always be zero when max_blocks is zero;
1921 	 * but we must separately disallow unlimited->limited, because
1922 	 * in that case we have no record of how much is already in use.
1923 	 */
1924 	if (max_blocks && !sbinfo->max_blocks)
1925 		goto out;
1926 	if (max_inodes && !sbinfo->max_inodes)
1927 		goto out;
1928 
1929 	error = 0;
1930 	sbinfo->max_blocks  = max_blocks;
1931 	sbinfo->free_blocks = max_blocks - blocks;
1932 	sbinfo->max_inodes  = max_inodes;
1933 	sbinfo->free_inodes = max_inodes - inodes;
1934 out:
1935 	spin_unlock(&sbinfo->stat_lock);
1936 	return error;
1937 }
1938 #endif
1939 
1940 static void shmem_put_super(struct super_block *sb)
1941 {
1942 	kfree(sb->s_fs_info);
1943 	sb->s_fs_info = NULL;
1944 }
1945 
1946 #ifdef CONFIG_TMPFS_XATTR
1947 static struct xattr_handler *shmem_xattr_handlers[];
1948 #else
1949 #define shmem_xattr_handlers NULL
1950 #endif
1951 
1952 static int shmem_fill_super(struct super_block *sb,
1953 			    void *data, int silent)
1954 {
1955 	struct inode *inode;
1956 	struct dentry *root;
1957 	int mode   = S_IRWXUGO | S_ISVTX;
1958 	uid_t uid = current->fsuid;
1959 	gid_t gid = current->fsgid;
1960 	int err = -ENOMEM;
1961 	struct shmem_sb_info *sbinfo;
1962 	unsigned long blocks = 0;
1963 	unsigned long inodes = 0;
1964 
1965 #ifdef CONFIG_TMPFS
1966 	/*
1967 	 * Per default we only allow half of the physical ram per
1968 	 * tmpfs instance, limiting inodes to one per page of lowmem;
1969 	 * but the internal instance is left unlimited.
1970 	 */
1971 	if (!(sb->s_flags & MS_NOUSER)) {
1972 		blocks = totalram_pages / 2;
1973 		inodes = totalram_pages - totalhigh_pages;
1974 		if (inodes > blocks)
1975 			inodes = blocks;
1976 		if (shmem_parse_options(data, &mode, &uid, &gid,
1977 					&blocks, &inodes))
1978 			return -EINVAL;
1979 	}
1980 #else
1981 	sb->s_flags |= MS_NOUSER;
1982 #endif
1983 
1984 	/* Round up to L1_CACHE_BYTES to resist false sharing */
1985 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1986 				L1_CACHE_BYTES), GFP_KERNEL);
1987 	if (!sbinfo)
1988 		return -ENOMEM;
1989 
1990 	spin_lock_init(&sbinfo->stat_lock);
1991 	sbinfo->max_blocks = blocks;
1992 	sbinfo->free_blocks = blocks;
1993 	sbinfo->max_inodes = inodes;
1994 	sbinfo->free_inodes = inodes;
1995 
1996 	sb->s_fs_info = sbinfo;
1997 	sb->s_maxbytes = SHMEM_MAX_BYTES;
1998 	sb->s_blocksize = PAGE_CACHE_SIZE;
1999 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2000 	sb->s_magic = TMPFS_MAGIC;
2001 	sb->s_op = &shmem_ops;
2002 	sb->s_xattr = shmem_xattr_handlers;
2003 
2004 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2005 	if (!inode)
2006 		goto failed;
2007 	inode->i_uid = uid;
2008 	inode->i_gid = gid;
2009 	root = d_alloc_root(inode);
2010 	if (!root)
2011 		goto failed_iput;
2012 	sb->s_root = root;
2013 	return 0;
2014 
2015 failed_iput:
2016 	iput(inode);
2017 failed:
2018 	shmem_put_super(sb);
2019 	return err;
2020 }
2021 
2022 static kmem_cache_t *shmem_inode_cachep;
2023 
2024 static struct inode *shmem_alloc_inode(struct super_block *sb)
2025 {
2026 	struct shmem_inode_info *p;
2027 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2028 	if (!p)
2029 		return NULL;
2030 	return &p->vfs_inode;
2031 }
2032 
2033 static void shmem_destroy_inode(struct inode *inode)
2034 {
2035 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2036 		/* only struct inode is valid if it's an inline symlink */
2037 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2038 	}
2039 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2040 }
2041 
2042 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2043 {
2044 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2045 
2046 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2047 	    SLAB_CTOR_CONSTRUCTOR) {
2048 		inode_init_once(&p->vfs_inode);
2049 	}
2050 }
2051 
2052 static int init_inodecache(void)
2053 {
2054 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2055 				sizeof(struct shmem_inode_info),
2056 				0, 0, init_once, NULL);
2057 	if (shmem_inode_cachep == NULL)
2058 		return -ENOMEM;
2059 	return 0;
2060 }
2061 
2062 static void destroy_inodecache(void)
2063 {
2064 	if (kmem_cache_destroy(shmem_inode_cachep))
2065 		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2066 }
2067 
2068 static struct address_space_operations shmem_aops = {
2069 	.writepage	= shmem_writepage,
2070 	.set_page_dirty	= __set_page_dirty_nobuffers,
2071 #ifdef CONFIG_TMPFS
2072 	.prepare_write	= shmem_prepare_write,
2073 	.commit_write	= simple_commit_write,
2074 #endif
2075 };
2076 
2077 static struct file_operations shmem_file_operations = {
2078 	.mmap		= shmem_mmap,
2079 #ifdef CONFIG_TMPFS
2080 	.llseek		= generic_file_llseek,
2081 	.read		= shmem_file_read,
2082 	.write		= shmem_file_write,
2083 	.fsync		= simple_sync_file,
2084 	.sendfile	= shmem_file_sendfile,
2085 #endif
2086 };
2087 
2088 static struct inode_operations shmem_inode_operations = {
2089 	.truncate	= shmem_truncate,
2090 	.setattr	= shmem_notify_change,
2091 #ifdef CONFIG_TMPFS_XATTR
2092 	.setxattr       = generic_setxattr,
2093 	.getxattr       = generic_getxattr,
2094 	.listxattr      = generic_listxattr,
2095 	.removexattr    = generic_removexattr,
2096 #endif
2097 };
2098 
2099 static struct inode_operations shmem_dir_inode_operations = {
2100 #ifdef CONFIG_TMPFS
2101 	.create		= shmem_create,
2102 	.lookup		= simple_lookup,
2103 	.link		= shmem_link,
2104 	.unlink		= shmem_unlink,
2105 	.symlink	= shmem_symlink,
2106 	.mkdir		= shmem_mkdir,
2107 	.rmdir		= shmem_rmdir,
2108 	.mknod		= shmem_mknod,
2109 	.rename		= shmem_rename,
2110 #ifdef CONFIG_TMPFS_XATTR
2111 	.setxattr       = generic_setxattr,
2112 	.getxattr       = generic_getxattr,
2113 	.listxattr      = generic_listxattr,
2114 	.removexattr    = generic_removexattr,
2115 #endif
2116 #endif
2117 };
2118 
2119 static struct inode_operations shmem_special_inode_operations = {
2120 #ifdef CONFIG_TMPFS_XATTR
2121 	.setxattr	= generic_setxattr,
2122 	.getxattr	= generic_getxattr,
2123 	.listxattr	= generic_listxattr,
2124 	.removexattr	= generic_removexattr,
2125 #endif
2126 };
2127 
2128 static struct super_operations shmem_ops = {
2129 	.alloc_inode	= shmem_alloc_inode,
2130 	.destroy_inode	= shmem_destroy_inode,
2131 #ifdef CONFIG_TMPFS
2132 	.statfs		= shmem_statfs,
2133 	.remount_fs	= shmem_remount_fs,
2134 #endif
2135 	.delete_inode	= shmem_delete_inode,
2136 	.drop_inode	= generic_delete_inode,
2137 	.put_super	= shmem_put_super,
2138 };
2139 
2140 static struct vm_operations_struct shmem_vm_ops = {
2141 	.nopage		= shmem_nopage,
2142 	.populate	= shmem_populate,
2143 #ifdef CONFIG_NUMA
2144 	.set_policy     = shmem_set_policy,
2145 	.get_policy     = shmem_get_policy,
2146 #endif
2147 };
2148 
2149 
2150 #ifdef CONFIG_TMPFS_SECURITY
2151 
2152 static size_t shmem_xattr_security_list(struct inode *inode, char *list, size_t list_len,
2153 					const char *name, size_t name_len)
2154 {
2155 	return security_inode_listsecurity(inode, list, list_len);
2156 }
2157 
2158 static int shmem_xattr_security_get(struct inode *inode, const char *name, void *buffer, size_t size)
2159 {
2160 	if (strcmp(name, "") == 0)
2161 		return -EINVAL;
2162 	return security_inode_getsecurity(inode, name, buffer, size);
2163 }
2164 
2165 static int shmem_xattr_security_set(struct inode *inode, const char *name, const void *value, size_t size, int flags)
2166 {
2167 	if (strcmp(name, "") == 0)
2168 		return -EINVAL;
2169 	return security_inode_setsecurity(inode, name, value, size, flags);
2170 }
2171 
2172 static struct xattr_handler shmem_xattr_security_handler = {
2173 	.prefix	= XATTR_SECURITY_PREFIX,
2174 	.list	= shmem_xattr_security_list,
2175 	.get	= shmem_xattr_security_get,
2176 	.set	= shmem_xattr_security_set,
2177 };
2178 
2179 #endif	/* CONFIG_TMPFS_SECURITY */
2180 
2181 #ifdef CONFIG_TMPFS_XATTR
2182 
2183 static struct xattr_handler *shmem_xattr_handlers[] = {
2184 #ifdef CONFIG_TMPFS_SECURITY
2185 	&shmem_xattr_security_handler,
2186 #endif
2187 	NULL
2188 };
2189 
2190 #endif	/* CONFIG_TMPFS_XATTR */
2191 
2192 static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2193 	int flags, const char *dev_name, void *data)
2194 {
2195 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2196 }
2197 
2198 static struct file_system_type tmpfs_fs_type = {
2199 	.owner		= THIS_MODULE,
2200 	.name		= "tmpfs",
2201 	.get_sb		= shmem_get_sb,
2202 	.kill_sb	= kill_litter_super,
2203 };
2204 static struct vfsmount *shm_mnt;
2205 
2206 static int __init init_tmpfs(void)
2207 {
2208 	int error;
2209 
2210 	error = init_inodecache();
2211 	if (error)
2212 		goto out3;
2213 
2214 	error = register_filesystem(&tmpfs_fs_type);
2215 	if (error) {
2216 		printk(KERN_ERR "Could not register tmpfs\n");
2217 		goto out2;
2218 	}
2219 #ifdef CONFIG_TMPFS
2220 	devfs_mk_dir("shm");
2221 #endif
2222 	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2223 				tmpfs_fs_type.name, NULL);
2224 	if (IS_ERR(shm_mnt)) {
2225 		error = PTR_ERR(shm_mnt);
2226 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2227 		goto out1;
2228 	}
2229 	return 0;
2230 
2231 out1:
2232 	unregister_filesystem(&tmpfs_fs_type);
2233 out2:
2234 	destroy_inodecache();
2235 out3:
2236 	shm_mnt = ERR_PTR(error);
2237 	return error;
2238 }
2239 module_init(init_tmpfs)
2240 
2241 /*
2242  * shmem_file_setup - get an unlinked file living in tmpfs
2243  *
2244  * @name: name for dentry (to be seen in /proc/<pid>/maps
2245  * @size: size to be set for the file
2246  *
2247  */
2248 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2249 {
2250 	int error;
2251 	struct file *file;
2252 	struct inode *inode;
2253 	struct dentry *dentry, *root;
2254 	struct qstr this;
2255 
2256 	if (IS_ERR(shm_mnt))
2257 		return (void *)shm_mnt;
2258 
2259 	if (size < 0 || size > SHMEM_MAX_BYTES)
2260 		return ERR_PTR(-EINVAL);
2261 
2262 	if (shmem_acct_size(flags, size))
2263 		return ERR_PTR(-ENOMEM);
2264 
2265 	error = -ENOMEM;
2266 	this.name = name;
2267 	this.len = strlen(name);
2268 	this.hash = 0; /* will go */
2269 	root = shm_mnt->mnt_root;
2270 	dentry = d_alloc(root, &this);
2271 	if (!dentry)
2272 		goto put_memory;
2273 
2274 	error = -ENFILE;
2275 	file = get_empty_filp();
2276 	if (!file)
2277 		goto put_dentry;
2278 
2279 	error = -ENOSPC;
2280 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2281 	if (!inode)
2282 		goto close_file;
2283 
2284 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2285 	d_instantiate(dentry, inode);
2286 	inode->i_size = size;
2287 	inode->i_nlink = 0;	/* It is unlinked */
2288 	file->f_vfsmnt = mntget(shm_mnt);
2289 	file->f_dentry = dentry;
2290 	file->f_mapping = inode->i_mapping;
2291 	file->f_op = &shmem_file_operations;
2292 	file->f_mode = FMODE_WRITE | FMODE_READ;
2293 	return file;
2294 
2295 close_file:
2296 	put_filp(file);
2297 put_dentry:
2298 	dput(dentry);
2299 put_memory:
2300 	shmem_unacct_size(flags, size);
2301 	return ERR_PTR(error);
2302 }
2303 
2304 /*
2305  * shmem_zero_setup - setup a shared anonymous mapping
2306  *
2307  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2308  */
2309 int shmem_zero_setup(struct vm_area_struct *vma)
2310 {
2311 	struct file *file;
2312 	loff_t size = vma->vm_end - vma->vm_start;
2313 
2314 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2315 	if (IS_ERR(file))
2316 		return PTR_ERR(file);
2317 
2318 	if (vma->vm_file)
2319 		fput(vma->vm_file);
2320 	vma->vm_file = file;
2321 	vma->vm_ops = &shmem_vm_ops;
2322 	return 0;
2323 }
2324