xref: /linux/mm/shmem.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/config.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/devfs_fs_kernel.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/mman.h>
33 #include <linux/file.h>
34 #include <linux/swap.h>
35 #include <linux/pagemap.h>
36 #include <linux/string.h>
37 #include <linux/slab.h>
38 #include <linux/backing-dev.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/mount.h>
41 #include <linux/writeback.h>
42 #include <linux/vfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/security.h>
45 #include <linux/swapops.h>
46 #include <linux/mempolicy.h>
47 #include <linux/namei.h>
48 #include <asm/uaccess.h>
49 #include <asm/div64.h>
50 #include <asm/pgtable.h>
51 
52 /* This magic number is used in glibc for posix shared memory */
53 #define TMPFS_MAGIC	0x01021994
54 
55 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
56 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
57 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
58 
59 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
60 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
61 
62 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
63 
64 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
65 #define SHMEM_PAGEIN	 VM_READ
66 #define SHMEM_TRUNCATE	 VM_WRITE
67 
68 /* Definition to limit shmem_truncate's steps between cond_rescheds */
69 #define LATENCY_LIMIT	 64
70 
71 /* Pretend that each entry is of this size in directory's i_size */
72 #define BOGO_DIRENT_SIZE 20
73 
74 /* Keep swapped page count in private field of indirect struct page */
75 #define nr_swapped		private
76 
77 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
78 enum sgp_type {
79 	SGP_QUICK,	/* don't try more than file page cache lookup */
80 	SGP_READ,	/* don't exceed i_size, don't allocate page */
81 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
82 	SGP_WRITE,	/* may exceed i_size, may allocate page */
83 };
84 
85 static int shmem_getpage(struct inode *inode, unsigned long idx,
86 			 struct page **pagep, enum sgp_type sgp, int *type);
87 
88 static inline struct page *shmem_dir_alloc(unsigned int gfp_mask)
89 {
90 	/*
91 	 * The above definition of ENTRIES_PER_PAGE, and the use of
92 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
93 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
94 	 */
95 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
96 }
97 
98 static inline void shmem_dir_free(struct page *page)
99 {
100 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
101 }
102 
103 static struct page **shmem_dir_map(struct page *page)
104 {
105 	return (struct page **)kmap_atomic(page, KM_USER0);
106 }
107 
108 static inline void shmem_dir_unmap(struct page **dir)
109 {
110 	kunmap_atomic(dir, KM_USER0);
111 }
112 
113 static swp_entry_t *shmem_swp_map(struct page *page)
114 {
115 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
116 }
117 
118 static inline void shmem_swp_balance_unmap(void)
119 {
120 	/*
121 	 * When passing a pointer to an i_direct entry, to code which
122 	 * also handles indirect entries and so will shmem_swp_unmap,
123 	 * we must arrange for the preempt count to remain in balance.
124 	 * What kmap_atomic of a lowmem page does depends on config
125 	 * and architecture, so pretend to kmap_atomic some lowmem page.
126 	 */
127 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
128 }
129 
130 static inline void shmem_swp_unmap(swp_entry_t *entry)
131 {
132 	kunmap_atomic(entry, KM_USER1);
133 }
134 
135 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
136 {
137 	return sb->s_fs_info;
138 }
139 
140 /*
141  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142  * for shared memory and for shared anonymous (/dev/zero) mappings
143  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144  * consistent with the pre-accounting of private mappings ...
145  */
146 static inline int shmem_acct_size(unsigned long flags, loff_t size)
147 {
148 	return (flags & VM_ACCOUNT)?
149 		security_vm_enough_memory(VM_ACCT(size)): 0;
150 }
151 
152 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
153 {
154 	if (flags & VM_ACCOUNT)
155 		vm_unacct_memory(VM_ACCT(size));
156 }
157 
158 /*
159  * ... whereas tmpfs objects are accounted incrementally as
160  * pages are allocated, in order to allow huge sparse files.
161  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
162  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
163  */
164 static inline int shmem_acct_block(unsigned long flags)
165 {
166 	return (flags & VM_ACCOUNT)?
167 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
168 }
169 
170 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
171 {
172 	if (!(flags & VM_ACCOUNT))
173 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
174 }
175 
176 static struct super_operations shmem_ops;
177 static struct address_space_operations shmem_aops;
178 static struct file_operations shmem_file_operations;
179 static struct inode_operations shmem_inode_operations;
180 static struct inode_operations shmem_dir_inode_operations;
181 static struct vm_operations_struct shmem_vm_ops;
182 
183 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
184 	.ra_pages	= 0,	/* No readahead */
185 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
186 	.unplug_io_fn	= default_unplug_io_fn,
187 };
188 
189 static LIST_HEAD(shmem_swaplist);
190 static DEFINE_SPINLOCK(shmem_swaplist_lock);
191 
192 static void shmem_free_blocks(struct inode *inode, long pages)
193 {
194 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
195 	if (sbinfo->max_blocks) {
196 		spin_lock(&sbinfo->stat_lock);
197 		sbinfo->free_blocks += pages;
198 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
199 		spin_unlock(&sbinfo->stat_lock);
200 	}
201 }
202 
203 /*
204  * shmem_recalc_inode - recalculate the size of an inode
205  *
206  * @inode: inode to recalc
207  *
208  * We have to calculate the free blocks since the mm can drop
209  * undirtied hole pages behind our back.
210  *
211  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
212  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
213  *
214  * It has to be called with the spinlock held.
215  */
216 static void shmem_recalc_inode(struct inode *inode)
217 {
218 	struct shmem_inode_info *info = SHMEM_I(inode);
219 	long freed;
220 
221 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
222 	if (freed > 0) {
223 		info->alloced -= freed;
224 		shmem_unacct_blocks(info->flags, freed);
225 		shmem_free_blocks(inode, freed);
226 	}
227 }
228 
229 /*
230  * shmem_swp_entry - find the swap vector position in the info structure
231  *
232  * @info:  info structure for the inode
233  * @index: index of the page to find
234  * @page:  optional page to add to the structure. Has to be preset to
235  *         all zeros
236  *
237  * If there is no space allocated yet it will return NULL when
238  * page is NULL, else it will use the page for the needed block,
239  * setting it to NULL on return to indicate that it has been used.
240  *
241  * The swap vector is organized the following way:
242  *
243  * There are SHMEM_NR_DIRECT entries directly stored in the
244  * shmem_inode_info structure. So small files do not need an addional
245  * allocation.
246  *
247  * For pages with index > SHMEM_NR_DIRECT there is the pointer
248  * i_indirect which points to a page which holds in the first half
249  * doubly indirect blocks, in the second half triple indirect blocks:
250  *
251  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
252  * following layout (for SHMEM_NR_DIRECT == 16):
253  *
254  * i_indirect -> dir --> 16-19
255  * 	      |	     +-> 20-23
256  * 	      |
257  * 	      +-->dir2 --> 24-27
258  * 	      |	       +-> 28-31
259  * 	      |	       +-> 32-35
260  * 	      |	       +-> 36-39
261  * 	      |
262  * 	      +-->dir3 --> 40-43
263  * 	       	       +-> 44-47
264  * 	      	       +-> 48-51
265  * 	      	       +-> 52-55
266  */
267 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
268 {
269 	unsigned long offset;
270 	struct page **dir;
271 	struct page *subdir;
272 
273 	if (index < SHMEM_NR_DIRECT) {
274 		shmem_swp_balance_unmap();
275 		return info->i_direct+index;
276 	}
277 	if (!info->i_indirect) {
278 		if (page) {
279 			info->i_indirect = *page;
280 			*page = NULL;
281 		}
282 		return NULL;			/* need another page */
283 	}
284 
285 	index -= SHMEM_NR_DIRECT;
286 	offset = index % ENTRIES_PER_PAGE;
287 	index /= ENTRIES_PER_PAGE;
288 	dir = shmem_dir_map(info->i_indirect);
289 
290 	if (index >= ENTRIES_PER_PAGE/2) {
291 		index -= ENTRIES_PER_PAGE/2;
292 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
293 		index %= ENTRIES_PER_PAGE;
294 		subdir = *dir;
295 		if (!subdir) {
296 			if (page) {
297 				*dir = *page;
298 				*page = NULL;
299 			}
300 			shmem_dir_unmap(dir);
301 			return NULL;		/* need another page */
302 		}
303 		shmem_dir_unmap(dir);
304 		dir = shmem_dir_map(subdir);
305 	}
306 
307 	dir += index;
308 	subdir = *dir;
309 	if (!subdir) {
310 		if (!page || !(subdir = *page)) {
311 			shmem_dir_unmap(dir);
312 			return NULL;		/* need a page */
313 		}
314 		*dir = subdir;
315 		*page = NULL;
316 	}
317 	shmem_dir_unmap(dir);
318 	return shmem_swp_map(subdir) + offset;
319 }
320 
321 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
322 {
323 	long incdec = value? 1: -1;
324 
325 	entry->val = value;
326 	info->swapped += incdec;
327 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT)
328 		kmap_atomic_to_page(entry)->nr_swapped += incdec;
329 }
330 
331 /*
332  * shmem_swp_alloc - get the position of the swap entry for the page.
333  *                   If it does not exist allocate the entry.
334  *
335  * @info:	info structure for the inode
336  * @index:	index of the page to find
337  * @sgp:	check and recheck i_size? skip allocation?
338  */
339 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
340 {
341 	struct inode *inode = &info->vfs_inode;
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
343 	struct page *page = NULL;
344 	swp_entry_t *entry;
345 
346 	if (sgp != SGP_WRITE &&
347 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
348 		return ERR_PTR(-EINVAL);
349 
350 	while (!(entry = shmem_swp_entry(info, index, &page))) {
351 		if (sgp == SGP_READ)
352 			return shmem_swp_map(ZERO_PAGE(0));
353 		/*
354 		 * Test free_blocks against 1 not 0, since we have 1 data
355 		 * page (and perhaps indirect index pages) yet to allocate:
356 		 * a waste to allocate index if we cannot allocate data.
357 		 */
358 		if (sbinfo->max_blocks) {
359 			spin_lock(&sbinfo->stat_lock);
360 			if (sbinfo->free_blocks <= 1) {
361 				spin_unlock(&sbinfo->stat_lock);
362 				return ERR_PTR(-ENOSPC);
363 			}
364 			sbinfo->free_blocks--;
365 			inode->i_blocks += BLOCKS_PER_PAGE;
366 			spin_unlock(&sbinfo->stat_lock);
367 		}
368 
369 		spin_unlock(&info->lock);
370 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
371 		if (page) {
372 			page->nr_swapped = 0;
373 		}
374 		spin_lock(&info->lock);
375 
376 		if (!page) {
377 			shmem_free_blocks(inode, 1);
378 			return ERR_PTR(-ENOMEM);
379 		}
380 		if (sgp != SGP_WRITE &&
381 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
382 			entry = ERR_PTR(-EINVAL);
383 			break;
384 		}
385 		if (info->next_index <= index)
386 			info->next_index = index + 1;
387 	}
388 	if (page) {
389 		/* another task gave its page, or truncated the file */
390 		shmem_free_blocks(inode, 1);
391 		shmem_dir_free(page);
392 	}
393 	if (info->next_index <= index && !IS_ERR(entry))
394 		info->next_index = index + 1;
395 	return entry;
396 }
397 
398 /*
399  * shmem_free_swp - free some swap entries in a directory
400  *
401  * @dir:   pointer to the directory
402  * @edir:  pointer after last entry of the directory
403  */
404 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
405 {
406 	swp_entry_t *ptr;
407 	int freed = 0;
408 
409 	for (ptr = dir; ptr < edir; ptr++) {
410 		if (ptr->val) {
411 			free_swap_and_cache(*ptr);
412 			*ptr = (swp_entry_t){0};
413 			freed++;
414 		}
415 	}
416 	return freed;
417 }
418 
419 static int shmem_map_and_free_swp(struct page *subdir,
420 		int offset, int limit, struct page ***dir)
421 {
422 	swp_entry_t *ptr;
423 	int freed = 0;
424 
425 	ptr = shmem_swp_map(subdir);
426 	for (; offset < limit; offset += LATENCY_LIMIT) {
427 		int size = limit - offset;
428 		if (size > LATENCY_LIMIT)
429 			size = LATENCY_LIMIT;
430 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
431 		if (need_resched()) {
432 			shmem_swp_unmap(ptr);
433 			if (*dir) {
434 				shmem_dir_unmap(*dir);
435 				*dir = NULL;
436 			}
437 			cond_resched();
438 			ptr = shmem_swp_map(subdir);
439 		}
440 	}
441 	shmem_swp_unmap(ptr);
442 	return freed;
443 }
444 
445 static void shmem_free_pages(struct list_head *next)
446 {
447 	struct page *page;
448 	int freed = 0;
449 
450 	do {
451 		page = container_of(next, struct page, lru);
452 		next = next->next;
453 		shmem_dir_free(page);
454 		freed++;
455 		if (freed >= LATENCY_LIMIT) {
456 			cond_resched();
457 			freed = 0;
458 		}
459 	} while (next);
460 }
461 
462 static void shmem_truncate(struct inode *inode)
463 {
464 	struct shmem_inode_info *info = SHMEM_I(inode);
465 	unsigned long idx;
466 	unsigned long size;
467 	unsigned long limit;
468 	unsigned long stage;
469 	unsigned long diroff;
470 	struct page **dir;
471 	struct page *topdir;
472 	struct page *middir;
473 	struct page *subdir;
474 	swp_entry_t *ptr;
475 	LIST_HEAD(pages_to_free);
476 	long nr_pages_to_free = 0;
477 	long nr_swaps_freed = 0;
478 	int offset;
479 	int freed;
480 
481 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
482 	idx = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 	if (idx >= info->next_index)
484 		return;
485 
486 	spin_lock(&info->lock);
487 	info->flags |= SHMEM_TRUNCATE;
488 	limit = info->next_index;
489 	info->next_index = idx;
490 	topdir = info->i_indirect;
491 	if (topdir && idx <= SHMEM_NR_DIRECT) {
492 		info->i_indirect = NULL;
493 		nr_pages_to_free++;
494 		list_add(&topdir->lru, &pages_to_free);
495 	}
496 	spin_unlock(&info->lock);
497 
498 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
499 		ptr = info->i_direct;
500 		size = limit;
501 		if (size > SHMEM_NR_DIRECT)
502 			size = SHMEM_NR_DIRECT;
503 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
504 	}
505 	if (!topdir)
506 		goto done2;
507 
508 	BUG_ON(limit <= SHMEM_NR_DIRECT);
509 	limit -= SHMEM_NR_DIRECT;
510 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
511 	offset = idx % ENTRIES_PER_PAGE;
512 	idx -= offset;
513 
514 	dir = shmem_dir_map(topdir);
515 	stage = ENTRIES_PER_PAGEPAGE/2;
516 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
517 		middir = topdir;
518 		diroff = idx/ENTRIES_PER_PAGE;
519 	} else {
520 		dir += ENTRIES_PER_PAGE/2;
521 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
522 		while (stage <= idx)
523 			stage += ENTRIES_PER_PAGEPAGE;
524 		middir = *dir;
525 		if (*dir) {
526 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
527 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
528 			if (!diroff && !offset) {
529 				*dir = NULL;
530 				nr_pages_to_free++;
531 				list_add(&middir->lru, &pages_to_free);
532 			}
533 			shmem_dir_unmap(dir);
534 			dir = shmem_dir_map(middir);
535 		} else {
536 			diroff = 0;
537 			offset = 0;
538 			idx = stage;
539 		}
540 	}
541 
542 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
543 		if (unlikely(idx == stage)) {
544 			shmem_dir_unmap(dir);
545 			dir = shmem_dir_map(topdir) +
546 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
547 			while (!*dir) {
548 				dir++;
549 				idx += ENTRIES_PER_PAGEPAGE;
550 				if (idx >= limit)
551 					goto done1;
552 			}
553 			stage = idx + ENTRIES_PER_PAGEPAGE;
554 			middir = *dir;
555 			*dir = NULL;
556 			nr_pages_to_free++;
557 			list_add(&middir->lru, &pages_to_free);
558 			shmem_dir_unmap(dir);
559 			cond_resched();
560 			dir = shmem_dir_map(middir);
561 			diroff = 0;
562 		}
563 		subdir = dir[diroff];
564 		if (subdir && subdir->nr_swapped) {
565 			size = limit - idx;
566 			if (size > ENTRIES_PER_PAGE)
567 				size = ENTRIES_PER_PAGE;
568 			freed = shmem_map_and_free_swp(subdir,
569 						offset, size, &dir);
570 			if (!dir)
571 				dir = shmem_dir_map(middir);
572 			nr_swaps_freed += freed;
573 			if (offset)
574 				spin_lock(&info->lock);
575 			subdir->nr_swapped -= freed;
576 			if (offset)
577 				spin_unlock(&info->lock);
578 			BUG_ON(subdir->nr_swapped > offset);
579 		}
580 		if (offset)
581 			offset = 0;
582 		else if (subdir) {
583 			dir[diroff] = NULL;
584 			nr_pages_to_free++;
585 			list_add(&subdir->lru, &pages_to_free);
586 		}
587 	}
588 done1:
589 	shmem_dir_unmap(dir);
590 done2:
591 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
592 		/*
593 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
594 		 * may have swizzled a page in from swap since vmtruncate or
595 		 * generic_delete_inode did it, before we lowered next_index.
596 		 * Also, though shmem_getpage checks i_size before adding to
597 		 * cache, no recheck after: so fix the narrow window there too.
598 		 */
599 		truncate_inode_pages(inode->i_mapping, inode->i_size);
600 	}
601 
602 	spin_lock(&info->lock);
603 	info->flags &= ~SHMEM_TRUNCATE;
604 	info->swapped -= nr_swaps_freed;
605 	if (nr_pages_to_free)
606 		shmem_free_blocks(inode, nr_pages_to_free);
607 	shmem_recalc_inode(inode);
608 	spin_unlock(&info->lock);
609 
610 	/*
611 	 * Empty swap vector directory pages to be freed?
612 	 */
613 	if (!list_empty(&pages_to_free)) {
614 		pages_to_free.prev->next = NULL;
615 		shmem_free_pages(pages_to_free.next);
616 	}
617 }
618 
619 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
620 {
621 	struct inode *inode = dentry->d_inode;
622 	struct page *page = NULL;
623 	int error;
624 
625 	if (attr->ia_valid & ATTR_SIZE) {
626 		if (attr->ia_size < inode->i_size) {
627 			/*
628 			 * If truncating down to a partial page, then
629 			 * if that page is already allocated, hold it
630 			 * in memory until the truncation is over, so
631 			 * truncate_partial_page cannnot miss it were
632 			 * it assigned to swap.
633 			 */
634 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
635 				(void) shmem_getpage(inode,
636 					attr->ia_size>>PAGE_CACHE_SHIFT,
637 						&page, SGP_READ, NULL);
638 			}
639 			/*
640 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
641 			 * detect if any pages might have been added to cache
642 			 * after truncate_inode_pages.  But we needn't bother
643 			 * if it's being fully truncated to zero-length: the
644 			 * nrpages check is efficient enough in that case.
645 			 */
646 			if (attr->ia_size) {
647 				struct shmem_inode_info *info = SHMEM_I(inode);
648 				spin_lock(&info->lock);
649 				info->flags &= ~SHMEM_PAGEIN;
650 				spin_unlock(&info->lock);
651 			}
652 		}
653 	}
654 
655 	error = inode_change_ok(inode, attr);
656 	if (!error)
657 		error = inode_setattr(inode, attr);
658 	if (page)
659 		page_cache_release(page);
660 	return error;
661 }
662 
663 static void shmem_delete_inode(struct inode *inode)
664 {
665 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
666 	struct shmem_inode_info *info = SHMEM_I(inode);
667 
668 	if (inode->i_op->truncate == shmem_truncate) {
669 		truncate_inode_pages(inode->i_mapping, 0);
670 		shmem_unacct_size(info->flags, inode->i_size);
671 		inode->i_size = 0;
672 		shmem_truncate(inode);
673 		if (!list_empty(&info->swaplist)) {
674 			spin_lock(&shmem_swaplist_lock);
675 			list_del_init(&info->swaplist);
676 			spin_unlock(&shmem_swaplist_lock);
677 		}
678 	}
679 	BUG_ON(inode->i_blocks);
680 	if (sbinfo->max_inodes) {
681 		spin_lock(&sbinfo->stat_lock);
682 		sbinfo->free_inodes++;
683 		spin_unlock(&sbinfo->stat_lock);
684 	}
685 	clear_inode(inode);
686 }
687 
688 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
689 {
690 	swp_entry_t *ptr;
691 
692 	for (ptr = dir; ptr < edir; ptr++) {
693 		if (ptr->val == entry.val)
694 			return ptr - dir;
695 	}
696 	return -1;
697 }
698 
699 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
700 {
701 	struct inode *inode;
702 	unsigned long idx;
703 	unsigned long size;
704 	unsigned long limit;
705 	unsigned long stage;
706 	struct page **dir;
707 	struct page *subdir;
708 	swp_entry_t *ptr;
709 	int offset;
710 
711 	idx = 0;
712 	ptr = info->i_direct;
713 	spin_lock(&info->lock);
714 	limit = info->next_index;
715 	size = limit;
716 	if (size > SHMEM_NR_DIRECT)
717 		size = SHMEM_NR_DIRECT;
718 	offset = shmem_find_swp(entry, ptr, ptr+size);
719 	if (offset >= 0) {
720 		shmem_swp_balance_unmap();
721 		goto found;
722 	}
723 	if (!info->i_indirect)
724 		goto lost2;
725 
726 	dir = shmem_dir_map(info->i_indirect);
727 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
728 
729 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
730 		if (unlikely(idx == stage)) {
731 			shmem_dir_unmap(dir-1);
732 			dir = shmem_dir_map(info->i_indirect) +
733 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
734 			while (!*dir) {
735 				dir++;
736 				idx += ENTRIES_PER_PAGEPAGE;
737 				if (idx >= limit)
738 					goto lost1;
739 			}
740 			stage = idx + ENTRIES_PER_PAGEPAGE;
741 			subdir = *dir;
742 			shmem_dir_unmap(dir);
743 			dir = shmem_dir_map(subdir);
744 		}
745 		subdir = *dir;
746 		if (subdir && subdir->nr_swapped) {
747 			ptr = shmem_swp_map(subdir);
748 			size = limit - idx;
749 			if (size > ENTRIES_PER_PAGE)
750 				size = ENTRIES_PER_PAGE;
751 			offset = shmem_find_swp(entry, ptr, ptr+size);
752 			if (offset >= 0) {
753 				shmem_dir_unmap(dir);
754 				goto found;
755 			}
756 			shmem_swp_unmap(ptr);
757 		}
758 	}
759 lost1:
760 	shmem_dir_unmap(dir-1);
761 lost2:
762 	spin_unlock(&info->lock);
763 	return 0;
764 found:
765 	idx += offset;
766 	inode = &info->vfs_inode;
767 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
768 		info->flags |= SHMEM_PAGEIN;
769 		shmem_swp_set(info, ptr + offset, 0);
770 	}
771 	shmem_swp_unmap(ptr);
772 	spin_unlock(&info->lock);
773 	/*
774 	 * Decrement swap count even when the entry is left behind:
775 	 * try_to_unuse will skip over mms, then reincrement count.
776 	 */
777 	swap_free(entry);
778 	return 1;
779 }
780 
781 /*
782  * shmem_unuse() search for an eventually swapped out shmem page.
783  */
784 int shmem_unuse(swp_entry_t entry, struct page *page)
785 {
786 	struct list_head *p, *next;
787 	struct shmem_inode_info *info;
788 	int found = 0;
789 
790 	spin_lock(&shmem_swaplist_lock);
791 	list_for_each_safe(p, next, &shmem_swaplist) {
792 		info = list_entry(p, struct shmem_inode_info, swaplist);
793 		if (!info->swapped)
794 			list_del_init(&info->swaplist);
795 		else if (shmem_unuse_inode(info, entry, page)) {
796 			/* move head to start search for next from here */
797 			list_move_tail(&shmem_swaplist, &info->swaplist);
798 			found = 1;
799 			break;
800 		}
801 	}
802 	spin_unlock(&shmem_swaplist_lock);
803 	return found;
804 }
805 
806 /*
807  * Move the page from the page cache to the swap cache.
808  */
809 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
810 {
811 	struct shmem_inode_info *info;
812 	swp_entry_t *entry, swap;
813 	struct address_space *mapping;
814 	unsigned long index;
815 	struct inode *inode;
816 
817 	BUG_ON(!PageLocked(page));
818 	BUG_ON(page_mapped(page));
819 
820 	mapping = page->mapping;
821 	index = page->index;
822 	inode = mapping->host;
823 	info = SHMEM_I(inode);
824 	if (info->flags & VM_LOCKED)
825 		goto redirty;
826 	swap = get_swap_page();
827 	if (!swap.val)
828 		goto redirty;
829 
830 	spin_lock(&info->lock);
831 	shmem_recalc_inode(inode);
832 	if (index >= info->next_index) {
833 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
834 		goto unlock;
835 	}
836 	entry = shmem_swp_entry(info, index, NULL);
837 	BUG_ON(!entry);
838 	BUG_ON(entry->val);
839 
840 	if (move_to_swap_cache(page, swap) == 0) {
841 		shmem_swp_set(info, entry, swap.val);
842 		shmem_swp_unmap(entry);
843 		spin_unlock(&info->lock);
844 		if (list_empty(&info->swaplist)) {
845 			spin_lock(&shmem_swaplist_lock);
846 			/* move instead of add in case we're racing */
847 			list_move_tail(&info->swaplist, &shmem_swaplist);
848 			spin_unlock(&shmem_swaplist_lock);
849 		}
850 		unlock_page(page);
851 		return 0;
852 	}
853 
854 	shmem_swp_unmap(entry);
855 unlock:
856 	spin_unlock(&info->lock);
857 	swap_free(swap);
858 redirty:
859 	set_page_dirty(page);
860 	return WRITEPAGE_ACTIVATE;	/* Return with the page locked */
861 }
862 
863 #ifdef CONFIG_NUMA
864 static struct page *shmem_swapin_async(struct shared_policy *p,
865 				       swp_entry_t entry, unsigned long idx)
866 {
867 	struct page *page;
868 	struct vm_area_struct pvma;
869 
870 	/* Create a pseudo vma that just contains the policy */
871 	memset(&pvma, 0, sizeof(struct vm_area_struct));
872 	pvma.vm_end = PAGE_SIZE;
873 	pvma.vm_pgoff = idx;
874 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
875 	page = read_swap_cache_async(entry, &pvma, 0);
876 	mpol_free(pvma.vm_policy);
877 	return page;
878 }
879 
880 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
881 			  unsigned long idx)
882 {
883 	struct shared_policy *p = &info->policy;
884 	int i, num;
885 	struct page *page;
886 	unsigned long offset;
887 
888 	num = valid_swaphandles(entry, &offset);
889 	for (i = 0; i < num; offset++, i++) {
890 		page = shmem_swapin_async(p,
891 				swp_entry(swp_type(entry), offset), idx);
892 		if (!page)
893 			break;
894 		page_cache_release(page);
895 	}
896 	lru_add_drain();	/* Push any new pages onto the LRU now */
897 	return shmem_swapin_async(p, entry, idx);
898 }
899 
900 static struct page *
901 shmem_alloc_page(unsigned long gfp, struct shmem_inode_info *info,
902 		 unsigned long idx)
903 {
904 	struct vm_area_struct pvma;
905 	struct page *page;
906 
907 	memset(&pvma, 0, sizeof(struct vm_area_struct));
908 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
909 	pvma.vm_pgoff = idx;
910 	pvma.vm_end = PAGE_SIZE;
911 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
912 	mpol_free(pvma.vm_policy);
913 	return page;
914 }
915 #else
916 static inline struct page *
917 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
918 {
919 	swapin_readahead(entry, 0, NULL);
920 	return read_swap_cache_async(entry, NULL, 0);
921 }
922 
923 static inline struct page *
924 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
925 {
926 	return alloc_page(gfp | __GFP_ZERO);
927 }
928 #endif
929 
930 /*
931  * shmem_getpage - either get the page from swap or allocate a new one
932  *
933  * If we allocate a new one we do not mark it dirty. That's up to the
934  * vm. If we swap it in we mark it dirty since we also free the swap
935  * entry since a page cannot live in both the swap and page cache
936  */
937 static int shmem_getpage(struct inode *inode, unsigned long idx,
938 			struct page **pagep, enum sgp_type sgp, int *type)
939 {
940 	struct address_space *mapping = inode->i_mapping;
941 	struct shmem_inode_info *info = SHMEM_I(inode);
942 	struct shmem_sb_info *sbinfo;
943 	struct page *filepage = *pagep;
944 	struct page *swappage;
945 	swp_entry_t *entry;
946 	swp_entry_t swap;
947 	int error;
948 
949 	if (idx >= SHMEM_MAX_INDEX)
950 		return -EFBIG;
951 	/*
952 	 * Normally, filepage is NULL on entry, and either found
953 	 * uptodate immediately, or allocated and zeroed, or read
954 	 * in under swappage, which is then assigned to filepage.
955 	 * But shmem_prepare_write passes in a locked filepage,
956 	 * which may be found not uptodate by other callers too,
957 	 * and may need to be copied from the swappage read in.
958 	 */
959 repeat:
960 	if (!filepage)
961 		filepage = find_lock_page(mapping, idx);
962 	if (filepage && PageUptodate(filepage))
963 		goto done;
964 	error = 0;
965 	if (sgp == SGP_QUICK)
966 		goto failed;
967 
968 	spin_lock(&info->lock);
969 	shmem_recalc_inode(inode);
970 	entry = shmem_swp_alloc(info, idx, sgp);
971 	if (IS_ERR(entry)) {
972 		spin_unlock(&info->lock);
973 		error = PTR_ERR(entry);
974 		goto failed;
975 	}
976 	swap = *entry;
977 
978 	if (swap.val) {
979 		/* Look it up and read it in.. */
980 		swappage = lookup_swap_cache(swap);
981 		if (!swappage) {
982 			shmem_swp_unmap(entry);
983 			spin_unlock(&info->lock);
984 			/* here we actually do the io */
985 			if (type && *type == VM_FAULT_MINOR) {
986 				inc_page_state(pgmajfault);
987 				*type = VM_FAULT_MAJOR;
988 			}
989 			swappage = shmem_swapin(info, swap, idx);
990 			if (!swappage) {
991 				spin_lock(&info->lock);
992 				entry = shmem_swp_alloc(info, idx, sgp);
993 				if (IS_ERR(entry))
994 					error = PTR_ERR(entry);
995 				else {
996 					if (entry->val == swap.val)
997 						error = -ENOMEM;
998 					shmem_swp_unmap(entry);
999 				}
1000 				spin_unlock(&info->lock);
1001 				if (error)
1002 					goto failed;
1003 				goto repeat;
1004 			}
1005 			wait_on_page_locked(swappage);
1006 			page_cache_release(swappage);
1007 			goto repeat;
1008 		}
1009 
1010 		/* We have to do this with page locked to prevent races */
1011 		if (TestSetPageLocked(swappage)) {
1012 			shmem_swp_unmap(entry);
1013 			spin_unlock(&info->lock);
1014 			wait_on_page_locked(swappage);
1015 			page_cache_release(swappage);
1016 			goto repeat;
1017 		}
1018 		if (PageWriteback(swappage)) {
1019 			shmem_swp_unmap(entry);
1020 			spin_unlock(&info->lock);
1021 			wait_on_page_writeback(swappage);
1022 			unlock_page(swappage);
1023 			page_cache_release(swappage);
1024 			goto repeat;
1025 		}
1026 		if (!PageUptodate(swappage)) {
1027 			shmem_swp_unmap(entry);
1028 			spin_unlock(&info->lock);
1029 			unlock_page(swappage);
1030 			page_cache_release(swappage);
1031 			error = -EIO;
1032 			goto failed;
1033 		}
1034 
1035 		if (filepage) {
1036 			shmem_swp_set(info, entry, 0);
1037 			shmem_swp_unmap(entry);
1038 			delete_from_swap_cache(swappage);
1039 			spin_unlock(&info->lock);
1040 			copy_highpage(filepage, swappage);
1041 			unlock_page(swappage);
1042 			page_cache_release(swappage);
1043 			flush_dcache_page(filepage);
1044 			SetPageUptodate(filepage);
1045 			set_page_dirty(filepage);
1046 			swap_free(swap);
1047 		} else if (!(error = move_from_swap_cache(
1048 				swappage, idx, mapping))) {
1049 			info->flags |= SHMEM_PAGEIN;
1050 			shmem_swp_set(info, entry, 0);
1051 			shmem_swp_unmap(entry);
1052 			spin_unlock(&info->lock);
1053 			filepage = swappage;
1054 			swap_free(swap);
1055 		} else {
1056 			shmem_swp_unmap(entry);
1057 			spin_unlock(&info->lock);
1058 			unlock_page(swappage);
1059 			page_cache_release(swappage);
1060 			if (error == -ENOMEM) {
1061 				/* let kswapd refresh zone for GFP_ATOMICs */
1062 				blk_congestion_wait(WRITE, HZ/50);
1063 			}
1064 			goto repeat;
1065 		}
1066 	} else if (sgp == SGP_READ && !filepage) {
1067 		shmem_swp_unmap(entry);
1068 		filepage = find_get_page(mapping, idx);
1069 		if (filepage &&
1070 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1071 			spin_unlock(&info->lock);
1072 			wait_on_page_locked(filepage);
1073 			page_cache_release(filepage);
1074 			filepage = NULL;
1075 			goto repeat;
1076 		}
1077 		spin_unlock(&info->lock);
1078 	} else {
1079 		shmem_swp_unmap(entry);
1080 		sbinfo = SHMEM_SB(inode->i_sb);
1081 		if (sbinfo->max_blocks) {
1082 			spin_lock(&sbinfo->stat_lock);
1083 			if (sbinfo->free_blocks == 0 ||
1084 			    shmem_acct_block(info->flags)) {
1085 				spin_unlock(&sbinfo->stat_lock);
1086 				spin_unlock(&info->lock);
1087 				error = -ENOSPC;
1088 				goto failed;
1089 			}
1090 			sbinfo->free_blocks--;
1091 			inode->i_blocks += BLOCKS_PER_PAGE;
1092 			spin_unlock(&sbinfo->stat_lock);
1093 		} else if (shmem_acct_block(info->flags)) {
1094 			spin_unlock(&info->lock);
1095 			error = -ENOSPC;
1096 			goto failed;
1097 		}
1098 
1099 		if (!filepage) {
1100 			spin_unlock(&info->lock);
1101 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1102 						    info,
1103 						    idx);
1104 			if (!filepage) {
1105 				shmem_unacct_blocks(info->flags, 1);
1106 				shmem_free_blocks(inode, 1);
1107 				error = -ENOMEM;
1108 				goto failed;
1109 			}
1110 
1111 			spin_lock(&info->lock);
1112 			entry = shmem_swp_alloc(info, idx, sgp);
1113 			if (IS_ERR(entry))
1114 				error = PTR_ERR(entry);
1115 			else {
1116 				swap = *entry;
1117 				shmem_swp_unmap(entry);
1118 			}
1119 			if (error || swap.val || 0 != add_to_page_cache_lru(
1120 					filepage, mapping, idx, GFP_ATOMIC)) {
1121 				spin_unlock(&info->lock);
1122 				page_cache_release(filepage);
1123 				shmem_unacct_blocks(info->flags, 1);
1124 				shmem_free_blocks(inode, 1);
1125 				filepage = NULL;
1126 				if (error)
1127 					goto failed;
1128 				goto repeat;
1129 			}
1130 			info->flags |= SHMEM_PAGEIN;
1131 		}
1132 
1133 		info->alloced++;
1134 		spin_unlock(&info->lock);
1135 		flush_dcache_page(filepage);
1136 		SetPageUptodate(filepage);
1137 	}
1138 done:
1139 	if (*pagep != filepage) {
1140 		unlock_page(filepage);
1141 		*pagep = filepage;
1142 	}
1143 	return 0;
1144 
1145 failed:
1146 	if (*pagep != filepage) {
1147 		unlock_page(filepage);
1148 		page_cache_release(filepage);
1149 	}
1150 	return error;
1151 }
1152 
1153 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1154 {
1155 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1156 	struct page *page = NULL;
1157 	unsigned long idx;
1158 	int error;
1159 
1160 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1161 	idx += vma->vm_pgoff;
1162 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1163 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1164 		return NOPAGE_SIGBUS;
1165 
1166 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1167 	if (error)
1168 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1169 
1170 	mark_page_accessed(page);
1171 	return page;
1172 }
1173 
1174 static int shmem_populate(struct vm_area_struct *vma,
1175 	unsigned long addr, unsigned long len,
1176 	pgprot_t prot, unsigned long pgoff, int nonblock)
1177 {
1178 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1179 	struct mm_struct *mm = vma->vm_mm;
1180 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1181 	unsigned long size;
1182 
1183 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1184 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1185 		return -EINVAL;
1186 
1187 	while ((long) len > 0) {
1188 		struct page *page = NULL;
1189 		int err;
1190 		/*
1191 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1192 		 */
1193 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1194 		if (err)
1195 			return err;
1196 		/* Page may still be null, but only if nonblock was set. */
1197 		if (page) {
1198 			mark_page_accessed(page);
1199 			err = install_page(mm, vma, addr, page, prot);
1200 			if (err) {
1201 				page_cache_release(page);
1202 				return err;
1203 			}
1204 		} else {
1205 			/* No page was found just because we can't read it in
1206 			 * now (being here implies nonblock != 0), but the page
1207 			 * may exist, so set the PTE to fault it in later. */
1208     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1209 			if (err)
1210 	    			return err;
1211 		}
1212 
1213 		len -= PAGE_SIZE;
1214 		addr += PAGE_SIZE;
1215 		pgoff++;
1216 	}
1217 	return 0;
1218 }
1219 
1220 #ifdef CONFIG_NUMA
1221 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1222 {
1223 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1224 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1225 }
1226 
1227 struct mempolicy *
1228 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1229 {
1230 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1231 	unsigned long idx;
1232 
1233 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1234 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1235 }
1236 #endif
1237 
1238 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1239 {
1240 	struct inode *inode = file->f_dentry->d_inode;
1241 	struct shmem_inode_info *info = SHMEM_I(inode);
1242 	int retval = -ENOMEM;
1243 
1244 	spin_lock(&info->lock);
1245 	if (lock && !(info->flags & VM_LOCKED)) {
1246 		if (!user_shm_lock(inode->i_size, user))
1247 			goto out_nomem;
1248 		info->flags |= VM_LOCKED;
1249 	}
1250 	if (!lock && (info->flags & VM_LOCKED) && user) {
1251 		user_shm_unlock(inode->i_size, user);
1252 		info->flags &= ~VM_LOCKED;
1253 	}
1254 	retval = 0;
1255 out_nomem:
1256 	spin_unlock(&info->lock);
1257 	return retval;
1258 }
1259 
1260 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1261 {
1262 	file_accessed(file);
1263 	vma->vm_ops = &shmem_vm_ops;
1264 	return 0;
1265 }
1266 
1267 static struct inode *
1268 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1269 {
1270 	struct inode *inode;
1271 	struct shmem_inode_info *info;
1272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1273 
1274 	if (sbinfo->max_inodes) {
1275 		spin_lock(&sbinfo->stat_lock);
1276 		if (!sbinfo->free_inodes) {
1277 			spin_unlock(&sbinfo->stat_lock);
1278 			return NULL;
1279 		}
1280 		sbinfo->free_inodes--;
1281 		spin_unlock(&sbinfo->stat_lock);
1282 	}
1283 
1284 	inode = new_inode(sb);
1285 	if (inode) {
1286 		inode->i_mode = mode;
1287 		inode->i_uid = current->fsuid;
1288 		inode->i_gid = current->fsgid;
1289 		inode->i_blksize = PAGE_CACHE_SIZE;
1290 		inode->i_blocks = 0;
1291 		inode->i_mapping->a_ops = &shmem_aops;
1292 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1293 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1294 		info = SHMEM_I(inode);
1295 		memset(info, 0, (char *)inode - (char *)info);
1296 		spin_lock_init(&info->lock);
1297 		INIT_LIST_HEAD(&info->swaplist);
1298 
1299 		switch (mode & S_IFMT) {
1300 		default:
1301 			init_special_inode(inode, mode, dev);
1302 			break;
1303 		case S_IFREG:
1304 			inode->i_op = &shmem_inode_operations;
1305 			inode->i_fop = &shmem_file_operations;
1306 			mpol_shared_policy_init(&info->policy);
1307 			break;
1308 		case S_IFDIR:
1309 			inode->i_nlink++;
1310 			/* Some things misbehave if size == 0 on a directory */
1311 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1312 			inode->i_op = &shmem_dir_inode_operations;
1313 			inode->i_fop = &simple_dir_operations;
1314 			break;
1315 		case S_IFLNK:
1316 			/*
1317 			 * Must not load anything in the rbtree,
1318 			 * mpol_free_shared_policy will not be called.
1319 			 */
1320 			mpol_shared_policy_init(&info->policy);
1321 			break;
1322 		}
1323 	} else if (sbinfo->max_inodes) {
1324 		spin_lock(&sbinfo->stat_lock);
1325 		sbinfo->free_inodes++;
1326 		spin_unlock(&sbinfo->stat_lock);
1327 	}
1328 	return inode;
1329 }
1330 
1331 #ifdef CONFIG_TMPFS
1332 static struct inode_operations shmem_symlink_inode_operations;
1333 static struct inode_operations shmem_symlink_inline_operations;
1334 
1335 /*
1336  * Normally tmpfs makes no use of shmem_prepare_write, but it
1337  * lets a tmpfs file be used read-write below the loop driver.
1338  */
1339 static int
1340 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1341 {
1342 	struct inode *inode = page->mapping->host;
1343 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1344 }
1345 
1346 static ssize_t
1347 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1348 {
1349 	struct inode	*inode = file->f_dentry->d_inode;
1350 	loff_t		pos;
1351 	unsigned long	written;
1352 	ssize_t		err;
1353 
1354 	if ((ssize_t) count < 0)
1355 		return -EINVAL;
1356 
1357 	if (!access_ok(VERIFY_READ, buf, count))
1358 		return -EFAULT;
1359 
1360 	down(&inode->i_sem);
1361 
1362 	pos = *ppos;
1363 	written = 0;
1364 
1365 	err = generic_write_checks(file, &pos, &count, 0);
1366 	if (err || !count)
1367 		goto out;
1368 
1369 	err = remove_suid(file->f_dentry);
1370 	if (err)
1371 		goto out;
1372 
1373 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1374 
1375 	do {
1376 		struct page *page = NULL;
1377 		unsigned long bytes, index, offset;
1378 		char *kaddr;
1379 		int left;
1380 
1381 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1382 		index = pos >> PAGE_CACHE_SHIFT;
1383 		bytes = PAGE_CACHE_SIZE - offset;
1384 		if (bytes > count)
1385 			bytes = count;
1386 
1387 		/*
1388 		 * We don't hold page lock across copy from user -
1389 		 * what would it guard against? - so no deadlock here.
1390 		 * But it still may be a good idea to prefault below.
1391 		 */
1392 
1393 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1394 		if (err)
1395 			break;
1396 
1397 		left = bytes;
1398 		if (PageHighMem(page)) {
1399 			volatile unsigned char dummy;
1400 			__get_user(dummy, buf);
1401 			__get_user(dummy, buf + bytes - 1);
1402 
1403 			kaddr = kmap_atomic(page, KM_USER0);
1404 			left = __copy_from_user_inatomic(kaddr + offset,
1405 							buf, bytes);
1406 			kunmap_atomic(kaddr, KM_USER0);
1407 		}
1408 		if (left) {
1409 			kaddr = kmap(page);
1410 			left = __copy_from_user(kaddr + offset, buf, bytes);
1411 			kunmap(page);
1412 		}
1413 
1414 		written += bytes;
1415 		count -= bytes;
1416 		pos += bytes;
1417 		buf += bytes;
1418 		if (pos > inode->i_size)
1419 			i_size_write(inode, pos);
1420 
1421 		flush_dcache_page(page);
1422 		set_page_dirty(page);
1423 		mark_page_accessed(page);
1424 		page_cache_release(page);
1425 
1426 		if (left) {
1427 			pos -= left;
1428 			written -= left;
1429 			err = -EFAULT;
1430 			break;
1431 		}
1432 
1433 		/*
1434 		 * Our dirty pages are not counted in nr_dirty,
1435 		 * and we do not attempt to balance dirty pages.
1436 		 */
1437 
1438 		cond_resched();
1439 	} while (count);
1440 
1441 	*ppos = pos;
1442 	if (written)
1443 		err = written;
1444 out:
1445 	up(&inode->i_sem);
1446 	return err;
1447 }
1448 
1449 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1450 {
1451 	struct inode *inode = filp->f_dentry->d_inode;
1452 	struct address_space *mapping = inode->i_mapping;
1453 	unsigned long index, offset;
1454 
1455 	index = *ppos >> PAGE_CACHE_SHIFT;
1456 	offset = *ppos & ~PAGE_CACHE_MASK;
1457 
1458 	for (;;) {
1459 		struct page *page = NULL;
1460 		unsigned long end_index, nr, ret;
1461 		loff_t i_size = i_size_read(inode);
1462 
1463 		end_index = i_size >> PAGE_CACHE_SHIFT;
1464 		if (index > end_index)
1465 			break;
1466 		if (index == end_index) {
1467 			nr = i_size & ~PAGE_CACHE_MASK;
1468 			if (nr <= offset)
1469 				break;
1470 		}
1471 
1472 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1473 		if (desc->error) {
1474 			if (desc->error == -EINVAL)
1475 				desc->error = 0;
1476 			break;
1477 		}
1478 
1479 		/*
1480 		 * We must evaluate after, since reads (unlike writes)
1481 		 * are called without i_sem protection against truncate
1482 		 */
1483 		nr = PAGE_CACHE_SIZE;
1484 		i_size = i_size_read(inode);
1485 		end_index = i_size >> PAGE_CACHE_SHIFT;
1486 		if (index == end_index) {
1487 			nr = i_size & ~PAGE_CACHE_MASK;
1488 			if (nr <= offset) {
1489 				if (page)
1490 					page_cache_release(page);
1491 				break;
1492 			}
1493 		}
1494 		nr -= offset;
1495 
1496 		if (page) {
1497 			/*
1498 			 * If users can be writing to this page using arbitrary
1499 			 * virtual addresses, take care about potential aliasing
1500 			 * before reading the page on the kernel side.
1501 			 */
1502 			if (mapping_writably_mapped(mapping))
1503 				flush_dcache_page(page);
1504 			/*
1505 			 * Mark the page accessed if we read the beginning.
1506 			 */
1507 			if (!offset)
1508 				mark_page_accessed(page);
1509 		} else
1510 			page = ZERO_PAGE(0);
1511 
1512 		/*
1513 		 * Ok, we have the page, and it's up-to-date, so
1514 		 * now we can copy it to user space...
1515 		 *
1516 		 * The actor routine returns how many bytes were actually used..
1517 		 * NOTE! This may not be the same as how much of a user buffer
1518 		 * we filled up (we may be padding etc), so we can only update
1519 		 * "pos" here (the actor routine has to update the user buffer
1520 		 * pointers and the remaining count).
1521 		 */
1522 		ret = actor(desc, page, offset, nr);
1523 		offset += ret;
1524 		index += offset >> PAGE_CACHE_SHIFT;
1525 		offset &= ~PAGE_CACHE_MASK;
1526 
1527 		page_cache_release(page);
1528 		if (ret != nr || !desc->count)
1529 			break;
1530 
1531 		cond_resched();
1532 	}
1533 
1534 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1535 	file_accessed(filp);
1536 }
1537 
1538 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1539 {
1540 	read_descriptor_t desc;
1541 
1542 	if ((ssize_t) count < 0)
1543 		return -EINVAL;
1544 	if (!access_ok(VERIFY_WRITE, buf, count))
1545 		return -EFAULT;
1546 	if (!count)
1547 		return 0;
1548 
1549 	desc.written = 0;
1550 	desc.count = count;
1551 	desc.arg.buf = buf;
1552 	desc.error = 0;
1553 
1554 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1555 	if (desc.written)
1556 		return desc.written;
1557 	return desc.error;
1558 }
1559 
1560 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1561 			 size_t count, read_actor_t actor, void *target)
1562 {
1563 	read_descriptor_t desc;
1564 
1565 	if (!count)
1566 		return 0;
1567 
1568 	desc.written = 0;
1569 	desc.count = count;
1570 	desc.arg.data = target;
1571 	desc.error = 0;
1572 
1573 	do_shmem_file_read(in_file, ppos, &desc, actor);
1574 	if (desc.written)
1575 		return desc.written;
1576 	return desc.error;
1577 }
1578 
1579 static int shmem_statfs(struct super_block *sb, struct kstatfs *buf)
1580 {
1581 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1582 
1583 	buf->f_type = TMPFS_MAGIC;
1584 	buf->f_bsize = PAGE_CACHE_SIZE;
1585 	buf->f_namelen = NAME_MAX;
1586 	spin_lock(&sbinfo->stat_lock);
1587 	if (sbinfo->max_blocks) {
1588 		buf->f_blocks = sbinfo->max_blocks;
1589 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1590 	}
1591 	if (sbinfo->max_inodes) {
1592 		buf->f_files = sbinfo->max_inodes;
1593 		buf->f_ffree = sbinfo->free_inodes;
1594 	}
1595 	/* else leave those fields 0 like simple_statfs */
1596 	spin_unlock(&sbinfo->stat_lock);
1597 	return 0;
1598 }
1599 
1600 /*
1601  * File creation. Allocate an inode, and we're done..
1602  */
1603 static int
1604 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1605 {
1606 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1607 	int error = -ENOSPC;
1608 
1609 	if (inode) {
1610 		error = security_inode_init_security(inode, dir, NULL, NULL,
1611 						     NULL);
1612 		if (error) {
1613 			if (error != -EOPNOTSUPP) {
1614 				iput(inode);
1615 				return error;
1616 			}
1617 			error = 0;
1618 		}
1619 		if (dir->i_mode & S_ISGID) {
1620 			inode->i_gid = dir->i_gid;
1621 			if (S_ISDIR(mode))
1622 				inode->i_mode |= S_ISGID;
1623 		}
1624 		dir->i_size += BOGO_DIRENT_SIZE;
1625 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1626 		d_instantiate(dentry, inode);
1627 		dget(dentry); /* Extra count - pin the dentry in core */
1628 	}
1629 	return error;
1630 }
1631 
1632 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1633 {
1634 	int error;
1635 
1636 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1637 		return error;
1638 	dir->i_nlink++;
1639 	return 0;
1640 }
1641 
1642 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1643 		struct nameidata *nd)
1644 {
1645 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1646 }
1647 
1648 /*
1649  * Link a file..
1650  */
1651 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1652 {
1653 	struct inode *inode = old_dentry->d_inode;
1654 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1655 
1656 	/*
1657 	 * No ordinary (disk based) filesystem counts links as inodes;
1658 	 * but each new link needs a new dentry, pinning lowmem, and
1659 	 * tmpfs dentries cannot be pruned until they are unlinked.
1660 	 */
1661 	if (sbinfo->max_inodes) {
1662 		spin_lock(&sbinfo->stat_lock);
1663 		if (!sbinfo->free_inodes) {
1664 			spin_unlock(&sbinfo->stat_lock);
1665 			return -ENOSPC;
1666 		}
1667 		sbinfo->free_inodes--;
1668 		spin_unlock(&sbinfo->stat_lock);
1669 	}
1670 
1671 	dir->i_size += BOGO_DIRENT_SIZE;
1672 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1673 	inode->i_nlink++;
1674 	atomic_inc(&inode->i_count);	/* New dentry reference */
1675 	dget(dentry);		/* Extra pinning count for the created dentry */
1676 	d_instantiate(dentry, inode);
1677 	return 0;
1678 }
1679 
1680 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1681 {
1682 	struct inode *inode = dentry->d_inode;
1683 
1684 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1685 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1686 		if (sbinfo->max_inodes) {
1687 			spin_lock(&sbinfo->stat_lock);
1688 			sbinfo->free_inodes++;
1689 			spin_unlock(&sbinfo->stat_lock);
1690 		}
1691 	}
1692 
1693 	dir->i_size -= BOGO_DIRENT_SIZE;
1694 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1695 	inode->i_nlink--;
1696 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1697 	return 0;
1698 }
1699 
1700 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1701 {
1702 	if (!simple_empty(dentry))
1703 		return -ENOTEMPTY;
1704 
1705 	dir->i_nlink--;
1706 	return shmem_unlink(dir, dentry);
1707 }
1708 
1709 /*
1710  * The VFS layer already does all the dentry stuff for rename,
1711  * we just have to decrement the usage count for the target if
1712  * it exists so that the VFS layer correctly free's it when it
1713  * gets overwritten.
1714  */
1715 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1716 {
1717 	struct inode *inode = old_dentry->d_inode;
1718 	int they_are_dirs = S_ISDIR(inode->i_mode);
1719 
1720 	if (!simple_empty(new_dentry))
1721 		return -ENOTEMPTY;
1722 
1723 	if (new_dentry->d_inode) {
1724 		(void) shmem_unlink(new_dir, new_dentry);
1725 		if (they_are_dirs)
1726 			old_dir->i_nlink--;
1727 	} else if (they_are_dirs) {
1728 		old_dir->i_nlink--;
1729 		new_dir->i_nlink++;
1730 	}
1731 
1732 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1733 	new_dir->i_size += BOGO_DIRENT_SIZE;
1734 	old_dir->i_ctime = old_dir->i_mtime =
1735 	new_dir->i_ctime = new_dir->i_mtime =
1736 	inode->i_ctime = CURRENT_TIME;
1737 	return 0;
1738 }
1739 
1740 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1741 {
1742 	int error;
1743 	int len;
1744 	struct inode *inode;
1745 	struct page *page = NULL;
1746 	char *kaddr;
1747 	struct shmem_inode_info *info;
1748 
1749 	len = strlen(symname) + 1;
1750 	if (len > PAGE_CACHE_SIZE)
1751 		return -ENAMETOOLONG;
1752 
1753 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1754 	if (!inode)
1755 		return -ENOSPC;
1756 
1757 	error = security_inode_init_security(inode, dir, NULL, NULL,
1758 					     NULL);
1759 	if (error) {
1760 		if (error != -EOPNOTSUPP) {
1761 			iput(inode);
1762 			return error;
1763 		}
1764 		error = 0;
1765 	}
1766 
1767 	info = SHMEM_I(inode);
1768 	inode->i_size = len-1;
1769 	if (len <= (char *)inode - (char *)info) {
1770 		/* do it inline */
1771 		memcpy(info, symname, len);
1772 		inode->i_op = &shmem_symlink_inline_operations;
1773 	} else {
1774 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1775 		if (error) {
1776 			iput(inode);
1777 			return error;
1778 		}
1779 		inode->i_op = &shmem_symlink_inode_operations;
1780 		kaddr = kmap_atomic(page, KM_USER0);
1781 		memcpy(kaddr, symname, len);
1782 		kunmap_atomic(kaddr, KM_USER0);
1783 		set_page_dirty(page);
1784 		page_cache_release(page);
1785 	}
1786 	if (dir->i_mode & S_ISGID)
1787 		inode->i_gid = dir->i_gid;
1788 	dir->i_size += BOGO_DIRENT_SIZE;
1789 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1790 	d_instantiate(dentry, inode);
1791 	dget(dentry);
1792 	return 0;
1793 }
1794 
1795 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1796 {
1797 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1798 	return NULL;
1799 }
1800 
1801 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1802 {
1803 	struct page *page = NULL;
1804 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1805 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1806 	return page;
1807 }
1808 
1809 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1810 {
1811 	if (!IS_ERR(nd_get_link(nd))) {
1812 		struct page *page = cookie;
1813 		kunmap(page);
1814 		mark_page_accessed(page);
1815 		page_cache_release(page);
1816 	}
1817 }
1818 
1819 static struct inode_operations shmem_symlink_inline_operations = {
1820 	.readlink	= generic_readlink,
1821 	.follow_link	= shmem_follow_link_inline,
1822 };
1823 
1824 static struct inode_operations shmem_symlink_inode_operations = {
1825 	.truncate	= shmem_truncate,
1826 	.readlink	= generic_readlink,
1827 	.follow_link	= shmem_follow_link,
1828 	.put_link	= shmem_put_link,
1829 };
1830 
1831 static int shmem_parse_options(char *options, int *mode, uid_t *uid, gid_t *gid, unsigned long *blocks, unsigned long *inodes)
1832 {
1833 	char *this_char, *value, *rest;
1834 
1835 	while ((this_char = strsep(&options, ",")) != NULL) {
1836 		if (!*this_char)
1837 			continue;
1838 		if ((value = strchr(this_char,'=')) != NULL) {
1839 			*value++ = 0;
1840 		} else {
1841 			printk(KERN_ERR
1842 			    "tmpfs: No value for mount option '%s'\n",
1843 			    this_char);
1844 			return 1;
1845 		}
1846 
1847 		if (!strcmp(this_char,"size")) {
1848 			unsigned long long size;
1849 			size = memparse(value,&rest);
1850 			if (*rest == '%') {
1851 				size <<= PAGE_SHIFT;
1852 				size *= totalram_pages;
1853 				do_div(size, 100);
1854 				rest++;
1855 			}
1856 			if (*rest)
1857 				goto bad_val;
1858 			*blocks = size >> PAGE_CACHE_SHIFT;
1859 		} else if (!strcmp(this_char,"nr_blocks")) {
1860 			*blocks = memparse(value,&rest);
1861 			if (*rest)
1862 				goto bad_val;
1863 		} else if (!strcmp(this_char,"nr_inodes")) {
1864 			*inodes = memparse(value,&rest);
1865 			if (*rest)
1866 				goto bad_val;
1867 		} else if (!strcmp(this_char,"mode")) {
1868 			if (!mode)
1869 				continue;
1870 			*mode = simple_strtoul(value,&rest,8);
1871 			if (*rest)
1872 				goto bad_val;
1873 		} else if (!strcmp(this_char,"uid")) {
1874 			if (!uid)
1875 				continue;
1876 			*uid = simple_strtoul(value,&rest,0);
1877 			if (*rest)
1878 				goto bad_val;
1879 		} else if (!strcmp(this_char,"gid")) {
1880 			if (!gid)
1881 				continue;
1882 			*gid = simple_strtoul(value,&rest,0);
1883 			if (*rest)
1884 				goto bad_val;
1885 		} else {
1886 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1887 			       this_char);
1888 			return 1;
1889 		}
1890 	}
1891 	return 0;
1892 
1893 bad_val:
1894 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1895 	       value, this_char);
1896 	return 1;
1897 
1898 }
1899 
1900 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1901 {
1902 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1903 	unsigned long max_blocks = sbinfo->max_blocks;
1904 	unsigned long max_inodes = sbinfo->max_inodes;
1905 	unsigned long blocks;
1906 	unsigned long inodes;
1907 	int error = -EINVAL;
1908 
1909 	if (shmem_parse_options(data, NULL, NULL, NULL,
1910 				&max_blocks, &max_inodes))
1911 		return error;
1912 
1913 	spin_lock(&sbinfo->stat_lock);
1914 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
1915 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
1916 	if (max_blocks < blocks)
1917 		goto out;
1918 	if (max_inodes < inodes)
1919 		goto out;
1920 	/*
1921 	 * Those tests also disallow limited->unlimited while any are in
1922 	 * use, so i_blocks will always be zero when max_blocks is zero;
1923 	 * but we must separately disallow unlimited->limited, because
1924 	 * in that case we have no record of how much is already in use.
1925 	 */
1926 	if (max_blocks && !sbinfo->max_blocks)
1927 		goto out;
1928 	if (max_inodes && !sbinfo->max_inodes)
1929 		goto out;
1930 
1931 	error = 0;
1932 	sbinfo->max_blocks  = max_blocks;
1933 	sbinfo->free_blocks = max_blocks - blocks;
1934 	sbinfo->max_inodes  = max_inodes;
1935 	sbinfo->free_inodes = max_inodes - inodes;
1936 out:
1937 	spin_unlock(&sbinfo->stat_lock);
1938 	return error;
1939 }
1940 #endif
1941 
1942 static void shmem_put_super(struct super_block *sb)
1943 {
1944 	kfree(sb->s_fs_info);
1945 	sb->s_fs_info = NULL;
1946 }
1947 
1948 static int shmem_fill_super(struct super_block *sb,
1949 			    void *data, int silent)
1950 {
1951 	struct inode *inode;
1952 	struct dentry *root;
1953 	int mode   = S_IRWXUGO | S_ISVTX;
1954 	uid_t uid = current->fsuid;
1955 	gid_t gid = current->fsgid;
1956 	int err = -ENOMEM;
1957 	struct shmem_sb_info *sbinfo;
1958 	unsigned long blocks = 0;
1959 	unsigned long inodes = 0;
1960 
1961 #ifdef CONFIG_TMPFS
1962 	/*
1963 	 * Per default we only allow half of the physical ram per
1964 	 * tmpfs instance, limiting inodes to one per page of lowmem;
1965 	 * but the internal instance is left unlimited.
1966 	 */
1967 	if (!(sb->s_flags & MS_NOUSER)) {
1968 		blocks = totalram_pages / 2;
1969 		inodes = totalram_pages - totalhigh_pages;
1970 		if (inodes > blocks)
1971 			inodes = blocks;
1972 		if (shmem_parse_options(data, &mode, &uid, &gid,
1973 					&blocks, &inodes))
1974 			return -EINVAL;
1975 	}
1976 #else
1977 	sb->s_flags |= MS_NOUSER;
1978 #endif
1979 
1980 	/* Round up to L1_CACHE_BYTES to resist false sharing */
1981 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
1982 				L1_CACHE_BYTES), GFP_KERNEL);
1983 	if (!sbinfo)
1984 		return -ENOMEM;
1985 
1986 	spin_lock_init(&sbinfo->stat_lock);
1987 	sbinfo->max_blocks = blocks;
1988 	sbinfo->free_blocks = blocks;
1989 	sbinfo->max_inodes = inodes;
1990 	sbinfo->free_inodes = inodes;
1991 
1992 	sb->s_fs_info = sbinfo;
1993 	sb->s_maxbytes = SHMEM_MAX_BYTES;
1994 	sb->s_blocksize = PAGE_CACHE_SIZE;
1995 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1996 	sb->s_magic = TMPFS_MAGIC;
1997 	sb->s_op = &shmem_ops;
1998 
1999 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2000 	if (!inode)
2001 		goto failed;
2002 	inode->i_uid = uid;
2003 	inode->i_gid = gid;
2004 	root = d_alloc_root(inode);
2005 	if (!root)
2006 		goto failed_iput;
2007 	sb->s_root = root;
2008 	return 0;
2009 
2010 failed_iput:
2011 	iput(inode);
2012 failed:
2013 	shmem_put_super(sb);
2014 	return err;
2015 }
2016 
2017 static kmem_cache_t *shmem_inode_cachep;
2018 
2019 static struct inode *shmem_alloc_inode(struct super_block *sb)
2020 {
2021 	struct shmem_inode_info *p;
2022 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2023 	if (!p)
2024 		return NULL;
2025 	return &p->vfs_inode;
2026 }
2027 
2028 static void shmem_destroy_inode(struct inode *inode)
2029 {
2030 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2031 		/* only struct inode is valid if it's an inline symlink */
2032 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2033 	}
2034 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2035 }
2036 
2037 static void init_once(void *foo, kmem_cache_t *cachep, unsigned long flags)
2038 {
2039 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2040 
2041 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2042 	    SLAB_CTOR_CONSTRUCTOR) {
2043 		inode_init_once(&p->vfs_inode);
2044 	}
2045 }
2046 
2047 static int init_inodecache(void)
2048 {
2049 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2050 				sizeof(struct shmem_inode_info),
2051 				0, 0, init_once, NULL);
2052 	if (shmem_inode_cachep == NULL)
2053 		return -ENOMEM;
2054 	return 0;
2055 }
2056 
2057 static void destroy_inodecache(void)
2058 {
2059 	if (kmem_cache_destroy(shmem_inode_cachep))
2060 		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2061 }
2062 
2063 static struct address_space_operations shmem_aops = {
2064 	.writepage	= shmem_writepage,
2065 	.set_page_dirty	= __set_page_dirty_nobuffers,
2066 #ifdef CONFIG_TMPFS
2067 	.prepare_write	= shmem_prepare_write,
2068 	.commit_write	= simple_commit_write,
2069 #endif
2070 };
2071 
2072 static struct file_operations shmem_file_operations = {
2073 	.mmap		= shmem_mmap,
2074 #ifdef CONFIG_TMPFS
2075 	.llseek		= generic_file_llseek,
2076 	.read		= shmem_file_read,
2077 	.write		= shmem_file_write,
2078 	.fsync		= simple_sync_file,
2079 	.sendfile	= shmem_file_sendfile,
2080 #endif
2081 };
2082 
2083 static struct inode_operations shmem_inode_operations = {
2084 	.truncate	= shmem_truncate,
2085 	.setattr	= shmem_notify_change,
2086 };
2087 
2088 static struct inode_operations shmem_dir_inode_operations = {
2089 #ifdef CONFIG_TMPFS
2090 	.create		= shmem_create,
2091 	.lookup		= simple_lookup,
2092 	.link		= shmem_link,
2093 	.unlink		= shmem_unlink,
2094 	.symlink	= shmem_symlink,
2095 	.mkdir		= shmem_mkdir,
2096 	.rmdir		= shmem_rmdir,
2097 	.mknod		= shmem_mknod,
2098 	.rename		= shmem_rename,
2099 #endif
2100 };
2101 
2102 static struct super_operations shmem_ops = {
2103 	.alloc_inode	= shmem_alloc_inode,
2104 	.destroy_inode	= shmem_destroy_inode,
2105 #ifdef CONFIG_TMPFS
2106 	.statfs		= shmem_statfs,
2107 	.remount_fs	= shmem_remount_fs,
2108 #endif
2109 	.delete_inode	= shmem_delete_inode,
2110 	.drop_inode	= generic_delete_inode,
2111 	.put_super	= shmem_put_super,
2112 };
2113 
2114 static struct vm_operations_struct shmem_vm_ops = {
2115 	.nopage		= shmem_nopage,
2116 	.populate	= shmem_populate,
2117 #ifdef CONFIG_NUMA
2118 	.set_policy     = shmem_set_policy,
2119 	.get_policy     = shmem_get_policy,
2120 #endif
2121 };
2122 
2123 
2124 static struct super_block *shmem_get_sb(struct file_system_type *fs_type,
2125 	int flags, const char *dev_name, void *data)
2126 {
2127 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super);
2128 }
2129 
2130 static struct file_system_type tmpfs_fs_type = {
2131 	.owner		= THIS_MODULE,
2132 	.name		= "tmpfs",
2133 	.get_sb		= shmem_get_sb,
2134 	.kill_sb	= kill_litter_super,
2135 };
2136 static struct vfsmount *shm_mnt;
2137 
2138 static int __init init_tmpfs(void)
2139 {
2140 	int error;
2141 
2142 	error = init_inodecache();
2143 	if (error)
2144 		goto out3;
2145 
2146 	error = register_filesystem(&tmpfs_fs_type);
2147 	if (error) {
2148 		printk(KERN_ERR "Could not register tmpfs\n");
2149 		goto out2;
2150 	}
2151 #ifdef CONFIG_TMPFS
2152 	devfs_mk_dir("shm");
2153 #endif
2154 	shm_mnt = do_kern_mount(tmpfs_fs_type.name, MS_NOUSER,
2155 				tmpfs_fs_type.name, NULL);
2156 	if (IS_ERR(shm_mnt)) {
2157 		error = PTR_ERR(shm_mnt);
2158 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2159 		goto out1;
2160 	}
2161 	return 0;
2162 
2163 out1:
2164 	unregister_filesystem(&tmpfs_fs_type);
2165 out2:
2166 	destroy_inodecache();
2167 out3:
2168 	shm_mnt = ERR_PTR(error);
2169 	return error;
2170 }
2171 module_init(init_tmpfs)
2172 
2173 /*
2174  * shmem_file_setup - get an unlinked file living in tmpfs
2175  *
2176  * @name: name for dentry (to be seen in /proc/<pid>/maps
2177  * @size: size to be set for the file
2178  *
2179  */
2180 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2181 {
2182 	int error;
2183 	struct file *file;
2184 	struct inode *inode;
2185 	struct dentry *dentry, *root;
2186 	struct qstr this;
2187 
2188 	if (IS_ERR(shm_mnt))
2189 		return (void *)shm_mnt;
2190 
2191 	if (size < 0 || size > SHMEM_MAX_BYTES)
2192 		return ERR_PTR(-EINVAL);
2193 
2194 	if (shmem_acct_size(flags, size))
2195 		return ERR_PTR(-ENOMEM);
2196 
2197 	error = -ENOMEM;
2198 	this.name = name;
2199 	this.len = strlen(name);
2200 	this.hash = 0; /* will go */
2201 	root = shm_mnt->mnt_root;
2202 	dentry = d_alloc(root, &this);
2203 	if (!dentry)
2204 		goto put_memory;
2205 
2206 	error = -ENFILE;
2207 	file = get_empty_filp();
2208 	if (!file)
2209 		goto put_dentry;
2210 
2211 	error = -ENOSPC;
2212 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2213 	if (!inode)
2214 		goto close_file;
2215 
2216 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2217 	d_instantiate(dentry, inode);
2218 	inode->i_size = size;
2219 	inode->i_nlink = 0;	/* It is unlinked */
2220 	file->f_vfsmnt = mntget(shm_mnt);
2221 	file->f_dentry = dentry;
2222 	file->f_mapping = inode->i_mapping;
2223 	file->f_op = &shmem_file_operations;
2224 	file->f_mode = FMODE_WRITE | FMODE_READ;
2225 	return file;
2226 
2227 close_file:
2228 	put_filp(file);
2229 put_dentry:
2230 	dput(dentry);
2231 put_memory:
2232 	shmem_unacct_size(flags, size);
2233 	return ERR_PTR(error);
2234 }
2235 
2236 /*
2237  * shmem_zero_setup - setup a shared anonymous mapping
2238  *
2239  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2240  */
2241 int shmem_zero_setup(struct vm_area_struct *vma)
2242 {
2243 	struct file *file;
2244 	loff_t size = vma->vm_end - vma->vm_start;
2245 
2246 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2247 	if (IS_ERR(file))
2248 		return PTR_ERR(file);
2249 
2250 	if (vma->vm_file)
2251 		fput(vma->vm_file);
2252 	vma->vm_file = file;
2253 	vma->vm_ops = &shmem_vm_ops;
2254 	return 0;
2255 }
2256