xref: /linux/mm/shmem.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94 
95 /* Pretend that one inode + its dentry occupy this much memory */
96 #define BOGO_INODE_SIZE 1024
97 
98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99 #define SHORT_SYMLINK_LEN 128
100 
101 /*
102  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103  * inode->i_private (with i_rwsem making sure that it has only one user at
104  * a time): we would prefer not to enlarge the shmem inode just for that.
105  */
106 struct shmem_falloc {
107 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 	pgoff_t start;		/* start of range currently being fallocated */
109 	pgoff_t next;		/* the next page offset to be fallocated */
110 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
111 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
112 };
113 
114 struct shmem_options {
115 	unsigned long long blocks;
116 	unsigned long long inodes;
117 	struct mempolicy *mpol;
118 	kuid_t uid;
119 	kgid_t gid;
120 	umode_t mode;
121 	bool full_inums;
122 	int huge;
123 	int seen;
124 	bool noswap;
125 	unsigned short quota_types;
126 	struct shmem_quota_limits qlimits;
127 #if IS_ENABLED(CONFIG_UNICODE)
128 	struct unicode_map *encoding;
129 	bool strict_encoding;
130 #endif
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138 
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 #endif
145 
146 #ifdef CONFIG_TMPFS
147 static unsigned long shmem_default_max_blocks(void)
148 {
149 	return totalram_pages() / 2;
150 }
151 
152 static unsigned long shmem_default_max_inodes(void)
153 {
154 	unsigned long nr_pages = totalram_pages();
155 
156 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 			ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160 
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 			struct vm_area_struct *vma, vm_fault_t *fault_type);
164 
165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 	return sb->s_fs_info;
168 }
169 
170 /*
171  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172  * for shared memory and for shared anonymous (/dev/zero) mappings
173  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174  * consistent with the pre-accounting of private mappings ...
175  */
176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181 
182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 	if (!(flags & VM_NORESERVE))
185 		vm_unacct_memory(VM_ACCT(size));
186 }
187 
188 static inline int shmem_reacct_size(unsigned long flags,
189 		loff_t oldsize, loff_t newsize)
190 {
191 	if (!(flags & VM_NORESERVE)) {
192 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 			return security_vm_enough_memory_mm(current->mm,
194 					VM_ACCT(newsize) - VM_ACCT(oldsize));
195 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 	}
198 	return 0;
199 }
200 
201 /*
202  * ... whereas tmpfs objects are accounted incrementally as
203  * pages are allocated, in order to allow large sparse files.
204  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206  */
207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 	if (!(flags & VM_NORESERVE))
210 		return 0;
211 
212 	return security_vm_enough_memory_mm(current->mm,
213 			pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 	if (flags & VM_NORESERVE)
219 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221 
222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 	int err = -ENOSPC;
227 
228 	if (shmem_acct_blocks(info->flags, pages))
229 		return err;
230 
231 	might_sleep();	/* when quotas */
232 	if (sbinfo->max_blocks) {
233 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 						sbinfo->max_blocks, pages))
235 			goto unacct;
236 
237 		err = dquot_alloc_block_nodirty(inode, pages);
238 		if (err) {
239 			percpu_counter_sub(&sbinfo->used_blocks, pages);
240 			goto unacct;
241 		}
242 	} else {
243 		err = dquot_alloc_block_nodirty(inode, pages);
244 		if (err)
245 			goto unacct;
246 	}
247 
248 	return 0;
249 
250 unacct:
251 	shmem_unacct_blocks(info->flags, pages);
252 	return err;
253 }
254 
255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 	struct shmem_inode_info *info = SHMEM_I(inode);
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259 
260 	might_sleep();	/* when quotas */
261 	dquot_free_block_nodirty(inode, pages);
262 
263 	if (sbinfo->max_blocks)
264 		percpu_counter_sub(&sbinfo->used_blocks, pages);
265 	shmem_unacct_blocks(info->flags, pages);
266 }
267 
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277 
278 bool shmem_mapping(struct address_space *mapping)
279 {
280 	return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283 
284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 	return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288 
289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293 
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_MUTEX(shmem_swaplist_mutex);
296 
297 #ifdef CONFIG_TMPFS_QUOTA
298 
299 static int shmem_enable_quotas(struct super_block *sb,
300 			       unsigned short quota_types)
301 {
302 	int type, err = 0;
303 
304 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 		if (!(quota_types & (1 << type)))
307 			continue;
308 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 					  DQUOT_USAGE_ENABLED |
310 					  DQUOT_LIMITS_ENABLED);
311 		if (err)
312 			goto out_err;
313 	}
314 	return 0;
315 
316 out_err:
317 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 		type, err);
319 	for (type--; type >= 0; type--)
320 		dquot_quota_off(sb, type);
321 	return err;
322 }
323 
324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 	int type;
327 
328 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 		dquot_quota_off(sb, type);
330 }
331 
332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 	return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337 
338 /*
339  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340  * produces a novel ino for the newly allocated inode.
341  *
342  * It may also be called when making a hard link to permit the space needed by
343  * each dentry. However, in that case, no new inode number is needed since that
344  * internally draws from another pool of inode numbers (currently global
345  * get_next_ino()). This case is indicated by passing NULL as inop.
346  */
347 #define SHMEM_INO_BATCH 1024
348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 	ino_t ino;
352 
353 	if (!(sb->s_flags & SB_KERNMOUNT)) {
354 		raw_spin_lock(&sbinfo->stat_lock);
355 		if (sbinfo->max_inodes) {
356 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 				raw_spin_unlock(&sbinfo->stat_lock);
358 				return -ENOSPC;
359 			}
360 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 		}
362 		if (inop) {
363 			ino = sbinfo->next_ino++;
364 			if (unlikely(is_zero_ino(ino)))
365 				ino = sbinfo->next_ino++;
366 			if (unlikely(!sbinfo->full_inums &&
367 				     ino > UINT_MAX)) {
368 				/*
369 				 * Emulate get_next_ino uint wraparound for
370 				 * compatibility
371 				 */
372 				if (IS_ENABLED(CONFIG_64BIT))
373 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 						__func__, MINOR(sb->s_dev));
375 				sbinfo->next_ino = 1;
376 				ino = sbinfo->next_ino++;
377 			}
378 			*inop = ino;
379 		}
380 		raw_spin_unlock(&sbinfo->stat_lock);
381 	} else if (inop) {
382 		/*
383 		 * __shmem_file_setup, one of our callers, is lock-free: it
384 		 * doesn't hold stat_lock in shmem_reserve_inode since
385 		 * max_inodes is always 0, and is called from potentially
386 		 * unknown contexts. As such, use a per-cpu batched allocator
387 		 * which doesn't require the per-sb stat_lock unless we are at
388 		 * the batch boundary.
389 		 *
390 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 		 * shmem mounts are not exposed to userspace, so we don't need
392 		 * to worry about things like glibc compatibility.
393 		 */
394 		ino_t *next_ino;
395 
396 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 		ino = *next_ino;
398 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 			raw_spin_lock(&sbinfo->stat_lock);
400 			ino = sbinfo->next_ino;
401 			sbinfo->next_ino += SHMEM_INO_BATCH;
402 			raw_spin_unlock(&sbinfo->stat_lock);
403 			if (unlikely(is_zero_ino(ino)))
404 				ino++;
405 		}
406 		*inop = ino;
407 		*next_ino = ++ino;
408 		put_cpu();
409 	}
410 
411 	return 0;
412 }
413 
414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 	if (sbinfo->max_inodes) {
418 		raw_spin_lock(&sbinfo->stat_lock);
419 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 		raw_spin_unlock(&sbinfo->stat_lock);
421 	}
422 }
423 
424 /**
425  * shmem_recalc_inode - recalculate the block usage of an inode
426  * @inode: inode to recalc
427  * @alloced: the change in number of pages allocated to inode
428  * @swapped: the change in number of pages swapped from inode
429  *
430  * We have to calculate the free blocks since the mm can drop
431  * undirtied hole pages behind our back.
432  *
433  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
434  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435  */
436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437 {
438 	struct shmem_inode_info *info = SHMEM_I(inode);
439 	long freed;
440 
441 	spin_lock(&info->lock);
442 	info->alloced += alloced;
443 	info->swapped += swapped;
444 	freed = info->alloced - info->swapped -
445 		READ_ONCE(inode->i_mapping->nrpages);
446 	/*
447 	 * Special case: whereas normally shmem_recalc_inode() is called
448 	 * after i_mapping->nrpages has already been adjusted (up or down),
449 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
450 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 	 * been freed.  Compensate here, to avoid the need for a followup call.
452 	 */
453 	if (swapped > 0)
454 		freed += swapped;
455 	if (freed > 0)
456 		info->alloced -= freed;
457 	spin_unlock(&info->lock);
458 
459 	/* The quota case may block */
460 	if (freed > 0)
461 		shmem_inode_unacct_blocks(inode, freed);
462 }
463 
464 bool shmem_charge(struct inode *inode, long pages)
465 {
466 	struct address_space *mapping = inode->i_mapping;
467 
468 	if (shmem_inode_acct_blocks(inode, pages))
469 		return false;
470 
471 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 	xa_lock_irq(&mapping->i_pages);
473 	mapping->nrpages += pages;
474 	xa_unlock_irq(&mapping->i_pages);
475 
476 	shmem_recalc_inode(inode, pages, 0);
477 	return true;
478 }
479 
480 void shmem_uncharge(struct inode *inode, long pages)
481 {
482 	/* pages argument is currently unused: keep it to help debugging */
483 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
484 
485 	shmem_recalc_inode(inode, 0, 0);
486 }
487 
488 /*
489  * Replace item expected in xarray by a new item, while holding xa_lock.
490  */
491 static int shmem_replace_entry(struct address_space *mapping,
492 			pgoff_t index, void *expected, void *replacement)
493 {
494 	XA_STATE(xas, &mapping->i_pages, index);
495 	void *item;
496 
497 	VM_BUG_ON(!expected);
498 	VM_BUG_ON(!replacement);
499 	item = xas_load(&xas);
500 	if (item != expected)
501 		return -ENOENT;
502 	xas_store(&xas, replacement);
503 	return 0;
504 }
505 
506 /*
507  * Sometimes, before we decide whether to proceed or to fail, we must check
508  * that an entry was not already brought back from swap by a racing thread.
509  *
510  * Checking folio is not enough: by the time a swapcache folio is locked, it
511  * might be reused, and again be swapcache, using the same swap as before.
512  */
513 static bool shmem_confirm_swap(struct address_space *mapping,
514 			       pgoff_t index, swp_entry_t swap)
515 {
516 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
517 }
518 
519 /*
520  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521  *
522  * SHMEM_HUGE_NEVER:
523  *	disables huge pages for the mount;
524  * SHMEM_HUGE_ALWAYS:
525  *	enables huge pages for the mount;
526  * SHMEM_HUGE_WITHIN_SIZE:
527  *	only allocate huge pages if the page will be fully within i_size,
528  *	also respect fadvise()/madvise() hints;
529  * SHMEM_HUGE_ADVISE:
530  *	only allocate huge pages if requested with fadvise()/madvise();
531  */
532 
533 #define SHMEM_HUGE_NEVER	0
534 #define SHMEM_HUGE_ALWAYS	1
535 #define SHMEM_HUGE_WITHIN_SIZE	2
536 #define SHMEM_HUGE_ADVISE	3
537 
538 /*
539  * Special values.
540  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541  *
542  * SHMEM_HUGE_DENY:
543  *	disables huge on shm_mnt and all mounts, for emergency use;
544  * SHMEM_HUGE_FORCE:
545  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546  *
547  */
548 #define SHMEM_HUGE_DENY		(-1)
549 #define SHMEM_HUGE_FORCE	(-2)
550 
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 /* ifdef here to avoid bloating shmem.o when not necessary */
553 
554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555 
556 static bool __shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
557 					loff_t write_end, bool shmem_huge_force,
558 					struct vm_area_struct *vma,
559 					unsigned long vm_flags)
560 {
561 	struct mm_struct *mm = vma ? vma->vm_mm : NULL;
562 	loff_t i_size;
563 
564 	if (!S_ISREG(inode->i_mode))
565 		return false;
566 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
567 		return false;
568 	if (shmem_huge == SHMEM_HUGE_DENY)
569 		return false;
570 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
571 		return true;
572 
573 	switch (SHMEM_SB(inode->i_sb)->huge) {
574 	case SHMEM_HUGE_ALWAYS:
575 		return true;
576 	case SHMEM_HUGE_WITHIN_SIZE:
577 		index = round_up(index + 1, HPAGE_PMD_NR);
578 		i_size = max(write_end, i_size_read(inode));
579 		i_size = round_up(i_size, PAGE_SIZE);
580 		if (i_size >> PAGE_SHIFT >= index)
581 			return true;
582 		fallthrough;
583 	case SHMEM_HUGE_ADVISE:
584 		if (mm && (vm_flags & VM_HUGEPAGE))
585 			return true;
586 		fallthrough;
587 	default:
588 		return false;
589 	}
590 }
591 
592 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
593 		   loff_t write_end, bool shmem_huge_force,
594 		   struct vm_area_struct *vma, unsigned long vm_flags)
595 {
596 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
597 		return false;
598 
599 	return __shmem_huge_global_enabled(inode, index, write_end,
600 					   shmem_huge_force, vma, vm_flags);
601 }
602 
603 #if defined(CONFIG_SYSFS)
604 static int shmem_parse_huge(const char *str)
605 {
606 	if (!strcmp(str, "never"))
607 		return SHMEM_HUGE_NEVER;
608 	if (!strcmp(str, "always"))
609 		return SHMEM_HUGE_ALWAYS;
610 	if (!strcmp(str, "within_size"))
611 		return SHMEM_HUGE_WITHIN_SIZE;
612 	if (!strcmp(str, "advise"))
613 		return SHMEM_HUGE_ADVISE;
614 	if (!strcmp(str, "deny"))
615 		return SHMEM_HUGE_DENY;
616 	if (!strcmp(str, "force"))
617 		return SHMEM_HUGE_FORCE;
618 	return -EINVAL;
619 }
620 #endif
621 
622 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
623 static const char *shmem_format_huge(int huge)
624 {
625 	switch (huge) {
626 	case SHMEM_HUGE_NEVER:
627 		return "never";
628 	case SHMEM_HUGE_ALWAYS:
629 		return "always";
630 	case SHMEM_HUGE_WITHIN_SIZE:
631 		return "within_size";
632 	case SHMEM_HUGE_ADVISE:
633 		return "advise";
634 	case SHMEM_HUGE_DENY:
635 		return "deny";
636 	case SHMEM_HUGE_FORCE:
637 		return "force";
638 	default:
639 		VM_BUG_ON(1);
640 		return "bad_val";
641 	}
642 }
643 #endif
644 
645 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
646 		struct shrink_control *sc, unsigned long nr_to_free)
647 {
648 	LIST_HEAD(list), *pos, *next;
649 	struct inode *inode;
650 	struct shmem_inode_info *info;
651 	struct folio *folio;
652 	unsigned long batch = sc ? sc->nr_to_scan : 128;
653 	unsigned long split = 0, freed = 0;
654 
655 	if (list_empty(&sbinfo->shrinklist))
656 		return SHRINK_STOP;
657 
658 	spin_lock(&sbinfo->shrinklist_lock);
659 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
660 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
661 
662 		/* pin the inode */
663 		inode = igrab(&info->vfs_inode);
664 
665 		/* inode is about to be evicted */
666 		if (!inode) {
667 			list_del_init(&info->shrinklist);
668 			goto next;
669 		}
670 
671 		list_move(&info->shrinklist, &list);
672 next:
673 		sbinfo->shrinklist_len--;
674 		if (!--batch)
675 			break;
676 	}
677 	spin_unlock(&sbinfo->shrinklist_lock);
678 
679 	list_for_each_safe(pos, next, &list) {
680 		pgoff_t next, end;
681 		loff_t i_size;
682 		int ret;
683 
684 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
685 		inode = &info->vfs_inode;
686 
687 		if (nr_to_free && freed >= nr_to_free)
688 			goto move_back;
689 
690 		i_size = i_size_read(inode);
691 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
692 		if (!folio || xa_is_value(folio))
693 			goto drop;
694 
695 		/* No large folio at the end of the file: nothing to split */
696 		if (!folio_test_large(folio)) {
697 			folio_put(folio);
698 			goto drop;
699 		}
700 
701 		/* Check if there is anything to gain from splitting */
702 		next = folio_next_index(folio);
703 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
704 		if (end <= folio->index || end >= next) {
705 			folio_put(folio);
706 			goto drop;
707 		}
708 
709 		/*
710 		 * Move the inode on the list back to shrinklist if we failed
711 		 * to lock the page at this time.
712 		 *
713 		 * Waiting for the lock may lead to deadlock in the
714 		 * reclaim path.
715 		 */
716 		if (!folio_trylock(folio)) {
717 			folio_put(folio);
718 			goto move_back;
719 		}
720 
721 		ret = split_folio(folio);
722 		folio_unlock(folio);
723 		folio_put(folio);
724 
725 		/* If split failed move the inode on the list back to shrinklist */
726 		if (ret)
727 			goto move_back;
728 
729 		freed += next - end;
730 		split++;
731 drop:
732 		list_del_init(&info->shrinklist);
733 		goto put;
734 move_back:
735 		/*
736 		 * Make sure the inode is either on the global list or deleted
737 		 * from any local list before iput() since it could be deleted
738 		 * in another thread once we put the inode (then the local list
739 		 * is corrupted).
740 		 */
741 		spin_lock(&sbinfo->shrinklist_lock);
742 		list_move(&info->shrinklist, &sbinfo->shrinklist);
743 		sbinfo->shrinklist_len++;
744 		spin_unlock(&sbinfo->shrinklist_lock);
745 put:
746 		iput(inode);
747 	}
748 
749 	return split;
750 }
751 
752 static long shmem_unused_huge_scan(struct super_block *sb,
753 		struct shrink_control *sc)
754 {
755 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
756 
757 	if (!READ_ONCE(sbinfo->shrinklist_len))
758 		return SHRINK_STOP;
759 
760 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
761 }
762 
763 static long shmem_unused_huge_count(struct super_block *sb,
764 		struct shrink_control *sc)
765 {
766 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
767 	return READ_ONCE(sbinfo->shrinklist_len);
768 }
769 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
770 
771 #define shmem_huge SHMEM_HUGE_DENY
772 
773 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
774 		struct shrink_control *sc, unsigned long nr_to_free)
775 {
776 	return 0;
777 }
778 
779 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
780 		loff_t write_end, bool shmem_huge_force,
781 		struct vm_area_struct *vma, unsigned long vm_flags)
782 {
783 	return false;
784 }
785 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
786 
787 /*
788  * Somewhat like filemap_add_folio, but error if expected item has gone.
789  */
790 static int shmem_add_to_page_cache(struct folio *folio,
791 				   struct address_space *mapping,
792 				   pgoff_t index, void *expected, gfp_t gfp)
793 {
794 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
795 	long nr = folio_nr_pages(folio);
796 
797 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
798 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
799 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
800 
801 	folio_ref_add(folio, nr);
802 	folio->mapping = mapping;
803 	folio->index = index;
804 
805 	gfp &= GFP_RECLAIM_MASK;
806 	folio_throttle_swaprate(folio, gfp);
807 
808 	do {
809 		xas_lock_irq(&xas);
810 		if (expected != xas_find_conflict(&xas)) {
811 			xas_set_err(&xas, -EEXIST);
812 			goto unlock;
813 		}
814 		if (expected && xas_find_conflict(&xas)) {
815 			xas_set_err(&xas, -EEXIST);
816 			goto unlock;
817 		}
818 		xas_store(&xas, folio);
819 		if (xas_error(&xas))
820 			goto unlock;
821 		if (folio_test_pmd_mappable(folio))
822 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
823 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
824 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
825 		mapping->nrpages += nr;
826 unlock:
827 		xas_unlock_irq(&xas);
828 	} while (xas_nomem(&xas, gfp));
829 
830 	if (xas_error(&xas)) {
831 		folio->mapping = NULL;
832 		folio_ref_sub(folio, nr);
833 		return xas_error(&xas);
834 	}
835 
836 	return 0;
837 }
838 
839 /*
840  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
841  */
842 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
843 {
844 	struct address_space *mapping = folio->mapping;
845 	long nr = folio_nr_pages(folio);
846 	int error;
847 
848 	xa_lock_irq(&mapping->i_pages);
849 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
850 	folio->mapping = NULL;
851 	mapping->nrpages -= nr;
852 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
853 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
854 	xa_unlock_irq(&mapping->i_pages);
855 	folio_put_refs(folio, nr);
856 	BUG_ON(error);
857 }
858 
859 /*
860  * Remove swap entry from page cache, free the swap and its page cache. Returns
861  * the number of pages being freed. 0 means entry not found in XArray (0 pages
862  * being freed).
863  */
864 static long shmem_free_swap(struct address_space *mapping,
865 			    pgoff_t index, void *radswap)
866 {
867 	int order = xa_get_order(&mapping->i_pages, index);
868 	void *old;
869 
870 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
871 	if (old != radswap)
872 		return 0;
873 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
874 
875 	return 1 << order;
876 }
877 
878 /*
879  * Determine (in bytes) how many of the shmem object's pages mapped by the
880  * given offsets are swapped out.
881  *
882  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
883  * as long as the inode doesn't go away and racy results are not a problem.
884  */
885 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
886 						pgoff_t start, pgoff_t end)
887 {
888 	XA_STATE(xas, &mapping->i_pages, start);
889 	struct page *page;
890 	unsigned long swapped = 0;
891 	unsigned long max = end - 1;
892 
893 	rcu_read_lock();
894 	xas_for_each(&xas, page, max) {
895 		if (xas_retry(&xas, page))
896 			continue;
897 		if (xa_is_value(page))
898 			swapped += 1 << xas_get_order(&xas);
899 		if (xas.xa_index == max)
900 			break;
901 		if (need_resched()) {
902 			xas_pause(&xas);
903 			cond_resched_rcu();
904 		}
905 	}
906 	rcu_read_unlock();
907 
908 	return swapped << PAGE_SHIFT;
909 }
910 
911 /*
912  * Determine (in bytes) how many of the shmem object's pages mapped by the
913  * given vma is swapped out.
914  *
915  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
916  * as long as the inode doesn't go away and racy results are not a problem.
917  */
918 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
919 {
920 	struct inode *inode = file_inode(vma->vm_file);
921 	struct shmem_inode_info *info = SHMEM_I(inode);
922 	struct address_space *mapping = inode->i_mapping;
923 	unsigned long swapped;
924 
925 	/* Be careful as we don't hold info->lock */
926 	swapped = READ_ONCE(info->swapped);
927 
928 	/*
929 	 * The easier cases are when the shmem object has nothing in swap, or
930 	 * the vma maps it whole. Then we can simply use the stats that we
931 	 * already track.
932 	 */
933 	if (!swapped)
934 		return 0;
935 
936 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
937 		return swapped << PAGE_SHIFT;
938 
939 	/* Here comes the more involved part */
940 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
941 					vma->vm_pgoff + vma_pages(vma));
942 }
943 
944 /*
945  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
946  */
947 void shmem_unlock_mapping(struct address_space *mapping)
948 {
949 	struct folio_batch fbatch;
950 	pgoff_t index = 0;
951 
952 	folio_batch_init(&fbatch);
953 	/*
954 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
955 	 */
956 	while (!mapping_unevictable(mapping) &&
957 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
958 		check_move_unevictable_folios(&fbatch);
959 		folio_batch_release(&fbatch);
960 		cond_resched();
961 	}
962 }
963 
964 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
965 {
966 	struct folio *folio;
967 
968 	/*
969 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
970 	 * beyond i_size, and reports fallocated folios as holes.
971 	 */
972 	folio = filemap_get_entry(inode->i_mapping, index);
973 	if (!folio)
974 		return folio;
975 	if (!xa_is_value(folio)) {
976 		folio_lock(folio);
977 		if (folio->mapping == inode->i_mapping)
978 			return folio;
979 		/* The folio has been swapped out */
980 		folio_unlock(folio);
981 		folio_put(folio);
982 	}
983 	/*
984 	 * But read a folio back from swap if any of it is within i_size
985 	 * (although in some cases this is just a waste of time).
986 	 */
987 	folio = NULL;
988 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
989 	return folio;
990 }
991 
992 /*
993  * Remove range of pages and swap entries from page cache, and free them.
994  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
995  */
996 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
997 								 bool unfalloc)
998 {
999 	struct address_space *mapping = inode->i_mapping;
1000 	struct shmem_inode_info *info = SHMEM_I(inode);
1001 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1002 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1003 	struct folio_batch fbatch;
1004 	pgoff_t indices[PAGEVEC_SIZE];
1005 	struct folio *folio;
1006 	bool same_folio;
1007 	long nr_swaps_freed = 0;
1008 	pgoff_t index;
1009 	int i;
1010 
1011 	if (lend == -1)
1012 		end = -1;	/* unsigned, so actually very big */
1013 
1014 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1015 		info->fallocend = start;
1016 
1017 	folio_batch_init(&fbatch);
1018 	index = start;
1019 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1020 			&fbatch, indices)) {
1021 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1022 			folio = fbatch.folios[i];
1023 
1024 			if (xa_is_value(folio)) {
1025 				if (unfalloc)
1026 					continue;
1027 				nr_swaps_freed += shmem_free_swap(mapping,
1028 							indices[i], folio);
1029 				continue;
1030 			}
1031 
1032 			if (!unfalloc || !folio_test_uptodate(folio))
1033 				truncate_inode_folio(mapping, folio);
1034 			folio_unlock(folio);
1035 		}
1036 		folio_batch_remove_exceptionals(&fbatch);
1037 		folio_batch_release(&fbatch);
1038 		cond_resched();
1039 	}
1040 
1041 	/*
1042 	 * When undoing a failed fallocate, we want none of the partial folio
1043 	 * zeroing and splitting below, but shall want to truncate the whole
1044 	 * folio when !uptodate indicates that it was added by this fallocate,
1045 	 * even when [lstart, lend] covers only a part of the folio.
1046 	 */
1047 	if (unfalloc)
1048 		goto whole_folios;
1049 
1050 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1051 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1052 	if (folio) {
1053 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1054 		folio_mark_dirty(folio);
1055 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1056 			start = folio_next_index(folio);
1057 			if (same_folio)
1058 				end = folio->index;
1059 		}
1060 		folio_unlock(folio);
1061 		folio_put(folio);
1062 		folio = NULL;
1063 	}
1064 
1065 	if (!same_folio)
1066 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1067 	if (folio) {
1068 		folio_mark_dirty(folio);
1069 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1070 			end = folio->index;
1071 		folio_unlock(folio);
1072 		folio_put(folio);
1073 	}
1074 
1075 whole_folios:
1076 
1077 	index = start;
1078 	while (index < end) {
1079 		cond_resched();
1080 
1081 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1082 				indices)) {
1083 			/* If all gone or hole-punch or unfalloc, we're done */
1084 			if (index == start || end != -1)
1085 				break;
1086 			/* But if truncating, restart to make sure all gone */
1087 			index = start;
1088 			continue;
1089 		}
1090 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1091 			folio = fbatch.folios[i];
1092 
1093 			if (xa_is_value(folio)) {
1094 				long swaps_freed;
1095 
1096 				if (unfalloc)
1097 					continue;
1098 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1099 				if (!swaps_freed) {
1100 					/* Swap was replaced by page: retry */
1101 					index = indices[i];
1102 					break;
1103 				}
1104 				nr_swaps_freed += swaps_freed;
1105 				continue;
1106 			}
1107 
1108 			folio_lock(folio);
1109 
1110 			if (!unfalloc || !folio_test_uptodate(folio)) {
1111 				if (folio_mapping(folio) != mapping) {
1112 					/* Page was replaced by swap: retry */
1113 					folio_unlock(folio);
1114 					index = indices[i];
1115 					break;
1116 				}
1117 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1118 						folio);
1119 
1120 				if (!folio_test_large(folio)) {
1121 					truncate_inode_folio(mapping, folio);
1122 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1123 					/*
1124 					 * If we split a page, reset the loop so
1125 					 * that we pick up the new sub pages.
1126 					 * Otherwise the THP was entirely
1127 					 * dropped or the target range was
1128 					 * zeroed, so just continue the loop as
1129 					 * is.
1130 					 */
1131 					if (!folio_test_large(folio)) {
1132 						folio_unlock(folio);
1133 						index = start;
1134 						break;
1135 					}
1136 				}
1137 			}
1138 			folio_unlock(folio);
1139 		}
1140 		folio_batch_remove_exceptionals(&fbatch);
1141 		folio_batch_release(&fbatch);
1142 	}
1143 
1144 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1145 }
1146 
1147 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1148 {
1149 	shmem_undo_range(inode, lstart, lend, false);
1150 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1151 	inode_inc_iversion(inode);
1152 }
1153 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1154 
1155 static int shmem_getattr(struct mnt_idmap *idmap,
1156 			 const struct path *path, struct kstat *stat,
1157 			 u32 request_mask, unsigned int query_flags)
1158 {
1159 	struct inode *inode = path->dentry->d_inode;
1160 	struct shmem_inode_info *info = SHMEM_I(inode);
1161 
1162 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1163 		shmem_recalc_inode(inode, 0, 0);
1164 
1165 	if (info->fsflags & FS_APPEND_FL)
1166 		stat->attributes |= STATX_ATTR_APPEND;
1167 	if (info->fsflags & FS_IMMUTABLE_FL)
1168 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1169 	if (info->fsflags & FS_NODUMP_FL)
1170 		stat->attributes |= STATX_ATTR_NODUMP;
1171 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1172 			STATX_ATTR_IMMUTABLE |
1173 			STATX_ATTR_NODUMP);
1174 	generic_fillattr(idmap, request_mask, inode, stat);
1175 
1176 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1177 		stat->blksize = HPAGE_PMD_SIZE;
1178 
1179 	if (request_mask & STATX_BTIME) {
1180 		stat->result_mask |= STATX_BTIME;
1181 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1182 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static int shmem_setattr(struct mnt_idmap *idmap,
1189 			 struct dentry *dentry, struct iattr *attr)
1190 {
1191 	struct inode *inode = d_inode(dentry);
1192 	struct shmem_inode_info *info = SHMEM_I(inode);
1193 	int error;
1194 	bool update_mtime = false;
1195 	bool update_ctime = true;
1196 
1197 	error = setattr_prepare(idmap, dentry, attr);
1198 	if (error)
1199 		return error;
1200 
1201 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1202 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1203 			return -EPERM;
1204 		}
1205 	}
1206 
1207 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1208 		loff_t oldsize = inode->i_size;
1209 		loff_t newsize = attr->ia_size;
1210 
1211 		/* protected by i_rwsem */
1212 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1213 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1214 			return -EPERM;
1215 
1216 		if (newsize != oldsize) {
1217 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1218 					oldsize, newsize);
1219 			if (error)
1220 				return error;
1221 			i_size_write(inode, newsize);
1222 			update_mtime = true;
1223 		} else {
1224 			update_ctime = false;
1225 		}
1226 		if (newsize <= oldsize) {
1227 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1228 			if (oldsize > holebegin)
1229 				unmap_mapping_range(inode->i_mapping,
1230 							holebegin, 0, 1);
1231 			if (info->alloced)
1232 				shmem_truncate_range(inode,
1233 							newsize, (loff_t)-1);
1234 			/* unmap again to remove racily COWed private pages */
1235 			if (oldsize > holebegin)
1236 				unmap_mapping_range(inode->i_mapping,
1237 							holebegin, 0, 1);
1238 		}
1239 	}
1240 
1241 	if (is_quota_modification(idmap, inode, attr)) {
1242 		error = dquot_initialize(inode);
1243 		if (error)
1244 			return error;
1245 	}
1246 
1247 	/* Transfer quota accounting */
1248 	if (i_uid_needs_update(idmap, attr, inode) ||
1249 	    i_gid_needs_update(idmap, attr, inode)) {
1250 		error = dquot_transfer(idmap, inode, attr);
1251 		if (error)
1252 			return error;
1253 	}
1254 
1255 	setattr_copy(idmap, inode, attr);
1256 	if (attr->ia_valid & ATTR_MODE)
1257 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1258 	if (!error && update_ctime) {
1259 		inode_set_ctime_current(inode);
1260 		if (update_mtime)
1261 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1262 		inode_inc_iversion(inode);
1263 	}
1264 	return error;
1265 }
1266 
1267 static void shmem_evict_inode(struct inode *inode)
1268 {
1269 	struct shmem_inode_info *info = SHMEM_I(inode);
1270 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1271 	size_t freed = 0;
1272 
1273 	if (shmem_mapping(inode->i_mapping)) {
1274 		shmem_unacct_size(info->flags, inode->i_size);
1275 		inode->i_size = 0;
1276 		mapping_set_exiting(inode->i_mapping);
1277 		shmem_truncate_range(inode, 0, (loff_t)-1);
1278 		if (!list_empty(&info->shrinklist)) {
1279 			spin_lock(&sbinfo->shrinklist_lock);
1280 			if (!list_empty(&info->shrinklist)) {
1281 				list_del_init(&info->shrinklist);
1282 				sbinfo->shrinklist_len--;
1283 			}
1284 			spin_unlock(&sbinfo->shrinklist_lock);
1285 		}
1286 		while (!list_empty(&info->swaplist)) {
1287 			/* Wait while shmem_unuse() is scanning this inode... */
1288 			wait_var_event(&info->stop_eviction,
1289 				       !atomic_read(&info->stop_eviction));
1290 			mutex_lock(&shmem_swaplist_mutex);
1291 			/* ...but beware of the race if we peeked too early */
1292 			if (!atomic_read(&info->stop_eviction))
1293 				list_del_init(&info->swaplist);
1294 			mutex_unlock(&shmem_swaplist_mutex);
1295 		}
1296 	}
1297 
1298 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1299 	shmem_free_inode(inode->i_sb, freed);
1300 	WARN_ON(inode->i_blocks);
1301 	clear_inode(inode);
1302 #ifdef CONFIG_TMPFS_QUOTA
1303 	dquot_free_inode(inode);
1304 	dquot_drop(inode);
1305 #endif
1306 }
1307 
1308 static int shmem_find_swap_entries(struct address_space *mapping,
1309 				   pgoff_t start, struct folio_batch *fbatch,
1310 				   pgoff_t *indices, unsigned int type)
1311 {
1312 	XA_STATE(xas, &mapping->i_pages, start);
1313 	struct folio *folio;
1314 	swp_entry_t entry;
1315 
1316 	rcu_read_lock();
1317 	xas_for_each(&xas, folio, ULONG_MAX) {
1318 		if (xas_retry(&xas, folio))
1319 			continue;
1320 
1321 		if (!xa_is_value(folio))
1322 			continue;
1323 
1324 		entry = radix_to_swp_entry(folio);
1325 		/*
1326 		 * swapin error entries can be found in the mapping. But they're
1327 		 * deliberately ignored here as we've done everything we can do.
1328 		 */
1329 		if (swp_type(entry) != type)
1330 			continue;
1331 
1332 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1333 		if (!folio_batch_add(fbatch, folio))
1334 			break;
1335 
1336 		if (need_resched()) {
1337 			xas_pause(&xas);
1338 			cond_resched_rcu();
1339 		}
1340 	}
1341 	rcu_read_unlock();
1342 
1343 	return xas.xa_index;
1344 }
1345 
1346 /*
1347  * Move the swapped pages for an inode to page cache. Returns the count
1348  * of pages swapped in, or the error in case of failure.
1349  */
1350 static int shmem_unuse_swap_entries(struct inode *inode,
1351 		struct folio_batch *fbatch, pgoff_t *indices)
1352 {
1353 	int i = 0;
1354 	int ret = 0;
1355 	int error = 0;
1356 	struct address_space *mapping = inode->i_mapping;
1357 
1358 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1359 		struct folio *folio = fbatch->folios[i];
1360 
1361 		if (!xa_is_value(folio))
1362 			continue;
1363 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1364 					mapping_gfp_mask(mapping), NULL, NULL);
1365 		if (error == 0) {
1366 			folio_unlock(folio);
1367 			folio_put(folio);
1368 			ret++;
1369 		}
1370 		if (error == -ENOMEM)
1371 			break;
1372 		error = 0;
1373 	}
1374 	return error ? error : ret;
1375 }
1376 
1377 /*
1378  * If swap found in inode, free it and move page from swapcache to filecache.
1379  */
1380 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1381 {
1382 	struct address_space *mapping = inode->i_mapping;
1383 	pgoff_t start = 0;
1384 	struct folio_batch fbatch;
1385 	pgoff_t indices[PAGEVEC_SIZE];
1386 	int ret = 0;
1387 
1388 	do {
1389 		folio_batch_init(&fbatch);
1390 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1391 		if (folio_batch_count(&fbatch) == 0) {
1392 			ret = 0;
1393 			break;
1394 		}
1395 
1396 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1397 		if (ret < 0)
1398 			break;
1399 
1400 		start = indices[folio_batch_count(&fbatch) - 1];
1401 	} while (true);
1402 
1403 	return ret;
1404 }
1405 
1406 /*
1407  * Read all the shared memory data that resides in the swap
1408  * device 'type' back into memory, so the swap device can be
1409  * unused.
1410  */
1411 int shmem_unuse(unsigned int type)
1412 {
1413 	struct shmem_inode_info *info, *next;
1414 	int error = 0;
1415 
1416 	if (list_empty(&shmem_swaplist))
1417 		return 0;
1418 
1419 	mutex_lock(&shmem_swaplist_mutex);
1420 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1421 		if (!info->swapped) {
1422 			list_del_init(&info->swaplist);
1423 			continue;
1424 		}
1425 		/*
1426 		 * Drop the swaplist mutex while searching the inode for swap;
1427 		 * but before doing so, make sure shmem_evict_inode() will not
1428 		 * remove placeholder inode from swaplist, nor let it be freed
1429 		 * (igrab() would protect from unlink, but not from unmount).
1430 		 */
1431 		atomic_inc(&info->stop_eviction);
1432 		mutex_unlock(&shmem_swaplist_mutex);
1433 
1434 		error = shmem_unuse_inode(&info->vfs_inode, type);
1435 		cond_resched();
1436 
1437 		mutex_lock(&shmem_swaplist_mutex);
1438 		next = list_next_entry(info, swaplist);
1439 		if (!info->swapped)
1440 			list_del_init(&info->swaplist);
1441 		if (atomic_dec_and_test(&info->stop_eviction))
1442 			wake_up_var(&info->stop_eviction);
1443 		if (error)
1444 			break;
1445 	}
1446 	mutex_unlock(&shmem_swaplist_mutex);
1447 
1448 	return error;
1449 }
1450 
1451 /*
1452  * Move the page from the page cache to the swap cache.
1453  */
1454 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1455 {
1456 	struct folio *folio = page_folio(page);
1457 	struct address_space *mapping = folio->mapping;
1458 	struct inode *inode = mapping->host;
1459 	struct shmem_inode_info *info = SHMEM_I(inode);
1460 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1461 	swp_entry_t swap;
1462 	pgoff_t index;
1463 	int nr_pages;
1464 	bool split = false;
1465 
1466 	/*
1467 	 * Our capabilities prevent regular writeback or sync from ever calling
1468 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1469 	 * its underlying filesystem, in which case tmpfs should write out to
1470 	 * swap only in response to memory pressure, and not for the writeback
1471 	 * threads or sync.
1472 	 */
1473 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1474 		goto redirty;
1475 
1476 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1477 		goto redirty;
1478 
1479 	if (!total_swap_pages)
1480 		goto redirty;
1481 
1482 	/*
1483 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1484 	 * split when swapping.
1485 	 *
1486 	 * And shrinkage of pages beyond i_size does not split swap, so
1487 	 * swapout of a large folio crossing i_size needs to split too
1488 	 * (unless fallocate has been used to preallocate beyond EOF).
1489 	 */
1490 	if (folio_test_large(folio)) {
1491 		index = shmem_fallocend(inode,
1492 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1493 		if ((index > folio->index && index < folio_next_index(folio)) ||
1494 		    !IS_ENABLED(CONFIG_THP_SWAP))
1495 			split = true;
1496 	}
1497 
1498 	if (split) {
1499 try_split:
1500 		/* Ensure the subpages are still dirty */
1501 		folio_test_set_dirty(folio);
1502 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1503 			goto redirty;
1504 		folio = page_folio(page);
1505 		folio_clear_dirty(folio);
1506 	}
1507 
1508 	index = folio->index;
1509 	nr_pages = folio_nr_pages(folio);
1510 
1511 	/*
1512 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1513 	 * value into swapfile.c, the only way we can correctly account for a
1514 	 * fallocated folio arriving here is now to initialize it and write it.
1515 	 *
1516 	 * That's okay for a folio already fallocated earlier, but if we have
1517 	 * not yet completed the fallocation, then (a) we want to keep track
1518 	 * of this folio in case we have to undo it, and (b) it may not be a
1519 	 * good idea to continue anyway, once we're pushing into swap.  So
1520 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1521 	 */
1522 	if (!folio_test_uptodate(folio)) {
1523 		if (inode->i_private) {
1524 			struct shmem_falloc *shmem_falloc;
1525 			spin_lock(&inode->i_lock);
1526 			shmem_falloc = inode->i_private;
1527 			if (shmem_falloc &&
1528 			    !shmem_falloc->waitq &&
1529 			    index >= shmem_falloc->start &&
1530 			    index < shmem_falloc->next)
1531 				shmem_falloc->nr_unswapped++;
1532 			else
1533 				shmem_falloc = NULL;
1534 			spin_unlock(&inode->i_lock);
1535 			if (shmem_falloc)
1536 				goto redirty;
1537 		}
1538 		folio_zero_range(folio, 0, folio_size(folio));
1539 		flush_dcache_folio(folio);
1540 		folio_mark_uptodate(folio);
1541 	}
1542 
1543 	swap = folio_alloc_swap(folio);
1544 	if (!swap.val) {
1545 		if (nr_pages > 1)
1546 			goto try_split;
1547 
1548 		goto redirty;
1549 	}
1550 
1551 	/*
1552 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1553 	 * if it's not already there.  Do it now before the folio is
1554 	 * moved to swap cache, when its pagelock no longer protects
1555 	 * the inode from eviction.  But don't unlock the mutex until
1556 	 * we've incremented swapped, because shmem_unuse_inode() will
1557 	 * prune a !swapped inode from the swaplist under this mutex.
1558 	 */
1559 	mutex_lock(&shmem_swaplist_mutex);
1560 	if (list_empty(&info->swaplist))
1561 		list_add(&info->swaplist, &shmem_swaplist);
1562 
1563 	if (add_to_swap_cache(folio, swap,
1564 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1565 			NULL) == 0) {
1566 		shmem_recalc_inode(inode, 0, nr_pages);
1567 		swap_shmem_alloc(swap, nr_pages);
1568 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1569 
1570 		mutex_unlock(&shmem_swaplist_mutex);
1571 		BUG_ON(folio_mapped(folio));
1572 		return swap_writepage(&folio->page, wbc);
1573 	}
1574 
1575 	mutex_unlock(&shmem_swaplist_mutex);
1576 	put_swap_folio(folio, swap);
1577 redirty:
1578 	folio_mark_dirty(folio);
1579 	if (wbc->for_reclaim)
1580 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1581 	folio_unlock(folio);
1582 	return 0;
1583 }
1584 
1585 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1586 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1587 {
1588 	char buffer[64];
1589 
1590 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1591 		return;		/* show nothing */
1592 
1593 	mpol_to_str(buffer, sizeof(buffer), mpol);
1594 
1595 	seq_printf(seq, ",mpol=%s", buffer);
1596 }
1597 
1598 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1599 {
1600 	struct mempolicy *mpol = NULL;
1601 	if (sbinfo->mpol) {
1602 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1603 		mpol = sbinfo->mpol;
1604 		mpol_get(mpol);
1605 		raw_spin_unlock(&sbinfo->stat_lock);
1606 	}
1607 	return mpol;
1608 }
1609 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1610 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1611 {
1612 }
1613 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1614 {
1615 	return NULL;
1616 }
1617 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1618 
1619 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1620 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1621 
1622 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1623 			struct shmem_inode_info *info, pgoff_t index)
1624 {
1625 	struct mempolicy *mpol;
1626 	pgoff_t ilx;
1627 	struct folio *folio;
1628 
1629 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1630 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1631 	mpol_cond_put(mpol);
1632 
1633 	return folio;
1634 }
1635 
1636 /*
1637  * Make sure huge_gfp is always more limited than limit_gfp.
1638  * Some of the flags set permissions, while others set limitations.
1639  */
1640 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1641 {
1642 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1643 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1644 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1645 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1646 
1647 	/* Allow allocations only from the originally specified zones. */
1648 	result |= zoneflags;
1649 
1650 	/*
1651 	 * Minimize the result gfp by taking the union with the deny flags,
1652 	 * and the intersection of the allow flags.
1653 	 */
1654 	result |= (limit_gfp & denyflags);
1655 	result |= (huge_gfp & limit_gfp) & allowflags;
1656 
1657 	return result;
1658 }
1659 
1660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1661 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1662 				struct vm_area_struct *vma, pgoff_t index,
1663 				loff_t write_end, bool shmem_huge_force)
1664 {
1665 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1666 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1667 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1668 	bool global_huge;
1669 	loff_t i_size;
1670 	int order;
1671 
1672 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1673 		return 0;
1674 
1675 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1676 					shmem_huge_force, vma, vm_flags);
1677 	if (!vma || !vma_is_anon_shmem(vma)) {
1678 		/*
1679 		 * For tmpfs, we now only support PMD sized THP if huge page
1680 		 * is enabled, otherwise fallback to order 0.
1681 		 */
1682 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1683 	}
1684 
1685 	/*
1686 	 * Following the 'deny' semantics of the top level, force the huge
1687 	 * option off from all mounts.
1688 	 */
1689 	if (shmem_huge == SHMEM_HUGE_DENY)
1690 		return 0;
1691 
1692 	/*
1693 	 * Only allow inherit orders if the top-level value is 'force', which
1694 	 * means non-PMD sized THP can not override 'huge' mount option now.
1695 	 */
1696 	if (shmem_huge == SHMEM_HUGE_FORCE)
1697 		return READ_ONCE(huge_shmem_orders_inherit);
1698 
1699 	/* Allow mTHP that will be fully within i_size. */
1700 	order = highest_order(within_size_orders);
1701 	while (within_size_orders) {
1702 		index = round_up(index + 1, order);
1703 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1704 		if (i_size >> PAGE_SHIFT >= index) {
1705 			mask |= within_size_orders;
1706 			break;
1707 		}
1708 
1709 		order = next_order(&within_size_orders, order);
1710 	}
1711 
1712 	if (vm_flags & VM_HUGEPAGE)
1713 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1714 
1715 	if (global_huge)
1716 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1717 
1718 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1719 }
1720 
1721 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1722 					   struct address_space *mapping, pgoff_t index,
1723 					   unsigned long orders)
1724 {
1725 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1726 	pgoff_t aligned_index;
1727 	unsigned long pages;
1728 	int order;
1729 
1730 	if (vma) {
1731 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1732 		if (!orders)
1733 			return 0;
1734 	}
1735 
1736 	/* Find the highest order that can add into the page cache */
1737 	order = highest_order(orders);
1738 	while (orders) {
1739 		pages = 1UL << order;
1740 		aligned_index = round_down(index, pages);
1741 		/*
1742 		 * Check for conflict before waiting on a huge allocation.
1743 		 * Conflict might be that a huge page has just been allocated
1744 		 * and added to page cache by a racing thread, or that there
1745 		 * is already at least one small page in the huge extent.
1746 		 * Be careful to retry when appropriate, but not forever!
1747 		 * Elsewhere -EEXIST would be the right code, but not here.
1748 		 */
1749 		if (!xa_find(&mapping->i_pages, &aligned_index,
1750 			     aligned_index + pages - 1, XA_PRESENT))
1751 			break;
1752 		order = next_order(&orders, order);
1753 	}
1754 
1755 	return orders;
1756 }
1757 #else
1758 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1759 					   struct address_space *mapping, pgoff_t index,
1760 					   unsigned long orders)
1761 {
1762 	return 0;
1763 }
1764 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1765 
1766 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1767 		struct shmem_inode_info *info, pgoff_t index)
1768 {
1769 	struct mempolicy *mpol;
1770 	pgoff_t ilx;
1771 	struct folio *folio;
1772 
1773 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1774 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1775 	mpol_cond_put(mpol);
1776 
1777 	return folio;
1778 }
1779 
1780 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1781 		gfp_t gfp, struct inode *inode, pgoff_t index,
1782 		struct mm_struct *fault_mm, unsigned long orders)
1783 {
1784 	struct address_space *mapping = inode->i_mapping;
1785 	struct shmem_inode_info *info = SHMEM_I(inode);
1786 	unsigned long suitable_orders = 0;
1787 	struct folio *folio = NULL;
1788 	long pages;
1789 	int error, order;
1790 
1791 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1792 		orders = 0;
1793 
1794 	if (orders > 0) {
1795 		suitable_orders = shmem_suitable_orders(inode, vmf,
1796 							mapping, index, orders);
1797 
1798 		order = highest_order(suitable_orders);
1799 		while (suitable_orders) {
1800 			pages = 1UL << order;
1801 			index = round_down(index, pages);
1802 			folio = shmem_alloc_folio(gfp, order, info, index);
1803 			if (folio)
1804 				goto allocated;
1805 
1806 			if (pages == HPAGE_PMD_NR)
1807 				count_vm_event(THP_FILE_FALLBACK);
1808 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1809 			order = next_order(&suitable_orders, order);
1810 		}
1811 	} else {
1812 		pages = 1;
1813 		folio = shmem_alloc_folio(gfp, 0, info, index);
1814 	}
1815 	if (!folio)
1816 		return ERR_PTR(-ENOMEM);
1817 
1818 allocated:
1819 	__folio_set_locked(folio);
1820 	__folio_set_swapbacked(folio);
1821 
1822 	gfp &= GFP_RECLAIM_MASK;
1823 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1824 	if (error) {
1825 		if (xa_find(&mapping->i_pages, &index,
1826 				index + pages - 1, XA_PRESENT)) {
1827 			error = -EEXIST;
1828 		} else if (pages > 1) {
1829 			if (pages == HPAGE_PMD_NR) {
1830 				count_vm_event(THP_FILE_FALLBACK);
1831 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1832 			}
1833 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1834 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1835 		}
1836 		goto unlock;
1837 	}
1838 
1839 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1840 	if (error)
1841 		goto unlock;
1842 
1843 	error = shmem_inode_acct_blocks(inode, pages);
1844 	if (error) {
1845 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1846 		long freed;
1847 		/*
1848 		 * Try to reclaim some space by splitting a few
1849 		 * large folios beyond i_size on the filesystem.
1850 		 */
1851 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1852 		/*
1853 		 * And do a shmem_recalc_inode() to account for freed pages:
1854 		 * except our folio is there in cache, so not quite balanced.
1855 		 */
1856 		spin_lock(&info->lock);
1857 		freed = pages + info->alloced - info->swapped -
1858 			READ_ONCE(mapping->nrpages);
1859 		if (freed > 0)
1860 			info->alloced -= freed;
1861 		spin_unlock(&info->lock);
1862 		if (freed > 0)
1863 			shmem_inode_unacct_blocks(inode, freed);
1864 		error = shmem_inode_acct_blocks(inode, pages);
1865 		if (error) {
1866 			filemap_remove_folio(folio);
1867 			goto unlock;
1868 		}
1869 	}
1870 
1871 	shmem_recalc_inode(inode, pages, 0);
1872 	folio_add_lru(folio);
1873 	return folio;
1874 
1875 unlock:
1876 	folio_unlock(folio);
1877 	folio_put(folio);
1878 	return ERR_PTR(error);
1879 }
1880 
1881 /*
1882  * When a page is moved from swapcache to shmem filecache (either by the
1883  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1884  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1885  * ignorance of the mapping it belongs to.  If that mapping has special
1886  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1887  * we may need to copy to a suitable page before moving to filecache.
1888  *
1889  * In a future release, this may well be extended to respect cpuset and
1890  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1891  * but for now it is a simple matter of zone.
1892  */
1893 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1894 {
1895 	return folio_zonenum(folio) > gfp_zone(gfp);
1896 }
1897 
1898 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1899 				struct shmem_inode_info *info, pgoff_t index,
1900 				struct vm_area_struct *vma)
1901 {
1902 	struct folio *new, *old = *foliop;
1903 	swp_entry_t entry = old->swap;
1904 	struct address_space *swap_mapping = swap_address_space(entry);
1905 	pgoff_t swap_index = swap_cache_index(entry);
1906 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1907 	int nr_pages = folio_nr_pages(old);
1908 	int error = 0, i;
1909 
1910 	/*
1911 	 * We have arrived here because our zones are constrained, so don't
1912 	 * limit chance of success by further cpuset and node constraints.
1913 	 */
1914 	gfp &= ~GFP_CONSTRAINT_MASK;
1915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1916 	if (nr_pages > 1) {
1917 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1918 
1919 		gfp = limit_gfp_mask(huge_gfp, gfp);
1920 	}
1921 #endif
1922 
1923 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1924 	if (!new)
1925 		return -ENOMEM;
1926 
1927 	folio_ref_add(new, nr_pages);
1928 	folio_copy(new, old);
1929 	flush_dcache_folio(new);
1930 
1931 	__folio_set_locked(new);
1932 	__folio_set_swapbacked(new);
1933 	folio_mark_uptodate(new);
1934 	new->swap = entry;
1935 	folio_set_swapcache(new);
1936 
1937 	/* Swap cache still stores N entries instead of a high-order entry */
1938 	xa_lock_irq(&swap_mapping->i_pages);
1939 	for (i = 0; i < nr_pages; i++) {
1940 		void *item = xas_load(&xas);
1941 
1942 		if (item != old) {
1943 			error = -ENOENT;
1944 			break;
1945 		}
1946 
1947 		xas_store(&xas, new);
1948 		xas_next(&xas);
1949 	}
1950 	if (!error) {
1951 		mem_cgroup_replace_folio(old, new);
1952 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1953 		__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1954 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1955 		__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1956 	}
1957 	xa_unlock_irq(&swap_mapping->i_pages);
1958 
1959 	if (unlikely(error)) {
1960 		/*
1961 		 * Is this possible?  I think not, now that our callers
1962 		 * check both the swapcache flag and folio->private
1963 		 * after getting the folio lock; but be defensive.
1964 		 * Reverse old to newpage for clear and free.
1965 		 */
1966 		old = new;
1967 	} else {
1968 		folio_add_lru(new);
1969 		*foliop = new;
1970 	}
1971 
1972 	folio_clear_swapcache(old);
1973 	old->private = NULL;
1974 
1975 	folio_unlock(old);
1976 	/*
1977 	 * The old folio are removed from swap cache, drop the 'nr_pages'
1978 	 * reference, as well as one temporary reference getting from swap
1979 	 * cache.
1980 	 */
1981 	folio_put_refs(old, nr_pages + 1);
1982 	return error;
1983 }
1984 
1985 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1986 					 struct folio *folio, swp_entry_t swap)
1987 {
1988 	struct address_space *mapping = inode->i_mapping;
1989 	swp_entry_t swapin_error;
1990 	void *old;
1991 	int nr_pages;
1992 
1993 	swapin_error = make_poisoned_swp_entry();
1994 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1995 			     swp_to_radix_entry(swap),
1996 			     swp_to_radix_entry(swapin_error), 0);
1997 	if (old != swp_to_radix_entry(swap))
1998 		return;
1999 
2000 	nr_pages = folio_nr_pages(folio);
2001 	folio_wait_writeback(folio);
2002 	delete_from_swap_cache(folio);
2003 	/*
2004 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2005 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2006 	 * in shmem_evict_inode().
2007 	 */
2008 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2009 	swap_free_nr(swap, nr_pages);
2010 }
2011 
2012 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2013 				   swp_entry_t swap, gfp_t gfp)
2014 {
2015 	struct address_space *mapping = inode->i_mapping;
2016 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2017 	void *alloced_shadow = NULL;
2018 	int alloced_order = 0, i;
2019 
2020 	/* Convert user data gfp flags to xarray node gfp flags */
2021 	gfp &= GFP_RECLAIM_MASK;
2022 
2023 	for (;;) {
2024 		int order = -1, split_order = 0;
2025 		void *old = NULL;
2026 
2027 		xas_lock_irq(&xas);
2028 		old = xas_load(&xas);
2029 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2030 			xas_set_err(&xas, -EEXIST);
2031 			goto unlock;
2032 		}
2033 
2034 		order = xas_get_order(&xas);
2035 
2036 		/* Swap entry may have changed before we re-acquire the lock */
2037 		if (alloced_order &&
2038 		    (old != alloced_shadow || order != alloced_order)) {
2039 			xas_destroy(&xas);
2040 			alloced_order = 0;
2041 		}
2042 
2043 		/* Try to split large swap entry in pagecache */
2044 		if (order > 0) {
2045 			if (!alloced_order) {
2046 				split_order = order;
2047 				goto unlock;
2048 			}
2049 			xas_split(&xas, old, order);
2050 
2051 			/*
2052 			 * Re-set the swap entry after splitting, and the swap
2053 			 * offset of the original large entry must be continuous.
2054 			 */
2055 			for (i = 0; i < 1 << order; i++) {
2056 				pgoff_t aligned_index = round_down(index, 1 << order);
2057 				swp_entry_t tmp;
2058 
2059 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2060 				__xa_store(&mapping->i_pages, aligned_index + i,
2061 					   swp_to_radix_entry(tmp), 0);
2062 			}
2063 		}
2064 
2065 unlock:
2066 		xas_unlock_irq(&xas);
2067 
2068 		/* split needed, alloc here and retry. */
2069 		if (split_order) {
2070 			xas_split_alloc(&xas, old, split_order, gfp);
2071 			if (xas_error(&xas))
2072 				goto error;
2073 			alloced_shadow = old;
2074 			alloced_order = split_order;
2075 			xas_reset(&xas);
2076 			continue;
2077 		}
2078 
2079 		if (!xas_nomem(&xas, gfp))
2080 			break;
2081 	}
2082 
2083 error:
2084 	if (xas_error(&xas))
2085 		return xas_error(&xas);
2086 
2087 	return alloced_order;
2088 }
2089 
2090 /*
2091  * Swap in the folio pointed to by *foliop.
2092  * Caller has to make sure that *foliop contains a valid swapped folio.
2093  * Returns 0 and the folio in foliop if success. On failure, returns the
2094  * error code and NULL in *foliop.
2095  */
2096 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2097 			     struct folio **foliop, enum sgp_type sgp,
2098 			     gfp_t gfp, struct vm_area_struct *vma,
2099 			     vm_fault_t *fault_type)
2100 {
2101 	struct address_space *mapping = inode->i_mapping;
2102 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2103 	struct shmem_inode_info *info = SHMEM_I(inode);
2104 	struct swap_info_struct *si;
2105 	struct folio *folio = NULL;
2106 	swp_entry_t swap;
2107 	int error, nr_pages;
2108 
2109 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2110 	swap = radix_to_swp_entry(*foliop);
2111 	*foliop = NULL;
2112 
2113 	if (is_poisoned_swp_entry(swap))
2114 		return -EIO;
2115 
2116 	si = get_swap_device(swap);
2117 	if (!si) {
2118 		if (!shmem_confirm_swap(mapping, index, swap))
2119 			return -EEXIST;
2120 		else
2121 			return -EINVAL;
2122 	}
2123 
2124 	/* Look it up and read it in.. */
2125 	folio = swap_cache_get_folio(swap, NULL, 0);
2126 	if (!folio) {
2127 		int split_order;
2128 
2129 		/* Or update major stats only when swapin succeeds?? */
2130 		if (fault_type) {
2131 			*fault_type |= VM_FAULT_MAJOR;
2132 			count_vm_event(PGMAJFAULT);
2133 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2134 		}
2135 
2136 		/*
2137 		 * Now swap device can only swap in order 0 folio, then we
2138 		 * should split the large swap entry stored in the pagecache
2139 		 * if necessary.
2140 		 */
2141 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2142 		if (split_order < 0) {
2143 			error = split_order;
2144 			goto failed;
2145 		}
2146 
2147 		/*
2148 		 * If the large swap entry has already been split, it is
2149 		 * necessary to recalculate the new swap entry based on
2150 		 * the old order alignment.
2151 		 */
2152 		if (split_order > 0) {
2153 			pgoff_t offset = index - round_down(index, 1 << split_order);
2154 
2155 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2156 		}
2157 
2158 		/* Here we actually start the io */
2159 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2160 		if (!folio) {
2161 			error = -ENOMEM;
2162 			goto failed;
2163 		}
2164 	}
2165 
2166 	/* We have to do this with folio locked to prevent races */
2167 	folio_lock(folio);
2168 	if (!folio_test_swapcache(folio) ||
2169 	    folio->swap.val != swap.val ||
2170 	    !shmem_confirm_swap(mapping, index, swap)) {
2171 		error = -EEXIST;
2172 		goto unlock;
2173 	}
2174 	if (!folio_test_uptodate(folio)) {
2175 		error = -EIO;
2176 		goto failed;
2177 	}
2178 	folio_wait_writeback(folio);
2179 	nr_pages = folio_nr_pages(folio);
2180 
2181 	/*
2182 	 * Some architectures may have to restore extra metadata to the
2183 	 * folio after reading from swap.
2184 	 */
2185 	arch_swap_restore(folio_swap(swap, folio), folio);
2186 
2187 	if (shmem_should_replace_folio(folio, gfp)) {
2188 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2189 		if (error)
2190 			goto failed;
2191 	}
2192 
2193 	error = shmem_add_to_page_cache(folio, mapping,
2194 					round_down(index, nr_pages),
2195 					swp_to_radix_entry(swap), gfp);
2196 	if (error)
2197 		goto failed;
2198 
2199 	shmem_recalc_inode(inode, 0, -nr_pages);
2200 
2201 	if (sgp == SGP_WRITE)
2202 		folio_mark_accessed(folio);
2203 
2204 	delete_from_swap_cache(folio);
2205 	folio_mark_dirty(folio);
2206 	swap_free_nr(swap, nr_pages);
2207 	put_swap_device(si);
2208 
2209 	*foliop = folio;
2210 	return 0;
2211 failed:
2212 	if (!shmem_confirm_swap(mapping, index, swap))
2213 		error = -EEXIST;
2214 	if (error == -EIO)
2215 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2216 unlock:
2217 	if (folio) {
2218 		folio_unlock(folio);
2219 		folio_put(folio);
2220 	}
2221 	put_swap_device(si);
2222 
2223 	return error;
2224 }
2225 
2226 /*
2227  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2228  *
2229  * If we allocate a new one we do not mark it dirty. That's up to the
2230  * vm. If we swap it in we mark it dirty since we also free the swap
2231  * entry since a page cannot live in both the swap and page cache.
2232  *
2233  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2234  */
2235 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2236 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2237 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2238 {
2239 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2240 	struct mm_struct *fault_mm;
2241 	struct folio *folio;
2242 	int error;
2243 	bool alloced;
2244 	unsigned long orders = 0;
2245 
2246 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2247 		return -EINVAL;
2248 
2249 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2250 		return -EFBIG;
2251 repeat:
2252 	if (sgp <= SGP_CACHE &&
2253 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2254 		return -EINVAL;
2255 
2256 	alloced = false;
2257 	fault_mm = vma ? vma->vm_mm : NULL;
2258 
2259 	folio = filemap_get_entry(inode->i_mapping, index);
2260 	if (folio && vma && userfaultfd_minor(vma)) {
2261 		if (!xa_is_value(folio))
2262 			folio_put(folio);
2263 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2264 		return 0;
2265 	}
2266 
2267 	if (xa_is_value(folio)) {
2268 		error = shmem_swapin_folio(inode, index, &folio,
2269 					   sgp, gfp, vma, fault_type);
2270 		if (error == -EEXIST)
2271 			goto repeat;
2272 
2273 		*foliop = folio;
2274 		return error;
2275 	}
2276 
2277 	if (folio) {
2278 		folio_lock(folio);
2279 
2280 		/* Has the folio been truncated or swapped out? */
2281 		if (unlikely(folio->mapping != inode->i_mapping)) {
2282 			folio_unlock(folio);
2283 			folio_put(folio);
2284 			goto repeat;
2285 		}
2286 		if (sgp == SGP_WRITE)
2287 			folio_mark_accessed(folio);
2288 		if (folio_test_uptodate(folio))
2289 			goto out;
2290 		/* fallocated folio */
2291 		if (sgp != SGP_READ)
2292 			goto clear;
2293 		folio_unlock(folio);
2294 		folio_put(folio);
2295 	}
2296 
2297 	/*
2298 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2299 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2300 	 */
2301 	*foliop = NULL;
2302 	if (sgp == SGP_READ)
2303 		return 0;
2304 	if (sgp == SGP_NOALLOC)
2305 		return -ENOENT;
2306 
2307 	/*
2308 	 * Fast cache lookup and swap lookup did not find it: allocate.
2309 	 */
2310 
2311 	if (vma && userfaultfd_missing(vma)) {
2312 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2313 		return 0;
2314 	}
2315 
2316 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2317 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2318 	if (orders > 0) {
2319 		gfp_t huge_gfp;
2320 
2321 		huge_gfp = vma_thp_gfp_mask(vma);
2322 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2323 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2324 				inode, index, fault_mm, orders);
2325 		if (!IS_ERR(folio)) {
2326 			if (folio_test_pmd_mappable(folio))
2327 				count_vm_event(THP_FILE_ALLOC);
2328 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2329 			goto alloced;
2330 		}
2331 		if (PTR_ERR(folio) == -EEXIST)
2332 			goto repeat;
2333 	}
2334 
2335 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2336 	if (IS_ERR(folio)) {
2337 		error = PTR_ERR(folio);
2338 		if (error == -EEXIST)
2339 			goto repeat;
2340 		folio = NULL;
2341 		goto unlock;
2342 	}
2343 
2344 alloced:
2345 	alloced = true;
2346 	if (folio_test_large(folio) &&
2347 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2348 					folio_next_index(folio)) {
2349 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2350 		struct shmem_inode_info *info = SHMEM_I(inode);
2351 		/*
2352 		 * Part of the large folio is beyond i_size: subject
2353 		 * to shrink under memory pressure.
2354 		 */
2355 		spin_lock(&sbinfo->shrinklist_lock);
2356 		/*
2357 		 * _careful to defend against unlocked access to
2358 		 * ->shrink_list in shmem_unused_huge_shrink()
2359 		 */
2360 		if (list_empty_careful(&info->shrinklist)) {
2361 			list_add_tail(&info->shrinklist,
2362 				      &sbinfo->shrinklist);
2363 			sbinfo->shrinklist_len++;
2364 		}
2365 		spin_unlock(&sbinfo->shrinklist_lock);
2366 	}
2367 
2368 	if (sgp == SGP_WRITE)
2369 		folio_set_referenced(folio);
2370 	/*
2371 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2372 	 */
2373 	if (sgp == SGP_FALLOC)
2374 		sgp = SGP_WRITE;
2375 clear:
2376 	/*
2377 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2378 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2379 	 * it now, lest undo on failure cancel our earlier guarantee.
2380 	 */
2381 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2382 		long i, n = folio_nr_pages(folio);
2383 
2384 		for (i = 0; i < n; i++)
2385 			clear_highpage(folio_page(folio, i));
2386 		flush_dcache_folio(folio);
2387 		folio_mark_uptodate(folio);
2388 	}
2389 
2390 	/* Perhaps the file has been truncated since we checked */
2391 	if (sgp <= SGP_CACHE &&
2392 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2393 		error = -EINVAL;
2394 		goto unlock;
2395 	}
2396 out:
2397 	*foliop = folio;
2398 	return 0;
2399 
2400 	/*
2401 	 * Error recovery.
2402 	 */
2403 unlock:
2404 	if (alloced)
2405 		filemap_remove_folio(folio);
2406 	shmem_recalc_inode(inode, 0, 0);
2407 	if (folio) {
2408 		folio_unlock(folio);
2409 		folio_put(folio);
2410 	}
2411 	return error;
2412 }
2413 
2414 /**
2415  * shmem_get_folio - find, and lock a shmem folio.
2416  * @inode:	inode to search
2417  * @index:	the page index.
2418  * @write_end:	end of a write, could extend inode size
2419  * @foliop:	pointer to the folio if found
2420  * @sgp:	SGP_* flags to control behavior
2421  *
2422  * Looks up the page cache entry at @inode & @index.  If a folio is
2423  * present, it is returned locked with an increased refcount.
2424  *
2425  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2426  * before unlocking the folio to ensure that the folio is not reclaimed.
2427  * There is no need to reserve space before calling folio_mark_dirty().
2428  *
2429  * When no folio is found, the behavior depends on @sgp:
2430  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2431  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2432  *  - for all other flags a new folio is allocated, inserted into the
2433  *    page cache and returned locked in @foliop.
2434  *
2435  * Context: May sleep.
2436  * Return: 0 if successful, else a negative error code.
2437  */
2438 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2439 		    struct folio **foliop, enum sgp_type sgp)
2440 {
2441 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2442 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2443 }
2444 EXPORT_SYMBOL_GPL(shmem_get_folio);
2445 
2446 /*
2447  * This is like autoremove_wake_function, but it removes the wait queue
2448  * entry unconditionally - even if something else had already woken the
2449  * target.
2450  */
2451 static int synchronous_wake_function(wait_queue_entry_t *wait,
2452 			unsigned int mode, int sync, void *key)
2453 {
2454 	int ret = default_wake_function(wait, mode, sync, key);
2455 	list_del_init(&wait->entry);
2456 	return ret;
2457 }
2458 
2459 /*
2460  * Trinity finds that probing a hole which tmpfs is punching can
2461  * prevent the hole-punch from ever completing: which in turn
2462  * locks writers out with its hold on i_rwsem.  So refrain from
2463  * faulting pages into the hole while it's being punched.  Although
2464  * shmem_undo_range() does remove the additions, it may be unable to
2465  * keep up, as each new page needs its own unmap_mapping_range() call,
2466  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2467  *
2468  * It does not matter if we sometimes reach this check just before the
2469  * hole-punch begins, so that one fault then races with the punch:
2470  * we just need to make racing faults a rare case.
2471  *
2472  * The implementation below would be much simpler if we just used a
2473  * standard mutex or completion: but we cannot take i_rwsem in fault,
2474  * and bloating every shmem inode for this unlikely case would be sad.
2475  */
2476 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2477 {
2478 	struct shmem_falloc *shmem_falloc;
2479 	struct file *fpin = NULL;
2480 	vm_fault_t ret = 0;
2481 
2482 	spin_lock(&inode->i_lock);
2483 	shmem_falloc = inode->i_private;
2484 	if (shmem_falloc &&
2485 	    shmem_falloc->waitq &&
2486 	    vmf->pgoff >= shmem_falloc->start &&
2487 	    vmf->pgoff < shmem_falloc->next) {
2488 		wait_queue_head_t *shmem_falloc_waitq;
2489 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2490 
2491 		ret = VM_FAULT_NOPAGE;
2492 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2493 		shmem_falloc_waitq = shmem_falloc->waitq;
2494 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2495 				TASK_UNINTERRUPTIBLE);
2496 		spin_unlock(&inode->i_lock);
2497 		schedule();
2498 
2499 		/*
2500 		 * shmem_falloc_waitq points into the shmem_fallocate()
2501 		 * stack of the hole-punching task: shmem_falloc_waitq
2502 		 * is usually invalid by the time we reach here, but
2503 		 * finish_wait() does not dereference it in that case;
2504 		 * though i_lock needed lest racing with wake_up_all().
2505 		 */
2506 		spin_lock(&inode->i_lock);
2507 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2508 	}
2509 	spin_unlock(&inode->i_lock);
2510 	if (fpin) {
2511 		fput(fpin);
2512 		ret = VM_FAULT_RETRY;
2513 	}
2514 	return ret;
2515 }
2516 
2517 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2518 {
2519 	struct inode *inode = file_inode(vmf->vma->vm_file);
2520 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2521 	struct folio *folio = NULL;
2522 	vm_fault_t ret = 0;
2523 	int err;
2524 
2525 	/*
2526 	 * Trinity finds that probing a hole which tmpfs is punching can
2527 	 * prevent the hole-punch from ever completing: noted in i_private.
2528 	 */
2529 	if (unlikely(inode->i_private)) {
2530 		ret = shmem_falloc_wait(vmf, inode);
2531 		if (ret)
2532 			return ret;
2533 	}
2534 
2535 	WARN_ON_ONCE(vmf->page != NULL);
2536 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2537 				  gfp, vmf, &ret);
2538 	if (err)
2539 		return vmf_error(err);
2540 	if (folio) {
2541 		vmf->page = folio_file_page(folio, vmf->pgoff);
2542 		ret |= VM_FAULT_LOCKED;
2543 	}
2544 	return ret;
2545 }
2546 
2547 unsigned long shmem_get_unmapped_area(struct file *file,
2548 				      unsigned long uaddr, unsigned long len,
2549 				      unsigned long pgoff, unsigned long flags)
2550 {
2551 	unsigned long addr;
2552 	unsigned long offset;
2553 	unsigned long inflated_len;
2554 	unsigned long inflated_addr;
2555 	unsigned long inflated_offset;
2556 	unsigned long hpage_size;
2557 
2558 	if (len > TASK_SIZE)
2559 		return -ENOMEM;
2560 
2561 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2562 				    flags);
2563 
2564 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2565 		return addr;
2566 	if (IS_ERR_VALUE(addr))
2567 		return addr;
2568 	if (addr & ~PAGE_MASK)
2569 		return addr;
2570 	if (addr > TASK_SIZE - len)
2571 		return addr;
2572 
2573 	if (shmem_huge == SHMEM_HUGE_DENY)
2574 		return addr;
2575 	if (flags & MAP_FIXED)
2576 		return addr;
2577 	/*
2578 	 * Our priority is to support MAP_SHARED mapped hugely;
2579 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2580 	 * But if caller specified an address hint and we allocated area there
2581 	 * successfully, respect that as before.
2582 	 */
2583 	if (uaddr == addr)
2584 		return addr;
2585 
2586 	hpage_size = HPAGE_PMD_SIZE;
2587 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2588 		struct super_block *sb;
2589 		unsigned long __maybe_unused hpage_orders;
2590 		int order = 0;
2591 
2592 		if (file) {
2593 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2594 			sb = file_inode(file)->i_sb;
2595 		} else {
2596 			/*
2597 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2598 			 * for "/dev/zero", to create a shared anonymous object.
2599 			 */
2600 			if (IS_ERR(shm_mnt))
2601 				return addr;
2602 			sb = shm_mnt->mnt_sb;
2603 
2604 			/*
2605 			 * Find the highest mTHP order used for anonymous shmem to
2606 			 * provide a suitable alignment address.
2607 			 */
2608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2609 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2610 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2611 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2612 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2613 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2614 
2615 			if (hpage_orders > 0) {
2616 				order = highest_order(hpage_orders);
2617 				hpage_size = PAGE_SIZE << order;
2618 			}
2619 #endif
2620 		}
2621 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2622 			return addr;
2623 	}
2624 
2625 	if (len < hpage_size)
2626 		return addr;
2627 
2628 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2629 	if (offset && offset + len < 2 * hpage_size)
2630 		return addr;
2631 	if ((addr & (hpage_size - 1)) == offset)
2632 		return addr;
2633 
2634 	inflated_len = len + hpage_size - PAGE_SIZE;
2635 	if (inflated_len > TASK_SIZE)
2636 		return addr;
2637 	if (inflated_len < len)
2638 		return addr;
2639 
2640 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2641 					     inflated_len, 0, flags);
2642 	if (IS_ERR_VALUE(inflated_addr))
2643 		return addr;
2644 	if (inflated_addr & ~PAGE_MASK)
2645 		return addr;
2646 
2647 	inflated_offset = inflated_addr & (hpage_size - 1);
2648 	inflated_addr += offset - inflated_offset;
2649 	if (inflated_offset > offset)
2650 		inflated_addr += hpage_size;
2651 
2652 	if (inflated_addr > TASK_SIZE - len)
2653 		return addr;
2654 	return inflated_addr;
2655 }
2656 
2657 #ifdef CONFIG_NUMA
2658 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2659 {
2660 	struct inode *inode = file_inode(vma->vm_file);
2661 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2662 }
2663 
2664 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2665 					  unsigned long addr, pgoff_t *ilx)
2666 {
2667 	struct inode *inode = file_inode(vma->vm_file);
2668 	pgoff_t index;
2669 
2670 	/*
2671 	 * Bias interleave by inode number to distribute better across nodes;
2672 	 * but this interface is independent of which page order is used, so
2673 	 * supplies only that bias, letting caller apply the offset (adjusted
2674 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2675 	 */
2676 	*ilx = inode->i_ino;
2677 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2678 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2679 }
2680 
2681 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2682 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2683 {
2684 	struct mempolicy *mpol;
2685 
2686 	/* Bias interleave by inode number to distribute better across nodes */
2687 	*ilx = info->vfs_inode.i_ino + (index >> order);
2688 
2689 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2690 	return mpol ? mpol : get_task_policy(current);
2691 }
2692 #else
2693 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2694 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2695 {
2696 	*ilx = 0;
2697 	return NULL;
2698 }
2699 #endif /* CONFIG_NUMA */
2700 
2701 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2702 {
2703 	struct inode *inode = file_inode(file);
2704 	struct shmem_inode_info *info = SHMEM_I(inode);
2705 	int retval = -ENOMEM;
2706 
2707 	/*
2708 	 * What serializes the accesses to info->flags?
2709 	 * ipc_lock_object() when called from shmctl_do_lock(),
2710 	 * no serialization needed when called from shm_destroy().
2711 	 */
2712 	if (lock && !(info->flags & VM_LOCKED)) {
2713 		if (!user_shm_lock(inode->i_size, ucounts))
2714 			goto out_nomem;
2715 		info->flags |= VM_LOCKED;
2716 		mapping_set_unevictable(file->f_mapping);
2717 	}
2718 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2719 		user_shm_unlock(inode->i_size, ucounts);
2720 		info->flags &= ~VM_LOCKED;
2721 		mapping_clear_unevictable(file->f_mapping);
2722 	}
2723 	retval = 0;
2724 
2725 out_nomem:
2726 	return retval;
2727 }
2728 
2729 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2730 {
2731 	struct inode *inode = file_inode(file);
2732 	struct shmem_inode_info *info = SHMEM_I(inode);
2733 	int ret;
2734 
2735 	ret = seal_check_write(info->seals, vma);
2736 	if (ret)
2737 		return ret;
2738 
2739 	file_accessed(file);
2740 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2741 	if (inode->i_nlink)
2742 		vma->vm_ops = &shmem_vm_ops;
2743 	else
2744 		vma->vm_ops = &shmem_anon_vm_ops;
2745 	return 0;
2746 }
2747 
2748 static int shmem_file_open(struct inode *inode, struct file *file)
2749 {
2750 	file->f_mode |= FMODE_CAN_ODIRECT;
2751 	return generic_file_open(inode, file);
2752 }
2753 
2754 #ifdef CONFIG_TMPFS_XATTR
2755 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2756 
2757 #if IS_ENABLED(CONFIG_UNICODE)
2758 /*
2759  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2760  *
2761  * The casefold file attribute needs some special checks. I can just be added to
2762  * an empty dir, and can't be removed from a non-empty dir.
2763  */
2764 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2765 				      struct dentry *dentry, unsigned int *i_flags)
2766 {
2767 	unsigned int old = inode->i_flags;
2768 	struct super_block *sb = inode->i_sb;
2769 
2770 	if (fsflags & FS_CASEFOLD_FL) {
2771 		if (!(old & S_CASEFOLD)) {
2772 			if (!sb->s_encoding)
2773 				return -EOPNOTSUPP;
2774 
2775 			if (!S_ISDIR(inode->i_mode))
2776 				return -ENOTDIR;
2777 
2778 			if (dentry && !simple_empty(dentry))
2779 				return -ENOTEMPTY;
2780 		}
2781 
2782 		*i_flags = *i_flags | S_CASEFOLD;
2783 	} else if (old & S_CASEFOLD) {
2784 		if (dentry && !simple_empty(dentry))
2785 			return -ENOTEMPTY;
2786 	}
2787 
2788 	return 0;
2789 }
2790 #else
2791 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2792 				      struct dentry *dentry, unsigned int *i_flags)
2793 {
2794 	if (fsflags & FS_CASEFOLD_FL)
2795 		return -EOPNOTSUPP;
2796 
2797 	return 0;
2798 }
2799 #endif
2800 
2801 /*
2802  * chattr's fsflags are unrelated to extended attributes,
2803  * but tmpfs has chosen to enable them under the same config option.
2804  */
2805 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2806 {
2807 	unsigned int i_flags = 0;
2808 	int ret;
2809 
2810 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
2811 	if (ret)
2812 		return ret;
2813 
2814 	if (fsflags & FS_NOATIME_FL)
2815 		i_flags |= S_NOATIME;
2816 	if (fsflags & FS_APPEND_FL)
2817 		i_flags |= S_APPEND;
2818 	if (fsflags & FS_IMMUTABLE_FL)
2819 		i_flags |= S_IMMUTABLE;
2820 	/*
2821 	 * But FS_NODUMP_FL does not require any action in i_flags.
2822 	 */
2823 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
2824 
2825 	return 0;
2826 }
2827 #else
2828 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2829 {
2830 }
2831 #define shmem_initxattrs NULL
2832 #endif
2833 
2834 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2835 {
2836 	return &SHMEM_I(inode)->dir_offsets;
2837 }
2838 
2839 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2840 					     struct super_block *sb,
2841 					     struct inode *dir, umode_t mode,
2842 					     dev_t dev, unsigned long flags)
2843 {
2844 	struct inode *inode;
2845 	struct shmem_inode_info *info;
2846 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2847 	ino_t ino;
2848 	int err;
2849 
2850 	err = shmem_reserve_inode(sb, &ino);
2851 	if (err)
2852 		return ERR_PTR(err);
2853 
2854 	inode = new_inode(sb);
2855 	if (!inode) {
2856 		shmem_free_inode(sb, 0);
2857 		return ERR_PTR(-ENOSPC);
2858 	}
2859 
2860 	inode->i_ino = ino;
2861 	inode_init_owner(idmap, inode, dir, mode);
2862 	inode->i_blocks = 0;
2863 	simple_inode_init_ts(inode);
2864 	inode->i_generation = get_random_u32();
2865 	info = SHMEM_I(inode);
2866 	memset(info, 0, (char *)inode - (char *)info);
2867 	spin_lock_init(&info->lock);
2868 	atomic_set(&info->stop_eviction, 0);
2869 	info->seals = F_SEAL_SEAL;
2870 	info->flags = flags & VM_NORESERVE;
2871 	info->i_crtime = inode_get_mtime(inode);
2872 	info->fsflags = (dir == NULL) ? 0 :
2873 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2874 	if (info->fsflags)
2875 		shmem_set_inode_flags(inode, info->fsflags, NULL);
2876 	INIT_LIST_HEAD(&info->shrinklist);
2877 	INIT_LIST_HEAD(&info->swaplist);
2878 	simple_xattrs_init(&info->xattrs);
2879 	cache_no_acl(inode);
2880 	if (sbinfo->noswap)
2881 		mapping_set_unevictable(inode->i_mapping);
2882 	mapping_set_large_folios(inode->i_mapping);
2883 
2884 	switch (mode & S_IFMT) {
2885 	default:
2886 		inode->i_op = &shmem_special_inode_operations;
2887 		init_special_inode(inode, mode, dev);
2888 		break;
2889 	case S_IFREG:
2890 		inode->i_mapping->a_ops = &shmem_aops;
2891 		inode->i_op = &shmem_inode_operations;
2892 		inode->i_fop = &shmem_file_operations;
2893 		mpol_shared_policy_init(&info->policy,
2894 					 shmem_get_sbmpol(sbinfo));
2895 		break;
2896 	case S_IFDIR:
2897 		inc_nlink(inode);
2898 		/* Some things misbehave if size == 0 on a directory */
2899 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2900 		inode->i_op = &shmem_dir_inode_operations;
2901 		inode->i_fop = &simple_offset_dir_operations;
2902 		simple_offset_init(shmem_get_offset_ctx(inode));
2903 		break;
2904 	case S_IFLNK:
2905 		/*
2906 		 * Must not load anything in the rbtree,
2907 		 * mpol_free_shared_policy will not be called.
2908 		 */
2909 		mpol_shared_policy_init(&info->policy, NULL);
2910 		break;
2911 	}
2912 
2913 	lockdep_annotate_inode_mutex_key(inode);
2914 	return inode;
2915 }
2916 
2917 #ifdef CONFIG_TMPFS_QUOTA
2918 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2919 				     struct super_block *sb, struct inode *dir,
2920 				     umode_t mode, dev_t dev, unsigned long flags)
2921 {
2922 	int err;
2923 	struct inode *inode;
2924 
2925 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2926 	if (IS_ERR(inode))
2927 		return inode;
2928 
2929 	err = dquot_initialize(inode);
2930 	if (err)
2931 		goto errout;
2932 
2933 	err = dquot_alloc_inode(inode);
2934 	if (err) {
2935 		dquot_drop(inode);
2936 		goto errout;
2937 	}
2938 	return inode;
2939 
2940 errout:
2941 	inode->i_flags |= S_NOQUOTA;
2942 	iput(inode);
2943 	return ERR_PTR(err);
2944 }
2945 #else
2946 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2947 				     struct super_block *sb, struct inode *dir,
2948 				     umode_t mode, dev_t dev, unsigned long flags)
2949 {
2950 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2951 }
2952 #endif /* CONFIG_TMPFS_QUOTA */
2953 
2954 #ifdef CONFIG_USERFAULTFD
2955 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2956 			   struct vm_area_struct *dst_vma,
2957 			   unsigned long dst_addr,
2958 			   unsigned long src_addr,
2959 			   uffd_flags_t flags,
2960 			   struct folio **foliop)
2961 {
2962 	struct inode *inode = file_inode(dst_vma->vm_file);
2963 	struct shmem_inode_info *info = SHMEM_I(inode);
2964 	struct address_space *mapping = inode->i_mapping;
2965 	gfp_t gfp = mapping_gfp_mask(mapping);
2966 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2967 	void *page_kaddr;
2968 	struct folio *folio;
2969 	int ret;
2970 	pgoff_t max_off;
2971 
2972 	if (shmem_inode_acct_blocks(inode, 1)) {
2973 		/*
2974 		 * We may have got a page, returned -ENOENT triggering a retry,
2975 		 * and now we find ourselves with -ENOMEM. Release the page, to
2976 		 * avoid a BUG_ON in our caller.
2977 		 */
2978 		if (unlikely(*foliop)) {
2979 			folio_put(*foliop);
2980 			*foliop = NULL;
2981 		}
2982 		return -ENOMEM;
2983 	}
2984 
2985 	if (!*foliop) {
2986 		ret = -ENOMEM;
2987 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2988 		if (!folio)
2989 			goto out_unacct_blocks;
2990 
2991 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2992 			page_kaddr = kmap_local_folio(folio, 0);
2993 			/*
2994 			 * The read mmap_lock is held here.  Despite the
2995 			 * mmap_lock being read recursive a deadlock is still
2996 			 * possible if a writer has taken a lock.  For example:
2997 			 *
2998 			 * process A thread 1 takes read lock on own mmap_lock
2999 			 * process A thread 2 calls mmap, blocks taking write lock
3000 			 * process B thread 1 takes page fault, read lock on own mmap lock
3001 			 * process B thread 2 calls mmap, blocks taking write lock
3002 			 * process A thread 1 blocks taking read lock on process B
3003 			 * process B thread 1 blocks taking read lock on process A
3004 			 *
3005 			 * Disable page faults to prevent potential deadlock
3006 			 * and retry the copy outside the mmap_lock.
3007 			 */
3008 			pagefault_disable();
3009 			ret = copy_from_user(page_kaddr,
3010 					     (const void __user *)src_addr,
3011 					     PAGE_SIZE);
3012 			pagefault_enable();
3013 			kunmap_local(page_kaddr);
3014 
3015 			/* fallback to copy_from_user outside mmap_lock */
3016 			if (unlikely(ret)) {
3017 				*foliop = folio;
3018 				ret = -ENOENT;
3019 				/* don't free the page */
3020 				goto out_unacct_blocks;
3021 			}
3022 
3023 			flush_dcache_folio(folio);
3024 		} else {		/* ZEROPAGE */
3025 			clear_user_highpage(&folio->page, dst_addr);
3026 		}
3027 	} else {
3028 		folio = *foliop;
3029 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3030 		*foliop = NULL;
3031 	}
3032 
3033 	VM_BUG_ON(folio_test_locked(folio));
3034 	VM_BUG_ON(folio_test_swapbacked(folio));
3035 	__folio_set_locked(folio);
3036 	__folio_set_swapbacked(folio);
3037 	__folio_mark_uptodate(folio);
3038 
3039 	ret = -EFAULT;
3040 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3041 	if (unlikely(pgoff >= max_off))
3042 		goto out_release;
3043 
3044 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3045 	if (ret)
3046 		goto out_release;
3047 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3048 	if (ret)
3049 		goto out_release;
3050 
3051 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3052 				       &folio->page, true, flags);
3053 	if (ret)
3054 		goto out_delete_from_cache;
3055 
3056 	shmem_recalc_inode(inode, 1, 0);
3057 	folio_unlock(folio);
3058 	return 0;
3059 out_delete_from_cache:
3060 	filemap_remove_folio(folio);
3061 out_release:
3062 	folio_unlock(folio);
3063 	folio_put(folio);
3064 out_unacct_blocks:
3065 	shmem_inode_unacct_blocks(inode, 1);
3066 	return ret;
3067 }
3068 #endif /* CONFIG_USERFAULTFD */
3069 
3070 #ifdef CONFIG_TMPFS
3071 static const struct inode_operations shmem_symlink_inode_operations;
3072 static const struct inode_operations shmem_short_symlink_operations;
3073 
3074 static int
3075 shmem_write_begin(struct file *file, struct address_space *mapping,
3076 			loff_t pos, unsigned len,
3077 			struct folio **foliop, void **fsdata)
3078 {
3079 	struct inode *inode = mapping->host;
3080 	struct shmem_inode_info *info = SHMEM_I(inode);
3081 	pgoff_t index = pos >> PAGE_SHIFT;
3082 	struct folio *folio;
3083 	int ret = 0;
3084 
3085 	/* i_rwsem is held by caller */
3086 	if (unlikely(info->seals & (F_SEAL_GROW |
3087 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3088 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3089 			return -EPERM;
3090 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3091 			return -EPERM;
3092 	}
3093 
3094 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3095 	if (ret)
3096 		return ret;
3097 
3098 	if (folio_test_hwpoison(folio) ||
3099 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3100 		folio_unlock(folio);
3101 		folio_put(folio);
3102 		return -EIO;
3103 	}
3104 
3105 	*foliop = folio;
3106 	return 0;
3107 }
3108 
3109 static int
3110 shmem_write_end(struct file *file, struct address_space *mapping,
3111 			loff_t pos, unsigned len, unsigned copied,
3112 			struct folio *folio, void *fsdata)
3113 {
3114 	struct inode *inode = mapping->host;
3115 
3116 	if (pos + copied > inode->i_size)
3117 		i_size_write(inode, pos + copied);
3118 
3119 	if (!folio_test_uptodate(folio)) {
3120 		if (copied < folio_size(folio)) {
3121 			size_t from = offset_in_folio(folio, pos);
3122 			folio_zero_segments(folio, 0, from,
3123 					from + copied, folio_size(folio));
3124 		}
3125 		folio_mark_uptodate(folio);
3126 	}
3127 	folio_mark_dirty(folio);
3128 	folio_unlock(folio);
3129 	folio_put(folio);
3130 
3131 	return copied;
3132 }
3133 
3134 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3135 {
3136 	struct file *file = iocb->ki_filp;
3137 	struct inode *inode = file_inode(file);
3138 	struct address_space *mapping = inode->i_mapping;
3139 	pgoff_t index;
3140 	unsigned long offset;
3141 	int error = 0;
3142 	ssize_t retval = 0;
3143 	loff_t *ppos = &iocb->ki_pos;
3144 
3145 	index = *ppos >> PAGE_SHIFT;
3146 	offset = *ppos & ~PAGE_MASK;
3147 
3148 	for (;;) {
3149 		struct folio *folio = NULL;
3150 		struct page *page = NULL;
3151 		pgoff_t end_index;
3152 		unsigned long nr, ret;
3153 		loff_t i_size = i_size_read(inode);
3154 
3155 		end_index = i_size >> PAGE_SHIFT;
3156 		if (index > end_index)
3157 			break;
3158 		if (index == end_index) {
3159 			nr = i_size & ~PAGE_MASK;
3160 			if (nr <= offset)
3161 				break;
3162 		}
3163 
3164 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3165 		if (error) {
3166 			if (error == -EINVAL)
3167 				error = 0;
3168 			break;
3169 		}
3170 		if (folio) {
3171 			folio_unlock(folio);
3172 
3173 			page = folio_file_page(folio, index);
3174 			if (PageHWPoison(page)) {
3175 				folio_put(folio);
3176 				error = -EIO;
3177 				break;
3178 			}
3179 		}
3180 
3181 		/*
3182 		 * We must evaluate after, since reads (unlike writes)
3183 		 * are called without i_rwsem protection against truncate
3184 		 */
3185 		nr = PAGE_SIZE;
3186 		i_size = i_size_read(inode);
3187 		end_index = i_size >> PAGE_SHIFT;
3188 		if (index == end_index) {
3189 			nr = i_size & ~PAGE_MASK;
3190 			if (nr <= offset) {
3191 				if (folio)
3192 					folio_put(folio);
3193 				break;
3194 			}
3195 		}
3196 		nr -= offset;
3197 
3198 		if (folio) {
3199 			/*
3200 			 * If users can be writing to this page using arbitrary
3201 			 * virtual addresses, take care about potential aliasing
3202 			 * before reading the page on the kernel side.
3203 			 */
3204 			if (mapping_writably_mapped(mapping))
3205 				flush_dcache_page(page);
3206 			/*
3207 			 * Mark the page accessed if we read the beginning.
3208 			 */
3209 			if (!offset)
3210 				folio_mark_accessed(folio);
3211 			/*
3212 			 * Ok, we have the page, and it's up-to-date, so
3213 			 * now we can copy it to user space...
3214 			 */
3215 			ret = copy_page_to_iter(page, offset, nr, to);
3216 			folio_put(folio);
3217 
3218 		} else if (user_backed_iter(to)) {
3219 			/*
3220 			 * Copy to user tends to be so well optimized, but
3221 			 * clear_user() not so much, that it is noticeably
3222 			 * faster to copy the zero page instead of clearing.
3223 			 */
3224 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3225 		} else {
3226 			/*
3227 			 * But submitting the same page twice in a row to
3228 			 * splice() - or others? - can result in confusion:
3229 			 * so don't attempt that optimization on pipes etc.
3230 			 */
3231 			ret = iov_iter_zero(nr, to);
3232 		}
3233 
3234 		retval += ret;
3235 		offset += ret;
3236 		index += offset >> PAGE_SHIFT;
3237 		offset &= ~PAGE_MASK;
3238 
3239 		if (!iov_iter_count(to))
3240 			break;
3241 		if (ret < nr) {
3242 			error = -EFAULT;
3243 			break;
3244 		}
3245 		cond_resched();
3246 	}
3247 
3248 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
3249 	file_accessed(file);
3250 	return retval ? retval : error;
3251 }
3252 
3253 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3254 {
3255 	struct file *file = iocb->ki_filp;
3256 	struct inode *inode = file->f_mapping->host;
3257 	ssize_t ret;
3258 
3259 	inode_lock(inode);
3260 	ret = generic_write_checks(iocb, from);
3261 	if (ret <= 0)
3262 		goto unlock;
3263 	ret = file_remove_privs(file);
3264 	if (ret)
3265 		goto unlock;
3266 	ret = file_update_time(file);
3267 	if (ret)
3268 		goto unlock;
3269 	ret = generic_perform_write(iocb, from);
3270 unlock:
3271 	inode_unlock(inode);
3272 	return ret;
3273 }
3274 
3275 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3276 			      struct pipe_buffer *buf)
3277 {
3278 	return true;
3279 }
3280 
3281 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3282 				  struct pipe_buffer *buf)
3283 {
3284 }
3285 
3286 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3287 				    struct pipe_buffer *buf)
3288 {
3289 	return false;
3290 }
3291 
3292 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3293 	.release	= zero_pipe_buf_release,
3294 	.try_steal	= zero_pipe_buf_try_steal,
3295 	.get		= zero_pipe_buf_get,
3296 };
3297 
3298 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3299 					loff_t fpos, size_t size)
3300 {
3301 	size_t offset = fpos & ~PAGE_MASK;
3302 
3303 	size = min_t(size_t, size, PAGE_SIZE - offset);
3304 
3305 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3306 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3307 
3308 		*buf = (struct pipe_buffer) {
3309 			.ops	= &zero_pipe_buf_ops,
3310 			.page	= ZERO_PAGE(0),
3311 			.offset	= offset,
3312 			.len	= size,
3313 		};
3314 		pipe->head++;
3315 	}
3316 
3317 	return size;
3318 }
3319 
3320 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3321 				      struct pipe_inode_info *pipe,
3322 				      size_t len, unsigned int flags)
3323 {
3324 	struct inode *inode = file_inode(in);
3325 	struct address_space *mapping = inode->i_mapping;
3326 	struct folio *folio = NULL;
3327 	size_t total_spliced = 0, used, npages, n, part;
3328 	loff_t isize;
3329 	int error = 0;
3330 
3331 	/* Work out how much data we can actually add into the pipe */
3332 	used = pipe_occupancy(pipe->head, pipe->tail);
3333 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3334 	len = min_t(size_t, len, npages * PAGE_SIZE);
3335 
3336 	do {
3337 		if (*ppos >= i_size_read(inode))
3338 			break;
3339 
3340 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, 0, &folio,
3341 					SGP_READ);
3342 		if (error) {
3343 			if (error == -EINVAL)
3344 				error = 0;
3345 			break;
3346 		}
3347 		if (folio) {
3348 			folio_unlock(folio);
3349 
3350 			if (folio_test_hwpoison(folio) ||
3351 			    (folio_test_large(folio) &&
3352 			     folio_test_has_hwpoisoned(folio))) {
3353 				error = -EIO;
3354 				break;
3355 			}
3356 		}
3357 
3358 		/*
3359 		 * i_size must be checked after we know the pages are Uptodate.
3360 		 *
3361 		 * Checking i_size after the check allows us to calculate
3362 		 * the correct value for "nr", which means the zero-filled
3363 		 * part of the page is not copied back to userspace (unless
3364 		 * another truncate extends the file - this is desired though).
3365 		 */
3366 		isize = i_size_read(inode);
3367 		if (unlikely(*ppos >= isize))
3368 			break;
3369 		part = min_t(loff_t, isize - *ppos, len);
3370 
3371 		if (folio) {
3372 			/*
3373 			 * If users can be writing to this page using arbitrary
3374 			 * virtual addresses, take care about potential aliasing
3375 			 * before reading the page on the kernel side.
3376 			 */
3377 			if (mapping_writably_mapped(mapping))
3378 				flush_dcache_folio(folio);
3379 			folio_mark_accessed(folio);
3380 			/*
3381 			 * Ok, we have the page, and it's up-to-date, so we can
3382 			 * now splice it into the pipe.
3383 			 */
3384 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3385 			folio_put(folio);
3386 			folio = NULL;
3387 		} else {
3388 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3389 		}
3390 
3391 		if (!n)
3392 			break;
3393 		len -= n;
3394 		total_spliced += n;
3395 		*ppos += n;
3396 		in->f_ra.prev_pos = *ppos;
3397 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3398 			break;
3399 
3400 		cond_resched();
3401 	} while (len);
3402 
3403 	if (folio)
3404 		folio_put(folio);
3405 
3406 	file_accessed(in);
3407 	return total_spliced ? total_spliced : error;
3408 }
3409 
3410 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3411 {
3412 	struct address_space *mapping = file->f_mapping;
3413 	struct inode *inode = mapping->host;
3414 
3415 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3416 		return generic_file_llseek_size(file, offset, whence,
3417 					MAX_LFS_FILESIZE, i_size_read(inode));
3418 	if (offset < 0)
3419 		return -ENXIO;
3420 
3421 	inode_lock(inode);
3422 	/* We're holding i_rwsem so we can access i_size directly */
3423 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3424 	if (offset >= 0)
3425 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3426 	inode_unlock(inode);
3427 	return offset;
3428 }
3429 
3430 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3431 							 loff_t len)
3432 {
3433 	struct inode *inode = file_inode(file);
3434 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3435 	struct shmem_inode_info *info = SHMEM_I(inode);
3436 	struct shmem_falloc shmem_falloc;
3437 	pgoff_t start, index, end, undo_fallocend;
3438 	int error;
3439 
3440 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3441 		return -EOPNOTSUPP;
3442 
3443 	inode_lock(inode);
3444 
3445 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3446 		struct address_space *mapping = file->f_mapping;
3447 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3448 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3449 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3450 
3451 		/* protected by i_rwsem */
3452 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3453 			error = -EPERM;
3454 			goto out;
3455 		}
3456 
3457 		shmem_falloc.waitq = &shmem_falloc_waitq;
3458 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3459 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3460 		spin_lock(&inode->i_lock);
3461 		inode->i_private = &shmem_falloc;
3462 		spin_unlock(&inode->i_lock);
3463 
3464 		if ((u64)unmap_end > (u64)unmap_start)
3465 			unmap_mapping_range(mapping, unmap_start,
3466 					    1 + unmap_end - unmap_start, 0);
3467 		shmem_truncate_range(inode, offset, offset + len - 1);
3468 		/* No need to unmap again: hole-punching leaves COWed pages */
3469 
3470 		spin_lock(&inode->i_lock);
3471 		inode->i_private = NULL;
3472 		wake_up_all(&shmem_falloc_waitq);
3473 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3474 		spin_unlock(&inode->i_lock);
3475 		error = 0;
3476 		goto out;
3477 	}
3478 
3479 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3480 	error = inode_newsize_ok(inode, offset + len);
3481 	if (error)
3482 		goto out;
3483 
3484 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3485 		error = -EPERM;
3486 		goto out;
3487 	}
3488 
3489 	start = offset >> PAGE_SHIFT;
3490 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3491 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3492 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3493 		error = -ENOSPC;
3494 		goto out;
3495 	}
3496 
3497 	shmem_falloc.waitq = NULL;
3498 	shmem_falloc.start = start;
3499 	shmem_falloc.next  = start;
3500 	shmem_falloc.nr_falloced = 0;
3501 	shmem_falloc.nr_unswapped = 0;
3502 	spin_lock(&inode->i_lock);
3503 	inode->i_private = &shmem_falloc;
3504 	spin_unlock(&inode->i_lock);
3505 
3506 	/*
3507 	 * info->fallocend is only relevant when huge pages might be
3508 	 * involved: to prevent split_huge_page() freeing fallocated
3509 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3510 	 */
3511 	undo_fallocend = info->fallocend;
3512 	if (info->fallocend < end)
3513 		info->fallocend = end;
3514 
3515 	for (index = start; index < end; ) {
3516 		struct folio *folio;
3517 
3518 		/*
3519 		 * Check for fatal signal so that we abort early in OOM
3520 		 * situations. We don't want to abort in case of non-fatal
3521 		 * signals as large fallocate can take noticeable time and
3522 		 * e.g. periodic timers may result in fallocate constantly
3523 		 * restarting.
3524 		 */
3525 		if (fatal_signal_pending(current))
3526 			error = -EINTR;
3527 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3528 			error = -ENOMEM;
3529 		else
3530 			error = shmem_get_folio(inode, index, offset + len,
3531 						&folio, SGP_FALLOC);
3532 		if (error) {
3533 			info->fallocend = undo_fallocend;
3534 			/* Remove the !uptodate folios we added */
3535 			if (index > start) {
3536 				shmem_undo_range(inode,
3537 				    (loff_t)start << PAGE_SHIFT,
3538 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3539 			}
3540 			goto undone;
3541 		}
3542 
3543 		/*
3544 		 * Here is a more important optimization than it appears:
3545 		 * a second SGP_FALLOC on the same large folio will clear it,
3546 		 * making it uptodate and un-undoable if we fail later.
3547 		 */
3548 		index = folio_next_index(folio);
3549 		/* Beware 32-bit wraparound */
3550 		if (!index)
3551 			index--;
3552 
3553 		/*
3554 		 * Inform shmem_writepage() how far we have reached.
3555 		 * No need for lock or barrier: we have the page lock.
3556 		 */
3557 		if (!folio_test_uptodate(folio))
3558 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3559 		shmem_falloc.next = index;
3560 
3561 		/*
3562 		 * If !uptodate, leave it that way so that freeable folios
3563 		 * can be recognized if we need to rollback on error later.
3564 		 * But mark it dirty so that memory pressure will swap rather
3565 		 * than free the folios we are allocating (and SGP_CACHE folios
3566 		 * might still be clean: we now need to mark those dirty too).
3567 		 */
3568 		folio_mark_dirty(folio);
3569 		folio_unlock(folio);
3570 		folio_put(folio);
3571 		cond_resched();
3572 	}
3573 
3574 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3575 		i_size_write(inode, offset + len);
3576 undone:
3577 	spin_lock(&inode->i_lock);
3578 	inode->i_private = NULL;
3579 	spin_unlock(&inode->i_lock);
3580 out:
3581 	if (!error)
3582 		file_modified(file);
3583 	inode_unlock(inode);
3584 	return error;
3585 }
3586 
3587 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3588 {
3589 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3590 
3591 	buf->f_type = TMPFS_MAGIC;
3592 	buf->f_bsize = PAGE_SIZE;
3593 	buf->f_namelen = NAME_MAX;
3594 	if (sbinfo->max_blocks) {
3595 		buf->f_blocks = sbinfo->max_blocks;
3596 		buf->f_bavail =
3597 		buf->f_bfree  = sbinfo->max_blocks -
3598 				percpu_counter_sum(&sbinfo->used_blocks);
3599 	}
3600 	if (sbinfo->max_inodes) {
3601 		buf->f_files = sbinfo->max_inodes;
3602 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3603 	}
3604 	/* else leave those fields 0 like simple_statfs */
3605 
3606 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3607 
3608 	return 0;
3609 }
3610 
3611 /*
3612  * File creation. Allocate an inode, and we're done..
3613  */
3614 static int
3615 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3616 	    struct dentry *dentry, umode_t mode, dev_t dev)
3617 {
3618 	struct inode *inode;
3619 	int error;
3620 
3621 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3622 		return -EINVAL;
3623 
3624 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3625 	if (IS_ERR(inode))
3626 		return PTR_ERR(inode);
3627 
3628 	error = simple_acl_create(dir, inode);
3629 	if (error)
3630 		goto out_iput;
3631 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3632 					     shmem_initxattrs, NULL);
3633 	if (error && error != -EOPNOTSUPP)
3634 		goto out_iput;
3635 
3636 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3637 	if (error)
3638 		goto out_iput;
3639 
3640 	dir->i_size += BOGO_DIRENT_SIZE;
3641 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3642 	inode_inc_iversion(dir);
3643 
3644 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3645 		d_add(dentry, inode);
3646 	else
3647 		d_instantiate(dentry, inode);
3648 
3649 	dget(dentry); /* Extra count - pin the dentry in core */
3650 	return error;
3651 
3652 out_iput:
3653 	iput(inode);
3654 	return error;
3655 }
3656 
3657 static int
3658 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3659 	      struct file *file, umode_t mode)
3660 {
3661 	struct inode *inode;
3662 	int error;
3663 
3664 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3665 	if (IS_ERR(inode)) {
3666 		error = PTR_ERR(inode);
3667 		goto err_out;
3668 	}
3669 	error = security_inode_init_security(inode, dir, NULL,
3670 					     shmem_initxattrs, NULL);
3671 	if (error && error != -EOPNOTSUPP)
3672 		goto out_iput;
3673 	error = simple_acl_create(dir, inode);
3674 	if (error)
3675 		goto out_iput;
3676 	d_tmpfile(file, inode);
3677 
3678 err_out:
3679 	return finish_open_simple(file, error);
3680 out_iput:
3681 	iput(inode);
3682 	return error;
3683 }
3684 
3685 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3686 		       struct dentry *dentry, umode_t mode)
3687 {
3688 	int error;
3689 
3690 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3691 	if (error)
3692 		return error;
3693 	inc_nlink(dir);
3694 	return 0;
3695 }
3696 
3697 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3698 			struct dentry *dentry, umode_t mode, bool excl)
3699 {
3700 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3701 }
3702 
3703 /*
3704  * Link a file..
3705  */
3706 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3707 		      struct dentry *dentry)
3708 {
3709 	struct inode *inode = d_inode(old_dentry);
3710 	int ret = 0;
3711 
3712 	/*
3713 	 * No ordinary (disk based) filesystem counts links as inodes;
3714 	 * but each new link needs a new dentry, pinning lowmem, and
3715 	 * tmpfs dentries cannot be pruned until they are unlinked.
3716 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3717 	 * first link must skip that, to get the accounting right.
3718 	 */
3719 	if (inode->i_nlink) {
3720 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3721 		if (ret)
3722 			goto out;
3723 	}
3724 
3725 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3726 	if (ret) {
3727 		if (inode->i_nlink)
3728 			shmem_free_inode(inode->i_sb, 0);
3729 		goto out;
3730 	}
3731 
3732 	dir->i_size += BOGO_DIRENT_SIZE;
3733 	inode_set_mtime_to_ts(dir,
3734 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3735 	inode_inc_iversion(dir);
3736 	inc_nlink(inode);
3737 	ihold(inode);	/* New dentry reference */
3738 	dget(dentry);	/* Extra pinning count for the created dentry */
3739 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3740 		d_add(dentry, inode);
3741 	else
3742 		d_instantiate(dentry, inode);
3743 out:
3744 	return ret;
3745 }
3746 
3747 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3748 {
3749 	struct inode *inode = d_inode(dentry);
3750 
3751 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3752 		shmem_free_inode(inode->i_sb, 0);
3753 
3754 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3755 
3756 	dir->i_size -= BOGO_DIRENT_SIZE;
3757 	inode_set_mtime_to_ts(dir,
3758 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3759 	inode_inc_iversion(dir);
3760 	drop_nlink(inode);
3761 	dput(dentry);	/* Undo the count from "create" - does all the work */
3762 
3763 	/*
3764 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3765 	 * we invalidate them
3766 	 */
3767 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3768 		d_invalidate(dentry);
3769 
3770 	return 0;
3771 }
3772 
3773 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3774 {
3775 	if (!simple_offset_empty(dentry))
3776 		return -ENOTEMPTY;
3777 
3778 	drop_nlink(d_inode(dentry));
3779 	drop_nlink(dir);
3780 	return shmem_unlink(dir, dentry);
3781 }
3782 
3783 static int shmem_whiteout(struct mnt_idmap *idmap,
3784 			  struct inode *old_dir, struct dentry *old_dentry)
3785 {
3786 	struct dentry *whiteout;
3787 	int error;
3788 
3789 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3790 	if (!whiteout)
3791 		return -ENOMEM;
3792 
3793 	error = shmem_mknod(idmap, old_dir, whiteout,
3794 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3795 	dput(whiteout);
3796 	if (error)
3797 		return error;
3798 
3799 	/*
3800 	 * Cheat and hash the whiteout while the old dentry is still in
3801 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3802 	 *
3803 	 * d_lookup() will consistently find one of them at this point,
3804 	 * not sure which one, but that isn't even important.
3805 	 */
3806 	d_rehash(whiteout);
3807 	return 0;
3808 }
3809 
3810 /*
3811  * The VFS layer already does all the dentry stuff for rename,
3812  * we just have to decrement the usage count for the target if
3813  * it exists so that the VFS layer correctly free's it when it
3814  * gets overwritten.
3815  */
3816 static int shmem_rename2(struct mnt_idmap *idmap,
3817 			 struct inode *old_dir, struct dentry *old_dentry,
3818 			 struct inode *new_dir, struct dentry *new_dentry,
3819 			 unsigned int flags)
3820 {
3821 	struct inode *inode = d_inode(old_dentry);
3822 	int they_are_dirs = S_ISDIR(inode->i_mode);
3823 	int error;
3824 
3825 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3826 		return -EINVAL;
3827 
3828 	if (flags & RENAME_EXCHANGE)
3829 		return simple_offset_rename_exchange(old_dir, old_dentry,
3830 						     new_dir, new_dentry);
3831 
3832 	if (!simple_offset_empty(new_dentry))
3833 		return -ENOTEMPTY;
3834 
3835 	if (flags & RENAME_WHITEOUT) {
3836 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3837 		if (error)
3838 			return error;
3839 	}
3840 
3841 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3842 	if (error)
3843 		return error;
3844 
3845 	if (d_really_is_positive(new_dentry)) {
3846 		(void) shmem_unlink(new_dir, new_dentry);
3847 		if (they_are_dirs) {
3848 			drop_nlink(d_inode(new_dentry));
3849 			drop_nlink(old_dir);
3850 		}
3851 	} else if (they_are_dirs) {
3852 		drop_nlink(old_dir);
3853 		inc_nlink(new_dir);
3854 	}
3855 
3856 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3857 	new_dir->i_size += BOGO_DIRENT_SIZE;
3858 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3859 	inode_inc_iversion(old_dir);
3860 	inode_inc_iversion(new_dir);
3861 	return 0;
3862 }
3863 
3864 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3865 			 struct dentry *dentry, const char *symname)
3866 {
3867 	int error;
3868 	int len;
3869 	struct inode *inode;
3870 	struct folio *folio;
3871 
3872 	len = strlen(symname) + 1;
3873 	if (len > PAGE_SIZE)
3874 		return -ENAMETOOLONG;
3875 
3876 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3877 				VM_NORESERVE);
3878 	if (IS_ERR(inode))
3879 		return PTR_ERR(inode);
3880 
3881 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3882 					     shmem_initxattrs, NULL);
3883 	if (error && error != -EOPNOTSUPP)
3884 		goto out_iput;
3885 
3886 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3887 	if (error)
3888 		goto out_iput;
3889 
3890 	inode->i_size = len-1;
3891 	if (len <= SHORT_SYMLINK_LEN) {
3892 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3893 		if (!inode->i_link) {
3894 			error = -ENOMEM;
3895 			goto out_remove_offset;
3896 		}
3897 		inode->i_op = &shmem_short_symlink_operations;
3898 	} else {
3899 		inode_nohighmem(inode);
3900 		inode->i_mapping->a_ops = &shmem_aops;
3901 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3902 		if (error)
3903 			goto out_remove_offset;
3904 		inode->i_op = &shmem_symlink_inode_operations;
3905 		memcpy(folio_address(folio), symname, len);
3906 		folio_mark_uptodate(folio);
3907 		folio_mark_dirty(folio);
3908 		folio_unlock(folio);
3909 		folio_put(folio);
3910 	}
3911 	dir->i_size += BOGO_DIRENT_SIZE;
3912 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3913 	inode_inc_iversion(dir);
3914 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3915 		d_add(dentry, inode);
3916 	else
3917 		d_instantiate(dentry, inode);
3918 	dget(dentry);
3919 	return 0;
3920 
3921 out_remove_offset:
3922 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3923 out_iput:
3924 	iput(inode);
3925 	return error;
3926 }
3927 
3928 static void shmem_put_link(void *arg)
3929 {
3930 	folio_mark_accessed(arg);
3931 	folio_put(arg);
3932 }
3933 
3934 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3935 				  struct delayed_call *done)
3936 {
3937 	struct folio *folio = NULL;
3938 	int error;
3939 
3940 	if (!dentry) {
3941 		folio = filemap_get_folio(inode->i_mapping, 0);
3942 		if (IS_ERR(folio))
3943 			return ERR_PTR(-ECHILD);
3944 		if (PageHWPoison(folio_page(folio, 0)) ||
3945 		    !folio_test_uptodate(folio)) {
3946 			folio_put(folio);
3947 			return ERR_PTR(-ECHILD);
3948 		}
3949 	} else {
3950 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3951 		if (error)
3952 			return ERR_PTR(error);
3953 		if (!folio)
3954 			return ERR_PTR(-ECHILD);
3955 		if (PageHWPoison(folio_page(folio, 0))) {
3956 			folio_unlock(folio);
3957 			folio_put(folio);
3958 			return ERR_PTR(-ECHILD);
3959 		}
3960 		folio_unlock(folio);
3961 	}
3962 	set_delayed_call(done, shmem_put_link, folio);
3963 	return folio_address(folio);
3964 }
3965 
3966 #ifdef CONFIG_TMPFS_XATTR
3967 
3968 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3969 {
3970 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3971 
3972 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3973 
3974 	return 0;
3975 }
3976 
3977 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3978 			      struct dentry *dentry, struct fileattr *fa)
3979 {
3980 	struct inode *inode = d_inode(dentry);
3981 	struct shmem_inode_info *info = SHMEM_I(inode);
3982 	int ret, flags;
3983 
3984 	if (fileattr_has_fsx(fa))
3985 		return -EOPNOTSUPP;
3986 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3987 		return -EOPNOTSUPP;
3988 
3989 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3990 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3991 
3992 	ret = shmem_set_inode_flags(inode, flags, dentry);
3993 
3994 	if (ret)
3995 		return ret;
3996 
3997 	info->fsflags = flags;
3998 
3999 	inode_set_ctime_current(inode);
4000 	inode_inc_iversion(inode);
4001 	return 0;
4002 }
4003 
4004 /*
4005  * Superblocks without xattr inode operations may get some security.* xattr
4006  * support from the LSM "for free". As soon as we have any other xattrs
4007  * like ACLs, we also need to implement the security.* handlers at
4008  * filesystem level, though.
4009  */
4010 
4011 /*
4012  * Callback for security_inode_init_security() for acquiring xattrs.
4013  */
4014 static int shmem_initxattrs(struct inode *inode,
4015 			    const struct xattr *xattr_array, void *fs_info)
4016 {
4017 	struct shmem_inode_info *info = SHMEM_I(inode);
4018 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4019 	const struct xattr *xattr;
4020 	struct simple_xattr *new_xattr;
4021 	size_t ispace = 0;
4022 	size_t len;
4023 
4024 	if (sbinfo->max_inodes) {
4025 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4026 			ispace += simple_xattr_space(xattr->name,
4027 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4028 		}
4029 		if (ispace) {
4030 			raw_spin_lock(&sbinfo->stat_lock);
4031 			if (sbinfo->free_ispace < ispace)
4032 				ispace = 0;
4033 			else
4034 				sbinfo->free_ispace -= ispace;
4035 			raw_spin_unlock(&sbinfo->stat_lock);
4036 			if (!ispace)
4037 				return -ENOSPC;
4038 		}
4039 	}
4040 
4041 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4042 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4043 		if (!new_xattr)
4044 			break;
4045 
4046 		len = strlen(xattr->name) + 1;
4047 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4048 					  GFP_KERNEL_ACCOUNT);
4049 		if (!new_xattr->name) {
4050 			kvfree(new_xattr);
4051 			break;
4052 		}
4053 
4054 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4055 		       XATTR_SECURITY_PREFIX_LEN);
4056 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4057 		       xattr->name, len);
4058 
4059 		simple_xattr_add(&info->xattrs, new_xattr);
4060 	}
4061 
4062 	if (xattr->name != NULL) {
4063 		if (ispace) {
4064 			raw_spin_lock(&sbinfo->stat_lock);
4065 			sbinfo->free_ispace += ispace;
4066 			raw_spin_unlock(&sbinfo->stat_lock);
4067 		}
4068 		simple_xattrs_free(&info->xattrs, NULL);
4069 		return -ENOMEM;
4070 	}
4071 
4072 	return 0;
4073 }
4074 
4075 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4076 				   struct dentry *unused, struct inode *inode,
4077 				   const char *name, void *buffer, size_t size)
4078 {
4079 	struct shmem_inode_info *info = SHMEM_I(inode);
4080 
4081 	name = xattr_full_name(handler, name);
4082 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4083 }
4084 
4085 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4086 				   struct mnt_idmap *idmap,
4087 				   struct dentry *unused, struct inode *inode,
4088 				   const char *name, const void *value,
4089 				   size_t size, int flags)
4090 {
4091 	struct shmem_inode_info *info = SHMEM_I(inode);
4092 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4093 	struct simple_xattr *old_xattr;
4094 	size_t ispace = 0;
4095 
4096 	name = xattr_full_name(handler, name);
4097 	if (value && sbinfo->max_inodes) {
4098 		ispace = simple_xattr_space(name, size);
4099 		raw_spin_lock(&sbinfo->stat_lock);
4100 		if (sbinfo->free_ispace < ispace)
4101 			ispace = 0;
4102 		else
4103 			sbinfo->free_ispace -= ispace;
4104 		raw_spin_unlock(&sbinfo->stat_lock);
4105 		if (!ispace)
4106 			return -ENOSPC;
4107 	}
4108 
4109 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4110 	if (!IS_ERR(old_xattr)) {
4111 		ispace = 0;
4112 		if (old_xattr && sbinfo->max_inodes)
4113 			ispace = simple_xattr_space(old_xattr->name,
4114 						    old_xattr->size);
4115 		simple_xattr_free(old_xattr);
4116 		old_xattr = NULL;
4117 		inode_set_ctime_current(inode);
4118 		inode_inc_iversion(inode);
4119 	}
4120 	if (ispace) {
4121 		raw_spin_lock(&sbinfo->stat_lock);
4122 		sbinfo->free_ispace += ispace;
4123 		raw_spin_unlock(&sbinfo->stat_lock);
4124 	}
4125 	return PTR_ERR(old_xattr);
4126 }
4127 
4128 static const struct xattr_handler shmem_security_xattr_handler = {
4129 	.prefix = XATTR_SECURITY_PREFIX,
4130 	.get = shmem_xattr_handler_get,
4131 	.set = shmem_xattr_handler_set,
4132 };
4133 
4134 static const struct xattr_handler shmem_trusted_xattr_handler = {
4135 	.prefix = XATTR_TRUSTED_PREFIX,
4136 	.get = shmem_xattr_handler_get,
4137 	.set = shmem_xattr_handler_set,
4138 };
4139 
4140 static const struct xattr_handler shmem_user_xattr_handler = {
4141 	.prefix = XATTR_USER_PREFIX,
4142 	.get = shmem_xattr_handler_get,
4143 	.set = shmem_xattr_handler_set,
4144 };
4145 
4146 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4147 	&shmem_security_xattr_handler,
4148 	&shmem_trusted_xattr_handler,
4149 	&shmem_user_xattr_handler,
4150 	NULL
4151 };
4152 
4153 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4154 {
4155 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4156 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4157 }
4158 #endif /* CONFIG_TMPFS_XATTR */
4159 
4160 static const struct inode_operations shmem_short_symlink_operations = {
4161 	.getattr	= shmem_getattr,
4162 	.setattr	= shmem_setattr,
4163 	.get_link	= simple_get_link,
4164 #ifdef CONFIG_TMPFS_XATTR
4165 	.listxattr	= shmem_listxattr,
4166 #endif
4167 };
4168 
4169 static const struct inode_operations shmem_symlink_inode_operations = {
4170 	.getattr	= shmem_getattr,
4171 	.setattr	= shmem_setattr,
4172 	.get_link	= shmem_get_link,
4173 #ifdef CONFIG_TMPFS_XATTR
4174 	.listxattr	= shmem_listxattr,
4175 #endif
4176 };
4177 
4178 static struct dentry *shmem_get_parent(struct dentry *child)
4179 {
4180 	return ERR_PTR(-ESTALE);
4181 }
4182 
4183 static int shmem_match(struct inode *ino, void *vfh)
4184 {
4185 	__u32 *fh = vfh;
4186 	__u64 inum = fh[2];
4187 	inum = (inum << 32) | fh[1];
4188 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4189 }
4190 
4191 /* Find any alias of inode, but prefer a hashed alias */
4192 static struct dentry *shmem_find_alias(struct inode *inode)
4193 {
4194 	struct dentry *alias = d_find_alias(inode);
4195 
4196 	return alias ?: d_find_any_alias(inode);
4197 }
4198 
4199 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4200 		struct fid *fid, int fh_len, int fh_type)
4201 {
4202 	struct inode *inode;
4203 	struct dentry *dentry = NULL;
4204 	u64 inum;
4205 
4206 	if (fh_len < 3)
4207 		return NULL;
4208 
4209 	inum = fid->raw[2];
4210 	inum = (inum << 32) | fid->raw[1];
4211 
4212 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4213 			shmem_match, fid->raw);
4214 	if (inode) {
4215 		dentry = shmem_find_alias(inode);
4216 		iput(inode);
4217 	}
4218 
4219 	return dentry;
4220 }
4221 
4222 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4223 				struct inode *parent)
4224 {
4225 	if (*len < 3) {
4226 		*len = 3;
4227 		return FILEID_INVALID;
4228 	}
4229 
4230 	if (inode_unhashed(inode)) {
4231 		/* Unfortunately insert_inode_hash is not idempotent,
4232 		 * so as we hash inodes here rather than at creation
4233 		 * time, we need a lock to ensure we only try
4234 		 * to do it once
4235 		 */
4236 		static DEFINE_SPINLOCK(lock);
4237 		spin_lock(&lock);
4238 		if (inode_unhashed(inode))
4239 			__insert_inode_hash(inode,
4240 					    inode->i_ino + inode->i_generation);
4241 		spin_unlock(&lock);
4242 	}
4243 
4244 	fh[0] = inode->i_generation;
4245 	fh[1] = inode->i_ino;
4246 	fh[2] = ((__u64)inode->i_ino) >> 32;
4247 
4248 	*len = 3;
4249 	return 1;
4250 }
4251 
4252 static const struct export_operations shmem_export_ops = {
4253 	.get_parent     = shmem_get_parent,
4254 	.encode_fh      = shmem_encode_fh,
4255 	.fh_to_dentry	= shmem_fh_to_dentry,
4256 };
4257 
4258 enum shmem_param {
4259 	Opt_gid,
4260 	Opt_huge,
4261 	Opt_mode,
4262 	Opt_mpol,
4263 	Opt_nr_blocks,
4264 	Opt_nr_inodes,
4265 	Opt_size,
4266 	Opt_uid,
4267 	Opt_inode32,
4268 	Opt_inode64,
4269 	Opt_noswap,
4270 	Opt_quota,
4271 	Opt_usrquota,
4272 	Opt_grpquota,
4273 	Opt_usrquota_block_hardlimit,
4274 	Opt_usrquota_inode_hardlimit,
4275 	Opt_grpquota_block_hardlimit,
4276 	Opt_grpquota_inode_hardlimit,
4277 	Opt_casefold_version,
4278 	Opt_casefold,
4279 	Opt_strict_encoding,
4280 };
4281 
4282 static const struct constant_table shmem_param_enums_huge[] = {
4283 	{"never",	SHMEM_HUGE_NEVER },
4284 	{"always",	SHMEM_HUGE_ALWAYS },
4285 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4286 	{"advise",	SHMEM_HUGE_ADVISE },
4287 	{}
4288 };
4289 
4290 const struct fs_parameter_spec shmem_fs_parameters[] = {
4291 	fsparam_gid   ("gid",		Opt_gid),
4292 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4293 	fsparam_u32oct("mode",		Opt_mode),
4294 	fsparam_string("mpol",		Opt_mpol),
4295 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4296 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4297 	fsparam_string("size",		Opt_size),
4298 	fsparam_uid   ("uid",		Opt_uid),
4299 	fsparam_flag  ("inode32",	Opt_inode32),
4300 	fsparam_flag  ("inode64",	Opt_inode64),
4301 	fsparam_flag  ("noswap",	Opt_noswap),
4302 #ifdef CONFIG_TMPFS_QUOTA
4303 	fsparam_flag  ("quota",		Opt_quota),
4304 	fsparam_flag  ("usrquota",	Opt_usrquota),
4305 	fsparam_flag  ("grpquota",	Opt_grpquota),
4306 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4307 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4308 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4309 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4310 #endif
4311 	fsparam_string("casefold",	Opt_casefold_version),
4312 	fsparam_flag  ("casefold",	Opt_casefold),
4313 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4314 	{}
4315 };
4316 
4317 #if IS_ENABLED(CONFIG_UNICODE)
4318 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4319 				    bool latest_version)
4320 {
4321 	struct shmem_options *ctx = fc->fs_private;
4322 	unsigned int version = UTF8_LATEST;
4323 	struct unicode_map *encoding;
4324 	char *version_str = param->string + 5;
4325 
4326 	if (!latest_version) {
4327 		if (strncmp(param->string, "utf8-", 5))
4328 			return invalfc(fc, "Only UTF-8 encodings are supported "
4329 				       "in the format: utf8-<version number>");
4330 
4331 		version = utf8_parse_version(version_str);
4332 		if (version < 0)
4333 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4334 	}
4335 
4336 	encoding = utf8_load(version);
4337 
4338 	if (IS_ERR(encoding)) {
4339 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4340 			       unicode_major(version), unicode_minor(version),
4341 			       unicode_rev(version));
4342 	}
4343 
4344 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4345 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4346 
4347 	ctx->encoding = encoding;
4348 
4349 	return 0;
4350 }
4351 #else
4352 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4353 				    bool latest_version)
4354 {
4355 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4356 }
4357 #endif
4358 
4359 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4360 {
4361 	struct shmem_options *ctx = fc->fs_private;
4362 	struct fs_parse_result result;
4363 	unsigned long long size;
4364 	char *rest;
4365 	int opt;
4366 	kuid_t kuid;
4367 	kgid_t kgid;
4368 
4369 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4370 	if (opt < 0)
4371 		return opt;
4372 
4373 	switch (opt) {
4374 	case Opt_size:
4375 		size = memparse(param->string, &rest);
4376 		if (*rest == '%') {
4377 			size <<= PAGE_SHIFT;
4378 			size *= totalram_pages();
4379 			do_div(size, 100);
4380 			rest++;
4381 		}
4382 		if (*rest)
4383 			goto bad_value;
4384 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4385 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4386 		break;
4387 	case Opt_nr_blocks:
4388 		ctx->blocks = memparse(param->string, &rest);
4389 		if (*rest || ctx->blocks > LONG_MAX)
4390 			goto bad_value;
4391 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4392 		break;
4393 	case Opt_nr_inodes:
4394 		ctx->inodes = memparse(param->string, &rest);
4395 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4396 			goto bad_value;
4397 		ctx->seen |= SHMEM_SEEN_INODES;
4398 		break;
4399 	case Opt_mode:
4400 		ctx->mode = result.uint_32 & 07777;
4401 		break;
4402 	case Opt_uid:
4403 		kuid = result.uid;
4404 
4405 		/*
4406 		 * The requested uid must be representable in the
4407 		 * filesystem's idmapping.
4408 		 */
4409 		if (!kuid_has_mapping(fc->user_ns, kuid))
4410 			goto bad_value;
4411 
4412 		ctx->uid = kuid;
4413 		break;
4414 	case Opt_gid:
4415 		kgid = result.gid;
4416 
4417 		/*
4418 		 * The requested gid must be representable in the
4419 		 * filesystem's idmapping.
4420 		 */
4421 		if (!kgid_has_mapping(fc->user_ns, kgid))
4422 			goto bad_value;
4423 
4424 		ctx->gid = kgid;
4425 		break;
4426 	case Opt_huge:
4427 		ctx->huge = result.uint_32;
4428 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4429 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4430 		      has_transparent_hugepage()))
4431 			goto unsupported_parameter;
4432 		ctx->seen |= SHMEM_SEEN_HUGE;
4433 		break;
4434 	case Opt_mpol:
4435 		if (IS_ENABLED(CONFIG_NUMA)) {
4436 			mpol_put(ctx->mpol);
4437 			ctx->mpol = NULL;
4438 			if (mpol_parse_str(param->string, &ctx->mpol))
4439 				goto bad_value;
4440 			break;
4441 		}
4442 		goto unsupported_parameter;
4443 	case Opt_inode32:
4444 		ctx->full_inums = false;
4445 		ctx->seen |= SHMEM_SEEN_INUMS;
4446 		break;
4447 	case Opt_inode64:
4448 		if (sizeof(ino_t) < 8) {
4449 			return invalfc(fc,
4450 				       "Cannot use inode64 with <64bit inums in kernel\n");
4451 		}
4452 		ctx->full_inums = true;
4453 		ctx->seen |= SHMEM_SEEN_INUMS;
4454 		break;
4455 	case Opt_noswap:
4456 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4457 			return invalfc(fc,
4458 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4459 		}
4460 		ctx->noswap = true;
4461 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4462 		break;
4463 	case Opt_quota:
4464 		if (fc->user_ns != &init_user_ns)
4465 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4466 		ctx->seen |= SHMEM_SEEN_QUOTA;
4467 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4468 		break;
4469 	case Opt_usrquota:
4470 		if (fc->user_ns != &init_user_ns)
4471 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4472 		ctx->seen |= SHMEM_SEEN_QUOTA;
4473 		ctx->quota_types |= QTYPE_MASK_USR;
4474 		break;
4475 	case Opt_grpquota:
4476 		if (fc->user_ns != &init_user_ns)
4477 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4478 		ctx->seen |= SHMEM_SEEN_QUOTA;
4479 		ctx->quota_types |= QTYPE_MASK_GRP;
4480 		break;
4481 	case Opt_usrquota_block_hardlimit:
4482 		size = memparse(param->string, &rest);
4483 		if (*rest || !size)
4484 			goto bad_value;
4485 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4486 			return invalfc(fc,
4487 				       "User quota block hardlimit too large.");
4488 		ctx->qlimits.usrquota_bhardlimit = size;
4489 		break;
4490 	case Opt_grpquota_block_hardlimit:
4491 		size = memparse(param->string, &rest);
4492 		if (*rest || !size)
4493 			goto bad_value;
4494 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4495 			return invalfc(fc,
4496 				       "Group quota block hardlimit too large.");
4497 		ctx->qlimits.grpquota_bhardlimit = size;
4498 		break;
4499 	case Opt_usrquota_inode_hardlimit:
4500 		size = memparse(param->string, &rest);
4501 		if (*rest || !size)
4502 			goto bad_value;
4503 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4504 			return invalfc(fc,
4505 				       "User quota inode hardlimit too large.");
4506 		ctx->qlimits.usrquota_ihardlimit = size;
4507 		break;
4508 	case Opt_grpquota_inode_hardlimit:
4509 		size = memparse(param->string, &rest);
4510 		if (*rest || !size)
4511 			goto bad_value;
4512 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4513 			return invalfc(fc,
4514 				       "Group quota inode hardlimit too large.");
4515 		ctx->qlimits.grpquota_ihardlimit = size;
4516 		break;
4517 	case Opt_casefold_version:
4518 		return shmem_parse_opt_casefold(fc, param, false);
4519 	case Opt_casefold:
4520 		return shmem_parse_opt_casefold(fc, param, true);
4521 	case Opt_strict_encoding:
4522 #if IS_ENABLED(CONFIG_UNICODE)
4523 		ctx->strict_encoding = true;
4524 		break;
4525 #else
4526 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4527 #endif
4528 	}
4529 	return 0;
4530 
4531 unsupported_parameter:
4532 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4533 bad_value:
4534 	return invalfc(fc, "Bad value for '%s'", param->key);
4535 }
4536 
4537 static int shmem_parse_options(struct fs_context *fc, void *data)
4538 {
4539 	char *options = data;
4540 
4541 	if (options) {
4542 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4543 		if (err)
4544 			return err;
4545 	}
4546 
4547 	while (options != NULL) {
4548 		char *this_char = options;
4549 		for (;;) {
4550 			/*
4551 			 * NUL-terminate this option: unfortunately,
4552 			 * mount options form a comma-separated list,
4553 			 * but mpol's nodelist may also contain commas.
4554 			 */
4555 			options = strchr(options, ',');
4556 			if (options == NULL)
4557 				break;
4558 			options++;
4559 			if (!isdigit(*options)) {
4560 				options[-1] = '\0';
4561 				break;
4562 			}
4563 		}
4564 		if (*this_char) {
4565 			char *value = strchr(this_char, '=');
4566 			size_t len = 0;
4567 			int err;
4568 
4569 			if (value) {
4570 				*value++ = '\0';
4571 				len = strlen(value);
4572 			}
4573 			err = vfs_parse_fs_string(fc, this_char, value, len);
4574 			if (err < 0)
4575 				return err;
4576 		}
4577 	}
4578 	return 0;
4579 }
4580 
4581 /*
4582  * Reconfigure a shmem filesystem.
4583  */
4584 static int shmem_reconfigure(struct fs_context *fc)
4585 {
4586 	struct shmem_options *ctx = fc->fs_private;
4587 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4588 	unsigned long used_isp;
4589 	struct mempolicy *mpol = NULL;
4590 	const char *err;
4591 
4592 	raw_spin_lock(&sbinfo->stat_lock);
4593 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4594 
4595 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4596 		if (!sbinfo->max_blocks) {
4597 			err = "Cannot retroactively limit size";
4598 			goto out;
4599 		}
4600 		if (percpu_counter_compare(&sbinfo->used_blocks,
4601 					   ctx->blocks) > 0) {
4602 			err = "Too small a size for current use";
4603 			goto out;
4604 		}
4605 	}
4606 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4607 		if (!sbinfo->max_inodes) {
4608 			err = "Cannot retroactively limit inodes";
4609 			goto out;
4610 		}
4611 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4612 			err = "Too few inodes for current use";
4613 			goto out;
4614 		}
4615 	}
4616 
4617 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4618 	    sbinfo->next_ino > UINT_MAX) {
4619 		err = "Current inum too high to switch to 32-bit inums";
4620 		goto out;
4621 	}
4622 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4623 		err = "Cannot disable swap on remount";
4624 		goto out;
4625 	}
4626 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4627 		err = "Cannot enable swap on remount if it was disabled on first mount";
4628 		goto out;
4629 	}
4630 
4631 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4632 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4633 		err = "Cannot enable quota on remount";
4634 		goto out;
4635 	}
4636 
4637 #ifdef CONFIG_TMPFS_QUOTA
4638 #define CHANGED_LIMIT(name)						\
4639 	(ctx->qlimits.name## hardlimit &&				\
4640 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4641 
4642 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4643 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4644 		err = "Cannot change global quota limit on remount";
4645 		goto out;
4646 	}
4647 #endif /* CONFIG_TMPFS_QUOTA */
4648 
4649 	if (ctx->seen & SHMEM_SEEN_HUGE)
4650 		sbinfo->huge = ctx->huge;
4651 	if (ctx->seen & SHMEM_SEEN_INUMS)
4652 		sbinfo->full_inums = ctx->full_inums;
4653 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4654 		sbinfo->max_blocks  = ctx->blocks;
4655 	if (ctx->seen & SHMEM_SEEN_INODES) {
4656 		sbinfo->max_inodes  = ctx->inodes;
4657 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4658 	}
4659 
4660 	/*
4661 	 * Preserve previous mempolicy unless mpol remount option was specified.
4662 	 */
4663 	if (ctx->mpol) {
4664 		mpol = sbinfo->mpol;
4665 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4666 		ctx->mpol = NULL;
4667 	}
4668 
4669 	if (ctx->noswap)
4670 		sbinfo->noswap = true;
4671 
4672 	raw_spin_unlock(&sbinfo->stat_lock);
4673 	mpol_put(mpol);
4674 	return 0;
4675 out:
4676 	raw_spin_unlock(&sbinfo->stat_lock);
4677 	return invalfc(fc, "%s", err);
4678 }
4679 
4680 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4681 {
4682 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4683 	struct mempolicy *mpol;
4684 
4685 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4686 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4687 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4688 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4689 	if (sbinfo->mode != (0777 | S_ISVTX))
4690 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4691 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4692 		seq_printf(seq, ",uid=%u",
4693 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4694 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4695 		seq_printf(seq, ",gid=%u",
4696 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4697 
4698 	/*
4699 	 * Showing inode{64,32} might be useful even if it's the system default,
4700 	 * since then people don't have to resort to checking both here and
4701 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4702 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4703 	 *
4704 	 * We hide it when inode64 isn't the default and we are using 32-bit
4705 	 * inodes, since that probably just means the feature isn't even under
4706 	 * consideration.
4707 	 *
4708 	 * As such:
4709 	 *
4710 	 *                     +-----------------+-----------------+
4711 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4712 	 *  +------------------+-----------------+-----------------+
4713 	 *  | full_inums=true  | show            | show            |
4714 	 *  | full_inums=false | show            | hide            |
4715 	 *  +------------------+-----------------+-----------------+
4716 	 *
4717 	 */
4718 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4719 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4720 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4721 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4722 	if (sbinfo->huge)
4723 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4724 #endif
4725 	mpol = shmem_get_sbmpol(sbinfo);
4726 	shmem_show_mpol(seq, mpol);
4727 	mpol_put(mpol);
4728 	if (sbinfo->noswap)
4729 		seq_printf(seq, ",noswap");
4730 #ifdef CONFIG_TMPFS_QUOTA
4731 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4732 		seq_printf(seq, ",usrquota");
4733 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4734 		seq_printf(seq, ",grpquota");
4735 	if (sbinfo->qlimits.usrquota_bhardlimit)
4736 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4737 			   sbinfo->qlimits.usrquota_bhardlimit);
4738 	if (sbinfo->qlimits.grpquota_bhardlimit)
4739 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4740 			   sbinfo->qlimits.grpquota_bhardlimit);
4741 	if (sbinfo->qlimits.usrquota_ihardlimit)
4742 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4743 			   sbinfo->qlimits.usrquota_ihardlimit);
4744 	if (sbinfo->qlimits.grpquota_ihardlimit)
4745 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4746 			   sbinfo->qlimits.grpquota_ihardlimit);
4747 #endif
4748 	return 0;
4749 }
4750 
4751 #endif /* CONFIG_TMPFS */
4752 
4753 static void shmem_put_super(struct super_block *sb)
4754 {
4755 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4756 
4757 #if IS_ENABLED(CONFIG_UNICODE)
4758 	if (sb->s_encoding)
4759 		utf8_unload(sb->s_encoding);
4760 #endif
4761 
4762 #ifdef CONFIG_TMPFS_QUOTA
4763 	shmem_disable_quotas(sb);
4764 #endif
4765 	free_percpu(sbinfo->ino_batch);
4766 	percpu_counter_destroy(&sbinfo->used_blocks);
4767 	mpol_put(sbinfo->mpol);
4768 	kfree(sbinfo);
4769 	sb->s_fs_info = NULL;
4770 }
4771 
4772 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4773 static const struct dentry_operations shmem_ci_dentry_ops = {
4774 	.d_hash = generic_ci_d_hash,
4775 	.d_compare = generic_ci_d_compare,
4776 	.d_delete = always_delete_dentry,
4777 };
4778 #endif
4779 
4780 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4781 {
4782 	struct shmem_options *ctx = fc->fs_private;
4783 	struct inode *inode;
4784 	struct shmem_sb_info *sbinfo;
4785 	int error = -ENOMEM;
4786 
4787 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4788 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4789 				L1_CACHE_BYTES), GFP_KERNEL);
4790 	if (!sbinfo)
4791 		return error;
4792 
4793 	sb->s_fs_info = sbinfo;
4794 
4795 #ifdef CONFIG_TMPFS
4796 	/*
4797 	 * Per default we only allow half of the physical ram per
4798 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4799 	 * but the internal instance is left unlimited.
4800 	 */
4801 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4802 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4803 			ctx->blocks = shmem_default_max_blocks();
4804 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4805 			ctx->inodes = shmem_default_max_inodes();
4806 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4807 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4808 		sbinfo->noswap = ctx->noswap;
4809 	} else {
4810 		sb->s_flags |= SB_NOUSER;
4811 	}
4812 	sb->s_export_op = &shmem_export_ops;
4813 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4814 
4815 #if IS_ENABLED(CONFIG_UNICODE)
4816 	if (!ctx->encoding && ctx->strict_encoding) {
4817 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
4818 		error = -EINVAL;
4819 		goto failed;
4820 	}
4821 
4822 	if (ctx->encoding) {
4823 		sb->s_encoding = ctx->encoding;
4824 		sb->s_d_op = &shmem_ci_dentry_ops;
4825 		if (ctx->strict_encoding)
4826 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
4827 	}
4828 #endif
4829 
4830 #else
4831 	sb->s_flags |= SB_NOUSER;
4832 #endif /* CONFIG_TMPFS */
4833 	sbinfo->max_blocks = ctx->blocks;
4834 	sbinfo->max_inodes = ctx->inodes;
4835 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4836 	if (sb->s_flags & SB_KERNMOUNT) {
4837 		sbinfo->ino_batch = alloc_percpu(ino_t);
4838 		if (!sbinfo->ino_batch)
4839 			goto failed;
4840 	}
4841 	sbinfo->uid = ctx->uid;
4842 	sbinfo->gid = ctx->gid;
4843 	sbinfo->full_inums = ctx->full_inums;
4844 	sbinfo->mode = ctx->mode;
4845 	sbinfo->huge = ctx->huge;
4846 	sbinfo->mpol = ctx->mpol;
4847 	ctx->mpol = NULL;
4848 
4849 	raw_spin_lock_init(&sbinfo->stat_lock);
4850 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4851 		goto failed;
4852 	spin_lock_init(&sbinfo->shrinklist_lock);
4853 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4854 
4855 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4856 	sb->s_blocksize = PAGE_SIZE;
4857 	sb->s_blocksize_bits = PAGE_SHIFT;
4858 	sb->s_magic = TMPFS_MAGIC;
4859 	sb->s_op = &shmem_ops;
4860 	sb->s_time_gran = 1;
4861 #ifdef CONFIG_TMPFS_XATTR
4862 	sb->s_xattr = shmem_xattr_handlers;
4863 #endif
4864 #ifdef CONFIG_TMPFS_POSIX_ACL
4865 	sb->s_flags |= SB_POSIXACL;
4866 #endif
4867 	uuid_t uuid;
4868 	uuid_gen(&uuid);
4869 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4870 
4871 #ifdef CONFIG_TMPFS_QUOTA
4872 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4873 		sb->dq_op = &shmem_quota_operations;
4874 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4875 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4876 
4877 		/* Copy the default limits from ctx into sbinfo */
4878 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4879 		       sizeof(struct shmem_quota_limits));
4880 
4881 		if (shmem_enable_quotas(sb, ctx->quota_types))
4882 			goto failed;
4883 	}
4884 #endif /* CONFIG_TMPFS_QUOTA */
4885 
4886 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4887 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4888 	if (IS_ERR(inode)) {
4889 		error = PTR_ERR(inode);
4890 		goto failed;
4891 	}
4892 	inode->i_uid = sbinfo->uid;
4893 	inode->i_gid = sbinfo->gid;
4894 	sb->s_root = d_make_root(inode);
4895 	if (!sb->s_root)
4896 		goto failed;
4897 	return 0;
4898 
4899 failed:
4900 	shmem_put_super(sb);
4901 	return error;
4902 }
4903 
4904 static int shmem_get_tree(struct fs_context *fc)
4905 {
4906 	return get_tree_nodev(fc, shmem_fill_super);
4907 }
4908 
4909 static void shmem_free_fc(struct fs_context *fc)
4910 {
4911 	struct shmem_options *ctx = fc->fs_private;
4912 
4913 	if (ctx) {
4914 		mpol_put(ctx->mpol);
4915 		kfree(ctx);
4916 	}
4917 }
4918 
4919 static const struct fs_context_operations shmem_fs_context_ops = {
4920 	.free			= shmem_free_fc,
4921 	.get_tree		= shmem_get_tree,
4922 #ifdef CONFIG_TMPFS
4923 	.parse_monolithic	= shmem_parse_options,
4924 	.parse_param		= shmem_parse_one,
4925 	.reconfigure		= shmem_reconfigure,
4926 #endif
4927 };
4928 
4929 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4930 
4931 static struct inode *shmem_alloc_inode(struct super_block *sb)
4932 {
4933 	struct shmem_inode_info *info;
4934 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4935 	if (!info)
4936 		return NULL;
4937 	return &info->vfs_inode;
4938 }
4939 
4940 static void shmem_free_in_core_inode(struct inode *inode)
4941 {
4942 	if (S_ISLNK(inode->i_mode))
4943 		kfree(inode->i_link);
4944 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4945 }
4946 
4947 static void shmem_destroy_inode(struct inode *inode)
4948 {
4949 	if (S_ISREG(inode->i_mode))
4950 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4951 	if (S_ISDIR(inode->i_mode))
4952 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4953 }
4954 
4955 static void shmem_init_inode(void *foo)
4956 {
4957 	struct shmem_inode_info *info = foo;
4958 	inode_init_once(&info->vfs_inode);
4959 }
4960 
4961 static void __init shmem_init_inodecache(void)
4962 {
4963 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4964 				sizeof(struct shmem_inode_info),
4965 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4966 }
4967 
4968 static void __init shmem_destroy_inodecache(void)
4969 {
4970 	kmem_cache_destroy(shmem_inode_cachep);
4971 }
4972 
4973 /* Keep the page in page cache instead of truncating it */
4974 static int shmem_error_remove_folio(struct address_space *mapping,
4975 				   struct folio *folio)
4976 {
4977 	return 0;
4978 }
4979 
4980 static const struct address_space_operations shmem_aops = {
4981 	.writepage	= shmem_writepage,
4982 	.dirty_folio	= noop_dirty_folio,
4983 #ifdef CONFIG_TMPFS
4984 	.write_begin	= shmem_write_begin,
4985 	.write_end	= shmem_write_end,
4986 #endif
4987 #ifdef CONFIG_MIGRATION
4988 	.migrate_folio	= migrate_folio,
4989 #endif
4990 	.error_remove_folio = shmem_error_remove_folio,
4991 };
4992 
4993 static const struct file_operations shmem_file_operations = {
4994 	.mmap		= shmem_mmap,
4995 	.open		= shmem_file_open,
4996 	.get_unmapped_area = shmem_get_unmapped_area,
4997 #ifdef CONFIG_TMPFS
4998 	.llseek		= shmem_file_llseek,
4999 	.read_iter	= shmem_file_read_iter,
5000 	.write_iter	= shmem_file_write_iter,
5001 	.fsync		= noop_fsync,
5002 	.splice_read	= shmem_file_splice_read,
5003 	.splice_write	= iter_file_splice_write,
5004 	.fallocate	= shmem_fallocate,
5005 #endif
5006 };
5007 
5008 static const struct inode_operations shmem_inode_operations = {
5009 	.getattr	= shmem_getattr,
5010 	.setattr	= shmem_setattr,
5011 #ifdef CONFIG_TMPFS_XATTR
5012 	.listxattr	= shmem_listxattr,
5013 	.set_acl	= simple_set_acl,
5014 	.fileattr_get	= shmem_fileattr_get,
5015 	.fileattr_set	= shmem_fileattr_set,
5016 #endif
5017 };
5018 
5019 static const struct inode_operations shmem_dir_inode_operations = {
5020 #ifdef CONFIG_TMPFS
5021 	.getattr	= shmem_getattr,
5022 	.create		= shmem_create,
5023 	.lookup		= simple_lookup,
5024 	.link		= shmem_link,
5025 	.unlink		= shmem_unlink,
5026 	.symlink	= shmem_symlink,
5027 	.mkdir		= shmem_mkdir,
5028 	.rmdir		= shmem_rmdir,
5029 	.mknod		= shmem_mknod,
5030 	.rename		= shmem_rename2,
5031 	.tmpfile	= shmem_tmpfile,
5032 	.get_offset_ctx	= shmem_get_offset_ctx,
5033 #endif
5034 #ifdef CONFIG_TMPFS_XATTR
5035 	.listxattr	= shmem_listxattr,
5036 	.fileattr_get	= shmem_fileattr_get,
5037 	.fileattr_set	= shmem_fileattr_set,
5038 #endif
5039 #ifdef CONFIG_TMPFS_POSIX_ACL
5040 	.setattr	= shmem_setattr,
5041 	.set_acl	= simple_set_acl,
5042 #endif
5043 };
5044 
5045 static const struct inode_operations shmem_special_inode_operations = {
5046 	.getattr	= shmem_getattr,
5047 #ifdef CONFIG_TMPFS_XATTR
5048 	.listxattr	= shmem_listxattr,
5049 #endif
5050 #ifdef CONFIG_TMPFS_POSIX_ACL
5051 	.setattr	= shmem_setattr,
5052 	.set_acl	= simple_set_acl,
5053 #endif
5054 };
5055 
5056 static const struct super_operations shmem_ops = {
5057 	.alloc_inode	= shmem_alloc_inode,
5058 	.free_inode	= shmem_free_in_core_inode,
5059 	.destroy_inode	= shmem_destroy_inode,
5060 #ifdef CONFIG_TMPFS
5061 	.statfs		= shmem_statfs,
5062 	.show_options	= shmem_show_options,
5063 #endif
5064 #ifdef CONFIG_TMPFS_QUOTA
5065 	.get_dquots	= shmem_get_dquots,
5066 #endif
5067 	.evict_inode	= shmem_evict_inode,
5068 	.drop_inode	= generic_delete_inode,
5069 	.put_super	= shmem_put_super,
5070 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5071 	.nr_cached_objects	= shmem_unused_huge_count,
5072 	.free_cached_objects	= shmem_unused_huge_scan,
5073 #endif
5074 };
5075 
5076 static const struct vm_operations_struct shmem_vm_ops = {
5077 	.fault		= shmem_fault,
5078 	.map_pages	= filemap_map_pages,
5079 #ifdef CONFIG_NUMA
5080 	.set_policy     = shmem_set_policy,
5081 	.get_policy     = shmem_get_policy,
5082 #endif
5083 };
5084 
5085 static const struct vm_operations_struct shmem_anon_vm_ops = {
5086 	.fault		= shmem_fault,
5087 	.map_pages	= filemap_map_pages,
5088 #ifdef CONFIG_NUMA
5089 	.set_policy     = shmem_set_policy,
5090 	.get_policy     = shmem_get_policy,
5091 #endif
5092 };
5093 
5094 int shmem_init_fs_context(struct fs_context *fc)
5095 {
5096 	struct shmem_options *ctx;
5097 
5098 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5099 	if (!ctx)
5100 		return -ENOMEM;
5101 
5102 	ctx->mode = 0777 | S_ISVTX;
5103 	ctx->uid = current_fsuid();
5104 	ctx->gid = current_fsgid();
5105 
5106 #if IS_ENABLED(CONFIG_UNICODE)
5107 	ctx->encoding = NULL;
5108 #endif
5109 
5110 	fc->fs_private = ctx;
5111 	fc->ops = &shmem_fs_context_ops;
5112 	return 0;
5113 }
5114 
5115 static struct file_system_type shmem_fs_type = {
5116 	.owner		= THIS_MODULE,
5117 	.name		= "tmpfs",
5118 	.init_fs_context = shmem_init_fs_context,
5119 #ifdef CONFIG_TMPFS
5120 	.parameters	= shmem_fs_parameters,
5121 #endif
5122 	.kill_sb	= kill_litter_super,
5123 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5124 };
5125 
5126 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5127 
5128 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5129 {									\
5130 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5131 	.show	= _show,						\
5132 	.store	= _store,						\
5133 }
5134 
5135 #define TMPFS_ATTR_W(_name, _store)				\
5136 	static struct kobj_attribute tmpfs_attr_##_name =	\
5137 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5138 
5139 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5140 	static struct kobj_attribute tmpfs_attr_##_name =	\
5141 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5142 
5143 #define TMPFS_ATTR_RO(_name, _show)				\
5144 	static struct kobj_attribute tmpfs_attr_##_name =	\
5145 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5146 
5147 #if IS_ENABLED(CONFIG_UNICODE)
5148 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5149 			char *buf)
5150 {
5151 		return sysfs_emit(buf, "supported\n");
5152 }
5153 TMPFS_ATTR_RO(casefold, casefold_show);
5154 #endif
5155 
5156 static struct attribute *tmpfs_attributes[] = {
5157 #if IS_ENABLED(CONFIG_UNICODE)
5158 	&tmpfs_attr_casefold.attr,
5159 #endif
5160 	NULL
5161 };
5162 
5163 static const struct attribute_group tmpfs_attribute_group = {
5164 	.attrs = tmpfs_attributes,
5165 	.name = "features"
5166 };
5167 
5168 static struct kobject *tmpfs_kobj;
5169 
5170 static int __init tmpfs_sysfs_init(void)
5171 {
5172 	int ret;
5173 
5174 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5175 	if (!tmpfs_kobj)
5176 		return -ENOMEM;
5177 
5178 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5179 	if (ret)
5180 		kobject_put(tmpfs_kobj);
5181 
5182 	return ret;
5183 }
5184 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5185 
5186 void __init shmem_init(void)
5187 {
5188 	int error;
5189 
5190 	shmem_init_inodecache();
5191 
5192 #ifdef CONFIG_TMPFS_QUOTA
5193 	register_quota_format(&shmem_quota_format);
5194 #endif
5195 
5196 	error = register_filesystem(&shmem_fs_type);
5197 	if (error) {
5198 		pr_err("Could not register tmpfs\n");
5199 		goto out2;
5200 	}
5201 
5202 	shm_mnt = kern_mount(&shmem_fs_type);
5203 	if (IS_ERR(shm_mnt)) {
5204 		error = PTR_ERR(shm_mnt);
5205 		pr_err("Could not kern_mount tmpfs\n");
5206 		goto out1;
5207 	}
5208 
5209 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5210 	error = tmpfs_sysfs_init();
5211 	if (error) {
5212 		pr_err("Could not init tmpfs sysfs\n");
5213 		goto out1;
5214 	}
5215 #endif
5216 
5217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5218 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5219 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5220 	else
5221 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5222 
5223 	/*
5224 	 * Default to setting PMD-sized THP to inherit the global setting and
5225 	 * disable all other multi-size THPs.
5226 	 */
5227 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5228 #endif
5229 	return;
5230 
5231 out1:
5232 	unregister_filesystem(&shmem_fs_type);
5233 out2:
5234 #ifdef CONFIG_TMPFS_QUOTA
5235 	unregister_quota_format(&shmem_quota_format);
5236 #endif
5237 	shmem_destroy_inodecache();
5238 	shm_mnt = ERR_PTR(error);
5239 }
5240 
5241 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5242 static ssize_t shmem_enabled_show(struct kobject *kobj,
5243 				  struct kobj_attribute *attr, char *buf)
5244 {
5245 	static const int values[] = {
5246 		SHMEM_HUGE_ALWAYS,
5247 		SHMEM_HUGE_WITHIN_SIZE,
5248 		SHMEM_HUGE_ADVISE,
5249 		SHMEM_HUGE_NEVER,
5250 		SHMEM_HUGE_DENY,
5251 		SHMEM_HUGE_FORCE,
5252 	};
5253 	int len = 0;
5254 	int i;
5255 
5256 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5257 		len += sysfs_emit_at(buf, len,
5258 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5259 				i ? " " : "", shmem_format_huge(values[i]));
5260 	}
5261 	len += sysfs_emit_at(buf, len, "\n");
5262 
5263 	return len;
5264 }
5265 
5266 static ssize_t shmem_enabled_store(struct kobject *kobj,
5267 		struct kobj_attribute *attr, const char *buf, size_t count)
5268 {
5269 	char tmp[16];
5270 	int huge;
5271 
5272 	if (count + 1 > sizeof(tmp))
5273 		return -EINVAL;
5274 	memcpy(tmp, buf, count);
5275 	tmp[count] = '\0';
5276 	if (count && tmp[count - 1] == '\n')
5277 		tmp[count - 1] = '\0';
5278 
5279 	huge = shmem_parse_huge(tmp);
5280 	if (huge == -EINVAL)
5281 		return -EINVAL;
5282 	if (!has_transparent_hugepage() &&
5283 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5284 		return -EINVAL;
5285 
5286 	/* Do not override huge allocation policy with non-PMD sized mTHP */
5287 	if (huge == SHMEM_HUGE_FORCE &&
5288 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5289 		return -EINVAL;
5290 
5291 	shmem_huge = huge;
5292 	if (shmem_huge > SHMEM_HUGE_DENY)
5293 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5294 	return count;
5295 }
5296 
5297 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5298 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5299 
5300 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5301 					  struct kobj_attribute *attr, char *buf)
5302 {
5303 	int order = to_thpsize(kobj)->order;
5304 	const char *output;
5305 
5306 	if (test_bit(order, &huge_shmem_orders_always))
5307 		output = "[always] inherit within_size advise never";
5308 	else if (test_bit(order, &huge_shmem_orders_inherit))
5309 		output = "always [inherit] within_size advise never";
5310 	else if (test_bit(order, &huge_shmem_orders_within_size))
5311 		output = "always inherit [within_size] advise never";
5312 	else if (test_bit(order, &huge_shmem_orders_madvise))
5313 		output = "always inherit within_size [advise] never";
5314 	else
5315 		output = "always inherit within_size advise [never]";
5316 
5317 	return sysfs_emit(buf, "%s\n", output);
5318 }
5319 
5320 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5321 					   struct kobj_attribute *attr,
5322 					   const char *buf, size_t count)
5323 {
5324 	int order = to_thpsize(kobj)->order;
5325 	ssize_t ret = count;
5326 
5327 	if (sysfs_streq(buf, "always")) {
5328 		spin_lock(&huge_shmem_orders_lock);
5329 		clear_bit(order, &huge_shmem_orders_inherit);
5330 		clear_bit(order, &huge_shmem_orders_madvise);
5331 		clear_bit(order, &huge_shmem_orders_within_size);
5332 		set_bit(order, &huge_shmem_orders_always);
5333 		spin_unlock(&huge_shmem_orders_lock);
5334 	} else if (sysfs_streq(buf, "inherit")) {
5335 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5336 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5337 		    order != HPAGE_PMD_ORDER)
5338 			return -EINVAL;
5339 
5340 		spin_lock(&huge_shmem_orders_lock);
5341 		clear_bit(order, &huge_shmem_orders_always);
5342 		clear_bit(order, &huge_shmem_orders_madvise);
5343 		clear_bit(order, &huge_shmem_orders_within_size);
5344 		set_bit(order, &huge_shmem_orders_inherit);
5345 		spin_unlock(&huge_shmem_orders_lock);
5346 	} else if (sysfs_streq(buf, "within_size")) {
5347 		spin_lock(&huge_shmem_orders_lock);
5348 		clear_bit(order, &huge_shmem_orders_always);
5349 		clear_bit(order, &huge_shmem_orders_inherit);
5350 		clear_bit(order, &huge_shmem_orders_madvise);
5351 		set_bit(order, &huge_shmem_orders_within_size);
5352 		spin_unlock(&huge_shmem_orders_lock);
5353 	} else if (sysfs_streq(buf, "advise")) {
5354 		spin_lock(&huge_shmem_orders_lock);
5355 		clear_bit(order, &huge_shmem_orders_always);
5356 		clear_bit(order, &huge_shmem_orders_inherit);
5357 		clear_bit(order, &huge_shmem_orders_within_size);
5358 		set_bit(order, &huge_shmem_orders_madvise);
5359 		spin_unlock(&huge_shmem_orders_lock);
5360 	} else if (sysfs_streq(buf, "never")) {
5361 		spin_lock(&huge_shmem_orders_lock);
5362 		clear_bit(order, &huge_shmem_orders_always);
5363 		clear_bit(order, &huge_shmem_orders_inherit);
5364 		clear_bit(order, &huge_shmem_orders_within_size);
5365 		clear_bit(order, &huge_shmem_orders_madvise);
5366 		spin_unlock(&huge_shmem_orders_lock);
5367 	} else {
5368 		ret = -EINVAL;
5369 	}
5370 
5371 	return ret;
5372 }
5373 
5374 struct kobj_attribute thpsize_shmem_enabled_attr =
5375 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5376 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5377 
5378 #else /* !CONFIG_SHMEM */
5379 
5380 /*
5381  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5382  *
5383  * This is intended for small system where the benefits of the full
5384  * shmem code (swap-backed and resource-limited) are outweighed by
5385  * their complexity. On systems without swap this code should be
5386  * effectively equivalent, but much lighter weight.
5387  */
5388 
5389 static struct file_system_type shmem_fs_type = {
5390 	.name		= "tmpfs",
5391 	.init_fs_context = ramfs_init_fs_context,
5392 	.parameters	= ramfs_fs_parameters,
5393 	.kill_sb	= ramfs_kill_sb,
5394 	.fs_flags	= FS_USERNS_MOUNT,
5395 };
5396 
5397 void __init shmem_init(void)
5398 {
5399 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5400 
5401 	shm_mnt = kern_mount(&shmem_fs_type);
5402 	BUG_ON(IS_ERR(shm_mnt));
5403 }
5404 
5405 int shmem_unuse(unsigned int type)
5406 {
5407 	return 0;
5408 }
5409 
5410 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5411 {
5412 	return 0;
5413 }
5414 
5415 void shmem_unlock_mapping(struct address_space *mapping)
5416 {
5417 }
5418 
5419 #ifdef CONFIG_MMU
5420 unsigned long shmem_get_unmapped_area(struct file *file,
5421 				      unsigned long addr, unsigned long len,
5422 				      unsigned long pgoff, unsigned long flags)
5423 {
5424 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5425 }
5426 #endif
5427 
5428 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5429 {
5430 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5431 }
5432 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5433 
5434 #define shmem_vm_ops				generic_file_vm_ops
5435 #define shmem_anon_vm_ops			generic_file_vm_ops
5436 #define shmem_file_operations			ramfs_file_operations
5437 #define shmem_acct_size(flags, size)		0
5438 #define shmem_unacct_size(flags, size)		do {} while (0)
5439 
5440 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5441 				struct super_block *sb, struct inode *dir,
5442 				umode_t mode, dev_t dev, unsigned long flags)
5443 {
5444 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5445 	return inode ? inode : ERR_PTR(-ENOSPC);
5446 }
5447 
5448 #endif /* CONFIG_SHMEM */
5449 
5450 /* common code */
5451 
5452 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5453 			loff_t size, unsigned long flags, unsigned int i_flags)
5454 {
5455 	struct inode *inode;
5456 	struct file *res;
5457 
5458 	if (IS_ERR(mnt))
5459 		return ERR_CAST(mnt);
5460 
5461 	if (size < 0 || size > MAX_LFS_FILESIZE)
5462 		return ERR_PTR(-EINVAL);
5463 
5464 	if (shmem_acct_size(flags, size))
5465 		return ERR_PTR(-ENOMEM);
5466 
5467 	if (is_idmapped_mnt(mnt))
5468 		return ERR_PTR(-EINVAL);
5469 
5470 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5471 				S_IFREG | S_IRWXUGO, 0, flags);
5472 	if (IS_ERR(inode)) {
5473 		shmem_unacct_size(flags, size);
5474 		return ERR_CAST(inode);
5475 	}
5476 	inode->i_flags |= i_flags;
5477 	inode->i_size = size;
5478 	clear_nlink(inode);	/* It is unlinked */
5479 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5480 	if (!IS_ERR(res))
5481 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5482 				&shmem_file_operations);
5483 	if (IS_ERR(res))
5484 		iput(inode);
5485 	return res;
5486 }
5487 
5488 /**
5489  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5490  * 	kernel internal.  There will be NO LSM permission checks against the
5491  * 	underlying inode.  So users of this interface must do LSM checks at a
5492  *	higher layer.  The users are the big_key and shm implementations.  LSM
5493  *	checks are provided at the key or shm level rather than the inode.
5494  * @name: name for dentry (to be seen in /proc/<pid>/maps
5495  * @size: size to be set for the file
5496  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5497  */
5498 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5499 {
5500 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5501 }
5502 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5503 
5504 /**
5505  * shmem_file_setup - get an unlinked file living in tmpfs
5506  * @name: name for dentry (to be seen in /proc/<pid>/maps
5507  * @size: size to be set for the file
5508  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5509  */
5510 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5511 {
5512 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5513 }
5514 EXPORT_SYMBOL_GPL(shmem_file_setup);
5515 
5516 /**
5517  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5518  * @mnt: the tmpfs mount where the file will be created
5519  * @name: name for dentry (to be seen in /proc/<pid>/maps
5520  * @size: size to be set for the file
5521  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5522  */
5523 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5524 				       loff_t size, unsigned long flags)
5525 {
5526 	return __shmem_file_setup(mnt, name, size, flags, 0);
5527 }
5528 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5529 
5530 /**
5531  * shmem_zero_setup - setup a shared anonymous mapping
5532  * @vma: the vma to be mmapped is prepared by do_mmap
5533  */
5534 int shmem_zero_setup(struct vm_area_struct *vma)
5535 {
5536 	struct file *file;
5537 	loff_t size = vma->vm_end - vma->vm_start;
5538 
5539 	/*
5540 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5541 	 * between XFS directory reading and selinux: since this file is only
5542 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5543 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5544 	 */
5545 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5546 	if (IS_ERR(file))
5547 		return PTR_ERR(file);
5548 
5549 	if (vma->vm_file)
5550 		fput(vma->vm_file);
5551 	vma->vm_file = file;
5552 	vma->vm_ops = &shmem_anon_vm_ops;
5553 
5554 	return 0;
5555 }
5556 
5557 /**
5558  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5559  * @mapping:	the folio's address_space
5560  * @index:	the folio index
5561  * @gfp:	the page allocator flags to use if allocating
5562  *
5563  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5564  * with any new page allocations done using the specified allocation flags.
5565  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5566  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5567  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5568  *
5569  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5570  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5571  */
5572 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5573 		pgoff_t index, gfp_t gfp)
5574 {
5575 #ifdef CONFIG_SHMEM
5576 	struct inode *inode = mapping->host;
5577 	struct folio *folio;
5578 	int error;
5579 
5580 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5581 				    gfp, NULL, NULL);
5582 	if (error)
5583 		return ERR_PTR(error);
5584 
5585 	folio_unlock(folio);
5586 	return folio;
5587 #else
5588 	/*
5589 	 * The tiny !SHMEM case uses ramfs without swap
5590 	 */
5591 	return mapping_read_folio_gfp(mapping, index, gfp);
5592 #endif
5593 }
5594 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5595 
5596 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5597 					 pgoff_t index, gfp_t gfp)
5598 {
5599 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5600 	struct page *page;
5601 
5602 	if (IS_ERR(folio))
5603 		return &folio->page;
5604 
5605 	page = folio_file_page(folio, index);
5606 	if (PageHWPoison(page)) {
5607 		folio_put(folio);
5608 		return ERR_PTR(-EIO);
5609 	}
5610 
5611 	return page;
5612 }
5613 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5614