1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt __ro_after_init; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 #include <linux/rcupdate_wait.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #define SHMEM_SEEN_BLOCKS 1 127 #define SHMEM_SEEN_INODES 2 128 #define SHMEM_SEEN_HUGE 4 129 #define SHMEM_SEEN_INUMS 8 130 #define SHMEM_SEEN_NOSWAP 16 131 #define SHMEM_SEEN_QUOTA 32 132 }; 133 134 #ifdef CONFIG_TMPFS 135 static unsigned long shmem_default_max_blocks(void) 136 { 137 return totalram_pages() / 2; 138 } 139 140 static unsigned long shmem_default_max_inodes(void) 141 { 142 unsigned long nr_pages = totalram_pages(); 143 144 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 145 ULONG_MAX / BOGO_INODE_SIZE); 146 } 147 #endif 148 149 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 150 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 151 struct mm_struct *fault_mm, vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_blocks(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_blocks(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 222 sbinfo->max_blocks, pages)) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) { 227 percpu_counter_sub(&sbinfo->used_blocks, pages); 228 goto unacct; 229 } 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 static const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool shmem_mapping(struct address_space *mapping) 267 { 268 return mapping->a_ops == &shmem_aops; 269 } 270 EXPORT_SYMBOL_GPL(shmem_mapping); 271 272 bool vma_is_anon_shmem(struct vm_area_struct *vma) 273 { 274 return vma->vm_ops == &shmem_anon_vm_ops; 275 } 276 277 bool vma_is_shmem(struct vm_area_struct *vma) 278 { 279 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 280 } 281 282 static LIST_HEAD(shmem_swaplist); 283 static DEFINE_MUTEX(shmem_swaplist_mutex); 284 285 #ifdef CONFIG_TMPFS_QUOTA 286 287 static int shmem_enable_quotas(struct super_block *sb, 288 unsigned short quota_types) 289 { 290 int type, err = 0; 291 292 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 293 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 294 if (!(quota_types & (1 << type))) 295 continue; 296 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 297 DQUOT_USAGE_ENABLED | 298 DQUOT_LIMITS_ENABLED); 299 if (err) 300 goto out_err; 301 } 302 return 0; 303 304 out_err: 305 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 306 type, err); 307 for (type--; type >= 0; type--) 308 dquot_quota_off(sb, type); 309 return err; 310 } 311 312 static void shmem_disable_quotas(struct super_block *sb) 313 { 314 int type; 315 316 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 317 dquot_quota_off(sb, type); 318 } 319 320 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 321 { 322 return SHMEM_I(inode)->i_dquot; 323 } 324 #endif /* CONFIG_TMPFS_QUOTA */ 325 326 /* 327 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 328 * produces a novel ino for the newly allocated inode. 329 * 330 * It may also be called when making a hard link to permit the space needed by 331 * each dentry. However, in that case, no new inode number is needed since that 332 * internally draws from another pool of inode numbers (currently global 333 * get_next_ino()). This case is indicated by passing NULL as inop. 334 */ 335 #define SHMEM_INO_BATCH 1024 336 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 ino_t ino; 340 341 if (!(sb->s_flags & SB_KERNMOUNT)) { 342 raw_spin_lock(&sbinfo->stat_lock); 343 if (sbinfo->max_inodes) { 344 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 345 raw_spin_unlock(&sbinfo->stat_lock); 346 return -ENOSPC; 347 } 348 sbinfo->free_ispace -= BOGO_INODE_SIZE; 349 } 350 if (inop) { 351 ino = sbinfo->next_ino++; 352 if (unlikely(is_zero_ino(ino))) 353 ino = sbinfo->next_ino++; 354 if (unlikely(!sbinfo->full_inums && 355 ino > UINT_MAX)) { 356 /* 357 * Emulate get_next_ino uint wraparound for 358 * compatibility 359 */ 360 if (IS_ENABLED(CONFIG_64BIT)) 361 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 362 __func__, MINOR(sb->s_dev)); 363 sbinfo->next_ino = 1; 364 ino = sbinfo->next_ino++; 365 } 366 *inop = ino; 367 } 368 raw_spin_unlock(&sbinfo->stat_lock); 369 } else if (inop) { 370 /* 371 * __shmem_file_setup, one of our callers, is lock-free: it 372 * doesn't hold stat_lock in shmem_reserve_inode since 373 * max_inodes is always 0, and is called from potentially 374 * unknown contexts. As such, use a per-cpu batched allocator 375 * which doesn't require the per-sb stat_lock unless we are at 376 * the batch boundary. 377 * 378 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 379 * shmem mounts are not exposed to userspace, so we don't need 380 * to worry about things like glibc compatibility. 381 */ 382 ino_t *next_ino; 383 384 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 385 ino = *next_ino; 386 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 387 raw_spin_lock(&sbinfo->stat_lock); 388 ino = sbinfo->next_ino; 389 sbinfo->next_ino += SHMEM_INO_BATCH; 390 raw_spin_unlock(&sbinfo->stat_lock); 391 if (unlikely(is_zero_ino(ino))) 392 ino++; 393 } 394 *inop = ino; 395 *next_ino = ++ino; 396 put_cpu(); 397 } 398 399 return 0; 400 } 401 402 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 403 { 404 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 405 if (sbinfo->max_inodes) { 406 raw_spin_lock(&sbinfo->stat_lock); 407 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 408 raw_spin_unlock(&sbinfo->stat_lock); 409 } 410 } 411 412 /** 413 * shmem_recalc_inode - recalculate the block usage of an inode 414 * @inode: inode to recalc 415 * @alloced: the change in number of pages allocated to inode 416 * @swapped: the change in number of pages swapped from inode 417 * 418 * We have to calculate the free blocks since the mm can drop 419 * undirtied hole pages behind our back. 420 * 421 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 422 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 423 */ 424 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 425 { 426 struct shmem_inode_info *info = SHMEM_I(inode); 427 long freed; 428 429 spin_lock(&info->lock); 430 info->alloced += alloced; 431 info->swapped += swapped; 432 freed = info->alloced - info->swapped - 433 READ_ONCE(inode->i_mapping->nrpages); 434 /* 435 * Special case: whereas normally shmem_recalc_inode() is called 436 * after i_mapping->nrpages has already been adjusted (up or down), 437 * shmem_writepage() has to raise swapped before nrpages is lowered - 438 * to stop a racing shmem_recalc_inode() from thinking that a page has 439 * been freed. Compensate here, to avoid the need for a followup call. 440 */ 441 if (swapped > 0) 442 freed += swapped; 443 if (freed > 0) 444 info->alloced -= freed; 445 spin_unlock(&info->lock); 446 447 /* The quota case may block */ 448 if (freed > 0) 449 shmem_inode_unacct_blocks(inode, freed); 450 } 451 452 bool shmem_charge(struct inode *inode, long pages) 453 { 454 struct address_space *mapping = inode->i_mapping; 455 456 if (shmem_inode_acct_blocks(inode, pages)) 457 return false; 458 459 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 460 xa_lock_irq(&mapping->i_pages); 461 mapping->nrpages += pages; 462 xa_unlock_irq(&mapping->i_pages); 463 464 shmem_recalc_inode(inode, pages, 0); 465 return true; 466 } 467 468 void shmem_uncharge(struct inode *inode, long pages) 469 { 470 /* pages argument is currently unused: keep it to help debugging */ 471 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 472 473 shmem_recalc_inode(inode, 0, 0); 474 } 475 476 /* 477 * Replace item expected in xarray by a new item, while holding xa_lock. 478 */ 479 static int shmem_replace_entry(struct address_space *mapping, 480 pgoff_t index, void *expected, void *replacement) 481 { 482 XA_STATE(xas, &mapping->i_pages, index); 483 void *item; 484 485 VM_BUG_ON(!expected); 486 VM_BUG_ON(!replacement); 487 item = xas_load(&xas); 488 if (item != expected) 489 return -ENOENT; 490 xas_store(&xas, replacement); 491 return 0; 492 } 493 494 /* 495 * Sometimes, before we decide whether to proceed or to fail, we must check 496 * that an entry was not already brought back from swap by a racing thread. 497 * 498 * Checking page is not enough: by the time a SwapCache page is locked, it 499 * might be reused, and again be SwapCache, using the same swap as before. 500 */ 501 static bool shmem_confirm_swap(struct address_space *mapping, 502 pgoff_t index, swp_entry_t swap) 503 { 504 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 505 } 506 507 /* 508 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 509 * 510 * SHMEM_HUGE_NEVER: 511 * disables huge pages for the mount; 512 * SHMEM_HUGE_ALWAYS: 513 * enables huge pages for the mount; 514 * SHMEM_HUGE_WITHIN_SIZE: 515 * only allocate huge pages if the page will be fully within i_size, 516 * also respect fadvise()/madvise() hints; 517 * SHMEM_HUGE_ADVISE: 518 * only allocate huge pages if requested with fadvise()/madvise(); 519 */ 520 521 #define SHMEM_HUGE_NEVER 0 522 #define SHMEM_HUGE_ALWAYS 1 523 #define SHMEM_HUGE_WITHIN_SIZE 2 524 #define SHMEM_HUGE_ADVISE 3 525 526 /* 527 * Special values. 528 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 529 * 530 * SHMEM_HUGE_DENY: 531 * disables huge on shm_mnt and all mounts, for emergency use; 532 * SHMEM_HUGE_FORCE: 533 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 534 * 535 */ 536 #define SHMEM_HUGE_DENY (-1) 537 #define SHMEM_HUGE_FORCE (-2) 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 /* ifdef here to avoid bloating shmem.o when not necessary */ 541 542 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 543 544 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 545 struct mm_struct *mm, unsigned long vm_flags) 546 { 547 loff_t i_size; 548 549 if (!S_ISREG(inode->i_mode)) 550 return false; 551 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 552 return false; 553 if (shmem_huge == SHMEM_HUGE_DENY) 554 return false; 555 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 556 return true; 557 558 switch (SHMEM_SB(inode->i_sb)->huge) { 559 case SHMEM_HUGE_ALWAYS: 560 return true; 561 case SHMEM_HUGE_WITHIN_SIZE: 562 index = round_up(index + 1, HPAGE_PMD_NR); 563 i_size = round_up(i_size_read(inode), PAGE_SIZE); 564 if (i_size >> PAGE_SHIFT >= index) 565 return true; 566 fallthrough; 567 case SHMEM_HUGE_ADVISE: 568 if (mm && (vm_flags & VM_HUGEPAGE)) 569 return true; 570 fallthrough; 571 default: 572 return false; 573 } 574 } 575 576 #if defined(CONFIG_SYSFS) 577 static int shmem_parse_huge(const char *str) 578 { 579 if (!strcmp(str, "never")) 580 return SHMEM_HUGE_NEVER; 581 if (!strcmp(str, "always")) 582 return SHMEM_HUGE_ALWAYS; 583 if (!strcmp(str, "within_size")) 584 return SHMEM_HUGE_WITHIN_SIZE; 585 if (!strcmp(str, "advise")) 586 return SHMEM_HUGE_ADVISE; 587 if (!strcmp(str, "deny")) 588 return SHMEM_HUGE_DENY; 589 if (!strcmp(str, "force")) 590 return SHMEM_HUGE_FORCE; 591 return -EINVAL; 592 } 593 #endif 594 595 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 596 static const char *shmem_format_huge(int huge) 597 { 598 switch (huge) { 599 case SHMEM_HUGE_NEVER: 600 return "never"; 601 case SHMEM_HUGE_ALWAYS: 602 return "always"; 603 case SHMEM_HUGE_WITHIN_SIZE: 604 return "within_size"; 605 case SHMEM_HUGE_ADVISE: 606 return "advise"; 607 case SHMEM_HUGE_DENY: 608 return "deny"; 609 case SHMEM_HUGE_FORCE: 610 return "force"; 611 default: 612 VM_BUG_ON(1); 613 return "bad_val"; 614 } 615 } 616 #endif 617 618 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 619 struct shrink_control *sc, unsigned long nr_to_split) 620 { 621 LIST_HEAD(list), *pos, *next; 622 LIST_HEAD(to_remove); 623 struct inode *inode; 624 struct shmem_inode_info *info; 625 struct folio *folio; 626 unsigned long batch = sc ? sc->nr_to_scan : 128; 627 int split = 0; 628 629 if (list_empty(&sbinfo->shrinklist)) 630 return SHRINK_STOP; 631 632 spin_lock(&sbinfo->shrinklist_lock); 633 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 634 info = list_entry(pos, struct shmem_inode_info, shrinklist); 635 636 /* pin the inode */ 637 inode = igrab(&info->vfs_inode); 638 639 /* inode is about to be evicted */ 640 if (!inode) { 641 list_del_init(&info->shrinklist); 642 goto next; 643 } 644 645 /* Check if there's anything to gain */ 646 if (round_up(inode->i_size, PAGE_SIZE) == 647 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 648 list_move(&info->shrinklist, &to_remove); 649 goto next; 650 } 651 652 list_move(&info->shrinklist, &list); 653 next: 654 sbinfo->shrinklist_len--; 655 if (!--batch) 656 break; 657 } 658 spin_unlock(&sbinfo->shrinklist_lock); 659 660 list_for_each_safe(pos, next, &to_remove) { 661 info = list_entry(pos, struct shmem_inode_info, shrinklist); 662 inode = &info->vfs_inode; 663 list_del_init(&info->shrinklist); 664 iput(inode); 665 } 666 667 list_for_each_safe(pos, next, &list) { 668 int ret; 669 pgoff_t index; 670 671 info = list_entry(pos, struct shmem_inode_info, shrinklist); 672 inode = &info->vfs_inode; 673 674 if (nr_to_split && split >= nr_to_split) 675 goto move_back; 676 677 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 678 folio = filemap_get_folio(inode->i_mapping, index); 679 if (IS_ERR(folio)) 680 goto drop; 681 682 /* No huge page at the end of the file: nothing to split */ 683 if (!folio_test_large(folio)) { 684 folio_put(folio); 685 goto drop; 686 } 687 688 /* 689 * Move the inode on the list back to shrinklist if we failed 690 * to lock the page at this time. 691 * 692 * Waiting for the lock may lead to deadlock in the 693 * reclaim path. 694 */ 695 if (!folio_trylock(folio)) { 696 folio_put(folio); 697 goto move_back; 698 } 699 700 ret = split_folio(folio); 701 folio_unlock(folio); 702 folio_put(folio); 703 704 /* If split failed move the inode on the list back to shrinklist */ 705 if (ret) 706 goto move_back; 707 708 split++; 709 drop: 710 list_del_init(&info->shrinklist); 711 goto put; 712 move_back: 713 /* 714 * Make sure the inode is either on the global list or deleted 715 * from any local list before iput() since it could be deleted 716 * in another thread once we put the inode (then the local list 717 * is corrupted). 718 */ 719 spin_lock(&sbinfo->shrinklist_lock); 720 list_move(&info->shrinklist, &sbinfo->shrinklist); 721 sbinfo->shrinklist_len++; 722 spin_unlock(&sbinfo->shrinklist_lock); 723 put: 724 iput(inode); 725 } 726 727 return split; 728 } 729 730 static long shmem_unused_huge_scan(struct super_block *sb, 731 struct shrink_control *sc) 732 { 733 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 734 735 if (!READ_ONCE(sbinfo->shrinklist_len)) 736 return SHRINK_STOP; 737 738 return shmem_unused_huge_shrink(sbinfo, sc, 0); 739 } 740 741 static long shmem_unused_huge_count(struct super_block *sb, 742 struct shrink_control *sc) 743 { 744 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 745 return READ_ONCE(sbinfo->shrinklist_len); 746 } 747 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 748 749 #define shmem_huge SHMEM_HUGE_DENY 750 751 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 752 struct mm_struct *mm, unsigned long vm_flags) 753 { 754 return false; 755 } 756 757 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 758 struct shrink_control *sc, unsigned long nr_to_split) 759 { 760 return 0; 761 } 762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 763 764 /* 765 * Somewhat like filemap_add_folio, but error if expected item has gone. 766 */ 767 static int shmem_add_to_page_cache(struct folio *folio, 768 struct address_space *mapping, 769 pgoff_t index, void *expected, gfp_t gfp) 770 { 771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 772 long nr = folio_nr_pages(folio); 773 774 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 775 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 776 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 777 VM_BUG_ON(expected && folio_test_large(folio)); 778 779 folio_ref_add(folio, nr); 780 folio->mapping = mapping; 781 folio->index = index; 782 783 gfp &= GFP_RECLAIM_MASK; 784 folio_throttle_swaprate(folio, gfp); 785 786 do { 787 xas_lock_irq(&xas); 788 if (expected != xas_find_conflict(&xas)) { 789 xas_set_err(&xas, -EEXIST); 790 goto unlock; 791 } 792 if (expected && xas_find_conflict(&xas)) { 793 xas_set_err(&xas, -EEXIST); 794 goto unlock; 795 } 796 xas_store(&xas, folio); 797 if (xas_error(&xas)) 798 goto unlock; 799 if (folio_test_pmd_mappable(folio)) 800 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 801 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 802 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 803 mapping->nrpages += nr; 804 unlock: 805 xas_unlock_irq(&xas); 806 } while (xas_nomem(&xas, gfp)); 807 808 if (xas_error(&xas)) { 809 folio->mapping = NULL; 810 folio_ref_sub(folio, nr); 811 return xas_error(&xas); 812 } 813 814 return 0; 815 } 816 817 /* 818 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 819 */ 820 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 821 { 822 struct address_space *mapping = folio->mapping; 823 long nr = folio_nr_pages(folio); 824 int error; 825 826 xa_lock_irq(&mapping->i_pages); 827 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 828 folio->mapping = NULL; 829 mapping->nrpages -= nr; 830 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 831 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 832 xa_unlock_irq(&mapping->i_pages); 833 folio_put(folio); 834 BUG_ON(error); 835 } 836 837 /* 838 * Remove swap entry from page cache, free the swap and its page cache. 839 */ 840 static int shmem_free_swap(struct address_space *mapping, 841 pgoff_t index, void *radswap) 842 { 843 void *old; 844 845 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 846 if (old != radswap) 847 return -ENOENT; 848 free_swap_and_cache(radix_to_swp_entry(radswap)); 849 return 0; 850 } 851 852 /* 853 * Determine (in bytes) how many of the shmem object's pages mapped by the 854 * given offsets are swapped out. 855 * 856 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 857 * as long as the inode doesn't go away and racy results are not a problem. 858 */ 859 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 860 pgoff_t start, pgoff_t end) 861 { 862 XA_STATE(xas, &mapping->i_pages, start); 863 struct page *page; 864 unsigned long swapped = 0; 865 unsigned long max = end - 1; 866 867 rcu_read_lock(); 868 xas_for_each(&xas, page, max) { 869 if (xas_retry(&xas, page)) 870 continue; 871 if (xa_is_value(page)) 872 swapped++; 873 if (xas.xa_index == max) 874 break; 875 if (need_resched()) { 876 xas_pause(&xas); 877 cond_resched_rcu(); 878 } 879 } 880 rcu_read_unlock(); 881 882 return swapped << PAGE_SHIFT; 883 } 884 885 /* 886 * Determine (in bytes) how many of the shmem object's pages mapped by the 887 * given vma is swapped out. 888 * 889 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 890 * as long as the inode doesn't go away and racy results are not a problem. 891 */ 892 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 893 { 894 struct inode *inode = file_inode(vma->vm_file); 895 struct shmem_inode_info *info = SHMEM_I(inode); 896 struct address_space *mapping = inode->i_mapping; 897 unsigned long swapped; 898 899 /* Be careful as we don't hold info->lock */ 900 swapped = READ_ONCE(info->swapped); 901 902 /* 903 * The easier cases are when the shmem object has nothing in swap, or 904 * the vma maps it whole. Then we can simply use the stats that we 905 * already track. 906 */ 907 if (!swapped) 908 return 0; 909 910 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 911 return swapped << PAGE_SHIFT; 912 913 /* Here comes the more involved part */ 914 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 915 vma->vm_pgoff + vma_pages(vma)); 916 } 917 918 /* 919 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 920 */ 921 void shmem_unlock_mapping(struct address_space *mapping) 922 { 923 struct folio_batch fbatch; 924 pgoff_t index = 0; 925 926 folio_batch_init(&fbatch); 927 /* 928 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 929 */ 930 while (!mapping_unevictable(mapping) && 931 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 932 check_move_unevictable_folios(&fbatch); 933 folio_batch_release(&fbatch); 934 cond_resched(); 935 } 936 } 937 938 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 939 { 940 struct folio *folio; 941 942 /* 943 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 944 * beyond i_size, and reports fallocated folios as holes. 945 */ 946 folio = filemap_get_entry(inode->i_mapping, index); 947 if (!folio) 948 return folio; 949 if (!xa_is_value(folio)) { 950 folio_lock(folio); 951 if (folio->mapping == inode->i_mapping) 952 return folio; 953 /* The folio has been swapped out */ 954 folio_unlock(folio); 955 folio_put(folio); 956 } 957 /* 958 * But read a folio back from swap if any of it is within i_size 959 * (although in some cases this is just a waste of time). 960 */ 961 folio = NULL; 962 shmem_get_folio(inode, index, &folio, SGP_READ); 963 return folio; 964 } 965 966 /* 967 * Remove range of pages and swap entries from page cache, and free them. 968 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 969 */ 970 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 971 bool unfalloc) 972 { 973 struct address_space *mapping = inode->i_mapping; 974 struct shmem_inode_info *info = SHMEM_I(inode); 975 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 976 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 977 struct folio_batch fbatch; 978 pgoff_t indices[PAGEVEC_SIZE]; 979 struct folio *folio; 980 bool same_folio; 981 long nr_swaps_freed = 0; 982 pgoff_t index; 983 int i; 984 985 if (lend == -1) 986 end = -1; /* unsigned, so actually very big */ 987 988 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 989 info->fallocend = start; 990 991 folio_batch_init(&fbatch); 992 index = start; 993 while (index < end && find_lock_entries(mapping, &index, end - 1, 994 &fbatch, indices)) { 995 for (i = 0; i < folio_batch_count(&fbatch); i++) { 996 folio = fbatch.folios[i]; 997 998 if (xa_is_value(folio)) { 999 if (unfalloc) 1000 continue; 1001 nr_swaps_freed += !shmem_free_swap(mapping, 1002 indices[i], folio); 1003 continue; 1004 } 1005 1006 if (!unfalloc || !folio_test_uptodate(folio)) 1007 truncate_inode_folio(mapping, folio); 1008 folio_unlock(folio); 1009 } 1010 folio_batch_remove_exceptionals(&fbatch); 1011 folio_batch_release(&fbatch); 1012 cond_resched(); 1013 } 1014 1015 /* 1016 * When undoing a failed fallocate, we want none of the partial folio 1017 * zeroing and splitting below, but shall want to truncate the whole 1018 * folio when !uptodate indicates that it was added by this fallocate, 1019 * even when [lstart, lend] covers only a part of the folio. 1020 */ 1021 if (unfalloc) 1022 goto whole_folios; 1023 1024 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1025 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1026 if (folio) { 1027 same_folio = lend < folio_pos(folio) + folio_size(folio); 1028 folio_mark_dirty(folio); 1029 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1030 start = folio_next_index(folio); 1031 if (same_folio) 1032 end = folio->index; 1033 } 1034 folio_unlock(folio); 1035 folio_put(folio); 1036 folio = NULL; 1037 } 1038 1039 if (!same_folio) 1040 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1041 if (folio) { 1042 folio_mark_dirty(folio); 1043 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1044 end = folio->index; 1045 folio_unlock(folio); 1046 folio_put(folio); 1047 } 1048 1049 whole_folios: 1050 1051 index = start; 1052 while (index < end) { 1053 cond_resched(); 1054 1055 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1056 indices)) { 1057 /* If all gone or hole-punch or unfalloc, we're done */ 1058 if (index == start || end != -1) 1059 break; 1060 /* But if truncating, restart to make sure all gone */ 1061 index = start; 1062 continue; 1063 } 1064 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1065 folio = fbatch.folios[i]; 1066 1067 if (xa_is_value(folio)) { 1068 if (unfalloc) 1069 continue; 1070 if (shmem_free_swap(mapping, indices[i], folio)) { 1071 /* Swap was replaced by page: retry */ 1072 index = indices[i]; 1073 break; 1074 } 1075 nr_swaps_freed++; 1076 continue; 1077 } 1078 1079 folio_lock(folio); 1080 1081 if (!unfalloc || !folio_test_uptodate(folio)) { 1082 if (folio_mapping(folio) != mapping) { 1083 /* Page was replaced by swap: retry */ 1084 folio_unlock(folio); 1085 index = indices[i]; 1086 break; 1087 } 1088 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1089 folio); 1090 1091 if (!folio_test_large(folio)) { 1092 truncate_inode_folio(mapping, folio); 1093 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1094 /* 1095 * If we split a page, reset the loop so 1096 * that we pick up the new sub pages. 1097 * Otherwise the THP was entirely 1098 * dropped or the target range was 1099 * zeroed, so just continue the loop as 1100 * is. 1101 */ 1102 if (!folio_test_large(folio)) { 1103 folio_unlock(folio); 1104 index = start; 1105 break; 1106 } 1107 } 1108 } 1109 folio_unlock(folio); 1110 } 1111 folio_batch_remove_exceptionals(&fbatch); 1112 folio_batch_release(&fbatch); 1113 } 1114 1115 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1116 } 1117 1118 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1119 { 1120 shmem_undo_range(inode, lstart, lend, false); 1121 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1122 inode_inc_iversion(inode); 1123 } 1124 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1125 1126 static int shmem_getattr(struct mnt_idmap *idmap, 1127 const struct path *path, struct kstat *stat, 1128 u32 request_mask, unsigned int query_flags) 1129 { 1130 struct inode *inode = path->dentry->d_inode; 1131 struct shmem_inode_info *info = SHMEM_I(inode); 1132 1133 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1134 shmem_recalc_inode(inode, 0, 0); 1135 1136 if (info->fsflags & FS_APPEND_FL) 1137 stat->attributes |= STATX_ATTR_APPEND; 1138 if (info->fsflags & FS_IMMUTABLE_FL) 1139 stat->attributes |= STATX_ATTR_IMMUTABLE; 1140 if (info->fsflags & FS_NODUMP_FL) 1141 stat->attributes |= STATX_ATTR_NODUMP; 1142 stat->attributes_mask |= (STATX_ATTR_APPEND | 1143 STATX_ATTR_IMMUTABLE | 1144 STATX_ATTR_NODUMP); 1145 generic_fillattr(idmap, request_mask, inode, stat); 1146 1147 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1148 stat->blksize = HPAGE_PMD_SIZE; 1149 1150 if (request_mask & STATX_BTIME) { 1151 stat->result_mask |= STATX_BTIME; 1152 stat->btime.tv_sec = info->i_crtime.tv_sec; 1153 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1154 } 1155 1156 return 0; 1157 } 1158 1159 static int shmem_setattr(struct mnt_idmap *idmap, 1160 struct dentry *dentry, struct iattr *attr) 1161 { 1162 struct inode *inode = d_inode(dentry); 1163 struct shmem_inode_info *info = SHMEM_I(inode); 1164 int error; 1165 bool update_mtime = false; 1166 bool update_ctime = true; 1167 1168 error = setattr_prepare(idmap, dentry, attr); 1169 if (error) 1170 return error; 1171 1172 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1173 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1174 return -EPERM; 1175 } 1176 } 1177 1178 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1179 loff_t oldsize = inode->i_size; 1180 loff_t newsize = attr->ia_size; 1181 1182 /* protected by i_rwsem */ 1183 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1184 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1185 return -EPERM; 1186 1187 if (newsize != oldsize) { 1188 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1189 oldsize, newsize); 1190 if (error) 1191 return error; 1192 i_size_write(inode, newsize); 1193 update_mtime = true; 1194 } else { 1195 update_ctime = false; 1196 } 1197 if (newsize <= oldsize) { 1198 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1199 if (oldsize > holebegin) 1200 unmap_mapping_range(inode->i_mapping, 1201 holebegin, 0, 1); 1202 if (info->alloced) 1203 shmem_truncate_range(inode, 1204 newsize, (loff_t)-1); 1205 /* unmap again to remove racily COWed private pages */ 1206 if (oldsize > holebegin) 1207 unmap_mapping_range(inode->i_mapping, 1208 holebegin, 0, 1); 1209 } 1210 } 1211 1212 if (is_quota_modification(idmap, inode, attr)) { 1213 error = dquot_initialize(inode); 1214 if (error) 1215 return error; 1216 } 1217 1218 /* Transfer quota accounting */ 1219 if (i_uid_needs_update(idmap, attr, inode) || 1220 i_gid_needs_update(idmap, attr, inode)) { 1221 error = dquot_transfer(idmap, inode, attr); 1222 if (error) 1223 return error; 1224 } 1225 1226 setattr_copy(idmap, inode, attr); 1227 if (attr->ia_valid & ATTR_MODE) 1228 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1229 if (!error && update_ctime) { 1230 inode_set_ctime_current(inode); 1231 if (update_mtime) 1232 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1233 inode_inc_iversion(inode); 1234 } 1235 return error; 1236 } 1237 1238 static void shmem_evict_inode(struct inode *inode) 1239 { 1240 struct shmem_inode_info *info = SHMEM_I(inode); 1241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1242 size_t freed = 0; 1243 1244 if (shmem_mapping(inode->i_mapping)) { 1245 shmem_unacct_size(info->flags, inode->i_size); 1246 inode->i_size = 0; 1247 mapping_set_exiting(inode->i_mapping); 1248 shmem_truncate_range(inode, 0, (loff_t)-1); 1249 if (!list_empty(&info->shrinklist)) { 1250 spin_lock(&sbinfo->shrinklist_lock); 1251 if (!list_empty(&info->shrinklist)) { 1252 list_del_init(&info->shrinklist); 1253 sbinfo->shrinklist_len--; 1254 } 1255 spin_unlock(&sbinfo->shrinklist_lock); 1256 } 1257 while (!list_empty(&info->swaplist)) { 1258 /* Wait while shmem_unuse() is scanning this inode... */ 1259 wait_var_event(&info->stop_eviction, 1260 !atomic_read(&info->stop_eviction)); 1261 mutex_lock(&shmem_swaplist_mutex); 1262 /* ...but beware of the race if we peeked too early */ 1263 if (!atomic_read(&info->stop_eviction)) 1264 list_del_init(&info->swaplist); 1265 mutex_unlock(&shmem_swaplist_mutex); 1266 } 1267 } 1268 1269 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1270 shmem_free_inode(inode->i_sb, freed); 1271 WARN_ON(inode->i_blocks); 1272 clear_inode(inode); 1273 #ifdef CONFIG_TMPFS_QUOTA 1274 dquot_free_inode(inode); 1275 dquot_drop(inode); 1276 #endif 1277 } 1278 1279 static int shmem_find_swap_entries(struct address_space *mapping, 1280 pgoff_t start, struct folio_batch *fbatch, 1281 pgoff_t *indices, unsigned int type) 1282 { 1283 XA_STATE(xas, &mapping->i_pages, start); 1284 struct folio *folio; 1285 swp_entry_t entry; 1286 1287 rcu_read_lock(); 1288 xas_for_each(&xas, folio, ULONG_MAX) { 1289 if (xas_retry(&xas, folio)) 1290 continue; 1291 1292 if (!xa_is_value(folio)) 1293 continue; 1294 1295 entry = radix_to_swp_entry(folio); 1296 /* 1297 * swapin error entries can be found in the mapping. But they're 1298 * deliberately ignored here as we've done everything we can do. 1299 */ 1300 if (swp_type(entry) != type) 1301 continue; 1302 1303 indices[folio_batch_count(fbatch)] = xas.xa_index; 1304 if (!folio_batch_add(fbatch, folio)) 1305 break; 1306 1307 if (need_resched()) { 1308 xas_pause(&xas); 1309 cond_resched_rcu(); 1310 } 1311 } 1312 rcu_read_unlock(); 1313 1314 return xas.xa_index; 1315 } 1316 1317 /* 1318 * Move the swapped pages for an inode to page cache. Returns the count 1319 * of pages swapped in, or the error in case of failure. 1320 */ 1321 static int shmem_unuse_swap_entries(struct inode *inode, 1322 struct folio_batch *fbatch, pgoff_t *indices) 1323 { 1324 int i = 0; 1325 int ret = 0; 1326 int error = 0; 1327 struct address_space *mapping = inode->i_mapping; 1328 1329 for (i = 0; i < folio_batch_count(fbatch); i++) { 1330 struct folio *folio = fbatch->folios[i]; 1331 1332 if (!xa_is_value(folio)) 1333 continue; 1334 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1335 mapping_gfp_mask(mapping), NULL, NULL); 1336 if (error == 0) { 1337 folio_unlock(folio); 1338 folio_put(folio); 1339 ret++; 1340 } 1341 if (error == -ENOMEM) 1342 break; 1343 error = 0; 1344 } 1345 return error ? error : ret; 1346 } 1347 1348 /* 1349 * If swap found in inode, free it and move page from swapcache to filecache. 1350 */ 1351 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1352 { 1353 struct address_space *mapping = inode->i_mapping; 1354 pgoff_t start = 0; 1355 struct folio_batch fbatch; 1356 pgoff_t indices[PAGEVEC_SIZE]; 1357 int ret = 0; 1358 1359 do { 1360 folio_batch_init(&fbatch); 1361 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1362 if (folio_batch_count(&fbatch) == 0) { 1363 ret = 0; 1364 break; 1365 } 1366 1367 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1368 if (ret < 0) 1369 break; 1370 1371 start = indices[folio_batch_count(&fbatch) - 1]; 1372 } while (true); 1373 1374 return ret; 1375 } 1376 1377 /* 1378 * Read all the shared memory data that resides in the swap 1379 * device 'type' back into memory, so the swap device can be 1380 * unused. 1381 */ 1382 int shmem_unuse(unsigned int type) 1383 { 1384 struct shmem_inode_info *info, *next; 1385 int error = 0; 1386 1387 if (list_empty(&shmem_swaplist)) 1388 return 0; 1389 1390 mutex_lock(&shmem_swaplist_mutex); 1391 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1392 if (!info->swapped) { 1393 list_del_init(&info->swaplist); 1394 continue; 1395 } 1396 /* 1397 * Drop the swaplist mutex while searching the inode for swap; 1398 * but before doing so, make sure shmem_evict_inode() will not 1399 * remove placeholder inode from swaplist, nor let it be freed 1400 * (igrab() would protect from unlink, but not from unmount). 1401 */ 1402 atomic_inc(&info->stop_eviction); 1403 mutex_unlock(&shmem_swaplist_mutex); 1404 1405 error = shmem_unuse_inode(&info->vfs_inode, type); 1406 cond_resched(); 1407 1408 mutex_lock(&shmem_swaplist_mutex); 1409 next = list_next_entry(info, swaplist); 1410 if (!info->swapped) 1411 list_del_init(&info->swaplist); 1412 if (atomic_dec_and_test(&info->stop_eviction)) 1413 wake_up_var(&info->stop_eviction); 1414 if (error) 1415 break; 1416 } 1417 mutex_unlock(&shmem_swaplist_mutex); 1418 1419 return error; 1420 } 1421 1422 /* 1423 * Move the page from the page cache to the swap cache. 1424 */ 1425 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1426 { 1427 struct folio *folio = page_folio(page); 1428 struct address_space *mapping = folio->mapping; 1429 struct inode *inode = mapping->host; 1430 struct shmem_inode_info *info = SHMEM_I(inode); 1431 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1432 swp_entry_t swap; 1433 pgoff_t index; 1434 1435 /* 1436 * Our capabilities prevent regular writeback or sync from ever calling 1437 * shmem_writepage; but a stacking filesystem might use ->writepage of 1438 * its underlying filesystem, in which case tmpfs should write out to 1439 * swap only in response to memory pressure, and not for the writeback 1440 * threads or sync. 1441 */ 1442 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1443 goto redirty; 1444 1445 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1446 goto redirty; 1447 1448 if (!total_swap_pages) 1449 goto redirty; 1450 1451 /* 1452 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1453 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1454 * and its shmem_writeback() needs them to be split when swapping. 1455 */ 1456 if (folio_test_large(folio)) { 1457 /* Ensure the subpages are still dirty */ 1458 folio_test_set_dirty(folio); 1459 if (split_huge_page(page) < 0) 1460 goto redirty; 1461 folio = page_folio(page); 1462 folio_clear_dirty(folio); 1463 } 1464 1465 index = folio->index; 1466 1467 /* 1468 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1469 * value into swapfile.c, the only way we can correctly account for a 1470 * fallocated folio arriving here is now to initialize it and write it. 1471 * 1472 * That's okay for a folio already fallocated earlier, but if we have 1473 * not yet completed the fallocation, then (a) we want to keep track 1474 * of this folio in case we have to undo it, and (b) it may not be a 1475 * good idea to continue anyway, once we're pushing into swap. So 1476 * reactivate the folio, and let shmem_fallocate() quit when too many. 1477 */ 1478 if (!folio_test_uptodate(folio)) { 1479 if (inode->i_private) { 1480 struct shmem_falloc *shmem_falloc; 1481 spin_lock(&inode->i_lock); 1482 shmem_falloc = inode->i_private; 1483 if (shmem_falloc && 1484 !shmem_falloc->waitq && 1485 index >= shmem_falloc->start && 1486 index < shmem_falloc->next) 1487 shmem_falloc->nr_unswapped++; 1488 else 1489 shmem_falloc = NULL; 1490 spin_unlock(&inode->i_lock); 1491 if (shmem_falloc) 1492 goto redirty; 1493 } 1494 folio_zero_range(folio, 0, folio_size(folio)); 1495 flush_dcache_folio(folio); 1496 folio_mark_uptodate(folio); 1497 } 1498 1499 swap = folio_alloc_swap(folio); 1500 if (!swap.val) 1501 goto redirty; 1502 1503 /* 1504 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1505 * if it's not already there. Do it now before the folio is 1506 * moved to swap cache, when its pagelock no longer protects 1507 * the inode from eviction. But don't unlock the mutex until 1508 * we've incremented swapped, because shmem_unuse_inode() will 1509 * prune a !swapped inode from the swaplist under this mutex. 1510 */ 1511 mutex_lock(&shmem_swaplist_mutex); 1512 if (list_empty(&info->swaplist)) 1513 list_add(&info->swaplist, &shmem_swaplist); 1514 1515 if (add_to_swap_cache(folio, swap, 1516 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1517 NULL) == 0) { 1518 shmem_recalc_inode(inode, 0, 1); 1519 swap_shmem_alloc(swap); 1520 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1521 1522 mutex_unlock(&shmem_swaplist_mutex); 1523 BUG_ON(folio_mapped(folio)); 1524 return swap_writepage(&folio->page, wbc); 1525 } 1526 1527 mutex_unlock(&shmem_swaplist_mutex); 1528 put_swap_folio(folio, swap); 1529 redirty: 1530 folio_mark_dirty(folio); 1531 if (wbc->for_reclaim) 1532 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1533 folio_unlock(folio); 1534 return 0; 1535 } 1536 1537 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1538 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1539 { 1540 char buffer[64]; 1541 1542 if (!mpol || mpol->mode == MPOL_DEFAULT) 1543 return; /* show nothing */ 1544 1545 mpol_to_str(buffer, sizeof(buffer), mpol); 1546 1547 seq_printf(seq, ",mpol=%s", buffer); 1548 } 1549 1550 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1551 { 1552 struct mempolicy *mpol = NULL; 1553 if (sbinfo->mpol) { 1554 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1555 mpol = sbinfo->mpol; 1556 mpol_get(mpol); 1557 raw_spin_unlock(&sbinfo->stat_lock); 1558 } 1559 return mpol; 1560 } 1561 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1562 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1563 { 1564 } 1565 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1566 { 1567 return NULL; 1568 } 1569 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1570 1571 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1572 pgoff_t index, unsigned int order, pgoff_t *ilx); 1573 1574 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1575 struct shmem_inode_info *info, pgoff_t index) 1576 { 1577 struct mempolicy *mpol; 1578 pgoff_t ilx; 1579 struct folio *folio; 1580 1581 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1582 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1583 mpol_cond_put(mpol); 1584 1585 return folio; 1586 } 1587 1588 /* 1589 * Make sure huge_gfp is always more limited than limit_gfp. 1590 * Some of the flags set permissions, while others set limitations. 1591 */ 1592 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1593 { 1594 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1595 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1596 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1597 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1598 1599 /* Allow allocations only from the originally specified zones. */ 1600 result |= zoneflags; 1601 1602 /* 1603 * Minimize the result gfp by taking the union with the deny flags, 1604 * and the intersection of the allow flags. 1605 */ 1606 result |= (limit_gfp & denyflags); 1607 result |= (huge_gfp & limit_gfp) & allowflags; 1608 1609 return result; 1610 } 1611 1612 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1613 struct shmem_inode_info *info, pgoff_t index) 1614 { 1615 struct mempolicy *mpol; 1616 pgoff_t ilx; 1617 struct page *page; 1618 1619 mpol = shmem_get_pgoff_policy(info, index, HPAGE_PMD_ORDER, &ilx); 1620 page = alloc_pages_mpol(gfp, HPAGE_PMD_ORDER, mpol, ilx, numa_node_id()); 1621 mpol_cond_put(mpol); 1622 1623 return page_rmappable_folio(page); 1624 } 1625 1626 static struct folio *shmem_alloc_folio(gfp_t gfp, 1627 struct shmem_inode_info *info, pgoff_t index) 1628 { 1629 struct mempolicy *mpol; 1630 pgoff_t ilx; 1631 struct page *page; 1632 1633 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1634 page = alloc_pages_mpol(gfp, 0, mpol, ilx, numa_node_id()); 1635 mpol_cond_put(mpol); 1636 1637 return (struct folio *)page; 1638 } 1639 1640 static struct folio *shmem_alloc_and_add_folio(gfp_t gfp, 1641 struct inode *inode, pgoff_t index, 1642 struct mm_struct *fault_mm, bool huge) 1643 { 1644 struct address_space *mapping = inode->i_mapping; 1645 struct shmem_inode_info *info = SHMEM_I(inode); 1646 struct folio *folio; 1647 long pages; 1648 int error; 1649 1650 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1651 huge = false; 1652 1653 if (huge) { 1654 pages = HPAGE_PMD_NR; 1655 index = round_down(index, HPAGE_PMD_NR); 1656 1657 /* 1658 * Check for conflict before waiting on a huge allocation. 1659 * Conflict might be that a huge page has just been allocated 1660 * and added to page cache by a racing thread, or that there 1661 * is already at least one small page in the huge extent. 1662 * Be careful to retry when appropriate, but not forever! 1663 * Elsewhere -EEXIST would be the right code, but not here. 1664 */ 1665 if (xa_find(&mapping->i_pages, &index, 1666 index + HPAGE_PMD_NR - 1, XA_PRESENT)) 1667 return ERR_PTR(-E2BIG); 1668 1669 folio = shmem_alloc_hugefolio(gfp, info, index); 1670 if (!folio) 1671 count_vm_event(THP_FILE_FALLBACK); 1672 } else { 1673 pages = 1; 1674 folio = shmem_alloc_folio(gfp, info, index); 1675 } 1676 if (!folio) 1677 return ERR_PTR(-ENOMEM); 1678 1679 __folio_set_locked(folio); 1680 __folio_set_swapbacked(folio); 1681 1682 gfp &= GFP_RECLAIM_MASK; 1683 error = mem_cgroup_charge(folio, fault_mm, gfp); 1684 if (error) { 1685 if (xa_find(&mapping->i_pages, &index, 1686 index + pages - 1, XA_PRESENT)) { 1687 error = -EEXIST; 1688 } else if (huge) { 1689 count_vm_event(THP_FILE_FALLBACK); 1690 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1691 } 1692 goto unlock; 1693 } 1694 1695 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1696 if (error) 1697 goto unlock; 1698 1699 error = shmem_inode_acct_blocks(inode, pages); 1700 if (error) { 1701 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1702 long freed; 1703 /* 1704 * Try to reclaim some space by splitting a few 1705 * large folios beyond i_size on the filesystem. 1706 */ 1707 shmem_unused_huge_shrink(sbinfo, NULL, 2); 1708 /* 1709 * And do a shmem_recalc_inode() to account for freed pages: 1710 * except our folio is there in cache, so not quite balanced. 1711 */ 1712 spin_lock(&info->lock); 1713 freed = pages + info->alloced - info->swapped - 1714 READ_ONCE(mapping->nrpages); 1715 if (freed > 0) 1716 info->alloced -= freed; 1717 spin_unlock(&info->lock); 1718 if (freed > 0) 1719 shmem_inode_unacct_blocks(inode, freed); 1720 error = shmem_inode_acct_blocks(inode, pages); 1721 if (error) { 1722 filemap_remove_folio(folio); 1723 goto unlock; 1724 } 1725 } 1726 1727 shmem_recalc_inode(inode, pages, 0); 1728 folio_add_lru(folio); 1729 return folio; 1730 1731 unlock: 1732 folio_unlock(folio); 1733 folio_put(folio); 1734 return ERR_PTR(error); 1735 } 1736 1737 /* 1738 * When a page is moved from swapcache to shmem filecache (either by the 1739 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1740 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1741 * ignorance of the mapping it belongs to. If that mapping has special 1742 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1743 * we may need to copy to a suitable page before moving to filecache. 1744 * 1745 * In a future release, this may well be extended to respect cpuset and 1746 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1747 * but for now it is a simple matter of zone. 1748 */ 1749 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1750 { 1751 return folio_zonenum(folio) > gfp_zone(gfp); 1752 } 1753 1754 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1755 struct shmem_inode_info *info, pgoff_t index) 1756 { 1757 struct folio *old, *new; 1758 struct address_space *swap_mapping; 1759 swp_entry_t entry; 1760 pgoff_t swap_index; 1761 int error; 1762 1763 old = *foliop; 1764 entry = old->swap; 1765 swap_index = swp_offset(entry); 1766 swap_mapping = swap_address_space(entry); 1767 1768 /* 1769 * We have arrived here because our zones are constrained, so don't 1770 * limit chance of success by further cpuset and node constraints. 1771 */ 1772 gfp &= ~GFP_CONSTRAINT_MASK; 1773 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1774 new = shmem_alloc_folio(gfp, info, index); 1775 if (!new) 1776 return -ENOMEM; 1777 1778 folio_get(new); 1779 folio_copy(new, old); 1780 flush_dcache_folio(new); 1781 1782 __folio_set_locked(new); 1783 __folio_set_swapbacked(new); 1784 folio_mark_uptodate(new); 1785 new->swap = entry; 1786 folio_set_swapcache(new); 1787 1788 /* 1789 * Our caller will very soon move newpage out of swapcache, but it's 1790 * a nice clean interface for us to replace oldpage by newpage there. 1791 */ 1792 xa_lock_irq(&swap_mapping->i_pages); 1793 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1794 if (!error) { 1795 mem_cgroup_migrate(old, new); 1796 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1797 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1798 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1799 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1800 } 1801 xa_unlock_irq(&swap_mapping->i_pages); 1802 1803 if (unlikely(error)) { 1804 /* 1805 * Is this possible? I think not, now that our callers check 1806 * both PageSwapCache and page_private after getting page lock; 1807 * but be defensive. Reverse old to newpage for clear and free. 1808 */ 1809 old = new; 1810 } else { 1811 folio_add_lru(new); 1812 *foliop = new; 1813 } 1814 1815 folio_clear_swapcache(old); 1816 old->private = NULL; 1817 1818 folio_unlock(old); 1819 folio_put_refs(old, 2); 1820 return error; 1821 } 1822 1823 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1824 struct folio *folio, swp_entry_t swap) 1825 { 1826 struct address_space *mapping = inode->i_mapping; 1827 swp_entry_t swapin_error; 1828 void *old; 1829 1830 swapin_error = make_poisoned_swp_entry(); 1831 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1832 swp_to_radix_entry(swap), 1833 swp_to_radix_entry(swapin_error), 0); 1834 if (old != swp_to_radix_entry(swap)) 1835 return; 1836 1837 folio_wait_writeback(folio); 1838 delete_from_swap_cache(folio); 1839 /* 1840 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1841 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1842 * in shmem_evict_inode(). 1843 */ 1844 shmem_recalc_inode(inode, -1, -1); 1845 swap_free(swap); 1846 } 1847 1848 /* 1849 * Swap in the folio pointed to by *foliop. 1850 * Caller has to make sure that *foliop contains a valid swapped folio. 1851 * Returns 0 and the folio in foliop if success. On failure, returns the 1852 * error code and NULL in *foliop. 1853 */ 1854 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1855 struct folio **foliop, enum sgp_type sgp, 1856 gfp_t gfp, struct mm_struct *fault_mm, 1857 vm_fault_t *fault_type) 1858 { 1859 struct address_space *mapping = inode->i_mapping; 1860 struct shmem_inode_info *info = SHMEM_I(inode); 1861 struct swap_info_struct *si; 1862 struct folio *folio = NULL; 1863 swp_entry_t swap; 1864 int error; 1865 1866 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1867 swap = radix_to_swp_entry(*foliop); 1868 *foliop = NULL; 1869 1870 if (is_poisoned_swp_entry(swap)) 1871 return -EIO; 1872 1873 si = get_swap_device(swap); 1874 if (!si) { 1875 if (!shmem_confirm_swap(mapping, index, swap)) 1876 return -EEXIST; 1877 else 1878 return -EINVAL; 1879 } 1880 1881 /* Look it up and read it in.. */ 1882 folio = swap_cache_get_folio(swap, NULL, 0); 1883 if (!folio) { 1884 /* Or update major stats only when swapin succeeds?? */ 1885 if (fault_type) { 1886 *fault_type |= VM_FAULT_MAJOR; 1887 count_vm_event(PGMAJFAULT); 1888 count_memcg_event_mm(fault_mm, PGMAJFAULT); 1889 } 1890 /* Here we actually start the io */ 1891 folio = shmem_swapin_cluster(swap, gfp, info, index); 1892 if (!folio) { 1893 error = -ENOMEM; 1894 goto failed; 1895 } 1896 } 1897 1898 /* We have to do this with folio locked to prevent races */ 1899 folio_lock(folio); 1900 if (!folio_test_swapcache(folio) || 1901 folio->swap.val != swap.val || 1902 !shmem_confirm_swap(mapping, index, swap)) { 1903 error = -EEXIST; 1904 goto unlock; 1905 } 1906 if (!folio_test_uptodate(folio)) { 1907 error = -EIO; 1908 goto failed; 1909 } 1910 folio_wait_writeback(folio); 1911 1912 /* 1913 * Some architectures may have to restore extra metadata to the 1914 * folio after reading from swap. 1915 */ 1916 arch_swap_restore(swap, folio); 1917 1918 if (shmem_should_replace_folio(folio, gfp)) { 1919 error = shmem_replace_folio(&folio, gfp, info, index); 1920 if (error) 1921 goto failed; 1922 } 1923 1924 error = shmem_add_to_page_cache(folio, mapping, index, 1925 swp_to_radix_entry(swap), gfp); 1926 if (error) 1927 goto failed; 1928 1929 shmem_recalc_inode(inode, 0, -1); 1930 1931 if (sgp == SGP_WRITE) 1932 folio_mark_accessed(folio); 1933 1934 delete_from_swap_cache(folio); 1935 folio_mark_dirty(folio); 1936 swap_free(swap); 1937 put_swap_device(si); 1938 1939 *foliop = folio; 1940 return 0; 1941 failed: 1942 if (!shmem_confirm_swap(mapping, index, swap)) 1943 error = -EEXIST; 1944 if (error == -EIO) 1945 shmem_set_folio_swapin_error(inode, index, folio, swap); 1946 unlock: 1947 if (folio) { 1948 folio_unlock(folio); 1949 folio_put(folio); 1950 } 1951 put_swap_device(si); 1952 1953 return error; 1954 } 1955 1956 /* 1957 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1958 * 1959 * If we allocate a new one we do not mark it dirty. That's up to the 1960 * vm. If we swap it in we mark it dirty since we also free the swap 1961 * entry since a page cannot live in both the swap and page cache. 1962 * 1963 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 1964 */ 1965 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1966 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1967 struct vm_fault *vmf, vm_fault_t *fault_type) 1968 { 1969 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1970 struct mm_struct *fault_mm; 1971 struct folio *folio; 1972 int error; 1973 bool alloced; 1974 1975 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 1976 return -EINVAL; 1977 1978 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1979 return -EFBIG; 1980 repeat: 1981 if (sgp <= SGP_CACHE && 1982 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 1983 return -EINVAL; 1984 1985 alloced = false; 1986 fault_mm = vma ? vma->vm_mm : NULL; 1987 1988 folio = filemap_get_entry(inode->i_mapping, index); 1989 if (folio && vma && userfaultfd_minor(vma)) { 1990 if (!xa_is_value(folio)) 1991 folio_put(folio); 1992 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1993 return 0; 1994 } 1995 1996 if (xa_is_value(folio)) { 1997 error = shmem_swapin_folio(inode, index, &folio, 1998 sgp, gfp, fault_mm, fault_type); 1999 if (error == -EEXIST) 2000 goto repeat; 2001 2002 *foliop = folio; 2003 return error; 2004 } 2005 2006 if (folio) { 2007 folio_lock(folio); 2008 2009 /* Has the folio been truncated or swapped out? */ 2010 if (unlikely(folio->mapping != inode->i_mapping)) { 2011 folio_unlock(folio); 2012 folio_put(folio); 2013 goto repeat; 2014 } 2015 if (sgp == SGP_WRITE) 2016 folio_mark_accessed(folio); 2017 if (folio_test_uptodate(folio)) 2018 goto out; 2019 /* fallocated folio */ 2020 if (sgp != SGP_READ) 2021 goto clear; 2022 folio_unlock(folio); 2023 folio_put(folio); 2024 } 2025 2026 /* 2027 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2028 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2029 */ 2030 *foliop = NULL; 2031 if (sgp == SGP_READ) 2032 return 0; 2033 if (sgp == SGP_NOALLOC) 2034 return -ENOENT; 2035 2036 /* 2037 * Fast cache lookup and swap lookup did not find it: allocate. 2038 */ 2039 2040 if (vma && userfaultfd_missing(vma)) { 2041 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2042 return 0; 2043 } 2044 2045 if (shmem_is_huge(inode, index, false, fault_mm, 2046 vma ? vma->vm_flags : 0)) { 2047 gfp_t huge_gfp; 2048 2049 huge_gfp = vma_thp_gfp_mask(vma); 2050 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2051 folio = shmem_alloc_and_add_folio(huge_gfp, 2052 inode, index, fault_mm, true); 2053 if (!IS_ERR(folio)) { 2054 count_vm_event(THP_FILE_ALLOC); 2055 goto alloced; 2056 } 2057 if (PTR_ERR(folio) == -EEXIST) 2058 goto repeat; 2059 } 2060 2061 folio = shmem_alloc_and_add_folio(gfp, inode, index, fault_mm, false); 2062 if (IS_ERR(folio)) { 2063 error = PTR_ERR(folio); 2064 if (error == -EEXIST) 2065 goto repeat; 2066 folio = NULL; 2067 goto unlock; 2068 } 2069 2070 alloced: 2071 alloced = true; 2072 if (folio_test_pmd_mappable(folio) && 2073 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2074 folio_next_index(folio) - 1) { 2075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2076 struct shmem_inode_info *info = SHMEM_I(inode); 2077 /* 2078 * Part of the large folio is beyond i_size: subject 2079 * to shrink under memory pressure. 2080 */ 2081 spin_lock(&sbinfo->shrinklist_lock); 2082 /* 2083 * _careful to defend against unlocked access to 2084 * ->shrink_list in shmem_unused_huge_shrink() 2085 */ 2086 if (list_empty_careful(&info->shrinklist)) { 2087 list_add_tail(&info->shrinklist, 2088 &sbinfo->shrinklist); 2089 sbinfo->shrinklist_len++; 2090 } 2091 spin_unlock(&sbinfo->shrinklist_lock); 2092 } 2093 2094 if (sgp == SGP_WRITE) 2095 folio_set_referenced(folio); 2096 /* 2097 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2098 */ 2099 if (sgp == SGP_FALLOC) 2100 sgp = SGP_WRITE; 2101 clear: 2102 /* 2103 * Let SGP_WRITE caller clear ends if write does not fill folio; 2104 * but SGP_FALLOC on a folio fallocated earlier must initialize 2105 * it now, lest undo on failure cancel our earlier guarantee. 2106 */ 2107 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2108 long i, n = folio_nr_pages(folio); 2109 2110 for (i = 0; i < n; i++) 2111 clear_highpage(folio_page(folio, i)); 2112 flush_dcache_folio(folio); 2113 folio_mark_uptodate(folio); 2114 } 2115 2116 /* Perhaps the file has been truncated since we checked */ 2117 if (sgp <= SGP_CACHE && 2118 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2119 error = -EINVAL; 2120 goto unlock; 2121 } 2122 out: 2123 *foliop = folio; 2124 return 0; 2125 2126 /* 2127 * Error recovery. 2128 */ 2129 unlock: 2130 if (alloced) 2131 filemap_remove_folio(folio); 2132 shmem_recalc_inode(inode, 0, 0); 2133 if (folio) { 2134 folio_unlock(folio); 2135 folio_put(folio); 2136 } 2137 return error; 2138 } 2139 2140 /** 2141 * shmem_get_folio - find, and lock a shmem folio. 2142 * @inode: inode to search 2143 * @index: the page index. 2144 * @foliop: pointer to the folio if found 2145 * @sgp: SGP_* flags to control behavior 2146 * 2147 * Looks up the page cache entry at @inode & @index. If a folio is 2148 * present, it is returned locked with an increased refcount. 2149 * 2150 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2151 * before unlocking the folio to ensure that the folio is not reclaimed. 2152 * There is no need to reserve space before calling folio_mark_dirty(). 2153 * 2154 * When no folio is found, the behavior depends on @sgp: 2155 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2156 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2157 * - for all other flags a new folio is allocated, inserted into the 2158 * page cache and returned locked in @foliop. 2159 * 2160 * Context: May sleep. 2161 * Return: 0 if successful, else a negative error code. 2162 */ 2163 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2164 enum sgp_type sgp) 2165 { 2166 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2167 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2168 } 2169 EXPORT_SYMBOL_GPL(shmem_get_folio); 2170 2171 /* 2172 * This is like autoremove_wake_function, but it removes the wait queue 2173 * entry unconditionally - even if something else had already woken the 2174 * target. 2175 */ 2176 static int synchronous_wake_function(wait_queue_entry_t *wait, 2177 unsigned int mode, int sync, void *key) 2178 { 2179 int ret = default_wake_function(wait, mode, sync, key); 2180 list_del_init(&wait->entry); 2181 return ret; 2182 } 2183 2184 /* 2185 * Trinity finds that probing a hole which tmpfs is punching can 2186 * prevent the hole-punch from ever completing: which in turn 2187 * locks writers out with its hold on i_rwsem. So refrain from 2188 * faulting pages into the hole while it's being punched. Although 2189 * shmem_undo_range() does remove the additions, it may be unable to 2190 * keep up, as each new page needs its own unmap_mapping_range() call, 2191 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2192 * 2193 * It does not matter if we sometimes reach this check just before the 2194 * hole-punch begins, so that one fault then races with the punch: 2195 * we just need to make racing faults a rare case. 2196 * 2197 * The implementation below would be much simpler if we just used a 2198 * standard mutex or completion: but we cannot take i_rwsem in fault, 2199 * and bloating every shmem inode for this unlikely case would be sad. 2200 */ 2201 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2202 { 2203 struct shmem_falloc *shmem_falloc; 2204 struct file *fpin = NULL; 2205 vm_fault_t ret = 0; 2206 2207 spin_lock(&inode->i_lock); 2208 shmem_falloc = inode->i_private; 2209 if (shmem_falloc && 2210 shmem_falloc->waitq && 2211 vmf->pgoff >= shmem_falloc->start && 2212 vmf->pgoff < shmem_falloc->next) { 2213 wait_queue_head_t *shmem_falloc_waitq; 2214 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2215 2216 ret = VM_FAULT_NOPAGE; 2217 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2218 shmem_falloc_waitq = shmem_falloc->waitq; 2219 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2220 TASK_UNINTERRUPTIBLE); 2221 spin_unlock(&inode->i_lock); 2222 schedule(); 2223 2224 /* 2225 * shmem_falloc_waitq points into the shmem_fallocate() 2226 * stack of the hole-punching task: shmem_falloc_waitq 2227 * is usually invalid by the time we reach here, but 2228 * finish_wait() does not dereference it in that case; 2229 * though i_lock needed lest racing with wake_up_all(). 2230 */ 2231 spin_lock(&inode->i_lock); 2232 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2233 } 2234 spin_unlock(&inode->i_lock); 2235 if (fpin) { 2236 fput(fpin); 2237 ret = VM_FAULT_RETRY; 2238 } 2239 return ret; 2240 } 2241 2242 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2243 { 2244 struct inode *inode = file_inode(vmf->vma->vm_file); 2245 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2246 struct folio *folio = NULL; 2247 vm_fault_t ret = 0; 2248 int err; 2249 2250 /* 2251 * Trinity finds that probing a hole which tmpfs is punching can 2252 * prevent the hole-punch from ever completing: noted in i_private. 2253 */ 2254 if (unlikely(inode->i_private)) { 2255 ret = shmem_falloc_wait(vmf, inode); 2256 if (ret) 2257 return ret; 2258 } 2259 2260 WARN_ON_ONCE(vmf->page != NULL); 2261 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2262 gfp, vmf, &ret); 2263 if (err) 2264 return vmf_error(err); 2265 if (folio) { 2266 vmf->page = folio_file_page(folio, vmf->pgoff); 2267 ret |= VM_FAULT_LOCKED; 2268 } 2269 return ret; 2270 } 2271 2272 unsigned long shmem_get_unmapped_area(struct file *file, 2273 unsigned long uaddr, unsigned long len, 2274 unsigned long pgoff, unsigned long flags) 2275 { 2276 unsigned long (*get_area)(struct file *, 2277 unsigned long, unsigned long, unsigned long, unsigned long); 2278 unsigned long addr; 2279 unsigned long offset; 2280 unsigned long inflated_len; 2281 unsigned long inflated_addr; 2282 unsigned long inflated_offset; 2283 2284 if (len > TASK_SIZE) 2285 return -ENOMEM; 2286 2287 get_area = current->mm->get_unmapped_area; 2288 addr = get_area(file, uaddr, len, pgoff, flags); 2289 2290 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2291 return addr; 2292 if (IS_ERR_VALUE(addr)) 2293 return addr; 2294 if (addr & ~PAGE_MASK) 2295 return addr; 2296 if (addr > TASK_SIZE - len) 2297 return addr; 2298 2299 if (shmem_huge == SHMEM_HUGE_DENY) 2300 return addr; 2301 if (len < HPAGE_PMD_SIZE) 2302 return addr; 2303 if (flags & MAP_FIXED) 2304 return addr; 2305 /* 2306 * Our priority is to support MAP_SHARED mapped hugely; 2307 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2308 * But if caller specified an address hint and we allocated area there 2309 * successfully, respect that as before. 2310 */ 2311 if (uaddr == addr) 2312 return addr; 2313 2314 if (shmem_huge != SHMEM_HUGE_FORCE) { 2315 struct super_block *sb; 2316 2317 if (file) { 2318 VM_BUG_ON(file->f_op != &shmem_file_operations); 2319 sb = file_inode(file)->i_sb; 2320 } else { 2321 /* 2322 * Called directly from mm/mmap.c, or drivers/char/mem.c 2323 * for "/dev/zero", to create a shared anonymous object. 2324 */ 2325 if (IS_ERR(shm_mnt)) 2326 return addr; 2327 sb = shm_mnt->mnt_sb; 2328 } 2329 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2330 return addr; 2331 } 2332 2333 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2334 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2335 return addr; 2336 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2337 return addr; 2338 2339 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2340 if (inflated_len > TASK_SIZE) 2341 return addr; 2342 if (inflated_len < len) 2343 return addr; 2344 2345 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2346 if (IS_ERR_VALUE(inflated_addr)) 2347 return addr; 2348 if (inflated_addr & ~PAGE_MASK) 2349 return addr; 2350 2351 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2352 inflated_addr += offset - inflated_offset; 2353 if (inflated_offset > offset) 2354 inflated_addr += HPAGE_PMD_SIZE; 2355 2356 if (inflated_addr > TASK_SIZE - len) 2357 return addr; 2358 return inflated_addr; 2359 } 2360 2361 #ifdef CONFIG_NUMA 2362 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2363 { 2364 struct inode *inode = file_inode(vma->vm_file); 2365 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2366 } 2367 2368 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2369 unsigned long addr, pgoff_t *ilx) 2370 { 2371 struct inode *inode = file_inode(vma->vm_file); 2372 pgoff_t index; 2373 2374 /* 2375 * Bias interleave by inode number to distribute better across nodes; 2376 * but this interface is independent of which page order is used, so 2377 * supplies only that bias, letting caller apply the offset (adjusted 2378 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2379 */ 2380 *ilx = inode->i_ino; 2381 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2382 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2383 } 2384 2385 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2386 pgoff_t index, unsigned int order, pgoff_t *ilx) 2387 { 2388 struct mempolicy *mpol; 2389 2390 /* Bias interleave by inode number to distribute better across nodes */ 2391 *ilx = info->vfs_inode.i_ino + (index >> order); 2392 2393 mpol = mpol_shared_policy_lookup(&info->policy, index); 2394 return mpol ? mpol : get_task_policy(current); 2395 } 2396 #else 2397 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2398 pgoff_t index, unsigned int order, pgoff_t *ilx) 2399 { 2400 *ilx = 0; 2401 return NULL; 2402 } 2403 #endif /* CONFIG_NUMA */ 2404 2405 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2406 { 2407 struct inode *inode = file_inode(file); 2408 struct shmem_inode_info *info = SHMEM_I(inode); 2409 int retval = -ENOMEM; 2410 2411 /* 2412 * What serializes the accesses to info->flags? 2413 * ipc_lock_object() when called from shmctl_do_lock(), 2414 * no serialization needed when called from shm_destroy(). 2415 */ 2416 if (lock && !(info->flags & VM_LOCKED)) { 2417 if (!user_shm_lock(inode->i_size, ucounts)) 2418 goto out_nomem; 2419 info->flags |= VM_LOCKED; 2420 mapping_set_unevictable(file->f_mapping); 2421 } 2422 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2423 user_shm_unlock(inode->i_size, ucounts); 2424 info->flags &= ~VM_LOCKED; 2425 mapping_clear_unevictable(file->f_mapping); 2426 } 2427 retval = 0; 2428 2429 out_nomem: 2430 return retval; 2431 } 2432 2433 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2434 { 2435 struct inode *inode = file_inode(file); 2436 struct shmem_inode_info *info = SHMEM_I(inode); 2437 int ret; 2438 2439 ret = seal_check_write(info->seals, vma); 2440 if (ret) 2441 return ret; 2442 2443 /* arm64 - allow memory tagging on RAM-based files */ 2444 vm_flags_set(vma, VM_MTE_ALLOWED); 2445 2446 file_accessed(file); 2447 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2448 if (inode->i_nlink) 2449 vma->vm_ops = &shmem_vm_ops; 2450 else 2451 vma->vm_ops = &shmem_anon_vm_ops; 2452 return 0; 2453 } 2454 2455 static int shmem_file_open(struct inode *inode, struct file *file) 2456 { 2457 file->f_mode |= FMODE_CAN_ODIRECT; 2458 return generic_file_open(inode, file); 2459 } 2460 2461 #ifdef CONFIG_TMPFS_XATTR 2462 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2463 2464 /* 2465 * chattr's fsflags are unrelated to extended attributes, 2466 * but tmpfs has chosen to enable them under the same config option. 2467 */ 2468 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2469 { 2470 unsigned int i_flags = 0; 2471 2472 if (fsflags & FS_NOATIME_FL) 2473 i_flags |= S_NOATIME; 2474 if (fsflags & FS_APPEND_FL) 2475 i_flags |= S_APPEND; 2476 if (fsflags & FS_IMMUTABLE_FL) 2477 i_flags |= S_IMMUTABLE; 2478 /* 2479 * But FS_NODUMP_FL does not require any action in i_flags. 2480 */ 2481 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2482 } 2483 #else 2484 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2485 { 2486 } 2487 #define shmem_initxattrs NULL 2488 #endif 2489 2490 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2491 { 2492 return &SHMEM_I(inode)->dir_offsets; 2493 } 2494 2495 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2496 struct super_block *sb, 2497 struct inode *dir, umode_t mode, 2498 dev_t dev, unsigned long flags) 2499 { 2500 struct inode *inode; 2501 struct shmem_inode_info *info; 2502 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2503 ino_t ino; 2504 int err; 2505 2506 err = shmem_reserve_inode(sb, &ino); 2507 if (err) 2508 return ERR_PTR(err); 2509 2510 inode = new_inode(sb); 2511 if (!inode) { 2512 shmem_free_inode(sb, 0); 2513 return ERR_PTR(-ENOSPC); 2514 } 2515 2516 inode->i_ino = ino; 2517 inode_init_owner(idmap, inode, dir, mode); 2518 inode->i_blocks = 0; 2519 simple_inode_init_ts(inode); 2520 inode->i_generation = get_random_u32(); 2521 info = SHMEM_I(inode); 2522 memset(info, 0, (char *)inode - (char *)info); 2523 spin_lock_init(&info->lock); 2524 atomic_set(&info->stop_eviction, 0); 2525 info->seals = F_SEAL_SEAL; 2526 info->flags = flags & VM_NORESERVE; 2527 info->i_crtime = inode_get_mtime(inode); 2528 info->fsflags = (dir == NULL) ? 0 : 2529 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2530 if (info->fsflags) 2531 shmem_set_inode_flags(inode, info->fsflags); 2532 INIT_LIST_HEAD(&info->shrinklist); 2533 INIT_LIST_HEAD(&info->swaplist); 2534 simple_xattrs_init(&info->xattrs); 2535 cache_no_acl(inode); 2536 if (sbinfo->noswap) 2537 mapping_set_unevictable(inode->i_mapping); 2538 mapping_set_large_folios(inode->i_mapping); 2539 2540 switch (mode & S_IFMT) { 2541 default: 2542 inode->i_op = &shmem_special_inode_operations; 2543 init_special_inode(inode, mode, dev); 2544 break; 2545 case S_IFREG: 2546 inode->i_mapping->a_ops = &shmem_aops; 2547 inode->i_op = &shmem_inode_operations; 2548 inode->i_fop = &shmem_file_operations; 2549 mpol_shared_policy_init(&info->policy, 2550 shmem_get_sbmpol(sbinfo)); 2551 break; 2552 case S_IFDIR: 2553 inc_nlink(inode); 2554 /* Some things misbehave if size == 0 on a directory */ 2555 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2556 inode->i_op = &shmem_dir_inode_operations; 2557 inode->i_fop = &simple_offset_dir_operations; 2558 simple_offset_init(shmem_get_offset_ctx(inode)); 2559 break; 2560 case S_IFLNK: 2561 /* 2562 * Must not load anything in the rbtree, 2563 * mpol_free_shared_policy will not be called. 2564 */ 2565 mpol_shared_policy_init(&info->policy, NULL); 2566 break; 2567 } 2568 2569 lockdep_annotate_inode_mutex_key(inode); 2570 return inode; 2571 } 2572 2573 #ifdef CONFIG_TMPFS_QUOTA 2574 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2575 struct super_block *sb, struct inode *dir, 2576 umode_t mode, dev_t dev, unsigned long flags) 2577 { 2578 int err; 2579 struct inode *inode; 2580 2581 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2582 if (IS_ERR(inode)) 2583 return inode; 2584 2585 err = dquot_initialize(inode); 2586 if (err) 2587 goto errout; 2588 2589 err = dquot_alloc_inode(inode); 2590 if (err) { 2591 dquot_drop(inode); 2592 goto errout; 2593 } 2594 return inode; 2595 2596 errout: 2597 inode->i_flags |= S_NOQUOTA; 2598 iput(inode); 2599 return ERR_PTR(err); 2600 } 2601 #else 2602 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2603 struct super_block *sb, struct inode *dir, 2604 umode_t mode, dev_t dev, unsigned long flags) 2605 { 2606 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2607 } 2608 #endif /* CONFIG_TMPFS_QUOTA */ 2609 2610 #ifdef CONFIG_USERFAULTFD 2611 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2612 struct vm_area_struct *dst_vma, 2613 unsigned long dst_addr, 2614 unsigned long src_addr, 2615 uffd_flags_t flags, 2616 struct folio **foliop) 2617 { 2618 struct inode *inode = file_inode(dst_vma->vm_file); 2619 struct shmem_inode_info *info = SHMEM_I(inode); 2620 struct address_space *mapping = inode->i_mapping; 2621 gfp_t gfp = mapping_gfp_mask(mapping); 2622 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2623 void *page_kaddr; 2624 struct folio *folio; 2625 int ret; 2626 pgoff_t max_off; 2627 2628 if (shmem_inode_acct_blocks(inode, 1)) { 2629 /* 2630 * We may have got a page, returned -ENOENT triggering a retry, 2631 * and now we find ourselves with -ENOMEM. Release the page, to 2632 * avoid a BUG_ON in our caller. 2633 */ 2634 if (unlikely(*foliop)) { 2635 folio_put(*foliop); 2636 *foliop = NULL; 2637 } 2638 return -ENOMEM; 2639 } 2640 2641 if (!*foliop) { 2642 ret = -ENOMEM; 2643 folio = shmem_alloc_folio(gfp, info, pgoff); 2644 if (!folio) 2645 goto out_unacct_blocks; 2646 2647 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2648 page_kaddr = kmap_local_folio(folio, 0); 2649 /* 2650 * The read mmap_lock is held here. Despite the 2651 * mmap_lock being read recursive a deadlock is still 2652 * possible if a writer has taken a lock. For example: 2653 * 2654 * process A thread 1 takes read lock on own mmap_lock 2655 * process A thread 2 calls mmap, blocks taking write lock 2656 * process B thread 1 takes page fault, read lock on own mmap lock 2657 * process B thread 2 calls mmap, blocks taking write lock 2658 * process A thread 1 blocks taking read lock on process B 2659 * process B thread 1 blocks taking read lock on process A 2660 * 2661 * Disable page faults to prevent potential deadlock 2662 * and retry the copy outside the mmap_lock. 2663 */ 2664 pagefault_disable(); 2665 ret = copy_from_user(page_kaddr, 2666 (const void __user *)src_addr, 2667 PAGE_SIZE); 2668 pagefault_enable(); 2669 kunmap_local(page_kaddr); 2670 2671 /* fallback to copy_from_user outside mmap_lock */ 2672 if (unlikely(ret)) { 2673 *foliop = folio; 2674 ret = -ENOENT; 2675 /* don't free the page */ 2676 goto out_unacct_blocks; 2677 } 2678 2679 flush_dcache_folio(folio); 2680 } else { /* ZEROPAGE */ 2681 clear_user_highpage(&folio->page, dst_addr); 2682 } 2683 } else { 2684 folio = *foliop; 2685 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2686 *foliop = NULL; 2687 } 2688 2689 VM_BUG_ON(folio_test_locked(folio)); 2690 VM_BUG_ON(folio_test_swapbacked(folio)); 2691 __folio_set_locked(folio); 2692 __folio_set_swapbacked(folio); 2693 __folio_mark_uptodate(folio); 2694 2695 ret = -EFAULT; 2696 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2697 if (unlikely(pgoff >= max_off)) 2698 goto out_release; 2699 2700 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 2701 if (ret) 2702 goto out_release; 2703 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 2704 if (ret) 2705 goto out_release; 2706 2707 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2708 &folio->page, true, flags); 2709 if (ret) 2710 goto out_delete_from_cache; 2711 2712 shmem_recalc_inode(inode, 1, 0); 2713 folio_unlock(folio); 2714 return 0; 2715 out_delete_from_cache: 2716 filemap_remove_folio(folio); 2717 out_release: 2718 folio_unlock(folio); 2719 folio_put(folio); 2720 out_unacct_blocks: 2721 shmem_inode_unacct_blocks(inode, 1); 2722 return ret; 2723 } 2724 #endif /* CONFIG_USERFAULTFD */ 2725 2726 #ifdef CONFIG_TMPFS 2727 static const struct inode_operations shmem_symlink_inode_operations; 2728 static const struct inode_operations shmem_short_symlink_operations; 2729 2730 static int 2731 shmem_write_begin(struct file *file, struct address_space *mapping, 2732 loff_t pos, unsigned len, 2733 struct page **pagep, void **fsdata) 2734 { 2735 struct inode *inode = mapping->host; 2736 struct shmem_inode_info *info = SHMEM_I(inode); 2737 pgoff_t index = pos >> PAGE_SHIFT; 2738 struct folio *folio; 2739 int ret = 0; 2740 2741 /* i_rwsem is held by caller */ 2742 if (unlikely(info->seals & (F_SEAL_GROW | 2743 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2744 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2745 return -EPERM; 2746 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2747 return -EPERM; 2748 } 2749 2750 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2751 if (ret) 2752 return ret; 2753 2754 *pagep = folio_file_page(folio, index); 2755 if (PageHWPoison(*pagep)) { 2756 folio_unlock(folio); 2757 folio_put(folio); 2758 *pagep = NULL; 2759 return -EIO; 2760 } 2761 2762 return 0; 2763 } 2764 2765 static int 2766 shmem_write_end(struct file *file, struct address_space *mapping, 2767 loff_t pos, unsigned len, unsigned copied, 2768 struct page *page, void *fsdata) 2769 { 2770 struct folio *folio = page_folio(page); 2771 struct inode *inode = mapping->host; 2772 2773 if (pos + copied > inode->i_size) 2774 i_size_write(inode, pos + copied); 2775 2776 if (!folio_test_uptodate(folio)) { 2777 if (copied < folio_size(folio)) { 2778 size_t from = offset_in_folio(folio, pos); 2779 folio_zero_segments(folio, 0, from, 2780 from + copied, folio_size(folio)); 2781 } 2782 folio_mark_uptodate(folio); 2783 } 2784 folio_mark_dirty(folio); 2785 folio_unlock(folio); 2786 folio_put(folio); 2787 2788 return copied; 2789 } 2790 2791 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2792 { 2793 struct file *file = iocb->ki_filp; 2794 struct inode *inode = file_inode(file); 2795 struct address_space *mapping = inode->i_mapping; 2796 pgoff_t index; 2797 unsigned long offset; 2798 int error = 0; 2799 ssize_t retval = 0; 2800 loff_t *ppos = &iocb->ki_pos; 2801 2802 index = *ppos >> PAGE_SHIFT; 2803 offset = *ppos & ~PAGE_MASK; 2804 2805 for (;;) { 2806 struct folio *folio = NULL; 2807 struct page *page = NULL; 2808 pgoff_t end_index; 2809 unsigned long nr, ret; 2810 loff_t i_size = i_size_read(inode); 2811 2812 end_index = i_size >> PAGE_SHIFT; 2813 if (index > end_index) 2814 break; 2815 if (index == end_index) { 2816 nr = i_size & ~PAGE_MASK; 2817 if (nr <= offset) 2818 break; 2819 } 2820 2821 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2822 if (error) { 2823 if (error == -EINVAL) 2824 error = 0; 2825 break; 2826 } 2827 if (folio) { 2828 folio_unlock(folio); 2829 2830 page = folio_file_page(folio, index); 2831 if (PageHWPoison(page)) { 2832 folio_put(folio); 2833 error = -EIO; 2834 break; 2835 } 2836 } 2837 2838 /* 2839 * We must evaluate after, since reads (unlike writes) 2840 * are called without i_rwsem protection against truncate 2841 */ 2842 nr = PAGE_SIZE; 2843 i_size = i_size_read(inode); 2844 end_index = i_size >> PAGE_SHIFT; 2845 if (index == end_index) { 2846 nr = i_size & ~PAGE_MASK; 2847 if (nr <= offset) { 2848 if (folio) 2849 folio_put(folio); 2850 break; 2851 } 2852 } 2853 nr -= offset; 2854 2855 if (folio) { 2856 /* 2857 * If users can be writing to this page using arbitrary 2858 * virtual addresses, take care about potential aliasing 2859 * before reading the page on the kernel side. 2860 */ 2861 if (mapping_writably_mapped(mapping)) 2862 flush_dcache_page(page); 2863 /* 2864 * Mark the page accessed if we read the beginning. 2865 */ 2866 if (!offset) 2867 folio_mark_accessed(folio); 2868 /* 2869 * Ok, we have the page, and it's up-to-date, so 2870 * now we can copy it to user space... 2871 */ 2872 ret = copy_page_to_iter(page, offset, nr, to); 2873 folio_put(folio); 2874 2875 } else if (user_backed_iter(to)) { 2876 /* 2877 * Copy to user tends to be so well optimized, but 2878 * clear_user() not so much, that it is noticeably 2879 * faster to copy the zero page instead of clearing. 2880 */ 2881 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2882 } else { 2883 /* 2884 * But submitting the same page twice in a row to 2885 * splice() - or others? - can result in confusion: 2886 * so don't attempt that optimization on pipes etc. 2887 */ 2888 ret = iov_iter_zero(nr, to); 2889 } 2890 2891 retval += ret; 2892 offset += ret; 2893 index += offset >> PAGE_SHIFT; 2894 offset &= ~PAGE_MASK; 2895 2896 if (!iov_iter_count(to)) 2897 break; 2898 if (ret < nr) { 2899 error = -EFAULT; 2900 break; 2901 } 2902 cond_resched(); 2903 } 2904 2905 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2906 file_accessed(file); 2907 return retval ? retval : error; 2908 } 2909 2910 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2911 { 2912 struct file *file = iocb->ki_filp; 2913 struct inode *inode = file->f_mapping->host; 2914 ssize_t ret; 2915 2916 inode_lock(inode); 2917 ret = generic_write_checks(iocb, from); 2918 if (ret <= 0) 2919 goto unlock; 2920 ret = file_remove_privs(file); 2921 if (ret) 2922 goto unlock; 2923 ret = file_update_time(file); 2924 if (ret) 2925 goto unlock; 2926 ret = generic_perform_write(iocb, from); 2927 unlock: 2928 inode_unlock(inode); 2929 return ret; 2930 } 2931 2932 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2933 struct pipe_buffer *buf) 2934 { 2935 return true; 2936 } 2937 2938 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2939 struct pipe_buffer *buf) 2940 { 2941 } 2942 2943 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2944 struct pipe_buffer *buf) 2945 { 2946 return false; 2947 } 2948 2949 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2950 .release = zero_pipe_buf_release, 2951 .try_steal = zero_pipe_buf_try_steal, 2952 .get = zero_pipe_buf_get, 2953 }; 2954 2955 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2956 loff_t fpos, size_t size) 2957 { 2958 size_t offset = fpos & ~PAGE_MASK; 2959 2960 size = min_t(size_t, size, PAGE_SIZE - offset); 2961 2962 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2963 struct pipe_buffer *buf = pipe_head_buf(pipe); 2964 2965 *buf = (struct pipe_buffer) { 2966 .ops = &zero_pipe_buf_ops, 2967 .page = ZERO_PAGE(0), 2968 .offset = offset, 2969 .len = size, 2970 }; 2971 pipe->head++; 2972 } 2973 2974 return size; 2975 } 2976 2977 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2978 struct pipe_inode_info *pipe, 2979 size_t len, unsigned int flags) 2980 { 2981 struct inode *inode = file_inode(in); 2982 struct address_space *mapping = inode->i_mapping; 2983 struct folio *folio = NULL; 2984 size_t total_spliced = 0, used, npages, n, part; 2985 loff_t isize; 2986 int error = 0; 2987 2988 /* Work out how much data we can actually add into the pipe */ 2989 used = pipe_occupancy(pipe->head, pipe->tail); 2990 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2991 len = min_t(size_t, len, npages * PAGE_SIZE); 2992 2993 do { 2994 if (*ppos >= i_size_read(inode)) 2995 break; 2996 2997 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2998 SGP_READ); 2999 if (error) { 3000 if (error == -EINVAL) 3001 error = 0; 3002 break; 3003 } 3004 if (folio) { 3005 folio_unlock(folio); 3006 3007 if (folio_test_hwpoison(folio) || 3008 (folio_test_large(folio) && 3009 folio_test_has_hwpoisoned(folio))) { 3010 error = -EIO; 3011 break; 3012 } 3013 } 3014 3015 /* 3016 * i_size must be checked after we know the pages are Uptodate. 3017 * 3018 * Checking i_size after the check allows us to calculate 3019 * the correct value for "nr", which means the zero-filled 3020 * part of the page is not copied back to userspace (unless 3021 * another truncate extends the file - this is desired though). 3022 */ 3023 isize = i_size_read(inode); 3024 if (unlikely(*ppos >= isize)) 3025 break; 3026 part = min_t(loff_t, isize - *ppos, len); 3027 3028 if (folio) { 3029 /* 3030 * If users can be writing to this page using arbitrary 3031 * virtual addresses, take care about potential aliasing 3032 * before reading the page on the kernel side. 3033 */ 3034 if (mapping_writably_mapped(mapping)) 3035 flush_dcache_folio(folio); 3036 folio_mark_accessed(folio); 3037 /* 3038 * Ok, we have the page, and it's up-to-date, so we can 3039 * now splice it into the pipe. 3040 */ 3041 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3042 folio_put(folio); 3043 folio = NULL; 3044 } else { 3045 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3046 } 3047 3048 if (!n) 3049 break; 3050 len -= n; 3051 total_spliced += n; 3052 *ppos += n; 3053 in->f_ra.prev_pos = *ppos; 3054 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3055 break; 3056 3057 cond_resched(); 3058 } while (len); 3059 3060 if (folio) 3061 folio_put(folio); 3062 3063 file_accessed(in); 3064 return total_spliced ? total_spliced : error; 3065 } 3066 3067 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3068 { 3069 struct address_space *mapping = file->f_mapping; 3070 struct inode *inode = mapping->host; 3071 3072 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3073 return generic_file_llseek_size(file, offset, whence, 3074 MAX_LFS_FILESIZE, i_size_read(inode)); 3075 if (offset < 0) 3076 return -ENXIO; 3077 3078 inode_lock(inode); 3079 /* We're holding i_rwsem so we can access i_size directly */ 3080 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3081 if (offset >= 0) 3082 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3083 inode_unlock(inode); 3084 return offset; 3085 } 3086 3087 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3088 loff_t len) 3089 { 3090 struct inode *inode = file_inode(file); 3091 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3092 struct shmem_inode_info *info = SHMEM_I(inode); 3093 struct shmem_falloc shmem_falloc; 3094 pgoff_t start, index, end, undo_fallocend; 3095 int error; 3096 3097 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3098 return -EOPNOTSUPP; 3099 3100 inode_lock(inode); 3101 3102 if (mode & FALLOC_FL_PUNCH_HOLE) { 3103 struct address_space *mapping = file->f_mapping; 3104 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3105 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3106 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3107 3108 /* protected by i_rwsem */ 3109 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3110 error = -EPERM; 3111 goto out; 3112 } 3113 3114 shmem_falloc.waitq = &shmem_falloc_waitq; 3115 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3116 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3117 spin_lock(&inode->i_lock); 3118 inode->i_private = &shmem_falloc; 3119 spin_unlock(&inode->i_lock); 3120 3121 if ((u64)unmap_end > (u64)unmap_start) 3122 unmap_mapping_range(mapping, unmap_start, 3123 1 + unmap_end - unmap_start, 0); 3124 shmem_truncate_range(inode, offset, offset + len - 1); 3125 /* No need to unmap again: hole-punching leaves COWed pages */ 3126 3127 spin_lock(&inode->i_lock); 3128 inode->i_private = NULL; 3129 wake_up_all(&shmem_falloc_waitq); 3130 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3131 spin_unlock(&inode->i_lock); 3132 error = 0; 3133 goto out; 3134 } 3135 3136 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3137 error = inode_newsize_ok(inode, offset + len); 3138 if (error) 3139 goto out; 3140 3141 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3142 error = -EPERM; 3143 goto out; 3144 } 3145 3146 start = offset >> PAGE_SHIFT; 3147 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3148 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3149 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3150 error = -ENOSPC; 3151 goto out; 3152 } 3153 3154 shmem_falloc.waitq = NULL; 3155 shmem_falloc.start = start; 3156 shmem_falloc.next = start; 3157 shmem_falloc.nr_falloced = 0; 3158 shmem_falloc.nr_unswapped = 0; 3159 spin_lock(&inode->i_lock); 3160 inode->i_private = &shmem_falloc; 3161 spin_unlock(&inode->i_lock); 3162 3163 /* 3164 * info->fallocend is only relevant when huge pages might be 3165 * involved: to prevent split_huge_page() freeing fallocated 3166 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3167 */ 3168 undo_fallocend = info->fallocend; 3169 if (info->fallocend < end) 3170 info->fallocend = end; 3171 3172 for (index = start; index < end; ) { 3173 struct folio *folio; 3174 3175 /* 3176 * Good, the fallocate(2) manpage permits EINTR: we may have 3177 * been interrupted because we are using up too much memory. 3178 */ 3179 if (signal_pending(current)) 3180 error = -EINTR; 3181 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3182 error = -ENOMEM; 3183 else 3184 error = shmem_get_folio(inode, index, &folio, 3185 SGP_FALLOC); 3186 if (error) { 3187 info->fallocend = undo_fallocend; 3188 /* Remove the !uptodate folios we added */ 3189 if (index > start) { 3190 shmem_undo_range(inode, 3191 (loff_t)start << PAGE_SHIFT, 3192 ((loff_t)index << PAGE_SHIFT) - 1, true); 3193 } 3194 goto undone; 3195 } 3196 3197 /* 3198 * Here is a more important optimization than it appears: 3199 * a second SGP_FALLOC on the same large folio will clear it, 3200 * making it uptodate and un-undoable if we fail later. 3201 */ 3202 index = folio_next_index(folio); 3203 /* Beware 32-bit wraparound */ 3204 if (!index) 3205 index--; 3206 3207 /* 3208 * Inform shmem_writepage() how far we have reached. 3209 * No need for lock or barrier: we have the page lock. 3210 */ 3211 if (!folio_test_uptodate(folio)) 3212 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3213 shmem_falloc.next = index; 3214 3215 /* 3216 * If !uptodate, leave it that way so that freeable folios 3217 * can be recognized if we need to rollback on error later. 3218 * But mark it dirty so that memory pressure will swap rather 3219 * than free the folios we are allocating (and SGP_CACHE folios 3220 * might still be clean: we now need to mark those dirty too). 3221 */ 3222 folio_mark_dirty(folio); 3223 folio_unlock(folio); 3224 folio_put(folio); 3225 cond_resched(); 3226 } 3227 3228 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3229 i_size_write(inode, offset + len); 3230 undone: 3231 spin_lock(&inode->i_lock); 3232 inode->i_private = NULL; 3233 spin_unlock(&inode->i_lock); 3234 out: 3235 if (!error) 3236 file_modified(file); 3237 inode_unlock(inode); 3238 return error; 3239 } 3240 3241 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3242 { 3243 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3244 3245 buf->f_type = TMPFS_MAGIC; 3246 buf->f_bsize = PAGE_SIZE; 3247 buf->f_namelen = NAME_MAX; 3248 if (sbinfo->max_blocks) { 3249 buf->f_blocks = sbinfo->max_blocks; 3250 buf->f_bavail = 3251 buf->f_bfree = sbinfo->max_blocks - 3252 percpu_counter_sum(&sbinfo->used_blocks); 3253 } 3254 if (sbinfo->max_inodes) { 3255 buf->f_files = sbinfo->max_inodes; 3256 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3257 } 3258 /* else leave those fields 0 like simple_statfs */ 3259 3260 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * File creation. Allocate an inode, and we're done.. 3267 */ 3268 static int 3269 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3270 struct dentry *dentry, umode_t mode, dev_t dev) 3271 { 3272 struct inode *inode; 3273 int error; 3274 3275 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3276 if (IS_ERR(inode)) 3277 return PTR_ERR(inode); 3278 3279 error = simple_acl_create(dir, inode); 3280 if (error) 3281 goto out_iput; 3282 error = security_inode_init_security(inode, dir, &dentry->d_name, 3283 shmem_initxattrs, NULL); 3284 if (error && error != -EOPNOTSUPP) 3285 goto out_iput; 3286 3287 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3288 if (error) 3289 goto out_iput; 3290 3291 dir->i_size += BOGO_DIRENT_SIZE; 3292 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3293 inode_inc_iversion(dir); 3294 d_instantiate(dentry, inode); 3295 dget(dentry); /* Extra count - pin the dentry in core */ 3296 return error; 3297 3298 out_iput: 3299 iput(inode); 3300 return error; 3301 } 3302 3303 static int 3304 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3305 struct file *file, umode_t mode) 3306 { 3307 struct inode *inode; 3308 int error; 3309 3310 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3311 if (IS_ERR(inode)) { 3312 error = PTR_ERR(inode); 3313 goto err_out; 3314 } 3315 error = security_inode_init_security(inode, dir, NULL, 3316 shmem_initxattrs, NULL); 3317 if (error && error != -EOPNOTSUPP) 3318 goto out_iput; 3319 error = simple_acl_create(dir, inode); 3320 if (error) 3321 goto out_iput; 3322 d_tmpfile(file, inode); 3323 3324 err_out: 3325 return finish_open_simple(file, error); 3326 out_iput: 3327 iput(inode); 3328 return error; 3329 } 3330 3331 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3332 struct dentry *dentry, umode_t mode) 3333 { 3334 int error; 3335 3336 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3337 if (error) 3338 return error; 3339 inc_nlink(dir); 3340 return 0; 3341 } 3342 3343 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3344 struct dentry *dentry, umode_t mode, bool excl) 3345 { 3346 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3347 } 3348 3349 /* 3350 * Link a file.. 3351 */ 3352 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3353 struct dentry *dentry) 3354 { 3355 struct inode *inode = d_inode(old_dentry); 3356 int ret = 0; 3357 3358 /* 3359 * No ordinary (disk based) filesystem counts links as inodes; 3360 * but each new link needs a new dentry, pinning lowmem, and 3361 * tmpfs dentries cannot be pruned until they are unlinked. 3362 * But if an O_TMPFILE file is linked into the tmpfs, the 3363 * first link must skip that, to get the accounting right. 3364 */ 3365 if (inode->i_nlink) { 3366 ret = shmem_reserve_inode(inode->i_sb, NULL); 3367 if (ret) 3368 goto out; 3369 } 3370 3371 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3372 if (ret) { 3373 if (inode->i_nlink) 3374 shmem_free_inode(inode->i_sb, 0); 3375 goto out; 3376 } 3377 3378 dir->i_size += BOGO_DIRENT_SIZE; 3379 inode_set_mtime_to_ts(dir, 3380 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3381 inode_inc_iversion(dir); 3382 inc_nlink(inode); 3383 ihold(inode); /* New dentry reference */ 3384 dget(dentry); /* Extra pinning count for the created dentry */ 3385 d_instantiate(dentry, inode); 3386 out: 3387 return ret; 3388 } 3389 3390 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3391 { 3392 struct inode *inode = d_inode(dentry); 3393 3394 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3395 shmem_free_inode(inode->i_sb, 0); 3396 3397 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3398 3399 dir->i_size -= BOGO_DIRENT_SIZE; 3400 inode_set_mtime_to_ts(dir, 3401 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3402 inode_inc_iversion(dir); 3403 drop_nlink(inode); 3404 dput(dentry); /* Undo the count from "create" - does all the work */ 3405 return 0; 3406 } 3407 3408 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3409 { 3410 if (!simple_offset_empty(dentry)) 3411 return -ENOTEMPTY; 3412 3413 drop_nlink(d_inode(dentry)); 3414 drop_nlink(dir); 3415 return shmem_unlink(dir, dentry); 3416 } 3417 3418 static int shmem_whiteout(struct mnt_idmap *idmap, 3419 struct inode *old_dir, struct dentry *old_dentry) 3420 { 3421 struct dentry *whiteout; 3422 int error; 3423 3424 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3425 if (!whiteout) 3426 return -ENOMEM; 3427 3428 error = shmem_mknod(idmap, old_dir, whiteout, 3429 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3430 dput(whiteout); 3431 if (error) 3432 return error; 3433 3434 /* 3435 * Cheat and hash the whiteout while the old dentry is still in 3436 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3437 * 3438 * d_lookup() will consistently find one of them at this point, 3439 * not sure which one, but that isn't even important. 3440 */ 3441 d_rehash(whiteout); 3442 return 0; 3443 } 3444 3445 /* 3446 * The VFS layer already does all the dentry stuff for rename, 3447 * we just have to decrement the usage count for the target if 3448 * it exists so that the VFS layer correctly free's it when it 3449 * gets overwritten. 3450 */ 3451 static int shmem_rename2(struct mnt_idmap *idmap, 3452 struct inode *old_dir, struct dentry *old_dentry, 3453 struct inode *new_dir, struct dentry *new_dentry, 3454 unsigned int flags) 3455 { 3456 struct inode *inode = d_inode(old_dentry); 3457 int they_are_dirs = S_ISDIR(inode->i_mode); 3458 int error; 3459 3460 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3461 return -EINVAL; 3462 3463 if (flags & RENAME_EXCHANGE) 3464 return simple_offset_rename_exchange(old_dir, old_dentry, 3465 new_dir, new_dentry); 3466 3467 if (!simple_offset_empty(new_dentry)) 3468 return -ENOTEMPTY; 3469 3470 if (flags & RENAME_WHITEOUT) { 3471 error = shmem_whiteout(idmap, old_dir, old_dentry); 3472 if (error) 3473 return error; 3474 } 3475 3476 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3477 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3478 if (error) 3479 return error; 3480 3481 if (d_really_is_positive(new_dentry)) { 3482 (void) shmem_unlink(new_dir, new_dentry); 3483 if (they_are_dirs) { 3484 drop_nlink(d_inode(new_dentry)); 3485 drop_nlink(old_dir); 3486 } 3487 } else if (they_are_dirs) { 3488 drop_nlink(old_dir); 3489 inc_nlink(new_dir); 3490 } 3491 3492 old_dir->i_size -= BOGO_DIRENT_SIZE; 3493 new_dir->i_size += BOGO_DIRENT_SIZE; 3494 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3495 inode_inc_iversion(old_dir); 3496 inode_inc_iversion(new_dir); 3497 return 0; 3498 } 3499 3500 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3501 struct dentry *dentry, const char *symname) 3502 { 3503 int error; 3504 int len; 3505 struct inode *inode; 3506 struct folio *folio; 3507 3508 len = strlen(symname) + 1; 3509 if (len > PAGE_SIZE) 3510 return -ENAMETOOLONG; 3511 3512 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3513 VM_NORESERVE); 3514 if (IS_ERR(inode)) 3515 return PTR_ERR(inode); 3516 3517 error = security_inode_init_security(inode, dir, &dentry->d_name, 3518 shmem_initxattrs, NULL); 3519 if (error && error != -EOPNOTSUPP) 3520 goto out_iput; 3521 3522 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3523 if (error) 3524 goto out_iput; 3525 3526 inode->i_size = len-1; 3527 if (len <= SHORT_SYMLINK_LEN) { 3528 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3529 if (!inode->i_link) { 3530 error = -ENOMEM; 3531 goto out_remove_offset; 3532 } 3533 inode->i_op = &shmem_short_symlink_operations; 3534 } else { 3535 inode_nohighmem(inode); 3536 inode->i_mapping->a_ops = &shmem_aops; 3537 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3538 if (error) 3539 goto out_remove_offset; 3540 inode->i_op = &shmem_symlink_inode_operations; 3541 memcpy(folio_address(folio), symname, len); 3542 folio_mark_uptodate(folio); 3543 folio_mark_dirty(folio); 3544 folio_unlock(folio); 3545 folio_put(folio); 3546 } 3547 dir->i_size += BOGO_DIRENT_SIZE; 3548 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3549 inode_inc_iversion(dir); 3550 d_instantiate(dentry, inode); 3551 dget(dentry); 3552 return 0; 3553 3554 out_remove_offset: 3555 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3556 out_iput: 3557 iput(inode); 3558 return error; 3559 } 3560 3561 static void shmem_put_link(void *arg) 3562 { 3563 folio_mark_accessed(arg); 3564 folio_put(arg); 3565 } 3566 3567 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3568 struct delayed_call *done) 3569 { 3570 struct folio *folio = NULL; 3571 int error; 3572 3573 if (!dentry) { 3574 folio = filemap_get_folio(inode->i_mapping, 0); 3575 if (IS_ERR(folio)) 3576 return ERR_PTR(-ECHILD); 3577 if (PageHWPoison(folio_page(folio, 0)) || 3578 !folio_test_uptodate(folio)) { 3579 folio_put(folio); 3580 return ERR_PTR(-ECHILD); 3581 } 3582 } else { 3583 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3584 if (error) 3585 return ERR_PTR(error); 3586 if (!folio) 3587 return ERR_PTR(-ECHILD); 3588 if (PageHWPoison(folio_page(folio, 0))) { 3589 folio_unlock(folio); 3590 folio_put(folio); 3591 return ERR_PTR(-ECHILD); 3592 } 3593 folio_unlock(folio); 3594 } 3595 set_delayed_call(done, shmem_put_link, folio); 3596 return folio_address(folio); 3597 } 3598 3599 #ifdef CONFIG_TMPFS_XATTR 3600 3601 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3602 { 3603 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3604 3605 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3606 3607 return 0; 3608 } 3609 3610 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3611 struct dentry *dentry, struct fileattr *fa) 3612 { 3613 struct inode *inode = d_inode(dentry); 3614 struct shmem_inode_info *info = SHMEM_I(inode); 3615 3616 if (fileattr_has_fsx(fa)) 3617 return -EOPNOTSUPP; 3618 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3619 return -EOPNOTSUPP; 3620 3621 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3622 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3623 3624 shmem_set_inode_flags(inode, info->fsflags); 3625 inode_set_ctime_current(inode); 3626 inode_inc_iversion(inode); 3627 return 0; 3628 } 3629 3630 /* 3631 * Superblocks without xattr inode operations may get some security.* xattr 3632 * support from the LSM "for free". As soon as we have any other xattrs 3633 * like ACLs, we also need to implement the security.* handlers at 3634 * filesystem level, though. 3635 */ 3636 3637 /* 3638 * Callback for security_inode_init_security() for acquiring xattrs. 3639 */ 3640 static int shmem_initxattrs(struct inode *inode, 3641 const struct xattr *xattr_array, void *fs_info) 3642 { 3643 struct shmem_inode_info *info = SHMEM_I(inode); 3644 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3645 const struct xattr *xattr; 3646 struct simple_xattr *new_xattr; 3647 size_t ispace = 0; 3648 size_t len; 3649 3650 if (sbinfo->max_inodes) { 3651 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3652 ispace += simple_xattr_space(xattr->name, 3653 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3654 } 3655 if (ispace) { 3656 raw_spin_lock(&sbinfo->stat_lock); 3657 if (sbinfo->free_ispace < ispace) 3658 ispace = 0; 3659 else 3660 sbinfo->free_ispace -= ispace; 3661 raw_spin_unlock(&sbinfo->stat_lock); 3662 if (!ispace) 3663 return -ENOSPC; 3664 } 3665 } 3666 3667 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3668 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3669 if (!new_xattr) 3670 break; 3671 3672 len = strlen(xattr->name) + 1; 3673 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3674 GFP_KERNEL_ACCOUNT); 3675 if (!new_xattr->name) { 3676 kvfree(new_xattr); 3677 break; 3678 } 3679 3680 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3681 XATTR_SECURITY_PREFIX_LEN); 3682 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3683 xattr->name, len); 3684 3685 simple_xattr_add(&info->xattrs, new_xattr); 3686 } 3687 3688 if (xattr->name != NULL) { 3689 if (ispace) { 3690 raw_spin_lock(&sbinfo->stat_lock); 3691 sbinfo->free_ispace += ispace; 3692 raw_spin_unlock(&sbinfo->stat_lock); 3693 } 3694 simple_xattrs_free(&info->xattrs, NULL); 3695 return -ENOMEM; 3696 } 3697 3698 return 0; 3699 } 3700 3701 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3702 struct dentry *unused, struct inode *inode, 3703 const char *name, void *buffer, size_t size) 3704 { 3705 struct shmem_inode_info *info = SHMEM_I(inode); 3706 3707 name = xattr_full_name(handler, name); 3708 return simple_xattr_get(&info->xattrs, name, buffer, size); 3709 } 3710 3711 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3712 struct mnt_idmap *idmap, 3713 struct dentry *unused, struct inode *inode, 3714 const char *name, const void *value, 3715 size_t size, int flags) 3716 { 3717 struct shmem_inode_info *info = SHMEM_I(inode); 3718 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3719 struct simple_xattr *old_xattr; 3720 size_t ispace = 0; 3721 3722 name = xattr_full_name(handler, name); 3723 if (value && sbinfo->max_inodes) { 3724 ispace = simple_xattr_space(name, size); 3725 raw_spin_lock(&sbinfo->stat_lock); 3726 if (sbinfo->free_ispace < ispace) 3727 ispace = 0; 3728 else 3729 sbinfo->free_ispace -= ispace; 3730 raw_spin_unlock(&sbinfo->stat_lock); 3731 if (!ispace) 3732 return -ENOSPC; 3733 } 3734 3735 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3736 if (!IS_ERR(old_xattr)) { 3737 ispace = 0; 3738 if (old_xattr && sbinfo->max_inodes) 3739 ispace = simple_xattr_space(old_xattr->name, 3740 old_xattr->size); 3741 simple_xattr_free(old_xattr); 3742 old_xattr = NULL; 3743 inode_set_ctime_current(inode); 3744 inode_inc_iversion(inode); 3745 } 3746 if (ispace) { 3747 raw_spin_lock(&sbinfo->stat_lock); 3748 sbinfo->free_ispace += ispace; 3749 raw_spin_unlock(&sbinfo->stat_lock); 3750 } 3751 return PTR_ERR(old_xattr); 3752 } 3753 3754 static const struct xattr_handler shmem_security_xattr_handler = { 3755 .prefix = XATTR_SECURITY_PREFIX, 3756 .get = shmem_xattr_handler_get, 3757 .set = shmem_xattr_handler_set, 3758 }; 3759 3760 static const struct xattr_handler shmem_trusted_xattr_handler = { 3761 .prefix = XATTR_TRUSTED_PREFIX, 3762 .get = shmem_xattr_handler_get, 3763 .set = shmem_xattr_handler_set, 3764 }; 3765 3766 static const struct xattr_handler shmem_user_xattr_handler = { 3767 .prefix = XATTR_USER_PREFIX, 3768 .get = shmem_xattr_handler_get, 3769 .set = shmem_xattr_handler_set, 3770 }; 3771 3772 static const struct xattr_handler * const shmem_xattr_handlers[] = { 3773 &shmem_security_xattr_handler, 3774 &shmem_trusted_xattr_handler, 3775 &shmem_user_xattr_handler, 3776 NULL 3777 }; 3778 3779 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3780 { 3781 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3782 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3783 } 3784 #endif /* CONFIG_TMPFS_XATTR */ 3785 3786 static const struct inode_operations shmem_short_symlink_operations = { 3787 .getattr = shmem_getattr, 3788 .setattr = shmem_setattr, 3789 .get_link = simple_get_link, 3790 #ifdef CONFIG_TMPFS_XATTR 3791 .listxattr = shmem_listxattr, 3792 #endif 3793 }; 3794 3795 static const struct inode_operations shmem_symlink_inode_operations = { 3796 .getattr = shmem_getattr, 3797 .setattr = shmem_setattr, 3798 .get_link = shmem_get_link, 3799 #ifdef CONFIG_TMPFS_XATTR 3800 .listxattr = shmem_listxattr, 3801 #endif 3802 }; 3803 3804 static struct dentry *shmem_get_parent(struct dentry *child) 3805 { 3806 return ERR_PTR(-ESTALE); 3807 } 3808 3809 static int shmem_match(struct inode *ino, void *vfh) 3810 { 3811 __u32 *fh = vfh; 3812 __u64 inum = fh[2]; 3813 inum = (inum << 32) | fh[1]; 3814 return ino->i_ino == inum && fh[0] == ino->i_generation; 3815 } 3816 3817 /* Find any alias of inode, but prefer a hashed alias */ 3818 static struct dentry *shmem_find_alias(struct inode *inode) 3819 { 3820 struct dentry *alias = d_find_alias(inode); 3821 3822 return alias ?: d_find_any_alias(inode); 3823 } 3824 3825 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3826 struct fid *fid, int fh_len, int fh_type) 3827 { 3828 struct inode *inode; 3829 struct dentry *dentry = NULL; 3830 u64 inum; 3831 3832 if (fh_len < 3) 3833 return NULL; 3834 3835 inum = fid->raw[2]; 3836 inum = (inum << 32) | fid->raw[1]; 3837 3838 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3839 shmem_match, fid->raw); 3840 if (inode) { 3841 dentry = shmem_find_alias(inode); 3842 iput(inode); 3843 } 3844 3845 return dentry; 3846 } 3847 3848 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3849 struct inode *parent) 3850 { 3851 if (*len < 3) { 3852 *len = 3; 3853 return FILEID_INVALID; 3854 } 3855 3856 if (inode_unhashed(inode)) { 3857 /* Unfortunately insert_inode_hash is not idempotent, 3858 * so as we hash inodes here rather than at creation 3859 * time, we need a lock to ensure we only try 3860 * to do it once 3861 */ 3862 static DEFINE_SPINLOCK(lock); 3863 spin_lock(&lock); 3864 if (inode_unhashed(inode)) 3865 __insert_inode_hash(inode, 3866 inode->i_ino + inode->i_generation); 3867 spin_unlock(&lock); 3868 } 3869 3870 fh[0] = inode->i_generation; 3871 fh[1] = inode->i_ino; 3872 fh[2] = ((__u64)inode->i_ino) >> 32; 3873 3874 *len = 3; 3875 return 1; 3876 } 3877 3878 static const struct export_operations shmem_export_ops = { 3879 .get_parent = shmem_get_parent, 3880 .encode_fh = shmem_encode_fh, 3881 .fh_to_dentry = shmem_fh_to_dentry, 3882 }; 3883 3884 enum shmem_param { 3885 Opt_gid, 3886 Opt_huge, 3887 Opt_mode, 3888 Opt_mpol, 3889 Opt_nr_blocks, 3890 Opt_nr_inodes, 3891 Opt_size, 3892 Opt_uid, 3893 Opt_inode32, 3894 Opt_inode64, 3895 Opt_noswap, 3896 Opt_quota, 3897 Opt_usrquota, 3898 Opt_grpquota, 3899 Opt_usrquota_block_hardlimit, 3900 Opt_usrquota_inode_hardlimit, 3901 Opt_grpquota_block_hardlimit, 3902 Opt_grpquota_inode_hardlimit, 3903 }; 3904 3905 static const struct constant_table shmem_param_enums_huge[] = { 3906 {"never", SHMEM_HUGE_NEVER }, 3907 {"always", SHMEM_HUGE_ALWAYS }, 3908 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3909 {"advise", SHMEM_HUGE_ADVISE }, 3910 {} 3911 }; 3912 3913 const struct fs_parameter_spec shmem_fs_parameters[] = { 3914 fsparam_u32 ("gid", Opt_gid), 3915 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3916 fsparam_u32oct("mode", Opt_mode), 3917 fsparam_string("mpol", Opt_mpol), 3918 fsparam_string("nr_blocks", Opt_nr_blocks), 3919 fsparam_string("nr_inodes", Opt_nr_inodes), 3920 fsparam_string("size", Opt_size), 3921 fsparam_u32 ("uid", Opt_uid), 3922 fsparam_flag ("inode32", Opt_inode32), 3923 fsparam_flag ("inode64", Opt_inode64), 3924 fsparam_flag ("noswap", Opt_noswap), 3925 #ifdef CONFIG_TMPFS_QUOTA 3926 fsparam_flag ("quota", Opt_quota), 3927 fsparam_flag ("usrquota", Opt_usrquota), 3928 fsparam_flag ("grpquota", Opt_grpquota), 3929 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3930 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3931 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3932 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3933 #endif 3934 {} 3935 }; 3936 3937 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3938 { 3939 struct shmem_options *ctx = fc->fs_private; 3940 struct fs_parse_result result; 3941 unsigned long long size; 3942 char *rest; 3943 int opt; 3944 kuid_t kuid; 3945 kgid_t kgid; 3946 3947 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3948 if (opt < 0) 3949 return opt; 3950 3951 switch (opt) { 3952 case Opt_size: 3953 size = memparse(param->string, &rest); 3954 if (*rest == '%') { 3955 size <<= PAGE_SHIFT; 3956 size *= totalram_pages(); 3957 do_div(size, 100); 3958 rest++; 3959 } 3960 if (*rest) 3961 goto bad_value; 3962 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3963 ctx->seen |= SHMEM_SEEN_BLOCKS; 3964 break; 3965 case Opt_nr_blocks: 3966 ctx->blocks = memparse(param->string, &rest); 3967 if (*rest || ctx->blocks > LONG_MAX) 3968 goto bad_value; 3969 ctx->seen |= SHMEM_SEEN_BLOCKS; 3970 break; 3971 case Opt_nr_inodes: 3972 ctx->inodes = memparse(param->string, &rest); 3973 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3974 goto bad_value; 3975 ctx->seen |= SHMEM_SEEN_INODES; 3976 break; 3977 case Opt_mode: 3978 ctx->mode = result.uint_32 & 07777; 3979 break; 3980 case Opt_uid: 3981 kuid = make_kuid(current_user_ns(), result.uint_32); 3982 if (!uid_valid(kuid)) 3983 goto bad_value; 3984 3985 /* 3986 * The requested uid must be representable in the 3987 * filesystem's idmapping. 3988 */ 3989 if (!kuid_has_mapping(fc->user_ns, kuid)) 3990 goto bad_value; 3991 3992 ctx->uid = kuid; 3993 break; 3994 case Opt_gid: 3995 kgid = make_kgid(current_user_ns(), result.uint_32); 3996 if (!gid_valid(kgid)) 3997 goto bad_value; 3998 3999 /* 4000 * The requested gid must be representable in the 4001 * filesystem's idmapping. 4002 */ 4003 if (!kgid_has_mapping(fc->user_ns, kgid)) 4004 goto bad_value; 4005 4006 ctx->gid = kgid; 4007 break; 4008 case Opt_huge: 4009 ctx->huge = result.uint_32; 4010 if (ctx->huge != SHMEM_HUGE_NEVER && 4011 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4012 has_transparent_hugepage())) 4013 goto unsupported_parameter; 4014 ctx->seen |= SHMEM_SEEN_HUGE; 4015 break; 4016 case Opt_mpol: 4017 if (IS_ENABLED(CONFIG_NUMA)) { 4018 mpol_put(ctx->mpol); 4019 ctx->mpol = NULL; 4020 if (mpol_parse_str(param->string, &ctx->mpol)) 4021 goto bad_value; 4022 break; 4023 } 4024 goto unsupported_parameter; 4025 case Opt_inode32: 4026 ctx->full_inums = false; 4027 ctx->seen |= SHMEM_SEEN_INUMS; 4028 break; 4029 case Opt_inode64: 4030 if (sizeof(ino_t) < 8) { 4031 return invalfc(fc, 4032 "Cannot use inode64 with <64bit inums in kernel\n"); 4033 } 4034 ctx->full_inums = true; 4035 ctx->seen |= SHMEM_SEEN_INUMS; 4036 break; 4037 case Opt_noswap: 4038 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4039 return invalfc(fc, 4040 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4041 } 4042 ctx->noswap = true; 4043 ctx->seen |= SHMEM_SEEN_NOSWAP; 4044 break; 4045 case Opt_quota: 4046 if (fc->user_ns != &init_user_ns) 4047 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4048 ctx->seen |= SHMEM_SEEN_QUOTA; 4049 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4050 break; 4051 case Opt_usrquota: 4052 if (fc->user_ns != &init_user_ns) 4053 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4054 ctx->seen |= SHMEM_SEEN_QUOTA; 4055 ctx->quota_types |= QTYPE_MASK_USR; 4056 break; 4057 case Opt_grpquota: 4058 if (fc->user_ns != &init_user_ns) 4059 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4060 ctx->seen |= SHMEM_SEEN_QUOTA; 4061 ctx->quota_types |= QTYPE_MASK_GRP; 4062 break; 4063 case Opt_usrquota_block_hardlimit: 4064 size = memparse(param->string, &rest); 4065 if (*rest || !size) 4066 goto bad_value; 4067 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4068 return invalfc(fc, 4069 "User quota block hardlimit too large."); 4070 ctx->qlimits.usrquota_bhardlimit = size; 4071 break; 4072 case Opt_grpquota_block_hardlimit: 4073 size = memparse(param->string, &rest); 4074 if (*rest || !size) 4075 goto bad_value; 4076 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4077 return invalfc(fc, 4078 "Group quota block hardlimit too large."); 4079 ctx->qlimits.grpquota_bhardlimit = size; 4080 break; 4081 case Opt_usrquota_inode_hardlimit: 4082 size = memparse(param->string, &rest); 4083 if (*rest || !size) 4084 goto bad_value; 4085 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4086 return invalfc(fc, 4087 "User quota inode hardlimit too large."); 4088 ctx->qlimits.usrquota_ihardlimit = size; 4089 break; 4090 case Opt_grpquota_inode_hardlimit: 4091 size = memparse(param->string, &rest); 4092 if (*rest || !size) 4093 goto bad_value; 4094 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4095 return invalfc(fc, 4096 "Group quota inode hardlimit too large."); 4097 ctx->qlimits.grpquota_ihardlimit = size; 4098 break; 4099 } 4100 return 0; 4101 4102 unsupported_parameter: 4103 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4104 bad_value: 4105 return invalfc(fc, "Bad value for '%s'", param->key); 4106 } 4107 4108 static int shmem_parse_options(struct fs_context *fc, void *data) 4109 { 4110 char *options = data; 4111 4112 if (options) { 4113 int err = security_sb_eat_lsm_opts(options, &fc->security); 4114 if (err) 4115 return err; 4116 } 4117 4118 while (options != NULL) { 4119 char *this_char = options; 4120 for (;;) { 4121 /* 4122 * NUL-terminate this option: unfortunately, 4123 * mount options form a comma-separated list, 4124 * but mpol's nodelist may also contain commas. 4125 */ 4126 options = strchr(options, ','); 4127 if (options == NULL) 4128 break; 4129 options++; 4130 if (!isdigit(*options)) { 4131 options[-1] = '\0'; 4132 break; 4133 } 4134 } 4135 if (*this_char) { 4136 char *value = strchr(this_char, '='); 4137 size_t len = 0; 4138 int err; 4139 4140 if (value) { 4141 *value++ = '\0'; 4142 len = strlen(value); 4143 } 4144 err = vfs_parse_fs_string(fc, this_char, value, len); 4145 if (err < 0) 4146 return err; 4147 } 4148 } 4149 return 0; 4150 } 4151 4152 /* 4153 * Reconfigure a shmem filesystem. 4154 */ 4155 static int shmem_reconfigure(struct fs_context *fc) 4156 { 4157 struct shmem_options *ctx = fc->fs_private; 4158 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4159 unsigned long used_isp; 4160 struct mempolicy *mpol = NULL; 4161 const char *err; 4162 4163 raw_spin_lock(&sbinfo->stat_lock); 4164 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4165 4166 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4167 if (!sbinfo->max_blocks) { 4168 err = "Cannot retroactively limit size"; 4169 goto out; 4170 } 4171 if (percpu_counter_compare(&sbinfo->used_blocks, 4172 ctx->blocks) > 0) { 4173 err = "Too small a size for current use"; 4174 goto out; 4175 } 4176 } 4177 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4178 if (!sbinfo->max_inodes) { 4179 err = "Cannot retroactively limit inodes"; 4180 goto out; 4181 } 4182 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4183 err = "Too few inodes for current use"; 4184 goto out; 4185 } 4186 } 4187 4188 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4189 sbinfo->next_ino > UINT_MAX) { 4190 err = "Current inum too high to switch to 32-bit inums"; 4191 goto out; 4192 } 4193 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4194 err = "Cannot disable swap on remount"; 4195 goto out; 4196 } 4197 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4198 err = "Cannot enable swap on remount if it was disabled on first mount"; 4199 goto out; 4200 } 4201 4202 if (ctx->seen & SHMEM_SEEN_QUOTA && 4203 !sb_any_quota_loaded(fc->root->d_sb)) { 4204 err = "Cannot enable quota on remount"; 4205 goto out; 4206 } 4207 4208 #ifdef CONFIG_TMPFS_QUOTA 4209 #define CHANGED_LIMIT(name) \ 4210 (ctx->qlimits.name## hardlimit && \ 4211 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4212 4213 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4214 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4215 err = "Cannot change global quota limit on remount"; 4216 goto out; 4217 } 4218 #endif /* CONFIG_TMPFS_QUOTA */ 4219 4220 if (ctx->seen & SHMEM_SEEN_HUGE) 4221 sbinfo->huge = ctx->huge; 4222 if (ctx->seen & SHMEM_SEEN_INUMS) 4223 sbinfo->full_inums = ctx->full_inums; 4224 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4225 sbinfo->max_blocks = ctx->blocks; 4226 if (ctx->seen & SHMEM_SEEN_INODES) { 4227 sbinfo->max_inodes = ctx->inodes; 4228 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4229 } 4230 4231 /* 4232 * Preserve previous mempolicy unless mpol remount option was specified. 4233 */ 4234 if (ctx->mpol) { 4235 mpol = sbinfo->mpol; 4236 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4237 ctx->mpol = NULL; 4238 } 4239 4240 if (ctx->noswap) 4241 sbinfo->noswap = true; 4242 4243 raw_spin_unlock(&sbinfo->stat_lock); 4244 mpol_put(mpol); 4245 return 0; 4246 out: 4247 raw_spin_unlock(&sbinfo->stat_lock); 4248 return invalfc(fc, "%s", err); 4249 } 4250 4251 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4252 { 4253 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4254 struct mempolicy *mpol; 4255 4256 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4257 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4258 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4259 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4260 if (sbinfo->mode != (0777 | S_ISVTX)) 4261 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4262 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4263 seq_printf(seq, ",uid=%u", 4264 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4265 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4266 seq_printf(seq, ",gid=%u", 4267 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4268 4269 /* 4270 * Showing inode{64,32} might be useful even if it's the system default, 4271 * since then people don't have to resort to checking both here and 4272 * /proc/config.gz to confirm 64-bit inums were successfully applied 4273 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4274 * 4275 * We hide it when inode64 isn't the default and we are using 32-bit 4276 * inodes, since that probably just means the feature isn't even under 4277 * consideration. 4278 * 4279 * As such: 4280 * 4281 * +-----------------+-----------------+ 4282 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4283 * +------------------+-----------------+-----------------+ 4284 * | full_inums=true | show | show | 4285 * | full_inums=false | show | hide | 4286 * +------------------+-----------------+-----------------+ 4287 * 4288 */ 4289 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4290 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4291 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4292 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4293 if (sbinfo->huge) 4294 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4295 #endif 4296 mpol = shmem_get_sbmpol(sbinfo); 4297 shmem_show_mpol(seq, mpol); 4298 mpol_put(mpol); 4299 if (sbinfo->noswap) 4300 seq_printf(seq, ",noswap"); 4301 #ifdef CONFIG_TMPFS_QUOTA 4302 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4303 seq_printf(seq, ",usrquota"); 4304 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4305 seq_printf(seq, ",grpquota"); 4306 if (sbinfo->qlimits.usrquota_bhardlimit) 4307 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4308 sbinfo->qlimits.usrquota_bhardlimit); 4309 if (sbinfo->qlimits.grpquota_bhardlimit) 4310 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4311 sbinfo->qlimits.grpquota_bhardlimit); 4312 if (sbinfo->qlimits.usrquota_ihardlimit) 4313 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4314 sbinfo->qlimits.usrquota_ihardlimit); 4315 if (sbinfo->qlimits.grpquota_ihardlimit) 4316 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4317 sbinfo->qlimits.grpquota_ihardlimit); 4318 #endif 4319 return 0; 4320 } 4321 4322 #endif /* CONFIG_TMPFS */ 4323 4324 static void shmem_put_super(struct super_block *sb) 4325 { 4326 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4327 4328 #ifdef CONFIG_TMPFS_QUOTA 4329 shmem_disable_quotas(sb); 4330 #endif 4331 free_percpu(sbinfo->ino_batch); 4332 percpu_counter_destroy(&sbinfo->used_blocks); 4333 mpol_put(sbinfo->mpol); 4334 kfree(sbinfo); 4335 sb->s_fs_info = NULL; 4336 } 4337 4338 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4339 { 4340 struct shmem_options *ctx = fc->fs_private; 4341 struct inode *inode; 4342 struct shmem_sb_info *sbinfo; 4343 int error = -ENOMEM; 4344 4345 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4346 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4347 L1_CACHE_BYTES), GFP_KERNEL); 4348 if (!sbinfo) 4349 return error; 4350 4351 sb->s_fs_info = sbinfo; 4352 4353 #ifdef CONFIG_TMPFS 4354 /* 4355 * Per default we only allow half of the physical ram per 4356 * tmpfs instance, limiting inodes to one per page of lowmem; 4357 * but the internal instance is left unlimited. 4358 */ 4359 if (!(sb->s_flags & SB_KERNMOUNT)) { 4360 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4361 ctx->blocks = shmem_default_max_blocks(); 4362 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4363 ctx->inodes = shmem_default_max_inodes(); 4364 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4365 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4366 sbinfo->noswap = ctx->noswap; 4367 } else { 4368 sb->s_flags |= SB_NOUSER; 4369 } 4370 sb->s_export_op = &shmem_export_ops; 4371 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4372 #else 4373 sb->s_flags |= SB_NOUSER; 4374 #endif 4375 sbinfo->max_blocks = ctx->blocks; 4376 sbinfo->max_inodes = ctx->inodes; 4377 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4378 if (sb->s_flags & SB_KERNMOUNT) { 4379 sbinfo->ino_batch = alloc_percpu(ino_t); 4380 if (!sbinfo->ino_batch) 4381 goto failed; 4382 } 4383 sbinfo->uid = ctx->uid; 4384 sbinfo->gid = ctx->gid; 4385 sbinfo->full_inums = ctx->full_inums; 4386 sbinfo->mode = ctx->mode; 4387 sbinfo->huge = ctx->huge; 4388 sbinfo->mpol = ctx->mpol; 4389 ctx->mpol = NULL; 4390 4391 raw_spin_lock_init(&sbinfo->stat_lock); 4392 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4393 goto failed; 4394 spin_lock_init(&sbinfo->shrinklist_lock); 4395 INIT_LIST_HEAD(&sbinfo->shrinklist); 4396 4397 sb->s_maxbytes = MAX_LFS_FILESIZE; 4398 sb->s_blocksize = PAGE_SIZE; 4399 sb->s_blocksize_bits = PAGE_SHIFT; 4400 sb->s_magic = TMPFS_MAGIC; 4401 sb->s_op = &shmem_ops; 4402 sb->s_time_gran = 1; 4403 #ifdef CONFIG_TMPFS_XATTR 4404 sb->s_xattr = shmem_xattr_handlers; 4405 #endif 4406 #ifdef CONFIG_TMPFS_POSIX_ACL 4407 sb->s_flags |= SB_POSIXACL; 4408 #endif 4409 uuid_t uuid; 4410 uuid_gen(&uuid); 4411 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4412 4413 #ifdef CONFIG_TMPFS_QUOTA 4414 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4415 sb->dq_op = &shmem_quota_operations; 4416 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4417 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4418 4419 /* Copy the default limits from ctx into sbinfo */ 4420 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4421 sizeof(struct shmem_quota_limits)); 4422 4423 if (shmem_enable_quotas(sb, ctx->quota_types)) 4424 goto failed; 4425 } 4426 #endif /* CONFIG_TMPFS_QUOTA */ 4427 4428 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4429 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4430 if (IS_ERR(inode)) { 4431 error = PTR_ERR(inode); 4432 goto failed; 4433 } 4434 inode->i_uid = sbinfo->uid; 4435 inode->i_gid = sbinfo->gid; 4436 sb->s_root = d_make_root(inode); 4437 if (!sb->s_root) 4438 goto failed; 4439 return 0; 4440 4441 failed: 4442 shmem_put_super(sb); 4443 return error; 4444 } 4445 4446 static int shmem_get_tree(struct fs_context *fc) 4447 { 4448 return get_tree_nodev(fc, shmem_fill_super); 4449 } 4450 4451 static void shmem_free_fc(struct fs_context *fc) 4452 { 4453 struct shmem_options *ctx = fc->fs_private; 4454 4455 if (ctx) { 4456 mpol_put(ctx->mpol); 4457 kfree(ctx); 4458 } 4459 } 4460 4461 static const struct fs_context_operations shmem_fs_context_ops = { 4462 .free = shmem_free_fc, 4463 .get_tree = shmem_get_tree, 4464 #ifdef CONFIG_TMPFS 4465 .parse_monolithic = shmem_parse_options, 4466 .parse_param = shmem_parse_one, 4467 .reconfigure = shmem_reconfigure, 4468 #endif 4469 }; 4470 4471 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4472 4473 static struct inode *shmem_alloc_inode(struct super_block *sb) 4474 { 4475 struct shmem_inode_info *info; 4476 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4477 if (!info) 4478 return NULL; 4479 return &info->vfs_inode; 4480 } 4481 4482 static void shmem_free_in_core_inode(struct inode *inode) 4483 { 4484 if (S_ISLNK(inode->i_mode)) 4485 kfree(inode->i_link); 4486 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4487 } 4488 4489 static void shmem_destroy_inode(struct inode *inode) 4490 { 4491 if (S_ISREG(inode->i_mode)) 4492 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4493 if (S_ISDIR(inode->i_mode)) 4494 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4495 } 4496 4497 static void shmem_init_inode(void *foo) 4498 { 4499 struct shmem_inode_info *info = foo; 4500 inode_init_once(&info->vfs_inode); 4501 } 4502 4503 static void __init shmem_init_inodecache(void) 4504 { 4505 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4506 sizeof(struct shmem_inode_info), 4507 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4508 } 4509 4510 static void __init shmem_destroy_inodecache(void) 4511 { 4512 kmem_cache_destroy(shmem_inode_cachep); 4513 } 4514 4515 /* Keep the page in page cache instead of truncating it */ 4516 static int shmem_error_remove_folio(struct address_space *mapping, 4517 struct folio *folio) 4518 { 4519 return 0; 4520 } 4521 4522 static const struct address_space_operations shmem_aops = { 4523 .writepage = shmem_writepage, 4524 .dirty_folio = noop_dirty_folio, 4525 #ifdef CONFIG_TMPFS 4526 .write_begin = shmem_write_begin, 4527 .write_end = shmem_write_end, 4528 #endif 4529 #ifdef CONFIG_MIGRATION 4530 .migrate_folio = migrate_folio, 4531 #endif 4532 .error_remove_folio = shmem_error_remove_folio, 4533 }; 4534 4535 static const struct file_operations shmem_file_operations = { 4536 .mmap = shmem_mmap, 4537 .open = shmem_file_open, 4538 .get_unmapped_area = shmem_get_unmapped_area, 4539 #ifdef CONFIG_TMPFS 4540 .llseek = shmem_file_llseek, 4541 .read_iter = shmem_file_read_iter, 4542 .write_iter = shmem_file_write_iter, 4543 .fsync = noop_fsync, 4544 .splice_read = shmem_file_splice_read, 4545 .splice_write = iter_file_splice_write, 4546 .fallocate = shmem_fallocate, 4547 #endif 4548 }; 4549 4550 static const struct inode_operations shmem_inode_operations = { 4551 .getattr = shmem_getattr, 4552 .setattr = shmem_setattr, 4553 #ifdef CONFIG_TMPFS_XATTR 4554 .listxattr = shmem_listxattr, 4555 .set_acl = simple_set_acl, 4556 .fileattr_get = shmem_fileattr_get, 4557 .fileattr_set = shmem_fileattr_set, 4558 #endif 4559 }; 4560 4561 static const struct inode_operations shmem_dir_inode_operations = { 4562 #ifdef CONFIG_TMPFS 4563 .getattr = shmem_getattr, 4564 .create = shmem_create, 4565 .lookup = simple_lookup, 4566 .link = shmem_link, 4567 .unlink = shmem_unlink, 4568 .symlink = shmem_symlink, 4569 .mkdir = shmem_mkdir, 4570 .rmdir = shmem_rmdir, 4571 .mknod = shmem_mknod, 4572 .rename = shmem_rename2, 4573 .tmpfile = shmem_tmpfile, 4574 .get_offset_ctx = shmem_get_offset_ctx, 4575 #endif 4576 #ifdef CONFIG_TMPFS_XATTR 4577 .listxattr = shmem_listxattr, 4578 .fileattr_get = shmem_fileattr_get, 4579 .fileattr_set = shmem_fileattr_set, 4580 #endif 4581 #ifdef CONFIG_TMPFS_POSIX_ACL 4582 .setattr = shmem_setattr, 4583 .set_acl = simple_set_acl, 4584 #endif 4585 }; 4586 4587 static const struct inode_operations shmem_special_inode_operations = { 4588 .getattr = shmem_getattr, 4589 #ifdef CONFIG_TMPFS_XATTR 4590 .listxattr = shmem_listxattr, 4591 #endif 4592 #ifdef CONFIG_TMPFS_POSIX_ACL 4593 .setattr = shmem_setattr, 4594 .set_acl = simple_set_acl, 4595 #endif 4596 }; 4597 4598 static const struct super_operations shmem_ops = { 4599 .alloc_inode = shmem_alloc_inode, 4600 .free_inode = shmem_free_in_core_inode, 4601 .destroy_inode = shmem_destroy_inode, 4602 #ifdef CONFIG_TMPFS 4603 .statfs = shmem_statfs, 4604 .show_options = shmem_show_options, 4605 #endif 4606 #ifdef CONFIG_TMPFS_QUOTA 4607 .get_dquots = shmem_get_dquots, 4608 #endif 4609 .evict_inode = shmem_evict_inode, 4610 .drop_inode = generic_delete_inode, 4611 .put_super = shmem_put_super, 4612 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4613 .nr_cached_objects = shmem_unused_huge_count, 4614 .free_cached_objects = shmem_unused_huge_scan, 4615 #endif 4616 }; 4617 4618 static const struct vm_operations_struct shmem_vm_ops = { 4619 .fault = shmem_fault, 4620 .map_pages = filemap_map_pages, 4621 #ifdef CONFIG_NUMA 4622 .set_policy = shmem_set_policy, 4623 .get_policy = shmem_get_policy, 4624 #endif 4625 }; 4626 4627 static const struct vm_operations_struct shmem_anon_vm_ops = { 4628 .fault = shmem_fault, 4629 .map_pages = filemap_map_pages, 4630 #ifdef CONFIG_NUMA 4631 .set_policy = shmem_set_policy, 4632 .get_policy = shmem_get_policy, 4633 #endif 4634 }; 4635 4636 int shmem_init_fs_context(struct fs_context *fc) 4637 { 4638 struct shmem_options *ctx; 4639 4640 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4641 if (!ctx) 4642 return -ENOMEM; 4643 4644 ctx->mode = 0777 | S_ISVTX; 4645 ctx->uid = current_fsuid(); 4646 ctx->gid = current_fsgid(); 4647 4648 fc->fs_private = ctx; 4649 fc->ops = &shmem_fs_context_ops; 4650 return 0; 4651 } 4652 4653 static struct file_system_type shmem_fs_type = { 4654 .owner = THIS_MODULE, 4655 .name = "tmpfs", 4656 .init_fs_context = shmem_init_fs_context, 4657 #ifdef CONFIG_TMPFS 4658 .parameters = shmem_fs_parameters, 4659 #endif 4660 .kill_sb = kill_litter_super, 4661 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP, 4662 }; 4663 4664 void __init shmem_init(void) 4665 { 4666 int error; 4667 4668 shmem_init_inodecache(); 4669 4670 #ifdef CONFIG_TMPFS_QUOTA 4671 error = register_quota_format(&shmem_quota_format); 4672 if (error < 0) { 4673 pr_err("Could not register quota format\n"); 4674 goto out3; 4675 } 4676 #endif 4677 4678 error = register_filesystem(&shmem_fs_type); 4679 if (error) { 4680 pr_err("Could not register tmpfs\n"); 4681 goto out2; 4682 } 4683 4684 shm_mnt = kern_mount(&shmem_fs_type); 4685 if (IS_ERR(shm_mnt)) { 4686 error = PTR_ERR(shm_mnt); 4687 pr_err("Could not kern_mount tmpfs\n"); 4688 goto out1; 4689 } 4690 4691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4692 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4693 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4694 else 4695 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4696 #endif 4697 return; 4698 4699 out1: 4700 unregister_filesystem(&shmem_fs_type); 4701 out2: 4702 #ifdef CONFIG_TMPFS_QUOTA 4703 unregister_quota_format(&shmem_quota_format); 4704 out3: 4705 #endif 4706 shmem_destroy_inodecache(); 4707 shm_mnt = ERR_PTR(error); 4708 } 4709 4710 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4711 static ssize_t shmem_enabled_show(struct kobject *kobj, 4712 struct kobj_attribute *attr, char *buf) 4713 { 4714 static const int values[] = { 4715 SHMEM_HUGE_ALWAYS, 4716 SHMEM_HUGE_WITHIN_SIZE, 4717 SHMEM_HUGE_ADVISE, 4718 SHMEM_HUGE_NEVER, 4719 SHMEM_HUGE_DENY, 4720 SHMEM_HUGE_FORCE, 4721 }; 4722 int len = 0; 4723 int i; 4724 4725 for (i = 0; i < ARRAY_SIZE(values); i++) { 4726 len += sysfs_emit_at(buf, len, 4727 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4728 i ? " " : "", shmem_format_huge(values[i])); 4729 } 4730 len += sysfs_emit_at(buf, len, "\n"); 4731 4732 return len; 4733 } 4734 4735 static ssize_t shmem_enabled_store(struct kobject *kobj, 4736 struct kobj_attribute *attr, const char *buf, size_t count) 4737 { 4738 char tmp[16]; 4739 int huge; 4740 4741 if (count + 1 > sizeof(tmp)) 4742 return -EINVAL; 4743 memcpy(tmp, buf, count); 4744 tmp[count] = '\0'; 4745 if (count && tmp[count - 1] == '\n') 4746 tmp[count - 1] = '\0'; 4747 4748 huge = shmem_parse_huge(tmp); 4749 if (huge == -EINVAL) 4750 return -EINVAL; 4751 if (!has_transparent_hugepage() && 4752 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4753 return -EINVAL; 4754 4755 shmem_huge = huge; 4756 if (shmem_huge > SHMEM_HUGE_DENY) 4757 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4758 return count; 4759 } 4760 4761 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4763 4764 #else /* !CONFIG_SHMEM */ 4765 4766 /* 4767 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4768 * 4769 * This is intended for small system where the benefits of the full 4770 * shmem code (swap-backed and resource-limited) are outweighed by 4771 * their complexity. On systems without swap this code should be 4772 * effectively equivalent, but much lighter weight. 4773 */ 4774 4775 static struct file_system_type shmem_fs_type = { 4776 .name = "tmpfs", 4777 .init_fs_context = ramfs_init_fs_context, 4778 .parameters = ramfs_fs_parameters, 4779 .kill_sb = ramfs_kill_sb, 4780 .fs_flags = FS_USERNS_MOUNT, 4781 }; 4782 4783 void __init shmem_init(void) 4784 { 4785 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4786 4787 shm_mnt = kern_mount(&shmem_fs_type); 4788 BUG_ON(IS_ERR(shm_mnt)); 4789 } 4790 4791 int shmem_unuse(unsigned int type) 4792 { 4793 return 0; 4794 } 4795 4796 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4797 { 4798 return 0; 4799 } 4800 4801 void shmem_unlock_mapping(struct address_space *mapping) 4802 { 4803 } 4804 4805 #ifdef CONFIG_MMU 4806 unsigned long shmem_get_unmapped_area(struct file *file, 4807 unsigned long addr, unsigned long len, 4808 unsigned long pgoff, unsigned long flags) 4809 { 4810 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4811 } 4812 #endif 4813 4814 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4815 { 4816 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4817 } 4818 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4819 4820 #define shmem_vm_ops generic_file_vm_ops 4821 #define shmem_anon_vm_ops generic_file_vm_ops 4822 #define shmem_file_operations ramfs_file_operations 4823 #define shmem_acct_size(flags, size) 0 4824 #define shmem_unacct_size(flags, size) do {} while (0) 4825 4826 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 4827 struct super_block *sb, struct inode *dir, 4828 umode_t mode, dev_t dev, unsigned long flags) 4829 { 4830 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4831 return inode ? inode : ERR_PTR(-ENOSPC); 4832 } 4833 4834 #endif /* CONFIG_SHMEM */ 4835 4836 /* common code */ 4837 4838 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 4839 loff_t size, unsigned long flags, unsigned int i_flags) 4840 { 4841 struct inode *inode; 4842 struct file *res; 4843 4844 if (IS_ERR(mnt)) 4845 return ERR_CAST(mnt); 4846 4847 if (size < 0 || size > MAX_LFS_FILESIZE) 4848 return ERR_PTR(-EINVAL); 4849 4850 if (shmem_acct_size(flags, size)) 4851 return ERR_PTR(-ENOMEM); 4852 4853 if (is_idmapped_mnt(mnt)) 4854 return ERR_PTR(-EINVAL); 4855 4856 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4857 S_IFREG | S_IRWXUGO, 0, flags); 4858 if (IS_ERR(inode)) { 4859 shmem_unacct_size(flags, size); 4860 return ERR_CAST(inode); 4861 } 4862 inode->i_flags |= i_flags; 4863 inode->i_size = size; 4864 clear_nlink(inode); /* It is unlinked */ 4865 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4866 if (!IS_ERR(res)) 4867 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4868 &shmem_file_operations); 4869 if (IS_ERR(res)) 4870 iput(inode); 4871 return res; 4872 } 4873 4874 /** 4875 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4876 * kernel internal. There will be NO LSM permission checks against the 4877 * underlying inode. So users of this interface must do LSM checks at a 4878 * higher layer. The users are the big_key and shm implementations. LSM 4879 * checks are provided at the key or shm level rather than the inode. 4880 * @name: name for dentry (to be seen in /proc/<pid>/maps 4881 * @size: size to be set for the file 4882 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4883 */ 4884 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4885 { 4886 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4887 } 4888 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 4889 4890 /** 4891 * shmem_file_setup - get an unlinked file living in tmpfs 4892 * @name: name for dentry (to be seen in /proc/<pid>/maps 4893 * @size: size to be set for the file 4894 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4895 */ 4896 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4897 { 4898 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4899 } 4900 EXPORT_SYMBOL_GPL(shmem_file_setup); 4901 4902 /** 4903 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4904 * @mnt: the tmpfs mount where the file will be created 4905 * @name: name for dentry (to be seen in /proc/<pid>/maps 4906 * @size: size to be set for the file 4907 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4908 */ 4909 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4910 loff_t size, unsigned long flags) 4911 { 4912 return __shmem_file_setup(mnt, name, size, flags, 0); 4913 } 4914 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4915 4916 /** 4917 * shmem_zero_setup - setup a shared anonymous mapping 4918 * @vma: the vma to be mmapped is prepared by do_mmap 4919 */ 4920 int shmem_zero_setup(struct vm_area_struct *vma) 4921 { 4922 struct file *file; 4923 loff_t size = vma->vm_end - vma->vm_start; 4924 4925 /* 4926 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4927 * between XFS directory reading and selinux: since this file is only 4928 * accessible to the user through its mapping, use S_PRIVATE flag to 4929 * bypass file security, in the same way as shmem_kernel_file_setup(). 4930 */ 4931 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4932 if (IS_ERR(file)) 4933 return PTR_ERR(file); 4934 4935 if (vma->vm_file) 4936 fput(vma->vm_file); 4937 vma->vm_file = file; 4938 vma->vm_ops = &shmem_anon_vm_ops; 4939 4940 return 0; 4941 } 4942 4943 /** 4944 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4945 * @mapping: the folio's address_space 4946 * @index: the folio index 4947 * @gfp: the page allocator flags to use if allocating 4948 * 4949 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4950 * with any new page allocations done using the specified allocation flags. 4951 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4952 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4953 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4954 * 4955 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4956 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4957 */ 4958 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4959 pgoff_t index, gfp_t gfp) 4960 { 4961 #ifdef CONFIG_SHMEM 4962 struct inode *inode = mapping->host; 4963 struct folio *folio; 4964 int error; 4965 4966 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4967 gfp, NULL, NULL); 4968 if (error) 4969 return ERR_PTR(error); 4970 4971 folio_unlock(folio); 4972 return folio; 4973 #else 4974 /* 4975 * The tiny !SHMEM case uses ramfs without swap 4976 */ 4977 return mapping_read_folio_gfp(mapping, index, gfp); 4978 #endif 4979 } 4980 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4981 4982 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4983 pgoff_t index, gfp_t gfp) 4984 { 4985 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4986 struct page *page; 4987 4988 if (IS_ERR(folio)) 4989 return &folio->page; 4990 4991 page = folio_file_page(folio, index); 4992 if (PageHWPoison(page)) { 4993 folio_put(folio); 4994 return ERR_PTR(-EIO); 4995 } 4996 4997 return page; 4998 } 4999 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5000