xref: /linux/mm/shmem.c (revision 58652f2b6d21f2874c9f060165ec7e03e8b1fc71)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140 
141 #ifdef CONFIG_TMPFS
142 static unsigned long shmem_default_max_blocks(void)
143 {
144 	return totalram_pages() / 2;
145 }
146 
147 static unsigned long shmem_default_max_inodes(void)
148 {
149 	unsigned long nr_pages = totalram_pages();
150 
151 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 			ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155 
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 			struct vm_area_struct *vma, vm_fault_t *fault_type);
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 static inline int shmem_reacct_size(unsigned long flags,
184 		loff_t oldsize, loff_t newsize)
185 {
186 	if (!(flags & VM_NORESERVE)) {
187 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 			return security_vm_enough_memory_mm(current->mm,
189 					VM_ACCT(newsize) - VM_ACCT(oldsize));
190 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 	}
193 	return 0;
194 }
195 
196 /*
197  * ... whereas tmpfs objects are accounted incrementally as
198  * pages are allocated, in order to allow large sparse files.
199  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201  */
202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 	if (!(flags & VM_NORESERVE))
205 		return 0;
206 
207 	return security_vm_enough_memory_mm(current->mm,
208 			pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 	if (flags & VM_NORESERVE)
214 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_inode_info *info = SHMEM_I(inode);
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	int err = -ENOSPC;
222 
223 	if (shmem_acct_blocks(info->flags, pages))
224 		return err;
225 
226 	might_sleep();	/* when quotas */
227 	if (sbinfo->max_blocks) {
228 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 						sbinfo->max_blocks, pages))
230 			goto unacct;
231 
232 		err = dquot_alloc_block_nodirty(inode, pages);
233 		if (err) {
234 			percpu_counter_sub(&sbinfo->used_blocks, pages);
235 			goto unacct;
236 		}
237 	} else {
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err)
240 			goto unacct;
241 	}
242 
243 	return 0;
244 
245 unacct:
246 	shmem_unacct_blocks(info->flags, pages);
247 	return err;
248 }
249 
250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 	struct shmem_inode_info *info = SHMEM_I(inode);
253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 
255 	might_sleep();	/* when quotas */
256 	dquot_free_block_nodirty(inode, pages);
257 
258 	if (sbinfo->max_blocks)
259 		percpu_counter_sub(&sbinfo->used_blocks, pages);
260 	shmem_unacct_blocks(info->flags, pages);
261 }
262 
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272 
273 bool shmem_mapping(struct address_space *mapping)
274 {
275 	return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278 
279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 	return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283 
284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288 
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291 
292 #ifdef CONFIG_TMPFS_QUOTA
293 
294 static int shmem_enable_quotas(struct super_block *sb,
295 			       unsigned short quota_types)
296 {
297 	int type, err = 0;
298 
299 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 		if (!(quota_types & (1 << type)))
302 			continue;
303 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 					  DQUOT_USAGE_ENABLED |
305 					  DQUOT_LIMITS_ENABLED);
306 		if (err)
307 			goto out_err;
308 	}
309 	return 0;
310 
311 out_err:
312 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 		type, err);
314 	for (type--; type >= 0; type--)
315 		dquot_quota_off(sb, type);
316 	return err;
317 }
318 
319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 	int type;
322 
323 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 		dquot_quota_off(sb, type);
325 }
326 
327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 	return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332 
333 /*
334  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335  * produces a novel ino for the newly allocated inode.
336  *
337  * It may also be called when making a hard link to permit the space needed by
338  * each dentry. However, in that case, no new inode number is needed since that
339  * internally draws from another pool of inode numbers (currently global
340  * get_next_ino()). This case is indicated by passing NULL as inop.
341  */
342 #define SHMEM_INO_BATCH 1024
343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 	ino_t ino;
347 
348 	if (!(sb->s_flags & SB_KERNMOUNT)) {
349 		raw_spin_lock(&sbinfo->stat_lock);
350 		if (sbinfo->max_inodes) {
351 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 				raw_spin_unlock(&sbinfo->stat_lock);
353 				return -ENOSPC;
354 			}
355 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 		}
357 		if (inop) {
358 			ino = sbinfo->next_ino++;
359 			if (unlikely(is_zero_ino(ino)))
360 				ino = sbinfo->next_ino++;
361 			if (unlikely(!sbinfo->full_inums &&
362 				     ino > UINT_MAX)) {
363 				/*
364 				 * Emulate get_next_ino uint wraparound for
365 				 * compatibility
366 				 */
367 				if (IS_ENABLED(CONFIG_64BIT))
368 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 						__func__, MINOR(sb->s_dev));
370 				sbinfo->next_ino = 1;
371 				ino = sbinfo->next_ino++;
372 			}
373 			*inop = ino;
374 		}
375 		raw_spin_unlock(&sbinfo->stat_lock);
376 	} else if (inop) {
377 		/*
378 		 * __shmem_file_setup, one of our callers, is lock-free: it
379 		 * doesn't hold stat_lock in shmem_reserve_inode since
380 		 * max_inodes is always 0, and is called from potentially
381 		 * unknown contexts. As such, use a per-cpu batched allocator
382 		 * which doesn't require the per-sb stat_lock unless we are at
383 		 * the batch boundary.
384 		 *
385 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 		 * shmem mounts are not exposed to userspace, so we don't need
387 		 * to worry about things like glibc compatibility.
388 		 */
389 		ino_t *next_ino;
390 
391 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 		ino = *next_ino;
393 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 			raw_spin_lock(&sbinfo->stat_lock);
395 			ino = sbinfo->next_ino;
396 			sbinfo->next_ino += SHMEM_INO_BATCH;
397 			raw_spin_unlock(&sbinfo->stat_lock);
398 			if (unlikely(is_zero_ino(ino)))
399 				ino++;
400 		}
401 		*inop = ino;
402 		*next_ino = ++ino;
403 		put_cpu();
404 	}
405 
406 	return 0;
407 }
408 
409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 	if (sbinfo->max_inodes) {
413 		raw_spin_lock(&sbinfo->stat_lock);
414 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 		raw_spin_unlock(&sbinfo->stat_lock);
416 	}
417 }
418 
419 /**
420  * shmem_recalc_inode - recalculate the block usage of an inode
421  * @inode: inode to recalc
422  * @alloced: the change in number of pages allocated to inode
423  * @swapped: the change in number of pages swapped from inode
424  *
425  * We have to calculate the free blocks since the mm can drop
426  * undirtied hole pages behind our back.
427  *
428  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430  */
431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	long freed;
435 
436 	spin_lock(&info->lock);
437 	info->alloced += alloced;
438 	info->swapped += swapped;
439 	freed = info->alloced - info->swapped -
440 		READ_ONCE(inode->i_mapping->nrpages);
441 	/*
442 	 * Special case: whereas normally shmem_recalc_inode() is called
443 	 * after i_mapping->nrpages has already been adjusted (up or down),
444 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 	 * been freed.  Compensate here, to avoid the need for a followup call.
447 	 */
448 	if (swapped > 0)
449 		freed += swapped;
450 	if (freed > 0)
451 		info->alloced -= freed;
452 	spin_unlock(&info->lock);
453 
454 	/* The quota case may block */
455 	if (freed > 0)
456 		shmem_inode_unacct_blocks(inode, freed);
457 }
458 
459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 	struct address_space *mapping = inode->i_mapping;
462 
463 	if (shmem_inode_acct_blocks(inode, pages))
464 		return false;
465 
466 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 	xa_lock_irq(&mapping->i_pages);
468 	mapping->nrpages += pages;
469 	xa_unlock_irq(&mapping->i_pages);
470 
471 	shmem_recalc_inode(inode, pages, 0);
472 	return true;
473 }
474 
475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 	/* pages argument is currently unused: keep it to help debugging */
478 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479 
480 	shmem_recalc_inode(inode, 0, 0);
481 }
482 
483 /*
484  * Replace item expected in xarray by a new item, while holding xa_lock.
485  */
486 static int shmem_replace_entry(struct address_space *mapping,
487 			pgoff_t index, void *expected, void *replacement)
488 {
489 	XA_STATE(xas, &mapping->i_pages, index);
490 	void *item;
491 
492 	VM_BUG_ON(!expected);
493 	VM_BUG_ON(!replacement);
494 	item = xas_load(&xas);
495 	if (item != expected)
496 		return -ENOENT;
497 	xas_store(&xas, replacement);
498 	return 0;
499 }
500 
501 /*
502  * Sometimes, before we decide whether to proceed or to fail, we must check
503  * that an entry was not already brought back from swap by a racing thread.
504  *
505  * Checking folio is not enough: by the time a swapcache folio is locked, it
506  * might be reused, and again be swapcache, using the same swap as before.
507  */
508 static bool shmem_confirm_swap(struct address_space *mapping,
509 			       pgoff_t index, swp_entry_t swap)
510 {
511 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513 
514 /*
515  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516  *
517  * SHMEM_HUGE_NEVER:
518  *	disables huge pages for the mount;
519  * SHMEM_HUGE_ALWAYS:
520  *	enables huge pages for the mount;
521  * SHMEM_HUGE_WITHIN_SIZE:
522  *	only allocate huge pages if the page will be fully within i_size,
523  *	also respect fadvise()/madvise() hints;
524  * SHMEM_HUGE_ADVISE:
525  *	only allocate huge pages if requested with fadvise()/madvise();
526  */
527 
528 #define SHMEM_HUGE_NEVER	0
529 #define SHMEM_HUGE_ALWAYS	1
530 #define SHMEM_HUGE_WITHIN_SIZE	2
531 #define SHMEM_HUGE_ADVISE	3
532 
533 /*
534  * Special values.
535  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536  *
537  * SHMEM_HUGE_DENY:
538  *	disables huge on shm_mnt and all mounts, for emergency use;
539  * SHMEM_HUGE_FORCE:
540  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541  *
542  */
543 #define SHMEM_HUGE_DENY		(-1)
544 #define SHMEM_HUGE_FORCE	(-2)
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548 
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550 
551 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
552 					loff_t write_end, bool shmem_huge_force,
553 					struct vm_area_struct *vma,
554 					unsigned long vm_flags)
555 {
556 	struct mm_struct *mm = vma ? vma->vm_mm : NULL;
557 	loff_t i_size;
558 
559 	if (!S_ISREG(inode->i_mode))
560 		return false;
561 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
562 		return false;
563 	if (shmem_huge == SHMEM_HUGE_DENY)
564 		return false;
565 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
566 		return true;
567 
568 	switch (SHMEM_SB(inode->i_sb)->huge) {
569 	case SHMEM_HUGE_ALWAYS:
570 		return true;
571 	case SHMEM_HUGE_WITHIN_SIZE:
572 		index = round_up(index + 1, HPAGE_PMD_NR);
573 		i_size = max(write_end, i_size_read(inode));
574 		i_size = round_up(i_size, PAGE_SIZE);
575 		if (i_size >> PAGE_SHIFT >= index)
576 			return true;
577 		fallthrough;
578 	case SHMEM_HUGE_ADVISE:
579 		if (mm && (vm_flags & VM_HUGEPAGE))
580 			return true;
581 		fallthrough;
582 	default:
583 		return false;
584 	}
585 }
586 
587 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
588 		   loff_t write_end, bool shmem_huge_force,
589 		   struct vm_area_struct *vma, unsigned long vm_flags)
590 {
591 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
592 		return false;
593 
594 	return __shmem_huge_global_enabled(inode, index, write_end,
595 					   shmem_huge_force, vma, vm_flags);
596 }
597 
598 #if defined(CONFIG_SYSFS)
599 static int shmem_parse_huge(const char *str)
600 {
601 	if (!strcmp(str, "never"))
602 		return SHMEM_HUGE_NEVER;
603 	if (!strcmp(str, "always"))
604 		return SHMEM_HUGE_ALWAYS;
605 	if (!strcmp(str, "within_size"))
606 		return SHMEM_HUGE_WITHIN_SIZE;
607 	if (!strcmp(str, "advise"))
608 		return SHMEM_HUGE_ADVISE;
609 	if (!strcmp(str, "deny"))
610 		return SHMEM_HUGE_DENY;
611 	if (!strcmp(str, "force"))
612 		return SHMEM_HUGE_FORCE;
613 	return -EINVAL;
614 }
615 #endif
616 
617 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
618 static const char *shmem_format_huge(int huge)
619 {
620 	switch (huge) {
621 	case SHMEM_HUGE_NEVER:
622 		return "never";
623 	case SHMEM_HUGE_ALWAYS:
624 		return "always";
625 	case SHMEM_HUGE_WITHIN_SIZE:
626 		return "within_size";
627 	case SHMEM_HUGE_ADVISE:
628 		return "advise";
629 	case SHMEM_HUGE_DENY:
630 		return "deny";
631 	case SHMEM_HUGE_FORCE:
632 		return "force";
633 	default:
634 		VM_BUG_ON(1);
635 		return "bad_val";
636 	}
637 }
638 #endif
639 
640 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
641 		struct shrink_control *sc, unsigned long nr_to_free)
642 {
643 	LIST_HEAD(list), *pos, *next;
644 	struct inode *inode;
645 	struct shmem_inode_info *info;
646 	struct folio *folio;
647 	unsigned long batch = sc ? sc->nr_to_scan : 128;
648 	unsigned long split = 0, freed = 0;
649 
650 	if (list_empty(&sbinfo->shrinklist))
651 		return SHRINK_STOP;
652 
653 	spin_lock(&sbinfo->shrinklist_lock);
654 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
655 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 
657 		/* pin the inode */
658 		inode = igrab(&info->vfs_inode);
659 
660 		/* inode is about to be evicted */
661 		if (!inode) {
662 			list_del_init(&info->shrinklist);
663 			goto next;
664 		}
665 
666 		list_move(&info->shrinklist, &list);
667 next:
668 		sbinfo->shrinklist_len--;
669 		if (!--batch)
670 			break;
671 	}
672 	spin_unlock(&sbinfo->shrinklist_lock);
673 
674 	list_for_each_safe(pos, next, &list) {
675 		pgoff_t next, end;
676 		loff_t i_size;
677 		int ret;
678 
679 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
680 		inode = &info->vfs_inode;
681 
682 		if (nr_to_free && freed >= nr_to_free)
683 			goto move_back;
684 
685 		i_size = i_size_read(inode);
686 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
687 		if (!folio || xa_is_value(folio))
688 			goto drop;
689 
690 		/* No large folio at the end of the file: nothing to split */
691 		if (!folio_test_large(folio)) {
692 			folio_put(folio);
693 			goto drop;
694 		}
695 
696 		/* Check if there is anything to gain from splitting */
697 		next = folio_next_index(folio);
698 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
699 		if (end <= folio->index || end >= next) {
700 			folio_put(folio);
701 			goto drop;
702 		}
703 
704 		/*
705 		 * Move the inode on the list back to shrinklist if we failed
706 		 * to lock the page at this time.
707 		 *
708 		 * Waiting for the lock may lead to deadlock in the
709 		 * reclaim path.
710 		 */
711 		if (!folio_trylock(folio)) {
712 			folio_put(folio);
713 			goto move_back;
714 		}
715 
716 		ret = split_folio(folio);
717 		folio_unlock(folio);
718 		folio_put(folio);
719 
720 		/* If split failed move the inode on the list back to shrinklist */
721 		if (ret)
722 			goto move_back;
723 
724 		freed += next - end;
725 		split++;
726 drop:
727 		list_del_init(&info->shrinklist);
728 		goto put;
729 move_back:
730 		/*
731 		 * Make sure the inode is either on the global list or deleted
732 		 * from any local list before iput() since it could be deleted
733 		 * in another thread once we put the inode (then the local list
734 		 * is corrupted).
735 		 */
736 		spin_lock(&sbinfo->shrinklist_lock);
737 		list_move(&info->shrinklist, &sbinfo->shrinklist);
738 		sbinfo->shrinklist_len++;
739 		spin_unlock(&sbinfo->shrinklist_lock);
740 put:
741 		iput(inode);
742 	}
743 
744 	return split;
745 }
746 
747 static long shmem_unused_huge_scan(struct super_block *sb,
748 		struct shrink_control *sc)
749 {
750 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
751 
752 	if (!READ_ONCE(sbinfo->shrinklist_len))
753 		return SHRINK_STOP;
754 
755 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
756 }
757 
758 static long shmem_unused_huge_count(struct super_block *sb,
759 		struct shrink_control *sc)
760 {
761 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
762 	return READ_ONCE(sbinfo->shrinklist_len);
763 }
764 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
765 
766 #define shmem_huge SHMEM_HUGE_DENY
767 
768 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
769 		struct shrink_control *sc, unsigned long nr_to_free)
770 {
771 	return 0;
772 }
773 
774 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
775 		loff_t write_end, bool shmem_huge_force,
776 		struct vm_area_struct *vma, unsigned long vm_flags)
777 {
778 	return false;
779 }
780 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
781 
782 /*
783  * Somewhat like filemap_add_folio, but error if expected item has gone.
784  */
785 static int shmem_add_to_page_cache(struct folio *folio,
786 				   struct address_space *mapping,
787 				   pgoff_t index, void *expected, gfp_t gfp)
788 {
789 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
790 	long nr = folio_nr_pages(folio);
791 
792 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
793 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
794 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
795 
796 	folio_ref_add(folio, nr);
797 	folio->mapping = mapping;
798 	folio->index = index;
799 
800 	gfp &= GFP_RECLAIM_MASK;
801 	folio_throttle_swaprate(folio, gfp);
802 
803 	do {
804 		xas_lock_irq(&xas);
805 		if (expected != xas_find_conflict(&xas)) {
806 			xas_set_err(&xas, -EEXIST);
807 			goto unlock;
808 		}
809 		if (expected && xas_find_conflict(&xas)) {
810 			xas_set_err(&xas, -EEXIST);
811 			goto unlock;
812 		}
813 		xas_store(&xas, folio);
814 		if (xas_error(&xas))
815 			goto unlock;
816 		if (folio_test_pmd_mappable(folio))
817 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
818 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
819 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
820 		mapping->nrpages += nr;
821 unlock:
822 		xas_unlock_irq(&xas);
823 	} while (xas_nomem(&xas, gfp));
824 
825 	if (xas_error(&xas)) {
826 		folio->mapping = NULL;
827 		folio_ref_sub(folio, nr);
828 		return xas_error(&xas);
829 	}
830 
831 	return 0;
832 }
833 
834 /*
835  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
836  */
837 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
838 {
839 	struct address_space *mapping = folio->mapping;
840 	long nr = folio_nr_pages(folio);
841 	int error;
842 
843 	xa_lock_irq(&mapping->i_pages);
844 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
845 	folio->mapping = NULL;
846 	mapping->nrpages -= nr;
847 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
848 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
849 	xa_unlock_irq(&mapping->i_pages);
850 	folio_put_refs(folio, nr);
851 	BUG_ON(error);
852 }
853 
854 /*
855  * Remove swap entry from page cache, free the swap and its page cache. Returns
856  * the number of pages being freed. 0 means entry not found in XArray (0 pages
857  * being freed).
858  */
859 static long shmem_free_swap(struct address_space *mapping,
860 			    pgoff_t index, void *radswap)
861 {
862 	int order = xa_get_order(&mapping->i_pages, index);
863 	void *old;
864 
865 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
866 	if (old != radswap)
867 		return 0;
868 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
869 
870 	return 1 << order;
871 }
872 
873 /*
874  * Determine (in bytes) how many of the shmem object's pages mapped by the
875  * given offsets are swapped out.
876  *
877  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
878  * as long as the inode doesn't go away and racy results are not a problem.
879  */
880 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
881 						pgoff_t start, pgoff_t end)
882 {
883 	XA_STATE(xas, &mapping->i_pages, start);
884 	struct page *page;
885 	unsigned long swapped = 0;
886 	unsigned long max = end - 1;
887 
888 	rcu_read_lock();
889 	xas_for_each(&xas, page, max) {
890 		if (xas_retry(&xas, page))
891 			continue;
892 		if (xa_is_value(page))
893 			swapped += 1 << xas_get_order(&xas);
894 		if (xas.xa_index == max)
895 			break;
896 		if (need_resched()) {
897 			xas_pause(&xas);
898 			cond_resched_rcu();
899 		}
900 	}
901 	rcu_read_unlock();
902 
903 	return swapped << PAGE_SHIFT;
904 }
905 
906 /*
907  * Determine (in bytes) how many of the shmem object's pages mapped by the
908  * given vma is swapped out.
909  *
910  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
911  * as long as the inode doesn't go away and racy results are not a problem.
912  */
913 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
914 {
915 	struct inode *inode = file_inode(vma->vm_file);
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	struct address_space *mapping = inode->i_mapping;
918 	unsigned long swapped;
919 
920 	/* Be careful as we don't hold info->lock */
921 	swapped = READ_ONCE(info->swapped);
922 
923 	/*
924 	 * The easier cases are when the shmem object has nothing in swap, or
925 	 * the vma maps it whole. Then we can simply use the stats that we
926 	 * already track.
927 	 */
928 	if (!swapped)
929 		return 0;
930 
931 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
932 		return swapped << PAGE_SHIFT;
933 
934 	/* Here comes the more involved part */
935 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
936 					vma->vm_pgoff + vma_pages(vma));
937 }
938 
939 /*
940  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
941  */
942 void shmem_unlock_mapping(struct address_space *mapping)
943 {
944 	struct folio_batch fbatch;
945 	pgoff_t index = 0;
946 
947 	folio_batch_init(&fbatch);
948 	/*
949 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
950 	 */
951 	while (!mapping_unevictable(mapping) &&
952 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
953 		check_move_unevictable_folios(&fbatch);
954 		folio_batch_release(&fbatch);
955 		cond_resched();
956 	}
957 }
958 
959 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
960 {
961 	struct folio *folio;
962 
963 	/*
964 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
965 	 * beyond i_size, and reports fallocated folios as holes.
966 	 */
967 	folio = filemap_get_entry(inode->i_mapping, index);
968 	if (!folio)
969 		return folio;
970 	if (!xa_is_value(folio)) {
971 		folio_lock(folio);
972 		if (folio->mapping == inode->i_mapping)
973 			return folio;
974 		/* The folio has been swapped out */
975 		folio_unlock(folio);
976 		folio_put(folio);
977 	}
978 	/*
979 	 * But read a folio back from swap if any of it is within i_size
980 	 * (although in some cases this is just a waste of time).
981 	 */
982 	folio = NULL;
983 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
984 	return folio;
985 }
986 
987 /*
988  * Remove range of pages and swap entries from page cache, and free them.
989  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
990  */
991 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
992 								 bool unfalloc)
993 {
994 	struct address_space *mapping = inode->i_mapping;
995 	struct shmem_inode_info *info = SHMEM_I(inode);
996 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
998 	struct folio_batch fbatch;
999 	pgoff_t indices[PAGEVEC_SIZE];
1000 	struct folio *folio;
1001 	bool same_folio;
1002 	long nr_swaps_freed = 0;
1003 	pgoff_t index;
1004 	int i;
1005 
1006 	if (lend == -1)
1007 		end = -1;	/* unsigned, so actually very big */
1008 
1009 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1010 		info->fallocend = start;
1011 
1012 	folio_batch_init(&fbatch);
1013 	index = start;
1014 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1015 			&fbatch, indices)) {
1016 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1017 			folio = fbatch.folios[i];
1018 
1019 			if (xa_is_value(folio)) {
1020 				if (unfalloc)
1021 					continue;
1022 				nr_swaps_freed += shmem_free_swap(mapping,
1023 							indices[i], folio);
1024 				continue;
1025 			}
1026 
1027 			if (!unfalloc || !folio_test_uptodate(folio))
1028 				truncate_inode_folio(mapping, folio);
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		cond_resched();
1034 	}
1035 
1036 	/*
1037 	 * When undoing a failed fallocate, we want none of the partial folio
1038 	 * zeroing and splitting below, but shall want to truncate the whole
1039 	 * folio when !uptodate indicates that it was added by this fallocate,
1040 	 * even when [lstart, lend] covers only a part of the folio.
1041 	 */
1042 	if (unfalloc)
1043 		goto whole_folios;
1044 
1045 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1046 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1047 	if (folio) {
1048 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1049 		folio_mark_dirty(folio);
1050 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1051 			start = folio_next_index(folio);
1052 			if (same_folio)
1053 				end = folio->index;
1054 		}
1055 		folio_unlock(folio);
1056 		folio_put(folio);
1057 		folio = NULL;
1058 	}
1059 
1060 	if (!same_folio)
1061 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1062 	if (folio) {
1063 		folio_mark_dirty(folio);
1064 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1065 			end = folio->index;
1066 		folio_unlock(folio);
1067 		folio_put(folio);
1068 	}
1069 
1070 whole_folios:
1071 
1072 	index = start;
1073 	while (index < end) {
1074 		cond_resched();
1075 
1076 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1077 				indices)) {
1078 			/* If all gone or hole-punch or unfalloc, we're done */
1079 			if (index == start || end != -1)
1080 				break;
1081 			/* But if truncating, restart to make sure all gone */
1082 			index = start;
1083 			continue;
1084 		}
1085 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1086 			folio = fbatch.folios[i];
1087 
1088 			if (xa_is_value(folio)) {
1089 				long swaps_freed;
1090 
1091 				if (unfalloc)
1092 					continue;
1093 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1094 				if (!swaps_freed) {
1095 					/* Swap was replaced by page: retry */
1096 					index = indices[i];
1097 					break;
1098 				}
1099 				nr_swaps_freed += swaps_freed;
1100 				continue;
1101 			}
1102 
1103 			folio_lock(folio);
1104 
1105 			if (!unfalloc || !folio_test_uptodate(folio)) {
1106 				if (folio_mapping(folio) != mapping) {
1107 					/* Page was replaced by swap: retry */
1108 					folio_unlock(folio);
1109 					index = indices[i];
1110 					break;
1111 				}
1112 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1113 						folio);
1114 
1115 				if (!folio_test_large(folio)) {
1116 					truncate_inode_folio(mapping, folio);
1117 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1118 					/*
1119 					 * If we split a page, reset the loop so
1120 					 * that we pick up the new sub pages.
1121 					 * Otherwise the THP was entirely
1122 					 * dropped or the target range was
1123 					 * zeroed, so just continue the loop as
1124 					 * is.
1125 					 */
1126 					if (!folio_test_large(folio)) {
1127 						folio_unlock(folio);
1128 						index = start;
1129 						break;
1130 					}
1131 				}
1132 			}
1133 			folio_unlock(folio);
1134 		}
1135 		folio_batch_remove_exceptionals(&fbatch);
1136 		folio_batch_release(&fbatch);
1137 	}
1138 
1139 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1140 }
1141 
1142 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1143 {
1144 	shmem_undo_range(inode, lstart, lend, false);
1145 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1146 	inode_inc_iversion(inode);
1147 }
1148 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1149 
1150 static int shmem_getattr(struct mnt_idmap *idmap,
1151 			 const struct path *path, struct kstat *stat,
1152 			 u32 request_mask, unsigned int query_flags)
1153 {
1154 	struct inode *inode = path->dentry->d_inode;
1155 	struct shmem_inode_info *info = SHMEM_I(inode);
1156 
1157 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1158 		shmem_recalc_inode(inode, 0, 0);
1159 
1160 	if (info->fsflags & FS_APPEND_FL)
1161 		stat->attributes |= STATX_ATTR_APPEND;
1162 	if (info->fsflags & FS_IMMUTABLE_FL)
1163 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1164 	if (info->fsflags & FS_NODUMP_FL)
1165 		stat->attributes |= STATX_ATTR_NODUMP;
1166 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1167 			STATX_ATTR_IMMUTABLE |
1168 			STATX_ATTR_NODUMP);
1169 	inode_lock_shared(inode);
1170 	generic_fillattr(idmap, request_mask, inode, stat);
1171 	inode_unlock_shared(inode);
1172 
1173 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1174 		stat->blksize = HPAGE_PMD_SIZE;
1175 
1176 	if (request_mask & STATX_BTIME) {
1177 		stat->result_mask |= STATX_BTIME;
1178 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1179 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static int shmem_setattr(struct mnt_idmap *idmap,
1186 			 struct dentry *dentry, struct iattr *attr)
1187 {
1188 	struct inode *inode = d_inode(dentry);
1189 	struct shmem_inode_info *info = SHMEM_I(inode);
1190 	int error;
1191 	bool update_mtime = false;
1192 	bool update_ctime = true;
1193 
1194 	error = setattr_prepare(idmap, dentry, attr);
1195 	if (error)
1196 		return error;
1197 
1198 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1199 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1200 			return -EPERM;
1201 		}
1202 	}
1203 
1204 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1205 		loff_t oldsize = inode->i_size;
1206 		loff_t newsize = attr->ia_size;
1207 
1208 		/* protected by i_rwsem */
1209 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1210 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1211 			return -EPERM;
1212 
1213 		if (newsize != oldsize) {
1214 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1215 					oldsize, newsize);
1216 			if (error)
1217 				return error;
1218 			i_size_write(inode, newsize);
1219 			update_mtime = true;
1220 		} else {
1221 			update_ctime = false;
1222 		}
1223 		if (newsize <= oldsize) {
1224 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1225 			if (oldsize > holebegin)
1226 				unmap_mapping_range(inode->i_mapping,
1227 							holebegin, 0, 1);
1228 			if (info->alloced)
1229 				shmem_truncate_range(inode,
1230 							newsize, (loff_t)-1);
1231 			/* unmap again to remove racily COWed private pages */
1232 			if (oldsize > holebegin)
1233 				unmap_mapping_range(inode->i_mapping,
1234 							holebegin, 0, 1);
1235 		}
1236 	}
1237 
1238 	if (is_quota_modification(idmap, inode, attr)) {
1239 		error = dquot_initialize(inode);
1240 		if (error)
1241 			return error;
1242 	}
1243 
1244 	/* Transfer quota accounting */
1245 	if (i_uid_needs_update(idmap, attr, inode) ||
1246 	    i_gid_needs_update(idmap, attr, inode)) {
1247 		error = dquot_transfer(idmap, inode, attr);
1248 		if (error)
1249 			return error;
1250 	}
1251 
1252 	setattr_copy(idmap, inode, attr);
1253 	if (attr->ia_valid & ATTR_MODE)
1254 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1255 	if (!error && update_ctime) {
1256 		inode_set_ctime_current(inode);
1257 		if (update_mtime)
1258 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1259 		inode_inc_iversion(inode);
1260 	}
1261 	return error;
1262 }
1263 
1264 static void shmem_evict_inode(struct inode *inode)
1265 {
1266 	struct shmem_inode_info *info = SHMEM_I(inode);
1267 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1268 	size_t freed = 0;
1269 
1270 	if (shmem_mapping(inode->i_mapping)) {
1271 		shmem_unacct_size(info->flags, inode->i_size);
1272 		inode->i_size = 0;
1273 		mapping_set_exiting(inode->i_mapping);
1274 		shmem_truncate_range(inode, 0, (loff_t)-1);
1275 		if (!list_empty(&info->shrinklist)) {
1276 			spin_lock(&sbinfo->shrinklist_lock);
1277 			if (!list_empty(&info->shrinklist)) {
1278 				list_del_init(&info->shrinklist);
1279 				sbinfo->shrinklist_len--;
1280 			}
1281 			spin_unlock(&sbinfo->shrinklist_lock);
1282 		}
1283 		while (!list_empty(&info->swaplist)) {
1284 			/* Wait while shmem_unuse() is scanning this inode... */
1285 			wait_var_event(&info->stop_eviction,
1286 				       !atomic_read(&info->stop_eviction));
1287 			mutex_lock(&shmem_swaplist_mutex);
1288 			/* ...but beware of the race if we peeked too early */
1289 			if (!atomic_read(&info->stop_eviction))
1290 				list_del_init(&info->swaplist);
1291 			mutex_unlock(&shmem_swaplist_mutex);
1292 		}
1293 	}
1294 
1295 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1296 	shmem_free_inode(inode->i_sb, freed);
1297 	WARN_ON(inode->i_blocks);
1298 	clear_inode(inode);
1299 #ifdef CONFIG_TMPFS_QUOTA
1300 	dquot_free_inode(inode);
1301 	dquot_drop(inode);
1302 #endif
1303 }
1304 
1305 static int shmem_find_swap_entries(struct address_space *mapping,
1306 				   pgoff_t start, struct folio_batch *fbatch,
1307 				   pgoff_t *indices, unsigned int type)
1308 {
1309 	XA_STATE(xas, &mapping->i_pages, start);
1310 	struct folio *folio;
1311 	swp_entry_t entry;
1312 
1313 	rcu_read_lock();
1314 	xas_for_each(&xas, folio, ULONG_MAX) {
1315 		if (xas_retry(&xas, folio))
1316 			continue;
1317 
1318 		if (!xa_is_value(folio))
1319 			continue;
1320 
1321 		entry = radix_to_swp_entry(folio);
1322 		/*
1323 		 * swapin error entries can be found in the mapping. But they're
1324 		 * deliberately ignored here as we've done everything we can do.
1325 		 */
1326 		if (swp_type(entry) != type)
1327 			continue;
1328 
1329 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1330 		if (!folio_batch_add(fbatch, folio))
1331 			break;
1332 
1333 		if (need_resched()) {
1334 			xas_pause(&xas);
1335 			cond_resched_rcu();
1336 		}
1337 	}
1338 	rcu_read_unlock();
1339 
1340 	return xas.xa_index;
1341 }
1342 
1343 /*
1344  * Move the swapped pages for an inode to page cache. Returns the count
1345  * of pages swapped in, or the error in case of failure.
1346  */
1347 static int shmem_unuse_swap_entries(struct inode *inode,
1348 		struct folio_batch *fbatch, pgoff_t *indices)
1349 {
1350 	int i = 0;
1351 	int ret = 0;
1352 	int error = 0;
1353 	struct address_space *mapping = inode->i_mapping;
1354 
1355 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1356 		struct folio *folio = fbatch->folios[i];
1357 
1358 		if (!xa_is_value(folio))
1359 			continue;
1360 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1361 					mapping_gfp_mask(mapping), NULL, NULL);
1362 		if (error == 0) {
1363 			folio_unlock(folio);
1364 			folio_put(folio);
1365 			ret++;
1366 		}
1367 		if (error == -ENOMEM)
1368 			break;
1369 		error = 0;
1370 	}
1371 	return error ? error : ret;
1372 }
1373 
1374 /*
1375  * If swap found in inode, free it and move page from swapcache to filecache.
1376  */
1377 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1378 {
1379 	struct address_space *mapping = inode->i_mapping;
1380 	pgoff_t start = 0;
1381 	struct folio_batch fbatch;
1382 	pgoff_t indices[PAGEVEC_SIZE];
1383 	int ret = 0;
1384 
1385 	do {
1386 		folio_batch_init(&fbatch);
1387 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1388 		if (folio_batch_count(&fbatch) == 0) {
1389 			ret = 0;
1390 			break;
1391 		}
1392 
1393 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1394 		if (ret < 0)
1395 			break;
1396 
1397 		start = indices[folio_batch_count(&fbatch) - 1];
1398 	} while (true);
1399 
1400 	return ret;
1401 }
1402 
1403 /*
1404  * Read all the shared memory data that resides in the swap
1405  * device 'type' back into memory, so the swap device can be
1406  * unused.
1407  */
1408 int shmem_unuse(unsigned int type)
1409 {
1410 	struct shmem_inode_info *info, *next;
1411 	int error = 0;
1412 
1413 	if (list_empty(&shmem_swaplist))
1414 		return 0;
1415 
1416 	mutex_lock(&shmem_swaplist_mutex);
1417 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1418 		if (!info->swapped) {
1419 			list_del_init(&info->swaplist);
1420 			continue;
1421 		}
1422 		/*
1423 		 * Drop the swaplist mutex while searching the inode for swap;
1424 		 * but before doing so, make sure shmem_evict_inode() will not
1425 		 * remove placeholder inode from swaplist, nor let it be freed
1426 		 * (igrab() would protect from unlink, but not from unmount).
1427 		 */
1428 		atomic_inc(&info->stop_eviction);
1429 		mutex_unlock(&shmem_swaplist_mutex);
1430 
1431 		error = shmem_unuse_inode(&info->vfs_inode, type);
1432 		cond_resched();
1433 
1434 		mutex_lock(&shmem_swaplist_mutex);
1435 		next = list_next_entry(info, swaplist);
1436 		if (!info->swapped)
1437 			list_del_init(&info->swaplist);
1438 		if (atomic_dec_and_test(&info->stop_eviction))
1439 			wake_up_var(&info->stop_eviction);
1440 		if (error)
1441 			break;
1442 	}
1443 	mutex_unlock(&shmem_swaplist_mutex);
1444 
1445 	return error;
1446 }
1447 
1448 /*
1449  * Move the page from the page cache to the swap cache.
1450  */
1451 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1452 {
1453 	struct folio *folio = page_folio(page);
1454 	struct address_space *mapping = folio->mapping;
1455 	struct inode *inode = mapping->host;
1456 	struct shmem_inode_info *info = SHMEM_I(inode);
1457 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1458 	swp_entry_t swap;
1459 	pgoff_t index;
1460 	int nr_pages;
1461 	bool split = false;
1462 
1463 	/*
1464 	 * Our capabilities prevent regular writeback or sync from ever calling
1465 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1466 	 * its underlying filesystem, in which case tmpfs should write out to
1467 	 * swap only in response to memory pressure, and not for the writeback
1468 	 * threads or sync.
1469 	 */
1470 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1471 		goto redirty;
1472 
1473 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1474 		goto redirty;
1475 
1476 	if (!total_swap_pages)
1477 		goto redirty;
1478 
1479 	/*
1480 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1481 	 * split when swapping.
1482 	 *
1483 	 * And shrinkage of pages beyond i_size does not split swap, so
1484 	 * swapout of a large folio crossing i_size needs to split too
1485 	 * (unless fallocate has been used to preallocate beyond EOF).
1486 	 */
1487 	if (folio_test_large(folio)) {
1488 		index = shmem_fallocend(inode,
1489 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1490 		if ((index > folio->index && index < folio_next_index(folio)) ||
1491 		    !IS_ENABLED(CONFIG_THP_SWAP))
1492 			split = true;
1493 	}
1494 
1495 	if (split) {
1496 try_split:
1497 		/* Ensure the subpages are still dirty */
1498 		folio_test_set_dirty(folio);
1499 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1500 			goto redirty;
1501 		folio = page_folio(page);
1502 		folio_clear_dirty(folio);
1503 	}
1504 
1505 	index = folio->index;
1506 	nr_pages = folio_nr_pages(folio);
1507 
1508 	/*
1509 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1510 	 * value into swapfile.c, the only way we can correctly account for a
1511 	 * fallocated folio arriving here is now to initialize it and write it.
1512 	 *
1513 	 * That's okay for a folio already fallocated earlier, but if we have
1514 	 * not yet completed the fallocation, then (a) we want to keep track
1515 	 * of this folio in case we have to undo it, and (b) it may not be a
1516 	 * good idea to continue anyway, once we're pushing into swap.  So
1517 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1518 	 */
1519 	if (!folio_test_uptodate(folio)) {
1520 		if (inode->i_private) {
1521 			struct shmem_falloc *shmem_falloc;
1522 			spin_lock(&inode->i_lock);
1523 			shmem_falloc = inode->i_private;
1524 			if (shmem_falloc &&
1525 			    !shmem_falloc->waitq &&
1526 			    index >= shmem_falloc->start &&
1527 			    index < shmem_falloc->next)
1528 				shmem_falloc->nr_unswapped++;
1529 			else
1530 				shmem_falloc = NULL;
1531 			spin_unlock(&inode->i_lock);
1532 			if (shmem_falloc)
1533 				goto redirty;
1534 		}
1535 		folio_zero_range(folio, 0, folio_size(folio));
1536 		flush_dcache_folio(folio);
1537 		folio_mark_uptodate(folio);
1538 	}
1539 
1540 	swap = folio_alloc_swap(folio);
1541 	if (!swap.val) {
1542 		if (nr_pages > 1)
1543 			goto try_split;
1544 
1545 		goto redirty;
1546 	}
1547 
1548 	/*
1549 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1550 	 * if it's not already there.  Do it now before the folio is
1551 	 * moved to swap cache, when its pagelock no longer protects
1552 	 * the inode from eviction.  But don't unlock the mutex until
1553 	 * we've incremented swapped, because shmem_unuse_inode() will
1554 	 * prune a !swapped inode from the swaplist under this mutex.
1555 	 */
1556 	mutex_lock(&shmem_swaplist_mutex);
1557 	if (list_empty(&info->swaplist))
1558 		list_add(&info->swaplist, &shmem_swaplist);
1559 
1560 	if (add_to_swap_cache(folio, swap,
1561 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1562 			NULL) == 0) {
1563 		shmem_recalc_inode(inode, 0, nr_pages);
1564 		swap_shmem_alloc(swap, nr_pages);
1565 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1566 
1567 		mutex_unlock(&shmem_swaplist_mutex);
1568 		BUG_ON(folio_mapped(folio));
1569 		return swap_writepage(&folio->page, wbc);
1570 	}
1571 
1572 	mutex_unlock(&shmem_swaplist_mutex);
1573 	put_swap_folio(folio, swap);
1574 redirty:
1575 	folio_mark_dirty(folio);
1576 	if (wbc->for_reclaim)
1577 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1578 	folio_unlock(folio);
1579 	return 0;
1580 }
1581 
1582 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1583 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1584 {
1585 	char buffer[64];
1586 
1587 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1588 		return;		/* show nothing */
1589 
1590 	mpol_to_str(buffer, sizeof(buffer), mpol);
1591 
1592 	seq_printf(seq, ",mpol=%s", buffer);
1593 }
1594 
1595 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1596 {
1597 	struct mempolicy *mpol = NULL;
1598 	if (sbinfo->mpol) {
1599 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1600 		mpol = sbinfo->mpol;
1601 		mpol_get(mpol);
1602 		raw_spin_unlock(&sbinfo->stat_lock);
1603 	}
1604 	return mpol;
1605 }
1606 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1607 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1608 {
1609 }
1610 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1611 {
1612 	return NULL;
1613 }
1614 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1615 
1616 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1617 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1618 
1619 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1620 			struct shmem_inode_info *info, pgoff_t index)
1621 {
1622 	struct mempolicy *mpol;
1623 	pgoff_t ilx;
1624 	struct folio *folio;
1625 
1626 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1627 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1628 	mpol_cond_put(mpol);
1629 
1630 	return folio;
1631 }
1632 
1633 /*
1634  * Make sure huge_gfp is always more limited than limit_gfp.
1635  * Some of the flags set permissions, while others set limitations.
1636  */
1637 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1638 {
1639 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1640 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1641 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1642 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1643 
1644 	/* Allow allocations only from the originally specified zones. */
1645 	result |= zoneflags;
1646 
1647 	/*
1648 	 * Minimize the result gfp by taking the union with the deny flags,
1649 	 * and the intersection of the allow flags.
1650 	 */
1651 	result |= (limit_gfp & denyflags);
1652 	result |= (huge_gfp & limit_gfp) & allowflags;
1653 
1654 	return result;
1655 }
1656 
1657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1658 bool shmem_hpage_pmd_enabled(void)
1659 {
1660 	if (shmem_huge == SHMEM_HUGE_DENY)
1661 		return false;
1662 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1663 		return true;
1664 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1665 		return true;
1666 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1667 		return true;
1668 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1669 	    shmem_huge != SHMEM_HUGE_NEVER)
1670 		return true;
1671 
1672 	return false;
1673 }
1674 
1675 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1676 				struct vm_area_struct *vma, pgoff_t index,
1677 				loff_t write_end, bool shmem_huge_force)
1678 {
1679 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1680 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1681 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1682 	bool global_huge;
1683 	loff_t i_size;
1684 	int order;
1685 
1686 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1687 		return 0;
1688 
1689 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1690 					shmem_huge_force, vma, vm_flags);
1691 	if (!vma || !vma_is_anon_shmem(vma)) {
1692 		/*
1693 		 * For tmpfs, we now only support PMD sized THP if huge page
1694 		 * is enabled, otherwise fallback to order 0.
1695 		 */
1696 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1697 	}
1698 
1699 	/*
1700 	 * Following the 'deny' semantics of the top level, force the huge
1701 	 * option off from all mounts.
1702 	 */
1703 	if (shmem_huge == SHMEM_HUGE_DENY)
1704 		return 0;
1705 
1706 	/*
1707 	 * Only allow inherit orders if the top-level value is 'force', which
1708 	 * means non-PMD sized THP can not override 'huge' mount option now.
1709 	 */
1710 	if (shmem_huge == SHMEM_HUGE_FORCE)
1711 		return READ_ONCE(huge_shmem_orders_inherit);
1712 
1713 	/* Allow mTHP that will be fully within i_size. */
1714 	order = highest_order(within_size_orders);
1715 	while (within_size_orders) {
1716 		index = round_up(index + 1, order);
1717 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1718 		if (i_size >> PAGE_SHIFT >= index) {
1719 			mask |= within_size_orders;
1720 			break;
1721 		}
1722 
1723 		order = next_order(&within_size_orders, order);
1724 	}
1725 
1726 	if (vm_flags & VM_HUGEPAGE)
1727 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1728 
1729 	if (global_huge)
1730 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1731 
1732 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1733 }
1734 
1735 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1736 					   struct address_space *mapping, pgoff_t index,
1737 					   unsigned long orders)
1738 {
1739 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1740 	pgoff_t aligned_index;
1741 	unsigned long pages;
1742 	int order;
1743 
1744 	if (vma) {
1745 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1746 		if (!orders)
1747 			return 0;
1748 	}
1749 
1750 	/* Find the highest order that can add into the page cache */
1751 	order = highest_order(orders);
1752 	while (orders) {
1753 		pages = 1UL << order;
1754 		aligned_index = round_down(index, pages);
1755 		/*
1756 		 * Check for conflict before waiting on a huge allocation.
1757 		 * Conflict might be that a huge page has just been allocated
1758 		 * and added to page cache by a racing thread, or that there
1759 		 * is already at least one small page in the huge extent.
1760 		 * Be careful to retry when appropriate, but not forever!
1761 		 * Elsewhere -EEXIST would be the right code, but not here.
1762 		 */
1763 		if (!xa_find(&mapping->i_pages, &aligned_index,
1764 			     aligned_index + pages - 1, XA_PRESENT))
1765 			break;
1766 		order = next_order(&orders, order);
1767 	}
1768 
1769 	return orders;
1770 }
1771 #else
1772 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1773 					   struct address_space *mapping, pgoff_t index,
1774 					   unsigned long orders)
1775 {
1776 	return 0;
1777 }
1778 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1779 
1780 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1781 		struct shmem_inode_info *info, pgoff_t index)
1782 {
1783 	struct mempolicy *mpol;
1784 	pgoff_t ilx;
1785 	struct folio *folio;
1786 
1787 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1788 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1789 	mpol_cond_put(mpol);
1790 
1791 	return folio;
1792 }
1793 
1794 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1795 		gfp_t gfp, struct inode *inode, pgoff_t index,
1796 		struct mm_struct *fault_mm, unsigned long orders)
1797 {
1798 	struct address_space *mapping = inode->i_mapping;
1799 	struct shmem_inode_info *info = SHMEM_I(inode);
1800 	unsigned long suitable_orders = 0;
1801 	struct folio *folio = NULL;
1802 	long pages;
1803 	int error, order;
1804 
1805 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1806 		orders = 0;
1807 
1808 	if (orders > 0) {
1809 		suitable_orders = shmem_suitable_orders(inode, vmf,
1810 							mapping, index, orders);
1811 
1812 		order = highest_order(suitable_orders);
1813 		while (suitable_orders) {
1814 			pages = 1UL << order;
1815 			index = round_down(index, pages);
1816 			folio = shmem_alloc_folio(gfp, order, info, index);
1817 			if (folio)
1818 				goto allocated;
1819 
1820 			if (pages == HPAGE_PMD_NR)
1821 				count_vm_event(THP_FILE_FALLBACK);
1822 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1823 			order = next_order(&suitable_orders, order);
1824 		}
1825 	} else {
1826 		pages = 1;
1827 		folio = shmem_alloc_folio(gfp, 0, info, index);
1828 	}
1829 	if (!folio)
1830 		return ERR_PTR(-ENOMEM);
1831 
1832 allocated:
1833 	__folio_set_locked(folio);
1834 	__folio_set_swapbacked(folio);
1835 
1836 	gfp &= GFP_RECLAIM_MASK;
1837 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1838 	if (error) {
1839 		if (xa_find(&mapping->i_pages, &index,
1840 				index + pages - 1, XA_PRESENT)) {
1841 			error = -EEXIST;
1842 		} else if (pages > 1) {
1843 			if (pages == HPAGE_PMD_NR) {
1844 				count_vm_event(THP_FILE_FALLBACK);
1845 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1846 			}
1847 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1848 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1849 		}
1850 		goto unlock;
1851 	}
1852 
1853 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1854 	if (error)
1855 		goto unlock;
1856 
1857 	error = shmem_inode_acct_blocks(inode, pages);
1858 	if (error) {
1859 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1860 		long freed;
1861 		/*
1862 		 * Try to reclaim some space by splitting a few
1863 		 * large folios beyond i_size on the filesystem.
1864 		 */
1865 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1866 		/*
1867 		 * And do a shmem_recalc_inode() to account for freed pages:
1868 		 * except our folio is there in cache, so not quite balanced.
1869 		 */
1870 		spin_lock(&info->lock);
1871 		freed = pages + info->alloced - info->swapped -
1872 			READ_ONCE(mapping->nrpages);
1873 		if (freed > 0)
1874 			info->alloced -= freed;
1875 		spin_unlock(&info->lock);
1876 		if (freed > 0)
1877 			shmem_inode_unacct_blocks(inode, freed);
1878 		error = shmem_inode_acct_blocks(inode, pages);
1879 		if (error) {
1880 			filemap_remove_folio(folio);
1881 			goto unlock;
1882 		}
1883 	}
1884 
1885 	shmem_recalc_inode(inode, pages, 0);
1886 	folio_add_lru(folio);
1887 	return folio;
1888 
1889 unlock:
1890 	folio_unlock(folio);
1891 	folio_put(folio);
1892 	return ERR_PTR(error);
1893 }
1894 
1895 /*
1896  * When a page is moved from swapcache to shmem filecache (either by the
1897  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1898  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1899  * ignorance of the mapping it belongs to.  If that mapping has special
1900  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1901  * we may need to copy to a suitable page before moving to filecache.
1902  *
1903  * In a future release, this may well be extended to respect cpuset and
1904  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1905  * but for now it is a simple matter of zone.
1906  */
1907 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1908 {
1909 	return folio_zonenum(folio) > gfp_zone(gfp);
1910 }
1911 
1912 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1913 				struct shmem_inode_info *info, pgoff_t index,
1914 				struct vm_area_struct *vma)
1915 {
1916 	struct folio *new, *old = *foliop;
1917 	swp_entry_t entry = old->swap;
1918 	struct address_space *swap_mapping = swap_address_space(entry);
1919 	pgoff_t swap_index = swap_cache_index(entry);
1920 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1921 	int nr_pages = folio_nr_pages(old);
1922 	int error = 0, i;
1923 
1924 	/*
1925 	 * We have arrived here because our zones are constrained, so don't
1926 	 * limit chance of success by further cpuset and node constraints.
1927 	 */
1928 	gfp &= ~GFP_CONSTRAINT_MASK;
1929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1930 	if (nr_pages > 1) {
1931 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1932 
1933 		gfp = limit_gfp_mask(huge_gfp, gfp);
1934 	}
1935 #endif
1936 
1937 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1938 	if (!new)
1939 		return -ENOMEM;
1940 
1941 	folio_ref_add(new, nr_pages);
1942 	folio_copy(new, old);
1943 	flush_dcache_folio(new);
1944 
1945 	__folio_set_locked(new);
1946 	__folio_set_swapbacked(new);
1947 	folio_mark_uptodate(new);
1948 	new->swap = entry;
1949 	folio_set_swapcache(new);
1950 
1951 	/* Swap cache still stores N entries instead of a high-order entry */
1952 	xa_lock_irq(&swap_mapping->i_pages);
1953 	for (i = 0; i < nr_pages; i++) {
1954 		void *item = xas_load(&xas);
1955 
1956 		if (item != old) {
1957 			error = -ENOENT;
1958 			break;
1959 		}
1960 
1961 		xas_store(&xas, new);
1962 		xas_next(&xas);
1963 	}
1964 	if (!error) {
1965 		mem_cgroup_replace_folio(old, new);
1966 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1967 		__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1968 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1969 		__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1970 	}
1971 	xa_unlock_irq(&swap_mapping->i_pages);
1972 
1973 	if (unlikely(error)) {
1974 		/*
1975 		 * Is this possible?  I think not, now that our callers
1976 		 * check both the swapcache flag and folio->private
1977 		 * after getting the folio lock; but be defensive.
1978 		 * Reverse old to newpage for clear and free.
1979 		 */
1980 		old = new;
1981 	} else {
1982 		folio_add_lru(new);
1983 		*foliop = new;
1984 	}
1985 
1986 	folio_clear_swapcache(old);
1987 	old->private = NULL;
1988 
1989 	folio_unlock(old);
1990 	/*
1991 	 * The old folio are removed from swap cache, drop the 'nr_pages'
1992 	 * reference, as well as one temporary reference getting from swap
1993 	 * cache.
1994 	 */
1995 	folio_put_refs(old, nr_pages + 1);
1996 	return error;
1997 }
1998 
1999 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2000 					 struct folio *folio, swp_entry_t swap)
2001 {
2002 	struct address_space *mapping = inode->i_mapping;
2003 	swp_entry_t swapin_error;
2004 	void *old;
2005 	int nr_pages;
2006 
2007 	swapin_error = make_poisoned_swp_entry();
2008 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2009 			     swp_to_radix_entry(swap),
2010 			     swp_to_radix_entry(swapin_error), 0);
2011 	if (old != swp_to_radix_entry(swap))
2012 		return;
2013 
2014 	nr_pages = folio_nr_pages(folio);
2015 	folio_wait_writeback(folio);
2016 	delete_from_swap_cache(folio);
2017 	/*
2018 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2019 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2020 	 * in shmem_evict_inode().
2021 	 */
2022 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2023 	swap_free_nr(swap, nr_pages);
2024 }
2025 
2026 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2027 				   swp_entry_t swap, gfp_t gfp)
2028 {
2029 	struct address_space *mapping = inode->i_mapping;
2030 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2031 	void *alloced_shadow = NULL;
2032 	int alloced_order = 0, i;
2033 
2034 	/* Convert user data gfp flags to xarray node gfp flags */
2035 	gfp &= GFP_RECLAIM_MASK;
2036 
2037 	for (;;) {
2038 		int order = -1, split_order = 0;
2039 		void *old = NULL;
2040 
2041 		xas_lock_irq(&xas);
2042 		old = xas_load(&xas);
2043 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2044 			xas_set_err(&xas, -EEXIST);
2045 			goto unlock;
2046 		}
2047 
2048 		order = xas_get_order(&xas);
2049 
2050 		/* Swap entry may have changed before we re-acquire the lock */
2051 		if (alloced_order &&
2052 		    (old != alloced_shadow || order != alloced_order)) {
2053 			xas_destroy(&xas);
2054 			alloced_order = 0;
2055 		}
2056 
2057 		/* Try to split large swap entry in pagecache */
2058 		if (order > 0) {
2059 			if (!alloced_order) {
2060 				split_order = order;
2061 				goto unlock;
2062 			}
2063 			xas_split(&xas, old, order);
2064 
2065 			/*
2066 			 * Re-set the swap entry after splitting, and the swap
2067 			 * offset of the original large entry must be continuous.
2068 			 */
2069 			for (i = 0; i < 1 << order; i++) {
2070 				pgoff_t aligned_index = round_down(index, 1 << order);
2071 				swp_entry_t tmp;
2072 
2073 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2074 				__xa_store(&mapping->i_pages, aligned_index + i,
2075 					   swp_to_radix_entry(tmp), 0);
2076 			}
2077 		}
2078 
2079 unlock:
2080 		xas_unlock_irq(&xas);
2081 
2082 		/* split needed, alloc here and retry. */
2083 		if (split_order) {
2084 			xas_split_alloc(&xas, old, split_order, gfp);
2085 			if (xas_error(&xas))
2086 				goto error;
2087 			alloced_shadow = old;
2088 			alloced_order = split_order;
2089 			xas_reset(&xas);
2090 			continue;
2091 		}
2092 
2093 		if (!xas_nomem(&xas, gfp))
2094 			break;
2095 	}
2096 
2097 error:
2098 	if (xas_error(&xas))
2099 		return xas_error(&xas);
2100 
2101 	return alloced_order;
2102 }
2103 
2104 /*
2105  * Swap in the folio pointed to by *foliop.
2106  * Caller has to make sure that *foliop contains a valid swapped folio.
2107  * Returns 0 and the folio in foliop if success. On failure, returns the
2108  * error code and NULL in *foliop.
2109  */
2110 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2111 			     struct folio **foliop, enum sgp_type sgp,
2112 			     gfp_t gfp, struct vm_area_struct *vma,
2113 			     vm_fault_t *fault_type)
2114 {
2115 	struct address_space *mapping = inode->i_mapping;
2116 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2117 	struct shmem_inode_info *info = SHMEM_I(inode);
2118 	struct swap_info_struct *si;
2119 	struct folio *folio = NULL;
2120 	swp_entry_t swap;
2121 	int error, nr_pages;
2122 
2123 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2124 	swap = radix_to_swp_entry(*foliop);
2125 	*foliop = NULL;
2126 
2127 	if (is_poisoned_swp_entry(swap))
2128 		return -EIO;
2129 
2130 	si = get_swap_device(swap);
2131 	if (!si) {
2132 		if (!shmem_confirm_swap(mapping, index, swap))
2133 			return -EEXIST;
2134 		else
2135 			return -EINVAL;
2136 	}
2137 
2138 	/* Look it up and read it in.. */
2139 	folio = swap_cache_get_folio(swap, NULL, 0);
2140 	if (!folio) {
2141 		int split_order;
2142 
2143 		/* Or update major stats only when swapin succeeds?? */
2144 		if (fault_type) {
2145 			*fault_type |= VM_FAULT_MAJOR;
2146 			count_vm_event(PGMAJFAULT);
2147 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2148 		}
2149 
2150 		/*
2151 		 * Now swap device can only swap in order 0 folio, then we
2152 		 * should split the large swap entry stored in the pagecache
2153 		 * if necessary.
2154 		 */
2155 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2156 		if (split_order < 0) {
2157 			error = split_order;
2158 			goto failed;
2159 		}
2160 
2161 		/*
2162 		 * If the large swap entry has already been split, it is
2163 		 * necessary to recalculate the new swap entry based on
2164 		 * the old order alignment.
2165 		 */
2166 		if (split_order > 0) {
2167 			pgoff_t offset = index - round_down(index, 1 << split_order);
2168 
2169 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2170 		}
2171 
2172 		/* Here we actually start the io */
2173 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2174 		if (!folio) {
2175 			error = -ENOMEM;
2176 			goto failed;
2177 		}
2178 	}
2179 
2180 	/* We have to do this with folio locked to prevent races */
2181 	folio_lock(folio);
2182 	if (!folio_test_swapcache(folio) ||
2183 	    folio->swap.val != swap.val ||
2184 	    !shmem_confirm_swap(mapping, index, swap)) {
2185 		error = -EEXIST;
2186 		goto unlock;
2187 	}
2188 	if (!folio_test_uptodate(folio)) {
2189 		error = -EIO;
2190 		goto failed;
2191 	}
2192 	folio_wait_writeback(folio);
2193 	nr_pages = folio_nr_pages(folio);
2194 
2195 	/*
2196 	 * Some architectures may have to restore extra metadata to the
2197 	 * folio after reading from swap.
2198 	 */
2199 	arch_swap_restore(folio_swap(swap, folio), folio);
2200 
2201 	if (shmem_should_replace_folio(folio, gfp)) {
2202 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2203 		if (error)
2204 			goto failed;
2205 	}
2206 
2207 	error = shmem_add_to_page_cache(folio, mapping,
2208 					round_down(index, nr_pages),
2209 					swp_to_radix_entry(swap), gfp);
2210 	if (error)
2211 		goto failed;
2212 
2213 	shmem_recalc_inode(inode, 0, -nr_pages);
2214 
2215 	if (sgp == SGP_WRITE)
2216 		folio_mark_accessed(folio);
2217 
2218 	delete_from_swap_cache(folio);
2219 	folio_mark_dirty(folio);
2220 	swap_free_nr(swap, nr_pages);
2221 	put_swap_device(si);
2222 
2223 	*foliop = folio;
2224 	return 0;
2225 failed:
2226 	if (!shmem_confirm_swap(mapping, index, swap))
2227 		error = -EEXIST;
2228 	if (error == -EIO)
2229 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2230 unlock:
2231 	if (folio) {
2232 		folio_unlock(folio);
2233 		folio_put(folio);
2234 	}
2235 	put_swap_device(si);
2236 
2237 	return error;
2238 }
2239 
2240 /*
2241  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2242  *
2243  * If we allocate a new one we do not mark it dirty. That's up to the
2244  * vm. If we swap it in we mark it dirty since we also free the swap
2245  * entry since a page cannot live in both the swap and page cache.
2246  *
2247  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2248  */
2249 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2250 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2251 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2252 {
2253 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2254 	struct mm_struct *fault_mm;
2255 	struct folio *folio;
2256 	int error;
2257 	bool alloced;
2258 	unsigned long orders = 0;
2259 
2260 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2261 		return -EINVAL;
2262 
2263 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2264 		return -EFBIG;
2265 repeat:
2266 	if (sgp <= SGP_CACHE &&
2267 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2268 		return -EINVAL;
2269 
2270 	alloced = false;
2271 	fault_mm = vma ? vma->vm_mm : NULL;
2272 
2273 	folio = filemap_get_entry(inode->i_mapping, index);
2274 	if (folio && vma && userfaultfd_minor(vma)) {
2275 		if (!xa_is_value(folio))
2276 			folio_put(folio);
2277 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2278 		return 0;
2279 	}
2280 
2281 	if (xa_is_value(folio)) {
2282 		error = shmem_swapin_folio(inode, index, &folio,
2283 					   sgp, gfp, vma, fault_type);
2284 		if (error == -EEXIST)
2285 			goto repeat;
2286 
2287 		*foliop = folio;
2288 		return error;
2289 	}
2290 
2291 	if (folio) {
2292 		folio_lock(folio);
2293 
2294 		/* Has the folio been truncated or swapped out? */
2295 		if (unlikely(folio->mapping != inode->i_mapping)) {
2296 			folio_unlock(folio);
2297 			folio_put(folio);
2298 			goto repeat;
2299 		}
2300 		if (sgp == SGP_WRITE)
2301 			folio_mark_accessed(folio);
2302 		if (folio_test_uptodate(folio))
2303 			goto out;
2304 		/* fallocated folio */
2305 		if (sgp != SGP_READ)
2306 			goto clear;
2307 		folio_unlock(folio);
2308 		folio_put(folio);
2309 	}
2310 
2311 	/*
2312 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2313 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2314 	 */
2315 	*foliop = NULL;
2316 	if (sgp == SGP_READ)
2317 		return 0;
2318 	if (sgp == SGP_NOALLOC)
2319 		return -ENOENT;
2320 
2321 	/*
2322 	 * Fast cache lookup and swap lookup did not find it: allocate.
2323 	 */
2324 
2325 	if (vma && userfaultfd_missing(vma)) {
2326 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2327 		return 0;
2328 	}
2329 
2330 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2331 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2332 	if (orders > 0) {
2333 		gfp_t huge_gfp;
2334 
2335 		huge_gfp = vma_thp_gfp_mask(vma);
2336 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2337 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2338 				inode, index, fault_mm, orders);
2339 		if (!IS_ERR(folio)) {
2340 			if (folio_test_pmd_mappable(folio))
2341 				count_vm_event(THP_FILE_ALLOC);
2342 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2343 			goto alloced;
2344 		}
2345 		if (PTR_ERR(folio) == -EEXIST)
2346 			goto repeat;
2347 	}
2348 
2349 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2350 	if (IS_ERR(folio)) {
2351 		error = PTR_ERR(folio);
2352 		if (error == -EEXIST)
2353 			goto repeat;
2354 		folio = NULL;
2355 		goto unlock;
2356 	}
2357 
2358 alloced:
2359 	alloced = true;
2360 	if (folio_test_large(folio) &&
2361 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2362 					folio_next_index(folio)) {
2363 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2364 		struct shmem_inode_info *info = SHMEM_I(inode);
2365 		/*
2366 		 * Part of the large folio is beyond i_size: subject
2367 		 * to shrink under memory pressure.
2368 		 */
2369 		spin_lock(&sbinfo->shrinklist_lock);
2370 		/*
2371 		 * _careful to defend against unlocked access to
2372 		 * ->shrink_list in shmem_unused_huge_shrink()
2373 		 */
2374 		if (list_empty_careful(&info->shrinklist)) {
2375 			list_add_tail(&info->shrinklist,
2376 				      &sbinfo->shrinklist);
2377 			sbinfo->shrinklist_len++;
2378 		}
2379 		spin_unlock(&sbinfo->shrinklist_lock);
2380 	}
2381 
2382 	if (sgp == SGP_WRITE)
2383 		folio_set_referenced(folio);
2384 	/*
2385 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2386 	 */
2387 	if (sgp == SGP_FALLOC)
2388 		sgp = SGP_WRITE;
2389 clear:
2390 	/*
2391 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2392 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2393 	 * it now, lest undo on failure cancel our earlier guarantee.
2394 	 */
2395 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2396 		long i, n = folio_nr_pages(folio);
2397 
2398 		for (i = 0; i < n; i++)
2399 			clear_highpage(folio_page(folio, i));
2400 		flush_dcache_folio(folio);
2401 		folio_mark_uptodate(folio);
2402 	}
2403 
2404 	/* Perhaps the file has been truncated since we checked */
2405 	if (sgp <= SGP_CACHE &&
2406 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2407 		error = -EINVAL;
2408 		goto unlock;
2409 	}
2410 out:
2411 	*foliop = folio;
2412 	return 0;
2413 
2414 	/*
2415 	 * Error recovery.
2416 	 */
2417 unlock:
2418 	if (alloced)
2419 		filemap_remove_folio(folio);
2420 	shmem_recalc_inode(inode, 0, 0);
2421 	if (folio) {
2422 		folio_unlock(folio);
2423 		folio_put(folio);
2424 	}
2425 	return error;
2426 }
2427 
2428 /**
2429  * shmem_get_folio - find, and lock a shmem folio.
2430  * @inode:	inode to search
2431  * @index:	the page index.
2432  * @write_end:	end of a write, could extend inode size
2433  * @foliop:	pointer to the folio if found
2434  * @sgp:	SGP_* flags to control behavior
2435  *
2436  * Looks up the page cache entry at @inode & @index.  If a folio is
2437  * present, it is returned locked with an increased refcount.
2438  *
2439  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2440  * before unlocking the folio to ensure that the folio is not reclaimed.
2441  * There is no need to reserve space before calling folio_mark_dirty().
2442  *
2443  * When no folio is found, the behavior depends on @sgp:
2444  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2445  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2446  *  - for all other flags a new folio is allocated, inserted into the
2447  *    page cache and returned locked in @foliop.
2448  *
2449  * Context: May sleep.
2450  * Return: 0 if successful, else a negative error code.
2451  */
2452 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2453 		    struct folio **foliop, enum sgp_type sgp)
2454 {
2455 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2456 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2457 }
2458 EXPORT_SYMBOL_GPL(shmem_get_folio);
2459 
2460 /*
2461  * This is like autoremove_wake_function, but it removes the wait queue
2462  * entry unconditionally - even if something else had already woken the
2463  * target.
2464  */
2465 static int synchronous_wake_function(wait_queue_entry_t *wait,
2466 			unsigned int mode, int sync, void *key)
2467 {
2468 	int ret = default_wake_function(wait, mode, sync, key);
2469 	list_del_init(&wait->entry);
2470 	return ret;
2471 }
2472 
2473 /*
2474  * Trinity finds that probing a hole which tmpfs is punching can
2475  * prevent the hole-punch from ever completing: which in turn
2476  * locks writers out with its hold on i_rwsem.  So refrain from
2477  * faulting pages into the hole while it's being punched.  Although
2478  * shmem_undo_range() does remove the additions, it may be unable to
2479  * keep up, as each new page needs its own unmap_mapping_range() call,
2480  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2481  *
2482  * It does not matter if we sometimes reach this check just before the
2483  * hole-punch begins, so that one fault then races with the punch:
2484  * we just need to make racing faults a rare case.
2485  *
2486  * The implementation below would be much simpler if we just used a
2487  * standard mutex or completion: but we cannot take i_rwsem in fault,
2488  * and bloating every shmem inode for this unlikely case would be sad.
2489  */
2490 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2491 {
2492 	struct shmem_falloc *shmem_falloc;
2493 	struct file *fpin = NULL;
2494 	vm_fault_t ret = 0;
2495 
2496 	spin_lock(&inode->i_lock);
2497 	shmem_falloc = inode->i_private;
2498 	if (shmem_falloc &&
2499 	    shmem_falloc->waitq &&
2500 	    vmf->pgoff >= shmem_falloc->start &&
2501 	    vmf->pgoff < shmem_falloc->next) {
2502 		wait_queue_head_t *shmem_falloc_waitq;
2503 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2504 
2505 		ret = VM_FAULT_NOPAGE;
2506 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2507 		shmem_falloc_waitq = shmem_falloc->waitq;
2508 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2509 				TASK_UNINTERRUPTIBLE);
2510 		spin_unlock(&inode->i_lock);
2511 		schedule();
2512 
2513 		/*
2514 		 * shmem_falloc_waitq points into the shmem_fallocate()
2515 		 * stack of the hole-punching task: shmem_falloc_waitq
2516 		 * is usually invalid by the time we reach here, but
2517 		 * finish_wait() does not dereference it in that case;
2518 		 * though i_lock needed lest racing with wake_up_all().
2519 		 */
2520 		spin_lock(&inode->i_lock);
2521 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2522 	}
2523 	spin_unlock(&inode->i_lock);
2524 	if (fpin) {
2525 		fput(fpin);
2526 		ret = VM_FAULT_RETRY;
2527 	}
2528 	return ret;
2529 }
2530 
2531 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2532 {
2533 	struct inode *inode = file_inode(vmf->vma->vm_file);
2534 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2535 	struct folio *folio = NULL;
2536 	vm_fault_t ret = 0;
2537 	int err;
2538 
2539 	/*
2540 	 * Trinity finds that probing a hole which tmpfs is punching can
2541 	 * prevent the hole-punch from ever completing: noted in i_private.
2542 	 */
2543 	if (unlikely(inode->i_private)) {
2544 		ret = shmem_falloc_wait(vmf, inode);
2545 		if (ret)
2546 			return ret;
2547 	}
2548 
2549 	WARN_ON_ONCE(vmf->page != NULL);
2550 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2551 				  gfp, vmf, &ret);
2552 	if (err)
2553 		return vmf_error(err);
2554 	if (folio) {
2555 		vmf->page = folio_file_page(folio, vmf->pgoff);
2556 		ret |= VM_FAULT_LOCKED;
2557 	}
2558 	return ret;
2559 }
2560 
2561 unsigned long shmem_get_unmapped_area(struct file *file,
2562 				      unsigned long uaddr, unsigned long len,
2563 				      unsigned long pgoff, unsigned long flags)
2564 {
2565 	unsigned long addr;
2566 	unsigned long offset;
2567 	unsigned long inflated_len;
2568 	unsigned long inflated_addr;
2569 	unsigned long inflated_offset;
2570 	unsigned long hpage_size;
2571 
2572 	if (len > TASK_SIZE)
2573 		return -ENOMEM;
2574 
2575 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2576 				    flags);
2577 
2578 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2579 		return addr;
2580 	if (IS_ERR_VALUE(addr))
2581 		return addr;
2582 	if (addr & ~PAGE_MASK)
2583 		return addr;
2584 	if (addr > TASK_SIZE - len)
2585 		return addr;
2586 
2587 	if (shmem_huge == SHMEM_HUGE_DENY)
2588 		return addr;
2589 	if (flags & MAP_FIXED)
2590 		return addr;
2591 	/*
2592 	 * Our priority is to support MAP_SHARED mapped hugely;
2593 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2594 	 * But if caller specified an address hint and we allocated area there
2595 	 * successfully, respect that as before.
2596 	 */
2597 	if (uaddr == addr)
2598 		return addr;
2599 
2600 	hpage_size = HPAGE_PMD_SIZE;
2601 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2602 		struct super_block *sb;
2603 		unsigned long __maybe_unused hpage_orders;
2604 		int order = 0;
2605 
2606 		if (file) {
2607 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2608 			sb = file_inode(file)->i_sb;
2609 		} else {
2610 			/*
2611 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2612 			 * for "/dev/zero", to create a shared anonymous object.
2613 			 */
2614 			if (IS_ERR(shm_mnt))
2615 				return addr;
2616 			sb = shm_mnt->mnt_sb;
2617 
2618 			/*
2619 			 * Find the highest mTHP order used for anonymous shmem to
2620 			 * provide a suitable alignment address.
2621 			 */
2622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2623 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2624 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2625 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2626 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2627 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2628 
2629 			if (hpage_orders > 0) {
2630 				order = highest_order(hpage_orders);
2631 				hpage_size = PAGE_SIZE << order;
2632 			}
2633 #endif
2634 		}
2635 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2636 			return addr;
2637 	}
2638 
2639 	if (len < hpage_size)
2640 		return addr;
2641 
2642 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2643 	if (offset && offset + len < 2 * hpage_size)
2644 		return addr;
2645 	if ((addr & (hpage_size - 1)) == offset)
2646 		return addr;
2647 
2648 	inflated_len = len + hpage_size - PAGE_SIZE;
2649 	if (inflated_len > TASK_SIZE)
2650 		return addr;
2651 	if (inflated_len < len)
2652 		return addr;
2653 
2654 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2655 					     inflated_len, 0, flags);
2656 	if (IS_ERR_VALUE(inflated_addr))
2657 		return addr;
2658 	if (inflated_addr & ~PAGE_MASK)
2659 		return addr;
2660 
2661 	inflated_offset = inflated_addr & (hpage_size - 1);
2662 	inflated_addr += offset - inflated_offset;
2663 	if (inflated_offset > offset)
2664 		inflated_addr += hpage_size;
2665 
2666 	if (inflated_addr > TASK_SIZE - len)
2667 		return addr;
2668 	return inflated_addr;
2669 }
2670 
2671 #ifdef CONFIG_NUMA
2672 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2673 {
2674 	struct inode *inode = file_inode(vma->vm_file);
2675 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2676 }
2677 
2678 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2679 					  unsigned long addr, pgoff_t *ilx)
2680 {
2681 	struct inode *inode = file_inode(vma->vm_file);
2682 	pgoff_t index;
2683 
2684 	/*
2685 	 * Bias interleave by inode number to distribute better across nodes;
2686 	 * but this interface is independent of which page order is used, so
2687 	 * supplies only that bias, letting caller apply the offset (adjusted
2688 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2689 	 */
2690 	*ilx = inode->i_ino;
2691 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2692 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2693 }
2694 
2695 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2696 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2697 {
2698 	struct mempolicy *mpol;
2699 
2700 	/* Bias interleave by inode number to distribute better across nodes */
2701 	*ilx = info->vfs_inode.i_ino + (index >> order);
2702 
2703 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2704 	return mpol ? mpol : get_task_policy(current);
2705 }
2706 #else
2707 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2708 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2709 {
2710 	*ilx = 0;
2711 	return NULL;
2712 }
2713 #endif /* CONFIG_NUMA */
2714 
2715 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2716 {
2717 	struct inode *inode = file_inode(file);
2718 	struct shmem_inode_info *info = SHMEM_I(inode);
2719 	int retval = -ENOMEM;
2720 
2721 	/*
2722 	 * What serializes the accesses to info->flags?
2723 	 * ipc_lock_object() when called from shmctl_do_lock(),
2724 	 * no serialization needed when called from shm_destroy().
2725 	 */
2726 	if (lock && !(info->flags & VM_LOCKED)) {
2727 		if (!user_shm_lock(inode->i_size, ucounts))
2728 			goto out_nomem;
2729 		info->flags |= VM_LOCKED;
2730 		mapping_set_unevictable(file->f_mapping);
2731 	}
2732 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2733 		user_shm_unlock(inode->i_size, ucounts);
2734 		info->flags &= ~VM_LOCKED;
2735 		mapping_clear_unevictable(file->f_mapping);
2736 	}
2737 	retval = 0;
2738 
2739 out_nomem:
2740 	return retval;
2741 }
2742 
2743 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2744 {
2745 	struct inode *inode = file_inode(file);
2746 	struct shmem_inode_info *info = SHMEM_I(inode);
2747 	int ret;
2748 
2749 	ret = seal_check_write(info->seals, vma);
2750 	if (ret)
2751 		return ret;
2752 
2753 	file_accessed(file);
2754 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2755 	if (inode->i_nlink)
2756 		vma->vm_ops = &shmem_vm_ops;
2757 	else
2758 		vma->vm_ops = &shmem_anon_vm_ops;
2759 	return 0;
2760 }
2761 
2762 static int shmem_file_open(struct inode *inode, struct file *file)
2763 {
2764 	file->f_mode |= FMODE_CAN_ODIRECT;
2765 	return generic_file_open(inode, file);
2766 }
2767 
2768 #ifdef CONFIG_TMPFS_XATTR
2769 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2770 
2771 /*
2772  * chattr's fsflags are unrelated to extended attributes,
2773  * but tmpfs has chosen to enable them under the same config option.
2774  */
2775 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2776 {
2777 	unsigned int i_flags = 0;
2778 
2779 	if (fsflags & FS_NOATIME_FL)
2780 		i_flags |= S_NOATIME;
2781 	if (fsflags & FS_APPEND_FL)
2782 		i_flags |= S_APPEND;
2783 	if (fsflags & FS_IMMUTABLE_FL)
2784 		i_flags |= S_IMMUTABLE;
2785 	/*
2786 	 * But FS_NODUMP_FL does not require any action in i_flags.
2787 	 */
2788 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2789 }
2790 #else
2791 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2792 {
2793 }
2794 #define shmem_initxattrs NULL
2795 #endif
2796 
2797 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2798 {
2799 	return &SHMEM_I(inode)->dir_offsets;
2800 }
2801 
2802 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2803 					     struct super_block *sb,
2804 					     struct inode *dir, umode_t mode,
2805 					     dev_t dev, unsigned long flags)
2806 {
2807 	struct inode *inode;
2808 	struct shmem_inode_info *info;
2809 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2810 	ino_t ino;
2811 	int err;
2812 
2813 	err = shmem_reserve_inode(sb, &ino);
2814 	if (err)
2815 		return ERR_PTR(err);
2816 
2817 	inode = new_inode(sb);
2818 	if (!inode) {
2819 		shmem_free_inode(sb, 0);
2820 		return ERR_PTR(-ENOSPC);
2821 	}
2822 
2823 	inode->i_ino = ino;
2824 	inode_init_owner(idmap, inode, dir, mode);
2825 	inode->i_blocks = 0;
2826 	simple_inode_init_ts(inode);
2827 	inode->i_generation = get_random_u32();
2828 	info = SHMEM_I(inode);
2829 	memset(info, 0, (char *)inode - (char *)info);
2830 	spin_lock_init(&info->lock);
2831 	atomic_set(&info->stop_eviction, 0);
2832 	info->seals = F_SEAL_SEAL;
2833 	info->flags = flags & VM_NORESERVE;
2834 	info->i_crtime = inode_get_mtime(inode);
2835 	info->fsflags = (dir == NULL) ? 0 :
2836 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2837 	if (info->fsflags)
2838 		shmem_set_inode_flags(inode, info->fsflags);
2839 	INIT_LIST_HEAD(&info->shrinklist);
2840 	INIT_LIST_HEAD(&info->swaplist);
2841 	simple_xattrs_init(&info->xattrs);
2842 	cache_no_acl(inode);
2843 	if (sbinfo->noswap)
2844 		mapping_set_unevictable(inode->i_mapping);
2845 	mapping_set_large_folios(inode->i_mapping);
2846 
2847 	switch (mode & S_IFMT) {
2848 	default:
2849 		inode->i_op = &shmem_special_inode_operations;
2850 		init_special_inode(inode, mode, dev);
2851 		break;
2852 	case S_IFREG:
2853 		inode->i_mapping->a_ops = &shmem_aops;
2854 		inode->i_op = &shmem_inode_operations;
2855 		inode->i_fop = &shmem_file_operations;
2856 		mpol_shared_policy_init(&info->policy,
2857 					 shmem_get_sbmpol(sbinfo));
2858 		break;
2859 	case S_IFDIR:
2860 		inc_nlink(inode);
2861 		/* Some things misbehave if size == 0 on a directory */
2862 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2863 		inode->i_op = &shmem_dir_inode_operations;
2864 		inode->i_fop = &simple_offset_dir_operations;
2865 		simple_offset_init(shmem_get_offset_ctx(inode));
2866 		break;
2867 	case S_IFLNK:
2868 		/*
2869 		 * Must not load anything in the rbtree,
2870 		 * mpol_free_shared_policy will not be called.
2871 		 */
2872 		mpol_shared_policy_init(&info->policy, NULL);
2873 		break;
2874 	}
2875 
2876 	lockdep_annotate_inode_mutex_key(inode);
2877 	return inode;
2878 }
2879 
2880 #ifdef CONFIG_TMPFS_QUOTA
2881 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2882 				     struct super_block *sb, struct inode *dir,
2883 				     umode_t mode, dev_t dev, unsigned long flags)
2884 {
2885 	int err;
2886 	struct inode *inode;
2887 
2888 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2889 	if (IS_ERR(inode))
2890 		return inode;
2891 
2892 	err = dquot_initialize(inode);
2893 	if (err)
2894 		goto errout;
2895 
2896 	err = dquot_alloc_inode(inode);
2897 	if (err) {
2898 		dquot_drop(inode);
2899 		goto errout;
2900 	}
2901 	return inode;
2902 
2903 errout:
2904 	inode->i_flags |= S_NOQUOTA;
2905 	iput(inode);
2906 	return ERR_PTR(err);
2907 }
2908 #else
2909 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2910 				     struct super_block *sb, struct inode *dir,
2911 				     umode_t mode, dev_t dev, unsigned long flags)
2912 {
2913 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2914 }
2915 #endif /* CONFIG_TMPFS_QUOTA */
2916 
2917 #ifdef CONFIG_USERFAULTFD
2918 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2919 			   struct vm_area_struct *dst_vma,
2920 			   unsigned long dst_addr,
2921 			   unsigned long src_addr,
2922 			   uffd_flags_t flags,
2923 			   struct folio **foliop)
2924 {
2925 	struct inode *inode = file_inode(dst_vma->vm_file);
2926 	struct shmem_inode_info *info = SHMEM_I(inode);
2927 	struct address_space *mapping = inode->i_mapping;
2928 	gfp_t gfp = mapping_gfp_mask(mapping);
2929 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2930 	void *page_kaddr;
2931 	struct folio *folio;
2932 	int ret;
2933 	pgoff_t max_off;
2934 
2935 	if (shmem_inode_acct_blocks(inode, 1)) {
2936 		/*
2937 		 * We may have got a page, returned -ENOENT triggering a retry,
2938 		 * and now we find ourselves with -ENOMEM. Release the page, to
2939 		 * avoid a BUG_ON in our caller.
2940 		 */
2941 		if (unlikely(*foliop)) {
2942 			folio_put(*foliop);
2943 			*foliop = NULL;
2944 		}
2945 		return -ENOMEM;
2946 	}
2947 
2948 	if (!*foliop) {
2949 		ret = -ENOMEM;
2950 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2951 		if (!folio)
2952 			goto out_unacct_blocks;
2953 
2954 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2955 			page_kaddr = kmap_local_folio(folio, 0);
2956 			/*
2957 			 * The read mmap_lock is held here.  Despite the
2958 			 * mmap_lock being read recursive a deadlock is still
2959 			 * possible if a writer has taken a lock.  For example:
2960 			 *
2961 			 * process A thread 1 takes read lock on own mmap_lock
2962 			 * process A thread 2 calls mmap, blocks taking write lock
2963 			 * process B thread 1 takes page fault, read lock on own mmap lock
2964 			 * process B thread 2 calls mmap, blocks taking write lock
2965 			 * process A thread 1 blocks taking read lock on process B
2966 			 * process B thread 1 blocks taking read lock on process A
2967 			 *
2968 			 * Disable page faults to prevent potential deadlock
2969 			 * and retry the copy outside the mmap_lock.
2970 			 */
2971 			pagefault_disable();
2972 			ret = copy_from_user(page_kaddr,
2973 					     (const void __user *)src_addr,
2974 					     PAGE_SIZE);
2975 			pagefault_enable();
2976 			kunmap_local(page_kaddr);
2977 
2978 			/* fallback to copy_from_user outside mmap_lock */
2979 			if (unlikely(ret)) {
2980 				*foliop = folio;
2981 				ret = -ENOENT;
2982 				/* don't free the page */
2983 				goto out_unacct_blocks;
2984 			}
2985 
2986 			flush_dcache_folio(folio);
2987 		} else {		/* ZEROPAGE */
2988 			clear_user_highpage(&folio->page, dst_addr);
2989 		}
2990 	} else {
2991 		folio = *foliop;
2992 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2993 		*foliop = NULL;
2994 	}
2995 
2996 	VM_BUG_ON(folio_test_locked(folio));
2997 	VM_BUG_ON(folio_test_swapbacked(folio));
2998 	__folio_set_locked(folio);
2999 	__folio_set_swapbacked(folio);
3000 	__folio_mark_uptodate(folio);
3001 
3002 	ret = -EFAULT;
3003 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3004 	if (unlikely(pgoff >= max_off))
3005 		goto out_release;
3006 
3007 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3008 	if (ret)
3009 		goto out_release;
3010 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3011 	if (ret)
3012 		goto out_release;
3013 
3014 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3015 				       &folio->page, true, flags);
3016 	if (ret)
3017 		goto out_delete_from_cache;
3018 
3019 	shmem_recalc_inode(inode, 1, 0);
3020 	folio_unlock(folio);
3021 	return 0;
3022 out_delete_from_cache:
3023 	filemap_remove_folio(folio);
3024 out_release:
3025 	folio_unlock(folio);
3026 	folio_put(folio);
3027 out_unacct_blocks:
3028 	shmem_inode_unacct_blocks(inode, 1);
3029 	return ret;
3030 }
3031 #endif /* CONFIG_USERFAULTFD */
3032 
3033 #ifdef CONFIG_TMPFS
3034 static const struct inode_operations shmem_symlink_inode_operations;
3035 static const struct inode_operations shmem_short_symlink_operations;
3036 
3037 static int
3038 shmem_write_begin(struct file *file, struct address_space *mapping,
3039 			loff_t pos, unsigned len,
3040 			struct folio **foliop, void **fsdata)
3041 {
3042 	struct inode *inode = mapping->host;
3043 	struct shmem_inode_info *info = SHMEM_I(inode);
3044 	pgoff_t index = pos >> PAGE_SHIFT;
3045 	struct folio *folio;
3046 	int ret = 0;
3047 
3048 	/* i_rwsem is held by caller */
3049 	if (unlikely(info->seals & (F_SEAL_GROW |
3050 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3051 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3052 			return -EPERM;
3053 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3054 			return -EPERM;
3055 	}
3056 
3057 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3058 	if (ret)
3059 		return ret;
3060 
3061 	if (folio_test_hwpoison(folio) ||
3062 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3063 		folio_unlock(folio);
3064 		folio_put(folio);
3065 		return -EIO;
3066 	}
3067 
3068 	*foliop = folio;
3069 	return 0;
3070 }
3071 
3072 static int
3073 shmem_write_end(struct file *file, struct address_space *mapping,
3074 			loff_t pos, unsigned len, unsigned copied,
3075 			struct folio *folio, void *fsdata)
3076 {
3077 	struct inode *inode = mapping->host;
3078 
3079 	if (pos + copied > inode->i_size)
3080 		i_size_write(inode, pos + copied);
3081 
3082 	if (!folio_test_uptodate(folio)) {
3083 		if (copied < folio_size(folio)) {
3084 			size_t from = offset_in_folio(folio, pos);
3085 			folio_zero_segments(folio, 0, from,
3086 					from + copied, folio_size(folio));
3087 		}
3088 		folio_mark_uptodate(folio);
3089 	}
3090 	folio_mark_dirty(folio);
3091 	folio_unlock(folio);
3092 	folio_put(folio);
3093 
3094 	return copied;
3095 }
3096 
3097 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3098 {
3099 	struct file *file = iocb->ki_filp;
3100 	struct inode *inode = file_inode(file);
3101 	struct address_space *mapping = inode->i_mapping;
3102 	pgoff_t index;
3103 	unsigned long offset;
3104 	int error = 0;
3105 	ssize_t retval = 0;
3106 	loff_t *ppos = &iocb->ki_pos;
3107 
3108 	index = *ppos >> PAGE_SHIFT;
3109 	offset = *ppos & ~PAGE_MASK;
3110 
3111 	for (;;) {
3112 		struct folio *folio = NULL;
3113 		struct page *page = NULL;
3114 		pgoff_t end_index;
3115 		unsigned long nr, ret;
3116 		loff_t i_size = i_size_read(inode);
3117 
3118 		end_index = i_size >> PAGE_SHIFT;
3119 		if (index > end_index)
3120 			break;
3121 		if (index == end_index) {
3122 			nr = i_size & ~PAGE_MASK;
3123 			if (nr <= offset)
3124 				break;
3125 		}
3126 
3127 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3128 		if (error) {
3129 			if (error == -EINVAL)
3130 				error = 0;
3131 			break;
3132 		}
3133 		if (folio) {
3134 			folio_unlock(folio);
3135 
3136 			page = folio_file_page(folio, index);
3137 			if (PageHWPoison(page)) {
3138 				folio_put(folio);
3139 				error = -EIO;
3140 				break;
3141 			}
3142 		}
3143 
3144 		/*
3145 		 * We must evaluate after, since reads (unlike writes)
3146 		 * are called without i_rwsem protection against truncate
3147 		 */
3148 		nr = PAGE_SIZE;
3149 		i_size = i_size_read(inode);
3150 		end_index = i_size >> PAGE_SHIFT;
3151 		if (index == end_index) {
3152 			nr = i_size & ~PAGE_MASK;
3153 			if (nr <= offset) {
3154 				if (folio)
3155 					folio_put(folio);
3156 				break;
3157 			}
3158 		}
3159 		nr -= offset;
3160 
3161 		if (folio) {
3162 			/*
3163 			 * If users can be writing to this page using arbitrary
3164 			 * virtual addresses, take care about potential aliasing
3165 			 * before reading the page on the kernel side.
3166 			 */
3167 			if (mapping_writably_mapped(mapping))
3168 				flush_dcache_page(page);
3169 			/*
3170 			 * Mark the page accessed if we read the beginning.
3171 			 */
3172 			if (!offset)
3173 				folio_mark_accessed(folio);
3174 			/*
3175 			 * Ok, we have the page, and it's up-to-date, so
3176 			 * now we can copy it to user space...
3177 			 */
3178 			ret = copy_page_to_iter(page, offset, nr, to);
3179 			folio_put(folio);
3180 
3181 		} else if (user_backed_iter(to)) {
3182 			/*
3183 			 * Copy to user tends to be so well optimized, but
3184 			 * clear_user() not so much, that it is noticeably
3185 			 * faster to copy the zero page instead of clearing.
3186 			 */
3187 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3188 		} else {
3189 			/*
3190 			 * But submitting the same page twice in a row to
3191 			 * splice() - or others? - can result in confusion:
3192 			 * so don't attempt that optimization on pipes etc.
3193 			 */
3194 			ret = iov_iter_zero(nr, to);
3195 		}
3196 
3197 		retval += ret;
3198 		offset += ret;
3199 		index += offset >> PAGE_SHIFT;
3200 		offset &= ~PAGE_MASK;
3201 
3202 		if (!iov_iter_count(to))
3203 			break;
3204 		if (ret < nr) {
3205 			error = -EFAULT;
3206 			break;
3207 		}
3208 		cond_resched();
3209 	}
3210 
3211 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3212 	file_accessed(file);
3213 	return retval ? retval : error;
3214 }
3215 
3216 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3217 {
3218 	struct file *file = iocb->ki_filp;
3219 	struct inode *inode = file->f_mapping->host;
3220 	ssize_t ret;
3221 
3222 	inode_lock(inode);
3223 	ret = generic_write_checks(iocb, from);
3224 	if (ret <= 0)
3225 		goto unlock;
3226 	ret = file_remove_privs(file);
3227 	if (ret)
3228 		goto unlock;
3229 	ret = file_update_time(file);
3230 	if (ret)
3231 		goto unlock;
3232 	ret = generic_perform_write(iocb, from);
3233 unlock:
3234 	inode_unlock(inode);
3235 	return ret;
3236 }
3237 
3238 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3239 			      struct pipe_buffer *buf)
3240 {
3241 	return true;
3242 }
3243 
3244 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3245 				  struct pipe_buffer *buf)
3246 {
3247 }
3248 
3249 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3250 				    struct pipe_buffer *buf)
3251 {
3252 	return false;
3253 }
3254 
3255 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3256 	.release	= zero_pipe_buf_release,
3257 	.try_steal	= zero_pipe_buf_try_steal,
3258 	.get		= zero_pipe_buf_get,
3259 };
3260 
3261 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3262 					loff_t fpos, size_t size)
3263 {
3264 	size_t offset = fpos & ~PAGE_MASK;
3265 
3266 	size = min_t(size_t, size, PAGE_SIZE - offset);
3267 
3268 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3269 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3270 
3271 		*buf = (struct pipe_buffer) {
3272 			.ops	= &zero_pipe_buf_ops,
3273 			.page	= ZERO_PAGE(0),
3274 			.offset	= offset,
3275 			.len	= size,
3276 		};
3277 		pipe->head++;
3278 	}
3279 
3280 	return size;
3281 }
3282 
3283 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3284 				      struct pipe_inode_info *pipe,
3285 				      size_t len, unsigned int flags)
3286 {
3287 	struct inode *inode = file_inode(in);
3288 	struct address_space *mapping = inode->i_mapping;
3289 	struct folio *folio = NULL;
3290 	size_t total_spliced = 0, used, npages, n, part;
3291 	loff_t isize;
3292 	int error = 0;
3293 
3294 	/* Work out how much data we can actually add into the pipe */
3295 	used = pipe_occupancy(pipe->head, pipe->tail);
3296 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3297 	len = min_t(size_t, len, npages * PAGE_SIZE);
3298 
3299 	do {
3300 		if (*ppos >= i_size_read(inode))
3301 			break;
3302 
3303 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
3304 					SGP_READ);
3305 		if (error) {
3306 			if (error == -EINVAL)
3307 				error = 0;
3308 			break;
3309 		}
3310 		if (folio) {
3311 			folio_unlock(folio);
3312 
3313 			if (folio_test_hwpoison(folio) ||
3314 			    (folio_test_large(folio) &&
3315 			     folio_test_has_hwpoisoned(folio))) {
3316 				error = -EIO;
3317 				break;
3318 			}
3319 		}
3320 
3321 		/*
3322 		 * i_size must be checked after we know the pages are Uptodate.
3323 		 *
3324 		 * Checking i_size after the check allows us to calculate
3325 		 * the correct value for "nr", which means the zero-filled
3326 		 * part of the page is not copied back to userspace (unless
3327 		 * another truncate extends the file - this is desired though).
3328 		 */
3329 		isize = i_size_read(inode);
3330 		if (unlikely(*ppos >= isize))
3331 			break;
3332 		part = min_t(loff_t, isize - *ppos, len);
3333 
3334 		if (folio) {
3335 			/*
3336 			 * If users can be writing to this page using arbitrary
3337 			 * virtual addresses, take care about potential aliasing
3338 			 * before reading the page on the kernel side.
3339 			 */
3340 			if (mapping_writably_mapped(mapping))
3341 				flush_dcache_folio(folio);
3342 			folio_mark_accessed(folio);
3343 			/*
3344 			 * Ok, we have the page, and it's up-to-date, so we can
3345 			 * now splice it into the pipe.
3346 			 */
3347 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3348 			folio_put(folio);
3349 			folio = NULL;
3350 		} else {
3351 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3352 		}
3353 
3354 		if (!n)
3355 			break;
3356 		len -= n;
3357 		total_spliced += n;
3358 		*ppos += n;
3359 		in->f_ra.prev_pos = *ppos;
3360 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3361 			break;
3362 
3363 		cond_resched();
3364 	} while (len);
3365 
3366 	if (folio)
3367 		folio_put(folio);
3368 
3369 	file_accessed(in);
3370 	return total_spliced ? total_spliced : error;
3371 }
3372 
3373 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3374 {
3375 	struct address_space *mapping = file->f_mapping;
3376 	struct inode *inode = mapping->host;
3377 
3378 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3379 		return generic_file_llseek_size(file, offset, whence,
3380 					MAX_LFS_FILESIZE, i_size_read(inode));
3381 	if (offset < 0)
3382 		return -ENXIO;
3383 
3384 	inode_lock(inode);
3385 	/* We're holding i_rwsem so we can access i_size directly */
3386 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3387 	if (offset >= 0)
3388 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3389 	inode_unlock(inode);
3390 	return offset;
3391 }
3392 
3393 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3394 							 loff_t len)
3395 {
3396 	struct inode *inode = file_inode(file);
3397 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3398 	struct shmem_inode_info *info = SHMEM_I(inode);
3399 	struct shmem_falloc shmem_falloc;
3400 	pgoff_t start, index, end, undo_fallocend;
3401 	int error;
3402 
3403 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3404 		return -EOPNOTSUPP;
3405 
3406 	inode_lock(inode);
3407 
3408 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3409 		struct address_space *mapping = file->f_mapping;
3410 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3411 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3412 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3413 
3414 		/* protected by i_rwsem */
3415 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3416 			error = -EPERM;
3417 			goto out;
3418 		}
3419 
3420 		shmem_falloc.waitq = &shmem_falloc_waitq;
3421 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3422 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3423 		spin_lock(&inode->i_lock);
3424 		inode->i_private = &shmem_falloc;
3425 		spin_unlock(&inode->i_lock);
3426 
3427 		if ((u64)unmap_end > (u64)unmap_start)
3428 			unmap_mapping_range(mapping, unmap_start,
3429 					    1 + unmap_end - unmap_start, 0);
3430 		shmem_truncate_range(inode, offset, offset + len - 1);
3431 		/* No need to unmap again: hole-punching leaves COWed pages */
3432 
3433 		spin_lock(&inode->i_lock);
3434 		inode->i_private = NULL;
3435 		wake_up_all(&shmem_falloc_waitq);
3436 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3437 		spin_unlock(&inode->i_lock);
3438 		error = 0;
3439 		goto out;
3440 	}
3441 
3442 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3443 	error = inode_newsize_ok(inode, offset + len);
3444 	if (error)
3445 		goto out;
3446 
3447 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3448 		error = -EPERM;
3449 		goto out;
3450 	}
3451 
3452 	start = offset >> PAGE_SHIFT;
3453 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3454 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3455 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3456 		error = -ENOSPC;
3457 		goto out;
3458 	}
3459 
3460 	shmem_falloc.waitq = NULL;
3461 	shmem_falloc.start = start;
3462 	shmem_falloc.next  = start;
3463 	shmem_falloc.nr_falloced = 0;
3464 	shmem_falloc.nr_unswapped = 0;
3465 	spin_lock(&inode->i_lock);
3466 	inode->i_private = &shmem_falloc;
3467 	spin_unlock(&inode->i_lock);
3468 
3469 	/*
3470 	 * info->fallocend is only relevant when huge pages might be
3471 	 * involved: to prevent split_huge_page() freeing fallocated
3472 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3473 	 */
3474 	undo_fallocend = info->fallocend;
3475 	if (info->fallocend < end)
3476 		info->fallocend = end;
3477 
3478 	for (index = start; index < end; ) {
3479 		struct folio *folio;
3480 
3481 		/*
3482 		 * Check for fatal signal so that we abort early in OOM
3483 		 * situations. We don't want to abort in case of non-fatal
3484 		 * signals as large fallocate can take noticeable time and
3485 		 * e.g. periodic timers may result in fallocate constantly
3486 		 * restarting.
3487 		 */
3488 		if (fatal_signal_pending(current))
3489 			error = -EINTR;
3490 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3491 			error = -ENOMEM;
3492 		else
3493 			error = shmem_get_folio(inode, index, offset + len,
3494 						&folio, SGP_FALLOC);
3495 		if (error) {
3496 			info->fallocend = undo_fallocend;
3497 			/* Remove the !uptodate folios we added */
3498 			if (index > start) {
3499 				shmem_undo_range(inode,
3500 				    (loff_t)start << PAGE_SHIFT,
3501 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3502 			}
3503 			goto undone;
3504 		}
3505 
3506 		/*
3507 		 * Here is a more important optimization than it appears:
3508 		 * a second SGP_FALLOC on the same large folio will clear it,
3509 		 * making it uptodate and un-undoable if we fail later.
3510 		 */
3511 		index = folio_next_index(folio);
3512 		/* Beware 32-bit wraparound */
3513 		if (!index)
3514 			index--;
3515 
3516 		/*
3517 		 * Inform shmem_writepage() how far we have reached.
3518 		 * No need for lock or barrier: we have the page lock.
3519 		 */
3520 		if (!folio_test_uptodate(folio))
3521 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3522 		shmem_falloc.next = index;
3523 
3524 		/*
3525 		 * If !uptodate, leave it that way so that freeable folios
3526 		 * can be recognized if we need to rollback on error later.
3527 		 * But mark it dirty so that memory pressure will swap rather
3528 		 * than free the folios we are allocating (and SGP_CACHE folios
3529 		 * might still be clean: we now need to mark those dirty too).
3530 		 */
3531 		folio_mark_dirty(folio);
3532 		folio_unlock(folio);
3533 		folio_put(folio);
3534 		cond_resched();
3535 	}
3536 
3537 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3538 		i_size_write(inode, offset + len);
3539 undone:
3540 	spin_lock(&inode->i_lock);
3541 	inode->i_private = NULL;
3542 	spin_unlock(&inode->i_lock);
3543 out:
3544 	if (!error)
3545 		file_modified(file);
3546 	inode_unlock(inode);
3547 	return error;
3548 }
3549 
3550 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3551 {
3552 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3553 
3554 	buf->f_type = TMPFS_MAGIC;
3555 	buf->f_bsize = PAGE_SIZE;
3556 	buf->f_namelen = NAME_MAX;
3557 	if (sbinfo->max_blocks) {
3558 		buf->f_blocks = sbinfo->max_blocks;
3559 		buf->f_bavail =
3560 		buf->f_bfree  = sbinfo->max_blocks -
3561 				percpu_counter_sum(&sbinfo->used_blocks);
3562 	}
3563 	if (sbinfo->max_inodes) {
3564 		buf->f_files = sbinfo->max_inodes;
3565 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3566 	}
3567 	/* else leave those fields 0 like simple_statfs */
3568 
3569 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3570 
3571 	return 0;
3572 }
3573 
3574 /*
3575  * File creation. Allocate an inode, and we're done..
3576  */
3577 static int
3578 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3579 	    struct dentry *dentry, umode_t mode, dev_t dev)
3580 {
3581 	struct inode *inode;
3582 	int error;
3583 
3584 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3585 	if (IS_ERR(inode))
3586 		return PTR_ERR(inode);
3587 
3588 	error = simple_acl_create(dir, inode);
3589 	if (error)
3590 		goto out_iput;
3591 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3592 					     shmem_initxattrs, NULL);
3593 	if (error && error != -EOPNOTSUPP)
3594 		goto out_iput;
3595 
3596 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3597 	if (error)
3598 		goto out_iput;
3599 
3600 	dir->i_size += BOGO_DIRENT_SIZE;
3601 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3602 	inode_inc_iversion(dir);
3603 	d_instantiate(dentry, inode);
3604 	dget(dentry); /* Extra count - pin the dentry in core */
3605 	return error;
3606 
3607 out_iput:
3608 	iput(inode);
3609 	return error;
3610 }
3611 
3612 static int
3613 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3614 	      struct file *file, umode_t mode)
3615 {
3616 	struct inode *inode;
3617 	int error;
3618 
3619 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3620 	if (IS_ERR(inode)) {
3621 		error = PTR_ERR(inode);
3622 		goto err_out;
3623 	}
3624 	error = security_inode_init_security(inode, dir, NULL,
3625 					     shmem_initxattrs, NULL);
3626 	if (error && error != -EOPNOTSUPP)
3627 		goto out_iput;
3628 	error = simple_acl_create(dir, inode);
3629 	if (error)
3630 		goto out_iput;
3631 	d_tmpfile(file, inode);
3632 
3633 err_out:
3634 	return finish_open_simple(file, error);
3635 out_iput:
3636 	iput(inode);
3637 	return error;
3638 }
3639 
3640 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3641 		       struct dentry *dentry, umode_t mode)
3642 {
3643 	int error;
3644 
3645 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3646 	if (error)
3647 		return error;
3648 	inc_nlink(dir);
3649 	return 0;
3650 }
3651 
3652 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3653 			struct dentry *dentry, umode_t mode, bool excl)
3654 {
3655 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3656 }
3657 
3658 /*
3659  * Link a file..
3660  */
3661 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3662 		      struct dentry *dentry)
3663 {
3664 	struct inode *inode = d_inode(old_dentry);
3665 	int ret = 0;
3666 
3667 	/*
3668 	 * No ordinary (disk based) filesystem counts links as inodes;
3669 	 * but each new link needs a new dentry, pinning lowmem, and
3670 	 * tmpfs dentries cannot be pruned until they are unlinked.
3671 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3672 	 * first link must skip that, to get the accounting right.
3673 	 */
3674 	if (inode->i_nlink) {
3675 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3676 		if (ret)
3677 			goto out;
3678 	}
3679 
3680 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3681 	if (ret) {
3682 		if (inode->i_nlink)
3683 			shmem_free_inode(inode->i_sb, 0);
3684 		goto out;
3685 	}
3686 
3687 	dir->i_size += BOGO_DIRENT_SIZE;
3688 	inode_set_mtime_to_ts(dir,
3689 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3690 	inode_inc_iversion(dir);
3691 	inc_nlink(inode);
3692 	ihold(inode);	/* New dentry reference */
3693 	dget(dentry);	/* Extra pinning count for the created dentry */
3694 	d_instantiate(dentry, inode);
3695 out:
3696 	return ret;
3697 }
3698 
3699 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3700 {
3701 	struct inode *inode = d_inode(dentry);
3702 
3703 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3704 		shmem_free_inode(inode->i_sb, 0);
3705 
3706 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3707 
3708 	dir->i_size -= BOGO_DIRENT_SIZE;
3709 	inode_set_mtime_to_ts(dir,
3710 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3711 	inode_inc_iversion(dir);
3712 	drop_nlink(inode);
3713 	dput(dentry);	/* Undo the count from "create" - does all the work */
3714 	return 0;
3715 }
3716 
3717 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3718 {
3719 	if (!simple_offset_empty(dentry))
3720 		return -ENOTEMPTY;
3721 
3722 	drop_nlink(d_inode(dentry));
3723 	drop_nlink(dir);
3724 	return shmem_unlink(dir, dentry);
3725 }
3726 
3727 static int shmem_whiteout(struct mnt_idmap *idmap,
3728 			  struct inode *old_dir, struct dentry *old_dentry)
3729 {
3730 	struct dentry *whiteout;
3731 	int error;
3732 
3733 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3734 	if (!whiteout)
3735 		return -ENOMEM;
3736 
3737 	error = shmem_mknod(idmap, old_dir, whiteout,
3738 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3739 	dput(whiteout);
3740 	if (error)
3741 		return error;
3742 
3743 	/*
3744 	 * Cheat and hash the whiteout while the old dentry is still in
3745 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3746 	 *
3747 	 * d_lookup() will consistently find one of them at this point,
3748 	 * not sure which one, but that isn't even important.
3749 	 */
3750 	d_rehash(whiteout);
3751 	return 0;
3752 }
3753 
3754 /*
3755  * The VFS layer already does all the dentry stuff for rename,
3756  * we just have to decrement the usage count for the target if
3757  * it exists so that the VFS layer correctly free's it when it
3758  * gets overwritten.
3759  */
3760 static int shmem_rename2(struct mnt_idmap *idmap,
3761 			 struct inode *old_dir, struct dentry *old_dentry,
3762 			 struct inode *new_dir, struct dentry *new_dentry,
3763 			 unsigned int flags)
3764 {
3765 	struct inode *inode = d_inode(old_dentry);
3766 	int they_are_dirs = S_ISDIR(inode->i_mode);
3767 	int error;
3768 
3769 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3770 		return -EINVAL;
3771 
3772 	if (flags & RENAME_EXCHANGE)
3773 		return simple_offset_rename_exchange(old_dir, old_dentry,
3774 						     new_dir, new_dentry);
3775 
3776 	if (!simple_offset_empty(new_dentry))
3777 		return -ENOTEMPTY;
3778 
3779 	if (flags & RENAME_WHITEOUT) {
3780 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3781 		if (error)
3782 			return error;
3783 	}
3784 
3785 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3786 	if (error)
3787 		return error;
3788 
3789 	if (d_really_is_positive(new_dentry)) {
3790 		(void) shmem_unlink(new_dir, new_dentry);
3791 		if (they_are_dirs) {
3792 			drop_nlink(d_inode(new_dentry));
3793 			drop_nlink(old_dir);
3794 		}
3795 	} else if (they_are_dirs) {
3796 		drop_nlink(old_dir);
3797 		inc_nlink(new_dir);
3798 	}
3799 
3800 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3801 	new_dir->i_size += BOGO_DIRENT_SIZE;
3802 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3803 	inode_inc_iversion(old_dir);
3804 	inode_inc_iversion(new_dir);
3805 	return 0;
3806 }
3807 
3808 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3809 			 struct dentry *dentry, const char *symname)
3810 {
3811 	int error;
3812 	int len;
3813 	struct inode *inode;
3814 	struct folio *folio;
3815 
3816 	len = strlen(symname) + 1;
3817 	if (len > PAGE_SIZE)
3818 		return -ENAMETOOLONG;
3819 
3820 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3821 				VM_NORESERVE);
3822 	if (IS_ERR(inode))
3823 		return PTR_ERR(inode);
3824 
3825 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3826 					     shmem_initxattrs, NULL);
3827 	if (error && error != -EOPNOTSUPP)
3828 		goto out_iput;
3829 
3830 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3831 	if (error)
3832 		goto out_iput;
3833 
3834 	inode->i_size = len-1;
3835 	if (len <= SHORT_SYMLINK_LEN) {
3836 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3837 		if (!inode->i_link) {
3838 			error = -ENOMEM;
3839 			goto out_remove_offset;
3840 		}
3841 		inode->i_op = &shmem_short_symlink_operations;
3842 	} else {
3843 		inode_nohighmem(inode);
3844 		inode->i_mapping->a_ops = &shmem_aops;
3845 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3846 		if (error)
3847 			goto out_remove_offset;
3848 		inode->i_op = &shmem_symlink_inode_operations;
3849 		memcpy(folio_address(folio), symname, len);
3850 		folio_mark_uptodate(folio);
3851 		folio_mark_dirty(folio);
3852 		folio_unlock(folio);
3853 		folio_put(folio);
3854 	}
3855 	dir->i_size += BOGO_DIRENT_SIZE;
3856 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3857 	inode_inc_iversion(dir);
3858 	d_instantiate(dentry, inode);
3859 	dget(dentry);
3860 	return 0;
3861 
3862 out_remove_offset:
3863 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3864 out_iput:
3865 	iput(inode);
3866 	return error;
3867 }
3868 
3869 static void shmem_put_link(void *arg)
3870 {
3871 	folio_mark_accessed(arg);
3872 	folio_put(arg);
3873 }
3874 
3875 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3876 				  struct delayed_call *done)
3877 {
3878 	struct folio *folio = NULL;
3879 	int error;
3880 
3881 	if (!dentry) {
3882 		folio = filemap_get_folio(inode->i_mapping, 0);
3883 		if (IS_ERR(folio))
3884 			return ERR_PTR(-ECHILD);
3885 		if (PageHWPoison(folio_page(folio, 0)) ||
3886 		    !folio_test_uptodate(folio)) {
3887 			folio_put(folio);
3888 			return ERR_PTR(-ECHILD);
3889 		}
3890 	} else {
3891 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3892 		if (error)
3893 			return ERR_PTR(error);
3894 		if (!folio)
3895 			return ERR_PTR(-ECHILD);
3896 		if (PageHWPoison(folio_page(folio, 0))) {
3897 			folio_unlock(folio);
3898 			folio_put(folio);
3899 			return ERR_PTR(-ECHILD);
3900 		}
3901 		folio_unlock(folio);
3902 	}
3903 	set_delayed_call(done, shmem_put_link, folio);
3904 	return folio_address(folio);
3905 }
3906 
3907 #ifdef CONFIG_TMPFS_XATTR
3908 
3909 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3910 {
3911 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3912 
3913 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3914 
3915 	return 0;
3916 }
3917 
3918 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3919 			      struct dentry *dentry, struct fileattr *fa)
3920 {
3921 	struct inode *inode = d_inode(dentry);
3922 	struct shmem_inode_info *info = SHMEM_I(inode);
3923 
3924 	if (fileattr_has_fsx(fa))
3925 		return -EOPNOTSUPP;
3926 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3927 		return -EOPNOTSUPP;
3928 
3929 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3930 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3931 
3932 	shmem_set_inode_flags(inode, info->fsflags);
3933 	inode_set_ctime_current(inode);
3934 	inode_inc_iversion(inode);
3935 	return 0;
3936 }
3937 
3938 /*
3939  * Superblocks without xattr inode operations may get some security.* xattr
3940  * support from the LSM "for free". As soon as we have any other xattrs
3941  * like ACLs, we also need to implement the security.* handlers at
3942  * filesystem level, though.
3943  */
3944 
3945 /*
3946  * Callback for security_inode_init_security() for acquiring xattrs.
3947  */
3948 static int shmem_initxattrs(struct inode *inode,
3949 			    const struct xattr *xattr_array, void *fs_info)
3950 {
3951 	struct shmem_inode_info *info = SHMEM_I(inode);
3952 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3953 	const struct xattr *xattr;
3954 	struct simple_xattr *new_xattr;
3955 	size_t ispace = 0;
3956 	size_t len;
3957 
3958 	if (sbinfo->max_inodes) {
3959 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3960 			ispace += simple_xattr_space(xattr->name,
3961 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3962 		}
3963 		if (ispace) {
3964 			raw_spin_lock(&sbinfo->stat_lock);
3965 			if (sbinfo->free_ispace < ispace)
3966 				ispace = 0;
3967 			else
3968 				sbinfo->free_ispace -= ispace;
3969 			raw_spin_unlock(&sbinfo->stat_lock);
3970 			if (!ispace)
3971 				return -ENOSPC;
3972 		}
3973 	}
3974 
3975 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3976 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3977 		if (!new_xattr)
3978 			break;
3979 
3980 		len = strlen(xattr->name) + 1;
3981 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3982 					  GFP_KERNEL_ACCOUNT);
3983 		if (!new_xattr->name) {
3984 			kvfree(new_xattr);
3985 			break;
3986 		}
3987 
3988 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3989 		       XATTR_SECURITY_PREFIX_LEN);
3990 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3991 		       xattr->name, len);
3992 
3993 		simple_xattr_add(&info->xattrs, new_xattr);
3994 	}
3995 
3996 	if (xattr->name != NULL) {
3997 		if (ispace) {
3998 			raw_spin_lock(&sbinfo->stat_lock);
3999 			sbinfo->free_ispace += ispace;
4000 			raw_spin_unlock(&sbinfo->stat_lock);
4001 		}
4002 		simple_xattrs_free(&info->xattrs, NULL);
4003 		return -ENOMEM;
4004 	}
4005 
4006 	return 0;
4007 }
4008 
4009 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4010 				   struct dentry *unused, struct inode *inode,
4011 				   const char *name, void *buffer, size_t size)
4012 {
4013 	struct shmem_inode_info *info = SHMEM_I(inode);
4014 
4015 	name = xattr_full_name(handler, name);
4016 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4017 }
4018 
4019 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4020 				   struct mnt_idmap *idmap,
4021 				   struct dentry *unused, struct inode *inode,
4022 				   const char *name, const void *value,
4023 				   size_t size, int flags)
4024 {
4025 	struct shmem_inode_info *info = SHMEM_I(inode);
4026 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4027 	struct simple_xattr *old_xattr;
4028 	size_t ispace = 0;
4029 
4030 	name = xattr_full_name(handler, name);
4031 	if (value && sbinfo->max_inodes) {
4032 		ispace = simple_xattr_space(name, size);
4033 		raw_spin_lock(&sbinfo->stat_lock);
4034 		if (sbinfo->free_ispace < ispace)
4035 			ispace = 0;
4036 		else
4037 			sbinfo->free_ispace -= ispace;
4038 		raw_spin_unlock(&sbinfo->stat_lock);
4039 		if (!ispace)
4040 			return -ENOSPC;
4041 	}
4042 
4043 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4044 	if (!IS_ERR(old_xattr)) {
4045 		ispace = 0;
4046 		if (old_xattr && sbinfo->max_inodes)
4047 			ispace = simple_xattr_space(old_xattr->name,
4048 						    old_xattr->size);
4049 		simple_xattr_free(old_xattr);
4050 		old_xattr = NULL;
4051 		inode_set_ctime_current(inode);
4052 		inode_inc_iversion(inode);
4053 	}
4054 	if (ispace) {
4055 		raw_spin_lock(&sbinfo->stat_lock);
4056 		sbinfo->free_ispace += ispace;
4057 		raw_spin_unlock(&sbinfo->stat_lock);
4058 	}
4059 	return PTR_ERR(old_xattr);
4060 }
4061 
4062 static const struct xattr_handler shmem_security_xattr_handler = {
4063 	.prefix = XATTR_SECURITY_PREFIX,
4064 	.get = shmem_xattr_handler_get,
4065 	.set = shmem_xattr_handler_set,
4066 };
4067 
4068 static const struct xattr_handler shmem_trusted_xattr_handler = {
4069 	.prefix = XATTR_TRUSTED_PREFIX,
4070 	.get = shmem_xattr_handler_get,
4071 	.set = shmem_xattr_handler_set,
4072 };
4073 
4074 static const struct xattr_handler shmem_user_xattr_handler = {
4075 	.prefix = XATTR_USER_PREFIX,
4076 	.get = shmem_xattr_handler_get,
4077 	.set = shmem_xattr_handler_set,
4078 };
4079 
4080 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4081 	&shmem_security_xattr_handler,
4082 	&shmem_trusted_xattr_handler,
4083 	&shmem_user_xattr_handler,
4084 	NULL
4085 };
4086 
4087 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4088 {
4089 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4090 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4091 }
4092 #endif /* CONFIG_TMPFS_XATTR */
4093 
4094 static const struct inode_operations shmem_short_symlink_operations = {
4095 	.getattr	= shmem_getattr,
4096 	.setattr	= shmem_setattr,
4097 	.get_link	= simple_get_link,
4098 #ifdef CONFIG_TMPFS_XATTR
4099 	.listxattr	= shmem_listxattr,
4100 #endif
4101 };
4102 
4103 static const struct inode_operations shmem_symlink_inode_operations = {
4104 	.getattr	= shmem_getattr,
4105 	.setattr	= shmem_setattr,
4106 	.get_link	= shmem_get_link,
4107 #ifdef CONFIG_TMPFS_XATTR
4108 	.listxattr	= shmem_listxattr,
4109 #endif
4110 };
4111 
4112 static struct dentry *shmem_get_parent(struct dentry *child)
4113 {
4114 	return ERR_PTR(-ESTALE);
4115 }
4116 
4117 static int shmem_match(struct inode *ino, void *vfh)
4118 {
4119 	__u32 *fh = vfh;
4120 	__u64 inum = fh[2];
4121 	inum = (inum << 32) | fh[1];
4122 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4123 }
4124 
4125 /* Find any alias of inode, but prefer a hashed alias */
4126 static struct dentry *shmem_find_alias(struct inode *inode)
4127 {
4128 	struct dentry *alias = d_find_alias(inode);
4129 
4130 	return alias ?: d_find_any_alias(inode);
4131 }
4132 
4133 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4134 		struct fid *fid, int fh_len, int fh_type)
4135 {
4136 	struct inode *inode;
4137 	struct dentry *dentry = NULL;
4138 	u64 inum;
4139 
4140 	if (fh_len < 3)
4141 		return NULL;
4142 
4143 	inum = fid->raw[2];
4144 	inum = (inum << 32) | fid->raw[1];
4145 
4146 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4147 			shmem_match, fid->raw);
4148 	if (inode) {
4149 		dentry = shmem_find_alias(inode);
4150 		iput(inode);
4151 	}
4152 
4153 	return dentry;
4154 }
4155 
4156 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4157 				struct inode *parent)
4158 {
4159 	if (*len < 3) {
4160 		*len = 3;
4161 		return FILEID_INVALID;
4162 	}
4163 
4164 	if (inode_unhashed(inode)) {
4165 		/* Unfortunately insert_inode_hash is not idempotent,
4166 		 * so as we hash inodes here rather than at creation
4167 		 * time, we need a lock to ensure we only try
4168 		 * to do it once
4169 		 */
4170 		static DEFINE_SPINLOCK(lock);
4171 		spin_lock(&lock);
4172 		if (inode_unhashed(inode))
4173 			__insert_inode_hash(inode,
4174 					    inode->i_ino + inode->i_generation);
4175 		spin_unlock(&lock);
4176 	}
4177 
4178 	fh[0] = inode->i_generation;
4179 	fh[1] = inode->i_ino;
4180 	fh[2] = ((__u64)inode->i_ino) >> 32;
4181 
4182 	*len = 3;
4183 	return 1;
4184 }
4185 
4186 static const struct export_operations shmem_export_ops = {
4187 	.get_parent     = shmem_get_parent,
4188 	.encode_fh      = shmem_encode_fh,
4189 	.fh_to_dentry	= shmem_fh_to_dentry,
4190 };
4191 
4192 enum shmem_param {
4193 	Opt_gid,
4194 	Opt_huge,
4195 	Opt_mode,
4196 	Opt_mpol,
4197 	Opt_nr_blocks,
4198 	Opt_nr_inodes,
4199 	Opt_size,
4200 	Opt_uid,
4201 	Opt_inode32,
4202 	Opt_inode64,
4203 	Opt_noswap,
4204 	Opt_quota,
4205 	Opt_usrquota,
4206 	Opt_grpquota,
4207 	Opt_usrquota_block_hardlimit,
4208 	Opt_usrquota_inode_hardlimit,
4209 	Opt_grpquota_block_hardlimit,
4210 	Opt_grpquota_inode_hardlimit,
4211 };
4212 
4213 static const struct constant_table shmem_param_enums_huge[] = {
4214 	{"never",	SHMEM_HUGE_NEVER },
4215 	{"always",	SHMEM_HUGE_ALWAYS },
4216 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4217 	{"advise",	SHMEM_HUGE_ADVISE },
4218 	{}
4219 };
4220 
4221 const struct fs_parameter_spec shmem_fs_parameters[] = {
4222 	fsparam_gid   ("gid",		Opt_gid),
4223 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4224 	fsparam_u32oct("mode",		Opt_mode),
4225 	fsparam_string("mpol",		Opt_mpol),
4226 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4227 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4228 	fsparam_string("size",		Opt_size),
4229 	fsparam_uid   ("uid",		Opt_uid),
4230 	fsparam_flag  ("inode32",	Opt_inode32),
4231 	fsparam_flag  ("inode64",	Opt_inode64),
4232 	fsparam_flag  ("noswap",	Opt_noswap),
4233 #ifdef CONFIG_TMPFS_QUOTA
4234 	fsparam_flag  ("quota",		Opt_quota),
4235 	fsparam_flag  ("usrquota",	Opt_usrquota),
4236 	fsparam_flag  ("grpquota",	Opt_grpquota),
4237 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4238 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4239 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4240 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4241 #endif
4242 	{}
4243 };
4244 
4245 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4246 {
4247 	struct shmem_options *ctx = fc->fs_private;
4248 	struct fs_parse_result result;
4249 	unsigned long long size;
4250 	char *rest;
4251 	int opt;
4252 	kuid_t kuid;
4253 	kgid_t kgid;
4254 
4255 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4256 	if (opt < 0)
4257 		return opt;
4258 
4259 	switch (opt) {
4260 	case Opt_size:
4261 		size = memparse(param->string, &rest);
4262 		if (*rest == '%') {
4263 			size <<= PAGE_SHIFT;
4264 			size *= totalram_pages();
4265 			do_div(size, 100);
4266 			rest++;
4267 		}
4268 		if (*rest)
4269 			goto bad_value;
4270 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4271 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4272 		break;
4273 	case Opt_nr_blocks:
4274 		ctx->blocks = memparse(param->string, &rest);
4275 		if (*rest || ctx->blocks > LONG_MAX)
4276 			goto bad_value;
4277 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4278 		break;
4279 	case Opt_nr_inodes:
4280 		ctx->inodes = memparse(param->string, &rest);
4281 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4282 			goto bad_value;
4283 		ctx->seen |= SHMEM_SEEN_INODES;
4284 		break;
4285 	case Opt_mode:
4286 		ctx->mode = result.uint_32 & 07777;
4287 		break;
4288 	case Opt_uid:
4289 		kuid = result.uid;
4290 
4291 		/*
4292 		 * The requested uid must be representable in the
4293 		 * filesystem's idmapping.
4294 		 */
4295 		if (!kuid_has_mapping(fc->user_ns, kuid))
4296 			goto bad_value;
4297 
4298 		ctx->uid = kuid;
4299 		break;
4300 	case Opt_gid:
4301 		kgid = result.gid;
4302 
4303 		/*
4304 		 * The requested gid must be representable in the
4305 		 * filesystem's idmapping.
4306 		 */
4307 		if (!kgid_has_mapping(fc->user_ns, kgid))
4308 			goto bad_value;
4309 
4310 		ctx->gid = kgid;
4311 		break;
4312 	case Opt_huge:
4313 		ctx->huge = result.uint_32;
4314 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4315 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4316 		      has_transparent_hugepage()))
4317 			goto unsupported_parameter;
4318 		ctx->seen |= SHMEM_SEEN_HUGE;
4319 		break;
4320 	case Opt_mpol:
4321 		if (IS_ENABLED(CONFIG_NUMA)) {
4322 			mpol_put(ctx->mpol);
4323 			ctx->mpol = NULL;
4324 			if (mpol_parse_str(param->string, &ctx->mpol))
4325 				goto bad_value;
4326 			break;
4327 		}
4328 		goto unsupported_parameter;
4329 	case Opt_inode32:
4330 		ctx->full_inums = false;
4331 		ctx->seen |= SHMEM_SEEN_INUMS;
4332 		break;
4333 	case Opt_inode64:
4334 		if (sizeof(ino_t) < 8) {
4335 			return invalfc(fc,
4336 				       "Cannot use inode64 with <64bit inums in kernel\n");
4337 		}
4338 		ctx->full_inums = true;
4339 		ctx->seen |= SHMEM_SEEN_INUMS;
4340 		break;
4341 	case Opt_noswap:
4342 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4343 			return invalfc(fc,
4344 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4345 		}
4346 		ctx->noswap = true;
4347 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4348 		break;
4349 	case Opt_quota:
4350 		if (fc->user_ns != &init_user_ns)
4351 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4352 		ctx->seen |= SHMEM_SEEN_QUOTA;
4353 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4354 		break;
4355 	case Opt_usrquota:
4356 		if (fc->user_ns != &init_user_ns)
4357 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4358 		ctx->seen |= SHMEM_SEEN_QUOTA;
4359 		ctx->quota_types |= QTYPE_MASK_USR;
4360 		break;
4361 	case Opt_grpquota:
4362 		if (fc->user_ns != &init_user_ns)
4363 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4364 		ctx->seen |= SHMEM_SEEN_QUOTA;
4365 		ctx->quota_types |= QTYPE_MASK_GRP;
4366 		break;
4367 	case Opt_usrquota_block_hardlimit:
4368 		size = memparse(param->string, &rest);
4369 		if (*rest || !size)
4370 			goto bad_value;
4371 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4372 			return invalfc(fc,
4373 				       "User quota block hardlimit too large.");
4374 		ctx->qlimits.usrquota_bhardlimit = size;
4375 		break;
4376 	case Opt_grpquota_block_hardlimit:
4377 		size = memparse(param->string, &rest);
4378 		if (*rest || !size)
4379 			goto bad_value;
4380 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4381 			return invalfc(fc,
4382 				       "Group quota block hardlimit too large.");
4383 		ctx->qlimits.grpquota_bhardlimit = size;
4384 		break;
4385 	case Opt_usrquota_inode_hardlimit:
4386 		size = memparse(param->string, &rest);
4387 		if (*rest || !size)
4388 			goto bad_value;
4389 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4390 			return invalfc(fc,
4391 				       "User quota inode hardlimit too large.");
4392 		ctx->qlimits.usrquota_ihardlimit = size;
4393 		break;
4394 	case Opt_grpquota_inode_hardlimit:
4395 		size = memparse(param->string, &rest);
4396 		if (*rest || !size)
4397 			goto bad_value;
4398 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4399 			return invalfc(fc,
4400 				       "Group quota inode hardlimit too large.");
4401 		ctx->qlimits.grpquota_ihardlimit = size;
4402 		break;
4403 	}
4404 	return 0;
4405 
4406 unsupported_parameter:
4407 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4408 bad_value:
4409 	return invalfc(fc, "Bad value for '%s'", param->key);
4410 }
4411 
4412 static int shmem_parse_options(struct fs_context *fc, void *data)
4413 {
4414 	char *options = data;
4415 
4416 	if (options) {
4417 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4418 		if (err)
4419 			return err;
4420 	}
4421 
4422 	while (options != NULL) {
4423 		char *this_char = options;
4424 		for (;;) {
4425 			/*
4426 			 * NUL-terminate this option: unfortunately,
4427 			 * mount options form a comma-separated list,
4428 			 * but mpol's nodelist may also contain commas.
4429 			 */
4430 			options = strchr(options, ',');
4431 			if (options == NULL)
4432 				break;
4433 			options++;
4434 			if (!isdigit(*options)) {
4435 				options[-1] = '\0';
4436 				break;
4437 			}
4438 		}
4439 		if (*this_char) {
4440 			char *value = strchr(this_char, '=');
4441 			size_t len = 0;
4442 			int err;
4443 
4444 			if (value) {
4445 				*value++ = '\0';
4446 				len = strlen(value);
4447 			}
4448 			err = vfs_parse_fs_string(fc, this_char, value, len);
4449 			if (err < 0)
4450 				return err;
4451 		}
4452 	}
4453 	return 0;
4454 }
4455 
4456 /*
4457  * Reconfigure a shmem filesystem.
4458  */
4459 static int shmem_reconfigure(struct fs_context *fc)
4460 {
4461 	struct shmem_options *ctx = fc->fs_private;
4462 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4463 	unsigned long used_isp;
4464 	struct mempolicy *mpol = NULL;
4465 	const char *err;
4466 
4467 	raw_spin_lock(&sbinfo->stat_lock);
4468 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4469 
4470 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4471 		if (!sbinfo->max_blocks) {
4472 			err = "Cannot retroactively limit size";
4473 			goto out;
4474 		}
4475 		if (percpu_counter_compare(&sbinfo->used_blocks,
4476 					   ctx->blocks) > 0) {
4477 			err = "Too small a size for current use";
4478 			goto out;
4479 		}
4480 	}
4481 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4482 		if (!sbinfo->max_inodes) {
4483 			err = "Cannot retroactively limit inodes";
4484 			goto out;
4485 		}
4486 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4487 			err = "Too few inodes for current use";
4488 			goto out;
4489 		}
4490 	}
4491 
4492 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4493 	    sbinfo->next_ino > UINT_MAX) {
4494 		err = "Current inum too high to switch to 32-bit inums";
4495 		goto out;
4496 	}
4497 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4498 		err = "Cannot disable swap on remount";
4499 		goto out;
4500 	}
4501 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4502 		err = "Cannot enable swap on remount if it was disabled on first mount";
4503 		goto out;
4504 	}
4505 
4506 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4507 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4508 		err = "Cannot enable quota on remount";
4509 		goto out;
4510 	}
4511 
4512 #ifdef CONFIG_TMPFS_QUOTA
4513 #define CHANGED_LIMIT(name)						\
4514 	(ctx->qlimits.name## hardlimit &&				\
4515 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4516 
4517 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4518 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4519 		err = "Cannot change global quota limit on remount";
4520 		goto out;
4521 	}
4522 #endif /* CONFIG_TMPFS_QUOTA */
4523 
4524 	if (ctx->seen & SHMEM_SEEN_HUGE)
4525 		sbinfo->huge = ctx->huge;
4526 	if (ctx->seen & SHMEM_SEEN_INUMS)
4527 		sbinfo->full_inums = ctx->full_inums;
4528 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4529 		sbinfo->max_blocks  = ctx->blocks;
4530 	if (ctx->seen & SHMEM_SEEN_INODES) {
4531 		sbinfo->max_inodes  = ctx->inodes;
4532 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4533 	}
4534 
4535 	/*
4536 	 * Preserve previous mempolicy unless mpol remount option was specified.
4537 	 */
4538 	if (ctx->mpol) {
4539 		mpol = sbinfo->mpol;
4540 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4541 		ctx->mpol = NULL;
4542 	}
4543 
4544 	if (ctx->noswap)
4545 		sbinfo->noswap = true;
4546 
4547 	raw_spin_unlock(&sbinfo->stat_lock);
4548 	mpol_put(mpol);
4549 	return 0;
4550 out:
4551 	raw_spin_unlock(&sbinfo->stat_lock);
4552 	return invalfc(fc, "%s", err);
4553 }
4554 
4555 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4556 {
4557 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4558 	struct mempolicy *mpol;
4559 
4560 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4561 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4562 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4563 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4564 	if (sbinfo->mode != (0777 | S_ISVTX))
4565 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4566 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4567 		seq_printf(seq, ",uid=%u",
4568 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4569 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4570 		seq_printf(seq, ",gid=%u",
4571 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4572 
4573 	/*
4574 	 * Showing inode{64,32} might be useful even if it's the system default,
4575 	 * since then people don't have to resort to checking both here and
4576 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4577 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4578 	 *
4579 	 * We hide it when inode64 isn't the default and we are using 32-bit
4580 	 * inodes, since that probably just means the feature isn't even under
4581 	 * consideration.
4582 	 *
4583 	 * As such:
4584 	 *
4585 	 *                     +-----------------+-----------------+
4586 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4587 	 *  +------------------+-----------------+-----------------+
4588 	 *  | full_inums=true  | show            | show            |
4589 	 *  | full_inums=false | show            | hide            |
4590 	 *  +------------------+-----------------+-----------------+
4591 	 *
4592 	 */
4593 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4594 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4596 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4597 	if (sbinfo->huge)
4598 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4599 #endif
4600 	mpol = shmem_get_sbmpol(sbinfo);
4601 	shmem_show_mpol(seq, mpol);
4602 	mpol_put(mpol);
4603 	if (sbinfo->noswap)
4604 		seq_printf(seq, ",noswap");
4605 #ifdef CONFIG_TMPFS_QUOTA
4606 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4607 		seq_printf(seq, ",usrquota");
4608 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4609 		seq_printf(seq, ",grpquota");
4610 	if (sbinfo->qlimits.usrquota_bhardlimit)
4611 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4612 			   sbinfo->qlimits.usrquota_bhardlimit);
4613 	if (sbinfo->qlimits.grpquota_bhardlimit)
4614 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4615 			   sbinfo->qlimits.grpquota_bhardlimit);
4616 	if (sbinfo->qlimits.usrquota_ihardlimit)
4617 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4618 			   sbinfo->qlimits.usrquota_ihardlimit);
4619 	if (sbinfo->qlimits.grpquota_ihardlimit)
4620 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4621 			   sbinfo->qlimits.grpquota_ihardlimit);
4622 #endif
4623 	return 0;
4624 }
4625 
4626 #endif /* CONFIG_TMPFS */
4627 
4628 static void shmem_put_super(struct super_block *sb)
4629 {
4630 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4631 
4632 #ifdef CONFIG_TMPFS_QUOTA
4633 	shmem_disable_quotas(sb);
4634 #endif
4635 	free_percpu(sbinfo->ino_batch);
4636 	percpu_counter_destroy(&sbinfo->used_blocks);
4637 	mpol_put(sbinfo->mpol);
4638 	kfree(sbinfo);
4639 	sb->s_fs_info = NULL;
4640 }
4641 
4642 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4643 {
4644 	struct shmem_options *ctx = fc->fs_private;
4645 	struct inode *inode;
4646 	struct shmem_sb_info *sbinfo;
4647 	int error = -ENOMEM;
4648 
4649 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4650 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4651 				L1_CACHE_BYTES), GFP_KERNEL);
4652 	if (!sbinfo)
4653 		return error;
4654 
4655 	sb->s_fs_info = sbinfo;
4656 
4657 #ifdef CONFIG_TMPFS
4658 	/*
4659 	 * Per default we only allow half of the physical ram per
4660 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4661 	 * but the internal instance is left unlimited.
4662 	 */
4663 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4664 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4665 			ctx->blocks = shmem_default_max_blocks();
4666 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4667 			ctx->inodes = shmem_default_max_inodes();
4668 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4669 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4670 		sbinfo->noswap = ctx->noswap;
4671 	} else {
4672 		sb->s_flags |= SB_NOUSER;
4673 	}
4674 	sb->s_export_op = &shmem_export_ops;
4675 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4676 #else
4677 	sb->s_flags |= SB_NOUSER;
4678 #endif
4679 	sbinfo->max_blocks = ctx->blocks;
4680 	sbinfo->max_inodes = ctx->inodes;
4681 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4682 	if (sb->s_flags & SB_KERNMOUNT) {
4683 		sbinfo->ino_batch = alloc_percpu(ino_t);
4684 		if (!sbinfo->ino_batch)
4685 			goto failed;
4686 	}
4687 	sbinfo->uid = ctx->uid;
4688 	sbinfo->gid = ctx->gid;
4689 	sbinfo->full_inums = ctx->full_inums;
4690 	sbinfo->mode = ctx->mode;
4691 	sbinfo->huge = ctx->huge;
4692 	sbinfo->mpol = ctx->mpol;
4693 	ctx->mpol = NULL;
4694 
4695 	raw_spin_lock_init(&sbinfo->stat_lock);
4696 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4697 		goto failed;
4698 	spin_lock_init(&sbinfo->shrinklist_lock);
4699 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4700 
4701 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4702 	sb->s_blocksize = PAGE_SIZE;
4703 	sb->s_blocksize_bits = PAGE_SHIFT;
4704 	sb->s_magic = TMPFS_MAGIC;
4705 	sb->s_op = &shmem_ops;
4706 	sb->s_time_gran = 1;
4707 #ifdef CONFIG_TMPFS_XATTR
4708 	sb->s_xattr = shmem_xattr_handlers;
4709 #endif
4710 #ifdef CONFIG_TMPFS_POSIX_ACL
4711 	sb->s_flags |= SB_POSIXACL;
4712 #endif
4713 	uuid_t uuid;
4714 	uuid_gen(&uuid);
4715 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4716 
4717 #ifdef CONFIG_TMPFS_QUOTA
4718 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4719 		sb->dq_op = &shmem_quota_operations;
4720 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4721 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4722 
4723 		/* Copy the default limits from ctx into sbinfo */
4724 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4725 		       sizeof(struct shmem_quota_limits));
4726 
4727 		if (shmem_enable_quotas(sb, ctx->quota_types))
4728 			goto failed;
4729 	}
4730 #endif /* CONFIG_TMPFS_QUOTA */
4731 
4732 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4733 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4734 	if (IS_ERR(inode)) {
4735 		error = PTR_ERR(inode);
4736 		goto failed;
4737 	}
4738 	inode->i_uid = sbinfo->uid;
4739 	inode->i_gid = sbinfo->gid;
4740 	sb->s_root = d_make_root(inode);
4741 	if (!sb->s_root)
4742 		goto failed;
4743 	return 0;
4744 
4745 failed:
4746 	shmem_put_super(sb);
4747 	return error;
4748 }
4749 
4750 static int shmem_get_tree(struct fs_context *fc)
4751 {
4752 	return get_tree_nodev(fc, shmem_fill_super);
4753 }
4754 
4755 static void shmem_free_fc(struct fs_context *fc)
4756 {
4757 	struct shmem_options *ctx = fc->fs_private;
4758 
4759 	if (ctx) {
4760 		mpol_put(ctx->mpol);
4761 		kfree(ctx);
4762 	}
4763 }
4764 
4765 static const struct fs_context_operations shmem_fs_context_ops = {
4766 	.free			= shmem_free_fc,
4767 	.get_tree		= shmem_get_tree,
4768 #ifdef CONFIG_TMPFS
4769 	.parse_monolithic	= shmem_parse_options,
4770 	.parse_param		= shmem_parse_one,
4771 	.reconfigure		= shmem_reconfigure,
4772 #endif
4773 };
4774 
4775 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4776 
4777 static struct inode *shmem_alloc_inode(struct super_block *sb)
4778 {
4779 	struct shmem_inode_info *info;
4780 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4781 	if (!info)
4782 		return NULL;
4783 	return &info->vfs_inode;
4784 }
4785 
4786 static void shmem_free_in_core_inode(struct inode *inode)
4787 {
4788 	if (S_ISLNK(inode->i_mode))
4789 		kfree(inode->i_link);
4790 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4791 }
4792 
4793 static void shmem_destroy_inode(struct inode *inode)
4794 {
4795 	if (S_ISREG(inode->i_mode))
4796 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4797 	if (S_ISDIR(inode->i_mode))
4798 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4799 }
4800 
4801 static void shmem_init_inode(void *foo)
4802 {
4803 	struct shmem_inode_info *info = foo;
4804 	inode_init_once(&info->vfs_inode);
4805 }
4806 
4807 static void __init shmem_init_inodecache(void)
4808 {
4809 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4810 				sizeof(struct shmem_inode_info),
4811 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4812 }
4813 
4814 static void __init shmem_destroy_inodecache(void)
4815 {
4816 	kmem_cache_destroy(shmem_inode_cachep);
4817 }
4818 
4819 /* Keep the page in page cache instead of truncating it */
4820 static int shmem_error_remove_folio(struct address_space *mapping,
4821 				   struct folio *folio)
4822 {
4823 	return 0;
4824 }
4825 
4826 static const struct address_space_operations shmem_aops = {
4827 	.writepage	= shmem_writepage,
4828 	.dirty_folio	= noop_dirty_folio,
4829 #ifdef CONFIG_TMPFS
4830 	.write_begin	= shmem_write_begin,
4831 	.write_end	= shmem_write_end,
4832 #endif
4833 #ifdef CONFIG_MIGRATION
4834 	.migrate_folio	= migrate_folio,
4835 #endif
4836 	.error_remove_folio = shmem_error_remove_folio,
4837 };
4838 
4839 static const struct file_operations shmem_file_operations = {
4840 	.mmap		= shmem_mmap,
4841 	.open		= shmem_file_open,
4842 	.get_unmapped_area = shmem_get_unmapped_area,
4843 #ifdef CONFIG_TMPFS
4844 	.llseek		= shmem_file_llseek,
4845 	.read_iter	= shmem_file_read_iter,
4846 	.write_iter	= shmem_file_write_iter,
4847 	.fsync		= noop_fsync,
4848 	.splice_read	= shmem_file_splice_read,
4849 	.splice_write	= iter_file_splice_write,
4850 	.fallocate	= shmem_fallocate,
4851 #endif
4852 };
4853 
4854 static const struct inode_operations shmem_inode_operations = {
4855 	.getattr	= shmem_getattr,
4856 	.setattr	= shmem_setattr,
4857 #ifdef CONFIG_TMPFS_XATTR
4858 	.listxattr	= shmem_listxattr,
4859 	.set_acl	= simple_set_acl,
4860 	.fileattr_get	= shmem_fileattr_get,
4861 	.fileattr_set	= shmem_fileattr_set,
4862 #endif
4863 };
4864 
4865 static const struct inode_operations shmem_dir_inode_operations = {
4866 #ifdef CONFIG_TMPFS
4867 	.getattr	= shmem_getattr,
4868 	.create		= shmem_create,
4869 	.lookup		= simple_lookup,
4870 	.link		= shmem_link,
4871 	.unlink		= shmem_unlink,
4872 	.symlink	= shmem_symlink,
4873 	.mkdir		= shmem_mkdir,
4874 	.rmdir		= shmem_rmdir,
4875 	.mknod		= shmem_mknod,
4876 	.rename		= shmem_rename2,
4877 	.tmpfile	= shmem_tmpfile,
4878 	.get_offset_ctx	= shmem_get_offset_ctx,
4879 #endif
4880 #ifdef CONFIG_TMPFS_XATTR
4881 	.listxattr	= shmem_listxattr,
4882 	.fileattr_get	= shmem_fileattr_get,
4883 	.fileattr_set	= shmem_fileattr_set,
4884 #endif
4885 #ifdef CONFIG_TMPFS_POSIX_ACL
4886 	.setattr	= shmem_setattr,
4887 	.set_acl	= simple_set_acl,
4888 #endif
4889 };
4890 
4891 static const struct inode_operations shmem_special_inode_operations = {
4892 	.getattr	= shmem_getattr,
4893 #ifdef CONFIG_TMPFS_XATTR
4894 	.listxattr	= shmem_listxattr,
4895 #endif
4896 #ifdef CONFIG_TMPFS_POSIX_ACL
4897 	.setattr	= shmem_setattr,
4898 	.set_acl	= simple_set_acl,
4899 #endif
4900 };
4901 
4902 static const struct super_operations shmem_ops = {
4903 	.alloc_inode	= shmem_alloc_inode,
4904 	.free_inode	= shmem_free_in_core_inode,
4905 	.destroy_inode	= shmem_destroy_inode,
4906 #ifdef CONFIG_TMPFS
4907 	.statfs		= shmem_statfs,
4908 	.show_options	= shmem_show_options,
4909 #endif
4910 #ifdef CONFIG_TMPFS_QUOTA
4911 	.get_dquots	= shmem_get_dquots,
4912 #endif
4913 	.evict_inode	= shmem_evict_inode,
4914 	.drop_inode	= generic_delete_inode,
4915 	.put_super	= shmem_put_super,
4916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4917 	.nr_cached_objects	= shmem_unused_huge_count,
4918 	.free_cached_objects	= shmem_unused_huge_scan,
4919 #endif
4920 };
4921 
4922 static const struct vm_operations_struct shmem_vm_ops = {
4923 	.fault		= shmem_fault,
4924 	.map_pages	= filemap_map_pages,
4925 #ifdef CONFIG_NUMA
4926 	.set_policy     = shmem_set_policy,
4927 	.get_policy     = shmem_get_policy,
4928 #endif
4929 };
4930 
4931 static const struct vm_operations_struct shmem_anon_vm_ops = {
4932 	.fault		= shmem_fault,
4933 	.map_pages	= filemap_map_pages,
4934 #ifdef CONFIG_NUMA
4935 	.set_policy     = shmem_set_policy,
4936 	.get_policy     = shmem_get_policy,
4937 #endif
4938 };
4939 
4940 int shmem_init_fs_context(struct fs_context *fc)
4941 {
4942 	struct shmem_options *ctx;
4943 
4944 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4945 	if (!ctx)
4946 		return -ENOMEM;
4947 
4948 	ctx->mode = 0777 | S_ISVTX;
4949 	ctx->uid = current_fsuid();
4950 	ctx->gid = current_fsgid();
4951 
4952 	fc->fs_private = ctx;
4953 	fc->ops = &shmem_fs_context_ops;
4954 	return 0;
4955 }
4956 
4957 static struct file_system_type shmem_fs_type = {
4958 	.owner		= THIS_MODULE,
4959 	.name		= "tmpfs",
4960 	.init_fs_context = shmem_init_fs_context,
4961 #ifdef CONFIG_TMPFS
4962 	.parameters	= shmem_fs_parameters,
4963 #endif
4964 	.kill_sb	= kill_litter_super,
4965 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4966 };
4967 
4968 void __init shmem_init(void)
4969 {
4970 	int error;
4971 
4972 	shmem_init_inodecache();
4973 
4974 #ifdef CONFIG_TMPFS_QUOTA
4975 	register_quota_format(&shmem_quota_format);
4976 #endif
4977 
4978 	error = register_filesystem(&shmem_fs_type);
4979 	if (error) {
4980 		pr_err("Could not register tmpfs\n");
4981 		goto out2;
4982 	}
4983 
4984 	shm_mnt = kern_mount(&shmem_fs_type);
4985 	if (IS_ERR(shm_mnt)) {
4986 		error = PTR_ERR(shm_mnt);
4987 		pr_err("Could not kern_mount tmpfs\n");
4988 		goto out1;
4989 	}
4990 
4991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4992 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4993 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4994 	else
4995 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4996 
4997 	/*
4998 	 * Default to setting PMD-sized THP to inherit the global setting and
4999 	 * disable all other multi-size THPs.
5000 	 */
5001 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5002 #endif
5003 	return;
5004 
5005 out1:
5006 	unregister_filesystem(&shmem_fs_type);
5007 out2:
5008 #ifdef CONFIG_TMPFS_QUOTA
5009 	unregister_quota_format(&shmem_quota_format);
5010 #endif
5011 	shmem_destroy_inodecache();
5012 	shm_mnt = ERR_PTR(error);
5013 }
5014 
5015 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5016 static ssize_t shmem_enabled_show(struct kobject *kobj,
5017 				  struct kobj_attribute *attr, char *buf)
5018 {
5019 	static const int values[] = {
5020 		SHMEM_HUGE_ALWAYS,
5021 		SHMEM_HUGE_WITHIN_SIZE,
5022 		SHMEM_HUGE_ADVISE,
5023 		SHMEM_HUGE_NEVER,
5024 		SHMEM_HUGE_DENY,
5025 		SHMEM_HUGE_FORCE,
5026 	};
5027 	int len = 0;
5028 	int i;
5029 
5030 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5031 		len += sysfs_emit_at(buf, len,
5032 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5033 				i ? " " : "", shmem_format_huge(values[i]));
5034 	}
5035 	len += sysfs_emit_at(buf, len, "\n");
5036 
5037 	return len;
5038 }
5039 
5040 static ssize_t shmem_enabled_store(struct kobject *kobj,
5041 		struct kobj_attribute *attr, const char *buf, size_t count)
5042 {
5043 	char tmp[16];
5044 	int huge, err;
5045 
5046 	if (count + 1 > sizeof(tmp))
5047 		return -EINVAL;
5048 	memcpy(tmp, buf, count);
5049 	tmp[count] = '\0';
5050 	if (count && tmp[count - 1] == '\n')
5051 		tmp[count - 1] = '\0';
5052 
5053 	huge = shmem_parse_huge(tmp);
5054 	if (huge == -EINVAL)
5055 		return -EINVAL;
5056 	if (!has_transparent_hugepage() &&
5057 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5058 		return -EINVAL;
5059 
5060 	/* Do not override huge allocation policy with non-PMD sized mTHP */
5061 	if (huge == SHMEM_HUGE_FORCE &&
5062 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5063 		return -EINVAL;
5064 
5065 	shmem_huge = huge;
5066 	if (shmem_huge > SHMEM_HUGE_DENY)
5067 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5068 
5069 	err = start_stop_khugepaged();
5070 	return err ? err : count;
5071 }
5072 
5073 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5074 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5075 
5076 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5077 					  struct kobj_attribute *attr, char *buf)
5078 {
5079 	int order = to_thpsize(kobj)->order;
5080 	const char *output;
5081 
5082 	if (test_bit(order, &huge_shmem_orders_always))
5083 		output = "[always] inherit within_size advise never";
5084 	else if (test_bit(order, &huge_shmem_orders_inherit))
5085 		output = "always [inherit] within_size advise never";
5086 	else if (test_bit(order, &huge_shmem_orders_within_size))
5087 		output = "always inherit [within_size] advise never";
5088 	else if (test_bit(order, &huge_shmem_orders_madvise))
5089 		output = "always inherit within_size [advise] never";
5090 	else
5091 		output = "always inherit within_size advise [never]";
5092 
5093 	return sysfs_emit(buf, "%s\n", output);
5094 }
5095 
5096 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5097 					   struct kobj_attribute *attr,
5098 					   const char *buf, size_t count)
5099 {
5100 	int order = to_thpsize(kobj)->order;
5101 	ssize_t ret = count;
5102 
5103 	if (sysfs_streq(buf, "always")) {
5104 		spin_lock(&huge_shmem_orders_lock);
5105 		clear_bit(order, &huge_shmem_orders_inherit);
5106 		clear_bit(order, &huge_shmem_orders_madvise);
5107 		clear_bit(order, &huge_shmem_orders_within_size);
5108 		set_bit(order, &huge_shmem_orders_always);
5109 		spin_unlock(&huge_shmem_orders_lock);
5110 	} else if (sysfs_streq(buf, "inherit")) {
5111 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5112 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5113 		    order != HPAGE_PMD_ORDER)
5114 			return -EINVAL;
5115 
5116 		spin_lock(&huge_shmem_orders_lock);
5117 		clear_bit(order, &huge_shmem_orders_always);
5118 		clear_bit(order, &huge_shmem_orders_madvise);
5119 		clear_bit(order, &huge_shmem_orders_within_size);
5120 		set_bit(order, &huge_shmem_orders_inherit);
5121 		spin_unlock(&huge_shmem_orders_lock);
5122 	} else if (sysfs_streq(buf, "within_size")) {
5123 		spin_lock(&huge_shmem_orders_lock);
5124 		clear_bit(order, &huge_shmem_orders_always);
5125 		clear_bit(order, &huge_shmem_orders_inherit);
5126 		clear_bit(order, &huge_shmem_orders_madvise);
5127 		set_bit(order, &huge_shmem_orders_within_size);
5128 		spin_unlock(&huge_shmem_orders_lock);
5129 	} else if (sysfs_streq(buf, "advise")) {
5130 		spin_lock(&huge_shmem_orders_lock);
5131 		clear_bit(order, &huge_shmem_orders_always);
5132 		clear_bit(order, &huge_shmem_orders_inherit);
5133 		clear_bit(order, &huge_shmem_orders_within_size);
5134 		set_bit(order, &huge_shmem_orders_madvise);
5135 		spin_unlock(&huge_shmem_orders_lock);
5136 	} else if (sysfs_streq(buf, "never")) {
5137 		spin_lock(&huge_shmem_orders_lock);
5138 		clear_bit(order, &huge_shmem_orders_always);
5139 		clear_bit(order, &huge_shmem_orders_inherit);
5140 		clear_bit(order, &huge_shmem_orders_within_size);
5141 		clear_bit(order, &huge_shmem_orders_madvise);
5142 		spin_unlock(&huge_shmem_orders_lock);
5143 	} else {
5144 		ret = -EINVAL;
5145 	}
5146 
5147 	if (ret > 0) {
5148 		int err = start_stop_khugepaged();
5149 
5150 		if (err)
5151 			ret = err;
5152 	}
5153 	return ret;
5154 }
5155 
5156 struct kobj_attribute thpsize_shmem_enabled_attr =
5157 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5159 
5160 #else /* !CONFIG_SHMEM */
5161 
5162 /*
5163  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5164  *
5165  * This is intended for small system where the benefits of the full
5166  * shmem code (swap-backed and resource-limited) are outweighed by
5167  * their complexity. On systems without swap this code should be
5168  * effectively equivalent, but much lighter weight.
5169  */
5170 
5171 static struct file_system_type shmem_fs_type = {
5172 	.name		= "tmpfs",
5173 	.init_fs_context = ramfs_init_fs_context,
5174 	.parameters	= ramfs_fs_parameters,
5175 	.kill_sb	= ramfs_kill_sb,
5176 	.fs_flags	= FS_USERNS_MOUNT,
5177 };
5178 
5179 void __init shmem_init(void)
5180 {
5181 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5182 
5183 	shm_mnt = kern_mount(&shmem_fs_type);
5184 	BUG_ON(IS_ERR(shm_mnt));
5185 }
5186 
5187 int shmem_unuse(unsigned int type)
5188 {
5189 	return 0;
5190 }
5191 
5192 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5193 {
5194 	return 0;
5195 }
5196 
5197 void shmem_unlock_mapping(struct address_space *mapping)
5198 {
5199 }
5200 
5201 #ifdef CONFIG_MMU
5202 unsigned long shmem_get_unmapped_area(struct file *file,
5203 				      unsigned long addr, unsigned long len,
5204 				      unsigned long pgoff, unsigned long flags)
5205 {
5206 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5207 }
5208 #endif
5209 
5210 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5211 {
5212 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5213 }
5214 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5215 
5216 #define shmem_vm_ops				generic_file_vm_ops
5217 #define shmem_anon_vm_ops			generic_file_vm_ops
5218 #define shmem_file_operations			ramfs_file_operations
5219 #define shmem_acct_size(flags, size)		0
5220 #define shmem_unacct_size(flags, size)		do {} while (0)
5221 
5222 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5223 				struct super_block *sb, struct inode *dir,
5224 				umode_t mode, dev_t dev, unsigned long flags)
5225 {
5226 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5227 	return inode ? inode : ERR_PTR(-ENOSPC);
5228 }
5229 
5230 #endif /* CONFIG_SHMEM */
5231 
5232 /* common code */
5233 
5234 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5235 			loff_t size, unsigned long flags, unsigned int i_flags)
5236 {
5237 	struct inode *inode;
5238 	struct file *res;
5239 
5240 	if (IS_ERR(mnt))
5241 		return ERR_CAST(mnt);
5242 
5243 	if (size < 0 || size > MAX_LFS_FILESIZE)
5244 		return ERR_PTR(-EINVAL);
5245 
5246 	if (shmem_acct_size(flags, size))
5247 		return ERR_PTR(-ENOMEM);
5248 
5249 	if (is_idmapped_mnt(mnt))
5250 		return ERR_PTR(-EINVAL);
5251 
5252 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5253 				S_IFREG | S_IRWXUGO, 0, flags);
5254 	if (IS_ERR(inode)) {
5255 		shmem_unacct_size(flags, size);
5256 		return ERR_CAST(inode);
5257 	}
5258 	inode->i_flags |= i_flags;
5259 	inode->i_size = size;
5260 	clear_nlink(inode);	/* It is unlinked */
5261 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5262 	if (!IS_ERR(res))
5263 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5264 				&shmem_file_operations);
5265 	if (IS_ERR(res))
5266 		iput(inode);
5267 	return res;
5268 }
5269 
5270 /**
5271  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5272  * 	kernel internal.  There will be NO LSM permission checks against the
5273  * 	underlying inode.  So users of this interface must do LSM checks at a
5274  *	higher layer.  The users are the big_key and shm implementations.  LSM
5275  *	checks are provided at the key or shm level rather than the inode.
5276  * @name: name for dentry (to be seen in /proc/<pid>/maps
5277  * @size: size to be set for the file
5278  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5279  */
5280 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5281 {
5282 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5283 }
5284 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5285 
5286 /**
5287  * shmem_file_setup - get an unlinked file living in tmpfs
5288  * @name: name for dentry (to be seen in /proc/<pid>/maps
5289  * @size: size to be set for the file
5290  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5291  */
5292 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5293 {
5294 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5295 }
5296 EXPORT_SYMBOL_GPL(shmem_file_setup);
5297 
5298 /**
5299  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5300  * @mnt: the tmpfs mount where the file will be created
5301  * @name: name for dentry (to be seen in /proc/<pid>/maps
5302  * @size: size to be set for the file
5303  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5304  */
5305 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5306 				       loff_t size, unsigned long flags)
5307 {
5308 	return __shmem_file_setup(mnt, name, size, flags, 0);
5309 }
5310 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5311 
5312 /**
5313  * shmem_zero_setup - setup a shared anonymous mapping
5314  * @vma: the vma to be mmapped is prepared by do_mmap
5315  */
5316 int shmem_zero_setup(struct vm_area_struct *vma)
5317 {
5318 	struct file *file;
5319 	loff_t size = vma->vm_end - vma->vm_start;
5320 
5321 	/*
5322 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5323 	 * between XFS directory reading and selinux: since this file is only
5324 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5325 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5326 	 */
5327 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5328 	if (IS_ERR(file))
5329 		return PTR_ERR(file);
5330 
5331 	if (vma->vm_file)
5332 		fput(vma->vm_file);
5333 	vma->vm_file = file;
5334 	vma->vm_ops = &shmem_anon_vm_ops;
5335 
5336 	return 0;
5337 }
5338 
5339 /**
5340  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5341  * @mapping:	the folio's address_space
5342  * @index:	the folio index
5343  * @gfp:	the page allocator flags to use if allocating
5344  *
5345  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5346  * with any new page allocations done using the specified allocation flags.
5347  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5348  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5349  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5350  *
5351  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5352  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5353  */
5354 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5355 		pgoff_t index, gfp_t gfp)
5356 {
5357 #ifdef CONFIG_SHMEM
5358 	struct inode *inode = mapping->host;
5359 	struct folio *folio;
5360 	int error;
5361 
5362 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5363 				    gfp, NULL, NULL);
5364 	if (error)
5365 		return ERR_PTR(error);
5366 
5367 	folio_unlock(folio);
5368 	return folio;
5369 #else
5370 	/*
5371 	 * The tiny !SHMEM case uses ramfs without swap
5372 	 */
5373 	return mapping_read_folio_gfp(mapping, index, gfp);
5374 #endif
5375 }
5376 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5377 
5378 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5379 					 pgoff_t index, gfp_t gfp)
5380 {
5381 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5382 	struct page *page;
5383 
5384 	if (IS_ERR(folio))
5385 		return &folio->page;
5386 
5387 	page = folio_file_page(folio, index);
5388 	if (PageHWPoison(page)) {
5389 		folio_put(folio);
5390 		return ERR_PTR(-EIO);
5391 	}
5392 
5393 	return page;
5394 }
5395 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5396