1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 #include <asm/pgtable.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 96 #define SHORT_SYMLINK_LEN 128 97 98 /* 99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 100 * inode->i_private (with i_mutex making sure that it has only one user at 101 * a time): we would prefer not to enlarge the shmem inode just for that. 102 */ 103 struct shmem_falloc { 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 105 pgoff_t start; /* start of range currently being fallocated */ 106 pgoff_t next; /* the next page offset to be fallocated */ 107 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 109 }; 110 111 struct shmem_options { 112 unsigned long long blocks; 113 unsigned long long inodes; 114 struct mempolicy *mpol; 115 kuid_t uid; 116 kgid_t gid; 117 umode_t mode; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 140 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 141 struct shmem_inode_info *info, pgoff_t index); 142 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 vm_fault_t *fault_type); 146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp, 148 gfp_t gfp, struct vm_area_struct *vma, 149 struct vm_fault *vmf, vm_fault_t *fault_type); 150 151 int shmem_getpage(struct inode *inode, pgoff_t index, 152 struct page **pagep, enum sgp_type sgp) 153 { 154 return shmem_getpage_gfp(inode, index, pagep, sgp, 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 156 } 157 158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 159 { 160 return sb->s_fs_info; 161 } 162 163 /* 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 165 * for shared memory and for shared anonymous (/dev/zero) mappings 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 167 * consistent with the pre-accounting of private mappings ... 168 */ 169 static inline int shmem_acct_size(unsigned long flags, loff_t size) 170 { 171 return (flags & VM_NORESERVE) ? 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 173 } 174 175 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 176 { 177 if (!(flags & VM_NORESERVE)) 178 vm_unacct_memory(VM_ACCT(size)); 179 } 180 181 static inline int shmem_reacct_size(unsigned long flags, 182 loff_t oldsize, loff_t newsize) 183 { 184 if (!(flags & VM_NORESERVE)) { 185 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 186 return security_vm_enough_memory_mm(current->mm, 187 VM_ACCT(newsize) - VM_ACCT(oldsize)); 188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 190 } 191 return 0; 192 } 193 194 /* 195 * ... whereas tmpfs objects are accounted incrementally as 196 * pages are allocated, in order to allow large sparse files. 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 199 */ 200 static inline int shmem_acct_block(unsigned long flags, long pages) 201 { 202 if (!(flags & VM_NORESERVE)) 203 return 0; 204 205 return security_vm_enough_memory_mm(current->mm, 206 pages * VM_ACCT(PAGE_SIZE)); 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (shmem_acct_block(info->flags, pages)) 221 return false; 222 223 if (sbinfo->max_blocks) { 224 if (percpu_counter_compare(&sbinfo->used_blocks, 225 sbinfo->max_blocks - pages) > 0) 226 goto unacct; 227 percpu_counter_add(&sbinfo->used_blocks, pages); 228 } 229 230 return true; 231 232 unacct: 233 shmem_unacct_blocks(info->flags, pages); 234 return false; 235 } 236 237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 238 { 239 struct shmem_inode_info *info = SHMEM_I(inode); 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 242 if (sbinfo->max_blocks) 243 percpu_counter_sub(&sbinfo->used_blocks, pages); 244 shmem_unacct_blocks(info->flags, pages); 245 } 246 247 static const struct super_operations shmem_ops; 248 static const struct address_space_operations shmem_aops; 249 static const struct file_operations shmem_file_operations; 250 static const struct inode_operations shmem_inode_operations; 251 static const struct inode_operations shmem_dir_inode_operations; 252 static const struct inode_operations shmem_special_inode_operations; 253 static const struct vm_operations_struct shmem_vm_ops; 254 static struct file_system_type shmem_fs_type; 255 256 bool vma_is_shmem(struct vm_area_struct *vma) 257 { 258 return vma->vm_ops == &shmem_vm_ops; 259 } 260 261 static LIST_HEAD(shmem_swaplist); 262 static DEFINE_MUTEX(shmem_swaplist_mutex); 263 264 static int shmem_reserve_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 if (!sbinfo->free_inodes) { 270 spin_unlock(&sbinfo->stat_lock); 271 return -ENOSPC; 272 } 273 sbinfo->free_inodes--; 274 spin_unlock(&sbinfo->stat_lock); 275 } 276 return 0; 277 } 278 279 static void shmem_free_inode(struct super_block *sb) 280 { 281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 282 if (sbinfo->max_inodes) { 283 spin_lock(&sbinfo->stat_lock); 284 sbinfo->free_inodes++; 285 spin_unlock(&sbinfo->stat_lock); 286 } 287 } 288 289 /** 290 * shmem_recalc_inode - recalculate the block usage of an inode 291 * @inode: inode to recalc 292 * 293 * We have to calculate the free blocks since the mm can drop 294 * undirtied hole pages behind our back. 295 * 296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 298 * 299 * It has to be called with the spinlock held. 300 */ 301 static void shmem_recalc_inode(struct inode *inode) 302 { 303 struct shmem_inode_info *info = SHMEM_I(inode); 304 long freed; 305 306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 307 if (freed > 0) { 308 info->alloced -= freed; 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 310 shmem_inode_unacct_blocks(inode, freed); 311 } 312 } 313 314 bool shmem_charge(struct inode *inode, long pages) 315 { 316 struct shmem_inode_info *info = SHMEM_I(inode); 317 unsigned long flags; 318 319 if (!shmem_inode_acct_block(inode, pages)) 320 return false; 321 322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 323 inode->i_mapping->nrpages += pages; 324 325 spin_lock_irqsave(&info->lock, flags); 326 info->alloced += pages; 327 inode->i_blocks += pages * BLOCKS_PER_PAGE; 328 shmem_recalc_inode(inode); 329 spin_unlock_irqrestore(&info->lock, flags); 330 331 return true; 332 } 333 334 void shmem_uncharge(struct inode *inode, long pages) 335 { 336 struct shmem_inode_info *info = SHMEM_I(inode); 337 unsigned long flags; 338 339 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 340 341 spin_lock_irqsave(&info->lock, flags); 342 info->alloced -= pages; 343 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 344 shmem_recalc_inode(inode); 345 spin_unlock_irqrestore(&info->lock, flags); 346 347 shmem_inode_unacct_blocks(inode, pages); 348 } 349 350 /* 351 * Replace item expected in xarray by a new item, while holding xa_lock. 352 */ 353 static int shmem_replace_entry(struct address_space *mapping, 354 pgoff_t index, void *expected, void *replacement) 355 { 356 XA_STATE(xas, &mapping->i_pages, index); 357 void *item; 358 359 VM_BUG_ON(!expected); 360 VM_BUG_ON(!replacement); 361 item = xas_load(&xas); 362 if (item != expected) 363 return -ENOENT; 364 xas_store(&xas, replacement); 365 return 0; 366 } 367 368 /* 369 * Sometimes, before we decide whether to proceed or to fail, we must check 370 * that an entry was not already brought back from swap by a racing thread. 371 * 372 * Checking page is not enough: by the time a SwapCache page is locked, it 373 * might be reused, and again be SwapCache, using the same swap as before. 374 */ 375 static bool shmem_confirm_swap(struct address_space *mapping, 376 pgoff_t index, swp_entry_t swap) 377 { 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 379 } 380 381 /* 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 383 * 384 * SHMEM_HUGE_NEVER: 385 * disables huge pages for the mount; 386 * SHMEM_HUGE_ALWAYS: 387 * enables huge pages for the mount; 388 * SHMEM_HUGE_WITHIN_SIZE: 389 * only allocate huge pages if the page will be fully within i_size, 390 * also respect fadvise()/madvise() hints; 391 * SHMEM_HUGE_ADVISE: 392 * only allocate huge pages if requested with fadvise()/madvise(); 393 */ 394 395 #define SHMEM_HUGE_NEVER 0 396 #define SHMEM_HUGE_ALWAYS 1 397 #define SHMEM_HUGE_WITHIN_SIZE 2 398 #define SHMEM_HUGE_ADVISE 3 399 400 /* 401 * Special values. 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 403 * 404 * SHMEM_HUGE_DENY: 405 * disables huge on shm_mnt and all mounts, for emergency use; 406 * SHMEM_HUGE_FORCE: 407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 408 * 409 */ 410 #define SHMEM_HUGE_DENY (-1) 411 #define SHMEM_HUGE_FORCE (-2) 412 413 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 414 /* ifdef here to avoid bloating shmem.o when not necessary */ 415 416 static int shmem_huge __read_mostly; 417 418 #if defined(CONFIG_SYSFS) 419 static int shmem_parse_huge(const char *str) 420 { 421 if (!strcmp(str, "never")) 422 return SHMEM_HUGE_NEVER; 423 if (!strcmp(str, "always")) 424 return SHMEM_HUGE_ALWAYS; 425 if (!strcmp(str, "within_size")) 426 return SHMEM_HUGE_WITHIN_SIZE; 427 if (!strcmp(str, "advise")) 428 return SHMEM_HUGE_ADVISE; 429 if (!strcmp(str, "deny")) 430 return SHMEM_HUGE_DENY; 431 if (!strcmp(str, "force")) 432 return SHMEM_HUGE_FORCE; 433 return -EINVAL; 434 } 435 #endif 436 437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 438 static const char *shmem_format_huge(int huge) 439 { 440 switch (huge) { 441 case SHMEM_HUGE_NEVER: 442 return "never"; 443 case SHMEM_HUGE_ALWAYS: 444 return "always"; 445 case SHMEM_HUGE_WITHIN_SIZE: 446 return "within_size"; 447 case SHMEM_HUGE_ADVISE: 448 return "advise"; 449 case SHMEM_HUGE_DENY: 450 return "deny"; 451 case SHMEM_HUGE_FORCE: 452 return "force"; 453 default: 454 VM_BUG_ON(1); 455 return "bad_val"; 456 } 457 } 458 #endif 459 460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 461 struct shrink_control *sc, unsigned long nr_to_split) 462 { 463 LIST_HEAD(list), *pos, *next; 464 LIST_HEAD(to_remove); 465 struct inode *inode; 466 struct shmem_inode_info *info; 467 struct page *page; 468 unsigned long batch = sc ? sc->nr_to_scan : 128; 469 int removed = 0, split = 0; 470 471 if (list_empty(&sbinfo->shrinklist)) 472 return SHRINK_STOP; 473 474 spin_lock(&sbinfo->shrinklist_lock); 475 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 476 info = list_entry(pos, struct shmem_inode_info, shrinklist); 477 478 /* pin the inode */ 479 inode = igrab(&info->vfs_inode); 480 481 /* inode is about to be evicted */ 482 if (!inode) { 483 list_del_init(&info->shrinklist); 484 removed++; 485 goto next; 486 } 487 488 /* Check if there's anything to gain */ 489 if (round_up(inode->i_size, PAGE_SIZE) == 490 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 491 list_move(&info->shrinklist, &to_remove); 492 removed++; 493 goto next; 494 } 495 496 list_move(&info->shrinklist, &list); 497 next: 498 if (!--batch) 499 break; 500 } 501 spin_unlock(&sbinfo->shrinklist_lock); 502 503 list_for_each_safe(pos, next, &to_remove) { 504 info = list_entry(pos, struct shmem_inode_info, shrinklist); 505 inode = &info->vfs_inode; 506 list_del_init(&info->shrinklist); 507 iput(inode); 508 } 509 510 list_for_each_safe(pos, next, &list) { 511 int ret; 512 513 info = list_entry(pos, struct shmem_inode_info, shrinklist); 514 inode = &info->vfs_inode; 515 516 if (nr_to_split && split >= nr_to_split) 517 goto leave; 518 519 page = find_get_page(inode->i_mapping, 520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 521 if (!page) 522 goto drop; 523 524 /* No huge page at the end of the file: nothing to split */ 525 if (!PageTransHuge(page)) { 526 put_page(page); 527 goto drop; 528 } 529 530 /* 531 * Leave the inode on the list if we failed to lock 532 * the page at this time. 533 * 534 * Waiting for the lock may lead to deadlock in the 535 * reclaim path. 536 */ 537 if (!trylock_page(page)) { 538 put_page(page); 539 goto leave; 540 } 541 542 ret = split_huge_page(page); 543 unlock_page(page); 544 put_page(page); 545 546 /* If split failed leave the inode on the list */ 547 if (ret) 548 goto leave; 549 550 split++; 551 drop: 552 list_del_init(&info->shrinklist); 553 removed++; 554 leave: 555 iput(inode); 556 } 557 558 spin_lock(&sbinfo->shrinklist_lock); 559 list_splice_tail(&list, &sbinfo->shrinklist); 560 sbinfo->shrinklist_len -= removed; 561 spin_unlock(&sbinfo->shrinklist_lock); 562 563 return split; 564 } 565 566 static long shmem_unused_huge_scan(struct super_block *sb, 567 struct shrink_control *sc) 568 { 569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 570 571 if (!READ_ONCE(sbinfo->shrinklist_len)) 572 return SHRINK_STOP; 573 574 return shmem_unused_huge_shrink(sbinfo, sc, 0); 575 } 576 577 static long shmem_unused_huge_count(struct super_block *sb, 578 struct shrink_control *sc) 579 { 580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 581 return READ_ONCE(sbinfo->shrinklist_len); 582 } 583 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 584 585 #define shmem_huge SHMEM_HUGE_DENY 586 587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 588 struct shrink_control *sc, unsigned long nr_to_split) 589 { 590 return 0; 591 } 592 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 593 594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 595 { 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 598 shmem_huge != SHMEM_HUGE_DENY) 599 return true; 600 return false; 601 } 602 603 /* 604 * Like add_to_page_cache_locked, but error if expected item has gone. 605 */ 606 static int shmem_add_to_page_cache(struct page *page, 607 struct address_space *mapping, 608 pgoff_t index, void *expected, gfp_t gfp) 609 { 610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 611 unsigned long i = 0; 612 unsigned long nr = compound_nr(page); 613 614 VM_BUG_ON_PAGE(PageTail(page), page); 615 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 618 VM_BUG_ON(expected && PageTransHuge(page)); 619 620 page_ref_add(page, nr); 621 page->mapping = mapping; 622 page->index = index; 623 624 do { 625 void *entry; 626 xas_lock_irq(&xas); 627 entry = xas_find_conflict(&xas); 628 if (entry != expected) 629 xas_set_err(&xas, -EEXIST); 630 xas_create_range(&xas); 631 if (xas_error(&xas)) 632 goto unlock; 633 next: 634 xas_store(&xas, page); 635 if (++i < nr) { 636 xas_next(&xas); 637 goto next; 638 } 639 if (PageTransHuge(page)) { 640 count_vm_event(THP_FILE_ALLOC); 641 __inc_node_page_state(page, NR_SHMEM_THPS); 642 } 643 mapping->nrpages += nr; 644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 646 unlock: 647 xas_unlock_irq(&xas); 648 } while (xas_nomem(&xas, gfp)); 649 650 if (xas_error(&xas)) { 651 page->mapping = NULL; 652 page_ref_sub(page, nr); 653 return xas_error(&xas); 654 } 655 656 return 0; 657 } 658 659 /* 660 * Like delete_from_page_cache, but substitutes swap for page. 661 */ 662 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 663 { 664 struct address_space *mapping = page->mapping; 665 int error; 666 667 VM_BUG_ON_PAGE(PageCompound(page), page); 668 669 xa_lock_irq(&mapping->i_pages); 670 error = shmem_replace_entry(mapping, page->index, page, radswap); 671 page->mapping = NULL; 672 mapping->nrpages--; 673 __dec_node_page_state(page, NR_FILE_PAGES); 674 __dec_node_page_state(page, NR_SHMEM); 675 xa_unlock_irq(&mapping->i_pages); 676 put_page(page); 677 BUG_ON(error); 678 } 679 680 /* 681 * Remove swap entry from page cache, free the swap and its page cache. 682 */ 683 static int shmem_free_swap(struct address_space *mapping, 684 pgoff_t index, void *radswap) 685 { 686 void *old; 687 688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 689 if (old != radswap) 690 return -ENOENT; 691 free_swap_and_cache(radix_to_swp_entry(radswap)); 692 return 0; 693 } 694 695 /* 696 * Determine (in bytes) how many of the shmem object's pages mapped by the 697 * given offsets are swapped out. 698 * 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 700 * as long as the inode doesn't go away and racy results are not a problem. 701 */ 702 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 703 pgoff_t start, pgoff_t end) 704 { 705 XA_STATE(xas, &mapping->i_pages, start); 706 struct page *page; 707 unsigned long swapped = 0; 708 709 rcu_read_lock(); 710 xas_for_each(&xas, page, end - 1) { 711 if (xas_retry(&xas, page)) 712 continue; 713 if (xa_is_value(page)) 714 swapped++; 715 716 if (need_resched()) { 717 xas_pause(&xas); 718 cond_resched_rcu(); 719 } 720 } 721 722 rcu_read_unlock(); 723 724 return swapped << PAGE_SHIFT; 725 } 726 727 /* 728 * Determine (in bytes) how many of the shmem object's pages mapped by the 729 * given vma is swapped out. 730 * 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 732 * as long as the inode doesn't go away and racy results are not a problem. 733 */ 734 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 735 { 736 struct inode *inode = file_inode(vma->vm_file); 737 struct shmem_inode_info *info = SHMEM_I(inode); 738 struct address_space *mapping = inode->i_mapping; 739 unsigned long swapped; 740 741 /* Be careful as we don't hold info->lock */ 742 swapped = READ_ONCE(info->swapped); 743 744 /* 745 * The easier cases are when the shmem object has nothing in swap, or 746 * the vma maps it whole. Then we can simply use the stats that we 747 * already track. 748 */ 749 if (!swapped) 750 return 0; 751 752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 753 return swapped << PAGE_SHIFT; 754 755 /* Here comes the more involved part */ 756 return shmem_partial_swap_usage(mapping, 757 linear_page_index(vma, vma->vm_start), 758 linear_page_index(vma, vma->vm_end)); 759 } 760 761 /* 762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 763 */ 764 void shmem_unlock_mapping(struct address_space *mapping) 765 { 766 struct pagevec pvec; 767 pgoff_t indices[PAGEVEC_SIZE]; 768 pgoff_t index = 0; 769 770 pagevec_init(&pvec); 771 /* 772 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 773 */ 774 while (!mapping_unevictable(mapping)) { 775 /* 776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 778 */ 779 pvec.nr = find_get_entries(mapping, index, 780 PAGEVEC_SIZE, pvec.pages, indices); 781 if (!pvec.nr) 782 break; 783 index = indices[pvec.nr - 1] + 1; 784 pagevec_remove_exceptionals(&pvec); 785 check_move_unevictable_pages(&pvec); 786 pagevec_release(&pvec); 787 cond_resched(); 788 } 789 } 790 791 /* 792 * Check whether a hole-punch or truncation needs to split a huge page, 793 * returning true if no split was required, or the split has been successful. 794 * 795 * Eviction (or truncation to 0 size) should never need to split a huge page; 796 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 797 * head, and then succeeded to trylock on tail. 798 * 799 * A split can only succeed when there are no additional references on the 800 * huge page: so the split below relies upon find_get_entries() having stopped 801 * when it found a subpage of the huge page, without getting further references. 802 */ 803 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 804 { 805 if (!PageTransCompound(page)) 806 return true; 807 808 /* Just proceed to delete a huge page wholly within the range punched */ 809 if (PageHead(page) && 810 page->index >= start && page->index + HPAGE_PMD_NR <= end) 811 return true; 812 813 /* Try to split huge page, so we can truly punch the hole or truncate */ 814 return split_huge_page(page) >= 0; 815 } 816 817 /* 818 * Remove range of pages and swap entries from page cache, and free them. 819 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 820 */ 821 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 822 bool unfalloc) 823 { 824 struct address_space *mapping = inode->i_mapping; 825 struct shmem_inode_info *info = SHMEM_I(inode); 826 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 827 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 828 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 829 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 830 struct pagevec pvec; 831 pgoff_t indices[PAGEVEC_SIZE]; 832 long nr_swaps_freed = 0; 833 pgoff_t index; 834 int i; 835 836 if (lend == -1) 837 end = -1; /* unsigned, so actually very big */ 838 839 pagevec_init(&pvec); 840 index = start; 841 while (index < end) { 842 pvec.nr = find_get_entries(mapping, index, 843 min(end - index, (pgoff_t)PAGEVEC_SIZE), 844 pvec.pages, indices); 845 if (!pvec.nr) 846 break; 847 for (i = 0; i < pagevec_count(&pvec); i++) { 848 struct page *page = pvec.pages[i]; 849 850 index = indices[i]; 851 if (index >= end) 852 break; 853 854 if (xa_is_value(page)) { 855 if (unfalloc) 856 continue; 857 nr_swaps_freed += !shmem_free_swap(mapping, 858 index, page); 859 continue; 860 } 861 862 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 863 864 if (!trylock_page(page)) 865 continue; 866 867 if ((!unfalloc || !PageUptodate(page)) && 868 page_mapping(page) == mapping) { 869 VM_BUG_ON_PAGE(PageWriteback(page), page); 870 if (shmem_punch_compound(page, start, end)) 871 truncate_inode_page(mapping, page); 872 } 873 unlock_page(page); 874 } 875 pagevec_remove_exceptionals(&pvec); 876 pagevec_release(&pvec); 877 cond_resched(); 878 index++; 879 } 880 881 if (partial_start) { 882 struct page *page = NULL; 883 shmem_getpage(inode, start - 1, &page, SGP_READ); 884 if (page) { 885 unsigned int top = PAGE_SIZE; 886 if (start > end) { 887 top = partial_end; 888 partial_end = 0; 889 } 890 zero_user_segment(page, partial_start, top); 891 set_page_dirty(page); 892 unlock_page(page); 893 put_page(page); 894 } 895 } 896 if (partial_end) { 897 struct page *page = NULL; 898 shmem_getpage(inode, end, &page, SGP_READ); 899 if (page) { 900 zero_user_segment(page, 0, partial_end); 901 set_page_dirty(page); 902 unlock_page(page); 903 put_page(page); 904 } 905 } 906 if (start >= end) 907 return; 908 909 index = start; 910 while (index < end) { 911 cond_resched(); 912 913 pvec.nr = find_get_entries(mapping, index, 914 min(end - index, (pgoff_t)PAGEVEC_SIZE), 915 pvec.pages, indices); 916 if (!pvec.nr) { 917 /* If all gone or hole-punch or unfalloc, we're done */ 918 if (index == start || end != -1) 919 break; 920 /* But if truncating, restart to make sure all gone */ 921 index = start; 922 continue; 923 } 924 for (i = 0; i < pagevec_count(&pvec); i++) { 925 struct page *page = pvec.pages[i]; 926 927 index = indices[i]; 928 if (index >= end) 929 break; 930 931 if (xa_is_value(page)) { 932 if (unfalloc) 933 continue; 934 if (shmem_free_swap(mapping, index, page)) { 935 /* Swap was replaced by page: retry */ 936 index--; 937 break; 938 } 939 nr_swaps_freed++; 940 continue; 941 } 942 943 lock_page(page); 944 945 if (!unfalloc || !PageUptodate(page)) { 946 if (page_mapping(page) != mapping) { 947 /* Page was replaced by swap: retry */ 948 unlock_page(page); 949 index--; 950 break; 951 } 952 VM_BUG_ON_PAGE(PageWriteback(page), page); 953 if (shmem_punch_compound(page, start, end)) 954 truncate_inode_page(mapping, page); 955 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 956 /* Wipe the page and don't get stuck */ 957 clear_highpage(page); 958 flush_dcache_page(page); 959 set_page_dirty(page); 960 if (index < 961 round_up(start, HPAGE_PMD_NR)) 962 start = index + 1; 963 } 964 } 965 unlock_page(page); 966 } 967 pagevec_remove_exceptionals(&pvec); 968 pagevec_release(&pvec); 969 index++; 970 } 971 972 spin_lock_irq(&info->lock); 973 info->swapped -= nr_swaps_freed; 974 shmem_recalc_inode(inode); 975 spin_unlock_irq(&info->lock); 976 } 977 978 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 979 { 980 shmem_undo_range(inode, lstart, lend, false); 981 inode->i_ctime = inode->i_mtime = current_time(inode); 982 } 983 EXPORT_SYMBOL_GPL(shmem_truncate_range); 984 985 static int shmem_getattr(const struct path *path, struct kstat *stat, 986 u32 request_mask, unsigned int query_flags) 987 { 988 struct inode *inode = path->dentry->d_inode; 989 struct shmem_inode_info *info = SHMEM_I(inode); 990 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 991 992 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 993 spin_lock_irq(&info->lock); 994 shmem_recalc_inode(inode); 995 spin_unlock_irq(&info->lock); 996 } 997 generic_fillattr(inode, stat); 998 999 if (is_huge_enabled(sb_info)) 1000 stat->blksize = HPAGE_PMD_SIZE; 1001 1002 return 0; 1003 } 1004 1005 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1006 { 1007 struct inode *inode = d_inode(dentry); 1008 struct shmem_inode_info *info = SHMEM_I(inode); 1009 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1010 int error; 1011 1012 error = setattr_prepare(dentry, attr); 1013 if (error) 1014 return error; 1015 1016 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1017 loff_t oldsize = inode->i_size; 1018 loff_t newsize = attr->ia_size; 1019 1020 /* protected by i_mutex */ 1021 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1022 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1023 return -EPERM; 1024 1025 if (newsize != oldsize) { 1026 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1027 oldsize, newsize); 1028 if (error) 1029 return error; 1030 i_size_write(inode, newsize); 1031 inode->i_ctime = inode->i_mtime = current_time(inode); 1032 } 1033 if (newsize <= oldsize) { 1034 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1035 if (oldsize > holebegin) 1036 unmap_mapping_range(inode->i_mapping, 1037 holebegin, 0, 1); 1038 if (info->alloced) 1039 shmem_truncate_range(inode, 1040 newsize, (loff_t)-1); 1041 /* unmap again to remove racily COWed private pages */ 1042 if (oldsize > holebegin) 1043 unmap_mapping_range(inode->i_mapping, 1044 holebegin, 0, 1); 1045 1046 /* 1047 * Part of the huge page can be beyond i_size: subject 1048 * to shrink under memory pressure. 1049 */ 1050 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1051 spin_lock(&sbinfo->shrinklist_lock); 1052 /* 1053 * _careful to defend against unlocked access to 1054 * ->shrink_list in shmem_unused_huge_shrink() 1055 */ 1056 if (list_empty_careful(&info->shrinklist)) { 1057 list_add_tail(&info->shrinklist, 1058 &sbinfo->shrinklist); 1059 sbinfo->shrinklist_len++; 1060 } 1061 spin_unlock(&sbinfo->shrinklist_lock); 1062 } 1063 } 1064 } 1065 1066 setattr_copy(inode, attr); 1067 if (attr->ia_valid & ATTR_MODE) 1068 error = posix_acl_chmod(inode, inode->i_mode); 1069 return error; 1070 } 1071 1072 static void shmem_evict_inode(struct inode *inode) 1073 { 1074 struct shmem_inode_info *info = SHMEM_I(inode); 1075 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1076 1077 if (inode->i_mapping->a_ops == &shmem_aops) { 1078 shmem_unacct_size(info->flags, inode->i_size); 1079 inode->i_size = 0; 1080 shmem_truncate_range(inode, 0, (loff_t)-1); 1081 if (!list_empty(&info->shrinklist)) { 1082 spin_lock(&sbinfo->shrinklist_lock); 1083 if (!list_empty(&info->shrinklist)) { 1084 list_del_init(&info->shrinklist); 1085 sbinfo->shrinklist_len--; 1086 } 1087 spin_unlock(&sbinfo->shrinklist_lock); 1088 } 1089 while (!list_empty(&info->swaplist)) { 1090 /* Wait while shmem_unuse() is scanning this inode... */ 1091 wait_var_event(&info->stop_eviction, 1092 !atomic_read(&info->stop_eviction)); 1093 mutex_lock(&shmem_swaplist_mutex); 1094 /* ...but beware of the race if we peeked too early */ 1095 if (!atomic_read(&info->stop_eviction)) 1096 list_del_init(&info->swaplist); 1097 mutex_unlock(&shmem_swaplist_mutex); 1098 } 1099 } 1100 1101 simple_xattrs_free(&info->xattrs); 1102 WARN_ON(inode->i_blocks); 1103 shmem_free_inode(inode->i_sb); 1104 clear_inode(inode); 1105 } 1106 1107 extern struct swap_info_struct *swap_info[]; 1108 1109 static int shmem_find_swap_entries(struct address_space *mapping, 1110 pgoff_t start, unsigned int nr_entries, 1111 struct page **entries, pgoff_t *indices, 1112 unsigned int type, bool frontswap) 1113 { 1114 XA_STATE(xas, &mapping->i_pages, start); 1115 struct page *page; 1116 swp_entry_t entry; 1117 unsigned int ret = 0; 1118 1119 if (!nr_entries) 1120 return 0; 1121 1122 rcu_read_lock(); 1123 xas_for_each(&xas, page, ULONG_MAX) { 1124 if (xas_retry(&xas, page)) 1125 continue; 1126 1127 if (!xa_is_value(page)) 1128 continue; 1129 1130 entry = radix_to_swp_entry(page); 1131 if (swp_type(entry) != type) 1132 continue; 1133 if (frontswap && 1134 !frontswap_test(swap_info[type], swp_offset(entry))) 1135 continue; 1136 1137 indices[ret] = xas.xa_index; 1138 entries[ret] = page; 1139 1140 if (need_resched()) { 1141 xas_pause(&xas); 1142 cond_resched_rcu(); 1143 } 1144 if (++ret == nr_entries) 1145 break; 1146 } 1147 rcu_read_unlock(); 1148 1149 return ret; 1150 } 1151 1152 /* 1153 * Move the swapped pages for an inode to page cache. Returns the count 1154 * of pages swapped in, or the error in case of failure. 1155 */ 1156 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1157 pgoff_t *indices) 1158 { 1159 int i = 0; 1160 int ret = 0; 1161 int error = 0; 1162 struct address_space *mapping = inode->i_mapping; 1163 1164 for (i = 0; i < pvec.nr; i++) { 1165 struct page *page = pvec.pages[i]; 1166 1167 if (!xa_is_value(page)) 1168 continue; 1169 error = shmem_swapin_page(inode, indices[i], 1170 &page, SGP_CACHE, 1171 mapping_gfp_mask(mapping), 1172 NULL, NULL); 1173 if (error == 0) { 1174 unlock_page(page); 1175 put_page(page); 1176 ret++; 1177 } 1178 if (error == -ENOMEM) 1179 break; 1180 error = 0; 1181 } 1182 return error ? error : ret; 1183 } 1184 1185 /* 1186 * If swap found in inode, free it and move page from swapcache to filecache. 1187 */ 1188 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1189 bool frontswap, unsigned long *fs_pages_to_unuse) 1190 { 1191 struct address_space *mapping = inode->i_mapping; 1192 pgoff_t start = 0; 1193 struct pagevec pvec; 1194 pgoff_t indices[PAGEVEC_SIZE]; 1195 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1196 int ret = 0; 1197 1198 pagevec_init(&pvec); 1199 do { 1200 unsigned int nr_entries = PAGEVEC_SIZE; 1201 1202 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1203 nr_entries = *fs_pages_to_unuse; 1204 1205 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1206 pvec.pages, indices, 1207 type, frontswap); 1208 if (pvec.nr == 0) { 1209 ret = 0; 1210 break; 1211 } 1212 1213 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1214 if (ret < 0) 1215 break; 1216 1217 if (frontswap_partial) { 1218 *fs_pages_to_unuse -= ret; 1219 if (*fs_pages_to_unuse == 0) { 1220 ret = FRONTSWAP_PAGES_UNUSED; 1221 break; 1222 } 1223 } 1224 1225 start = indices[pvec.nr - 1]; 1226 } while (true); 1227 1228 return ret; 1229 } 1230 1231 /* 1232 * Read all the shared memory data that resides in the swap 1233 * device 'type' back into memory, so the swap device can be 1234 * unused. 1235 */ 1236 int shmem_unuse(unsigned int type, bool frontswap, 1237 unsigned long *fs_pages_to_unuse) 1238 { 1239 struct shmem_inode_info *info, *next; 1240 int error = 0; 1241 1242 if (list_empty(&shmem_swaplist)) 1243 return 0; 1244 1245 mutex_lock(&shmem_swaplist_mutex); 1246 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1247 if (!info->swapped) { 1248 list_del_init(&info->swaplist); 1249 continue; 1250 } 1251 /* 1252 * Drop the swaplist mutex while searching the inode for swap; 1253 * but before doing so, make sure shmem_evict_inode() will not 1254 * remove placeholder inode from swaplist, nor let it be freed 1255 * (igrab() would protect from unlink, but not from unmount). 1256 */ 1257 atomic_inc(&info->stop_eviction); 1258 mutex_unlock(&shmem_swaplist_mutex); 1259 1260 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1261 fs_pages_to_unuse); 1262 cond_resched(); 1263 1264 mutex_lock(&shmem_swaplist_mutex); 1265 next = list_next_entry(info, swaplist); 1266 if (!info->swapped) 1267 list_del_init(&info->swaplist); 1268 if (atomic_dec_and_test(&info->stop_eviction)) 1269 wake_up_var(&info->stop_eviction); 1270 if (error) 1271 break; 1272 } 1273 mutex_unlock(&shmem_swaplist_mutex); 1274 1275 return error; 1276 } 1277 1278 /* 1279 * Move the page from the page cache to the swap cache. 1280 */ 1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1282 { 1283 struct shmem_inode_info *info; 1284 struct address_space *mapping; 1285 struct inode *inode; 1286 swp_entry_t swap; 1287 pgoff_t index; 1288 1289 VM_BUG_ON_PAGE(PageCompound(page), page); 1290 BUG_ON(!PageLocked(page)); 1291 mapping = page->mapping; 1292 index = page->index; 1293 inode = mapping->host; 1294 info = SHMEM_I(inode); 1295 if (info->flags & VM_LOCKED) 1296 goto redirty; 1297 if (!total_swap_pages) 1298 goto redirty; 1299 1300 /* 1301 * Our capabilities prevent regular writeback or sync from ever calling 1302 * shmem_writepage; but a stacking filesystem might use ->writepage of 1303 * its underlying filesystem, in which case tmpfs should write out to 1304 * swap only in response to memory pressure, and not for the writeback 1305 * threads or sync. 1306 */ 1307 if (!wbc->for_reclaim) { 1308 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1309 goto redirty; 1310 } 1311 1312 /* 1313 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1314 * value into swapfile.c, the only way we can correctly account for a 1315 * fallocated page arriving here is now to initialize it and write it. 1316 * 1317 * That's okay for a page already fallocated earlier, but if we have 1318 * not yet completed the fallocation, then (a) we want to keep track 1319 * of this page in case we have to undo it, and (b) it may not be a 1320 * good idea to continue anyway, once we're pushing into swap. So 1321 * reactivate the page, and let shmem_fallocate() quit when too many. 1322 */ 1323 if (!PageUptodate(page)) { 1324 if (inode->i_private) { 1325 struct shmem_falloc *shmem_falloc; 1326 spin_lock(&inode->i_lock); 1327 shmem_falloc = inode->i_private; 1328 if (shmem_falloc && 1329 !shmem_falloc->waitq && 1330 index >= shmem_falloc->start && 1331 index < shmem_falloc->next) 1332 shmem_falloc->nr_unswapped++; 1333 else 1334 shmem_falloc = NULL; 1335 spin_unlock(&inode->i_lock); 1336 if (shmem_falloc) 1337 goto redirty; 1338 } 1339 clear_highpage(page); 1340 flush_dcache_page(page); 1341 SetPageUptodate(page); 1342 } 1343 1344 swap = get_swap_page(page); 1345 if (!swap.val) 1346 goto redirty; 1347 1348 /* 1349 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1350 * if it's not already there. Do it now before the page is 1351 * moved to swap cache, when its pagelock no longer protects 1352 * the inode from eviction. But don't unlock the mutex until 1353 * we've incremented swapped, because shmem_unuse_inode() will 1354 * prune a !swapped inode from the swaplist under this mutex. 1355 */ 1356 mutex_lock(&shmem_swaplist_mutex); 1357 if (list_empty(&info->swaplist)) 1358 list_add(&info->swaplist, &shmem_swaplist); 1359 1360 if (add_to_swap_cache(page, swap, 1361 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN) == 0) { 1362 spin_lock_irq(&info->lock); 1363 shmem_recalc_inode(inode); 1364 info->swapped++; 1365 spin_unlock_irq(&info->lock); 1366 1367 swap_shmem_alloc(swap); 1368 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1369 1370 mutex_unlock(&shmem_swaplist_mutex); 1371 BUG_ON(page_mapped(page)); 1372 swap_writepage(page, wbc); 1373 return 0; 1374 } 1375 1376 mutex_unlock(&shmem_swaplist_mutex); 1377 put_swap_page(page, swap); 1378 redirty: 1379 set_page_dirty(page); 1380 if (wbc->for_reclaim) 1381 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1382 unlock_page(page); 1383 return 0; 1384 } 1385 1386 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1387 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1388 { 1389 char buffer[64]; 1390 1391 if (!mpol || mpol->mode == MPOL_DEFAULT) 1392 return; /* show nothing */ 1393 1394 mpol_to_str(buffer, sizeof(buffer), mpol); 1395 1396 seq_printf(seq, ",mpol=%s", buffer); 1397 } 1398 1399 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1400 { 1401 struct mempolicy *mpol = NULL; 1402 if (sbinfo->mpol) { 1403 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1404 mpol = sbinfo->mpol; 1405 mpol_get(mpol); 1406 spin_unlock(&sbinfo->stat_lock); 1407 } 1408 return mpol; 1409 } 1410 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1411 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1412 { 1413 } 1414 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1415 { 1416 return NULL; 1417 } 1418 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1419 #ifndef CONFIG_NUMA 1420 #define vm_policy vm_private_data 1421 #endif 1422 1423 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1424 struct shmem_inode_info *info, pgoff_t index) 1425 { 1426 /* Create a pseudo vma that just contains the policy */ 1427 vma_init(vma, NULL); 1428 /* Bias interleave by inode number to distribute better across nodes */ 1429 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1430 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1431 } 1432 1433 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1434 { 1435 /* Drop reference taken by mpol_shared_policy_lookup() */ 1436 mpol_cond_put(vma->vm_policy); 1437 } 1438 1439 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1440 struct shmem_inode_info *info, pgoff_t index) 1441 { 1442 struct vm_area_struct pvma; 1443 struct page *page; 1444 struct vm_fault vmf; 1445 1446 shmem_pseudo_vma_init(&pvma, info, index); 1447 vmf.vma = &pvma; 1448 vmf.address = 0; 1449 page = swap_cluster_readahead(swap, gfp, &vmf); 1450 shmem_pseudo_vma_destroy(&pvma); 1451 1452 return page; 1453 } 1454 1455 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1456 struct shmem_inode_info *info, pgoff_t index) 1457 { 1458 struct vm_area_struct pvma; 1459 struct address_space *mapping = info->vfs_inode.i_mapping; 1460 pgoff_t hindex; 1461 struct page *page; 1462 1463 hindex = round_down(index, HPAGE_PMD_NR); 1464 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1465 XA_PRESENT)) 1466 return NULL; 1467 1468 shmem_pseudo_vma_init(&pvma, info, hindex); 1469 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1470 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1471 shmem_pseudo_vma_destroy(&pvma); 1472 if (page) 1473 prep_transhuge_page(page); 1474 else 1475 count_vm_event(THP_FILE_FALLBACK); 1476 return page; 1477 } 1478 1479 static struct page *shmem_alloc_page(gfp_t gfp, 1480 struct shmem_inode_info *info, pgoff_t index) 1481 { 1482 struct vm_area_struct pvma; 1483 struct page *page; 1484 1485 shmem_pseudo_vma_init(&pvma, info, index); 1486 page = alloc_page_vma(gfp, &pvma, 0); 1487 shmem_pseudo_vma_destroy(&pvma); 1488 1489 return page; 1490 } 1491 1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1493 struct inode *inode, 1494 pgoff_t index, bool huge) 1495 { 1496 struct shmem_inode_info *info = SHMEM_I(inode); 1497 struct page *page; 1498 int nr; 1499 int err = -ENOSPC; 1500 1501 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1502 huge = false; 1503 nr = huge ? HPAGE_PMD_NR : 1; 1504 1505 if (!shmem_inode_acct_block(inode, nr)) 1506 goto failed; 1507 1508 if (huge) 1509 page = shmem_alloc_hugepage(gfp, info, index); 1510 else 1511 page = shmem_alloc_page(gfp, info, index); 1512 if (page) { 1513 __SetPageLocked(page); 1514 __SetPageSwapBacked(page); 1515 return page; 1516 } 1517 1518 err = -ENOMEM; 1519 shmem_inode_unacct_blocks(inode, nr); 1520 failed: 1521 return ERR_PTR(err); 1522 } 1523 1524 /* 1525 * When a page is moved from swapcache to shmem filecache (either by the 1526 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1527 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1528 * ignorance of the mapping it belongs to. If that mapping has special 1529 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1530 * we may need to copy to a suitable page before moving to filecache. 1531 * 1532 * In a future release, this may well be extended to respect cpuset and 1533 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1534 * but for now it is a simple matter of zone. 1535 */ 1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1537 { 1538 return page_zonenum(page) > gfp_zone(gfp); 1539 } 1540 1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1542 struct shmem_inode_info *info, pgoff_t index) 1543 { 1544 struct page *oldpage, *newpage; 1545 struct address_space *swap_mapping; 1546 swp_entry_t entry; 1547 pgoff_t swap_index; 1548 int error; 1549 1550 oldpage = *pagep; 1551 entry.val = page_private(oldpage); 1552 swap_index = swp_offset(entry); 1553 swap_mapping = page_mapping(oldpage); 1554 1555 /* 1556 * We have arrived here because our zones are constrained, so don't 1557 * limit chance of success by further cpuset and node constraints. 1558 */ 1559 gfp &= ~GFP_CONSTRAINT_MASK; 1560 newpage = shmem_alloc_page(gfp, info, index); 1561 if (!newpage) 1562 return -ENOMEM; 1563 1564 get_page(newpage); 1565 copy_highpage(newpage, oldpage); 1566 flush_dcache_page(newpage); 1567 1568 __SetPageLocked(newpage); 1569 __SetPageSwapBacked(newpage); 1570 SetPageUptodate(newpage); 1571 set_page_private(newpage, entry.val); 1572 SetPageSwapCache(newpage); 1573 1574 /* 1575 * Our caller will very soon move newpage out of swapcache, but it's 1576 * a nice clean interface for us to replace oldpage by newpage there. 1577 */ 1578 xa_lock_irq(&swap_mapping->i_pages); 1579 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1580 if (!error) { 1581 __inc_node_page_state(newpage, NR_FILE_PAGES); 1582 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1583 } 1584 xa_unlock_irq(&swap_mapping->i_pages); 1585 1586 if (unlikely(error)) { 1587 /* 1588 * Is this possible? I think not, now that our callers check 1589 * both PageSwapCache and page_private after getting page lock; 1590 * but be defensive. Reverse old to newpage for clear and free. 1591 */ 1592 oldpage = newpage; 1593 } else { 1594 mem_cgroup_migrate(oldpage, newpage); 1595 lru_cache_add_anon(newpage); 1596 *pagep = newpage; 1597 } 1598 1599 ClearPageSwapCache(oldpage); 1600 set_page_private(oldpage, 0); 1601 1602 unlock_page(oldpage); 1603 put_page(oldpage); 1604 put_page(oldpage); 1605 return error; 1606 } 1607 1608 /* 1609 * Swap in the page pointed to by *pagep. 1610 * Caller has to make sure that *pagep contains a valid swapped page. 1611 * Returns 0 and the page in pagep if success. On failure, returns the 1612 * the error code and NULL in *pagep. 1613 */ 1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1615 struct page **pagep, enum sgp_type sgp, 1616 gfp_t gfp, struct vm_area_struct *vma, 1617 vm_fault_t *fault_type) 1618 { 1619 struct address_space *mapping = inode->i_mapping; 1620 struct shmem_inode_info *info = SHMEM_I(inode); 1621 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1622 struct mem_cgroup *memcg; 1623 struct page *page; 1624 swp_entry_t swap; 1625 int error; 1626 1627 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1628 swap = radix_to_swp_entry(*pagep); 1629 *pagep = NULL; 1630 1631 /* Look it up and read it in.. */ 1632 page = lookup_swap_cache(swap, NULL, 0); 1633 if (!page) { 1634 /* Or update major stats only when swapin succeeds?? */ 1635 if (fault_type) { 1636 *fault_type |= VM_FAULT_MAJOR; 1637 count_vm_event(PGMAJFAULT); 1638 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1639 } 1640 /* Here we actually start the io */ 1641 page = shmem_swapin(swap, gfp, info, index); 1642 if (!page) { 1643 error = -ENOMEM; 1644 goto failed; 1645 } 1646 } 1647 1648 /* We have to do this with page locked to prevent races */ 1649 lock_page(page); 1650 if (!PageSwapCache(page) || page_private(page) != swap.val || 1651 !shmem_confirm_swap(mapping, index, swap)) { 1652 error = -EEXIST; 1653 goto unlock; 1654 } 1655 if (!PageUptodate(page)) { 1656 error = -EIO; 1657 goto failed; 1658 } 1659 wait_on_page_writeback(page); 1660 1661 if (shmem_should_replace_page(page, gfp)) { 1662 error = shmem_replace_page(&page, gfp, info, index); 1663 if (error) 1664 goto failed; 1665 } 1666 1667 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1668 false); 1669 if (!error) { 1670 error = shmem_add_to_page_cache(page, mapping, index, 1671 swp_to_radix_entry(swap), gfp); 1672 /* 1673 * We already confirmed swap under page lock, and make 1674 * no memory allocation here, so usually no possibility 1675 * of error; but free_swap_and_cache() only trylocks a 1676 * page, so it is just possible that the entry has been 1677 * truncated or holepunched since swap was confirmed. 1678 * shmem_undo_range() will have done some of the 1679 * unaccounting, now delete_from_swap_cache() will do 1680 * the rest. 1681 */ 1682 if (error) { 1683 mem_cgroup_cancel_charge(page, memcg, false); 1684 delete_from_swap_cache(page); 1685 } 1686 } 1687 if (error) 1688 goto failed; 1689 1690 mem_cgroup_commit_charge(page, memcg, true, false); 1691 1692 spin_lock_irq(&info->lock); 1693 info->swapped--; 1694 shmem_recalc_inode(inode); 1695 spin_unlock_irq(&info->lock); 1696 1697 if (sgp == SGP_WRITE) 1698 mark_page_accessed(page); 1699 1700 delete_from_swap_cache(page); 1701 set_page_dirty(page); 1702 swap_free(swap); 1703 1704 *pagep = page; 1705 return 0; 1706 failed: 1707 if (!shmem_confirm_swap(mapping, index, swap)) 1708 error = -EEXIST; 1709 unlock: 1710 if (page) { 1711 unlock_page(page); 1712 put_page(page); 1713 } 1714 1715 return error; 1716 } 1717 1718 /* 1719 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1720 * 1721 * If we allocate a new one we do not mark it dirty. That's up to the 1722 * vm. If we swap it in we mark it dirty since we also free the swap 1723 * entry since a page cannot live in both the swap and page cache. 1724 * 1725 * vmf and fault_type are only supplied by shmem_fault: 1726 * otherwise they are NULL. 1727 */ 1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1729 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1730 struct vm_area_struct *vma, struct vm_fault *vmf, 1731 vm_fault_t *fault_type) 1732 { 1733 struct address_space *mapping = inode->i_mapping; 1734 struct shmem_inode_info *info = SHMEM_I(inode); 1735 struct shmem_sb_info *sbinfo; 1736 struct mm_struct *charge_mm; 1737 struct mem_cgroup *memcg; 1738 struct page *page; 1739 enum sgp_type sgp_huge = sgp; 1740 pgoff_t hindex = index; 1741 int error; 1742 int once = 0; 1743 int alloced = 0; 1744 1745 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1746 return -EFBIG; 1747 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1748 sgp = SGP_CACHE; 1749 repeat: 1750 if (sgp <= SGP_CACHE && 1751 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1752 return -EINVAL; 1753 } 1754 1755 sbinfo = SHMEM_SB(inode->i_sb); 1756 charge_mm = vma ? vma->vm_mm : current->mm; 1757 1758 page = find_lock_entry(mapping, index); 1759 if (xa_is_value(page)) { 1760 error = shmem_swapin_page(inode, index, &page, 1761 sgp, gfp, vma, fault_type); 1762 if (error == -EEXIST) 1763 goto repeat; 1764 1765 *pagep = page; 1766 return error; 1767 } 1768 1769 if (page && sgp == SGP_WRITE) 1770 mark_page_accessed(page); 1771 1772 /* fallocated page? */ 1773 if (page && !PageUptodate(page)) { 1774 if (sgp != SGP_READ) 1775 goto clear; 1776 unlock_page(page); 1777 put_page(page); 1778 page = NULL; 1779 } 1780 if (page || sgp == SGP_READ) { 1781 *pagep = page; 1782 return 0; 1783 } 1784 1785 /* 1786 * Fast cache lookup did not find it: 1787 * bring it back from swap or allocate. 1788 */ 1789 1790 if (vma && userfaultfd_missing(vma)) { 1791 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1792 return 0; 1793 } 1794 1795 /* shmem_symlink() */ 1796 if (mapping->a_ops != &shmem_aops) 1797 goto alloc_nohuge; 1798 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1799 goto alloc_nohuge; 1800 if (shmem_huge == SHMEM_HUGE_FORCE) 1801 goto alloc_huge; 1802 switch (sbinfo->huge) { 1803 case SHMEM_HUGE_NEVER: 1804 goto alloc_nohuge; 1805 case SHMEM_HUGE_WITHIN_SIZE: { 1806 loff_t i_size; 1807 pgoff_t off; 1808 1809 off = round_up(index, HPAGE_PMD_NR); 1810 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1811 if (i_size >= HPAGE_PMD_SIZE && 1812 i_size >> PAGE_SHIFT >= off) 1813 goto alloc_huge; 1814 1815 fallthrough; 1816 } 1817 case SHMEM_HUGE_ADVISE: 1818 if (sgp_huge == SGP_HUGE) 1819 goto alloc_huge; 1820 /* TODO: implement fadvise() hints */ 1821 goto alloc_nohuge; 1822 } 1823 1824 alloc_huge: 1825 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1826 if (IS_ERR(page)) { 1827 alloc_nohuge: 1828 page = shmem_alloc_and_acct_page(gfp, inode, 1829 index, false); 1830 } 1831 if (IS_ERR(page)) { 1832 int retry = 5; 1833 1834 error = PTR_ERR(page); 1835 page = NULL; 1836 if (error != -ENOSPC) 1837 goto unlock; 1838 /* 1839 * Try to reclaim some space by splitting a huge page 1840 * beyond i_size on the filesystem. 1841 */ 1842 while (retry--) { 1843 int ret; 1844 1845 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1846 if (ret == SHRINK_STOP) 1847 break; 1848 if (ret) 1849 goto alloc_nohuge; 1850 } 1851 goto unlock; 1852 } 1853 1854 if (PageTransHuge(page)) 1855 hindex = round_down(index, HPAGE_PMD_NR); 1856 else 1857 hindex = index; 1858 1859 if (sgp == SGP_WRITE) 1860 __SetPageReferenced(page); 1861 1862 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1863 PageTransHuge(page)); 1864 if (error) { 1865 if (PageTransHuge(page)) { 1866 count_vm_event(THP_FILE_FALLBACK); 1867 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1868 } 1869 goto unacct; 1870 } 1871 error = shmem_add_to_page_cache(page, mapping, hindex, 1872 NULL, gfp & GFP_RECLAIM_MASK); 1873 if (error) { 1874 mem_cgroup_cancel_charge(page, memcg, 1875 PageTransHuge(page)); 1876 goto unacct; 1877 } 1878 mem_cgroup_commit_charge(page, memcg, false, 1879 PageTransHuge(page)); 1880 lru_cache_add_anon(page); 1881 1882 spin_lock_irq(&info->lock); 1883 info->alloced += compound_nr(page); 1884 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1885 shmem_recalc_inode(inode); 1886 spin_unlock_irq(&info->lock); 1887 alloced = true; 1888 1889 if (PageTransHuge(page) && 1890 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1891 hindex + HPAGE_PMD_NR - 1) { 1892 /* 1893 * Part of the huge page is beyond i_size: subject 1894 * to shrink under memory pressure. 1895 */ 1896 spin_lock(&sbinfo->shrinklist_lock); 1897 /* 1898 * _careful to defend against unlocked access to 1899 * ->shrink_list in shmem_unused_huge_shrink() 1900 */ 1901 if (list_empty_careful(&info->shrinklist)) { 1902 list_add_tail(&info->shrinklist, 1903 &sbinfo->shrinklist); 1904 sbinfo->shrinklist_len++; 1905 } 1906 spin_unlock(&sbinfo->shrinklist_lock); 1907 } 1908 1909 /* 1910 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1911 */ 1912 if (sgp == SGP_FALLOC) 1913 sgp = SGP_WRITE; 1914 clear: 1915 /* 1916 * Let SGP_WRITE caller clear ends if write does not fill page; 1917 * but SGP_FALLOC on a page fallocated earlier must initialize 1918 * it now, lest undo on failure cancel our earlier guarantee. 1919 */ 1920 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1921 struct page *head = compound_head(page); 1922 int i; 1923 1924 for (i = 0; i < compound_nr(head); i++) { 1925 clear_highpage(head + i); 1926 flush_dcache_page(head + i); 1927 } 1928 SetPageUptodate(head); 1929 } 1930 1931 /* Perhaps the file has been truncated since we checked */ 1932 if (sgp <= SGP_CACHE && 1933 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1934 if (alloced) { 1935 ClearPageDirty(page); 1936 delete_from_page_cache(page); 1937 spin_lock_irq(&info->lock); 1938 shmem_recalc_inode(inode); 1939 spin_unlock_irq(&info->lock); 1940 } 1941 error = -EINVAL; 1942 goto unlock; 1943 } 1944 *pagep = page + index - hindex; 1945 return 0; 1946 1947 /* 1948 * Error recovery. 1949 */ 1950 unacct: 1951 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1952 1953 if (PageTransHuge(page)) { 1954 unlock_page(page); 1955 put_page(page); 1956 goto alloc_nohuge; 1957 } 1958 unlock: 1959 if (page) { 1960 unlock_page(page); 1961 put_page(page); 1962 } 1963 if (error == -ENOSPC && !once++) { 1964 spin_lock_irq(&info->lock); 1965 shmem_recalc_inode(inode); 1966 spin_unlock_irq(&info->lock); 1967 goto repeat; 1968 } 1969 if (error == -EEXIST) 1970 goto repeat; 1971 return error; 1972 } 1973 1974 /* 1975 * This is like autoremove_wake_function, but it removes the wait queue 1976 * entry unconditionally - even if something else had already woken the 1977 * target. 1978 */ 1979 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1980 { 1981 int ret = default_wake_function(wait, mode, sync, key); 1982 list_del_init(&wait->entry); 1983 return ret; 1984 } 1985 1986 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1987 { 1988 struct vm_area_struct *vma = vmf->vma; 1989 struct inode *inode = file_inode(vma->vm_file); 1990 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1991 enum sgp_type sgp; 1992 int err; 1993 vm_fault_t ret = VM_FAULT_LOCKED; 1994 1995 /* 1996 * Trinity finds that probing a hole which tmpfs is punching can 1997 * prevent the hole-punch from ever completing: which in turn 1998 * locks writers out with its hold on i_mutex. So refrain from 1999 * faulting pages into the hole while it's being punched. Although 2000 * shmem_undo_range() does remove the additions, it may be unable to 2001 * keep up, as each new page needs its own unmap_mapping_range() call, 2002 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2003 * 2004 * It does not matter if we sometimes reach this check just before the 2005 * hole-punch begins, so that one fault then races with the punch: 2006 * we just need to make racing faults a rare case. 2007 * 2008 * The implementation below would be much simpler if we just used a 2009 * standard mutex or completion: but we cannot take i_mutex in fault, 2010 * and bloating every shmem inode for this unlikely case would be sad. 2011 */ 2012 if (unlikely(inode->i_private)) { 2013 struct shmem_falloc *shmem_falloc; 2014 2015 spin_lock(&inode->i_lock); 2016 shmem_falloc = inode->i_private; 2017 if (shmem_falloc && 2018 shmem_falloc->waitq && 2019 vmf->pgoff >= shmem_falloc->start && 2020 vmf->pgoff < shmem_falloc->next) { 2021 struct file *fpin; 2022 wait_queue_head_t *shmem_falloc_waitq; 2023 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2024 2025 ret = VM_FAULT_NOPAGE; 2026 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2027 if (fpin) 2028 ret = VM_FAULT_RETRY; 2029 2030 shmem_falloc_waitq = shmem_falloc->waitq; 2031 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2032 TASK_UNINTERRUPTIBLE); 2033 spin_unlock(&inode->i_lock); 2034 schedule(); 2035 2036 /* 2037 * shmem_falloc_waitq points into the shmem_fallocate() 2038 * stack of the hole-punching task: shmem_falloc_waitq 2039 * is usually invalid by the time we reach here, but 2040 * finish_wait() does not dereference it in that case; 2041 * though i_lock needed lest racing with wake_up_all(). 2042 */ 2043 spin_lock(&inode->i_lock); 2044 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2045 spin_unlock(&inode->i_lock); 2046 2047 if (fpin) 2048 fput(fpin); 2049 return ret; 2050 } 2051 spin_unlock(&inode->i_lock); 2052 } 2053 2054 sgp = SGP_CACHE; 2055 2056 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2057 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2058 sgp = SGP_NOHUGE; 2059 else if (vma->vm_flags & VM_HUGEPAGE) 2060 sgp = SGP_HUGE; 2061 2062 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2063 gfp, vma, vmf, &ret); 2064 if (err) 2065 return vmf_error(err); 2066 return ret; 2067 } 2068 2069 unsigned long shmem_get_unmapped_area(struct file *file, 2070 unsigned long uaddr, unsigned long len, 2071 unsigned long pgoff, unsigned long flags) 2072 { 2073 unsigned long (*get_area)(struct file *, 2074 unsigned long, unsigned long, unsigned long, unsigned long); 2075 unsigned long addr; 2076 unsigned long offset; 2077 unsigned long inflated_len; 2078 unsigned long inflated_addr; 2079 unsigned long inflated_offset; 2080 2081 if (len > TASK_SIZE) 2082 return -ENOMEM; 2083 2084 get_area = current->mm->get_unmapped_area; 2085 addr = get_area(file, uaddr, len, pgoff, flags); 2086 2087 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2088 return addr; 2089 if (IS_ERR_VALUE(addr)) 2090 return addr; 2091 if (addr & ~PAGE_MASK) 2092 return addr; 2093 if (addr > TASK_SIZE - len) 2094 return addr; 2095 2096 if (shmem_huge == SHMEM_HUGE_DENY) 2097 return addr; 2098 if (len < HPAGE_PMD_SIZE) 2099 return addr; 2100 if (flags & MAP_FIXED) 2101 return addr; 2102 /* 2103 * Our priority is to support MAP_SHARED mapped hugely; 2104 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2105 * But if caller specified an address hint and we allocated area there 2106 * successfully, respect that as before. 2107 */ 2108 if (uaddr == addr) 2109 return addr; 2110 2111 if (shmem_huge != SHMEM_HUGE_FORCE) { 2112 struct super_block *sb; 2113 2114 if (file) { 2115 VM_BUG_ON(file->f_op != &shmem_file_operations); 2116 sb = file_inode(file)->i_sb; 2117 } else { 2118 /* 2119 * Called directly from mm/mmap.c, or drivers/char/mem.c 2120 * for "/dev/zero", to create a shared anonymous object. 2121 */ 2122 if (IS_ERR(shm_mnt)) 2123 return addr; 2124 sb = shm_mnt->mnt_sb; 2125 } 2126 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2127 return addr; 2128 } 2129 2130 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2131 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2132 return addr; 2133 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2134 return addr; 2135 2136 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2137 if (inflated_len > TASK_SIZE) 2138 return addr; 2139 if (inflated_len < len) 2140 return addr; 2141 2142 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2143 if (IS_ERR_VALUE(inflated_addr)) 2144 return addr; 2145 if (inflated_addr & ~PAGE_MASK) 2146 return addr; 2147 2148 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2149 inflated_addr += offset - inflated_offset; 2150 if (inflated_offset > offset) 2151 inflated_addr += HPAGE_PMD_SIZE; 2152 2153 if (inflated_addr > TASK_SIZE - len) 2154 return addr; 2155 return inflated_addr; 2156 } 2157 2158 #ifdef CONFIG_NUMA 2159 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2160 { 2161 struct inode *inode = file_inode(vma->vm_file); 2162 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2163 } 2164 2165 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2166 unsigned long addr) 2167 { 2168 struct inode *inode = file_inode(vma->vm_file); 2169 pgoff_t index; 2170 2171 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2172 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2173 } 2174 #endif 2175 2176 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2177 { 2178 struct inode *inode = file_inode(file); 2179 struct shmem_inode_info *info = SHMEM_I(inode); 2180 int retval = -ENOMEM; 2181 2182 /* 2183 * What serializes the accesses to info->flags? 2184 * ipc_lock_object() when called from shmctl_do_lock(), 2185 * no serialization needed when called from shm_destroy(). 2186 */ 2187 if (lock && !(info->flags & VM_LOCKED)) { 2188 if (!user_shm_lock(inode->i_size, user)) 2189 goto out_nomem; 2190 info->flags |= VM_LOCKED; 2191 mapping_set_unevictable(file->f_mapping); 2192 } 2193 if (!lock && (info->flags & VM_LOCKED) && user) { 2194 user_shm_unlock(inode->i_size, user); 2195 info->flags &= ~VM_LOCKED; 2196 mapping_clear_unevictable(file->f_mapping); 2197 } 2198 retval = 0; 2199 2200 out_nomem: 2201 return retval; 2202 } 2203 2204 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2205 { 2206 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2207 2208 if (info->seals & F_SEAL_FUTURE_WRITE) { 2209 /* 2210 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2211 * "future write" seal active. 2212 */ 2213 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2214 return -EPERM; 2215 2216 /* 2217 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2218 * MAP_SHARED and read-only, take care to not allow mprotect to 2219 * revert protections on such mappings. Do this only for shared 2220 * mappings. For private mappings, don't need to mask 2221 * VM_MAYWRITE as we still want them to be COW-writable. 2222 */ 2223 if (vma->vm_flags & VM_SHARED) 2224 vma->vm_flags &= ~(VM_MAYWRITE); 2225 } 2226 2227 file_accessed(file); 2228 vma->vm_ops = &shmem_vm_ops; 2229 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2230 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2231 (vma->vm_end & HPAGE_PMD_MASK)) { 2232 khugepaged_enter(vma, vma->vm_flags); 2233 } 2234 return 0; 2235 } 2236 2237 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2238 umode_t mode, dev_t dev, unsigned long flags) 2239 { 2240 struct inode *inode; 2241 struct shmem_inode_info *info; 2242 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2243 2244 if (shmem_reserve_inode(sb)) 2245 return NULL; 2246 2247 inode = new_inode(sb); 2248 if (inode) { 2249 inode->i_ino = get_next_ino(); 2250 inode_init_owner(inode, dir, mode); 2251 inode->i_blocks = 0; 2252 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2253 inode->i_generation = prandom_u32(); 2254 info = SHMEM_I(inode); 2255 memset(info, 0, (char *)inode - (char *)info); 2256 spin_lock_init(&info->lock); 2257 atomic_set(&info->stop_eviction, 0); 2258 info->seals = F_SEAL_SEAL; 2259 info->flags = flags & VM_NORESERVE; 2260 INIT_LIST_HEAD(&info->shrinklist); 2261 INIT_LIST_HEAD(&info->swaplist); 2262 simple_xattrs_init(&info->xattrs); 2263 cache_no_acl(inode); 2264 2265 switch (mode & S_IFMT) { 2266 default: 2267 inode->i_op = &shmem_special_inode_operations; 2268 init_special_inode(inode, mode, dev); 2269 break; 2270 case S_IFREG: 2271 inode->i_mapping->a_ops = &shmem_aops; 2272 inode->i_op = &shmem_inode_operations; 2273 inode->i_fop = &shmem_file_operations; 2274 mpol_shared_policy_init(&info->policy, 2275 shmem_get_sbmpol(sbinfo)); 2276 break; 2277 case S_IFDIR: 2278 inc_nlink(inode); 2279 /* Some things misbehave if size == 0 on a directory */ 2280 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2281 inode->i_op = &shmem_dir_inode_operations; 2282 inode->i_fop = &simple_dir_operations; 2283 break; 2284 case S_IFLNK: 2285 /* 2286 * Must not load anything in the rbtree, 2287 * mpol_free_shared_policy will not be called. 2288 */ 2289 mpol_shared_policy_init(&info->policy, NULL); 2290 break; 2291 } 2292 2293 lockdep_annotate_inode_mutex_key(inode); 2294 } else 2295 shmem_free_inode(sb); 2296 return inode; 2297 } 2298 2299 bool shmem_mapping(struct address_space *mapping) 2300 { 2301 return mapping->a_ops == &shmem_aops; 2302 } 2303 2304 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2305 pmd_t *dst_pmd, 2306 struct vm_area_struct *dst_vma, 2307 unsigned long dst_addr, 2308 unsigned long src_addr, 2309 bool zeropage, 2310 struct page **pagep) 2311 { 2312 struct inode *inode = file_inode(dst_vma->vm_file); 2313 struct shmem_inode_info *info = SHMEM_I(inode); 2314 struct address_space *mapping = inode->i_mapping; 2315 gfp_t gfp = mapping_gfp_mask(mapping); 2316 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2317 struct mem_cgroup *memcg; 2318 spinlock_t *ptl; 2319 void *page_kaddr; 2320 struct page *page; 2321 pte_t _dst_pte, *dst_pte; 2322 int ret; 2323 pgoff_t offset, max_off; 2324 2325 ret = -ENOMEM; 2326 if (!shmem_inode_acct_block(inode, 1)) 2327 goto out; 2328 2329 if (!*pagep) { 2330 page = shmem_alloc_page(gfp, info, pgoff); 2331 if (!page) 2332 goto out_unacct_blocks; 2333 2334 if (!zeropage) { /* mcopy_atomic */ 2335 page_kaddr = kmap_atomic(page); 2336 ret = copy_from_user(page_kaddr, 2337 (const void __user *)src_addr, 2338 PAGE_SIZE); 2339 kunmap_atomic(page_kaddr); 2340 2341 /* fallback to copy_from_user outside mmap_sem */ 2342 if (unlikely(ret)) { 2343 *pagep = page; 2344 shmem_inode_unacct_blocks(inode, 1); 2345 /* don't free the page */ 2346 return -ENOENT; 2347 } 2348 } else { /* mfill_zeropage_atomic */ 2349 clear_highpage(page); 2350 } 2351 } else { 2352 page = *pagep; 2353 *pagep = NULL; 2354 } 2355 2356 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2357 __SetPageLocked(page); 2358 __SetPageSwapBacked(page); 2359 __SetPageUptodate(page); 2360 2361 ret = -EFAULT; 2362 offset = linear_page_index(dst_vma, dst_addr); 2363 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2364 if (unlikely(offset >= max_off)) 2365 goto out_release; 2366 2367 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2368 if (ret) 2369 goto out_release; 2370 2371 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2372 gfp & GFP_RECLAIM_MASK); 2373 if (ret) 2374 goto out_release_uncharge; 2375 2376 mem_cgroup_commit_charge(page, memcg, false, false); 2377 2378 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2379 if (dst_vma->vm_flags & VM_WRITE) 2380 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2381 else { 2382 /* 2383 * We don't set the pte dirty if the vma has no 2384 * VM_WRITE permission, so mark the page dirty or it 2385 * could be freed from under us. We could do it 2386 * unconditionally before unlock_page(), but doing it 2387 * only if VM_WRITE is not set is faster. 2388 */ 2389 set_page_dirty(page); 2390 } 2391 2392 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2393 2394 ret = -EFAULT; 2395 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2396 if (unlikely(offset >= max_off)) 2397 goto out_release_uncharge_unlock; 2398 2399 ret = -EEXIST; 2400 if (!pte_none(*dst_pte)) 2401 goto out_release_uncharge_unlock; 2402 2403 lru_cache_add_anon(page); 2404 2405 spin_lock_irq(&info->lock); 2406 info->alloced++; 2407 inode->i_blocks += BLOCKS_PER_PAGE; 2408 shmem_recalc_inode(inode); 2409 spin_unlock_irq(&info->lock); 2410 2411 inc_mm_counter(dst_mm, mm_counter_file(page)); 2412 page_add_file_rmap(page, false); 2413 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2414 2415 /* No need to invalidate - it was non-present before */ 2416 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2417 pte_unmap_unlock(dst_pte, ptl); 2418 unlock_page(page); 2419 ret = 0; 2420 out: 2421 return ret; 2422 out_release_uncharge_unlock: 2423 pte_unmap_unlock(dst_pte, ptl); 2424 ClearPageDirty(page); 2425 delete_from_page_cache(page); 2426 out_release_uncharge: 2427 mem_cgroup_cancel_charge(page, memcg, false); 2428 out_release: 2429 unlock_page(page); 2430 put_page(page); 2431 out_unacct_blocks: 2432 shmem_inode_unacct_blocks(inode, 1); 2433 goto out; 2434 } 2435 2436 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2437 pmd_t *dst_pmd, 2438 struct vm_area_struct *dst_vma, 2439 unsigned long dst_addr, 2440 unsigned long src_addr, 2441 struct page **pagep) 2442 { 2443 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2444 dst_addr, src_addr, false, pagep); 2445 } 2446 2447 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2448 pmd_t *dst_pmd, 2449 struct vm_area_struct *dst_vma, 2450 unsigned long dst_addr) 2451 { 2452 struct page *page = NULL; 2453 2454 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2455 dst_addr, 0, true, &page); 2456 } 2457 2458 #ifdef CONFIG_TMPFS 2459 static const struct inode_operations shmem_symlink_inode_operations; 2460 static const struct inode_operations shmem_short_symlink_operations; 2461 2462 #ifdef CONFIG_TMPFS_XATTR 2463 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2464 #else 2465 #define shmem_initxattrs NULL 2466 #endif 2467 2468 static int 2469 shmem_write_begin(struct file *file, struct address_space *mapping, 2470 loff_t pos, unsigned len, unsigned flags, 2471 struct page **pagep, void **fsdata) 2472 { 2473 struct inode *inode = mapping->host; 2474 struct shmem_inode_info *info = SHMEM_I(inode); 2475 pgoff_t index = pos >> PAGE_SHIFT; 2476 2477 /* i_mutex is held by caller */ 2478 if (unlikely(info->seals & (F_SEAL_GROW | 2479 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2480 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2481 return -EPERM; 2482 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2483 return -EPERM; 2484 } 2485 2486 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2487 } 2488 2489 static int 2490 shmem_write_end(struct file *file, struct address_space *mapping, 2491 loff_t pos, unsigned len, unsigned copied, 2492 struct page *page, void *fsdata) 2493 { 2494 struct inode *inode = mapping->host; 2495 2496 if (pos + copied > inode->i_size) 2497 i_size_write(inode, pos + copied); 2498 2499 if (!PageUptodate(page)) { 2500 struct page *head = compound_head(page); 2501 if (PageTransCompound(page)) { 2502 int i; 2503 2504 for (i = 0; i < HPAGE_PMD_NR; i++) { 2505 if (head + i == page) 2506 continue; 2507 clear_highpage(head + i); 2508 flush_dcache_page(head + i); 2509 } 2510 } 2511 if (copied < PAGE_SIZE) { 2512 unsigned from = pos & (PAGE_SIZE - 1); 2513 zero_user_segments(page, 0, from, 2514 from + copied, PAGE_SIZE); 2515 } 2516 SetPageUptodate(head); 2517 } 2518 set_page_dirty(page); 2519 unlock_page(page); 2520 put_page(page); 2521 2522 return copied; 2523 } 2524 2525 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2526 { 2527 struct file *file = iocb->ki_filp; 2528 struct inode *inode = file_inode(file); 2529 struct address_space *mapping = inode->i_mapping; 2530 pgoff_t index; 2531 unsigned long offset; 2532 enum sgp_type sgp = SGP_READ; 2533 int error = 0; 2534 ssize_t retval = 0; 2535 loff_t *ppos = &iocb->ki_pos; 2536 2537 /* 2538 * Might this read be for a stacking filesystem? Then when reading 2539 * holes of a sparse file, we actually need to allocate those pages, 2540 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2541 */ 2542 if (!iter_is_iovec(to)) 2543 sgp = SGP_CACHE; 2544 2545 index = *ppos >> PAGE_SHIFT; 2546 offset = *ppos & ~PAGE_MASK; 2547 2548 for (;;) { 2549 struct page *page = NULL; 2550 pgoff_t end_index; 2551 unsigned long nr, ret; 2552 loff_t i_size = i_size_read(inode); 2553 2554 end_index = i_size >> PAGE_SHIFT; 2555 if (index > end_index) 2556 break; 2557 if (index == end_index) { 2558 nr = i_size & ~PAGE_MASK; 2559 if (nr <= offset) 2560 break; 2561 } 2562 2563 error = shmem_getpage(inode, index, &page, sgp); 2564 if (error) { 2565 if (error == -EINVAL) 2566 error = 0; 2567 break; 2568 } 2569 if (page) { 2570 if (sgp == SGP_CACHE) 2571 set_page_dirty(page); 2572 unlock_page(page); 2573 } 2574 2575 /* 2576 * We must evaluate after, since reads (unlike writes) 2577 * are called without i_mutex protection against truncate 2578 */ 2579 nr = PAGE_SIZE; 2580 i_size = i_size_read(inode); 2581 end_index = i_size >> PAGE_SHIFT; 2582 if (index == end_index) { 2583 nr = i_size & ~PAGE_MASK; 2584 if (nr <= offset) { 2585 if (page) 2586 put_page(page); 2587 break; 2588 } 2589 } 2590 nr -= offset; 2591 2592 if (page) { 2593 /* 2594 * If users can be writing to this page using arbitrary 2595 * virtual addresses, take care about potential aliasing 2596 * before reading the page on the kernel side. 2597 */ 2598 if (mapping_writably_mapped(mapping)) 2599 flush_dcache_page(page); 2600 /* 2601 * Mark the page accessed if we read the beginning. 2602 */ 2603 if (!offset) 2604 mark_page_accessed(page); 2605 } else { 2606 page = ZERO_PAGE(0); 2607 get_page(page); 2608 } 2609 2610 /* 2611 * Ok, we have the page, and it's up-to-date, so 2612 * now we can copy it to user space... 2613 */ 2614 ret = copy_page_to_iter(page, offset, nr, to); 2615 retval += ret; 2616 offset += ret; 2617 index += offset >> PAGE_SHIFT; 2618 offset &= ~PAGE_MASK; 2619 2620 put_page(page); 2621 if (!iov_iter_count(to)) 2622 break; 2623 if (ret < nr) { 2624 error = -EFAULT; 2625 break; 2626 } 2627 cond_resched(); 2628 } 2629 2630 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2631 file_accessed(file); 2632 return retval ? retval : error; 2633 } 2634 2635 /* 2636 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2637 */ 2638 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2639 pgoff_t index, pgoff_t end, int whence) 2640 { 2641 struct page *page; 2642 struct pagevec pvec; 2643 pgoff_t indices[PAGEVEC_SIZE]; 2644 bool done = false; 2645 int i; 2646 2647 pagevec_init(&pvec); 2648 pvec.nr = 1; /* start small: we may be there already */ 2649 while (!done) { 2650 pvec.nr = find_get_entries(mapping, index, 2651 pvec.nr, pvec.pages, indices); 2652 if (!pvec.nr) { 2653 if (whence == SEEK_DATA) 2654 index = end; 2655 break; 2656 } 2657 for (i = 0; i < pvec.nr; i++, index++) { 2658 if (index < indices[i]) { 2659 if (whence == SEEK_HOLE) { 2660 done = true; 2661 break; 2662 } 2663 index = indices[i]; 2664 } 2665 page = pvec.pages[i]; 2666 if (page && !xa_is_value(page)) { 2667 if (!PageUptodate(page)) 2668 page = NULL; 2669 } 2670 if (index >= end || 2671 (page && whence == SEEK_DATA) || 2672 (!page && whence == SEEK_HOLE)) { 2673 done = true; 2674 break; 2675 } 2676 } 2677 pagevec_remove_exceptionals(&pvec); 2678 pagevec_release(&pvec); 2679 pvec.nr = PAGEVEC_SIZE; 2680 cond_resched(); 2681 } 2682 return index; 2683 } 2684 2685 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2686 { 2687 struct address_space *mapping = file->f_mapping; 2688 struct inode *inode = mapping->host; 2689 pgoff_t start, end; 2690 loff_t new_offset; 2691 2692 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2693 return generic_file_llseek_size(file, offset, whence, 2694 MAX_LFS_FILESIZE, i_size_read(inode)); 2695 inode_lock(inode); 2696 /* We're holding i_mutex so we can access i_size directly */ 2697 2698 if (offset < 0 || offset >= inode->i_size) 2699 offset = -ENXIO; 2700 else { 2701 start = offset >> PAGE_SHIFT; 2702 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2703 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2704 new_offset <<= PAGE_SHIFT; 2705 if (new_offset > offset) { 2706 if (new_offset < inode->i_size) 2707 offset = new_offset; 2708 else if (whence == SEEK_DATA) 2709 offset = -ENXIO; 2710 else 2711 offset = inode->i_size; 2712 } 2713 } 2714 2715 if (offset >= 0) 2716 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2717 inode_unlock(inode); 2718 return offset; 2719 } 2720 2721 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2722 loff_t len) 2723 { 2724 struct inode *inode = file_inode(file); 2725 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2726 struct shmem_inode_info *info = SHMEM_I(inode); 2727 struct shmem_falloc shmem_falloc; 2728 pgoff_t start, index, end; 2729 int error; 2730 2731 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2732 return -EOPNOTSUPP; 2733 2734 inode_lock(inode); 2735 2736 if (mode & FALLOC_FL_PUNCH_HOLE) { 2737 struct address_space *mapping = file->f_mapping; 2738 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2739 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2740 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2741 2742 /* protected by i_mutex */ 2743 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2744 error = -EPERM; 2745 goto out; 2746 } 2747 2748 shmem_falloc.waitq = &shmem_falloc_waitq; 2749 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2750 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2751 spin_lock(&inode->i_lock); 2752 inode->i_private = &shmem_falloc; 2753 spin_unlock(&inode->i_lock); 2754 2755 if ((u64)unmap_end > (u64)unmap_start) 2756 unmap_mapping_range(mapping, unmap_start, 2757 1 + unmap_end - unmap_start, 0); 2758 shmem_truncate_range(inode, offset, offset + len - 1); 2759 /* No need to unmap again: hole-punching leaves COWed pages */ 2760 2761 spin_lock(&inode->i_lock); 2762 inode->i_private = NULL; 2763 wake_up_all(&shmem_falloc_waitq); 2764 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2765 spin_unlock(&inode->i_lock); 2766 error = 0; 2767 goto out; 2768 } 2769 2770 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2771 error = inode_newsize_ok(inode, offset + len); 2772 if (error) 2773 goto out; 2774 2775 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2776 error = -EPERM; 2777 goto out; 2778 } 2779 2780 start = offset >> PAGE_SHIFT; 2781 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2782 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2783 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2784 error = -ENOSPC; 2785 goto out; 2786 } 2787 2788 shmem_falloc.waitq = NULL; 2789 shmem_falloc.start = start; 2790 shmem_falloc.next = start; 2791 shmem_falloc.nr_falloced = 0; 2792 shmem_falloc.nr_unswapped = 0; 2793 spin_lock(&inode->i_lock); 2794 inode->i_private = &shmem_falloc; 2795 spin_unlock(&inode->i_lock); 2796 2797 for (index = start; index < end; index++) { 2798 struct page *page; 2799 2800 /* 2801 * Good, the fallocate(2) manpage permits EINTR: we may have 2802 * been interrupted because we are using up too much memory. 2803 */ 2804 if (signal_pending(current)) 2805 error = -EINTR; 2806 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2807 error = -ENOMEM; 2808 else 2809 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2810 if (error) { 2811 /* Remove the !PageUptodate pages we added */ 2812 if (index > start) { 2813 shmem_undo_range(inode, 2814 (loff_t)start << PAGE_SHIFT, 2815 ((loff_t)index << PAGE_SHIFT) - 1, true); 2816 } 2817 goto undone; 2818 } 2819 2820 /* 2821 * Inform shmem_writepage() how far we have reached. 2822 * No need for lock or barrier: we have the page lock. 2823 */ 2824 shmem_falloc.next++; 2825 if (!PageUptodate(page)) 2826 shmem_falloc.nr_falloced++; 2827 2828 /* 2829 * If !PageUptodate, leave it that way so that freeable pages 2830 * can be recognized if we need to rollback on error later. 2831 * But set_page_dirty so that memory pressure will swap rather 2832 * than free the pages we are allocating (and SGP_CACHE pages 2833 * might still be clean: we now need to mark those dirty too). 2834 */ 2835 set_page_dirty(page); 2836 unlock_page(page); 2837 put_page(page); 2838 cond_resched(); 2839 } 2840 2841 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2842 i_size_write(inode, offset + len); 2843 inode->i_ctime = current_time(inode); 2844 undone: 2845 spin_lock(&inode->i_lock); 2846 inode->i_private = NULL; 2847 spin_unlock(&inode->i_lock); 2848 out: 2849 inode_unlock(inode); 2850 return error; 2851 } 2852 2853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2854 { 2855 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2856 2857 buf->f_type = TMPFS_MAGIC; 2858 buf->f_bsize = PAGE_SIZE; 2859 buf->f_namelen = NAME_MAX; 2860 if (sbinfo->max_blocks) { 2861 buf->f_blocks = sbinfo->max_blocks; 2862 buf->f_bavail = 2863 buf->f_bfree = sbinfo->max_blocks - 2864 percpu_counter_sum(&sbinfo->used_blocks); 2865 } 2866 if (sbinfo->max_inodes) { 2867 buf->f_files = sbinfo->max_inodes; 2868 buf->f_ffree = sbinfo->free_inodes; 2869 } 2870 /* else leave those fields 0 like simple_statfs */ 2871 return 0; 2872 } 2873 2874 /* 2875 * File creation. Allocate an inode, and we're done.. 2876 */ 2877 static int 2878 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2879 { 2880 struct inode *inode; 2881 int error = -ENOSPC; 2882 2883 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2884 if (inode) { 2885 error = simple_acl_create(dir, inode); 2886 if (error) 2887 goto out_iput; 2888 error = security_inode_init_security(inode, dir, 2889 &dentry->d_name, 2890 shmem_initxattrs, NULL); 2891 if (error && error != -EOPNOTSUPP) 2892 goto out_iput; 2893 2894 error = 0; 2895 dir->i_size += BOGO_DIRENT_SIZE; 2896 dir->i_ctime = dir->i_mtime = current_time(dir); 2897 d_instantiate(dentry, inode); 2898 dget(dentry); /* Extra count - pin the dentry in core */ 2899 } 2900 return error; 2901 out_iput: 2902 iput(inode); 2903 return error; 2904 } 2905 2906 static int 2907 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2908 { 2909 struct inode *inode; 2910 int error = -ENOSPC; 2911 2912 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2913 if (inode) { 2914 error = security_inode_init_security(inode, dir, 2915 NULL, 2916 shmem_initxattrs, NULL); 2917 if (error && error != -EOPNOTSUPP) 2918 goto out_iput; 2919 error = simple_acl_create(dir, inode); 2920 if (error) 2921 goto out_iput; 2922 d_tmpfile(dentry, inode); 2923 } 2924 return error; 2925 out_iput: 2926 iput(inode); 2927 return error; 2928 } 2929 2930 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2931 { 2932 int error; 2933 2934 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2935 return error; 2936 inc_nlink(dir); 2937 return 0; 2938 } 2939 2940 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2941 bool excl) 2942 { 2943 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2944 } 2945 2946 /* 2947 * Link a file.. 2948 */ 2949 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2950 { 2951 struct inode *inode = d_inode(old_dentry); 2952 int ret = 0; 2953 2954 /* 2955 * No ordinary (disk based) filesystem counts links as inodes; 2956 * but each new link needs a new dentry, pinning lowmem, and 2957 * tmpfs dentries cannot be pruned until they are unlinked. 2958 * But if an O_TMPFILE file is linked into the tmpfs, the 2959 * first link must skip that, to get the accounting right. 2960 */ 2961 if (inode->i_nlink) { 2962 ret = shmem_reserve_inode(inode->i_sb); 2963 if (ret) 2964 goto out; 2965 } 2966 2967 dir->i_size += BOGO_DIRENT_SIZE; 2968 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2969 inc_nlink(inode); 2970 ihold(inode); /* New dentry reference */ 2971 dget(dentry); /* Extra pinning count for the created dentry */ 2972 d_instantiate(dentry, inode); 2973 out: 2974 return ret; 2975 } 2976 2977 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2978 { 2979 struct inode *inode = d_inode(dentry); 2980 2981 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2982 shmem_free_inode(inode->i_sb); 2983 2984 dir->i_size -= BOGO_DIRENT_SIZE; 2985 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2986 drop_nlink(inode); 2987 dput(dentry); /* Undo the count from "create" - this does all the work */ 2988 return 0; 2989 } 2990 2991 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2992 { 2993 if (!simple_empty(dentry)) 2994 return -ENOTEMPTY; 2995 2996 drop_nlink(d_inode(dentry)); 2997 drop_nlink(dir); 2998 return shmem_unlink(dir, dentry); 2999 } 3000 3001 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3002 { 3003 bool old_is_dir = d_is_dir(old_dentry); 3004 bool new_is_dir = d_is_dir(new_dentry); 3005 3006 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3007 if (old_is_dir) { 3008 drop_nlink(old_dir); 3009 inc_nlink(new_dir); 3010 } else { 3011 drop_nlink(new_dir); 3012 inc_nlink(old_dir); 3013 } 3014 } 3015 old_dir->i_ctime = old_dir->i_mtime = 3016 new_dir->i_ctime = new_dir->i_mtime = 3017 d_inode(old_dentry)->i_ctime = 3018 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3019 3020 return 0; 3021 } 3022 3023 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3024 { 3025 struct dentry *whiteout; 3026 int error; 3027 3028 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3029 if (!whiteout) 3030 return -ENOMEM; 3031 3032 error = shmem_mknod(old_dir, whiteout, 3033 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3034 dput(whiteout); 3035 if (error) 3036 return error; 3037 3038 /* 3039 * Cheat and hash the whiteout while the old dentry is still in 3040 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3041 * 3042 * d_lookup() will consistently find one of them at this point, 3043 * not sure which one, but that isn't even important. 3044 */ 3045 d_rehash(whiteout); 3046 return 0; 3047 } 3048 3049 /* 3050 * The VFS layer already does all the dentry stuff for rename, 3051 * we just have to decrement the usage count for the target if 3052 * it exists so that the VFS layer correctly free's it when it 3053 * gets overwritten. 3054 */ 3055 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3056 { 3057 struct inode *inode = d_inode(old_dentry); 3058 int they_are_dirs = S_ISDIR(inode->i_mode); 3059 3060 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3061 return -EINVAL; 3062 3063 if (flags & RENAME_EXCHANGE) 3064 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3065 3066 if (!simple_empty(new_dentry)) 3067 return -ENOTEMPTY; 3068 3069 if (flags & RENAME_WHITEOUT) { 3070 int error; 3071 3072 error = shmem_whiteout(old_dir, old_dentry); 3073 if (error) 3074 return error; 3075 } 3076 3077 if (d_really_is_positive(new_dentry)) { 3078 (void) shmem_unlink(new_dir, new_dentry); 3079 if (they_are_dirs) { 3080 drop_nlink(d_inode(new_dentry)); 3081 drop_nlink(old_dir); 3082 } 3083 } else if (they_are_dirs) { 3084 drop_nlink(old_dir); 3085 inc_nlink(new_dir); 3086 } 3087 3088 old_dir->i_size -= BOGO_DIRENT_SIZE; 3089 new_dir->i_size += BOGO_DIRENT_SIZE; 3090 old_dir->i_ctime = old_dir->i_mtime = 3091 new_dir->i_ctime = new_dir->i_mtime = 3092 inode->i_ctime = current_time(old_dir); 3093 return 0; 3094 } 3095 3096 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3097 { 3098 int error; 3099 int len; 3100 struct inode *inode; 3101 struct page *page; 3102 3103 len = strlen(symname) + 1; 3104 if (len > PAGE_SIZE) 3105 return -ENAMETOOLONG; 3106 3107 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3108 VM_NORESERVE); 3109 if (!inode) 3110 return -ENOSPC; 3111 3112 error = security_inode_init_security(inode, dir, &dentry->d_name, 3113 shmem_initxattrs, NULL); 3114 if (error && error != -EOPNOTSUPP) { 3115 iput(inode); 3116 return error; 3117 } 3118 3119 inode->i_size = len-1; 3120 if (len <= SHORT_SYMLINK_LEN) { 3121 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3122 if (!inode->i_link) { 3123 iput(inode); 3124 return -ENOMEM; 3125 } 3126 inode->i_op = &shmem_short_symlink_operations; 3127 } else { 3128 inode_nohighmem(inode); 3129 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3130 if (error) { 3131 iput(inode); 3132 return error; 3133 } 3134 inode->i_mapping->a_ops = &shmem_aops; 3135 inode->i_op = &shmem_symlink_inode_operations; 3136 memcpy(page_address(page), symname, len); 3137 SetPageUptodate(page); 3138 set_page_dirty(page); 3139 unlock_page(page); 3140 put_page(page); 3141 } 3142 dir->i_size += BOGO_DIRENT_SIZE; 3143 dir->i_ctime = dir->i_mtime = current_time(dir); 3144 d_instantiate(dentry, inode); 3145 dget(dentry); 3146 return 0; 3147 } 3148 3149 static void shmem_put_link(void *arg) 3150 { 3151 mark_page_accessed(arg); 3152 put_page(arg); 3153 } 3154 3155 static const char *shmem_get_link(struct dentry *dentry, 3156 struct inode *inode, 3157 struct delayed_call *done) 3158 { 3159 struct page *page = NULL; 3160 int error; 3161 if (!dentry) { 3162 page = find_get_page(inode->i_mapping, 0); 3163 if (!page) 3164 return ERR_PTR(-ECHILD); 3165 if (!PageUptodate(page)) { 3166 put_page(page); 3167 return ERR_PTR(-ECHILD); 3168 } 3169 } else { 3170 error = shmem_getpage(inode, 0, &page, SGP_READ); 3171 if (error) 3172 return ERR_PTR(error); 3173 unlock_page(page); 3174 } 3175 set_delayed_call(done, shmem_put_link, page); 3176 return page_address(page); 3177 } 3178 3179 #ifdef CONFIG_TMPFS_XATTR 3180 /* 3181 * Superblocks without xattr inode operations may get some security.* xattr 3182 * support from the LSM "for free". As soon as we have any other xattrs 3183 * like ACLs, we also need to implement the security.* handlers at 3184 * filesystem level, though. 3185 */ 3186 3187 /* 3188 * Callback for security_inode_init_security() for acquiring xattrs. 3189 */ 3190 static int shmem_initxattrs(struct inode *inode, 3191 const struct xattr *xattr_array, 3192 void *fs_info) 3193 { 3194 struct shmem_inode_info *info = SHMEM_I(inode); 3195 const struct xattr *xattr; 3196 struct simple_xattr *new_xattr; 3197 size_t len; 3198 3199 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3200 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3201 if (!new_xattr) 3202 return -ENOMEM; 3203 3204 len = strlen(xattr->name) + 1; 3205 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3206 GFP_KERNEL); 3207 if (!new_xattr->name) { 3208 kfree(new_xattr); 3209 return -ENOMEM; 3210 } 3211 3212 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3213 XATTR_SECURITY_PREFIX_LEN); 3214 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3215 xattr->name, len); 3216 3217 simple_xattr_list_add(&info->xattrs, new_xattr); 3218 } 3219 3220 return 0; 3221 } 3222 3223 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3224 struct dentry *unused, struct inode *inode, 3225 const char *name, void *buffer, size_t size) 3226 { 3227 struct shmem_inode_info *info = SHMEM_I(inode); 3228 3229 name = xattr_full_name(handler, name); 3230 return simple_xattr_get(&info->xattrs, name, buffer, size); 3231 } 3232 3233 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3234 struct dentry *unused, struct inode *inode, 3235 const char *name, const void *value, 3236 size_t size, int flags) 3237 { 3238 struct shmem_inode_info *info = SHMEM_I(inode); 3239 3240 name = xattr_full_name(handler, name); 3241 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3242 } 3243 3244 static const struct xattr_handler shmem_security_xattr_handler = { 3245 .prefix = XATTR_SECURITY_PREFIX, 3246 .get = shmem_xattr_handler_get, 3247 .set = shmem_xattr_handler_set, 3248 }; 3249 3250 static const struct xattr_handler shmem_trusted_xattr_handler = { 3251 .prefix = XATTR_TRUSTED_PREFIX, 3252 .get = shmem_xattr_handler_get, 3253 .set = shmem_xattr_handler_set, 3254 }; 3255 3256 static const struct xattr_handler *shmem_xattr_handlers[] = { 3257 #ifdef CONFIG_TMPFS_POSIX_ACL 3258 &posix_acl_access_xattr_handler, 3259 &posix_acl_default_xattr_handler, 3260 #endif 3261 &shmem_security_xattr_handler, 3262 &shmem_trusted_xattr_handler, 3263 NULL 3264 }; 3265 3266 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3267 { 3268 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3269 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3270 } 3271 #endif /* CONFIG_TMPFS_XATTR */ 3272 3273 static const struct inode_operations shmem_short_symlink_operations = { 3274 .get_link = simple_get_link, 3275 #ifdef CONFIG_TMPFS_XATTR 3276 .listxattr = shmem_listxattr, 3277 #endif 3278 }; 3279 3280 static const struct inode_operations shmem_symlink_inode_operations = { 3281 .get_link = shmem_get_link, 3282 #ifdef CONFIG_TMPFS_XATTR 3283 .listxattr = shmem_listxattr, 3284 #endif 3285 }; 3286 3287 static struct dentry *shmem_get_parent(struct dentry *child) 3288 { 3289 return ERR_PTR(-ESTALE); 3290 } 3291 3292 static int shmem_match(struct inode *ino, void *vfh) 3293 { 3294 __u32 *fh = vfh; 3295 __u64 inum = fh[2]; 3296 inum = (inum << 32) | fh[1]; 3297 return ino->i_ino == inum && fh[0] == ino->i_generation; 3298 } 3299 3300 /* Find any alias of inode, but prefer a hashed alias */ 3301 static struct dentry *shmem_find_alias(struct inode *inode) 3302 { 3303 struct dentry *alias = d_find_alias(inode); 3304 3305 return alias ?: d_find_any_alias(inode); 3306 } 3307 3308 3309 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3310 struct fid *fid, int fh_len, int fh_type) 3311 { 3312 struct inode *inode; 3313 struct dentry *dentry = NULL; 3314 u64 inum; 3315 3316 if (fh_len < 3) 3317 return NULL; 3318 3319 inum = fid->raw[2]; 3320 inum = (inum << 32) | fid->raw[1]; 3321 3322 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3323 shmem_match, fid->raw); 3324 if (inode) { 3325 dentry = shmem_find_alias(inode); 3326 iput(inode); 3327 } 3328 3329 return dentry; 3330 } 3331 3332 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3333 struct inode *parent) 3334 { 3335 if (*len < 3) { 3336 *len = 3; 3337 return FILEID_INVALID; 3338 } 3339 3340 if (inode_unhashed(inode)) { 3341 /* Unfortunately insert_inode_hash is not idempotent, 3342 * so as we hash inodes here rather than at creation 3343 * time, we need a lock to ensure we only try 3344 * to do it once 3345 */ 3346 static DEFINE_SPINLOCK(lock); 3347 spin_lock(&lock); 3348 if (inode_unhashed(inode)) 3349 __insert_inode_hash(inode, 3350 inode->i_ino + inode->i_generation); 3351 spin_unlock(&lock); 3352 } 3353 3354 fh[0] = inode->i_generation; 3355 fh[1] = inode->i_ino; 3356 fh[2] = ((__u64)inode->i_ino) >> 32; 3357 3358 *len = 3; 3359 return 1; 3360 } 3361 3362 static const struct export_operations shmem_export_ops = { 3363 .get_parent = shmem_get_parent, 3364 .encode_fh = shmem_encode_fh, 3365 .fh_to_dentry = shmem_fh_to_dentry, 3366 }; 3367 3368 enum shmem_param { 3369 Opt_gid, 3370 Opt_huge, 3371 Opt_mode, 3372 Opt_mpol, 3373 Opt_nr_blocks, 3374 Opt_nr_inodes, 3375 Opt_size, 3376 Opt_uid, 3377 }; 3378 3379 static const struct constant_table shmem_param_enums_huge[] = { 3380 {"never", SHMEM_HUGE_NEVER }, 3381 {"always", SHMEM_HUGE_ALWAYS }, 3382 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3383 {"advise", SHMEM_HUGE_ADVISE }, 3384 {} 3385 }; 3386 3387 const struct fs_parameter_spec shmem_fs_parameters[] = { 3388 fsparam_u32 ("gid", Opt_gid), 3389 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3390 fsparam_u32oct("mode", Opt_mode), 3391 fsparam_string("mpol", Opt_mpol), 3392 fsparam_string("nr_blocks", Opt_nr_blocks), 3393 fsparam_string("nr_inodes", Opt_nr_inodes), 3394 fsparam_string("size", Opt_size), 3395 fsparam_u32 ("uid", Opt_uid), 3396 {} 3397 }; 3398 3399 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3400 { 3401 struct shmem_options *ctx = fc->fs_private; 3402 struct fs_parse_result result; 3403 unsigned long long size; 3404 char *rest; 3405 int opt; 3406 3407 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3408 if (opt < 0) 3409 return opt; 3410 3411 switch (opt) { 3412 case Opt_size: 3413 size = memparse(param->string, &rest); 3414 if (*rest == '%') { 3415 size <<= PAGE_SHIFT; 3416 size *= totalram_pages(); 3417 do_div(size, 100); 3418 rest++; 3419 } 3420 if (*rest) 3421 goto bad_value; 3422 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3423 ctx->seen |= SHMEM_SEEN_BLOCKS; 3424 break; 3425 case Opt_nr_blocks: 3426 ctx->blocks = memparse(param->string, &rest); 3427 if (*rest) 3428 goto bad_value; 3429 ctx->seen |= SHMEM_SEEN_BLOCKS; 3430 break; 3431 case Opt_nr_inodes: 3432 ctx->inodes = memparse(param->string, &rest); 3433 if (*rest) 3434 goto bad_value; 3435 ctx->seen |= SHMEM_SEEN_INODES; 3436 break; 3437 case Opt_mode: 3438 ctx->mode = result.uint_32 & 07777; 3439 break; 3440 case Opt_uid: 3441 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3442 if (!uid_valid(ctx->uid)) 3443 goto bad_value; 3444 break; 3445 case Opt_gid: 3446 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3447 if (!gid_valid(ctx->gid)) 3448 goto bad_value; 3449 break; 3450 case Opt_huge: 3451 ctx->huge = result.uint_32; 3452 if (ctx->huge != SHMEM_HUGE_NEVER && 3453 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3454 has_transparent_hugepage())) 3455 goto unsupported_parameter; 3456 ctx->seen |= SHMEM_SEEN_HUGE; 3457 break; 3458 case Opt_mpol: 3459 if (IS_ENABLED(CONFIG_NUMA)) { 3460 mpol_put(ctx->mpol); 3461 ctx->mpol = NULL; 3462 if (mpol_parse_str(param->string, &ctx->mpol)) 3463 goto bad_value; 3464 break; 3465 } 3466 goto unsupported_parameter; 3467 } 3468 return 0; 3469 3470 unsupported_parameter: 3471 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3472 bad_value: 3473 return invalfc(fc, "Bad value for '%s'", param->key); 3474 } 3475 3476 static int shmem_parse_options(struct fs_context *fc, void *data) 3477 { 3478 char *options = data; 3479 3480 if (options) { 3481 int err = security_sb_eat_lsm_opts(options, &fc->security); 3482 if (err) 3483 return err; 3484 } 3485 3486 while (options != NULL) { 3487 char *this_char = options; 3488 for (;;) { 3489 /* 3490 * NUL-terminate this option: unfortunately, 3491 * mount options form a comma-separated list, 3492 * but mpol's nodelist may also contain commas. 3493 */ 3494 options = strchr(options, ','); 3495 if (options == NULL) 3496 break; 3497 options++; 3498 if (!isdigit(*options)) { 3499 options[-1] = '\0'; 3500 break; 3501 } 3502 } 3503 if (*this_char) { 3504 char *value = strchr(this_char,'='); 3505 size_t len = 0; 3506 int err; 3507 3508 if (value) { 3509 *value++ = '\0'; 3510 len = strlen(value); 3511 } 3512 err = vfs_parse_fs_string(fc, this_char, value, len); 3513 if (err < 0) 3514 return err; 3515 } 3516 } 3517 return 0; 3518 } 3519 3520 /* 3521 * Reconfigure a shmem filesystem. 3522 * 3523 * Note that we disallow change from limited->unlimited blocks/inodes while any 3524 * are in use; but we must separately disallow unlimited->limited, because in 3525 * that case we have no record of how much is already in use. 3526 */ 3527 static int shmem_reconfigure(struct fs_context *fc) 3528 { 3529 struct shmem_options *ctx = fc->fs_private; 3530 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3531 unsigned long inodes; 3532 const char *err; 3533 3534 spin_lock(&sbinfo->stat_lock); 3535 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3536 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3537 if (!sbinfo->max_blocks) { 3538 err = "Cannot retroactively limit size"; 3539 goto out; 3540 } 3541 if (percpu_counter_compare(&sbinfo->used_blocks, 3542 ctx->blocks) > 0) { 3543 err = "Too small a size for current use"; 3544 goto out; 3545 } 3546 } 3547 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3548 if (!sbinfo->max_inodes) { 3549 err = "Cannot retroactively limit inodes"; 3550 goto out; 3551 } 3552 if (ctx->inodes < inodes) { 3553 err = "Too few inodes for current use"; 3554 goto out; 3555 } 3556 } 3557 3558 if (ctx->seen & SHMEM_SEEN_HUGE) 3559 sbinfo->huge = ctx->huge; 3560 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3561 sbinfo->max_blocks = ctx->blocks; 3562 if (ctx->seen & SHMEM_SEEN_INODES) { 3563 sbinfo->max_inodes = ctx->inodes; 3564 sbinfo->free_inodes = ctx->inodes - inodes; 3565 } 3566 3567 /* 3568 * Preserve previous mempolicy unless mpol remount option was specified. 3569 */ 3570 if (ctx->mpol) { 3571 mpol_put(sbinfo->mpol); 3572 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3573 ctx->mpol = NULL; 3574 } 3575 spin_unlock(&sbinfo->stat_lock); 3576 return 0; 3577 out: 3578 spin_unlock(&sbinfo->stat_lock); 3579 return invalfc(fc, "%s", err); 3580 } 3581 3582 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3583 { 3584 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3585 3586 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3587 seq_printf(seq, ",size=%luk", 3588 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3589 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3590 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3591 if (sbinfo->mode != (0777 | S_ISVTX)) 3592 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3593 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3594 seq_printf(seq, ",uid=%u", 3595 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3596 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3597 seq_printf(seq, ",gid=%u", 3598 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3600 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3601 if (sbinfo->huge) 3602 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3603 #endif 3604 shmem_show_mpol(seq, sbinfo->mpol); 3605 return 0; 3606 } 3607 3608 #endif /* CONFIG_TMPFS */ 3609 3610 static void shmem_put_super(struct super_block *sb) 3611 { 3612 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3613 3614 percpu_counter_destroy(&sbinfo->used_blocks); 3615 mpol_put(sbinfo->mpol); 3616 kfree(sbinfo); 3617 sb->s_fs_info = NULL; 3618 } 3619 3620 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3621 { 3622 struct shmem_options *ctx = fc->fs_private; 3623 struct inode *inode; 3624 struct shmem_sb_info *sbinfo; 3625 int err = -ENOMEM; 3626 3627 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3628 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3629 L1_CACHE_BYTES), GFP_KERNEL); 3630 if (!sbinfo) 3631 return -ENOMEM; 3632 3633 sb->s_fs_info = sbinfo; 3634 3635 #ifdef CONFIG_TMPFS 3636 /* 3637 * Per default we only allow half of the physical ram per 3638 * tmpfs instance, limiting inodes to one per page of lowmem; 3639 * but the internal instance is left unlimited. 3640 */ 3641 if (!(sb->s_flags & SB_KERNMOUNT)) { 3642 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3643 ctx->blocks = shmem_default_max_blocks(); 3644 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3645 ctx->inodes = shmem_default_max_inodes(); 3646 } else { 3647 sb->s_flags |= SB_NOUSER; 3648 } 3649 sb->s_export_op = &shmem_export_ops; 3650 sb->s_flags |= SB_NOSEC; 3651 #else 3652 sb->s_flags |= SB_NOUSER; 3653 #endif 3654 sbinfo->max_blocks = ctx->blocks; 3655 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3656 sbinfo->uid = ctx->uid; 3657 sbinfo->gid = ctx->gid; 3658 sbinfo->mode = ctx->mode; 3659 sbinfo->huge = ctx->huge; 3660 sbinfo->mpol = ctx->mpol; 3661 ctx->mpol = NULL; 3662 3663 spin_lock_init(&sbinfo->stat_lock); 3664 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3665 goto failed; 3666 spin_lock_init(&sbinfo->shrinklist_lock); 3667 INIT_LIST_HEAD(&sbinfo->shrinklist); 3668 3669 sb->s_maxbytes = MAX_LFS_FILESIZE; 3670 sb->s_blocksize = PAGE_SIZE; 3671 sb->s_blocksize_bits = PAGE_SHIFT; 3672 sb->s_magic = TMPFS_MAGIC; 3673 sb->s_op = &shmem_ops; 3674 sb->s_time_gran = 1; 3675 #ifdef CONFIG_TMPFS_XATTR 3676 sb->s_xattr = shmem_xattr_handlers; 3677 #endif 3678 #ifdef CONFIG_TMPFS_POSIX_ACL 3679 sb->s_flags |= SB_POSIXACL; 3680 #endif 3681 uuid_gen(&sb->s_uuid); 3682 3683 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3684 if (!inode) 3685 goto failed; 3686 inode->i_uid = sbinfo->uid; 3687 inode->i_gid = sbinfo->gid; 3688 sb->s_root = d_make_root(inode); 3689 if (!sb->s_root) 3690 goto failed; 3691 return 0; 3692 3693 failed: 3694 shmem_put_super(sb); 3695 return err; 3696 } 3697 3698 static int shmem_get_tree(struct fs_context *fc) 3699 { 3700 return get_tree_nodev(fc, shmem_fill_super); 3701 } 3702 3703 static void shmem_free_fc(struct fs_context *fc) 3704 { 3705 struct shmem_options *ctx = fc->fs_private; 3706 3707 if (ctx) { 3708 mpol_put(ctx->mpol); 3709 kfree(ctx); 3710 } 3711 } 3712 3713 static const struct fs_context_operations shmem_fs_context_ops = { 3714 .free = shmem_free_fc, 3715 .get_tree = shmem_get_tree, 3716 #ifdef CONFIG_TMPFS 3717 .parse_monolithic = shmem_parse_options, 3718 .parse_param = shmem_parse_one, 3719 .reconfigure = shmem_reconfigure, 3720 #endif 3721 }; 3722 3723 static struct kmem_cache *shmem_inode_cachep; 3724 3725 static struct inode *shmem_alloc_inode(struct super_block *sb) 3726 { 3727 struct shmem_inode_info *info; 3728 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3729 if (!info) 3730 return NULL; 3731 return &info->vfs_inode; 3732 } 3733 3734 static void shmem_free_in_core_inode(struct inode *inode) 3735 { 3736 if (S_ISLNK(inode->i_mode)) 3737 kfree(inode->i_link); 3738 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3739 } 3740 3741 static void shmem_destroy_inode(struct inode *inode) 3742 { 3743 if (S_ISREG(inode->i_mode)) 3744 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3745 } 3746 3747 static void shmem_init_inode(void *foo) 3748 { 3749 struct shmem_inode_info *info = foo; 3750 inode_init_once(&info->vfs_inode); 3751 } 3752 3753 static void shmem_init_inodecache(void) 3754 { 3755 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3756 sizeof(struct shmem_inode_info), 3757 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3758 } 3759 3760 static void shmem_destroy_inodecache(void) 3761 { 3762 kmem_cache_destroy(shmem_inode_cachep); 3763 } 3764 3765 static const struct address_space_operations shmem_aops = { 3766 .writepage = shmem_writepage, 3767 .set_page_dirty = __set_page_dirty_no_writeback, 3768 #ifdef CONFIG_TMPFS 3769 .write_begin = shmem_write_begin, 3770 .write_end = shmem_write_end, 3771 #endif 3772 #ifdef CONFIG_MIGRATION 3773 .migratepage = migrate_page, 3774 #endif 3775 .error_remove_page = generic_error_remove_page, 3776 }; 3777 3778 static const struct file_operations shmem_file_operations = { 3779 .mmap = shmem_mmap, 3780 .get_unmapped_area = shmem_get_unmapped_area, 3781 #ifdef CONFIG_TMPFS 3782 .llseek = shmem_file_llseek, 3783 .read_iter = shmem_file_read_iter, 3784 .write_iter = generic_file_write_iter, 3785 .fsync = noop_fsync, 3786 .splice_read = generic_file_splice_read, 3787 .splice_write = iter_file_splice_write, 3788 .fallocate = shmem_fallocate, 3789 #endif 3790 }; 3791 3792 static const struct inode_operations shmem_inode_operations = { 3793 .getattr = shmem_getattr, 3794 .setattr = shmem_setattr, 3795 #ifdef CONFIG_TMPFS_XATTR 3796 .listxattr = shmem_listxattr, 3797 .set_acl = simple_set_acl, 3798 #endif 3799 }; 3800 3801 static const struct inode_operations shmem_dir_inode_operations = { 3802 #ifdef CONFIG_TMPFS 3803 .create = shmem_create, 3804 .lookup = simple_lookup, 3805 .link = shmem_link, 3806 .unlink = shmem_unlink, 3807 .symlink = shmem_symlink, 3808 .mkdir = shmem_mkdir, 3809 .rmdir = shmem_rmdir, 3810 .mknod = shmem_mknod, 3811 .rename = shmem_rename2, 3812 .tmpfile = shmem_tmpfile, 3813 #endif 3814 #ifdef CONFIG_TMPFS_XATTR 3815 .listxattr = shmem_listxattr, 3816 #endif 3817 #ifdef CONFIG_TMPFS_POSIX_ACL 3818 .setattr = shmem_setattr, 3819 .set_acl = simple_set_acl, 3820 #endif 3821 }; 3822 3823 static const struct inode_operations shmem_special_inode_operations = { 3824 #ifdef CONFIG_TMPFS_XATTR 3825 .listxattr = shmem_listxattr, 3826 #endif 3827 #ifdef CONFIG_TMPFS_POSIX_ACL 3828 .setattr = shmem_setattr, 3829 .set_acl = simple_set_acl, 3830 #endif 3831 }; 3832 3833 static const struct super_operations shmem_ops = { 3834 .alloc_inode = shmem_alloc_inode, 3835 .free_inode = shmem_free_in_core_inode, 3836 .destroy_inode = shmem_destroy_inode, 3837 #ifdef CONFIG_TMPFS 3838 .statfs = shmem_statfs, 3839 .show_options = shmem_show_options, 3840 #endif 3841 .evict_inode = shmem_evict_inode, 3842 .drop_inode = generic_delete_inode, 3843 .put_super = shmem_put_super, 3844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3845 .nr_cached_objects = shmem_unused_huge_count, 3846 .free_cached_objects = shmem_unused_huge_scan, 3847 #endif 3848 }; 3849 3850 static const struct vm_operations_struct shmem_vm_ops = { 3851 .fault = shmem_fault, 3852 .map_pages = filemap_map_pages, 3853 #ifdef CONFIG_NUMA 3854 .set_policy = shmem_set_policy, 3855 .get_policy = shmem_get_policy, 3856 #endif 3857 }; 3858 3859 int shmem_init_fs_context(struct fs_context *fc) 3860 { 3861 struct shmem_options *ctx; 3862 3863 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3864 if (!ctx) 3865 return -ENOMEM; 3866 3867 ctx->mode = 0777 | S_ISVTX; 3868 ctx->uid = current_fsuid(); 3869 ctx->gid = current_fsgid(); 3870 3871 fc->fs_private = ctx; 3872 fc->ops = &shmem_fs_context_ops; 3873 return 0; 3874 } 3875 3876 static struct file_system_type shmem_fs_type = { 3877 .owner = THIS_MODULE, 3878 .name = "tmpfs", 3879 .init_fs_context = shmem_init_fs_context, 3880 #ifdef CONFIG_TMPFS 3881 .parameters = shmem_fs_parameters, 3882 #endif 3883 .kill_sb = kill_litter_super, 3884 .fs_flags = FS_USERNS_MOUNT, 3885 }; 3886 3887 int __init shmem_init(void) 3888 { 3889 int error; 3890 3891 shmem_init_inodecache(); 3892 3893 error = register_filesystem(&shmem_fs_type); 3894 if (error) { 3895 pr_err("Could not register tmpfs\n"); 3896 goto out2; 3897 } 3898 3899 shm_mnt = kern_mount(&shmem_fs_type); 3900 if (IS_ERR(shm_mnt)) { 3901 error = PTR_ERR(shm_mnt); 3902 pr_err("Could not kern_mount tmpfs\n"); 3903 goto out1; 3904 } 3905 3906 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3907 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3908 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3909 else 3910 shmem_huge = 0; /* just in case it was patched */ 3911 #endif 3912 return 0; 3913 3914 out1: 3915 unregister_filesystem(&shmem_fs_type); 3916 out2: 3917 shmem_destroy_inodecache(); 3918 shm_mnt = ERR_PTR(error); 3919 return error; 3920 } 3921 3922 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 3923 static ssize_t shmem_enabled_show(struct kobject *kobj, 3924 struct kobj_attribute *attr, char *buf) 3925 { 3926 static const int values[] = { 3927 SHMEM_HUGE_ALWAYS, 3928 SHMEM_HUGE_WITHIN_SIZE, 3929 SHMEM_HUGE_ADVISE, 3930 SHMEM_HUGE_NEVER, 3931 SHMEM_HUGE_DENY, 3932 SHMEM_HUGE_FORCE, 3933 }; 3934 int i, count; 3935 3936 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3937 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3938 3939 count += sprintf(buf + count, fmt, 3940 shmem_format_huge(values[i])); 3941 } 3942 buf[count - 1] = '\n'; 3943 return count; 3944 } 3945 3946 static ssize_t shmem_enabled_store(struct kobject *kobj, 3947 struct kobj_attribute *attr, const char *buf, size_t count) 3948 { 3949 char tmp[16]; 3950 int huge; 3951 3952 if (count + 1 > sizeof(tmp)) 3953 return -EINVAL; 3954 memcpy(tmp, buf, count); 3955 tmp[count] = '\0'; 3956 if (count && tmp[count - 1] == '\n') 3957 tmp[count - 1] = '\0'; 3958 3959 huge = shmem_parse_huge(tmp); 3960 if (huge == -EINVAL) 3961 return -EINVAL; 3962 if (!has_transparent_hugepage() && 3963 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3964 return -EINVAL; 3965 3966 shmem_huge = huge; 3967 if (shmem_huge > SHMEM_HUGE_DENY) 3968 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3969 return count; 3970 } 3971 3972 struct kobj_attribute shmem_enabled_attr = 3973 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3974 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 3975 3976 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3977 bool shmem_huge_enabled(struct vm_area_struct *vma) 3978 { 3979 struct inode *inode = file_inode(vma->vm_file); 3980 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3981 loff_t i_size; 3982 pgoff_t off; 3983 3984 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3985 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3986 return false; 3987 if (shmem_huge == SHMEM_HUGE_FORCE) 3988 return true; 3989 if (shmem_huge == SHMEM_HUGE_DENY) 3990 return false; 3991 switch (sbinfo->huge) { 3992 case SHMEM_HUGE_NEVER: 3993 return false; 3994 case SHMEM_HUGE_ALWAYS: 3995 return true; 3996 case SHMEM_HUGE_WITHIN_SIZE: 3997 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3998 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3999 if (i_size >= HPAGE_PMD_SIZE && 4000 i_size >> PAGE_SHIFT >= off) 4001 return true; 4002 fallthrough; 4003 case SHMEM_HUGE_ADVISE: 4004 /* TODO: implement fadvise() hints */ 4005 return (vma->vm_flags & VM_HUGEPAGE); 4006 default: 4007 VM_BUG_ON(1); 4008 return false; 4009 } 4010 } 4011 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4012 4013 #else /* !CONFIG_SHMEM */ 4014 4015 /* 4016 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4017 * 4018 * This is intended for small system where the benefits of the full 4019 * shmem code (swap-backed and resource-limited) are outweighed by 4020 * their complexity. On systems without swap this code should be 4021 * effectively equivalent, but much lighter weight. 4022 */ 4023 4024 static struct file_system_type shmem_fs_type = { 4025 .name = "tmpfs", 4026 .init_fs_context = ramfs_init_fs_context, 4027 .parameters = ramfs_fs_parameters, 4028 .kill_sb = kill_litter_super, 4029 .fs_flags = FS_USERNS_MOUNT, 4030 }; 4031 4032 int __init shmem_init(void) 4033 { 4034 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4035 4036 shm_mnt = kern_mount(&shmem_fs_type); 4037 BUG_ON(IS_ERR(shm_mnt)); 4038 4039 return 0; 4040 } 4041 4042 int shmem_unuse(unsigned int type, bool frontswap, 4043 unsigned long *fs_pages_to_unuse) 4044 { 4045 return 0; 4046 } 4047 4048 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4049 { 4050 return 0; 4051 } 4052 4053 void shmem_unlock_mapping(struct address_space *mapping) 4054 { 4055 } 4056 4057 #ifdef CONFIG_MMU 4058 unsigned long shmem_get_unmapped_area(struct file *file, 4059 unsigned long addr, unsigned long len, 4060 unsigned long pgoff, unsigned long flags) 4061 { 4062 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4063 } 4064 #endif 4065 4066 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4067 { 4068 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4069 } 4070 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4071 4072 #define shmem_vm_ops generic_file_vm_ops 4073 #define shmem_file_operations ramfs_file_operations 4074 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4075 #define shmem_acct_size(flags, size) 0 4076 #define shmem_unacct_size(flags, size) do {} while (0) 4077 4078 #endif /* CONFIG_SHMEM */ 4079 4080 /* common code */ 4081 4082 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4083 unsigned long flags, unsigned int i_flags) 4084 { 4085 struct inode *inode; 4086 struct file *res; 4087 4088 if (IS_ERR(mnt)) 4089 return ERR_CAST(mnt); 4090 4091 if (size < 0 || size > MAX_LFS_FILESIZE) 4092 return ERR_PTR(-EINVAL); 4093 4094 if (shmem_acct_size(flags, size)) 4095 return ERR_PTR(-ENOMEM); 4096 4097 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4098 flags); 4099 if (unlikely(!inode)) { 4100 shmem_unacct_size(flags, size); 4101 return ERR_PTR(-ENOSPC); 4102 } 4103 inode->i_flags |= i_flags; 4104 inode->i_size = size; 4105 clear_nlink(inode); /* It is unlinked */ 4106 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4107 if (!IS_ERR(res)) 4108 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4109 &shmem_file_operations); 4110 if (IS_ERR(res)) 4111 iput(inode); 4112 return res; 4113 } 4114 4115 /** 4116 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4117 * kernel internal. There will be NO LSM permission checks against the 4118 * underlying inode. So users of this interface must do LSM checks at a 4119 * higher layer. The users are the big_key and shm implementations. LSM 4120 * checks are provided at the key or shm level rather than the inode. 4121 * @name: name for dentry (to be seen in /proc/<pid>/maps 4122 * @size: size to be set for the file 4123 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4124 */ 4125 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4126 { 4127 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4128 } 4129 4130 /** 4131 * shmem_file_setup - get an unlinked file living in tmpfs 4132 * @name: name for dentry (to be seen in /proc/<pid>/maps 4133 * @size: size to be set for the file 4134 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4135 */ 4136 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4137 { 4138 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4139 } 4140 EXPORT_SYMBOL_GPL(shmem_file_setup); 4141 4142 /** 4143 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4144 * @mnt: the tmpfs mount where the file will be created 4145 * @name: name for dentry (to be seen in /proc/<pid>/maps 4146 * @size: size to be set for the file 4147 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4148 */ 4149 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4150 loff_t size, unsigned long flags) 4151 { 4152 return __shmem_file_setup(mnt, name, size, flags, 0); 4153 } 4154 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4155 4156 /** 4157 * shmem_zero_setup - setup a shared anonymous mapping 4158 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4159 */ 4160 int shmem_zero_setup(struct vm_area_struct *vma) 4161 { 4162 struct file *file; 4163 loff_t size = vma->vm_end - vma->vm_start; 4164 4165 /* 4166 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4167 * between XFS directory reading and selinux: since this file is only 4168 * accessible to the user through its mapping, use S_PRIVATE flag to 4169 * bypass file security, in the same way as shmem_kernel_file_setup(). 4170 */ 4171 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4172 if (IS_ERR(file)) 4173 return PTR_ERR(file); 4174 4175 if (vma->vm_file) 4176 fput(vma->vm_file); 4177 vma->vm_file = file; 4178 vma->vm_ops = &shmem_vm_ops; 4179 4180 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4181 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4182 (vma->vm_end & HPAGE_PMD_MASK)) { 4183 khugepaged_enter(vma, vma->vm_flags); 4184 } 4185 4186 return 0; 4187 } 4188 4189 /** 4190 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4191 * @mapping: the page's address_space 4192 * @index: the page index 4193 * @gfp: the page allocator flags to use if allocating 4194 * 4195 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4196 * with any new page allocations done using the specified allocation flags. 4197 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4198 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4199 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4200 * 4201 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4202 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4203 */ 4204 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4205 pgoff_t index, gfp_t gfp) 4206 { 4207 #ifdef CONFIG_SHMEM 4208 struct inode *inode = mapping->host; 4209 struct page *page; 4210 int error; 4211 4212 BUG_ON(mapping->a_ops != &shmem_aops); 4213 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4214 gfp, NULL, NULL, NULL); 4215 if (error) 4216 page = ERR_PTR(error); 4217 else 4218 unlock_page(page); 4219 return page; 4220 #else 4221 /* 4222 * The tiny !SHMEM case uses ramfs without swap 4223 */ 4224 return read_cache_page_gfp(mapping, index, gfp); 4225 #endif 4226 } 4227 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4228