xref: /linux/mm/shmem.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/xattr.h>
30 #include <linux/exportfs.h>
31 #include <linux/generic_acl.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/swap.h>
36 #include <linux/pagemap.h>
37 #include <linux/string.h>
38 #include <linux/slab.h>
39 #include <linux/backing-dev.h>
40 #include <linux/shmem_fs.h>
41 #include <linux/mount.h>
42 #include <linux/writeback.h>
43 #include <linux/vfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/security.h>
46 #include <linux/swapops.h>
47 #include <linux/mempolicy.h>
48 #include <linux/namei.h>
49 #include <linux/ctype.h>
50 #include <linux/migrate.h>
51 #include <linux/highmem.h>
52 
53 #include <asm/uaccess.h>
54 #include <asm/div64.h>
55 #include <asm/pgtable.h>
56 
57 /* This magic number is used in glibc for posix shared memory */
58 #define TMPFS_MAGIC	0x01021994
59 
60 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
61 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
62 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
63 
64 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
65 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
66 
67 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
68 
69 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
70 #define SHMEM_PAGEIN	 VM_READ
71 #define SHMEM_TRUNCATE	 VM_WRITE
72 
73 /* Definition to limit shmem_truncate's steps between cond_rescheds */
74 #define LATENCY_LIMIT	 64
75 
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78 
79 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
80 enum sgp_type {
81 	SGP_QUICK,	/* don't try more than file page cache lookup */
82 	SGP_READ,	/* don't exceed i_size, don't allocate page */
83 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
84 	SGP_WRITE,	/* may exceed i_size, may allocate page */
85 	SGP_FAULT,	/* same as SGP_CACHE, return with page locked */
86 };
87 
88 static int shmem_getpage(struct inode *inode, unsigned long idx,
89 			 struct page **pagep, enum sgp_type sgp, int *type);
90 
91 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
92 {
93 	/*
94 	 * The above definition of ENTRIES_PER_PAGE, and the use of
95 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
96 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
97 	 *
98 	 * Mobility flags are masked out as swap vectors cannot move
99 	 */
100 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
101 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
102 }
103 
104 static inline void shmem_dir_free(struct page *page)
105 {
106 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
107 }
108 
109 static struct page **shmem_dir_map(struct page *page)
110 {
111 	return (struct page **)kmap_atomic(page, KM_USER0);
112 }
113 
114 static inline void shmem_dir_unmap(struct page **dir)
115 {
116 	kunmap_atomic(dir, KM_USER0);
117 }
118 
119 static swp_entry_t *shmem_swp_map(struct page *page)
120 {
121 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
122 }
123 
124 static inline void shmem_swp_balance_unmap(void)
125 {
126 	/*
127 	 * When passing a pointer to an i_direct entry, to code which
128 	 * also handles indirect entries and so will shmem_swp_unmap,
129 	 * we must arrange for the preempt count to remain in balance.
130 	 * What kmap_atomic of a lowmem page does depends on config
131 	 * and architecture, so pretend to kmap_atomic some lowmem page.
132 	 */
133 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
134 }
135 
136 static inline void shmem_swp_unmap(swp_entry_t *entry)
137 {
138 	kunmap_atomic(entry, KM_USER1);
139 }
140 
141 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
142 {
143 	return sb->s_fs_info;
144 }
145 
146 /*
147  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
148  * for shared memory and for shared anonymous (/dev/zero) mappings
149  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
150  * consistent with the pre-accounting of private mappings ...
151  */
152 static inline int shmem_acct_size(unsigned long flags, loff_t size)
153 {
154 	return (flags & VM_ACCOUNT)?
155 		security_vm_enough_memory(VM_ACCT(size)): 0;
156 }
157 
158 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
159 {
160 	if (flags & VM_ACCOUNT)
161 		vm_unacct_memory(VM_ACCT(size));
162 }
163 
164 /*
165  * ... whereas tmpfs objects are accounted incrementally as
166  * pages are allocated, in order to allow huge sparse files.
167  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
168  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
169  */
170 static inline int shmem_acct_block(unsigned long flags)
171 {
172 	return (flags & VM_ACCOUNT)?
173 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
174 }
175 
176 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
177 {
178 	if (!(flags & VM_ACCOUNT))
179 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
180 }
181 
182 static const struct super_operations shmem_ops;
183 static const struct address_space_operations shmem_aops;
184 static const struct file_operations shmem_file_operations;
185 static const struct inode_operations shmem_inode_operations;
186 static const struct inode_operations shmem_dir_inode_operations;
187 static const struct inode_operations shmem_special_inode_operations;
188 static struct vm_operations_struct shmem_vm_ops;
189 
190 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
191 	.ra_pages	= 0,	/* No readahead */
192 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
193 	.unplug_io_fn	= default_unplug_io_fn,
194 };
195 
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_SPINLOCK(shmem_swaplist_lock);
198 
199 static void shmem_free_blocks(struct inode *inode, long pages)
200 {
201 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
202 	if (sbinfo->max_blocks) {
203 		spin_lock(&sbinfo->stat_lock);
204 		sbinfo->free_blocks += pages;
205 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
206 		spin_unlock(&sbinfo->stat_lock);
207 	}
208 }
209 
210 /*
211  * shmem_recalc_inode - recalculate the size of an inode
212  *
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	long freed;
227 
228 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229 	if (freed > 0) {
230 		info->alloced -= freed;
231 		shmem_unacct_blocks(info->flags, freed);
232 		shmem_free_blocks(inode, freed);
233 	}
234 }
235 
236 /*
237  * shmem_swp_entry - find the swap vector position in the info structure
238  *
239  * @info:  info structure for the inode
240  * @index: index of the page to find
241  * @page:  optional page to add to the structure. Has to be preset to
242  *         all zeros
243  *
244  * If there is no space allocated yet it will return NULL when
245  * page is NULL, else it will use the page for the needed block,
246  * setting it to NULL on return to indicate that it has been used.
247  *
248  * The swap vector is organized the following way:
249  *
250  * There are SHMEM_NR_DIRECT entries directly stored in the
251  * shmem_inode_info structure. So small files do not need an addional
252  * allocation.
253  *
254  * For pages with index > SHMEM_NR_DIRECT there is the pointer
255  * i_indirect which points to a page which holds in the first half
256  * doubly indirect blocks, in the second half triple indirect blocks:
257  *
258  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
259  * following layout (for SHMEM_NR_DIRECT == 16):
260  *
261  * i_indirect -> dir --> 16-19
262  * 	      |	     +-> 20-23
263  * 	      |
264  * 	      +-->dir2 --> 24-27
265  * 	      |	       +-> 28-31
266  * 	      |	       +-> 32-35
267  * 	      |	       +-> 36-39
268  * 	      |
269  * 	      +-->dir3 --> 40-43
270  * 	       	       +-> 44-47
271  * 	      	       +-> 48-51
272  * 	      	       +-> 52-55
273  */
274 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
275 {
276 	unsigned long offset;
277 	struct page **dir;
278 	struct page *subdir;
279 
280 	if (index < SHMEM_NR_DIRECT) {
281 		shmem_swp_balance_unmap();
282 		return info->i_direct+index;
283 	}
284 	if (!info->i_indirect) {
285 		if (page) {
286 			info->i_indirect = *page;
287 			*page = NULL;
288 		}
289 		return NULL;			/* need another page */
290 	}
291 
292 	index -= SHMEM_NR_DIRECT;
293 	offset = index % ENTRIES_PER_PAGE;
294 	index /= ENTRIES_PER_PAGE;
295 	dir = shmem_dir_map(info->i_indirect);
296 
297 	if (index >= ENTRIES_PER_PAGE/2) {
298 		index -= ENTRIES_PER_PAGE/2;
299 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
300 		index %= ENTRIES_PER_PAGE;
301 		subdir = *dir;
302 		if (!subdir) {
303 			if (page) {
304 				*dir = *page;
305 				*page = NULL;
306 			}
307 			shmem_dir_unmap(dir);
308 			return NULL;		/* need another page */
309 		}
310 		shmem_dir_unmap(dir);
311 		dir = shmem_dir_map(subdir);
312 	}
313 
314 	dir += index;
315 	subdir = *dir;
316 	if (!subdir) {
317 		if (!page || !(subdir = *page)) {
318 			shmem_dir_unmap(dir);
319 			return NULL;		/* need a page */
320 		}
321 		*dir = subdir;
322 		*page = NULL;
323 	}
324 	shmem_dir_unmap(dir);
325 	return shmem_swp_map(subdir) + offset;
326 }
327 
328 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
329 {
330 	long incdec = value? 1: -1;
331 
332 	entry->val = value;
333 	info->swapped += incdec;
334 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
335 		struct page *page = kmap_atomic_to_page(entry);
336 		set_page_private(page, page_private(page) + incdec);
337 	}
338 }
339 
340 /*
341  * shmem_swp_alloc - get the position of the swap entry for the page.
342  *                   If it does not exist allocate the entry.
343  *
344  * @info:	info structure for the inode
345  * @index:	index of the page to find
346  * @sgp:	check and recheck i_size? skip allocation?
347  */
348 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
349 {
350 	struct inode *inode = &info->vfs_inode;
351 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
352 	struct page *page = NULL;
353 	swp_entry_t *entry;
354 
355 	if (sgp != SGP_WRITE &&
356 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
357 		return ERR_PTR(-EINVAL);
358 
359 	while (!(entry = shmem_swp_entry(info, index, &page))) {
360 		if (sgp == SGP_READ)
361 			return shmem_swp_map(ZERO_PAGE(0));
362 		/*
363 		 * Test free_blocks against 1 not 0, since we have 1 data
364 		 * page (and perhaps indirect index pages) yet to allocate:
365 		 * a waste to allocate index if we cannot allocate data.
366 		 */
367 		if (sbinfo->max_blocks) {
368 			spin_lock(&sbinfo->stat_lock);
369 			if (sbinfo->free_blocks <= 1) {
370 				spin_unlock(&sbinfo->stat_lock);
371 				return ERR_PTR(-ENOSPC);
372 			}
373 			sbinfo->free_blocks--;
374 			inode->i_blocks += BLOCKS_PER_PAGE;
375 			spin_unlock(&sbinfo->stat_lock);
376 		}
377 
378 		spin_unlock(&info->lock);
379 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
380 		if (page)
381 			set_page_private(page, 0);
382 		spin_lock(&info->lock);
383 
384 		if (!page) {
385 			shmem_free_blocks(inode, 1);
386 			return ERR_PTR(-ENOMEM);
387 		}
388 		if (sgp != SGP_WRITE &&
389 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
390 			entry = ERR_PTR(-EINVAL);
391 			break;
392 		}
393 		if (info->next_index <= index)
394 			info->next_index = index + 1;
395 	}
396 	if (page) {
397 		/* another task gave its page, or truncated the file */
398 		shmem_free_blocks(inode, 1);
399 		shmem_dir_free(page);
400 	}
401 	if (info->next_index <= index && !IS_ERR(entry))
402 		info->next_index = index + 1;
403 	return entry;
404 }
405 
406 /*
407  * shmem_free_swp - free some swap entries in a directory
408  *
409  * @dir:        pointer to the directory
410  * @edir:       pointer after last entry of the directory
411  * @punch_lock: pointer to spinlock when needed for the holepunch case
412  */
413 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
414 						spinlock_t *punch_lock)
415 {
416 	spinlock_t *punch_unlock = NULL;
417 	swp_entry_t *ptr;
418 	int freed = 0;
419 
420 	for (ptr = dir; ptr < edir; ptr++) {
421 		if (ptr->val) {
422 			if (unlikely(punch_lock)) {
423 				punch_unlock = punch_lock;
424 				punch_lock = NULL;
425 				spin_lock(punch_unlock);
426 				if (!ptr->val)
427 					continue;
428 			}
429 			free_swap_and_cache(*ptr);
430 			*ptr = (swp_entry_t){0};
431 			freed++;
432 		}
433 	}
434 	if (punch_unlock)
435 		spin_unlock(punch_unlock);
436 	return freed;
437 }
438 
439 static int shmem_map_and_free_swp(struct page *subdir, int offset,
440 		int limit, struct page ***dir, spinlock_t *punch_lock)
441 {
442 	swp_entry_t *ptr;
443 	int freed = 0;
444 
445 	ptr = shmem_swp_map(subdir);
446 	for (; offset < limit; offset += LATENCY_LIMIT) {
447 		int size = limit - offset;
448 		if (size > LATENCY_LIMIT)
449 			size = LATENCY_LIMIT;
450 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
451 							punch_lock);
452 		if (need_resched()) {
453 			shmem_swp_unmap(ptr);
454 			if (*dir) {
455 				shmem_dir_unmap(*dir);
456 				*dir = NULL;
457 			}
458 			cond_resched();
459 			ptr = shmem_swp_map(subdir);
460 		}
461 	}
462 	shmem_swp_unmap(ptr);
463 	return freed;
464 }
465 
466 static void shmem_free_pages(struct list_head *next)
467 {
468 	struct page *page;
469 	int freed = 0;
470 
471 	do {
472 		page = container_of(next, struct page, lru);
473 		next = next->next;
474 		shmem_dir_free(page);
475 		freed++;
476 		if (freed >= LATENCY_LIMIT) {
477 			cond_resched();
478 			freed = 0;
479 		}
480 	} while (next);
481 }
482 
483 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
484 {
485 	struct shmem_inode_info *info = SHMEM_I(inode);
486 	unsigned long idx;
487 	unsigned long size;
488 	unsigned long limit;
489 	unsigned long stage;
490 	unsigned long diroff;
491 	struct page **dir;
492 	struct page *topdir;
493 	struct page *middir;
494 	struct page *subdir;
495 	swp_entry_t *ptr;
496 	LIST_HEAD(pages_to_free);
497 	long nr_pages_to_free = 0;
498 	long nr_swaps_freed = 0;
499 	int offset;
500 	int freed;
501 	int punch_hole;
502 	spinlock_t *needs_lock;
503 	spinlock_t *punch_lock;
504 	unsigned long upper_limit;
505 
506 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
507 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
508 	if (idx >= info->next_index)
509 		return;
510 
511 	spin_lock(&info->lock);
512 	info->flags |= SHMEM_TRUNCATE;
513 	if (likely(end == (loff_t) -1)) {
514 		limit = info->next_index;
515 		upper_limit = SHMEM_MAX_INDEX;
516 		info->next_index = idx;
517 		needs_lock = NULL;
518 		punch_hole = 0;
519 	} else {
520 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
521 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
522 							PAGE_CACHE_SHIFT;
523 			upper_limit = SHMEM_MAX_INDEX;
524 		} else {
525 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
526 			upper_limit = limit;
527 		}
528 		needs_lock = &info->lock;
529 		punch_hole = 1;
530 	}
531 
532 	topdir = info->i_indirect;
533 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
534 		info->i_indirect = NULL;
535 		nr_pages_to_free++;
536 		list_add(&topdir->lru, &pages_to_free);
537 	}
538 	spin_unlock(&info->lock);
539 
540 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
541 		ptr = info->i_direct;
542 		size = limit;
543 		if (size > SHMEM_NR_DIRECT)
544 			size = SHMEM_NR_DIRECT;
545 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
546 	}
547 
548 	/*
549 	 * If there are no indirect blocks or we are punching a hole
550 	 * below indirect blocks, nothing to be done.
551 	 */
552 	if (!topdir || limit <= SHMEM_NR_DIRECT)
553 		goto done2;
554 
555 	/*
556 	 * The truncation case has already dropped info->lock, and we're safe
557 	 * because i_size and next_index have already been lowered, preventing
558 	 * access beyond.  But in the punch_hole case, we still need to take
559 	 * the lock when updating the swap directory, because there might be
560 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
561 	 * shmem_writepage.  However, whenever we find we can remove a whole
562 	 * directory page (not at the misaligned start or end of the range),
563 	 * we first NULLify its pointer in the level above, and then have no
564 	 * need to take the lock when updating its contents: needs_lock and
565 	 * punch_lock (either pointing to info->lock or NULL) manage this.
566 	 */
567 
568 	upper_limit -= SHMEM_NR_DIRECT;
569 	limit -= SHMEM_NR_DIRECT;
570 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
571 	offset = idx % ENTRIES_PER_PAGE;
572 	idx -= offset;
573 
574 	dir = shmem_dir_map(topdir);
575 	stage = ENTRIES_PER_PAGEPAGE/2;
576 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
577 		middir = topdir;
578 		diroff = idx/ENTRIES_PER_PAGE;
579 	} else {
580 		dir += ENTRIES_PER_PAGE/2;
581 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
582 		while (stage <= idx)
583 			stage += ENTRIES_PER_PAGEPAGE;
584 		middir = *dir;
585 		if (*dir) {
586 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
587 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
588 			if (!diroff && !offset && upper_limit >= stage) {
589 				if (needs_lock) {
590 					spin_lock(needs_lock);
591 					*dir = NULL;
592 					spin_unlock(needs_lock);
593 					needs_lock = NULL;
594 				} else
595 					*dir = NULL;
596 				nr_pages_to_free++;
597 				list_add(&middir->lru, &pages_to_free);
598 			}
599 			shmem_dir_unmap(dir);
600 			dir = shmem_dir_map(middir);
601 		} else {
602 			diroff = 0;
603 			offset = 0;
604 			idx = stage;
605 		}
606 	}
607 
608 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
609 		if (unlikely(idx == stage)) {
610 			shmem_dir_unmap(dir);
611 			dir = shmem_dir_map(topdir) +
612 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
613 			while (!*dir) {
614 				dir++;
615 				idx += ENTRIES_PER_PAGEPAGE;
616 				if (idx >= limit)
617 					goto done1;
618 			}
619 			stage = idx + ENTRIES_PER_PAGEPAGE;
620 			middir = *dir;
621 			if (punch_hole)
622 				needs_lock = &info->lock;
623 			if (upper_limit >= stage) {
624 				if (needs_lock) {
625 					spin_lock(needs_lock);
626 					*dir = NULL;
627 					spin_unlock(needs_lock);
628 					needs_lock = NULL;
629 				} else
630 					*dir = NULL;
631 				nr_pages_to_free++;
632 				list_add(&middir->lru, &pages_to_free);
633 			}
634 			shmem_dir_unmap(dir);
635 			cond_resched();
636 			dir = shmem_dir_map(middir);
637 			diroff = 0;
638 		}
639 		punch_lock = needs_lock;
640 		subdir = dir[diroff];
641 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
642 			if (needs_lock) {
643 				spin_lock(needs_lock);
644 				dir[diroff] = NULL;
645 				spin_unlock(needs_lock);
646 				punch_lock = NULL;
647 			} else
648 				dir[diroff] = NULL;
649 			nr_pages_to_free++;
650 			list_add(&subdir->lru, &pages_to_free);
651 		}
652 		if (subdir && page_private(subdir) /* has swap entries */) {
653 			size = limit - idx;
654 			if (size > ENTRIES_PER_PAGE)
655 				size = ENTRIES_PER_PAGE;
656 			freed = shmem_map_and_free_swp(subdir,
657 					offset, size, &dir, punch_lock);
658 			if (!dir)
659 				dir = shmem_dir_map(middir);
660 			nr_swaps_freed += freed;
661 			if (offset || punch_lock) {
662 				spin_lock(&info->lock);
663 				set_page_private(subdir,
664 					page_private(subdir) - freed);
665 				spin_unlock(&info->lock);
666 			} else
667 				BUG_ON(page_private(subdir) != freed);
668 		}
669 		offset = 0;
670 	}
671 done1:
672 	shmem_dir_unmap(dir);
673 done2:
674 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
675 		/*
676 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
677 		 * may have swizzled a page in from swap since vmtruncate or
678 		 * generic_delete_inode did it, before we lowered next_index.
679 		 * Also, though shmem_getpage checks i_size before adding to
680 		 * cache, no recheck after: so fix the narrow window there too.
681 		 *
682 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
683 		 * every time for punch_hole (which never got a chance to clear
684 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
685 		 * yet hardly ever necessary: try to optimize them out later.
686 		 */
687 		truncate_inode_pages_range(inode->i_mapping, start, end);
688 		if (punch_hole)
689 			unmap_mapping_range(inode->i_mapping, start,
690 							end - start, 1);
691 	}
692 
693 	spin_lock(&info->lock);
694 	info->flags &= ~SHMEM_TRUNCATE;
695 	info->swapped -= nr_swaps_freed;
696 	if (nr_pages_to_free)
697 		shmem_free_blocks(inode, nr_pages_to_free);
698 	shmem_recalc_inode(inode);
699 	spin_unlock(&info->lock);
700 
701 	/*
702 	 * Empty swap vector directory pages to be freed?
703 	 */
704 	if (!list_empty(&pages_to_free)) {
705 		pages_to_free.prev->next = NULL;
706 		shmem_free_pages(pages_to_free.next);
707 	}
708 }
709 
710 static void shmem_truncate(struct inode *inode)
711 {
712 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
713 }
714 
715 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
716 {
717 	struct inode *inode = dentry->d_inode;
718 	struct page *page = NULL;
719 	int error;
720 
721 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
722 		if (attr->ia_size < inode->i_size) {
723 			/*
724 			 * If truncating down to a partial page, then
725 			 * if that page is already allocated, hold it
726 			 * in memory until the truncation is over, so
727 			 * truncate_partial_page cannnot miss it were
728 			 * it assigned to swap.
729 			 */
730 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
731 				(void) shmem_getpage(inode,
732 					attr->ia_size>>PAGE_CACHE_SHIFT,
733 						&page, SGP_READ, NULL);
734 			}
735 			/*
736 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
737 			 * detect if any pages might have been added to cache
738 			 * after truncate_inode_pages.  But we needn't bother
739 			 * if it's being fully truncated to zero-length: the
740 			 * nrpages check is efficient enough in that case.
741 			 */
742 			if (attr->ia_size) {
743 				struct shmem_inode_info *info = SHMEM_I(inode);
744 				spin_lock(&info->lock);
745 				info->flags &= ~SHMEM_PAGEIN;
746 				spin_unlock(&info->lock);
747 			}
748 		}
749 	}
750 
751 	error = inode_change_ok(inode, attr);
752 	if (!error)
753 		error = inode_setattr(inode, attr);
754 #ifdef CONFIG_TMPFS_POSIX_ACL
755 	if (!error && (attr->ia_valid & ATTR_MODE))
756 		error = generic_acl_chmod(inode, &shmem_acl_ops);
757 #endif
758 	if (page)
759 		page_cache_release(page);
760 	return error;
761 }
762 
763 static void shmem_delete_inode(struct inode *inode)
764 {
765 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
766 	struct shmem_inode_info *info = SHMEM_I(inode);
767 
768 	if (inode->i_op->truncate == shmem_truncate) {
769 		truncate_inode_pages(inode->i_mapping, 0);
770 		shmem_unacct_size(info->flags, inode->i_size);
771 		inode->i_size = 0;
772 		shmem_truncate(inode);
773 		if (!list_empty(&info->swaplist)) {
774 			spin_lock(&shmem_swaplist_lock);
775 			list_del_init(&info->swaplist);
776 			spin_unlock(&shmem_swaplist_lock);
777 		}
778 	}
779 	BUG_ON(inode->i_blocks);
780 	if (sbinfo->max_inodes) {
781 		spin_lock(&sbinfo->stat_lock);
782 		sbinfo->free_inodes++;
783 		spin_unlock(&sbinfo->stat_lock);
784 	}
785 	clear_inode(inode);
786 }
787 
788 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
789 {
790 	swp_entry_t *ptr;
791 
792 	for (ptr = dir; ptr < edir; ptr++) {
793 		if (ptr->val == entry.val)
794 			return ptr - dir;
795 	}
796 	return -1;
797 }
798 
799 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
800 {
801 	struct inode *inode;
802 	unsigned long idx;
803 	unsigned long size;
804 	unsigned long limit;
805 	unsigned long stage;
806 	struct page **dir;
807 	struct page *subdir;
808 	swp_entry_t *ptr;
809 	int offset;
810 
811 	idx = 0;
812 	ptr = info->i_direct;
813 	spin_lock(&info->lock);
814 	limit = info->next_index;
815 	size = limit;
816 	if (size > SHMEM_NR_DIRECT)
817 		size = SHMEM_NR_DIRECT;
818 	offset = shmem_find_swp(entry, ptr, ptr+size);
819 	if (offset >= 0) {
820 		shmem_swp_balance_unmap();
821 		goto found;
822 	}
823 	if (!info->i_indirect)
824 		goto lost2;
825 
826 	dir = shmem_dir_map(info->i_indirect);
827 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
828 
829 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
830 		if (unlikely(idx == stage)) {
831 			shmem_dir_unmap(dir-1);
832 			dir = shmem_dir_map(info->i_indirect) +
833 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
834 			while (!*dir) {
835 				dir++;
836 				idx += ENTRIES_PER_PAGEPAGE;
837 				if (idx >= limit)
838 					goto lost1;
839 			}
840 			stage = idx + ENTRIES_PER_PAGEPAGE;
841 			subdir = *dir;
842 			shmem_dir_unmap(dir);
843 			dir = shmem_dir_map(subdir);
844 		}
845 		subdir = *dir;
846 		if (subdir && page_private(subdir)) {
847 			ptr = shmem_swp_map(subdir);
848 			size = limit - idx;
849 			if (size > ENTRIES_PER_PAGE)
850 				size = ENTRIES_PER_PAGE;
851 			offset = shmem_find_swp(entry, ptr, ptr+size);
852 			if (offset >= 0) {
853 				shmem_dir_unmap(dir);
854 				goto found;
855 			}
856 			shmem_swp_unmap(ptr);
857 		}
858 	}
859 lost1:
860 	shmem_dir_unmap(dir-1);
861 lost2:
862 	spin_unlock(&info->lock);
863 	return 0;
864 found:
865 	idx += offset;
866 	inode = &info->vfs_inode;
867 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
868 		info->flags |= SHMEM_PAGEIN;
869 		shmem_swp_set(info, ptr + offset, 0);
870 	}
871 	shmem_swp_unmap(ptr);
872 	spin_unlock(&info->lock);
873 	/*
874 	 * Decrement swap count even when the entry is left behind:
875 	 * try_to_unuse will skip over mms, then reincrement count.
876 	 */
877 	swap_free(entry);
878 	return 1;
879 }
880 
881 /*
882  * shmem_unuse() search for an eventually swapped out shmem page.
883  */
884 int shmem_unuse(swp_entry_t entry, struct page *page)
885 {
886 	struct list_head *p, *next;
887 	struct shmem_inode_info *info;
888 	int found = 0;
889 
890 	spin_lock(&shmem_swaplist_lock);
891 	list_for_each_safe(p, next, &shmem_swaplist) {
892 		info = list_entry(p, struct shmem_inode_info, swaplist);
893 		if (!info->swapped)
894 			list_del_init(&info->swaplist);
895 		else if (shmem_unuse_inode(info, entry, page)) {
896 			/* move head to start search for next from here */
897 			list_move_tail(&shmem_swaplist, &info->swaplist);
898 			found = 1;
899 			break;
900 		}
901 	}
902 	spin_unlock(&shmem_swaplist_lock);
903 	return found;
904 }
905 
906 /*
907  * Move the page from the page cache to the swap cache.
908  */
909 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
910 {
911 	struct shmem_inode_info *info;
912 	swp_entry_t *entry, swap;
913 	struct address_space *mapping;
914 	unsigned long index;
915 	struct inode *inode;
916 
917 	BUG_ON(!PageLocked(page));
918 	BUG_ON(page_mapped(page));
919 
920 	mapping = page->mapping;
921 	index = page->index;
922 	inode = mapping->host;
923 	info = SHMEM_I(inode);
924 	if (info->flags & VM_LOCKED)
925 		goto redirty;
926 	swap = get_swap_page();
927 	if (!swap.val)
928 		goto redirty;
929 
930 	spin_lock(&info->lock);
931 	shmem_recalc_inode(inode);
932 	if (index >= info->next_index) {
933 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
934 		goto unlock;
935 	}
936 	entry = shmem_swp_entry(info, index, NULL);
937 	BUG_ON(!entry);
938 	BUG_ON(entry->val);
939 
940 	if (move_to_swap_cache(page, swap) == 0) {
941 		shmem_swp_set(info, entry, swap.val);
942 		shmem_swp_unmap(entry);
943 		spin_unlock(&info->lock);
944 		if (list_empty(&info->swaplist)) {
945 			spin_lock(&shmem_swaplist_lock);
946 			/* move instead of add in case we're racing */
947 			list_move_tail(&info->swaplist, &shmem_swaplist);
948 			spin_unlock(&shmem_swaplist_lock);
949 		}
950 		unlock_page(page);
951 		return 0;
952 	}
953 
954 	shmem_swp_unmap(entry);
955 unlock:
956 	spin_unlock(&info->lock);
957 	swap_free(swap);
958 redirty:
959 	set_page_dirty(page);
960 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
961 }
962 
963 #ifdef CONFIG_NUMA
964 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
965 {
966 	char *nodelist = strchr(value, ':');
967 	int err = 1;
968 
969 	if (nodelist) {
970 		/* NUL-terminate policy string */
971 		*nodelist++ = '\0';
972 		if (nodelist_parse(nodelist, *policy_nodes))
973 			goto out;
974 		if (!nodes_subset(*policy_nodes, node_states[N_HIGH_MEMORY]))
975 			goto out;
976 	}
977 	if (!strcmp(value, "default")) {
978 		*policy = MPOL_DEFAULT;
979 		/* Don't allow a nodelist */
980 		if (!nodelist)
981 			err = 0;
982 	} else if (!strcmp(value, "prefer")) {
983 		*policy = MPOL_PREFERRED;
984 		/* Insist on a nodelist of one node only */
985 		if (nodelist) {
986 			char *rest = nodelist;
987 			while (isdigit(*rest))
988 				rest++;
989 			if (!*rest)
990 				err = 0;
991 		}
992 	} else if (!strcmp(value, "bind")) {
993 		*policy = MPOL_BIND;
994 		/* Insist on a nodelist */
995 		if (nodelist)
996 			err = 0;
997 	} else if (!strcmp(value, "interleave")) {
998 		*policy = MPOL_INTERLEAVE;
999 		/*
1000 		 * Default to online nodes with memory if no nodelist
1001 		 */
1002 		if (!nodelist)
1003 			*policy_nodes = node_states[N_HIGH_MEMORY];
1004 		err = 0;
1005 	}
1006 out:
1007 	/* Restore string for error message */
1008 	if (nodelist)
1009 		*--nodelist = ':';
1010 	return err;
1011 }
1012 
1013 static struct page *shmem_swapin_async(struct shared_policy *p,
1014 				       swp_entry_t entry, unsigned long idx)
1015 {
1016 	struct page *page;
1017 	struct vm_area_struct pvma;
1018 
1019 	/* Create a pseudo vma that just contains the policy */
1020 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1021 	pvma.vm_end = PAGE_SIZE;
1022 	pvma.vm_pgoff = idx;
1023 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
1024 	page = read_swap_cache_async(entry, &pvma, 0);
1025 	mpol_free(pvma.vm_policy);
1026 	return page;
1027 }
1028 
1029 static struct page *shmem_swapin(struct shmem_inode_info *info,
1030 				 swp_entry_t entry, unsigned long idx)
1031 {
1032 	struct shared_policy *p = &info->policy;
1033 	int i, num;
1034 	struct page *page;
1035 	unsigned long offset;
1036 
1037 	num = valid_swaphandles(entry, &offset);
1038 	for (i = 0; i < num; offset++, i++) {
1039 		page = shmem_swapin_async(p,
1040 				swp_entry(swp_type(entry), offset), idx);
1041 		if (!page)
1042 			break;
1043 		page_cache_release(page);
1044 	}
1045 	lru_add_drain();	/* Push any new pages onto the LRU now */
1046 	return shmem_swapin_async(p, entry, idx);
1047 }
1048 
1049 static struct page *
1050 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
1051 		 unsigned long idx)
1052 {
1053 	struct vm_area_struct pvma;
1054 	struct page *page;
1055 
1056 	memset(&pvma, 0, sizeof(struct vm_area_struct));
1057 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1058 	pvma.vm_pgoff = idx;
1059 	pvma.vm_end = PAGE_SIZE;
1060 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
1061 	mpol_free(pvma.vm_policy);
1062 	return page;
1063 }
1064 #else
1065 static inline int shmem_parse_mpol(char *value, int *policy,
1066 						nodemask_t *policy_nodes)
1067 {
1068 	return 1;
1069 }
1070 
1071 static inline struct page *
1072 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
1073 {
1074 	swapin_readahead(entry, 0, NULL);
1075 	return read_swap_cache_async(entry, NULL, 0);
1076 }
1077 
1078 static inline struct page *
1079 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
1080 {
1081 	return alloc_page(gfp | __GFP_ZERO);
1082 }
1083 #endif
1084 
1085 /*
1086  * shmem_getpage - either get the page from swap or allocate a new one
1087  *
1088  * If we allocate a new one we do not mark it dirty. That's up to the
1089  * vm. If we swap it in we mark it dirty since we also free the swap
1090  * entry since a page cannot live in both the swap and page cache
1091  */
1092 static int shmem_getpage(struct inode *inode, unsigned long idx,
1093 			struct page **pagep, enum sgp_type sgp, int *type)
1094 {
1095 	struct address_space *mapping = inode->i_mapping;
1096 	struct shmem_inode_info *info = SHMEM_I(inode);
1097 	struct shmem_sb_info *sbinfo;
1098 	struct page *filepage = *pagep;
1099 	struct page *swappage;
1100 	swp_entry_t *entry;
1101 	swp_entry_t swap;
1102 	int error;
1103 
1104 	if (idx >= SHMEM_MAX_INDEX)
1105 		return -EFBIG;
1106 
1107 	if (type)
1108 		*type = 0;
1109 
1110 	/*
1111 	 * Normally, filepage is NULL on entry, and either found
1112 	 * uptodate immediately, or allocated and zeroed, or read
1113 	 * in under swappage, which is then assigned to filepage.
1114 	 * But shmem_readpage and shmem_write_begin pass in a locked
1115 	 * filepage, which may be found not uptodate by other callers
1116 	 * too, and may need to be copied from the swappage read in.
1117 	 */
1118 repeat:
1119 	if (!filepage)
1120 		filepage = find_lock_page(mapping, idx);
1121 	if (filepage && PageUptodate(filepage))
1122 		goto done;
1123 	error = 0;
1124 	if (sgp == SGP_QUICK)
1125 		goto failed;
1126 
1127 	spin_lock(&info->lock);
1128 	shmem_recalc_inode(inode);
1129 	entry = shmem_swp_alloc(info, idx, sgp);
1130 	if (IS_ERR(entry)) {
1131 		spin_unlock(&info->lock);
1132 		error = PTR_ERR(entry);
1133 		goto failed;
1134 	}
1135 	swap = *entry;
1136 
1137 	if (swap.val) {
1138 		/* Look it up and read it in.. */
1139 		swappage = lookup_swap_cache(swap);
1140 		if (!swappage) {
1141 			shmem_swp_unmap(entry);
1142 			/* here we actually do the io */
1143 			if (type && !(*type & VM_FAULT_MAJOR)) {
1144 				__count_vm_event(PGMAJFAULT);
1145 				*type |= VM_FAULT_MAJOR;
1146 			}
1147 			spin_unlock(&info->lock);
1148 			swappage = shmem_swapin(info, swap, idx);
1149 			if (!swappage) {
1150 				spin_lock(&info->lock);
1151 				entry = shmem_swp_alloc(info, idx, sgp);
1152 				if (IS_ERR(entry))
1153 					error = PTR_ERR(entry);
1154 				else {
1155 					if (entry->val == swap.val)
1156 						error = -ENOMEM;
1157 					shmem_swp_unmap(entry);
1158 				}
1159 				spin_unlock(&info->lock);
1160 				if (error)
1161 					goto failed;
1162 				goto repeat;
1163 			}
1164 			wait_on_page_locked(swappage);
1165 			page_cache_release(swappage);
1166 			goto repeat;
1167 		}
1168 
1169 		/* We have to do this with page locked to prevent races */
1170 		if (TestSetPageLocked(swappage)) {
1171 			shmem_swp_unmap(entry);
1172 			spin_unlock(&info->lock);
1173 			wait_on_page_locked(swappage);
1174 			page_cache_release(swappage);
1175 			goto repeat;
1176 		}
1177 		if (PageWriteback(swappage)) {
1178 			shmem_swp_unmap(entry);
1179 			spin_unlock(&info->lock);
1180 			wait_on_page_writeback(swappage);
1181 			unlock_page(swappage);
1182 			page_cache_release(swappage);
1183 			goto repeat;
1184 		}
1185 		if (!PageUptodate(swappage)) {
1186 			shmem_swp_unmap(entry);
1187 			spin_unlock(&info->lock);
1188 			unlock_page(swappage);
1189 			page_cache_release(swappage);
1190 			error = -EIO;
1191 			goto failed;
1192 		}
1193 
1194 		if (filepage) {
1195 			shmem_swp_set(info, entry, 0);
1196 			shmem_swp_unmap(entry);
1197 			delete_from_swap_cache(swappage);
1198 			spin_unlock(&info->lock);
1199 			copy_highpage(filepage, swappage);
1200 			unlock_page(swappage);
1201 			page_cache_release(swappage);
1202 			flush_dcache_page(filepage);
1203 			SetPageUptodate(filepage);
1204 			set_page_dirty(filepage);
1205 			swap_free(swap);
1206 		} else if (!(error = move_from_swap_cache(
1207 				swappage, idx, mapping))) {
1208 			info->flags |= SHMEM_PAGEIN;
1209 			shmem_swp_set(info, entry, 0);
1210 			shmem_swp_unmap(entry);
1211 			spin_unlock(&info->lock);
1212 			filepage = swappage;
1213 			swap_free(swap);
1214 		} else {
1215 			shmem_swp_unmap(entry);
1216 			spin_unlock(&info->lock);
1217 			unlock_page(swappage);
1218 			page_cache_release(swappage);
1219 			if (error == -ENOMEM) {
1220 				/* let kswapd refresh zone for GFP_ATOMICs */
1221 				congestion_wait(WRITE, HZ/50);
1222 			}
1223 			goto repeat;
1224 		}
1225 	} else if (sgp == SGP_READ && !filepage) {
1226 		shmem_swp_unmap(entry);
1227 		filepage = find_get_page(mapping, idx);
1228 		if (filepage &&
1229 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1230 			spin_unlock(&info->lock);
1231 			wait_on_page_locked(filepage);
1232 			page_cache_release(filepage);
1233 			filepage = NULL;
1234 			goto repeat;
1235 		}
1236 		spin_unlock(&info->lock);
1237 	} else {
1238 		shmem_swp_unmap(entry);
1239 		sbinfo = SHMEM_SB(inode->i_sb);
1240 		if (sbinfo->max_blocks) {
1241 			spin_lock(&sbinfo->stat_lock);
1242 			if (sbinfo->free_blocks == 0 ||
1243 			    shmem_acct_block(info->flags)) {
1244 				spin_unlock(&sbinfo->stat_lock);
1245 				spin_unlock(&info->lock);
1246 				error = -ENOSPC;
1247 				goto failed;
1248 			}
1249 			sbinfo->free_blocks--;
1250 			inode->i_blocks += BLOCKS_PER_PAGE;
1251 			spin_unlock(&sbinfo->stat_lock);
1252 		} else if (shmem_acct_block(info->flags)) {
1253 			spin_unlock(&info->lock);
1254 			error = -ENOSPC;
1255 			goto failed;
1256 		}
1257 
1258 		if (!filepage) {
1259 			spin_unlock(&info->lock);
1260 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1261 						    info,
1262 						    idx);
1263 			if (!filepage) {
1264 				shmem_unacct_blocks(info->flags, 1);
1265 				shmem_free_blocks(inode, 1);
1266 				error = -ENOMEM;
1267 				goto failed;
1268 			}
1269 
1270 			spin_lock(&info->lock);
1271 			entry = shmem_swp_alloc(info, idx, sgp);
1272 			if (IS_ERR(entry))
1273 				error = PTR_ERR(entry);
1274 			else {
1275 				swap = *entry;
1276 				shmem_swp_unmap(entry);
1277 			}
1278 			if (error || swap.val || 0 != add_to_page_cache_lru(
1279 					filepage, mapping, idx, GFP_ATOMIC)) {
1280 				spin_unlock(&info->lock);
1281 				page_cache_release(filepage);
1282 				shmem_unacct_blocks(info->flags, 1);
1283 				shmem_free_blocks(inode, 1);
1284 				filepage = NULL;
1285 				if (error)
1286 					goto failed;
1287 				goto repeat;
1288 			}
1289 			info->flags |= SHMEM_PAGEIN;
1290 		}
1291 
1292 		info->alloced++;
1293 		spin_unlock(&info->lock);
1294 		flush_dcache_page(filepage);
1295 		SetPageUptodate(filepage);
1296 	}
1297 done:
1298 	if (*pagep != filepage) {
1299 		*pagep = filepage;
1300 		if (sgp != SGP_FAULT)
1301 			unlock_page(filepage);
1302 
1303 	}
1304 	return 0;
1305 
1306 failed:
1307 	if (*pagep != filepage) {
1308 		unlock_page(filepage);
1309 		page_cache_release(filepage);
1310 	}
1311 	return error;
1312 }
1313 
1314 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1315 {
1316 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1317 	int error;
1318 	int ret;
1319 
1320 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1321 		return VM_FAULT_SIGBUS;
1322 
1323 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_FAULT, &ret);
1324 	if (error)
1325 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1326 
1327 	mark_page_accessed(vmf->page);
1328 	return ret | VM_FAULT_LOCKED;
1329 }
1330 
1331 #ifdef CONFIG_NUMA
1332 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1333 {
1334 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1335 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1336 }
1337 
1338 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1339 					  unsigned long addr)
1340 {
1341 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1342 	unsigned long idx;
1343 
1344 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1345 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1346 }
1347 #endif
1348 
1349 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1350 {
1351 	struct inode *inode = file->f_path.dentry->d_inode;
1352 	struct shmem_inode_info *info = SHMEM_I(inode);
1353 	int retval = -ENOMEM;
1354 
1355 	spin_lock(&info->lock);
1356 	if (lock && !(info->flags & VM_LOCKED)) {
1357 		if (!user_shm_lock(inode->i_size, user))
1358 			goto out_nomem;
1359 		info->flags |= VM_LOCKED;
1360 	}
1361 	if (!lock && (info->flags & VM_LOCKED) && user) {
1362 		user_shm_unlock(inode->i_size, user);
1363 		info->flags &= ~VM_LOCKED;
1364 	}
1365 	retval = 0;
1366 out_nomem:
1367 	spin_unlock(&info->lock);
1368 	return retval;
1369 }
1370 
1371 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1372 {
1373 	file_accessed(file);
1374 	vma->vm_ops = &shmem_vm_ops;
1375 	vma->vm_flags |= VM_CAN_NONLINEAR;
1376 	return 0;
1377 }
1378 
1379 static struct inode *
1380 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1381 {
1382 	struct inode *inode;
1383 	struct shmem_inode_info *info;
1384 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1385 
1386 	if (sbinfo->max_inodes) {
1387 		spin_lock(&sbinfo->stat_lock);
1388 		if (!sbinfo->free_inodes) {
1389 			spin_unlock(&sbinfo->stat_lock);
1390 			return NULL;
1391 		}
1392 		sbinfo->free_inodes--;
1393 		spin_unlock(&sbinfo->stat_lock);
1394 	}
1395 
1396 	inode = new_inode(sb);
1397 	if (inode) {
1398 		inode->i_mode = mode;
1399 		inode->i_uid = current->fsuid;
1400 		inode->i_gid = current->fsgid;
1401 		inode->i_blocks = 0;
1402 		inode->i_mapping->a_ops = &shmem_aops;
1403 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1404 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1405 		inode->i_generation = get_seconds();
1406 		info = SHMEM_I(inode);
1407 		memset(info, 0, (char *)inode - (char *)info);
1408 		spin_lock_init(&info->lock);
1409 		INIT_LIST_HEAD(&info->swaplist);
1410 
1411 		switch (mode & S_IFMT) {
1412 		default:
1413 			inode->i_op = &shmem_special_inode_operations;
1414 			init_special_inode(inode, mode, dev);
1415 			break;
1416 		case S_IFREG:
1417 			inode->i_op = &shmem_inode_operations;
1418 			inode->i_fop = &shmem_file_operations;
1419 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1420 							&sbinfo->policy_nodes);
1421 			break;
1422 		case S_IFDIR:
1423 			inc_nlink(inode);
1424 			/* Some things misbehave if size == 0 on a directory */
1425 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1426 			inode->i_op = &shmem_dir_inode_operations;
1427 			inode->i_fop = &simple_dir_operations;
1428 			break;
1429 		case S_IFLNK:
1430 			/*
1431 			 * Must not load anything in the rbtree,
1432 			 * mpol_free_shared_policy will not be called.
1433 			 */
1434 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1435 						NULL);
1436 			break;
1437 		}
1438 	} else if (sbinfo->max_inodes) {
1439 		spin_lock(&sbinfo->stat_lock);
1440 		sbinfo->free_inodes++;
1441 		spin_unlock(&sbinfo->stat_lock);
1442 	}
1443 	return inode;
1444 }
1445 
1446 #ifdef CONFIG_TMPFS
1447 static const struct inode_operations shmem_symlink_inode_operations;
1448 static const struct inode_operations shmem_symlink_inline_operations;
1449 
1450 /*
1451  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1452  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1453  * below the loop driver, in the generic fashion that many filesystems support.
1454  */
1455 static int shmem_readpage(struct file *file, struct page *page)
1456 {
1457 	struct inode *inode = page->mapping->host;
1458 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1459 	unlock_page(page);
1460 	return error;
1461 }
1462 
1463 static int
1464 shmem_write_begin(struct file *file, struct address_space *mapping,
1465 			loff_t pos, unsigned len, unsigned flags,
1466 			struct page **pagep, void **fsdata)
1467 {
1468 	struct inode *inode = mapping->host;
1469 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1470 	*pagep = NULL;
1471 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1472 }
1473 
1474 static int
1475 shmem_write_end(struct file *file, struct address_space *mapping,
1476 			loff_t pos, unsigned len, unsigned copied,
1477 			struct page *page, void *fsdata)
1478 {
1479 	struct inode *inode = mapping->host;
1480 
1481 	set_page_dirty(page);
1482 	page_cache_release(page);
1483 
1484 	if (pos+copied > inode->i_size)
1485 		i_size_write(inode, pos+copied);
1486 
1487 	return copied;
1488 }
1489 
1490 static ssize_t
1491 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1492 {
1493 	struct inode	*inode = file->f_path.dentry->d_inode;
1494 	loff_t		pos;
1495 	unsigned long	written;
1496 	ssize_t		err;
1497 
1498 	if ((ssize_t) count < 0)
1499 		return -EINVAL;
1500 
1501 	if (!access_ok(VERIFY_READ, buf, count))
1502 		return -EFAULT;
1503 
1504 	mutex_lock(&inode->i_mutex);
1505 
1506 	pos = *ppos;
1507 	written = 0;
1508 
1509 	err = generic_write_checks(file, &pos, &count, 0);
1510 	if (err || !count)
1511 		goto out;
1512 
1513 	err = remove_suid(file->f_path.dentry);
1514 	if (err)
1515 		goto out;
1516 
1517 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1518 
1519 	do {
1520 		struct page *page = NULL;
1521 		unsigned long bytes, index, offset;
1522 		char *kaddr;
1523 		int left;
1524 
1525 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1526 		index = pos >> PAGE_CACHE_SHIFT;
1527 		bytes = PAGE_CACHE_SIZE - offset;
1528 		if (bytes > count)
1529 			bytes = count;
1530 
1531 		/*
1532 		 * We don't hold page lock across copy from user -
1533 		 * what would it guard against? - so no deadlock here.
1534 		 * But it still may be a good idea to prefault below.
1535 		 */
1536 
1537 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1538 		if (err)
1539 			break;
1540 
1541 		left = bytes;
1542 		if (PageHighMem(page)) {
1543 			volatile unsigned char dummy;
1544 			__get_user(dummy, buf);
1545 			__get_user(dummy, buf + bytes - 1);
1546 
1547 			kaddr = kmap_atomic(page, KM_USER0);
1548 			left = __copy_from_user_inatomic(kaddr + offset,
1549 							buf, bytes);
1550 			kunmap_atomic(kaddr, KM_USER0);
1551 		}
1552 		if (left) {
1553 			kaddr = kmap(page);
1554 			left = __copy_from_user(kaddr + offset, buf, bytes);
1555 			kunmap(page);
1556 		}
1557 
1558 		written += bytes;
1559 		count -= bytes;
1560 		pos += bytes;
1561 		buf += bytes;
1562 		if (pos > inode->i_size)
1563 			i_size_write(inode, pos);
1564 
1565 		flush_dcache_page(page);
1566 		set_page_dirty(page);
1567 		mark_page_accessed(page);
1568 		page_cache_release(page);
1569 
1570 		if (left) {
1571 			pos -= left;
1572 			written -= left;
1573 			err = -EFAULT;
1574 			break;
1575 		}
1576 
1577 		/*
1578 		 * Our dirty pages are not counted in nr_dirty,
1579 		 * and we do not attempt to balance dirty pages.
1580 		 */
1581 
1582 		cond_resched();
1583 	} while (count);
1584 
1585 	*ppos = pos;
1586 	if (written)
1587 		err = written;
1588 out:
1589 	mutex_unlock(&inode->i_mutex);
1590 	return err;
1591 }
1592 
1593 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1594 {
1595 	struct inode *inode = filp->f_path.dentry->d_inode;
1596 	struct address_space *mapping = inode->i_mapping;
1597 	unsigned long index, offset;
1598 
1599 	index = *ppos >> PAGE_CACHE_SHIFT;
1600 	offset = *ppos & ~PAGE_CACHE_MASK;
1601 
1602 	for (;;) {
1603 		struct page *page = NULL;
1604 		unsigned long end_index, nr, ret;
1605 		loff_t i_size = i_size_read(inode);
1606 
1607 		end_index = i_size >> PAGE_CACHE_SHIFT;
1608 		if (index > end_index)
1609 			break;
1610 		if (index == end_index) {
1611 			nr = i_size & ~PAGE_CACHE_MASK;
1612 			if (nr <= offset)
1613 				break;
1614 		}
1615 
1616 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1617 		if (desc->error) {
1618 			if (desc->error == -EINVAL)
1619 				desc->error = 0;
1620 			break;
1621 		}
1622 
1623 		/*
1624 		 * We must evaluate after, since reads (unlike writes)
1625 		 * are called without i_mutex protection against truncate
1626 		 */
1627 		nr = PAGE_CACHE_SIZE;
1628 		i_size = i_size_read(inode);
1629 		end_index = i_size >> PAGE_CACHE_SHIFT;
1630 		if (index == end_index) {
1631 			nr = i_size & ~PAGE_CACHE_MASK;
1632 			if (nr <= offset) {
1633 				if (page)
1634 					page_cache_release(page);
1635 				break;
1636 			}
1637 		}
1638 		nr -= offset;
1639 
1640 		if (page) {
1641 			/*
1642 			 * If users can be writing to this page using arbitrary
1643 			 * virtual addresses, take care about potential aliasing
1644 			 * before reading the page on the kernel side.
1645 			 */
1646 			if (mapping_writably_mapped(mapping))
1647 				flush_dcache_page(page);
1648 			/*
1649 			 * Mark the page accessed if we read the beginning.
1650 			 */
1651 			if (!offset)
1652 				mark_page_accessed(page);
1653 		} else {
1654 			page = ZERO_PAGE(0);
1655 			page_cache_get(page);
1656 		}
1657 
1658 		/*
1659 		 * Ok, we have the page, and it's up-to-date, so
1660 		 * now we can copy it to user space...
1661 		 *
1662 		 * The actor routine returns how many bytes were actually used..
1663 		 * NOTE! This may not be the same as how much of a user buffer
1664 		 * we filled up (we may be padding etc), so we can only update
1665 		 * "pos" here (the actor routine has to update the user buffer
1666 		 * pointers and the remaining count).
1667 		 */
1668 		ret = actor(desc, page, offset, nr);
1669 		offset += ret;
1670 		index += offset >> PAGE_CACHE_SHIFT;
1671 		offset &= ~PAGE_CACHE_MASK;
1672 
1673 		page_cache_release(page);
1674 		if (ret != nr || !desc->count)
1675 			break;
1676 
1677 		cond_resched();
1678 	}
1679 
1680 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1681 	file_accessed(filp);
1682 }
1683 
1684 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1685 {
1686 	read_descriptor_t desc;
1687 
1688 	if ((ssize_t) count < 0)
1689 		return -EINVAL;
1690 	if (!access_ok(VERIFY_WRITE, buf, count))
1691 		return -EFAULT;
1692 	if (!count)
1693 		return 0;
1694 
1695 	desc.written = 0;
1696 	desc.count = count;
1697 	desc.arg.buf = buf;
1698 	desc.error = 0;
1699 
1700 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1701 	if (desc.written)
1702 		return desc.written;
1703 	return desc.error;
1704 }
1705 
1706 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1707 {
1708 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1709 
1710 	buf->f_type = TMPFS_MAGIC;
1711 	buf->f_bsize = PAGE_CACHE_SIZE;
1712 	buf->f_namelen = NAME_MAX;
1713 	spin_lock(&sbinfo->stat_lock);
1714 	if (sbinfo->max_blocks) {
1715 		buf->f_blocks = sbinfo->max_blocks;
1716 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1717 	}
1718 	if (sbinfo->max_inodes) {
1719 		buf->f_files = sbinfo->max_inodes;
1720 		buf->f_ffree = sbinfo->free_inodes;
1721 	}
1722 	/* else leave those fields 0 like simple_statfs */
1723 	spin_unlock(&sbinfo->stat_lock);
1724 	return 0;
1725 }
1726 
1727 /*
1728  * File creation. Allocate an inode, and we're done..
1729  */
1730 static int
1731 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1732 {
1733 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1734 	int error = -ENOSPC;
1735 
1736 	if (inode) {
1737 		error = security_inode_init_security(inode, dir, NULL, NULL,
1738 						     NULL);
1739 		if (error) {
1740 			if (error != -EOPNOTSUPP) {
1741 				iput(inode);
1742 				return error;
1743 			}
1744 		}
1745 		error = shmem_acl_init(inode, dir);
1746 		if (error) {
1747 			iput(inode);
1748 			return error;
1749 		}
1750 		if (dir->i_mode & S_ISGID) {
1751 			inode->i_gid = dir->i_gid;
1752 			if (S_ISDIR(mode))
1753 				inode->i_mode |= S_ISGID;
1754 		}
1755 		dir->i_size += BOGO_DIRENT_SIZE;
1756 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1757 		d_instantiate(dentry, inode);
1758 		dget(dentry); /* Extra count - pin the dentry in core */
1759 	}
1760 	return error;
1761 }
1762 
1763 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1764 {
1765 	int error;
1766 
1767 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1768 		return error;
1769 	inc_nlink(dir);
1770 	return 0;
1771 }
1772 
1773 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1774 		struct nameidata *nd)
1775 {
1776 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1777 }
1778 
1779 /*
1780  * Link a file..
1781  */
1782 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1783 {
1784 	struct inode *inode = old_dentry->d_inode;
1785 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1786 
1787 	/*
1788 	 * No ordinary (disk based) filesystem counts links as inodes;
1789 	 * but each new link needs a new dentry, pinning lowmem, and
1790 	 * tmpfs dentries cannot be pruned until they are unlinked.
1791 	 */
1792 	if (sbinfo->max_inodes) {
1793 		spin_lock(&sbinfo->stat_lock);
1794 		if (!sbinfo->free_inodes) {
1795 			spin_unlock(&sbinfo->stat_lock);
1796 			return -ENOSPC;
1797 		}
1798 		sbinfo->free_inodes--;
1799 		spin_unlock(&sbinfo->stat_lock);
1800 	}
1801 
1802 	dir->i_size += BOGO_DIRENT_SIZE;
1803 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1804 	inc_nlink(inode);
1805 	atomic_inc(&inode->i_count);	/* New dentry reference */
1806 	dget(dentry);		/* Extra pinning count for the created dentry */
1807 	d_instantiate(dentry, inode);
1808 	return 0;
1809 }
1810 
1811 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1812 {
1813 	struct inode *inode = dentry->d_inode;
1814 
1815 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1816 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1817 		if (sbinfo->max_inodes) {
1818 			spin_lock(&sbinfo->stat_lock);
1819 			sbinfo->free_inodes++;
1820 			spin_unlock(&sbinfo->stat_lock);
1821 		}
1822 	}
1823 
1824 	dir->i_size -= BOGO_DIRENT_SIZE;
1825 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1826 	drop_nlink(inode);
1827 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1828 	return 0;
1829 }
1830 
1831 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1832 {
1833 	if (!simple_empty(dentry))
1834 		return -ENOTEMPTY;
1835 
1836 	drop_nlink(dentry->d_inode);
1837 	drop_nlink(dir);
1838 	return shmem_unlink(dir, dentry);
1839 }
1840 
1841 /*
1842  * The VFS layer already does all the dentry stuff for rename,
1843  * we just have to decrement the usage count for the target if
1844  * it exists so that the VFS layer correctly free's it when it
1845  * gets overwritten.
1846  */
1847 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1848 {
1849 	struct inode *inode = old_dentry->d_inode;
1850 	int they_are_dirs = S_ISDIR(inode->i_mode);
1851 
1852 	if (!simple_empty(new_dentry))
1853 		return -ENOTEMPTY;
1854 
1855 	if (new_dentry->d_inode) {
1856 		(void) shmem_unlink(new_dir, new_dentry);
1857 		if (they_are_dirs)
1858 			drop_nlink(old_dir);
1859 	} else if (they_are_dirs) {
1860 		drop_nlink(old_dir);
1861 		inc_nlink(new_dir);
1862 	}
1863 
1864 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1865 	new_dir->i_size += BOGO_DIRENT_SIZE;
1866 	old_dir->i_ctime = old_dir->i_mtime =
1867 	new_dir->i_ctime = new_dir->i_mtime =
1868 	inode->i_ctime = CURRENT_TIME;
1869 	return 0;
1870 }
1871 
1872 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1873 {
1874 	int error;
1875 	int len;
1876 	struct inode *inode;
1877 	struct page *page = NULL;
1878 	char *kaddr;
1879 	struct shmem_inode_info *info;
1880 
1881 	len = strlen(symname) + 1;
1882 	if (len > PAGE_CACHE_SIZE)
1883 		return -ENAMETOOLONG;
1884 
1885 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1886 	if (!inode)
1887 		return -ENOSPC;
1888 
1889 	error = security_inode_init_security(inode, dir, NULL, NULL,
1890 					     NULL);
1891 	if (error) {
1892 		if (error != -EOPNOTSUPP) {
1893 			iput(inode);
1894 			return error;
1895 		}
1896 		error = 0;
1897 	}
1898 
1899 	info = SHMEM_I(inode);
1900 	inode->i_size = len-1;
1901 	if (len <= (char *)inode - (char *)info) {
1902 		/* do it inline */
1903 		memcpy(info, symname, len);
1904 		inode->i_op = &shmem_symlink_inline_operations;
1905 	} else {
1906 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1907 		if (error) {
1908 			iput(inode);
1909 			return error;
1910 		}
1911 		inode->i_op = &shmem_symlink_inode_operations;
1912 		kaddr = kmap_atomic(page, KM_USER0);
1913 		memcpy(kaddr, symname, len);
1914 		kunmap_atomic(kaddr, KM_USER0);
1915 		set_page_dirty(page);
1916 		page_cache_release(page);
1917 	}
1918 	if (dir->i_mode & S_ISGID)
1919 		inode->i_gid = dir->i_gid;
1920 	dir->i_size += BOGO_DIRENT_SIZE;
1921 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1922 	d_instantiate(dentry, inode);
1923 	dget(dentry);
1924 	return 0;
1925 }
1926 
1927 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1928 {
1929 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1930 	return NULL;
1931 }
1932 
1933 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1934 {
1935 	struct page *page = NULL;
1936 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1937 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1938 	return page;
1939 }
1940 
1941 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1942 {
1943 	if (!IS_ERR(nd_get_link(nd))) {
1944 		struct page *page = cookie;
1945 		kunmap(page);
1946 		mark_page_accessed(page);
1947 		page_cache_release(page);
1948 	}
1949 }
1950 
1951 static const struct inode_operations shmem_symlink_inline_operations = {
1952 	.readlink	= generic_readlink,
1953 	.follow_link	= shmem_follow_link_inline,
1954 };
1955 
1956 static const struct inode_operations shmem_symlink_inode_operations = {
1957 	.truncate	= shmem_truncate,
1958 	.readlink	= generic_readlink,
1959 	.follow_link	= shmem_follow_link,
1960 	.put_link	= shmem_put_link,
1961 };
1962 
1963 #ifdef CONFIG_TMPFS_POSIX_ACL
1964 /**
1965  * Superblocks without xattr inode operations will get security.* xattr
1966  * support from the VFS "for free". As soon as we have any other xattrs
1967  * like ACLs, we also need to implement the security.* handlers at
1968  * filesystem level, though.
1969  */
1970 
1971 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
1972 					size_t list_len, const char *name,
1973 					size_t name_len)
1974 {
1975 	return security_inode_listsecurity(inode, list, list_len);
1976 }
1977 
1978 static int shmem_xattr_security_get(struct inode *inode, const char *name,
1979 				    void *buffer, size_t size)
1980 {
1981 	if (strcmp(name, "") == 0)
1982 		return -EINVAL;
1983 	return security_inode_getsecurity(inode, name, buffer, size,
1984 					  -EOPNOTSUPP);
1985 }
1986 
1987 static int shmem_xattr_security_set(struct inode *inode, const char *name,
1988 				    const void *value, size_t size, int flags)
1989 {
1990 	if (strcmp(name, "") == 0)
1991 		return -EINVAL;
1992 	return security_inode_setsecurity(inode, name, value, size, flags);
1993 }
1994 
1995 static struct xattr_handler shmem_xattr_security_handler = {
1996 	.prefix = XATTR_SECURITY_PREFIX,
1997 	.list   = shmem_xattr_security_list,
1998 	.get    = shmem_xattr_security_get,
1999 	.set    = shmem_xattr_security_set,
2000 };
2001 
2002 static struct xattr_handler *shmem_xattr_handlers[] = {
2003 	&shmem_xattr_acl_access_handler,
2004 	&shmem_xattr_acl_default_handler,
2005 	&shmem_xattr_security_handler,
2006 	NULL
2007 };
2008 #endif
2009 
2010 static struct dentry *shmem_get_parent(struct dentry *child)
2011 {
2012 	return ERR_PTR(-ESTALE);
2013 }
2014 
2015 static int shmem_match(struct inode *ino, void *vfh)
2016 {
2017 	__u32 *fh = vfh;
2018 	__u64 inum = fh[2];
2019 	inum = (inum << 32) | fh[1];
2020 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2021 }
2022 
2023 static struct dentry *shmem_get_dentry(struct super_block *sb, void *vfh)
2024 {
2025 	struct dentry *de = NULL;
2026 	struct inode *inode;
2027 	__u32 *fh = vfh;
2028 	__u64 inum = fh[2];
2029 	inum = (inum << 32) | fh[1];
2030 
2031 	inode = ilookup5(sb, (unsigned long)(inum+fh[0]), shmem_match, vfh);
2032 	if (inode) {
2033 		de = d_find_alias(inode);
2034 		iput(inode);
2035 	}
2036 
2037 	return de? de: ERR_PTR(-ESTALE);
2038 }
2039 
2040 static struct dentry *shmem_decode_fh(struct super_block *sb, __u32 *fh,
2041 		int len, int type,
2042 		int (*acceptable)(void *context, struct dentry *de),
2043 		void *context)
2044 {
2045 	if (len < 3)
2046 		return ERR_PTR(-ESTALE);
2047 
2048 	return sb->s_export_op->find_exported_dentry(sb, fh, NULL, acceptable,
2049 							context);
2050 }
2051 
2052 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2053 				int connectable)
2054 {
2055 	struct inode *inode = dentry->d_inode;
2056 
2057 	if (*len < 3)
2058 		return 255;
2059 
2060 	if (hlist_unhashed(&inode->i_hash)) {
2061 		/* Unfortunately insert_inode_hash is not idempotent,
2062 		 * so as we hash inodes here rather than at creation
2063 		 * time, we need a lock to ensure we only try
2064 		 * to do it once
2065 		 */
2066 		static DEFINE_SPINLOCK(lock);
2067 		spin_lock(&lock);
2068 		if (hlist_unhashed(&inode->i_hash))
2069 			__insert_inode_hash(inode,
2070 					    inode->i_ino + inode->i_generation);
2071 		spin_unlock(&lock);
2072 	}
2073 
2074 	fh[0] = inode->i_generation;
2075 	fh[1] = inode->i_ino;
2076 	fh[2] = ((__u64)inode->i_ino) >> 32;
2077 
2078 	*len = 3;
2079 	return 1;
2080 }
2081 
2082 static struct export_operations shmem_export_ops = {
2083 	.get_parent     = shmem_get_parent,
2084 	.get_dentry     = shmem_get_dentry,
2085 	.encode_fh      = shmem_encode_fh,
2086 	.decode_fh      = shmem_decode_fh,
2087 };
2088 
2089 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
2090 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
2091 	int *policy, nodemask_t *policy_nodes)
2092 {
2093 	char *this_char, *value, *rest;
2094 
2095 	while (options != NULL) {
2096 		this_char = options;
2097 		for (;;) {
2098 			/*
2099 			 * NUL-terminate this option: unfortunately,
2100 			 * mount options form a comma-separated list,
2101 			 * but mpol's nodelist may also contain commas.
2102 			 */
2103 			options = strchr(options, ',');
2104 			if (options == NULL)
2105 				break;
2106 			options++;
2107 			if (!isdigit(*options)) {
2108 				options[-1] = '\0';
2109 				break;
2110 			}
2111 		}
2112 		if (!*this_char)
2113 			continue;
2114 		if ((value = strchr(this_char,'=')) != NULL) {
2115 			*value++ = 0;
2116 		} else {
2117 			printk(KERN_ERR
2118 			    "tmpfs: No value for mount option '%s'\n",
2119 			    this_char);
2120 			return 1;
2121 		}
2122 
2123 		if (!strcmp(this_char,"size")) {
2124 			unsigned long long size;
2125 			size = memparse(value,&rest);
2126 			if (*rest == '%') {
2127 				size <<= PAGE_SHIFT;
2128 				size *= totalram_pages;
2129 				do_div(size, 100);
2130 				rest++;
2131 			}
2132 			if (*rest)
2133 				goto bad_val;
2134 			*blocks = size >> PAGE_CACHE_SHIFT;
2135 		} else if (!strcmp(this_char,"nr_blocks")) {
2136 			*blocks = memparse(value,&rest);
2137 			if (*rest)
2138 				goto bad_val;
2139 		} else if (!strcmp(this_char,"nr_inodes")) {
2140 			*inodes = memparse(value,&rest);
2141 			if (*rest)
2142 				goto bad_val;
2143 		} else if (!strcmp(this_char,"mode")) {
2144 			if (!mode)
2145 				continue;
2146 			*mode = simple_strtoul(value,&rest,8);
2147 			if (*rest)
2148 				goto bad_val;
2149 		} else if (!strcmp(this_char,"uid")) {
2150 			if (!uid)
2151 				continue;
2152 			*uid = simple_strtoul(value,&rest,0);
2153 			if (*rest)
2154 				goto bad_val;
2155 		} else if (!strcmp(this_char,"gid")) {
2156 			if (!gid)
2157 				continue;
2158 			*gid = simple_strtoul(value,&rest,0);
2159 			if (*rest)
2160 				goto bad_val;
2161 		} else if (!strcmp(this_char,"mpol")) {
2162 			if (shmem_parse_mpol(value,policy,policy_nodes))
2163 				goto bad_val;
2164 		} else {
2165 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2166 			       this_char);
2167 			return 1;
2168 		}
2169 	}
2170 	return 0;
2171 
2172 bad_val:
2173 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2174 	       value, this_char);
2175 	return 1;
2176 
2177 }
2178 
2179 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2180 {
2181 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182 	unsigned long max_blocks = sbinfo->max_blocks;
2183 	unsigned long max_inodes = sbinfo->max_inodes;
2184 	int policy = sbinfo->policy;
2185 	nodemask_t policy_nodes = sbinfo->policy_nodes;
2186 	unsigned long blocks;
2187 	unsigned long inodes;
2188 	int error = -EINVAL;
2189 
2190 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2191 				&max_inodes, &policy, &policy_nodes))
2192 		return error;
2193 
2194 	spin_lock(&sbinfo->stat_lock);
2195 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2196 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2197 	if (max_blocks < blocks)
2198 		goto out;
2199 	if (max_inodes < inodes)
2200 		goto out;
2201 	/*
2202 	 * Those tests also disallow limited->unlimited while any are in
2203 	 * use, so i_blocks will always be zero when max_blocks is zero;
2204 	 * but we must separately disallow unlimited->limited, because
2205 	 * in that case we have no record of how much is already in use.
2206 	 */
2207 	if (max_blocks && !sbinfo->max_blocks)
2208 		goto out;
2209 	if (max_inodes && !sbinfo->max_inodes)
2210 		goto out;
2211 
2212 	error = 0;
2213 	sbinfo->max_blocks  = max_blocks;
2214 	sbinfo->free_blocks = max_blocks - blocks;
2215 	sbinfo->max_inodes  = max_inodes;
2216 	sbinfo->free_inodes = max_inodes - inodes;
2217 	sbinfo->policy = policy;
2218 	sbinfo->policy_nodes = policy_nodes;
2219 out:
2220 	spin_unlock(&sbinfo->stat_lock);
2221 	return error;
2222 }
2223 #endif
2224 
2225 static void shmem_put_super(struct super_block *sb)
2226 {
2227 	kfree(sb->s_fs_info);
2228 	sb->s_fs_info = NULL;
2229 }
2230 
2231 static int shmem_fill_super(struct super_block *sb,
2232 			    void *data, int silent)
2233 {
2234 	struct inode *inode;
2235 	struct dentry *root;
2236 	int mode   = S_IRWXUGO | S_ISVTX;
2237 	uid_t uid = current->fsuid;
2238 	gid_t gid = current->fsgid;
2239 	int err = -ENOMEM;
2240 	struct shmem_sb_info *sbinfo;
2241 	unsigned long blocks = 0;
2242 	unsigned long inodes = 0;
2243 	int policy = MPOL_DEFAULT;
2244 	nodemask_t policy_nodes = node_states[N_HIGH_MEMORY];
2245 
2246 #ifdef CONFIG_TMPFS
2247 	/*
2248 	 * Per default we only allow half of the physical ram per
2249 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2250 	 * but the internal instance is left unlimited.
2251 	 */
2252 	if (!(sb->s_flags & MS_NOUSER)) {
2253 		blocks = totalram_pages / 2;
2254 		inodes = totalram_pages - totalhigh_pages;
2255 		if (inodes > blocks)
2256 			inodes = blocks;
2257 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2258 					&inodes, &policy, &policy_nodes))
2259 			return -EINVAL;
2260 	}
2261 	sb->s_export_op = &shmem_export_ops;
2262 #else
2263 	sb->s_flags |= MS_NOUSER;
2264 #endif
2265 
2266 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2267 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2268 				L1_CACHE_BYTES), GFP_KERNEL);
2269 	if (!sbinfo)
2270 		return -ENOMEM;
2271 
2272 	spin_lock_init(&sbinfo->stat_lock);
2273 	sbinfo->max_blocks = blocks;
2274 	sbinfo->free_blocks = blocks;
2275 	sbinfo->max_inodes = inodes;
2276 	sbinfo->free_inodes = inodes;
2277 	sbinfo->policy = policy;
2278 	sbinfo->policy_nodes = policy_nodes;
2279 
2280 	sb->s_fs_info = sbinfo;
2281 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2282 	sb->s_blocksize = PAGE_CACHE_SIZE;
2283 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2284 	sb->s_magic = TMPFS_MAGIC;
2285 	sb->s_op = &shmem_ops;
2286 	sb->s_time_gran = 1;
2287 #ifdef CONFIG_TMPFS_POSIX_ACL
2288 	sb->s_xattr = shmem_xattr_handlers;
2289 	sb->s_flags |= MS_POSIXACL;
2290 #endif
2291 
2292 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2293 	if (!inode)
2294 		goto failed;
2295 	inode->i_uid = uid;
2296 	inode->i_gid = gid;
2297 	root = d_alloc_root(inode);
2298 	if (!root)
2299 		goto failed_iput;
2300 	sb->s_root = root;
2301 	return 0;
2302 
2303 failed_iput:
2304 	iput(inode);
2305 failed:
2306 	shmem_put_super(sb);
2307 	return err;
2308 }
2309 
2310 static struct kmem_cache *shmem_inode_cachep;
2311 
2312 static struct inode *shmem_alloc_inode(struct super_block *sb)
2313 {
2314 	struct shmem_inode_info *p;
2315 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2316 	if (!p)
2317 		return NULL;
2318 	return &p->vfs_inode;
2319 }
2320 
2321 static void shmem_destroy_inode(struct inode *inode)
2322 {
2323 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2324 		/* only struct inode is valid if it's an inline symlink */
2325 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2326 	}
2327 	shmem_acl_destroy_inode(inode);
2328 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2329 }
2330 
2331 static void init_once(void *foo, struct kmem_cache *cachep,
2332 		      unsigned long flags)
2333 {
2334 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2335 
2336 	inode_init_once(&p->vfs_inode);
2337 #ifdef CONFIG_TMPFS_POSIX_ACL
2338 	p->i_acl = NULL;
2339 	p->i_default_acl = NULL;
2340 #endif
2341 }
2342 
2343 static int init_inodecache(void)
2344 {
2345 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2346 				sizeof(struct shmem_inode_info),
2347 				0, 0, init_once);
2348 	if (shmem_inode_cachep == NULL)
2349 		return -ENOMEM;
2350 	return 0;
2351 }
2352 
2353 static void destroy_inodecache(void)
2354 {
2355 	kmem_cache_destroy(shmem_inode_cachep);
2356 }
2357 
2358 static const struct address_space_operations shmem_aops = {
2359 	.writepage	= shmem_writepage,
2360 	.set_page_dirty	= __set_page_dirty_no_writeback,
2361 #ifdef CONFIG_TMPFS
2362 	.readpage	= shmem_readpage,
2363 	.write_begin	= shmem_write_begin,
2364 	.write_end	= shmem_write_end,
2365 #endif
2366 	.migratepage	= migrate_page,
2367 };
2368 
2369 static const struct file_operations shmem_file_operations = {
2370 	.mmap		= shmem_mmap,
2371 #ifdef CONFIG_TMPFS
2372 	.llseek		= generic_file_llseek,
2373 	.read		= shmem_file_read,
2374 	.write		= shmem_file_write,
2375 	.fsync		= simple_sync_file,
2376 	.splice_read	= generic_file_splice_read,
2377 	.splice_write	= generic_file_splice_write,
2378 #endif
2379 };
2380 
2381 static const struct inode_operations shmem_inode_operations = {
2382 	.truncate	= shmem_truncate,
2383 	.setattr	= shmem_notify_change,
2384 	.truncate_range	= shmem_truncate_range,
2385 #ifdef CONFIG_TMPFS_POSIX_ACL
2386 	.setxattr	= generic_setxattr,
2387 	.getxattr	= generic_getxattr,
2388 	.listxattr	= generic_listxattr,
2389 	.removexattr	= generic_removexattr,
2390 	.permission	= shmem_permission,
2391 #endif
2392 
2393 };
2394 
2395 static const struct inode_operations shmem_dir_inode_operations = {
2396 #ifdef CONFIG_TMPFS
2397 	.create		= shmem_create,
2398 	.lookup		= simple_lookup,
2399 	.link		= shmem_link,
2400 	.unlink		= shmem_unlink,
2401 	.symlink	= shmem_symlink,
2402 	.mkdir		= shmem_mkdir,
2403 	.rmdir		= shmem_rmdir,
2404 	.mknod		= shmem_mknod,
2405 	.rename		= shmem_rename,
2406 #endif
2407 #ifdef CONFIG_TMPFS_POSIX_ACL
2408 	.setattr	= shmem_notify_change,
2409 	.setxattr	= generic_setxattr,
2410 	.getxattr	= generic_getxattr,
2411 	.listxattr	= generic_listxattr,
2412 	.removexattr	= generic_removexattr,
2413 	.permission	= shmem_permission,
2414 #endif
2415 };
2416 
2417 static const struct inode_operations shmem_special_inode_operations = {
2418 #ifdef CONFIG_TMPFS_POSIX_ACL
2419 	.setattr	= shmem_notify_change,
2420 	.setxattr	= generic_setxattr,
2421 	.getxattr	= generic_getxattr,
2422 	.listxattr	= generic_listxattr,
2423 	.removexattr	= generic_removexattr,
2424 	.permission	= shmem_permission,
2425 #endif
2426 };
2427 
2428 static const struct super_operations shmem_ops = {
2429 	.alloc_inode	= shmem_alloc_inode,
2430 	.destroy_inode	= shmem_destroy_inode,
2431 #ifdef CONFIG_TMPFS
2432 	.statfs		= shmem_statfs,
2433 	.remount_fs	= shmem_remount_fs,
2434 #endif
2435 	.delete_inode	= shmem_delete_inode,
2436 	.drop_inode	= generic_delete_inode,
2437 	.put_super	= shmem_put_super,
2438 };
2439 
2440 static struct vm_operations_struct shmem_vm_ops = {
2441 	.fault		= shmem_fault,
2442 #ifdef CONFIG_NUMA
2443 	.set_policy     = shmem_set_policy,
2444 	.get_policy     = shmem_get_policy,
2445 #endif
2446 };
2447 
2448 
2449 static int shmem_get_sb(struct file_system_type *fs_type,
2450 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2451 {
2452 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2453 }
2454 
2455 static struct file_system_type tmpfs_fs_type = {
2456 	.owner		= THIS_MODULE,
2457 	.name		= "tmpfs",
2458 	.get_sb		= shmem_get_sb,
2459 	.kill_sb	= kill_litter_super,
2460 };
2461 static struct vfsmount *shm_mnt;
2462 
2463 static int __init init_tmpfs(void)
2464 {
2465 	int error;
2466 
2467 	error = init_inodecache();
2468 	if (error)
2469 		goto out3;
2470 
2471 	error = register_filesystem(&tmpfs_fs_type);
2472 	if (error) {
2473 		printk(KERN_ERR "Could not register tmpfs\n");
2474 		goto out2;
2475 	}
2476 
2477 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2478 				tmpfs_fs_type.name, NULL);
2479 	if (IS_ERR(shm_mnt)) {
2480 		error = PTR_ERR(shm_mnt);
2481 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2482 		goto out1;
2483 	}
2484 	return 0;
2485 
2486 out1:
2487 	unregister_filesystem(&tmpfs_fs_type);
2488 out2:
2489 	destroy_inodecache();
2490 out3:
2491 	shm_mnt = ERR_PTR(error);
2492 	return error;
2493 }
2494 module_init(init_tmpfs)
2495 
2496 /*
2497  * shmem_file_setup - get an unlinked file living in tmpfs
2498  *
2499  * @name: name for dentry (to be seen in /proc/<pid>/maps
2500  * @size: size to be set for the file
2501  *
2502  */
2503 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2504 {
2505 	int error;
2506 	struct file *file;
2507 	struct inode *inode;
2508 	struct dentry *dentry, *root;
2509 	struct qstr this;
2510 
2511 	if (IS_ERR(shm_mnt))
2512 		return (void *)shm_mnt;
2513 
2514 	if (size < 0 || size > SHMEM_MAX_BYTES)
2515 		return ERR_PTR(-EINVAL);
2516 
2517 	if (shmem_acct_size(flags, size))
2518 		return ERR_PTR(-ENOMEM);
2519 
2520 	error = -ENOMEM;
2521 	this.name = name;
2522 	this.len = strlen(name);
2523 	this.hash = 0; /* will go */
2524 	root = shm_mnt->mnt_root;
2525 	dentry = d_alloc(root, &this);
2526 	if (!dentry)
2527 		goto put_memory;
2528 
2529 	error = -ENFILE;
2530 	file = get_empty_filp();
2531 	if (!file)
2532 		goto put_dentry;
2533 
2534 	error = -ENOSPC;
2535 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2536 	if (!inode)
2537 		goto close_file;
2538 
2539 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2540 	d_instantiate(dentry, inode);
2541 	inode->i_size = size;
2542 	inode->i_nlink = 0;	/* It is unlinked */
2543 	file->f_path.mnt = mntget(shm_mnt);
2544 	file->f_path.dentry = dentry;
2545 	file->f_mapping = inode->i_mapping;
2546 	file->f_op = &shmem_file_operations;
2547 	file->f_mode = FMODE_WRITE | FMODE_READ;
2548 	return file;
2549 
2550 close_file:
2551 	put_filp(file);
2552 put_dentry:
2553 	dput(dentry);
2554 put_memory:
2555 	shmem_unacct_size(flags, size);
2556 	return ERR_PTR(error);
2557 }
2558 
2559 /*
2560  * shmem_zero_setup - setup a shared anonymous mapping
2561  *
2562  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2563  */
2564 int shmem_zero_setup(struct vm_area_struct *vma)
2565 {
2566 	struct file *file;
2567 	loff_t size = vma->vm_end - vma->vm_start;
2568 
2569 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2570 	if (IS_ERR(file))
2571 		return PTR_ERR(file);
2572 
2573 	if (vma->vm_file)
2574 		fput(vma->vm_file);
2575 	vma->vm_file = file;
2576 	vma->vm_ops = &shmem_vm_ops;
2577 	return 0;
2578 }
2579