xref: /linux/mm/shmem.c (revision 5bbfea1eacdf584d0d159e38c01ee190162706d9)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
140 			     struct page **pagep, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
144 		struct page **pagep, enum sgp_type sgp,
145 		gfp_t gfp, struct vm_area_struct *vma,
146 		struct vm_fault *vmf, vm_fault_t *fault_type);
147 
148 int shmem_getpage(struct inode *inode, pgoff_t index,
149 		struct page **pagep, enum sgp_type sgp)
150 {
151 	return shmem_getpage_gfp(inode, index, pagep, sgp,
152 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
153 }
154 
155 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
156 {
157 	return sb->s_fs_info;
158 }
159 
160 /*
161  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
162  * for shared memory and for shared anonymous (/dev/zero) mappings
163  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
164  * consistent with the pre-accounting of private mappings ...
165  */
166 static inline int shmem_acct_size(unsigned long flags, loff_t size)
167 {
168 	return (flags & VM_NORESERVE) ?
169 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
170 }
171 
172 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
173 {
174 	if (!(flags & VM_NORESERVE))
175 		vm_unacct_memory(VM_ACCT(size));
176 }
177 
178 static inline int shmem_reacct_size(unsigned long flags,
179 		loff_t oldsize, loff_t newsize)
180 {
181 	if (!(flags & VM_NORESERVE)) {
182 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
183 			return security_vm_enough_memory_mm(current->mm,
184 					VM_ACCT(newsize) - VM_ACCT(oldsize));
185 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
186 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
187 	}
188 	return 0;
189 }
190 
191 /*
192  * ... whereas tmpfs objects are accounted incrementally as
193  * pages are allocated, in order to allow large sparse files.
194  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
195  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
196  */
197 static inline int shmem_acct_block(unsigned long flags, long pages)
198 {
199 	if (!(flags & VM_NORESERVE))
200 		return 0;
201 
202 	return security_vm_enough_memory_mm(current->mm,
203 			pages * VM_ACCT(PAGE_SIZE));
204 }
205 
206 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
207 {
208 	if (flags & VM_NORESERVE)
209 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
210 }
211 
212 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
213 {
214 	struct shmem_inode_info *info = SHMEM_I(inode);
215 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
216 
217 	if (shmem_acct_block(info->flags, pages))
218 		return false;
219 
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 		percpu_counter_add(&sbinfo->used_blocks, pages);
225 	}
226 
227 	return true;
228 
229 unacct:
230 	shmem_unacct_blocks(info->flags, pages);
231 	return false;
232 }
233 
234 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
235 {
236 	struct shmem_inode_info *info = SHMEM_I(inode);
237 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
238 
239 	if (sbinfo->max_blocks)
240 		percpu_counter_sub(&sbinfo->used_blocks, pages);
241 	shmem_unacct_blocks(info->flags, pages);
242 }
243 
244 static const struct super_operations shmem_ops;
245 const struct address_space_operations shmem_aops;
246 static const struct file_operations shmem_file_operations;
247 static const struct inode_operations shmem_inode_operations;
248 static const struct inode_operations shmem_dir_inode_operations;
249 static const struct inode_operations shmem_special_inode_operations;
250 static const struct vm_operations_struct shmem_vm_ops;
251 static struct file_system_type shmem_fs_type;
252 
253 bool vma_is_shmem(struct vm_area_struct *vma)
254 {
255 	return vma->vm_ops == &shmem_vm_ops;
256 }
257 
258 static LIST_HEAD(shmem_swaplist);
259 static DEFINE_MUTEX(shmem_swaplist_mutex);
260 
261 /*
262  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
263  * produces a novel ino for the newly allocated inode.
264  *
265  * It may also be called when making a hard link to permit the space needed by
266  * each dentry. However, in that case, no new inode number is needed since that
267  * internally draws from another pool of inode numbers (currently global
268  * get_next_ino()). This case is indicated by passing NULL as inop.
269  */
270 #define SHMEM_INO_BATCH 1024
271 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
272 {
273 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
274 	ino_t ino;
275 
276 	if (!(sb->s_flags & SB_KERNMOUNT)) {
277 		raw_spin_lock(&sbinfo->stat_lock);
278 		if (sbinfo->max_inodes) {
279 			if (!sbinfo->free_inodes) {
280 				raw_spin_unlock(&sbinfo->stat_lock);
281 				return -ENOSPC;
282 			}
283 			sbinfo->free_inodes--;
284 		}
285 		if (inop) {
286 			ino = sbinfo->next_ino++;
287 			if (unlikely(is_zero_ino(ino)))
288 				ino = sbinfo->next_ino++;
289 			if (unlikely(!sbinfo->full_inums &&
290 				     ino > UINT_MAX)) {
291 				/*
292 				 * Emulate get_next_ino uint wraparound for
293 				 * compatibility
294 				 */
295 				if (IS_ENABLED(CONFIG_64BIT))
296 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
297 						__func__, MINOR(sb->s_dev));
298 				sbinfo->next_ino = 1;
299 				ino = sbinfo->next_ino++;
300 			}
301 			*inop = ino;
302 		}
303 		raw_spin_unlock(&sbinfo->stat_lock);
304 	} else if (inop) {
305 		/*
306 		 * __shmem_file_setup, one of our callers, is lock-free: it
307 		 * doesn't hold stat_lock in shmem_reserve_inode since
308 		 * max_inodes is always 0, and is called from potentially
309 		 * unknown contexts. As such, use a per-cpu batched allocator
310 		 * which doesn't require the per-sb stat_lock unless we are at
311 		 * the batch boundary.
312 		 *
313 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
314 		 * shmem mounts are not exposed to userspace, so we don't need
315 		 * to worry about things like glibc compatibility.
316 		 */
317 		ino_t *next_ino;
318 
319 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
320 		ino = *next_ino;
321 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
322 			raw_spin_lock(&sbinfo->stat_lock);
323 			ino = sbinfo->next_ino;
324 			sbinfo->next_ino += SHMEM_INO_BATCH;
325 			raw_spin_unlock(&sbinfo->stat_lock);
326 			if (unlikely(is_zero_ino(ino)))
327 				ino++;
328 		}
329 		*inop = ino;
330 		*next_ino = ++ino;
331 		put_cpu();
332 	}
333 
334 	return 0;
335 }
336 
337 static void shmem_free_inode(struct super_block *sb)
338 {
339 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
340 	if (sbinfo->max_inodes) {
341 		raw_spin_lock(&sbinfo->stat_lock);
342 		sbinfo->free_inodes++;
343 		raw_spin_unlock(&sbinfo->stat_lock);
344 	}
345 }
346 
347 /**
348  * shmem_recalc_inode - recalculate the block usage of an inode
349  * @inode: inode to recalc
350  *
351  * We have to calculate the free blocks since the mm can drop
352  * undirtied hole pages behind our back.
353  *
354  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
355  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
356  *
357  * It has to be called with the spinlock held.
358  */
359 static void shmem_recalc_inode(struct inode *inode)
360 {
361 	struct shmem_inode_info *info = SHMEM_I(inode);
362 	long freed;
363 
364 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
365 	if (freed > 0) {
366 		info->alloced -= freed;
367 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
368 		shmem_inode_unacct_blocks(inode, freed);
369 	}
370 }
371 
372 bool shmem_charge(struct inode *inode, long pages)
373 {
374 	struct shmem_inode_info *info = SHMEM_I(inode);
375 	unsigned long flags;
376 
377 	if (!shmem_inode_acct_block(inode, pages))
378 		return false;
379 
380 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
381 	inode->i_mapping->nrpages += pages;
382 
383 	spin_lock_irqsave(&info->lock, flags);
384 	info->alloced += pages;
385 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
386 	shmem_recalc_inode(inode);
387 	spin_unlock_irqrestore(&info->lock, flags);
388 
389 	return true;
390 }
391 
392 void shmem_uncharge(struct inode *inode, long pages)
393 {
394 	struct shmem_inode_info *info = SHMEM_I(inode);
395 	unsigned long flags;
396 
397 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
398 
399 	spin_lock_irqsave(&info->lock, flags);
400 	info->alloced -= pages;
401 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
402 	shmem_recalc_inode(inode);
403 	spin_unlock_irqrestore(&info->lock, flags);
404 
405 	shmem_inode_unacct_blocks(inode, pages);
406 }
407 
408 /*
409  * Replace item expected in xarray by a new item, while holding xa_lock.
410  */
411 static int shmem_replace_entry(struct address_space *mapping,
412 			pgoff_t index, void *expected, void *replacement)
413 {
414 	XA_STATE(xas, &mapping->i_pages, index);
415 	void *item;
416 
417 	VM_BUG_ON(!expected);
418 	VM_BUG_ON(!replacement);
419 	item = xas_load(&xas);
420 	if (item != expected)
421 		return -ENOENT;
422 	xas_store(&xas, replacement);
423 	return 0;
424 }
425 
426 /*
427  * Sometimes, before we decide whether to proceed or to fail, we must check
428  * that an entry was not already brought back from swap by a racing thread.
429  *
430  * Checking page is not enough: by the time a SwapCache page is locked, it
431  * might be reused, and again be SwapCache, using the same swap as before.
432  */
433 static bool shmem_confirm_swap(struct address_space *mapping,
434 			       pgoff_t index, swp_entry_t swap)
435 {
436 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
437 }
438 
439 /*
440  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
441  *
442  * SHMEM_HUGE_NEVER:
443  *	disables huge pages for the mount;
444  * SHMEM_HUGE_ALWAYS:
445  *	enables huge pages for the mount;
446  * SHMEM_HUGE_WITHIN_SIZE:
447  *	only allocate huge pages if the page will be fully within i_size,
448  *	also respect fadvise()/madvise() hints;
449  * SHMEM_HUGE_ADVISE:
450  *	only allocate huge pages if requested with fadvise()/madvise();
451  */
452 
453 #define SHMEM_HUGE_NEVER	0
454 #define SHMEM_HUGE_ALWAYS	1
455 #define SHMEM_HUGE_WITHIN_SIZE	2
456 #define SHMEM_HUGE_ADVISE	3
457 
458 /*
459  * Special values.
460  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
461  *
462  * SHMEM_HUGE_DENY:
463  *	disables huge on shm_mnt and all mounts, for emergency use;
464  * SHMEM_HUGE_FORCE:
465  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
466  *
467  */
468 #define SHMEM_HUGE_DENY		(-1)
469 #define SHMEM_HUGE_FORCE	(-2)
470 
471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
472 /* ifdef here to avoid bloating shmem.o when not necessary */
473 
474 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
475 
476 bool shmem_is_huge(struct vm_area_struct *vma,
477 		   struct inode *inode, pgoff_t index)
478 {
479 	loff_t i_size;
480 
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct page *page;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int removed = 0, split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			removed++;
574 			goto next;
575 		}
576 
577 		/* Check if there's anything to gain */
578 		if (round_up(inode->i_size, PAGE_SIZE) ==
579 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580 			list_move(&info->shrinklist, &to_remove);
581 			removed++;
582 			goto next;
583 		}
584 
585 		list_move(&info->shrinklist, &list);
586 next:
587 		if (!--batch)
588 			break;
589 	}
590 	spin_unlock(&sbinfo->shrinklist_lock);
591 
592 	list_for_each_safe(pos, next, &to_remove) {
593 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 		inode = &info->vfs_inode;
595 		list_del_init(&info->shrinklist);
596 		iput(inode);
597 	}
598 
599 	list_for_each_safe(pos, next, &list) {
600 		int ret;
601 
602 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
603 		inode = &info->vfs_inode;
604 
605 		if (nr_to_split && split >= nr_to_split)
606 			goto leave;
607 
608 		page = find_get_page(inode->i_mapping,
609 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
610 		if (!page)
611 			goto drop;
612 
613 		/* No huge page at the end of the file: nothing to split */
614 		if (!PageTransHuge(page)) {
615 			put_page(page);
616 			goto drop;
617 		}
618 
619 		/*
620 		 * Leave the inode on the list if we failed to lock
621 		 * the page at this time.
622 		 *
623 		 * Waiting for the lock may lead to deadlock in the
624 		 * reclaim path.
625 		 */
626 		if (!trylock_page(page)) {
627 			put_page(page);
628 			goto leave;
629 		}
630 
631 		ret = split_huge_page(page);
632 		unlock_page(page);
633 		put_page(page);
634 
635 		/* If split failed leave the inode on the list */
636 		if (ret)
637 			goto leave;
638 
639 		split++;
640 drop:
641 		list_del_init(&info->shrinklist);
642 		removed++;
643 leave:
644 		iput(inode);
645 	}
646 
647 	spin_lock(&sbinfo->shrinklist_lock);
648 	list_splice_tail(&list, &sbinfo->shrinklist);
649 	sbinfo->shrinklist_len -= removed;
650 	spin_unlock(&sbinfo->shrinklist_lock);
651 
652 	return split;
653 }
654 
655 static long shmem_unused_huge_scan(struct super_block *sb,
656 		struct shrink_control *sc)
657 {
658 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
659 
660 	if (!READ_ONCE(sbinfo->shrinklist_len))
661 		return SHRINK_STOP;
662 
663 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
664 }
665 
666 static long shmem_unused_huge_count(struct super_block *sb,
667 		struct shrink_control *sc)
668 {
669 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
670 	return READ_ONCE(sbinfo->shrinklist_len);
671 }
672 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
673 
674 #define shmem_huge SHMEM_HUGE_DENY
675 
676 bool shmem_is_huge(struct vm_area_struct *vma,
677 		   struct inode *inode, pgoff_t index)
678 {
679 	return false;
680 }
681 
682 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
683 		struct shrink_control *sc, unsigned long nr_to_split)
684 {
685 	return 0;
686 }
687 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
688 
689 /*
690  * Like add_to_page_cache_locked, but error if expected item has gone.
691  */
692 static int shmem_add_to_page_cache(struct page *page,
693 				   struct address_space *mapping,
694 				   pgoff_t index, void *expected, gfp_t gfp,
695 				   struct mm_struct *charge_mm)
696 {
697 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
698 	unsigned long i = 0;
699 	unsigned long nr = compound_nr(page);
700 	int error;
701 
702 	VM_BUG_ON_PAGE(PageTail(page), page);
703 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
704 	VM_BUG_ON_PAGE(!PageLocked(page), page);
705 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
706 	VM_BUG_ON(expected && PageTransHuge(page));
707 
708 	page_ref_add(page, nr);
709 	page->mapping = mapping;
710 	page->index = index;
711 
712 	if (!PageSwapCache(page)) {
713 		error = mem_cgroup_charge(page, charge_mm, gfp);
714 		if (error) {
715 			if (PageTransHuge(page)) {
716 				count_vm_event(THP_FILE_FALLBACK);
717 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
718 			}
719 			goto error;
720 		}
721 	}
722 	cgroup_throttle_swaprate(page, gfp);
723 
724 	do {
725 		void *entry;
726 		xas_lock_irq(&xas);
727 		entry = xas_find_conflict(&xas);
728 		if (entry != expected)
729 			xas_set_err(&xas, -EEXIST);
730 		xas_create_range(&xas);
731 		if (xas_error(&xas))
732 			goto unlock;
733 next:
734 		xas_store(&xas, page);
735 		if (++i < nr) {
736 			xas_next(&xas);
737 			goto next;
738 		}
739 		if (PageTransHuge(page)) {
740 			count_vm_event(THP_FILE_ALLOC);
741 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
742 		}
743 		mapping->nrpages += nr;
744 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
745 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
746 unlock:
747 		xas_unlock_irq(&xas);
748 	} while (xas_nomem(&xas, gfp));
749 
750 	if (xas_error(&xas)) {
751 		error = xas_error(&xas);
752 		goto error;
753 	}
754 
755 	return 0;
756 error:
757 	page->mapping = NULL;
758 	page_ref_sub(page, nr);
759 	return error;
760 }
761 
762 /*
763  * Like delete_from_page_cache, but substitutes swap for page.
764  */
765 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
766 {
767 	struct address_space *mapping = page->mapping;
768 	int error;
769 
770 	VM_BUG_ON_PAGE(PageCompound(page), page);
771 
772 	xa_lock_irq(&mapping->i_pages);
773 	error = shmem_replace_entry(mapping, page->index, page, radswap);
774 	page->mapping = NULL;
775 	mapping->nrpages--;
776 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
777 	__dec_lruvec_page_state(page, NR_SHMEM);
778 	xa_unlock_irq(&mapping->i_pages);
779 	put_page(page);
780 	BUG_ON(error);
781 }
782 
783 /*
784  * Remove swap entry from page cache, free the swap and its page cache.
785  */
786 static int shmem_free_swap(struct address_space *mapping,
787 			   pgoff_t index, void *radswap)
788 {
789 	void *old;
790 
791 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
792 	if (old != radswap)
793 		return -ENOENT;
794 	free_swap_and_cache(radix_to_swp_entry(radswap));
795 	return 0;
796 }
797 
798 /*
799  * Determine (in bytes) how many of the shmem object's pages mapped by the
800  * given offsets are swapped out.
801  *
802  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
803  * as long as the inode doesn't go away and racy results are not a problem.
804  */
805 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
806 						pgoff_t start, pgoff_t end)
807 {
808 	XA_STATE(xas, &mapping->i_pages, start);
809 	struct page *page;
810 	unsigned long swapped = 0;
811 
812 	rcu_read_lock();
813 	xas_for_each(&xas, page, end - 1) {
814 		if (xas_retry(&xas, page))
815 			continue;
816 		if (xa_is_value(page))
817 			swapped++;
818 
819 		if (need_resched()) {
820 			xas_pause(&xas);
821 			cond_resched_rcu();
822 		}
823 	}
824 
825 	rcu_read_unlock();
826 
827 	return swapped << PAGE_SHIFT;
828 }
829 
830 /*
831  * Determine (in bytes) how many of the shmem object's pages mapped by the
832  * given vma is swapped out.
833  *
834  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
835  * as long as the inode doesn't go away and racy results are not a problem.
836  */
837 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
838 {
839 	struct inode *inode = file_inode(vma->vm_file);
840 	struct shmem_inode_info *info = SHMEM_I(inode);
841 	struct address_space *mapping = inode->i_mapping;
842 	unsigned long swapped;
843 
844 	/* Be careful as we don't hold info->lock */
845 	swapped = READ_ONCE(info->swapped);
846 
847 	/*
848 	 * The easier cases are when the shmem object has nothing in swap, or
849 	 * the vma maps it whole. Then we can simply use the stats that we
850 	 * already track.
851 	 */
852 	if (!swapped)
853 		return 0;
854 
855 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
856 		return swapped << PAGE_SHIFT;
857 
858 	/* Here comes the more involved part */
859 	return shmem_partial_swap_usage(mapping,
860 			linear_page_index(vma, vma->vm_start),
861 			linear_page_index(vma, vma->vm_end));
862 }
863 
864 /*
865  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
866  */
867 void shmem_unlock_mapping(struct address_space *mapping)
868 {
869 	struct pagevec pvec;
870 	pgoff_t index = 0;
871 
872 	pagevec_init(&pvec);
873 	/*
874 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
875 	 */
876 	while (!mapping_unevictable(mapping)) {
877 		if (!pagevec_lookup(&pvec, mapping, &index))
878 			break;
879 		check_move_unevictable_pages(&pvec);
880 		pagevec_release(&pvec);
881 		cond_resched();
882 	}
883 }
884 
885 /*
886  * Check whether a hole-punch or truncation needs to split a huge page,
887  * returning true if no split was required, or the split has been successful.
888  *
889  * Eviction (or truncation to 0 size) should never need to split a huge page;
890  * but in rare cases might do so, if shmem_undo_range() failed to trylock on
891  * head, and then succeeded to trylock on tail.
892  *
893  * A split can only succeed when there are no additional references on the
894  * huge page: so the split below relies upon find_get_entries() having stopped
895  * when it found a subpage of the huge page, without getting further references.
896  */
897 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end)
898 {
899 	if (!PageTransCompound(page))
900 		return true;
901 
902 	/* Just proceed to delete a huge page wholly within the range punched */
903 	if (PageHead(page) &&
904 	    page->index >= start && page->index + HPAGE_PMD_NR <= end)
905 		return true;
906 
907 	/* Try to split huge page, so we can truly punch the hole or truncate */
908 	return split_huge_page(page) >= 0;
909 }
910 
911 /*
912  * Remove range of pages and swap entries from page cache, and free them.
913  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
914  */
915 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
916 								 bool unfalloc)
917 {
918 	struct address_space *mapping = inode->i_mapping;
919 	struct shmem_inode_info *info = SHMEM_I(inode);
920 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
921 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
922 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
923 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
924 	struct pagevec pvec;
925 	pgoff_t indices[PAGEVEC_SIZE];
926 	long nr_swaps_freed = 0;
927 	pgoff_t index;
928 	int i;
929 
930 	if (lend == -1)
931 		end = -1;	/* unsigned, so actually very big */
932 
933 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
934 		info->fallocend = start;
935 
936 	pagevec_init(&pvec);
937 	index = start;
938 	while (index < end && find_lock_entries(mapping, index, end - 1,
939 			&pvec, indices)) {
940 		for (i = 0; i < pagevec_count(&pvec); i++) {
941 			struct page *page = pvec.pages[i];
942 
943 			index = indices[i];
944 
945 			if (xa_is_value(page)) {
946 				if (unfalloc)
947 					continue;
948 				nr_swaps_freed += !shmem_free_swap(mapping,
949 								index, page);
950 				continue;
951 			}
952 			index += thp_nr_pages(page) - 1;
953 
954 			if (!unfalloc || !PageUptodate(page))
955 				truncate_inode_page(mapping, page);
956 			unlock_page(page);
957 		}
958 		pagevec_remove_exceptionals(&pvec);
959 		pagevec_release(&pvec);
960 		cond_resched();
961 		index++;
962 	}
963 
964 	if (partial_start) {
965 		struct page *page = NULL;
966 		shmem_getpage(inode, start - 1, &page, SGP_READ);
967 		if (page) {
968 			unsigned int top = PAGE_SIZE;
969 			if (start > end) {
970 				top = partial_end;
971 				partial_end = 0;
972 			}
973 			zero_user_segment(page, partial_start, top);
974 			set_page_dirty(page);
975 			unlock_page(page);
976 			put_page(page);
977 		}
978 	}
979 	if (partial_end) {
980 		struct page *page = NULL;
981 		shmem_getpage(inode, end, &page, SGP_READ);
982 		if (page) {
983 			zero_user_segment(page, 0, partial_end);
984 			set_page_dirty(page);
985 			unlock_page(page);
986 			put_page(page);
987 		}
988 	}
989 	if (start >= end)
990 		return;
991 
992 	index = start;
993 	while (index < end) {
994 		cond_resched();
995 
996 		if (!find_get_entries(mapping, index, end - 1, &pvec,
997 				indices)) {
998 			/* If all gone or hole-punch or unfalloc, we're done */
999 			if (index == start || end != -1)
1000 				break;
1001 			/* But if truncating, restart to make sure all gone */
1002 			index = start;
1003 			continue;
1004 		}
1005 		for (i = 0; i < pagevec_count(&pvec); i++) {
1006 			struct page *page = pvec.pages[i];
1007 
1008 			index = indices[i];
1009 			if (xa_is_value(page)) {
1010 				if (unfalloc)
1011 					continue;
1012 				if (shmem_free_swap(mapping, index, page)) {
1013 					/* Swap was replaced by page: retry */
1014 					index--;
1015 					break;
1016 				}
1017 				nr_swaps_freed++;
1018 				continue;
1019 			}
1020 
1021 			lock_page(page);
1022 
1023 			if (!unfalloc || !PageUptodate(page)) {
1024 				if (page_mapping(page) != mapping) {
1025 					/* Page was replaced by swap: retry */
1026 					unlock_page(page);
1027 					index--;
1028 					break;
1029 				}
1030 				VM_BUG_ON_PAGE(PageWriteback(page), page);
1031 				if (shmem_punch_compound(page, start, end))
1032 					truncate_inode_page(mapping, page);
1033 				else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1034 					/* Wipe the page and don't get stuck */
1035 					clear_highpage(page);
1036 					flush_dcache_page(page);
1037 					set_page_dirty(page);
1038 					if (index <
1039 					    round_up(start, HPAGE_PMD_NR))
1040 						start = index + 1;
1041 				}
1042 			}
1043 			unlock_page(page);
1044 		}
1045 		pagevec_remove_exceptionals(&pvec);
1046 		pagevec_release(&pvec);
1047 		index++;
1048 	}
1049 
1050 	spin_lock_irq(&info->lock);
1051 	info->swapped -= nr_swaps_freed;
1052 	shmem_recalc_inode(inode);
1053 	spin_unlock_irq(&info->lock);
1054 }
1055 
1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1057 {
1058 	shmem_undo_range(inode, lstart, lend, false);
1059 	inode->i_ctime = inode->i_mtime = current_time(inode);
1060 }
1061 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1062 
1063 static int shmem_getattr(struct user_namespace *mnt_userns,
1064 			 const struct path *path, struct kstat *stat,
1065 			 u32 request_mask, unsigned int query_flags)
1066 {
1067 	struct inode *inode = path->dentry->d_inode;
1068 	struct shmem_inode_info *info = SHMEM_I(inode);
1069 
1070 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1071 		spin_lock_irq(&info->lock);
1072 		shmem_recalc_inode(inode);
1073 		spin_unlock_irq(&info->lock);
1074 	}
1075 	generic_fillattr(&init_user_ns, inode, stat);
1076 
1077 	if (shmem_is_huge(NULL, inode, 0))
1078 		stat->blksize = HPAGE_PMD_SIZE;
1079 
1080 	return 0;
1081 }
1082 
1083 static int shmem_setattr(struct user_namespace *mnt_userns,
1084 			 struct dentry *dentry, struct iattr *attr)
1085 {
1086 	struct inode *inode = d_inode(dentry);
1087 	struct shmem_inode_info *info = SHMEM_I(inode);
1088 	int error;
1089 
1090 	error = setattr_prepare(&init_user_ns, dentry, attr);
1091 	if (error)
1092 		return error;
1093 
1094 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1095 		loff_t oldsize = inode->i_size;
1096 		loff_t newsize = attr->ia_size;
1097 
1098 		/* protected by i_rwsem */
1099 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1100 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1101 			return -EPERM;
1102 
1103 		if (newsize != oldsize) {
1104 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1105 					oldsize, newsize);
1106 			if (error)
1107 				return error;
1108 			i_size_write(inode, newsize);
1109 			inode->i_ctime = inode->i_mtime = current_time(inode);
1110 		}
1111 		if (newsize <= oldsize) {
1112 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1113 			if (oldsize > holebegin)
1114 				unmap_mapping_range(inode->i_mapping,
1115 							holebegin, 0, 1);
1116 			if (info->alloced)
1117 				shmem_truncate_range(inode,
1118 							newsize, (loff_t)-1);
1119 			/* unmap again to remove racily COWed private pages */
1120 			if (oldsize > holebegin)
1121 				unmap_mapping_range(inode->i_mapping,
1122 							holebegin, 0, 1);
1123 		}
1124 	}
1125 
1126 	setattr_copy(&init_user_ns, inode, attr);
1127 	if (attr->ia_valid & ATTR_MODE)
1128 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1129 	return error;
1130 }
1131 
1132 static void shmem_evict_inode(struct inode *inode)
1133 {
1134 	struct shmem_inode_info *info = SHMEM_I(inode);
1135 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1136 
1137 	if (shmem_mapping(inode->i_mapping)) {
1138 		shmem_unacct_size(info->flags, inode->i_size);
1139 		inode->i_size = 0;
1140 		shmem_truncate_range(inode, 0, (loff_t)-1);
1141 		if (!list_empty(&info->shrinklist)) {
1142 			spin_lock(&sbinfo->shrinklist_lock);
1143 			if (!list_empty(&info->shrinklist)) {
1144 				list_del_init(&info->shrinklist);
1145 				sbinfo->shrinklist_len--;
1146 			}
1147 			spin_unlock(&sbinfo->shrinklist_lock);
1148 		}
1149 		while (!list_empty(&info->swaplist)) {
1150 			/* Wait while shmem_unuse() is scanning this inode... */
1151 			wait_var_event(&info->stop_eviction,
1152 				       !atomic_read(&info->stop_eviction));
1153 			mutex_lock(&shmem_swaplist_mutex);
1154 			/* ...but beware of the race if we peeked too early */
1155 			if (!atomic_read(&info->stop_eviction))
1156 				list_del_init(&info->swaplist);
1157 			mutex_unlock(&shmem_swaplist_mutex);
1158 		}
1159 	}
1160 
1161 	simple_xattrs_free(&info->xattrs);
1162 	WARN_ON(inode->i_blocks);
1163 	shmem_free_inode(inode->i_sb);
1164 	clear_inode(inode);
1165 }
1166 
1167 static int shmem_find_swap_entries(struct address_space *mapping,
1168 				   pgoff_t start, unsigned int nr_entries,
1169 				   struct page **entries, pgoff_t *indices,
1170 				   unsigned int type, bool frontswap)
1171 {
1172 	XA_STATE(xas, &mapping->i_pages, start);
1173 	struct page *page;
1174 	swp_entry_t entry;
1175 	unsigned int ret = 0;
1176 
1177 	if (!nr_entries)
1178 		return 0;
1179 
1180 	rcu_read_lock();
1181 	xas_for_each(&xas, page, ULONG_MAX) {
1182 		if (xas_retry(&xas, page))
1183 			continue;
1184 
1185 		if (!xa_is_value(page))
1186 			continue;
1187 
1188 		entry = radix_to_swp_entry(page);
1189 		if (swp_type(entry) != type)
1190 			continue;
1191 		if (frontswap &&
1192 		    !frontswap_test(swap_info[type], swp_offset(entry)))
1193 			continue;
1194 
1195 		indices[ret] = xas.xa_index;
1196 		entries[ret] = page;
1197 
1198 		if (need_resched()) {
1199 			xas_pause(&xas);
1200 			cond_resched_rcu();
1201 		}
1202 		if (++ret == nr_entries)
1203 			break;
1204 	}
1205 	rcu_read_unlock();
1206 
1207 	return ret;
1208 }
1209 
1210 /*
1211  * Move the swapped pages for an inode to page cache. Returns the count
1212  * of pages swapped in, or the error in case of failure.
1213  */
1214 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1215 				    pgoff_t *indices)
1216 {
1217 	int i = 0;
1218 	int ret = 0;
1219 	int error = 0;
1220 	struct address_space *mapping = inode->i_mapping;
1221 
1222 	for (i = 0; i < pvec.nr; i++) {
1223 		struct page *page = pvec.pages[i];
1224 
1225 		if (!xa_is_value(page))
1226 			continue;
1227 		error = shmem_swapin_page(inode, indices[i],
1228 					  &page, SGP_CACHE,
1229 					  mapping_gfp_mask(mapping),
1230 					  NULL, NULL);
1231 		if (error == 0) {
1232 			unlock_page(page);
1233 			put_page(page);
1234 			ret++;
1235 		}
1236 		if (error == -ENOMEM)
1237 			break;
1238 		error = 0;
1239 	}
1240 	return error ? error : ret;
1241 }
1242 
1243 /*
1244  * If swap found in inode, free it and move page from swapcache to filecache.
1245  */
1246 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1247 			     bool frontswap, unsigned long *fs_pages_to_unuse)
1248 {
1249 	struct address_space *mapping = inode->i_mapping;
1250 	pgoff_t start = 0;
1251 	struct pagevec pvec;
1252 	pgoff_t indices[PAGEVEC_SIZE];
1253 	bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1254 	int ret = 0;
1255 
1256 	pagevec_init(&pvec);
1257 	do {
1258 		unsigned int nr_entries = PAGEVEC_SIZE;
1259 
1260 		if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1261 			nr_entries = *fs_pages_to_unuse;
1262 
1263 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1264 						  pvec.pages, indices,
1265 						  type, frontswap);
1266 		if (pvec.nr == 0) {
1267 			ret = 0;
1268 			break;
1269 		}
1270 
1271 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1272 		if (ret < 0)
1273 			break;
1274 
1275 		if (frontswap_partial) {
1276 			*fs_pages_to_unuse -= ret;
1277 			if (*fs_pages_to_unuse == 0) {
1278 				ret = FRONTSWAP_PAGES_UNUSED;
1279 				break;
1280 			}
1281 		}
1282 
1283 		start = indices[pvec.nr - 1];
1284 	} while (true);
1285 
1286 	return ret;
1287 }
1288 
1289 /*
1290  * Read all the shared memory data that resides in the swap
1291  * device 'type' back into memory, so the swap device can be
1292  * unused.
1293  */
1294 int shmem_unuse(unsigned int type, bool frontswap,
1295 		unsigned long *fs_pages_to_unuse)
1296 {
1297 	struct shmem_inode_info *info, *next;
1298 	int error = 0;
1299 
1300 	if (list_empty(&shmem_swaplist))
1301 		return 0;
1302 
1303 	mutex_lock(&shmem_swaplist_mutex);
1304 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1305 		if (!info->swapped) {
1306 			list_del_init(&info->swaplist);
1307 			continue;
1308 		}
1309 		/*
1310 		 * Drop the swaplist mutex while searching the inode for swap;
1311 		 * but before doing so, make sure shmem_evict_inode() will not
1312 		 * remove placeholder inode from swaplist, nor let it be freed
1313 		 * (igrab() would protect from unlink, but not from unmount).
1314 		 */
1315 		atomic_inc(&info->stop_eviction);
1316 		mutex_unlock(&shmem_swaplist_mutex);
1317 
1318 		error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1319 					  fs_pages_to_unuse);
1320 		cond_resched();
1321 
1322 		mutex_lock(&shmem_swaplist_mutex);
1323 		next = list_next_entry(info, swaplist);
1324 		if (!info->swapped)
1325 			list_del_init(&info->swaplist);
1326 		if (atomic_dec_and_test(&info->stop_eviction))
1327 			wake_up_var(&info->stop_eviction);
1328 		if (error)
1329 			break;
1330 	}
1331 	mutex_unlock(&shmem_swaplist_mutex);
1332 
1333 	return error;
1334 }
1335 
1336 /*
1337  * Move the page from the page cache to the swap cache.
1338  */
1339 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1340 {
1341 	struct shmem_inode_info *info;
1342 	struct address_space *mapping;
1343 	struct inode *inode;
1344 	swp_entry_t swap;
1345 	pgoff_t index;
1346 
1347 	/*
1348 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1349 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1350 	 * and its shmem_writeback() needs them to be split when swapping.
1351 	 */
1352 	if (PageTransCompound(page)) {
1353 		/* Ensure the subpages are still dirty */
1354 		SetPageDirty(page);
1355 		if (split_huge_page(page) < 0)
1356 			goto redirty;
1357 		ClearPageDirty(page);
1358 	}
1359 
1360 	BUG_ON(!PageLocked(page));
1361 	mapping = page->mapping;
1362 	index = page->index;
1363 	inode = mapping->host;
1364 	info = SHMEM_I(inode);
1365 	if (info->flags & VM_LOCKED)
1366 		goto redirty;
1367 	if (!total_swap_pages)
1368 		goto redirty;
1369 
1370 	/*
1371 	 * Our capabilities prevent regular writeback or sync from ever calling
1372 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1373 	 * its underlying filesystem, in which case tmpfs should write out to
1374 	 * swap only in response to memory pressure, and not for the writeback
1375 	 * threads or sync.
1376 	 */
1377 	if (!wbc->for_reclaim) {
1378 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1379 		goto redirty;
1380 	}
1381 
1382 	/*
1383 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1384 	 * value into swapfile.c, the only way we can correctly account for a
1385 	 * fallocated page arriving here is now to initialize it and write it.
1386 	 *
1387 	 * That's okay for a page already fallocated earlier, but if we have
1388 	 * not yet completed the fallocation, then (a) we want to keep track
1389 	 * of this page in case we have to undo it, and (b) it may not be a
1390 	 * good idea to continue anyway, once we're pushing into swap.  So
1391 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1392 	 */
1393 	if (!PageUptodate(page)) {
1394 		if (inode->i_private) {
1395 			struct shmem_falloc *shmem_falloc;
1396 			spin_lock(&inode->i_lock);
1397 			shmem_falloc = inode->i_private;
1398 			if (shmem_falloc &&
1399 			    !shmem_falloc->waitq &&
1400 			    index >= shmem_falloc->start &&
1401 			    index < shmem_falloc->next)
1402 				shmem_falloc->nr_unswapped++;
1403 			else
1404 				shmem_falloc = NULL;
1405 			spin_unlock(&inode->i_lock);
1406 			if (shmem_falloc)
1407 				goto redirty;
1408 		}
1409 		clear_highpage(page);
1410 		flush_dcache_page(page);
1411 		SetPageUptodate(page);
1412 	}
1413 
1414 	swap = get_swap_page(page);
1415 	if (!swap.val)
1416 		goto redirty;
1417 
1418 	/*
1419 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1420 	 * if it's not already there.  Do it now before the page is
1421 	 * moved to swap cache, when its pagelock no longer protects
1422 	 * the inode from eviction.  But don't unlock the mutex until
1423 	 * we've incremented swapped, because shmem_unuse_inode() will
1424 	 * prune a !swapped inode from the swaplist under this mutex.
1425 	 */
1426 	mutex_lock(&shmem_swaplist_mutex);
1427 	if (list_empty(&info->swaplist))
1428 		list_add(&info->swaplist, &shmem_swaplist);
1429 
1430 	if (add_to_swap_cache(page, swap,
1431 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1432 			NULL) == 0) {
1433 		spin_lock_irq(&info->lock);
1434 		shmem_recalc_inode(inode);
1435 		info->swapped++;
1436 		spin_unlock_irq(&info->lock);
1437 
1438 		swap_shmem_alloc(swap);
1439 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1440 
1441 		mutex_unlock(&shmem_swaplist_mutex);
1442 		BUG_ON(page_mapped(page));
1443 		swap_writepage(page, wbc);
1444 		return 0;
1445 	}
1446 
1447 	mutex_unlock(&shmem_swaplist_mutex);
1448 	put_swap_page(page, swap);
1449 redirty:
1450 	set_page_dirty(page);
1451 	if (wbc->for_reclaim)
1452 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1453 	unlock_page(page);
1454 	return 0;
1455 }
1456 
1457 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1458 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1459 {
1460 	char buffer[64];
1461 
1462 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1463 		return;		/* show nothing */
1464 
1465 	mpol_to_str(buffer, sizeof(buffer), mpol);
1466 
1467 	seq_printf(seq, ",mpol=%s", buffer);
1468 }
1469 
1470 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1471 {
1472 	struct mempolicy *mpol = NULL;
1473 	if (sbinfo->mpol) {
1474 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1475 		mpol = sbinfo->mpol;
1476 		mpol_get(mpol);
1477 		raw_spin_unlock(&sbinfo->stat_lock);
1478 	}
1479 	return mpol;
1480 }
1481 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1482 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1483 {
1484 }
1485 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1486 {
1487 	return NULL;
1488 }
1489 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1490 #ifndef CONFIG_NUMA
1491 #define vm_policy vm_private_data
1492 #endif
1493 
1494 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1495 		struct shmem_inode_info *info, pgoff_t index)
1496 {
1497 	/* Create a pseudo vma that just contains the policy */
1498 	vma_init(vma, NULL);
1499 	/* Bias interleave by inode number to distribute better across nodes */
1500 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1501 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1502 }
1503 
1504 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1505 {
1506 	/* Drop reference taken by mpol_shared_policy_lookup() */
1507 	mpol_cond_put(vma->vm_policy);
1508 }
1509 
1510 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1511 			struct shmem_inode_info *info, pgoff_t index)
1512 {
1513 	struct vm_area_struct pvma;
1514 	struct page *page;
1515 	struct vm_fault vmf = {
1516 		.vma = &pvma,
1517 	};
1518 
1519 	shmem_pseudo_vma_init(&pvma, info, index);
1520 	page = swap_cluster_readahead(swap, gfp, &vmf);
1521 	shmem_pseudo_vma_destroy(&pvma);
1522 
1523 	return page;
1524 }
1525 
1526 /*
1527  * Make sure huge_gfp is always more limited than limit_gfp.
1528  * Some of the flags set permissions, while others set limitations.
1529  */
1530 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1531 {
1532 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1533 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1534 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1535 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1536 
1537 	/* Allow allocations only from the originally specified zones. */
1538 	result |= zoneflags;
1539 
1540 	/*
1541 	 * Minimize the result gfp by taking the union with the deny flags,
1542 	 * and the intersection of the allow flags.
1543 	 */
1544 	result |= (limit_gfp & denyflags);
1545 	result |= (huge_gfp & limit_gfp) & allowflags;
1546 
1547 	return result;
1548 }
1549 
1550 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1551 		struct shmem_inode_info *info, pgoff_t index)
1552 {
1553 	struct vm_area_struct pvma;
1554 	struct address_space *mapping = info->vfs_inode.i_mapping;
1555 	pgoff_t hindex;
1556 	struct page *page;
1557 
1558 	hindex = round_down(index, HPAGE_PMD_NR);
1559 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1560 								XA_PRESENT))
1561 		return NULL;
1562 
1563 	shmem_pseudo_vma_init(&pvma, info, hindex);
1564 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(),
1565 			       true);
1566 	shmem_pseudo_vma_destroy(&pvma);
1567 	if (page)
1568 		prep_transhuge_page(page);
1569 	else
1570 		count_vm_event(THP_FILE_FALLBACK);
1571 	return page;
1572 }
1573 
1574 static struct page *shmem_alloc_page(gfp_t gfp,
1575 			struct shmem_inode_info *info, pgoff_t index)
1576 {
1577 	struct vm_area_struct pvma;
1578 	struct page *page;
1579 
1580 	shmem_pseudo_vma_init(&pvma, info, index);
1581 	page = alloc_page_vma(gfp, &pvma, 0);
1582 	shmem_pseudo_vma_destroy(&pvma);
1583 
1584 	return page;
1585 }
1586 
1587 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1588 		struct inode *inode,
1589 		pgoff_t index, bool huge)
1590 {
1591 	struct shmem_inode_info *info = SHMEM_I(inode);
1592 	struct page *page;
1593 	int nr;
1594 	int err = -ENOSPC;
1595 
1596 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1597 		huge = false;
1598 	nr = huge ? HPAGE_PMD_NR : 1;
1599 
1600 	if (!shmem_inode_acct_block(inode, nr))
1601 		goto failed;
1602 
1603 	if (huge)
1604 		page = shmem_alloc_hugepage(gfp, info, index);
1605 	else
1606 		page = shmem_alloc_page(gfp, info, index);
1607 	if (page) {
1608 		__SetPageLocked(page);
1609 		__SetPageSwapBacked(page);
1610 		return page;
1611 	}
1612 
1613 	err = -ENOMEM;
1614 	shmem_inode_unacct_blocks(inode, nr);
1615 failed:
1616 	return ERR_PTR(err);
1617 }
1618 
1619 /*
1620  * When a page is moved from swapcache to shmem filecache (either by the
1621  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1622  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1623  * ignorance of the mapping it belongs to.  If that mapping has special
1624  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1625  * we may need to copy to a suitable page before moving to filecache.
1626  *
1627  * In a future release, this may well be extended to respect cpuset and
1628  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1629  * but for now it is a simple matter of zone.
1630  */
1631 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1632 {
1633 	return page_zonenum(page) > gfp_zone(gfp);
1634 }
1635 
1636 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1637 				struct shmem_inode_info *info, pgoff_t index)
1638 {
1639 	struct page *oldpage, *newpage;
1640 	struct address_space *swap_mapping;
1641 	swp_entry_t entry;
1642 	pgoff_t swap_index;
1643 	int error;
1644 
1645 	oldpage = *pagep;
1646 	entry.val = page_private(oldpage);
1647 	swap_index = swp_offset(entry);
1648 	swap_mapping = page_mapping(oldpage);
1649 
1650 	/*
1651 	 * We have arrived here because our zones are constrained, so don't
1652 	 * limit chance of success by further cpuset and node constraints.
1653 	 */
1654 	gfp &= ~GFP_CONSTRAINT_MASK;
1655 	newpage = shmem_alloc_page(gfp, info, index);
1656 	if (!newpage)
1657 		return -ENOMEM;
1658 
1659 	get_page(newpage);
1660 	copy_highpage(newpage, oldpage);
1661 	flush_dcache_page(newpage);
1662 
1663 	__SetPageLocked(newpage);
1664 	__SetPageSwapBacked(newpage);
1665 	SetPageUptodate(newpage);
1666 	set_page_private(newpage, entry.val);
1667 	SetPageSwapCache(newpage);
1668 
1669 	/*
1670 	 * Our caller will very soon move newpage out of swapcache, but it's
1671 	 * a nice clean interface for us to replace oldpage by newpage there.
1672 	 */
1673 	xa_lock_irq(&swap_mapping->i_pages);
1674 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1675 	if (!error) {
1676 		mem_cgroup_migrate(oldpage, newpage);
1677 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1678 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1679 	}
1680 	xa_unlock_irq(&swap_mapping->i_pages);
1681 
1682 	if (unlikely(error)) {
1683 		/*
1684 		 * Is this possible?  I think not, now that our callers check
1685 		 * both PageSwapCache and page_private after getting page lock;
1686 		 * but be defensive.  Reverse old to newpage for clear and free.
1687 		 */
1688 		oldpage = newpage;
1689 	} else {
1690 		lru_cache_add(newpage);
1691 		*pagep = newpage;
1692 	}
1693 
1694 	ClearPageSwapCache(oldpage);
1695 	set_page_private(oldpage, 0);
1696 
1697 	unlock_page(oldpage);
1698 	put_page(oldpage);
1699 	put_page(oldpage);
1700 	return error;
1701 }
1702 
1703 /*
1704  * Swap in the page pointed to by *pagep.
1705  * Caller has to make sure that *pagep contains a valid swapped page.
1706  * Returns 0 and the page in pagep if success. On failure, returns the
1707  * error code and NULL in *pagep.
1708  */
1709 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1710 			     struct page **pagep, enum sgp_type sgp,
1711 			     gfp_t gfp, struct vm_area_struct *vma,
1712 			     vm_fault_t *fault_type)
1713 {
1714 	struct address_space *mapping = inode->i_mapping;
1715 	struct shmem_inode_info *info = SHMEM_I(inode);
1716 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1717 	struct page *page;
1718 	swp_entry_t swap;
1719 	int error;
1720 
1721 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1722 	swap = radix_to_swp_entry(*pagep);
1723 	*pagep = NULL;
1724 
1725 	/* Look it up and read it in.. */
1726 	page = lookup_swap_cache(swap, NULL, 0);
1727 	if (!page) {
1728 		/* Or update major stats only when swapin succeeds?? */
1729 		if (fault_type) {
1730 			*fault_type |= VM_FAULT_MAJOR;
1731 			count_vm_event(PGMAJFAULT);
1732 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1733 		}
1734 		/* Here we actually start the io */
1735 		page = shmem_swapin(swap, gfp, info, index);
1736 		if (!page) {
1737 			error = -ENOMEM;
1738 			goto failed;
1739 		}
1740 	}
1741 
1742 	/* We have to do this with page locked to prevent races */
1743 	lock_page(page);
1744 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1745 	    !shmem_confirm_swap(mapping, index, swap)) {
1746 		error = -EEXIST;
1747 		goto unlock;
1748 	}
1749 	if (!PageUptodate(page)) {
1750 		error = -EIO;
1751 		goto failed;
1752 	}
1753 	wait_on_page_writeback(page);
1754 
1755 	/*
1756 	 * Some architectures may have to restore extra metadata to the
1757 	 * physical page after reading from swap.
1758 	 */
1759 	arch_swap_restore(swap, page);
1760 
1761 	if (shmem_should_replace_page(page, gfp)) {
1762 		error = shmem_replace_page(&page, gfp, info, index);
1763 		if (error)
1764 			goto failed;
1765 	}
1766 
1767 	error = shmem_add_to_page_cache(page, mapping, index,
1768 					swp_to_radix_entry(swap), gfp,
1769 					charge_mm);
1770 	if (error)
1771 		goto failed;
1772 
1773 	spin_lock_irq(&info->lock);
1774 	info->swapped--;
1775 	shmem_recalc_inode(inode);
1776 	spin_unlock_irq(&info->lock);
1777 
1778 	if (sgp == SGP_WRITE)
1779 		mark_page_accessed(page);
1780 
1781 	delete_from_swap_cache(page);
1782 	set_page_dirty(page);
1783 	swap_free(swap);
1784 
1785 	*pagep = page;
1786 	return 0;
1787 failed:
1788 	if (!shmem_confirm_swap(mapping, index, swap))
1789 		error = -EEXIST;
1790 unlock:
1791 	if (page) {
1792 		unlock_page(page);
1793 		put_page(page);
1794 	}
1795 
1796 	return error;
1797 }
1798 
1799 /*
1800  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1801  *
1802  * If we allocate a new one we do not mark it dirty. That's up to the
1803  * vm. If we swap it in we mark it dirty since we also free the swap
1804  * entry since a page cannot live in both the swap and page cache.
1805  *
1806  * vma, vmf, and fault_type are only supplied by shmem_fault:
1807  * otherwise they are NULL.
1808  */
1809 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1810 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1811 	struct vm_area_struct *vma, struct vm_fault *vmf,
1812 			vm_fault_t *fault_type)
1813 {
1814 	struct address_space *mapping = inode->i_mapping;
1815 	struct shmem_inode_info *info = SHMEM_I(inode);
1816 	struct shmem_sb_info *sbinfo;
1817 	struct mm_struct *charge_mm;
1818 	struct page *page;
1819 	pgoff_t hindex = index;
1820 	gfp_t huge_gfp;
1821 	int error;
1822 	int once = 0;
1823 	int alloced = 0;
1824 
1825 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1826 		return -EFBIG;
1827 repeat:
1828 	if (sgp <= SGP_CACHE &&
1829 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1830 		return -EINVAL;
1831 	}
1832 
1833 	sbinfo = SHMEM_SB(inode->i_sb);
1834 	charge_mm = vma ? vma->vm_mm : NULL;
1835 
1836 	page = pagecache_get_page(mapping, index,
1837 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1838 
1839 	if (page && vma && userfaultfd_minor(vma)) {
1840 		if (!xa_is_value(page)) {
1841 			unlock_page(page);
1842 			put_page(page);
1843 		}
1844 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1845 		return 0;
1846 	}
1847 
1848 	if (xa_is_value(page)) {
1849 		error = shmem_swapin_page(inode, index, &page,
1850 					  sgp, gfp, vma, fault_type);
1851 		if (error == -EEXIST)
1852 			goto repeat;
1853 
1854 		*pagep = page;
1855 		return error;
1856 	}
1857 
1858 	if (page) {
1859 		hindex = page->index;
1860 		if (sgp == SGP_WRITE)
1861 			mark_page_accessed(page);
1862 		if (PageUptodate(page))
1863 			goto out;
1864 		/* fallocated page */
1865 		if (sgp != SGP_READ)
1866 			goto clear;
1867 		unlock_page(page);
1868 		put_page(page);
1869 	}
1870 
1871 	/*
1872 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1873 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1874 	 */
1875 	*pagep = NULL;
1876 	if (sgp == SGP_READ)
1877 		return 0;
1878 	if (sgp == SGP_NOALLOC)
1879 		return -ENOENT;
1880 
1881 	/*
1882 	 * Fast cache lookup and swap lookup did not find it: allocate.
1883 	 */
1884 
1885 	if (vma && userfaultfd_missing(vma)) {
1886 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1887 		return 0;
1888 	}
1889 
1890 	/* Never use a huge page for shmem_symlink() */
1891 	if (S_ISLNK(inode->i_mode))
1892 		goto alloc_nohuge;
1893 	if (!shmem_is_huge(vma, inode, index))
1894 		goto alloc_nohuge;
1895 
1896 	huge_gfp = vma_thp_gfp_mask(vma);
1897 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1898 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1899 	if (IS_ERR(page)) {
1900 alloc_nohuge:
1901 		page = shmem_alloc_and_acct_page(gfp, inode,
1902 						 index, false);
1903 	}
1904 	if (IS_ERR(page)) {
1905 		int retry = 5;
1906 
1907 		error = PTR_ERR(page);
1908 		page = NULL;
1909 		if (error != -ENOSPC)
1910 			goto unlock;
1911 		/*
1912 		 * Try to reclaim some space by splitting a huge page
1913 		 * beyond i_size on the filesystem.
1914 		 */
1915 		while (retry--) {
1916 			int ret;
1917 
1918 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1919 			if (ret == SHRINK_STOP)
1920 				break;
1921 			if (ret)
1922 				goto alloc_nohuge;
1923 		}
1924 		goto unlock;
1925 	}
1926 
1927 	if (PageTransHuge(page))
1928 		hindex = round_down(index, HPAGE_PMD_NR);
1929 	else
1930 		hindex = index;
1931 
1932 	if (sgp == SGP_WRITE)
1933 		__SetPageReferenced(page);
1934 
1935 	error = shmem_add_to_page_cache(page, mapping, hindex,
1936 					NULL, gfp & GFP_RECLAIM_MASK,
1937 					charge_mm);
1938 	if (error)
1939 		goto unacct;
1940 	lru_cache_add(page);
1941 
1942 	spin_lock_irq(&info->lock);
1943 	info->alloced += compound_nr(page);
1944 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1945 	shmem_recalc_inode(inode);
1946 	spin_unlock_irq(&info->lock);
1947 	alloced = true;
1948 
1949 	if (PageTransHuge(page) &&
1950 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1951 			hindex + HPAGE_PMD_NR - 1) {
1952 		/*
1953 		 * Part of the huge page is beyond i_size: subject
1954 		 * to shrink under memory pressure.
1955 		 */
1956 		spin_lock(&sbinfo->shrinklist_lock);
1957 		/*
1958 		 * _careful to defend against unlocked access to
1959 		 * ->shrink_list in shmem_unused_huge_shrink()
1960 		 */
1961 		if (list_empty_careful(&info->shrinklist)) {
1962 			list_add_tail(&info->shrinklist,
1963 				      &sbinfo->shrinklist);
1964 			sbinfo->shrinklist_len++;
1965 		}
1966 		spin_unlock(&sbinfo->shrinklist_lock);
1967 	}
1968 
1969 	/*
1970 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1971 	 */
1972 	if (sgp == SGP_FALLOC)
1973 		sgp = SGP_WRITE;
1974 clear:
1975 	/*
1976 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1977 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1978 	 * it now, lest undo on failure cancel our earlier guarantee.
1979 	 */
1980 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1981 		int i;
1982 
1983 		for (i = 0; i < compound_nr(page); i++) {
1984 			clear_highpage(page + i);
1985 			flush_dcache_page(page + i);
1986 		}
1987 		SetPageUptodate(page);
1988 	}
1989 
1990 	/* Perhaps the file has been truncated since we checked */
1991 	if (sgp <= SGP_CACHE &&
1992 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1993 		if (alloced) {
1994 			ClearPageDirty(page);
1995 			delete_from_page_cache(page);
1996 			spin_lock_irq(&info->lock);
1997 			shmem_recalc_inode(inode);
1998 			spin_unlock_irq(&info->lock);
1999 		}
2000 		error = -EINVAL;
2001 		goto unlock;
2002 	}
2003 out:
2004 	*pagep = page + index - hindex;
2005 	return 0;
2006 
2007 	/*
2008 	 * Error recovery.
2009 	 */
2010 unacct:
2011 	shmem_inode_unacct_blocks(inode, compound_nr(page));
2012 
2013 	if (PageTransHuge(page)) {
2014 		unlock_page(page);
2015 		put_page(page);
2016 		goto alloc_nohuge;
2017 	}
2018 unlock:
2019 	if (page) {
2020 		unlock_page(page);
2021 		put_page(page);
2022 	}
2023 	if (error == -ENOSPC && !once++) {
2024 		spin_lock_irq(&info->lock);
2025 		shmem_recalc_inode(inode);
2026 		spin_unlock_irq(&info->lock);
2027 		goto repeat;
2028 	}
2029 	if (error == -EEXIST)
2030 		goto repeat;
2031 	return error;
2032 }
2033 
2034 /*
2035  * This is like autoremove_wake_function, but it removes the wait queue
2036  * entry unconditionally - even if something else had already woken the
2037  * target.
2038  */
2039 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2040 {
2041 	int ret = default_wake_function(wait, mode, sync, key);
2042 	list_del_init(&wait->entry);
2043 	return ret;
2044 }
2045 
2046 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2047 {
2048 	struct vm_area_struct *vma = vmf->vma;
2049 	struct inode *inode = file_inode(vma->vm_file);
2050 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2051 	int err;
2052 	vm_fault_t ret = VM_FAULT_LOCKED;
2053 
2054 	/*
2055 	 * Trinity finds that probing a hole which tmpfs is punching can
2056 	 * prevent the hole-punch from ever completing: which in turn
2057 	 * locks writers out with its hold on i_rwsem.  So refrain from
2058 	 * faulting pages into the hole while it's being punched.  Although
2059 	 * shmem_undo_range() does remove the additions, it may be unable to
2060 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2061 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2062 	 *
2063 	 * It does not matter if we sometimes reach this check just before the
2064 	 * hole-punch begins, so that one fault then races with the punch:
2065 	 * we just need to make racing faults a rare case.
2066 	 *
2067 	 * The implementation below would be much simpler if we just used a
2068 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2069 	 * and bloating every shmem inode for this unlikely case would be sad.
2070 	 */
2071 	if (unlikely(inode->i_private)) {
2072 		struct shmem_falloc *shmem_falloc;
2073 
2074 		spin_lock(&inode->i_lock);
2075 		shmem_falloc = inode->i_private;
2076 		if (shmem_falloc &&
2077 		    shmem_falloc->waitq &&
2078 		    vmf->pgoff >= shmem_falloc->start &&
2079 		    vmf->pgoff < shmem_falloc->next) {
2080 			struct file *fpin;
2081 			wait_queue_head_t *shmem_falloc_waitq;
2082 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2083 
2084 			ret = VM_FAULT_NOPAGE;
2085 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2086 			if (fpin)
2087 				ret = VM_FAULT_RETRY;
2088 
2089 			shmem_falloc_waitq = shmem_falloc->waitq;
2090 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2091 					TASK_UNINTERRUPTIBLE);
2092 			spin_unlock(&inode->i_lock);
2093 			schedule();
2094 
2095 			/*
2096 			 * shmem_falloc_waitq points into the shmem_fallocate()
2097 			 * stack of the hole-punching task: shmem_falloc_waitq
2098 			 * is usually invalid by the time we reach here, but
2099 			 * finish_wait() does not dereference it in that case;
2100 			 * though i_lock needed lest racing with wake_up_all().
2101 			 */
2102 			spin_lock(&inode->i_lock);
2103 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2104 			spin_unlock(&inode->i_lock);
2105 
2106 			if (fpin)
2107 				fput(fpin);
2108 			return ret;
2109 		}
2110 		spin_unlock(&inode->i_lock);
2111 	}
2112 
2113 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2114 				  gfp, vma, vmf, &ret);
2115 	if (err)
2116 		return vmf_error(err);
2117 	return ret;
2118 }
2119 
2120 unsigned long shmem_get_unmapped_area(struct file *file,
2121 				      unsigned long uaddr, unsigned long len,
2122 				      unsigned long pgoff, unsigned long flags)
2123 {
2124 	unsigned long (*get_area)(struct file *,
2125 		unsigned long, unsigned long, unsigned long, unsigned long);
2126 	unsigned long addr;
2127 	unsigned long offset;
2128 	unsigned long inflated_len;
2129 	unsigned long inflated_addr;
2130 	unsigned long inflated_offset;
2131 
2132 	if (len > TASK_SIZE)
2133 		return -ENOMEM;
2134 
2135 	get_area = current->mm->get_unmapped_area;
2136 	addr = get_area(file, uaddr, len, pgoff, flags);
2137 
2138 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2139 		return addr;
2140 	if (IS_ERR_VALUE(addr))
2141 		return addr;
2142 	if (addr & ~PAGE_MASK)
2143 		return addr;
2144 	if (addr > TASK_SIZE - len)
2145 		return addr;
2146 
2147 	if (shmem_huge == SHMEM_HUGE_DENY)
2148 		return addr;
2149 	if (len < HPAGE_PMD_SIZE)
2150 		return addr;
2151 	if (flags & MAP_FIXED)
2152 		return addr;
2153 	/*
2154 	 * Our priority is to support MAP_SHARED mapped hugely;
2155 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2156 	 * But if caller specified an address hint and we allocated area there
2157 	 * successfully, respect that as before.
2158 	 */
2159 	if (uaddr == addr)
2160 		return addr;
2161 
2162 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2163 		struct super_block *sb;
2164 
2165 		if (file) {
2166 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2167 			sb = file_inode(file)->i_sb;
2168 		} else {
2169 			/*
2170 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2171 			 * for "/dev/zero", to create a shared anonymous object.
2172 			 */
2173 			if (IS_ERR(shm_mnt))
2174 				return addr;
2175 			sb = shm_mnt->mnt_sb;
2176 		}
2177 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2178 			return addr;
2179 	}
2180 
2181 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2182 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2183 		return addr;
2184 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2185 		return addr;
2186 
2187 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2188 	if (inflated_len > TASK_SIZE)
2189 		return addr;
2190 	if (inflated_len < len)
2191 		return addr;
2192 
2193 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2194 	if (IS_ERR_VALUE(inflated_addr))
2195 		return addr;
2196 	if (inflated_addr & ~PAGE_MASK)
2197 		return addr;
2198 
2199 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2200 	inflated_addr += offset - inflated_offset;
2201 	if (inflated_offset > offset)
2202 		inflated_addr += HPAGE_PMD_SIZE;
2203 
2204 	if (inflated_addr > TASK_SIZE - len)
2205 		return addr;
2206 	return inflated_addr;
2207 }
2208 
2209 #ifdef CONFIG_NUMA
2210 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2211 {
2212 	struct inode *inode = file_inode(vma->vm_file);
2213 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2214 }
2215 
2216 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2217 					  unsigned long addr)
2218 {
2219 	struct inode *inode = file_inode(vma->vm_file);
2220 	pgoff_t index;
2221 
2222 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2223 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2224 }
2225 #endif
2226 
2227 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2228 {
2229 	struct inode *inode = file_inode(file);
2230 	struct shmem_inode_info *info = SHMEM_I(inode);
2231 	int retval = -ENOMEM;
2232 
2233 	/*
2234 	 * What serializes the accesses to info->flags?
2235 	 * ipc_lock_object() when called from shmctl_do_lock(),
2236 	 * no serialization needed when called from shm_destroy().
2237 	 */
2238 	if (lock && !(info->flags & VM_LOCKED)) {
2239 		if (!user_shm_lock(inode->i_size, ucounts))
2240 			goto out_nomem;
2241 		info->flags |= VM_LOCKED;
2242 		mapping_set_unevictable(file->f_mapping);
2243 	}
2244 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2245 		user_shm_unlock(inode->i_size, ucounts);
2246 		info->flags &= ~VM_LOCKED;
2247 		mapping_clear_unevictable(file->f_mapping);
2248 	}
2249 	retval = 0;
2250 
2251 out_nomem:
2252 	return retval;
2253 }
2254 
2255 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2256 {
2257 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2258 	int ret;
2259 
2260 	ret = seal_check_future_write(info->seals, vma);
2261 	if (ret)
2262 		return ret;
2263 
2264 	/* arm64 - allow memory tagging on RAM-based files */
2265 	vma->vm_flags |= VM_MTE_ALLOWED;
2266 
2267 	file_accessed(file);
2268 	vma->vm_ops = &shmem_vm_ops;
2269 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2270 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2271 			(vma->vm_end & HPAGE_PMD_MASK)) {
2272 		khugepaged_enter(vma, vma->vm_flags);
2273 	}
2274 	return 0;
2275 }
2276 
2277 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2278 				     umode_t mode, dev_t dev, unsigned long flags)
2279 {
2280 	struct inode *inode;
2281 	struct shmem_inode_info *info;
2282 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2283 	ino_t ino;
2284 
2285 	if (shmem_reserve_inode(sb, &ino))
2286 		return NULL;
2287 
2288 	inode = new_inode(sb);
2289 	if (inode) {
2290 		inode->i_ino = ino;
2291 		inode_init_owner(&init_user_ns, inode, dir, mode);
2292 		inode->i_blocks = 0;
2293 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2294 		inode->i_generation = prandom_u32();
2295 		info = SHMEM_I(inode);
2296 		memset(info, 0, (char *)inode - (char *)info);
2297 		spin_lock_init(&info->lock);
2298 		atomic_set(&info->stop_eviction, 0);
2299 		info->seals = F_SEAL_SEAL;
2300 		info->flags = flags & VM_NORESERVE;
2301 		INIT_LIST_HEAD(&info->shrinklist);
2302 		INIT_LIST_HEAD(&info->swaplist);
2303 		simple_xattrs_init(&info->xattrs);
2304 		cache_no_acl(inode);
2305 
2306 		switch (mode & S_IFMT) {
2307 		default:
2308 			inode->i_op = &shmem_special_inode_operations;
2309 			init_special_inode(inode, mode, dev);
2310 			break;
2311 		case S_IFREG:
2312 			inode->i_mapping->a_ops = &shmem_aops;
2313 			inode->i_op = &shmem_inode_operations;
2314 			inode->i_fop = &shmem_file_operations;
2315 			mpol_shared_policy_init(&info->policy,
2316 						 shmem_get_sbmpol(sbinfo));
2317 			break;
2318 		case S_IFDIR:
2319 			inc_nlink(inode);
2320 			/* Some things misbehave if size == 0 on a directory */
2321 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2322 			inode->i_op = &shmem_dir_inode_operations;
2323 			inode->i_fop = &simple_dir_operations;
2324 			break;
2325 		case S_IFLNK:
2326 			/*
2327 			 * Must not load anything in the rbtree,
2328 			 * mpol_free_shared_policy will not be called.
2329 			 */
2330 			mpol_shared_policy_init(&info->policy, NULL);
2331 			break;
2332 		}
2333 
2334 		lockdep_annotate_inode_mutex_key(inode);
2335 	} else
2336 		shmem_free_inode(sb);
2337 	return inode;
2338 }
2339 
2340 #ifdef CONFIG_USERFAULTFD
2341 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2342 			   pmd_t *dst_pmd,
2343 			   struct vm_area_struct *dst_vma,
2344 			   unsigned long dst_addr,
2345 			   unsigned long src_addr,
2346 			   bool zeropage,
2347 			   struct page **pagep)
2348 {
2349 	struct inode *inode = file_inode(dst_vma->vm_file);
2350 	struct shmem_inode_info *info = SHMEM_I(inode);
2351 	struct address_space *mapping = inode->i_mapping;
2352 	gfp_t gfp = mapping_gfp_mask(mapping);
2353 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2354 	void *page_kaddr;
2355 	struct page *page;
2356 	int ret;
2357 	pgoff_t max_off;
2358 
2359 	if (!shmem_inode_acct_block(inode, 1)) {
2360 		/*
2361 		 * We may have got a page, returned -ENOENT triggering a retry,
2362 		 * and now we find ourselves with -ENOMEM. Release the page, to
2363 		 * avoid a BUG_ON in our caller.
2364 		 */
2365 		if (unlikely(*pagep)) {
2366 			put_page(*pagep);
2367 			*pagep = NULL;
2368 		}
2369 		return -ENOMEM;
2370 	}
2371 
2372 	if (!*pagep) {
2373 		ret = -ENOMEM;
2374 		page = shmem_alloc_page(gfp, info, pgoff);
2375 		if (!page)
2376 			goto out_unacct_blocks;
2377 
2378 		if (!zeropage) {	/* COPY */
2379 			page_kaddr = kmap_atomic(page);
2380 			ret = copy_from_user(page_kaddr,
2381 					     (const void __user *)src_addr,
2382 					     PAGE_SIZE);
2383 			kunmap_atomic(page_kaddr);
2384 
2385 			/* fallback to copy_from_user outside mmap_lock */
2386 			if (unlikely(ret)) {
2387 				*pagep = page;
2388 				ret = -ENOENT;
2389 				/* don't free the page */
2390 				goto out_unacct_blocks;
2391 			}
2392 		} else {		/* ZEROPAGE */
2393 			clear_highpage(page);
2394 		}
2395 	} else {
2396 		page = *pagep;
2397 		*pagep = NULL;
2398 	}
2399 
2400 	VM_BUG_ON(PageLocked(page));
2401 	VM_BUG_ON(PageSwapBacked(page));
2402 	__SetPageLocked(page);
2403 	__SetPageSwapBacked(page);
2404 	__SetPageUptodate(page);
2405 
2406 	ret = -EFAULT;
2407 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2408 	if (unlikely(pgoff >= max_off))
2409 		goto out_release;
2410 
2411 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2412 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2413 	if (ret)
2414 		goto out_release;
2415 
2416 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2417 				       page, true, false);
2418 	if (ret)
2419 		goto out_delete_from_cache;
2420 
2421 	spin_lock_irq(&info->lock);
2422 	info->alloced++;
2423 	inode->i_blocks += BLOCKS_PER_PAGE;
2424 	shmem_recalc_inode(inode);
2425 	spin_unlock_irq(&info->lock);
2426 
2427 	SetPageDirty(page);
2428 	unlock_page(page);
2429 	return 0;
2430 out_delete_from_cache:
2431 	delete_from_page_cache(page);
2432 out_release:
2433 	unlock_page(page);
2434 	put_page(page);
2435 out_unacct_blocks:
2436 	shmem_inode_unacct_blocks(inode, 1);
2437 	return ret;
2438 }
2439 #endif /* CONFIG_USERFAULTFD */
2440 
2441 #ifdef CONFIG_TMPFS
2442 static const struct inode_operations shmem_symlink_inode_operations;
2443 static const struct inode_operations shmem_short_symlink_operations;
2444 
2445 #ifdef CONFIG_TMPFS_XATTR
2446 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2447 #else
2448 #define shmem_initxattrs NULL
2449 #endif
2450 
2451 static int
2452 shmem_write_begin(struct file *file, struct address_space *mapping,
2453 			loff_t pos, unsigned len, unsigned flags,
2454 			struct page **pagep, void **fsdata)
2455 {
2456 	struct inode *inode = mapping->host;
2457 	struct shmem_inode_info *info = SHMEM_I(inode);
2458 	pgoff_t index = pos >> PAGE_SHIFT;
2459 
2460 	/* i_rwsem is held by caller */
2461 	if (unlikely(info->seals & (F_SEAL_GROW |
2462 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2463 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2464 			return -EPERM;
2465 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2466 			return -EPERM;
2467 	}
2468 
2469 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2470 }
2471 
2472 static int
2473 shmem_write_end(struct file *file, struct address_space *mapping,
2474 			loff_t pos, unsigned len, unsigned copied,
2475 			struct page *page, void *fsdata)
2476 {
2477 	struct inode *inode = mapping->host;
2478 
2479 	if (pos + copied > inode->i_size)
2480 		i_size_write(inode, pos + copied);
2481 
2482 	if (!PageUptodate(page)) {
2483 		struct page *head = compound_head(page);
2484 		if (PageTransCompound(page)) {
2485 			int i;
2486 
2487 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2488 				if (head + i == page)
2489 					continue;
2490 				clear_highpage(head + i);
2491 				flush_dcache_page(head + i);
2492 			}
2493 		}
2494 		if (copied < PAGE_SIZE) {
2495 			unsigned from = pos & (PAGE_SIZE - 1);
2496 			zero_user_segments(page, 0, from,
2497 					from + copied, PAGE_SIZE);
2498 		}
2499 		SetPageUptodate(head);
2500 	}
2501 	set_page_dirty(page);
2502 	unlock_page(page);
2503 	put_page(page);
2504 
2505 	return copied;
2506 }
2507 
2508 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2509 {
2510 	struct file *file = iocb->ki_filp;
2511 	struct inode *inode = file_inode(file);
2512 	struct address_space *mapping = inode->i_mapping;
2513 	pgoff_t index;
2514 	unsigned long offset;
2515 	enum sgp_type sgp = SGP_READ;
2516 	int error = 0;
2517 	ssize_t retval = 0;
2518 	loff_t *ppos = &iocb->ki_pos;
2519 
2520 	/*
2521 	 * Might this read be for a stacking filesystem?  Then when reading
2522 	 * holes of a sparse file, we actually need to allocate those pages,
2523 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2524 	 */
2525 	if (!iter_is_iovec(to))
2526 		sgp = SGP_CACHE;
2527 
2528 	index = *ppos >> PAGE_SHIFT;
2529 	offset = *ppos & ~PAGE_MASK;
2530 
2531 	for (;;) {
2532 		struct page *page = NULL;
2533 		pgoff_t end_index;
2534 		unsigned long nr, ret;
2535 		loff_t i_size = i_size_read(inode);
2536 
2537 		end_index = i_size >> PAGE_SHIFT;
2538 		if (index > end_index)
2539 			break;
2540 		if (index == end_index) {
2541 			nr = i_size & ~PAGE_MASK;
2542 			if (nr <= offset)
2543 				break;
2544 		}
2545 
2546 		error = shmem_getpage(inode, index, &page, sgp);
2547 		if (error) {
2548 			if (error == -EINVAL)
2549 				error = 0;
2550 			break;
2551 		}
2552 		if (page) {
2553 			if (sgp == SGP_CACHE)
2554 				set_page_dirty(page);
2555 			unlock_page(page);
2556 		}
2557 
2558 		/*
2559 		 * We must evaluate after, since reads (unlike writes)
2560 		 * are called without i_rwsem protection against truncate
2561 		 */
2562 		nr = PAGE_SIZE;
2563 		i_size = i_size_read(inode);
2564 		end_index = i_size >> PAGE_SHIFT;
2565 		if (index == end_index) {
2566 			nr = i_size & ~PAGE_MASK;
2567 			if (nr <= offset) {
2568 				if (page)
2569 					put_page(page);
2570 				break;
2571 			}
2572 		}
2573 		nr -= offset;
2574 
2575 		if (page) {
2576 			/*
2577 			 * If users can be writing to this page using arbitrary
2578 			 * virtual addresses, take care about potential aliasing
2579 			 * before reading the page on the kernel side.
2580 			 */
2581 			if (mapping_writably_mapped(mapping))
2582 				flush_dcache_page(page);
2583 			/*
2584 			 * Mark the page accessed if we read the beginning.
2585 			 */
2586 			if (!offset)
2587 				mark_page_accessed(page);
2588 		} else {
2589 			page = ZERO_PAGE(0);
2590 			get_page(page);
2591 		}
2592 
2593 		/*
2594 		 * Ok, we have the page, and it's up-to-date, so
2595 		 * now we can copy it to user space...
2596 		 */
2597 		ret = copy_page_to_iter(page, offset, nr, to);
2598 		retval += ret;
2599 		offset += ret;
2600 		index += offset >> PAGE_SHIFT;
2601 		offset &= ~PAGE_MASK;
2602 
2603 		put_page(page);
2604 		if (!iov_iter_count(to))
2605 			break;
2606 		if (ret < nr) {
2607 			error = -EFAULT;
2608 			break;
2609 		}
2610 		cond_resched();
2611 	}
2612 
2613 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2614 	file_accessed(file);
2615 	return retval ? retval : error;
2616 }
2617 
2618 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2619 {
2620 	struct address_space *mapping = file->f_mapping;
2621 	struct inode *inode = mapping->host;
2622 
2623 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2624 		return generic_file_llseek_size(file, offset, whence,
2625 					MAX_LFS_FILESIZE, i_size_read(inode));
2626 	if (offset < 0)
2627 		return -ENXIO;
2628 
2629 	inode_lock(inode);
2630 	/* We're holding i_rwsem so we can access i_size directly */
2631 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2632 	if (offset >= 0)
2633 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2634 	inode_unlock(inode);
2635 	return offset;
2636 }
2637 
2638 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639 							 loff_t len)
2640 {
2641 	struct inode *inode = file_inode(file);
2642 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643 	struct shmem_inode_info *info = SHMEM_I(inode);
2644 	struct shmem_falloc shmem_falloc;
2645 	pgoff_t start, index, end, undo_fallocend;
2646 	int error;
2647 
2648 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649 		return -EOPNOTSUPP;
2650 
2651 	inode_lock(inode);
2652 
2653 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2654 		struct address_space *mapping = file->f_mapping;
2655 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658 
2659 		/* protected by i_rwsem */
2660 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2661 			error = -EPERM;
2662 			goto out;
2663 		}
2664 
2665 		shmem_falloc.waitq = &shmem_falloc_waitq;
2666 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2667 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668 		spin_lock(&inode->i_lock);
2669 		inode->i_private = &shmem_falloc;
2670 		spin_unlock(&inode->i_lock);
2671 
2672 		if ((u64)unmap_end > (u64)unmap_start)
2673 			unmap_mapping_range(mapping, unmap_start,
2674 					    1 + unmap_end - unmap_start, 0);
2675 		shmem_truncate_range(inode, offset, offset + len - 1);
2676 		/* No need to unmap again: hole-punching leaves COWed pages */
2677 
2678 		spin_lock(&inode->i_lock);
2679 		inode->i_private = NULL;
2680 		wake_up_all(&shmem_falloc_waitq);
2681 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2682 		spin_unlock(&inode->i_lock);
2683 		error = 0;
2684 		goto out;
2685 	}
2686 
2687 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688 	error = inode_newsize_ok(inode, offset + len);
2689 	if (error)
2690 		goto out;
2691 
2692 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693 		error = -EPERM;
2694 		goto out;
2695 	}
2696 
2697 	start = offset >> PAGE_SHIFT;
2698 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2700 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701 		error = -ENOSPC;
2702 		goto out;
2703 	}
2704 
2705 	shmem_falloc.waitq = NULL;
2706 	shmem_falloc.start = start;
2707 	shmem_falloc.next  = start;
2708 	shmem_falloc.nr_falloced = 0;
2709 	shmem_falloc.nr_unswapped = 0;
2710 	spin_lock(&inode->i_lock);
2711 	inode->i_private = &shmem_falloc;
2712 	spin_unlock(&inode->i_lock);
2713 
2714 	/*
2715 	 * info->fallocend is only relevant when huge pages might be
2716 	 * involved: to prevent split_huge_page() freeing fallocated
2717 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2718 	 */
2719 	undo_fallocend = info->fallocend;
2720 	if (info->fallocend < end)
2721 		info->fallocend = end;
2722 
2723 	for (index = start; index < end; ) {
2724 		struct page *page;
2725 
2726 		/*
2727 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2728 		 * been interrupted because we are using up too much memory.
2729 		 */
2730 		if (signal_pending(current))
2731 			error = -EINTR;
2732 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2733 			error = -ENOMEM;
2734 		else
2735 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2736 		if (error) {
2737 			info->fallocend = undo_fallocend;
2738 			/* Remove the !PageUptodate pages we added */
2739 			if (index > start) {
2740 				shmem_undo_range(inode,
2741 				    (loff_t)start << PAGE_SHIFT,
2742 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2743 			}
2744 			goto undone;
2745 		}
2746 
2747 		index++;
2748 		/*
2749 		 * Here is a more important optimization than it appears:
2750 		 * a second SGP_FALLOC on the same huge page will clear it,
2751 		 * making it PageUptodate and un-undoable if we fail later.
2752 		 */
2753 		if (PageTransCompound(page)) {
2754 			index = round_up(index, HPAGE_PMD_NR);
2755 			/* Beware 32-bit wraparound */
2756 			if (!index)
2757 				index--;
2758 		}
2759 
2760 		/*
2761 		 * Inform shmem_writepage() how far we have reached.
2762 		 * No need for lock or barrier: we have the page lock.
2763 		 */
2764 		if (!PageUptodate(page))
2765 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2766 		shmem_falloc.next = index;
2767 
2768 		/*
2769 		 * If !PageUptodate, leave it that way so that freeable pages
2770 		 * can be recognized if we need to rollback on error later.
2771 		 * But set_page_dirty so that memory pressure will swap rather
2772 		 * than free the pages we are allocating (and SGP_CACHE pages
2773 		 * might still be clean: we now need to mark those dirty too).
2774 		 */
2775 		set_page_dirty(page);
2776 		unlock_page(page);
2777 		put_page(page);
2778 		cond_resched();
2779 	}
2780 
2781 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2782 		i_size_write(inode, offset + len);
2783 	inode->i_ctime = current_time(inode);
2784 undone:
2785 	spin_lock(&inode->i_lock);
2786 	inode->i_private = NULL;
2787 	spin_unlock(&inode->i_lock);
2788 out:
2789 	inode_unlock(inode);
2790 	return error;
2791 }
2792 
2793 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2794 {
2795 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2796 
2797 	buf->f_type = TMPFS_MAGIC;
2798 	buf->f_bsize = PAGE_SIZE;
2799 	buf->f_namelen = NAME_MAX;
2800 	if (sbinfo->max_blocks) {
2801 		buf->f_blocks = sbinfo->max_blocks;
2802 		buf->f_bavail =
2803 		buf->f_bfree  = sbinfo->max_blocks -
2804 				percpu_counter_sum(&sbinfo->used_blocks);
2805 	}
2806 	if (sbinfo->max_inodes) {
2807 		buf->f_files = sbinfo->max_inodes;
2808 		buf->f_ffree = sbinfo->free_inodes;
2809 	}
2810 	/* else leave those fields 0 like simple_statfs */
2811 
2812 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2813 
2814 	return 0;
2815 }
2816 
2817 /*
2818  * File creation. Allocate an inode, and we're done..
2819  */
2820 static int
2821 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2822 	    struct dentry *dentry, umode_t mode, dev_t dev)
2823 {
2824 	struct inode *inode;
2825 	int error = -ENOSPC;
2826 
2827 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2828 	if (inode) {
2829 		error = simple_acl_create(dir, inode);
2830 		if (error)
2831 			goto out_iput;
2832 		error = security_inode_init_security(inode, dir,
2833 						     &dentry->d_name,
2834 						     shmem_initxattrs, NULL);
2835 		if (error && error != -EOPNOTSUPP)
2836 			goto out_iput;
2837 
2838 		error = 0;
2839 		dir->i_size += BOGO_DIRENT_SIZE;
2840 		dir->i_ctime = dir->i_mtime = current_time(dir);
2841 		d_instantiate(dentry, inode);
2842 		dget(dentry); /* Extra count - pin the dentry in core */
2843 	}
2844 	return error;
2845 out_iput:
2846 	iput(inode);
2847 	return error;
2848 }
2849 
2850 static int
2851 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2852 	      struct dentry *dentry, umode_t mode)
2853 {
2854 	struct inode *inode;
2855 	int error = -ENOSPC;
2856 
2857 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2858 	if (inode) {
2859 		error = security_inode_init_security(inode, dir,
2860 						     NULL,
2861 						     shmem_initxattrs, NULL);
2862 		if (error && error != -EOPNOTSUPP)
2863 			goto out_iput;
2864 		error = simple_acl_create(dir, inode);
2865 		if (error)
2866 			goto out_iput;
2867 		d_tmpfile(dentry, inode);
2868 	}
2869 	return error;
2870 out_iput:
2871 	iput(inode);
2872 	return error;
2873 }
2874 
2875 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2876 		       struct dentry *dentry, umode_t mode)
2877 {
2878 	int error;
2879 
2880 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2881 				 mode | S_IFDIR, 0)))
2882 		return error;
2883 	inc_nlink(dir);
2884 	return 0;
2885 }
2886 
2887 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2888 			struct dentry *dentry, umode_t mode, bool excl)
2889 {
2890 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2891 }
2892 
2893 /*
2894  * Link a file..
2895  */
2896 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2897 {
2898 	struct inode *inode = d_inode(old_dentry);
2899 	int ret = 0;
2900 
2901 	/*
2902 	 * No ordinary (disk based) filesystem counts links as inodes;
2903 	 * but each new link needs a new dentry, pinning lowmem, and
2904 	 * tmpfs dentries cannot be pruned until they are unlinked.
2905 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2906 	 * first link must skip that, to get the accounting right.
2907 	 */
2908 	if (inode->i_nlink) {
2909 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2910 		if (ret)
2911 			goto out;
2912 	}
2913 
2914 	dir->i_size += BOGO_DIRENT_SIZE;
2915 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2916 	inc_nlink(inode);
2917 	ihold(inode);	/* New dentry reference */
2918 	dget(dentry);		/* Extra pinning count for the created dentry */
2919 	d_instantiate(dentry, inode);
2920 out:
2921 	return ret;
2922 }
2923 
2924 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2925 {
2926 	struct inode *inode = d_inode(dentry);
2927 
2928 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2929 		shmem_free_inode(inode->i_sb);
2930 
2931 	dir->i_size -= BOGO_DIRENT_SIZE;
2932 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2933 	drop_nlink(inode);
2934 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2935 	return 0;
2936 }
2937 
2938 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2939 {
2940 	if (!simple_empty(dentry))
2941 		return -ENOTEMPTY;
2942 
2943 	drop_nlink(d_inode(dentry));
2944 	drop_nlink(dir);
2945 	return shmem_unlink(dir, dentry);
2946 }
2947 
2948 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2949 {
2950 	bool old_is_dir = d_is_dir(old_dentry);
2951 	bool new_is_dir = d_is_dir(new_dentry);
2952 
2953 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2954 		if (old_is_dir) {
2955 			drop_nlink(old_dir);
2956 			inc_nlink(new_dir);
2957 		} else {
2958 			drop_nlink(new_dir);
2959 			inc_nlink(old_dir);
2960 		}
2961 	}
2962 	old_dir->i_ctime = old_dir->i_mtime =
2963 	new_dir->i_ctime = new_dir->i_mtime =
2964 	d_inode(old_dentry)->i_ctime =
2965 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2966 
2967 	return 0;
2968 }
2969 
2970 static int shmem_whiteout(struct user_namespace *mnt_userns,
2971 			  struct inode *old_dir, struct dentry *old_dentry)
2972 {
2973 	struct dentry *whiteout;
2974 	int error;
2975 
2976 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2977 	if (!whiteout)
2978 		return -ENOMEM;
2979 
2980 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2981 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2982 	dput(whiteout);
2983 	if (error)
2984 		return error;
2985 
2986 	/*
2987 	 * Cheat and hash the whiteout while the old dentry is still in
2988 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2989 	 *
2990 	 * d_lookup() will consistently find one of them at this point,
2991 	 * not sure which one, but that isn't even important.
2992 	 */
2993 	d_rehash(whiteout);
2994 	return 0;
2995 }
2996 
2997 /*
2998  * The VFS layer already does all the dentry stuff for rename,
2999  * we just have to decrement the usage count for the target if
3000  * it exists so that the VFS layer correctly free's it when it
3001  * gets overwritten.
3002  */
3003 static int shmem_rename2(struct user_namespace *mnt_userns,
3004 			 struct inode *old_dir, struct dentry *old_dentry,
3005 			 struct inode *new_dir, struct dentry *new_dentry,
3006 			 unsigned int flags)
3007 {
3008 	struct inode *inode = d_inode(old_dentry);
3009 	int they_are_dirs = S_ISDIR(inode->i_mode);
3010 
3011 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3012 		return -EINVAL;
3013 
3014 	if (flags & RENAME_EXCHANGE)
3015 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3016 
3017 	if (!simple_empty(new_dentry))
3018 		return -ENOTEMPTY;
3019 
3020 	if (flags & RENAME_WHITEOUT) {
3021 		int error;
3022 
3023 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3024 		if (error)
3025 			return error;
3026 	}
3027 
3028 	if (d_really_is_positive(new_dentry)) {
3029 		(void) shmem_unlink(new_dir, new_dentry);
3030 		if (they_are_dirs) {
3031 			drop_nlink(d_inode(new_dentry));
3032 			drop_nlink(old_dir);
3033 		}
3034 	} else if (they_are_dirs) {
3035 		drop_nlink(old_dir);
3036 		inc_nlink(new_dir);
3037 	}
3038 
3039 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3040 	new_dir->i_size += BOGO_DIRENT_SIZE;
3041 	old_dir->i_ctime = old_dir->i_mtime =
3042 	new_dir->i_ctime = new_dir->i_mtime =
3043 	inode->i_ctime = current_time(old_dir);
3044 	return 0;
3045 }
3046 
3047 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3048 			 struct dentry *dentry, const char *symname)
3049 {
3050 	int error;
3051 	int len;
3052 	struct inode *inode;
3053 	struct page *page;
3054 
3055 	len = strlen(symname) + 1;
3056 	if (len > PAGE_SIZE)
3057 		return -ENAMETOOLONG;
3058 
3059 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3060 				VM_NORESERVE);
3061 	if (!inode)
3062 		return -ENOSPC;
3063 
3064 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3065 					     shmem_initxattrs, NULL);
3066 	if (error && error != -EOPNOTSUPP) {
3067 		iput(inode);
3068 		return error;
3069 	}
3070 
3071 	inode->i_size = len-1;
3072 	if (len <= SHORT_SYMLINK_LEN) {
3073 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3074 		if (!inode->i_link) {
3075 			iput(inode);
3076 			return -ENOMEM;
3077 		}
3078 		inode->i_op = &shmem_short_symlink_operations;
3079 	} else {
3080 		inode_nohighmem(inode);
3081 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3082 		if (error) {
3083 			iput(inode);
3084 			return error;
3085 		}
3086 		inode->i_mapping->a_ops = &shmem_aops;
3087 		inode->i_op = &shmem_symlink_inode_operations;
3088 		memcpy(page_address(page), symname, len);
3089 		SetPageUptodate(page);
3090 		set_page_dirty(page);
3091 		unlock_page(page);
3092 		put_page(page);
3093 	}
3094 	dir->i_size += BOGO_DIRENT_SIZE;
3095 	dir->i_ctime = dir->i_mtime = current_time(dir);
3096 	d_instantiate(dentry, inode);
3097 	dget(dentry);
3098 	return 0;
3099 }
3100 
3101 static void shmem_put_link(void *arg)
3102 {
3103 	mark_page_accessed(arg);
3104 	put_page(arg);
3105 }
3106 
3107 static const char *shmem_get_link(struct dentry *dentry,
3108 				  struct inode *inode,
3109 				  struct delayed_call *done)
3110 {
3111 	struct page *page = NULL;
3112 	int error;
3113 	if (!dentry) {
3114 		page = find_get_page(inode->i_mapping, 0);
3115 		if (!page)
3116 			return ERR_PTR(-ECHILD);
3117 		if (!PageUptodate(page)) {
3118 			put_page(page);
3119 			return ERR_PTR(-ECHILD);
3120 		}
3121 	} else {
3122 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3123 		if (error)
3124 			return ERR_PTR(error);
3125 		unlock_page(page);
3126 	}
3127 	set_delayed_call(done, shmem_put_link, page);
3128 	return page_address(page);
3129 }
3130 
3131 #ifdef CONFIG_TMPFS_XATTR
3132 /*
3133  * Superblocks without xattr inode operations may get some security.* xattr
3134  * support from the LSM "for free". As soon as we have any other xattrs
3135  * like ACLs, we also need to implement the security.* handlers at
3136  * filesystem level, though.
3137  */
3138 
3139 /*
3140  * Callback for security_inode_init_security() for acquiring xattrs.
3141  */
3142 static int shmem_initxattrs(struct inode *inode,
3143 			    const struct xattr *xattr_array,
3144 			    void *fs_info)
3145 {
3146 	struct shmem_inode_info *info = SHMEM_I(inode);
3147 	const struct xattr *xattr;
3148 	struct simple_xattr *new_xattr;
3149 	size_t len;
3150 
3151 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3152 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3153 		if (!new_xattr)
3154 			return -ENOMEM;
3155 
3156 		len = strlen(xattr->name) + 1;
3157 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3158 					  GFP_KERNEL);
3159 		if (!new_xattr->name) {
3160 			kvfree(new_xattr);
3161 			return -ENOMEM;
3162 		}
3163 
3164 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3165 		       XATTR_SECURITY_PREFIX_LEN);
3166 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3167 		       xattr->name, len);
3168 
3169 		simple_xattr_list_add(&info->xattrs, new_xattr);
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3176 				   struct dentry *unused, struct inode *inode,
3177 				   const char *name, void *buffer, size_t size)
3178 {
3179 	struct shmem_inode_info *info = SHMEM_I(inode);
3180 
3181 	name = xattr_full_name(handler, name);
3182 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3183 }
3184 
3185 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3186 				   struct user_namespace *mnt_userns,
3187 				   struct dentry *unused, struct inode *inode,
3188 				   const char *name, const void *value,
3189 				   size_t size, int flags)
3190 {
3191 	struct shmem_inode_info *info = SHMEM_I(inode);
3192 
3193 	name = xattr_full_name(handler, name);
3194 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3195 }
3196 
3197 static const struct xattr_handler shmem_security_xattr_handler = {
3198 	.prefix = XATTR_SECURITY_PREFIX,
3199 	.get = shmem_xattr_handler_get,
3200 	.set = shmem_xattr_handler_set,
3201 };
3202 
3203 static const struct xattr_handler shmem_trusted_xattr_handler = {
3204 	.prefix = XATTR_TRUSTED_PREFIX,
3205 	.get = shmem_xattr_handler_get,
3206 	.set = shmem_xattr_handler_set,
3207 };
3208 
3209 static const struct xattr_handler *shmem_xattr_handlers[] = {
3210 #ifdef CONFIG_TMPFS_POSIX_ACL
3211 	&posix_acl_access_xattr_handler,
3212 	&posix_acl_default_xattr_handler,
3213 #endif
3214 	&shmem_security_xattr_handler,
3215 	&shmem_trusted_xattr_handler,
3216 	NULL
3217 };
3218 
3219 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3220 {
3221 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3222 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3223 }
3224 #endif /* CONFIG_TMPFS_XATTR */
3225 
3226 static const struct inode_operations shmem_short_symlink_operations = {
3227 	.get_link	= simple_get_link,
3228 #ifdef CONFIG_TMPFS_XATTR
3229 	.listxattr	= shmem_listxattr,
3230 #endif
3231 };
3232 
3233 static const struct inode_operations shmem_symlink_inode_operations = {
3234 	.get_link	= shmem_get_link,
3235 #ifdef CONFIG_TMPFS_XATTR
3236 	.listxattr	= shmem_listxattr,
3237 #endif
3238 };
3239 
3240 static struct dentry *shmem_get_parent(struct dentry *child)
3241 {
3242 	return ERR_PTR(-ESTALE);
3243 }
3244 
3245 static int shmem_match(struct inode *ino, void *vfh)
3246 {
3247 	__u32 *fh = vfh;
3248 	__u64 inum = fh[2];
3249 	inum = (inum << 32) | fh[1];
3250 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3251 }
3252 
3253 /* Find any alias of inode, but prefer a hashed alias */
3254 static struct dentry *shmem_find_alias(struct inode *inode)
3255 {
3256 	struct dentry *alias = d_find_alias(inode);
3257 
3258 	return alias ?: d_find_any_alias(inode);
3259 }
3260 
3261 
3262 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3263 		struct fid *fid, int fh_len, int fh_type)
3264 {
3265 	struct inode *inode;
3266 	struct dentry *dentry = NULL;
3267 	u64 inum;
3268 
3269 	if (fh_len < 3)
3270 		return NULL;
3271 
3272 	inum = fid->raw[2];
3273 	inum = (inum << 32) | fid->raw[1];
3274 
3275 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3276 			shmem_match, fid->raw);
3277 	if (inode) {
3278 		dentry = shmem_find_alias(inode);
3279 		iput(inode);
3280 	}
3281 
3282 	return dentry;
3283 }
3284 
3285 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3286 				struct inode *parent)
3287 {
3288 	if (*len < 3) {
3289 		*len = 3;
3290 		return FILEID_INVALID;
3291 	}
3292 
3293 	if (inode_unhashed(inode)) {
3294 		/* Unfortunately insert_inode_hash is not idempotent,
3295 		 * so as we hash inodes here rather than at creation
3296 		 * time, we need a lock to ensure we only try
3297 		 * to do it once
3298 		 */
3299 		static DEFINE_SPINLOCK(lock);
3300 		spin_lock(&lock);
3301 		if (inode_unhashed(inode))
3302 			__insert_inode_hash(inode,
3303 					    inode->i_ino + inode->i_generation);
3304 		spin_unlock(&lock);
3305 	}
3306 
3307 	fh[0] = inode->i_generation;
3308 	fh[1] = inode->i_ino;
3309 	fh[2] = ((__u64)inode->i_ino) >> 32;
3310 
3311 	*len = 3;
3312 	return 1;
3313 }
3314 
3315 static const struct export_operations shmem_export_ops = {
3316 	.get_parent     = shmem_get_parent,
3317 	.encode_fh      = shmem_encode_fh,
3318 	.fh_to_dentry	= shmem_fh_to_dentry,
3319 };
3320 
3321 enum shmem_param {
3322 	Opt_gid,
3323 	Opt_huge,
3324 	Opt_mode,
3325 	Opt_mpol,
3326 	Opt_nr_blocks,
3327 	Opt_nr_inodes,
3328 	Opt_size,
3329 	Opt_uid,
3330 	Opt_inode32,
3331 	Opt_inode64,
3332 };
3333 
3334 static const struct constant_table shmem_param_enums_huge[] = {
3335 	{"never",	SHMEM_HUGE_NEVER },
3336 	{"always",	SHMEM_HUGE_ALWAYS },
3337 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3338 	{"advise",	SHMEM_HUGE_ADVISE },
3339 	{}
3340 };
3341 
3342 const struct fs_parameter_spec shmem_fs_parameters[] = {
3343 	fsparam_u32   ("gid",		Opt_gid),
3344 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3345 	fsparam_u32oct("mode",		Opt_mode),
3346 	fsparam_string("mpol",		Opt_mpol),
3347 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3348 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3349 	fsparam_string("size",		Opt_size),
3350 	fsparam_u32   ("uid",		Opt_uid),
3351 	fsparam_flag  ("inode32",	Opt_inode32),
3352 	fsparam_flag  ("inode64",	Opt_inode64),
3353 	{}
3354 };
3355 
3356 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3357 {
3358 	struct shmem_options *ctx = fc->fs_private;
3359 	struct fs_parse_result result;
3360 	unsigned long long size;
3361 	char *rest;
3362 	int opt;
3363 
3364 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3365 	if (opt < 0)
3366 		return opt;
3367 
3368 	switch (opt) {
3369 	case Opt_size:
3370 		size = memparse(param->string, &rest);
3371 		if (*rest == '%') {
3372 			size <<= PAGE_SHIFT;
3373 			size *= totalram_pages();
3374 			do_div(size, 100);
3375 			rest++;
3376 		}
3377 		if (*rest)
3378 			goto bad_value;
3379 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3380 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3381 		break;
3382 	case Opt_nr_blocks:
3383 		ctx->blocks = memparse(param->string, &rest);
3384 		if (*rest)
3385 			goto bad_value;
3386 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3387 		break;
3388 	case Opt_nr_inodes:
3389 		ctx->inodes = memparse(param->string, &rest);
3390 		if (*rest)
3391 			goto bad_value;
3392 		ctx->seen |= SHMEM_SEEN_INODES;
3393 		break;
3394 	case Opt_mode:
3395 		ctx->mode = result.uint_32 & 07777;
3396 		break;
3397 	case Opt_uid:
3398 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3399 		if (!uid_valid(ctx->uid))
3400 			goto bad_value;
3401 		break;
3402 	case Opt_gid:
3403 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3404 		if (!gid_valid(ctx->gid))
3405 			goto bad_value;
3406 		break;
3407 	case Opt_huge:
3408 		ctx->huge = result.uint_32;
3409 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3410 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3411 		      has_transparent_hugepage()))
3412 			goto unsupported_parameter;
3413 		ctx->seen |= SHMEM_SEEN_HUGE;
3414 		break;
3415 	case Opt_mpol:
3416 		if (IS_ENABLED(CONFIG_NUMA)) {
3417 			mpol_put(ctx->mpol);
3418 			ctx->mpol = NULL;
3419 			if (mpol_parse_str(param->string, &ctx->mpol))
3420 				goto bad_value;
3421 			break;
3422 		}
3423 		goto unsupported_parameter;
3424 	case Opt_inode32:
3425 		ctx->full_inums = false;
3426 		ctx->seen |= SHMEM_SEEN_INUMS;
3427 		break;
3428 	case Opt_inode64:
3429 		if (sizeof(ino_t) < 8) {
3430 			return invalfc(fc,
3431 				       "Cannot use inode64 with <64bit inums in kernel\n");
3432 		}
3433 		ctx->full_inums = true;
3434 		ctx->seen |= SHMEM_SEEN_INUMS;
3435 		break;
3436 	}
3437 	return 0;
3438 
3439 unsupported_parameter:
3440 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3441 bad_value:
3442 	return invalfc(fc, "Bad value for '%s'", param->key);
3443 }
3444 
3445 static int shmem_parse_options(struct fs_context *fc, void *data)
3446 {
3447 	char *options = data;
3448 
3449 	if (options) {
3450 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3451 		if (err)
3452 			return err;
3453 	}
3454 
3455 	while (options != NULL) {
3456 		char *this_char = options;
3457 		for (;;) {
3458 			/*
3459 			 * NUL-terminate this option: unfortunately,
3460 			 * mount options form a comma-separated list,
3461 			 * but mpol's nodelist may also contain commas.
3462 			 */
3463 			options = strchr(options, ',');
3464 			if (options == NULL)
3465 				break;
3466 			options++;
3467 			if (!isdigit(*options)) {
3468 				options[-1] = '\0';
3469 				break;
3470 			}
3471 		}
3472 		if (*this_char) {
3473 			char *value = strchr(this_char, '=');
3474 			size_t len = 0;
3475 			int err;
3476 
3477 			if (value) {
3478 				*value++ = '\0';
3479 				len = strlen(value);
3480 			}
3481 			err = vfs_parse_fs_string(fc, this_char, value, len);
3482 			if (err < 0)
3483 				return err;
3484 		}
3485 	}
3486 	return 0;
3487 }
3488 
3489 /*
3490  * Reconfigure a shmem filesystem.
3491  *
3492  * Note that we disallow change from limited->unlimited blocks/inodes while any
3493  * are in use; but we must separately disallow unlimited->limited, because in
3494  * that case we have no record of how much is already in use.
3495  */
3496 static int shmem_reconfigure(struct fs_context *fc)
3497 {
3498 	struct shmem_options *ctx = fc->fs_private;
3499 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3500 	unsigned long inodes;
3501 	struct mempolicy *mpol = NULL;
3502 	const char *err;
3503 
3504 	raw_spin_lock(&sbinfo->stat_lock);
3505 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3506 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3507 		if (!sbinfo->max_blocks) {
3508 			err = "Cannot retroactively limit size";
3509 			goto out;
3510 		}
3511 		if (percpu_counter_compare(&sbinfo->used_blocks,
3512 					   ctx->blocks) > 0) {
3513 			err = "Too small a size for current use";
3514 			goto out;
3515 		}
3516 	}
3517 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3518 		if (!sbinfo->max_inodes) {
3519 			err = "Cannot retroactively limit inodes";
3520 			goto out;
3521 		}
3522 		if (ctx->inodes < inodes) {
3523 			err = "Too few inodes for current use";
3524 			goto out;
3525 		}
3526 	}
3527 
3528 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3529 	    sbinfo->next_ino > UINT_MAX) {
3530 		err = "Current inum too high to switch to 32-bit inums";
3531 		goto out;
3532 	}
3533 
3534 	if (ctx->seen & SHMEM_SEEN_HUGE)
3535 		sbinfo->huge = ctx->huge;
3536 	if (ctx->seen & SHMEM_SEEN_INUMS)
3537 		sbinfo->full_inums = ctx->full_inums;
3538 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3539 		sbinfo->max_blocks  = ctx->blocks;
3540 	if (ctx->seen & SHMEM_SEEN_INODES) {
3541 		sbinfo->max_inodes  = ctx->inodes;
3542 		sbinfo->free_inodes = ctx->inodes - inodes;
3543 	}
3544 
3545 	/*
3546 	 * Preserve previous mempolicy unless mpol remount option was specified.
3547 	 */
3548 	if (ctx->mpol) {
3549 		mpol = sbinfo->mpol;
3550 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3551 		ctx->mpol = NULL;
3552 	}
3553 	raw_spin_unlock(&sbinfo->stat_lock);
3554 	mpol_put(mpol);
3555 	return 0;
3556 out:
3557 	raw_spin_unlock(&sbinfo->stat_lock);
3558 	return invalfc(fc, "%s", err);
3559 }
3560 
3561 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3562 {
3563 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3564 
3565 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3566 		seq_printf(seq, ",size=%luk",
3567 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3568 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3569 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3570 	if (sbinfo->mode != (0777 | S_ISVTX))
3571 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3572 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3573 		seq_printf(seq, ",uid=%u",
3574 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3575 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3576 		seq_printf(seq, ",gid=%u",
3577 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3578 
3579 	/*
3580 	 * Showing inode{64,32} might be useful even if it's the system default,
3581 	 * since then people don't have to resort to checking both here and
3582 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3583 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3584 	 *
3585 	 * We hide it when inode64 isn't the default and we are using 32-bit
3586 	 * inodes, since that probably just means the feature isn't even under
3587 	 * consideration.
3588 	 *
3589 	 * As such:
3590 	 *
3591 	 *                     +-----------------+-----------------+
3592 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3593 	 *  +------------------+-----------------+-----------------+
3594 	 *  | full_inums=true  | show            | show            |
3595 	 *  | full_inums=false | show            | hide            |
3596 	 *  +------------------+-----------------+-----------------+
3597 	 *
3598 	 */
3599 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3600 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3602 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3603 	if (sbinfo->huge)
3604 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3605 #endif
3606 	shmem_show_mpol(seq, sbinfo->mpol);
3607 	return 0;
3608 }
3609 
3610 #endif /* CONFIG_TMPFS */
3611 
3612 static void shmem_put_super(struct super_block *sb)
3613 {
3614 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3615 
3616 	free_percpu(sbinfo->ino_batch);
3617 	percpu_counter_destroy(&sbinfo->used_blocks);
3618 	mpol_put(sbinfo->mpol);
3619 	kfree(sbinfo);
3620 	sb->s_fs_info = NULL;
3621 }
3622 
3623 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3624 {
3625 	struct shmem_options *ctx = fc->fs_private;
3626 	struct inode *inode;
3627 	struct shmem_sb_info *sbinfo;
3628 
3629 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3630 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3631 				L1_CACHE_BYTES), GFP_KERNEL);
3632 	if (!sbinfo)
3633 		return -ENOMEM;
3634 
3635 	sb->s_fs_info = sbinfo;
3636 
3637 #ifdef CONFIG_TMPFS
3638 	/*
3639 	 * Per default we only allow half of the physical ram per
3640 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3641 	 * but the internal instance is left unlimited.
3642 	 */
3643 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3644 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3645 			ctx->blocks = shmem_default_max_blocks();
3646 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3647 			ctx->inodes = shmem_default_max_inodes();
3648 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3649 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3650 	} else {
3651 		sb->s_flags |= SB_NOUSER;
3652 	}
3653 	sb->s_export_op = &shmem_export_ops;
3654 	sb->s_flags |= SB_NOSEC;
3655 #else
3656 	sb->s_flags |= SB_NOUSER;
3657 #endif
3658 	sbinfo->max_blocks = ctx->blocks;
3659 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3660 	if (sb->s_flags & SB_KERNMOUNT) {
3661 		sbinfo->ino_batch = alloc_percpu(ino_t);
3662 		if (!sbinfo->ino_batch)
3663 			goto failed;
3664 	}
3665 	sbinfo->uid = ctx->uid;
3666 	sbinfo->gid = ctx->gid;
3667 	sbinfo->full_inums = ctx->full_inums;
3668 	sbinfo->mode = ctx->mode;
3669 	sbinfo->huge = ctx->huge;
3670 	sbinfo->mpol = ctx->mpol;
3671 	ctx->mpol = NULL;
3672 
3673 	raw_spin_lock_init(&sbinfo->stat_lock);
3674 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3675 		goto failed;
3676 	spin_lock_init(&sbinfo->shrinklist_lock);
3677 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3678 
3679 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3680 	sb->s_blocksize = PAGE_SIZE;
3681 	sb->s_blocksize_bits = PAGE_SHIFT;
3682 	sb->s_magic = TMPFS_MAGIC;
3683 	sb->s_op = &shmem_ops;
3684 	sb->s_time_gran = 1;
3685 #ifdef CONFIG_TMPFS_XATTR
3686 	sb->s_xattr = shmem_xattr_handlers;
3687 #endif
3688 #ifdef CONFIG_TMPFS_POSIX_ACL
3689 	sb->s_flags |= SB_POSIXACL;
3690 #endif
3691 	uuid_gen(&sb->s_uuid);
3692 
3693 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3694 	if (!inode)
3695 		goto failed;
3696 	inode->i_uid = sbinfo->uid;
3697 	inode->i_gid = sbinfo->gid;
3698 	sb->s_root = d_make_root(inode);
3699 	if (!sb->s_root)
3700 		goto failed;
3701 	return 0;
3702 
3703 failed:
3704 	shmem_put_super(sb);
3705 	return -ENOMEM;
3706 }
3707 
3708 static int shmem_get_tree(struct fs_context *fc)
3709 {
3710 	return get_tree_nodev(fc, shmem_fill_super);
3711 }
3712 
3713 static void shmem_free_fc(struct fs_context *fc)
3714 {
3715 	struct shmem_options *ctx = fc->fs_private;
3716 
3717 	if (ctx) {
3718 		mpol_put(ctx->mpol);
3719 		kfree(ctx);
3720 	}
3721 }
3722 
3723 static const struct fs_context_operations shmem_fs_context_ops = {
3724 	.free			= shmem_free_fc,
3725 	.get_tree		= shmem_get_tree,
3726 #ifdef CONFIG_TMPFS
3727 	.parse_monolithic	= shmem_parse_options,
3728 	.parse_param		= shmem_parse_one,
3729 	.reconfigure		= shmem_reconfigure,
3730 #endif
3731 };
3732 
3733 static struct kmem_cache *shmem_inode_cachep;
3734 
3735 static struct inode *shmem_alloc_inode(struct super_block *sb)
3736 {
3737 	struct shmem_inode_info *info;
3738 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3739 	if (!info)
3740 		return NULL;
3741 	return &info->vfs_inode;
3742 }
3743 
3744 static void shmem_free_in_core_inode(struct inode *inode)
3745 {
3746 	if (S_ISLNK(inode->i_mode))
3747 		kfree(inode->i_link);
3748 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3749 }
3750 
3751 static void shmem_destroy_inode(struct inode *inode)
3752 {
3753 	if (S_ISREG(inode->i_mode))
3754 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3755 }
3756 
3757 static void shmem_init_inode(void *foo)
3758 {
3759 	struct shmem_inode_info *info = foo;
3760 	inode_init_once(&info->vfs_inode);
3761 }
3762 
3763 static void shmem_init_inodecache(void)
3764 {
3765 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3766 				sizeof(struct shmem_inode_info),
3767 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3768 }
3769 
3770 static void shmem_destroy_inodecache(void)
3771 {
3772 	kmem_cache_destroy(shmem_inode_cachep);
3773 }
3774 
3775 const struct address_space_operations shmem_aops = {
3776 	.writepage	= shmem_writepage,
3777 	.set_page_dirty	= __set_page_dirty_no_writeback,
3778 #ifdef CONFIG_TMPFS
3779 	.write_begin	= shmem_write_begin,
3780 	.write_end	= shmem_write_end,
3781 #endif
3782 #ifdef CONFIG_MIGRATION
3783 	.migratepage	= migrate_page,
3784 #endif
3785 	.error_remove_page = generic_error_remove_page,
3786 };
3787 EXPORT_SYMBOL(shmem_aops);
3788 
3789 static const struct file_operations shmem_file_operations = {
3790 	.mmap		= shmem_mmap,
3791 	.get_unmapped_area = shmem_get_unmapped_area,
3792 #ifdef CONFIG_TMPFS
3793 	.llseek		= shmem_file_llseek,
3794 	.read_iter	= shmem_file_read_iter,
3795 	.write_iter	= generic_file_write_iter,
3796 	.fsync		= noop_fsync,
3797 	.splice_read	= generic_file_splice_read,
3798 	.splice_write	= iter_file_splice_write,
3799 	.fallocate	= shmem_fallocate,
3800 #endif
3801 };
3802 
3803 static const struct inode_operations shmem_inode_operations = {
3804 	.getattr	= shmem_getattr,
3805 	.setattr	= shmem_setattr,
3806 #ifdef CONFIG_TMPFS_XATTR
3807 	.listxattr	= shmem_listxattr,
3808 	.set_acl	= simple_set_acl,
3809 #endif
3810 };
3811 
3812 static const struct inode_operations shmem_dir_inode_operations = {
3813 #ifdef CONFIG_TMPFS
3814 	.create		= shmem_create,
3815 	.lookup		= simple_lookup,
3816 	.link		= shmem_link,
3817 	.unlink		= shmem_unlink,
3818 	.symlink	= shmem_symlink,
3819 	.mkdir		= shmem_mkdir,
3820 	.rmdir		= shmem_rmdir,
3821 	.mknod		= shmem_mknod,
3822 	.rename		= shmem_rename2,
3823 	.tmpfile	= shmem_tmpfile,
3824 #endif
3825 #ifdef CONFIG_TMPFS_XATTR
3826 	.listxattr	= shmem_listxattr,
3827 #endif
3828 #ifdef CONFIG_TMPFS_POSIX_ACL
3829 	.setattr	= shmem_setattr,
3830 	.set_acl	= simple_set_acl,
3831 #endif
3832 };
3833 
3834 static const struct inode_operations shmem_special_inode_operations = {
3835 #ifdef CONFIG_TMPFS_XATTR
3836 	.listxattr	= shmem_listxattr,
3837 #endif
3838 #ifdef CONFIG_TMPFS_POSIX_ACL
3839 	.setattr	= shmem_setattr,
3840 	.set_acl	= simple_set_acl,
3841 #endif
3842 };
3843 
3844 static const struct super_operations shmem_ops = {
3845 	.alloc_inode	= shmem_alloc_inode,
3846 	.free_inode	= shmem_free_in_core_inode,
3847 	.destroy_inode	= shmem_destroy_inode,
3848 #ifdef CONFIG_TMPFS
3849 	.statfs		= shmem_statfs,
3850 	.show_options	= shmem_show_options,
3851 #endif
3852 	.evict_inode	= shmem_evict_inode,
3853 	.drop_inode	= generic_delete_inode,
3854 	.put_super	= shmem_put_super,
3855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3856 	.nr_cached_objects	= shmem_unused_huge_count,
3857 	.free_cached_objects	= shmem_unused_huge_scan,
3858 #endif
3859 };
3860 
3861 static const struct vm_operations_struct shmem_vm_ops = {
3862 	.fault		= shmem_fault,
3863 	.map_pages	= filemap_map_pages,
3864 #ifdef CONFIG_NUMA
3865 	.set_policy     = shmem_set_policy,
3866 	.get_policy     = shmem_get_policy,
3867 #endif
3868 };
3869 
3870 int shmem_init_fs_context(struct fs_context *fc)
3871 {
3872 	struct shmem_options *ctx;
3873 
3874 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3875 	if (!ctx)
3876 		return -ENOMEM;
3877 
3878 	ctx->mode = 0777 | S_ISVTX;
3879 	ctx->uid = current_fsuid();
3880 	ctx->gid = current_fsgid();
3881 
3882 	fc->fs_private = ctx;
3883 	fc->ops = &shmem_fs_context_ops;
3884 	return 0;
3885 }
3886 
3887 static struct file_system_type shmem_fs_type = {
3888 	.owner		= THIS_MODULE,
3889 	.name		= "tmpfs",
3890 	.init_fs_context = shmem_init_fs_context,
3891 #ifdef CONFIG_TMPFS
3892 	.parameters	= shmem_fs_parameters,
3893 #endif
3894 	.kill_sb	= kill_litter_super,
3895 	.fs_flags	= FS_USERNS_MOUNT | FS_THP_SUPPORT,
3896 };
3897 
3898 int __init shmem_init(void)
3899 {
3900 	int error;
3901 
3902 	shmem_init_inodecache();
3903 
3904 	error = register_filesystem(&shmem_fs_type);
3905 	if (error) {
3906 		pr_err("Could not register tmpfs\n");
3907 		goto out2;
3908 	}
3909 
3910 	shm_mnt = kern_mount(&shmem_fs_type);
3911 	if (IS_ERR(shm_mnt)) {
3912 		error = PTR_ERR(shm_mnt);
3913 		pr_err("Could not kern_mount tmpfs\n");
3914 		goto out1;
3915 	}
3916 
3917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3918 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3919 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3920 	else
3921 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3922 #endif
3923 	return 0;
3924 
3925 out1:
3926 	unregister_filesystem(&shmem_fs_type);
3927 out2:
3928 	shmem_destroy_inodecache();
3929 	shm_mnt = ERR_PTR(error);
3930 	return error;
3931 }
3932 
3933 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3934 static ssize_t shmem_enabled_show(struct kobject *kobj,
3935 				  struct kobj_attribute *attr, char *buf)
3936 {
3937 	static const int values[] = {
3938 		SHMEM_HUGE_ALWAYS,
3939 		SHMEM_HUGE_WITHIN_SIZE,
3940 		SHMEM_HUGE_ADVISE,
3941 		SHMEM_HUGE_NEVER,
3942 		SHMEM_HUGE_DENY,
3943 		SHMEM_HUGE_FORCE,
3944 	};
3945 	int len = 0;
3946 	int i;
3947 
3948 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3949 		len += sysfs_emit_at(buf, len,
3950 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3951 				     i ? " " : "",
3952 				     shmem_format_huge(values[i]));
3953 	}
3954 
3955 	len += sysfs_emit_at(buf, len, "\n");
3956 
3957 	return len;
3958 }
3959 
3960 static ssize_t shmem_enabled_store(struct kobject *kobj,
3961 		struct kobj_attribute *attr, const char *buf, size_t count)
3962 {
3963 	char tmp[16];
3964 	int huge;
3965 
3966 	if (count + 1 > sizeof(tmp))
3967 		return -EINVAL;
3968 	memcpy(tmp, buf, count);
3969 	tmp[count] = '\0';
3970 	if (count && tmp[count - 1] == '\n')
3971 		tmp[count - 1] = '\0';
3972 
3973 	huge = shmem_parse_huge(tmp);
3974 	if (huge == -EINVAL)
3975 		return -EINVAL;
3976 	if (!has_transparent_hugepage() &&
3977 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3978 		return -EINVAL;
3979 
3980 	shmem_huge = huge;
3981 	if (shmem_huge > SHMEM_HUGE_DENY)
3982 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3983 	return count;
3984 }
3985 
3986 struct kobj_attribute shmem_enabled_attr =
3987 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3988 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3989 
3990 #else /* !CONFIG_SHMEM */
3991 
3992 /*
3993  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3994  *
3995  * This is intended for small system where the benefits of the full
3996  * shmem code (swap-backed and resource-limited) are outweighed by
3997  * their complexity. On systems without swap this code should be
3998  * effectively equivalent, but much lighter weight.
3999  */
4000 
4001 static struct file_system_type shmem_fs_type = {
4002 	.name		= "tmpfs",
4003 	.init_fs_context = ramfs_init_fs_context,
4004 	.parameters	= ramfs_fs_parameters,
4005 	.kill_sb	= kill_litter_super,
4006 	.fs_flags	= FS_USERNS_MOUNT,
4007 };
4008 
4009 int __init shmem_init(void)
4010 {
4011 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4012 
4013 	shm_mnt = kern_mount(&shmem_fs_type);
4014 	BUG_ON(IS_ERR(shm_mnt));
4015 
4016 	return 0;
4017 }
4018 
4019 int shmem_unuse(unsigned int type, bool frontswap,
4020 		unsigned long *fs_pages_to_unuse)
4021 {
4022 	return 0;
4023 }
4024 
4025 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4026 {
4027 	return 0;
4028 }
4029 
4030 void shmem_unlock_mapping(struct address_space *mapping)
4031 {
4032 }
4033 
4034 #ifdef CONFIG_MMU
4035 unsigned long shmem_get_unmapped_area(struct file *file,
4036 				      unsigned long addr, unsigned long len,
4037 				      unsigned long pgoff, unsigned long flags)
4038 {
4039 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4040 }
4041 #endif
4042 
4043 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4044 {
4045 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4046 }
4047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4048 
4049 #define shmem_vm_ops				generic_file_vm_ops
4050 #define shmem_file_operations			ramfs_file_operations
4051 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4052 #define shmem_acct_size(flags, size)		0
4053 #define shmem_unacct_size(flags, size)		do {} while (0)
4054 
4055 #endif /* CONFIG_SHMEM */
4056 
4057 /* common code */
4058 
4059 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4060 				       unsigned long flags, unsigned int i_flags)
4061 {
4062 	struct inode *inode;
4063 	struct file *res;
4064 
4065 	if (IS_ERR(mnt))
4066 		return ERR_CAST(mnt);
4067 
4068 	if (size < 0 || size > MAX_LFS_FILESIZE)
4069 		return ERR_PTR(-EINVAL);
4070 
4071 	if (shmem_acct_size(flags, size))
4072 		return ERR_PTR(-ENOMEM);
4073 
4074 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4075 				flags);
4076 	if (unlikely(!inode)) {
4077 		shmem_unacct_size(flags, size);
4078 		return ERR_PTR(-ENOSPC);
4079 	}
4080 	inode->i_flags |= i_flags;
4081 	inode->i_size = size;
4082 	clear_nlink(inode);	/* It is unlinked */
4083 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4084 	if (!IS_ERR(res))
4085 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4086 				&shmem_file_operations);
4087 	if (IS_ERR(res))
4088 		iput(inode);
4089 	return res;
4090 }
4091 
4092 /**
4093  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4094  * 	kernel internal.  There will be NO LSM permission checks against the
4095  * 	underlying inode.  So users of this interface must do LSM checks at a
4096  *	higher layer.  The users are the big_key and shm implementations.  LSM
4097  *	checks are provided at the key or shm level rather than the inode.
4098  * @name: name for dentry (to be seen in /proc/<pid>/maps
4099  * @size: size to be set for the file
4100  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4101  */
4102 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4103 {
4104 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4105 }
4106 
4107 /**
4108  * shmem_file_setup - get an unlinked file living in tmpfs
4109  * @name: name for dentry (to be seen in /proc/<pid>/maps
4110  * @size: size to be set for the file
4111  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4112  */
4113 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4114 {
4115 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4116 }
4117 EXPORT_SYMBOL_GPL(shmem_file_setup);
4118 
4119 /**
4120  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4121  * @mnt: the tmpfs mount where the file will be created
4122  * @name: name for dentry (to be seen in /proc/<pid>/maps
4123  * @size: size to be set for the file
4124  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4125  */
4126 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4127 				       loff_t size, unsigned long flags)
4128 {
4129 	return __shmem_file_setup(mnt, name, size, flags, 0);
4130 }
4131 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4132 
4133 /**
4134  * shmem_zero_setup - setup a shared anonymous mapping
4135  * @vma: the vma to be mmapped is prepared by do_mmap
4136  */
4137 int shmem_zero_setup(struct vm_area_struct *vma)
4138 {
4139 	struct file *file;
4140 	loff_t size = vma->vm_end - vma->vm_start;
4141 
4142 	/*
4143 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4144 	 * between XFS directory reading and selinux: since this file is only
4145 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4146 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4147 	 */
4148 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4149 	if (IS_ERR(file))
4150 		return PTR_ERR(file);
4151 
4152 	if (vma->vm_file)
4153 		fput(vma->vm_file);
4154 	vma->vm_file = file;
4155 	vma->vm_ops = &shmem_vm_ops;
4156 
4157 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4158 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4159 			(vma->vm_end & HPAGE_PMD_MASK)) {
4160 		khugepaged_enter(vma, vma->vm_flags);
4161 	}
4162 
4163 	return 0;
4164 }
4165 
4166 /**
4167  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4168  * @mapping:	the page's address_space
4169  * @index:	the page index
4170  * @gfp:	the page allocator flags to use if allocating
4171  *
4172  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4173  * with any new page allocations done using the specified allocation flags.
4174  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4175  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4176  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4177  *
4178  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4179  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4180  */
4181 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4182 					 pgoff_t index, gfp_t gfp)
4183 {
4184 #ifdef CONFIG_SHMEM
4185 	struct inode *inode = mapping->host;
4186 	struct page *page;
4187 	int error;
4188 
4189 	BUG_ON(!shmem_mapping(mapping));
4190 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4191 				  gfp, NULL, NULL, NULL);
4192 	if (error)
4193 		page = ERR_PTR(error);
4194 	else
4195 		unlock_page(page);
4196 	return page;
4197 #else
4198 	/*
4199 	 * The tiny !SHMEM case uses ramfs without swap
4200 	 */
4201 	return read_cache_page_gfp(mapping, index, gfp);
4202 #endif
4203 }
4204 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4205