xref: /linux/mm/shmem.c (revision 32d118ad50a5afecb74358bcefc5cb6ea6ccfc2b)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include <linux/iversion.h>
42 #include "swap.h"
43 
44 static struct vfsmount *shm_mnt;
45 
46 #ifdef CONFIG_SHMEM
47 /*
48  * This virtual memory filesystem is heavily based on the ramfs. It
49  * extends ramfs by the ability to use swap and honor resource limits
50  * which makes it a completely usable filesystem.
51  */
52 
53 #include <linux/xattr.h>
54 #include <linux/exportfs.h>
55 #include <linux/posix_acl.h>
56 #include <linux/posix_acl_xattr.h>
57 #include <linux/mman.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <linux/backing-dev.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_rwsem making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 struct shmem_options {
110 	unsigned long long blocks;
111 	unsigned long long inodes;
112 	struct mempolicy *mpol;
113 	kuid_t uid;
114 	kgid_t gid;
115 	umode_t mode;
116 	bool full_inums;
117 	int huge;
118 	int seen;
119 #define SHMEM_SEEN_BLOCKS 1
120 #define SHMEM_SEEN_INODES 2
121 #define SHMEM_SEEN_HUGE 4
122 #define SHMEM_SEEN_INUMS 8
123 };
124 
125 #ifdef CONFIG_TMPFS
126 static unsigned long shmem_default_max_blocks(void)
127 {
128 	return totalram_pages() / 2;
129 }
130 
131 static unsigned long shmem_default_max_inodes(void)
132 {
133 	unsigned long nr_pages = totalram_pages();
134 
135 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
136 }
137 #endif
138 
139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
140 			     struct folio **foliop, enum sgp_type sgp,
141 			     gfp_t gfp, struct vm_area_struct *vma,
142 			     vm_fault_t *fault_type);
143 
144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 {
146 	return sb->s_fs_info;
147 }
148 
149 /*
150  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
151  * for shared memory and for shared anonymous (/dev/zero) mappings
152  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
153  * consistent with the pre-accounting of private mappings ...
154  */
155 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 {
157 	return (flags & VM_NORESERVE) ?
158 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
159 }
160 
161 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 {
163 	if (!(flags & VM_NORESERVE))
164 		vm_unacct_memory(VM_ACCT(size));
165 }
166 
167 static inline int shmem_reacct_size(unsigned long flags,
168 		loff_t oldsize, loff_t newsize)
169 {
170 	if (!(flags & VM_NORESERVE)) {
171 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
172 			return security_vm_enough_memory_mm(current->mm,
173 					VM_ACCT(newsize) - VM_ACCT(oldsize));
174 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
175 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
176 	}
177 	return 0;
178 }
179 
180 /*
181  * ... whereas tmpfs objects are accounted incrementally as
182  * pages are allocated, in order to allow large sparse files.
183  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
184  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185  */
186 static inline int shmem_acct_block(unsigned long flags, long pages)
187 {
188 	if (!(flags & VM_NORESERVE))
189 		return 0;
190 
191 	return security_vm_enough_memory_mm(current->mm,
192 			pages * VM_ACCT(PAGE_SIZE));
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
199 }
200 
201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 {
203 	struct shmem_inode_info *info = SHMEM_I(inode);
204 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 
206 	if (shmem_acct_block(info->flags, pages))
207 		return false;
208 
209 	if (sbinfo->max_blocks) {
210 		if (percpu_counter_compare(&sbinfo->used_blocks,
211 					   sbinfo->max_blocks - pages) > 0)
212 			goto unacct;
213 		percpu_counter_add(&sbinfo->used_blocks, pages);
214 	}
215 
216 	return true;
217 
218 unacct:
219 	shmem_unacct_blocks(info->flags, pages);
220 	return false;
221 }
222 
223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 {
225 	struct shmem_inode_info *info = SHMEM_I(inode);
226 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 
228 	if (sbinfo->max_blocks)
229 		percpu_counter_sub(&sbinfo->used_blocks, pages);
230 	shmem_unacct_blocks(info->flags, pages);
231 }
232 
233 static const struct super_operations shmem_ops;
234 const struct address_space_operations shmem_aops;
235 static const struct file_operations shmem_file_operations;
236 static const struct inode_operations shmem_inode_operations;
237 static const struct inode_operations shmem_dir_inode_operations;
238 static const struct inode_operations shmem_special_inode_operations;
239 static const struct vm_operations_struct shmem_vm_ops;
240 static const struct vm_operations_struct shmem_anon_vm_ops;
241 static struct file_system_type shmem_fs_type;
242 
243 bool vma_is_anon_shmem(struct vm_area_struct *vma)
244 {
245 	return vma->vm_ops == &shmem_anon_vm_ops;
246 }
247 
248 bool vma_is_shmem(struct vm_area_struct *vma)
249 {
250 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
251 }
252 
253 static LIST_HEAD(shmem_swaplist);
254 static DEFINE_MUTEX(shmem_swaplist_mutex);
255 
256 /*
257  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
258  * produces a novel ino for the newly allocated inode.
259  *
260  * It may also be called when making a hard link to permit the space needed by
261  * each dentry. However, in that case, no new inode number is needed since that
262  * internally draws from another pool of inode numbers (currently global
263  * get_next_ino()). This case is indicated by passing NULL as inop.
264  */
265 #define SHMEM_INO_BATCH 1024
266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
267 {
268 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
269 	ino_t ino;
270 
271 	if (!(sb->s_flags & SB_KERNMOUNT)) {
272 		raw_spin_lock(&sbinfo->stat_lock);
273 		if (sbinfo->max_inodes) {
274 			if (!sbinfo->free_inodes) {
275 				raw_spin_unlock(&sbinfo->stat_lock);
276 				return -ENOSPC;
277 			}
278 			sbinfo->free_inodes--;
279 		}
280 		if (inop) {
281 			ino = sbinfo->next_ino++;
282 			if (unlikely(is_zero_ino(ino)))
283 				ino = sbinfo->next_ino++;
284 			if (unlikely(!sbinfo->full_inums &&
285 				     ino > UINT_MAX)) {
286 				/*
287 				 * Emulate get_next_ino uint wraparound for
288 				 * compatibility
289 				 */
290 				if (IS_ENABLED(CONFIG_64BIT))
291 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
292 						__func__, MINOR(sb->s_dev));
293 				sbinfo->next_ino = 1;
294 				ino = sbinfo->next_ino++;
295 			}
296 			*inop = ino;
297 		}
298 		raw_spin_unlock(&sbinfo->stat_lock);
299 	} else if (inop) {
300 		/*
301 		 * __shmem_file_setup, one of our callers, is lock-free: it
302 		 * doesn't hold stat_lock in shmem_reserve_inode since
303 		 * max_inodes is always 0, and is called from potentially
304 		 * unknown contexts. As such, use a per-cpu batched allocator
305 		 * which doesn't require the per-sb stat_lock unless we are at
306 		 * the batch boundary.
307 		 *
308 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
309 		 * shmem mounts are not exposed to userspace, so we don't need
310 		 * to worry about things like glibc compatibility.
311 		 */
312 		ino_t *next_ino;
313 
314 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
315 		ino = *next_ino;
316 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
317 			raw_spin_lock(&sbinfo->stat_lock);
318 			ino = sbinfo->next_ino;
319 			sbinfo->next_ino += SHMEM_INO_BATCH;
320 			raw_spin_unlock(&sbinfo->stat_lock);
321 			if (unlikely(is_zero_ino(ino)))
322 				ino++;
323 		}
324 		*inop = ino;
325 		*next_ino = ++ino;
326 		put_cpu();
327 	}
328 
329 	return 0;
330 }
331 
332 static void shmem_free_inode(struct super_block *sb)
333 {
334 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
335 	if (sbinfo->max_inodes) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		sbinfo->free_inodes++;
338 		raw_spin_unlock(&sbinfo->stat_lock);
339 	}
340 }
341 
342 /**
343  * shmem_recalc_inode - recalculate the block usage of an inode
344  * @inode: inode to recalc
345  *
346  * We have to calculate the free blocks since the mm can drop
347  * undirtied hole pages behind our back.
348  *
349  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
350  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
351  *
352  * It has to be called with the spinlock held.
353  */
354 static void shmem_recalc_inode(struct inode *inode)
355 {
356 	struct shmem_inode_info *info = SHMEM_I(inode);
357 	long freed;
358 
359 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
360 	if (freed > 0) {
361 		info->alloced -= freed;
362 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
363 		shmem_inode_unacct_blocks(inode, freed);
364 	}
365 }
366 
367 bool shmem_charge(struct inode *inode, long pages)
368 {
369 	struct shmem_inode_info *info = SHMEM_I(inode);
370 	unsigned long flags;
371 
372 	if (!shmem_inode_acct_block(inode, pages))
373 		return false;
374 
375 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
376 	inode->i_mapping->nrpages += pages;
377 
378 	spin_lock_irqsave(&info->lock, flags);
379 	info->alloced += pages;
380 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
381 	shmem_recalc_inode(inode);
382 	spin_unlock_irqrestore(&info->lock, flags);
383 
384 	return true;
385 }
386 
387 void shmem_uncharge(struct inode *inode, long pages)
388 {
389 	struct shmem_inode_info *info = SHMEM_I(inode);
390 	unsigned long flags;
391 
392 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
393 
394 	spin_lock_irqsave(&info->lock, flags);
395 	info->alloced -= pages;
396 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
397 	shmem_recalc_inode(inode);
398 	spin_unlock_irqrestore(&info->lock, flags);
399 
400 	shmem_inode_unacct_blocks(inode, pages);
401 }
402 
403 /*
404  * Replace item expected in xarray by a new item, while holding xa_lock.
405  */
406 static int shmem_replace_entry(struct address_space *mapping,
407 			pgoff_t index, void *expected, void *replacement)
408 {
409 	XA_STATE(xas, &mapping->i_pages, index);
410 	void *item;
411 
412 	VM_BUG_ON(!expected);
413 	VM_BUG_ON(!replacement);
414 	item = xas_load(&xas);
415 	if (item != expected)
416 		return -ENOENT;
417 	xas_store(&xas, replacement);
418 	return 0;
419 }
420 
421 /*
422  * Sometimes, before we decide whether to proceed or to fail, we must check
423  * that an entry was not already brought back from swap by a racing thread.
424  *
425  * Checking page is not enough: by the time a SwapCache page is locked, it
426  * might be reused, and again be SwapCache, using the same swap as before.
427  */
428 static bool shmem_confirm_swap(struct address_space *mapping,
429 			       pgoff_t index, swp_entry_t swap)
430 {
431 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
432 }
433 
434 /*
435  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
436  *
437  * SHMEM_HUGE_NEVER:
438  *	disables huge pages for the mount;
439  * SHMEM_HUGE_ALWAYS:
440  *	enables huge pages for the mount;
441  * SHMEM_HUGE_WITHIN_SIZE:
442  *	only allocate huge pages if the page will be fully within i_size,
443  *	also respect fadvise()/madvise() hints;
444  * SHMEM_HUGE_ADVISE:
445  *	only allocate huge pages if requested with fadvise()/madvise();
446  */
447 
448 #define SHMEM_HUGE_NEVER	0
449 #define SHMEM_HUGE_ALWAYS	1
450 #define SHMEM_HUGE_WITHIN_SIZE	2
451 #define SHMEM_HUGE_ADVISE	3
452 
453 /*
454  * Special values.
455  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
456  *
457  * SHMEM_HUGE_DENY:
458  *	disables huge on shm_mnt and all mounts, for emergency use;
459  * SHMEM_HUGE_FORCE:
460  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
461  *
462  */
463 #define SHMEM_HUGE_DENY		(-1)
464 #define SHMEM_HUGE_FORCE	(-2)
465 
466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
467 /* ifdef here to avoid bloating shmem.o when not necessary */
468 
469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
470 
471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
472 		   pgoff_t index, bool shmem_huge_force)
473 {
474 	loff_t i_size;
475 
476 	if (!S_ISREG(inode->i_mode))
477 		return false;
478 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
479 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
484 		return true;
485 
486 	switch (SHMEM_SB(inode->i_sb)->huge) {
487 	case SHMEM_HUGE_ALWAYS:
488 		return true;
489 	case SHMEM_HUGE_WITHIN_SIZE:
490 		index = round_up(index + 1, HPAGE_PMD_NR);
491 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 		if (i_size >> PAGE_SHIFT >= index)
493 			return true;
494 		fallthrough;
495 	case SHMEM_HUGE_ADVISE:
496 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
497 			return true;
498 		fallthrough;
499 	default:
500 		return false;
501 	}
502 }
503 
504 #if defined(CONFIG_SYSFS)
505 static int shmem_parse_huge(const char *str)
506 {
507 	if (!strcmp(str, "never"))
508 		return SHMEM_HUGE_NEVER;
509 	if (!strcmp(str, "always"))
510 		return SHMEM_HUGE_ALWAYS;
511 	if (!strcmp(str, "within_size"))
512 		return SHMEM_HUGE_WITHIN_SIZE;
513 	if (!strcmp(str, "advise"))
514 		return SHMEM_HUGE_ADVISE;
515 	if (!strcmp(str, "deny"))
516 		return SHMEM_HUGE_DENY;
517 	if (!strcmp(str, "force"))
518 		return SHMEM_HUGE_FORCE;
519 	return -EINVAL;
520 }
521 #endif
522 
523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524 static const char *shmem_format_huge(int huge)
525 {
526 	switch (huge) {
527 	case SHMEM_HUGE_NEVER:
528 		return "never";
529 	case SHMEM_HUGE_ALWAYS:
530 		return "always";
531 	case SHMEM_HUGE_WITHIN_SIZE:
532 		return "within_size";
533 	case SHMEM_HUGE_ADVISE:
534 		return "advise";
535 	case SHMEM_HUGE_DENY:
536 		return "deny";
537 	case SHMEM_HUGE_FORCE:
538 		return "force";
539 	default:
540 		VM_BUG_ON(1);
541 		return "bad_val";
542 	}
543 }
544 #endif
545 
546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 		struct shrink_control *sc, unsigned long nr_to_split)
548 {
549 	LIST_HEAD(list), *pos, *next;
550 	LIST_HEAD(to_remove);
551 	struct inode *inode;
552 	struct shmem_inode_info *info;
553 	struct folio *folio;
554 	unsigned long batch = sc ? sc->nr_to_scan : 128;
555 	int split = 0;
556 
557 	if (list_empty(&sbinfo->shrinklist))
558 		return SHRINK_STOP;
559 
560 	spin_lock(&sbinfo->shrinklist_lock);
561 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
563 
564 		/* pin the inode */
565 		inode = igrab(&info->vfs_inode);
566 
567 		/* inode is about to be evicted */
568 		if (!inode) {
569 			list_del_init(&info->shrinklist);
570 			goto next;
571 		}
572 
573 		/* Check if there's anything to gain */
574 		if (round_up(inode->i_size, PAGE_SIZE) ==
575 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 			list_move(&info->shrinklist, &to_remove);
577 			goto next;
578 		}
579 
580 		list_move(&info->shrinklist, &list);
581 next:
582 		sbinfo->shrinklist_len--;
583 		if (!--batch)
584 			break;
585 	}
586 	spin_unlock(&sbinfo->shrinklist_lock);
587 
588 	list_for_each_safe(pos, next, &to_remove) {
589 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 		inode = &info->vfs_inode;
591 		list_del_init(&info->shrinklist);
592 		iput(inode);
593 	}
594 
595 	list_for_each_safe(pos, next, &list) {
596 		int ret;
597 		pgoff_t index;
598 
599 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 		inode = &info->vfs_inode;
601 
602 		if (nr_to_split && split >= nr_to_split)
603 			goto move_back;
604 
605 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 		folio = filemap_get_folio(inode->i_mapping, index);
607 		if (!folio)
608 			goto drop;
609 
610 		/* No huge page at the end of the file: nothing to split */
611 		if (!folio_test_large(folio)) {
612 			folio_put(folio);
613 			goto drop;
614 		}
615 
616 		/*
617 		 * Move the inode on the list back to shrinklist if we failed
618 		 * to lock the page at this time.
619 		 *
620 		 * Waiting for the lock may lead to deadlock in the
621 		 * reclaim path.
622 		 */
623 		if (!folio_trylock(folio)) {
624 			folio_put(folio);
625 			goto move_back;
626 		}
627 
628 		ret = split_folio(folio);
629 		folio_unlock(folio);
630 		folio_put(folio);
631 
632 		/* If split failed move the inode on the list back to shrinklist */
633 		if (ret)
634 			goto move_back;
635 
636 		split++;
637 drop:
638 		list_del_init(&info->shrinklist);
639 		goto put;
640 move_back:
641 		/*
642 		 * Make sure the inode is either on the global list or deleted
643 		 * from any local list before iput() since it could be deleted
644 		 * in another thread once we put the inode (then the local list
645 		 * is corrupted).
646 		 */
647 		spin_lock(&sbinfo->shrinklist_lock);
648 		list_move(&info->shrinklist, &sbinfo->shrinklist);
649 		sbinfo->shrinklist_len++;
650 		spin_unlock(&sbinfo->shrinklist_lock);
651 put:
652 		iput(inode);
653 	}
654 
655 	return split;
656 }
657 
658 static long shmem_unused_huge_scan(struct super_block *sb,
659 		struct shrink_control *sc)
660 {
661 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662 
663 	if (!READ_ONCE(sbinfo->shrinklist_len))
664 		return SHRINK_STOP;
665 
666 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
667 }
668 
669 static long shmem_unused_huge_count(struct super_block *sb,
670 		struct shrink_control *sc)
671 {
672 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 	return READ_ONCE(sbinfo->shrinklist_len);
674 }
675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
676 
677 #define shmem_huge SHMEM_HUGE_DENY
678 
679 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode,
680 		   pgoff_t index, bool shmem_huge_force)
681 {
682 	return false;
683 }
684 
685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 		struct shrink_control *sc, unsigned long nr_to_split)
687 {
688 	return 0;
689 }
690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
691 
692 /*
693  * Like filemap_add_folio, but error if expected item has gone.
694  */
695 static int shmem_add_to_page_cache(struct folio *folio,
696 				   struct address_space *mapping,
697 				   pgoff_t index, void *expected, gfp_t gfp,
698 				   struct mm_struct *charge_mm)
699 {
700 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 	long nr = folio_nr_pages(folio);
702 	int error;
703 
704 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 	VM_BUG_ON(expected && folio_test_large(folio));
708 
709 	folio_ref_add(folio, nr);
710 	folio->mapping = mapping;
711 	folio->index = index;
712 
713 	if (!folio_test_swapcache(folio)) {
714 		error = mem_cgroup_charge(folio, charge_mm, gfp);
715 		if (error) {
716 			if (folio_test_pmd_mappable(folio)) {
717 				count_vm_event(THP_FILE_FALLBACK);
718 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
719 			}
720 			goto error;
721 		}
722 	}
723 	folio_throttle_swaprate(folio, gfp);
724 
725 	do {
726 		xas_lock_irq(&xas);
727 		if (expected != xas_find_conflict(&xas)) {
728 			xas_set_err(&xas, -EEXIST);
729 			goto unlock;
730 		}
731 		if (expected && xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		xas_store(&xas, folio);
736 		if (xas_error(&xas))
737 			goto unlock;
738 		if (folio_test_pmd_mappable(folio)) {
739 			count_vm_event(THP_FILE_ALLOC);
740 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
741 		}
742 		mapping->nrpages += nr;
743 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
745 unlock:
746 		xas_unlock_irq(&xas);
747 	} while (xas_nomem(&xas, gfp));
748 
749 	if (xas_error(&xas)) {
750 		error = xas_error(&xas);
751 		goto error;
752 	}
753 
754 	return 0;
755 error:
756 	folio->mapping = NULL;
757 	folio_ref_sub(folio, nr);
758 	return error;
759 }
760 
761 /*
762  * Like delete_from_page_cache, but substitutes swap for @folio.
763  */
764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
765 {
766 	struct address_space *mapping = folio->mapping;
767 	long nr = folio_nr_pages(folio);
768 	int error;
769 
770 	xa_lock_irq(&mapping->i_pages);
771 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 	folio->mapping = NULL;
773 	mapping->nrpages -= nr;
774 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 	xa_unlock_irq(&mapping->i_pages);
777 	folio_put(folio);
778 	BUG_ON(error);
779 }
780 
781 /*
782  * Remove swap entry from page cache, free the swap and its page cache.
783  */
784 static int shmem_free_swap(struct address_space *mapping,
785 			   pgoff_t index, void *radswap)
786 {
787 	void *old;
788 
789 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
790 	if (old != radswap)
791 		return -ENOENT;
792 	free_swap_and_cache(radix_to_swp_entry(radswap));
793 	return 0;
794 }
795 
796 /*
797  * Determine (in bytes) how many of the shmem object's pages mapped by the
798  * given offsets are swapped out.
799  *
800  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801  * as long as the inode doesn't go away and racy results are not a problem.
802  */
803 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 						pgoff_t start, pgoff_t end)
805 {
806 	XA_STATE(xas, &mapping->i_pages, start);
807 	struct page *page;
808 	unsigned long swapped = 0;
809 
810 	rcu_read_lock();
811 	xas_for_each(&xas, page, end - 1) {
812 		if (xas_retry(&xas, page))
813 			continue;
814 		if (xa_is_value(page))
815 			swapped++;
816 
817 		if (need_resched()) {
818 			xas_pause(&xas);
819 			cond_resched_rcu();
820 		}
821 	}
822 
823 	rcu_read_unlock();
824 
825 	return swapped << PAGE_SHIFT;
826 }
827 
828 /*
829  * Determine (in bytes) how many of the shmem object's pages mapped by the
830  * given vma is swapped out.
831  *
832  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
833  * as long as the inode doesn't go away and racy results are not a problem.
834  */
835 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
836 {
837 	struct inode *inode = file_inode(vma->vm_file);
838 	struct shmem_inode_info *info = SHMEM_I(inode);
839 	struct address_space *mapping = inode->i_mapping;
840 	unsigned long swapped;
841 
842 	/* Be careful as we don't hold info->lock */
843 	swapped = READ_ONCE(info->swapped);
844 
845 	/*
846 	 * The easier cases are when the shmem object has nothing in swap, or
847 	 * the vma maps it whole. Then we can simply use the stats that we
848 	 * already track.
849 	 */
850 	if (!swapped)
851 		return 0;
852 
853 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
854 		return swapped << PAGE_SHIFT;
855 
856 	/* Here comes the more involved part */
857 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
858 					vma->vm_pgoff + vma_pages(vma));
859 }
860 
861 /*
862  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
863  */
864 void shmem_unlock_mapping(struct address_space *mapping)
865 {
866 	struct folio_batch fbatch;
867 	pgoff_t index = 0;
868 
869 	folio_batch_init(&fbatch);
870 	/*
871 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
872 	 */
873 	while (!mapping_unevictable(mapping) &&
874 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
875 		check_move_unevictable_folios(&fbatch);
876 		folio_batch_release(&fbatch);
877 		cond_resched();
878 	}
879 }
880 
881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
882 {
883 	struct folio *folio;
884 
885 	/*
886 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
887 	 * beyond i_size, and reports fallocated pages as holes.
888 	 */
889 	folio = __filemap_get_folio(inode->i_mapping, index,
890 					FGP_ENTRY | FGP_LOCK, 0);
891 	if (!xa_is_value(folio))
892 		return folio;
893 	/*
894 	 * But read a page back from swap if any of it is within i_size
895 	 * (although in some cases this is just a waste of time).
896 	 */
897 	folio = NULL;
898 	shmem_get_folio(inode, index, &folio, SGP_READ);
899 	return folio;
900 }
901 
902 /*
903  * Remove range of pages and swap entries from page cache, and free them.
904  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
905  */
906 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
907 								 bool unfalloc)
908 {
909 	struct address_space *mapping = inode->i_mapping;
910 	struct shmem_inode_info *info = SHMEM_I(inode);
911 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
912 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
913 	struct folio_batch fbatch;
914 	pgoff_t indices[PAGEVEC_SIZE];
915 	struct folio *folio;
916 	bool same_folio;
917 	long nr_swaps_freed = 0;
918 	pgoff_t index;
919 	int i;
920 
921 	if (lend == -1)
922 		end = -1;	/* unsigned, so actually very big */
923 
924 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
925 		info->fallocend = start;
926 
927 	folio_batch_init(&fbatch);
928 	index = start;
929 	while (index < end && find_lock_entries(mapping, &index, end - 1,
930 			&fbatch, indices)) {
931 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
932 			folio = fbatch.folios[i];
933 
934 			if (xa_is_value(folio)) {
935 				if (unfalloc)
936 					continue;
937 				nr_swaps_freed += !shmem_free_swap(mapping,
938 							indices[i], folio);
939 				continue;
940 			}
941 
942 			if (!unfalloc || !folio_test_uptodate(folio))
943 				truncate_inode_folio(mapping, folio);
944 			folio_unlock(folio);
945 		}
946 		folio_batch_remove_exceptionals(&fbatch);
947 		folio_batch_release(&fbatch);
948 		cond_resched();
949 	}
950 
951 	/*
952 	 * When undoing a failed fallocate, we want none of the partial folio
953 	 * zeroing and splitting below, but shall want to truncate the whole
954 	 * folio when !uptodate indicates that it was added by this fallocate,
955 	 * even when [lstart, lend] covers only a part of the folio.
956 	 */
957 	if (unfalloc)
958 		goto whole_folios;
959 
960 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
961 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
962 	if (folio) {
963 		same_folio = lend < folio_pos(folio) + folio_size(folio);
964 		folio_mark_dirty(folio);
965 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
966 			start = folio->index + folio_nr_pages(folio);
967 			if (same_folio)
968 				end = folio->index;
969 		}
970 		folio_unlock(folio);
971 		folio_put(folio);
972 		folio = NULL;
973 	}
974 
975 	if (!same_folio)
976 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
977 	if (folio) {
978 		folio_mark_dirty(folio);
979 		if (!truncate_inode_partial_folio(folio, lstart, lend))
980 			end = folio->index;
981 		folio_unlock(folio);
982 		folio_put(folio);
983 	}
984 
985 whole_folios:
986 
987 	index = start;
988 	while (index < end) {
989 		cond_resched();
990 
991 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
992 				indices)) {
993 			/* If all gone or hole-punch or unfalloc, we're done */
994 			if (index == start || end != -1)
995 				break;
996 			/* But if truncating, restart to make sure all gone */
997 			index = start;
998 			continue;
999 		}
1000 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1001 			folio = fbatch.folios[i];
1002 
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, indices[i], folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index = indices[i];
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index = indices[i];
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			folio_unlock(folio);
1029 		}
1030 		folio_batch_remove_exceptionals(&fbatch);
1031 		folio_batch_release(&fbatch);
1032 	}
1033 
1034 	spin_lock_irq(&info->lock);
1035 	info->swapped -= nr_swaps_freed;
1036 	shmem_recalc_inode(inode);
1037 	spin_unlock_irq(&info->lock);
1038 }
1039 
1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1041 {
1042 	shmem_undo_range(inode, lstart, lend, false);
1043 	inode->i_ctime = inode->i_mtime = current_time(inode);
1044 	inode_inc_iversion(inode);
1045 }
1046 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1047 
1048 static int shmem_getattr(struct user_namespace *mnt_userns,
1049 			 const struct path *path, struct kstat *stat,
1050 			 u32 request_mask, unsigned int query_flags)
1051 {
1052 	struct inode *inode = path->dentry->d_inode;
1053 	struct shmem_inode_info *info = SHMEM_I(inode);
1054 
1055 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1056 		spin_lock_irq(&info->lock);
1057 		shmem_recalc_inode(inode);
1058 		spin_unlock_irq(&info->lock);
1059 	}
1060 	if (info->fsflags & FS_APPEND_FL)
1061 		stat->attributes |= STATX_ATTR_APPEND;
1062 	if (info->fsflags & FS_IMMUTABLE_FL)
1063 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1064 	if (info->fsflags & FS_NODUMP_FL)
1065 		stat->attributes |= STATX_ATTR_NODUMP;
1066 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1067 			STATX_ATTR_IMMUTABLE |
1068 			STATX_ATTR_NODUMP);
1069 	generic_fillattr(&init_user_ns, inode, stat);
1070 
1071 	if (shmem_is_huge(NULL, inode, 0, false))
1072 		stat->blksize = HPAGE_PMD_SIZE;
1073 
1074 	if (request_mask & STATX_BTIME) {
1075 		stat->result_mask |= STATX_BTIME;
1076 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1077 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1078 	}
1079 
1080 	return 0;
1081 }
1082 
1083 static int shmem_setattr(struct user_namespace *mnt_userns,
1084 			 struct dentry *dentry, struct iattr *attr)
1085 {
1086 	struct inode *inode = d_inode(dentry);
1087 	struct shmem_inode_info *info = SHMEM_I(inode);
1088 	int error;
1089 	bool update_mtime = false;
1090 	bool update_ctime = true;
1091 
1092 	error = setattr_prepare(&init_user_ns, dentry, attr);
1093 	if (error)
1094 		return error;
1095 
1096 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1097 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1098 			return -EPERM;
1099 		}
1100 	}
1101 
1102 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1103 		loff_t oldsize = inode->i_size;
1104 		loff_t newsize = attr->ia_size;
1105 
1106 		/* protected by i_rwsem */
1107 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1108 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1109 			return -EPERM;
1110 
1111 		if (newsize != oldsize) {
1112 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1113 					oldsize, newsize);
1114 			if (error)
1115 				return error;
1116 			i_size_write(inode, newsize);
1117 			update_mtime = true;
1118 		} else {
1119 			update_ctime = false;
1120 		}
1121 		if (newsize <= oldsize) {
1122 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1123 			if (oldsize > holebegin)
1124 				unmap_mapping_range(inode->i_mapping,
1125 							holebegin, 0, 1);
1126 			if (info->alloced)
1127 				shmem_truncate_range(inode,
1128 							newsize, (loff_t)-1);
1129 			/* unmap again to remove racily COWed private pages */
1130 			if (oldsize > holebegin)
1131 				unmap_mapping_range(inode->i_mapping,
1132 							holebegin, 0, 1);
1133 		}
1134 	}
1135 
1136 	setattr_copy(&init_user_ns, inode, attr);
1137 	if (attr->ia_valid & ATTR_MODE)
1138 		error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode);
1139 	if (!error && update_ctime) {
1140 		inode->i_ctime = current_time(inode);
1141 		if (update_mtime)
1142 			inode->i_mtime = inode->i_ctime;
1143 		inode_inc_iversion(inode);
1144 	}
1145 	return error;
1146 }
1147 
1148 static void shmem_evict_inode(struct inode *inode)
1149 {
1150 	struct shmem_inode_info *info = SHMEM_I(inode);
1151 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1152 
1153 	if (shmem_mapping(inode->i_mapping)) {
1154 		shmem_unacct_size(info->flags, inode->i_size);
1155 		inode->i_size = 0;
1156 		mapping_set_exiting(inode->i_mapping);
1157 		shmem_truncate_range(inode, 0, (loff_t)-1);
1158 		if (!list_empty(&info->shrinklist)) {
1159 			spin_lock(&sbinfo->shrinklist_lock);
1160 			if (!list_empty(&info->shrinklist)) {
1161 				list_del_init(&info->shrinklist);
1162 				sbinfo->shrinklist_len--;
1163 			}
1164 			spin_unlock(&sbinfo->shrinklist_lock);
1165 		}
1166 		while (!list_empty(&info->swaplist)) {
1167 			/* Wait while shmem_unuse() is scanning this inode... */
1168 			wait_var_event(&info->stop_eviction,
1169 				       !atomic_read(&info->stop_eviction));
1170 			mutex_lock(&shmem_swaplist_mutex);
1171 			/* ...but beware of the race if we peeked too early */
1172 			if (!atomic_read(&info->stop_eviction))
1173 				list_del_init(&info->swaplist);
1174 			mutex_unlock(&shmem_swaplist_mutex);
1175 		}
1176 	}
1177 
1178 	simple_xattrs_free(&info->xattrs);
1179 	WARN_ON(inode->i_blocks);
1180 	shmem_free_inode(inode->i_sb);
1181 	clear_inode(inode);
1182 }
1183 
1184 static int shmem_find_swap_entries(struct address_space *mapping,
1185 				   pgoff_t start, struct folio_batch *fbatch,
1186 				   pgoff_t *indices, unsigned int type)
1187 {
1188 	XA_STATE(xas, &mapping->i_pages, start);
1189 	struct folio *folio;
1190 	swp_entry_t entry;
1191 
1192 	rcu_read_lock();
1193 	xas_for_each(&xas, folio, ULONG_MAX) {
1194 		if (xas_retry(&xas, folio))
1195 			continue;
1196 
1197 		if (!xa_is_value(folio))
1198 			continue;
1199 
1200 		entry = radix_to_swp_entry(folio);
1201 		/*
1202 		 * swapin error entries can be found in the mapping. But they're
1203 		 * deliberately ignored here as we've done everything we can do.
1204 		 */
1205 		if (swp_type(entry) != type)
1206 			continue;
1207 
1208 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1209 		if (!folio_batch_add(fbatch, folio))
1210 			break;
1211 
1212 		if (need_resched()) {
1213 			xas_pause(&xas);
1214 			cond_resched_rcu();
1215 		}
1216 	}
1217 	rcu_read_unlock();
1218 
1219 	return xas.xa_index;
1220 }
1221 
1222 /*
1223  * Move the swapped pages for an inode to page cache. Returns the count
1224  * of pages swapped in, or the error in case of failure.
1225  */
1226 static int shmem_unuse_swap_entries(struct inode *inode,
1227 		struct folio_batch *fbatch, pgoff_t *indices)
1228 {
1229 	int i = 0;
1230 	int ret = 0;
1231 	int error = 0;
1232 	struct address_space *mapping = inode->i_mapping;
1233 
1234 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1235 		struct folio *folio = fbatch->folios[i];
1236 
1237 		if (!xa_is_value(folio))
1238 			continue;
1239 		error = shmem_swapin_folio(inode, indices[i],
1240 					  &folio, SGP_CACHE,
1241 					  mapping_gfp_mask(mapping),
1242 					  NULL, NULL);
1243 		if (error == 0) {
1244 			folio_unlock(folio);
1245 			folio_put(folio);
1246 			ret++;
1247 		}
1248 		if (error == -ENOMEM)
1249 			break;
1250 		error = 0;
1251 	}
1252 	return error ? error : ret;
1253 }
1254 
1255 /*
1256  * If swap found in inode, free it and move page from swapcache to filecache.
1257  */
1258 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1259 {
1260 	struct address_space *mapping = inode->i_mapping;
1261 	pgoff_t start = 0;
1262 	struct folio_batch fbatch;
1263 	pgoff_t indices[PAGEVEC_SIZE];
1264 	int ret = 0;
1265 
1266 	do {
1267 		folio_batch_init(&fbatch);
1268 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1269 		if (folio_batch_count(&fbatch) == 0) {
1270 			ret = 0;
1271 			break;
1272 		}
1273 
1274 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1275 		if (ret < 0)
1276 			break;
1277 
1278 		start = indices[folio_batch_count(&fbatch) - 1];
1279 	} while (true);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Read all the shared memory data that resides in the swap
1286  * device 'type' back into memory, so the swap device can be
1287  * unused.
1288  */
1289 int shmem_unuse(unsigned int type)
1290 {
1291 	struct shmem_inode_info *info, *next;
1292 	int error = 0;
1293 
1294 	if (list_empty(&shmem_swaplist))
1295 		return 0;
1296 
1297 	mutex_lock(&shmem_swaplist_mutex);
1298 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1299 		if (!info->swapped) {
1300 			list_del_init(&info->swaplist);
1301 			continue;
1302 		}
1303 		/*
1304 		 * Drop the swaplist mutex while searching the inode for swap;
1305 		 * but before doing so, make sure shmem_evict_inode() will not
1306 		 * remove placeholder inode from swaplist, nor let it be freed
1307 		 * (igrab() would protect from unlink, but not from unmount).
1308 		 */
1309 		atomic_inc(&info->stop_eviction);
1310 		mutex_unlock(&shmem_swaplist_mutex);
1311 
1312 		error = shmem_unuse_inode(&info->vfs_inode, type);
1313 		cond_resched();
1314 
1315 		mutex_lock(&shmem_swaplist_mutex);
1316 		next = list_next_entry(info, swaplist);
1317 		if (!info->swapped)
1318 			list_del_init(&info->swaplist);
1319 		if (atomic_dec_and_test(&info->stop_eviction))
1320 			wake_up_var(&info->stop_eviction);
1321 		if (error)
1322 			break;
1323 	}
1324 	mutex_unlock(&shmem_swaplist_mutex);
1325 
1326 	return error;
1327 }
1328 
1329 /*
1330  * Move the page from the page cache to the swap cache.
1331  */
1332 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1333 {
1334 	struct folio *folio = page_folio(page);
1335 	struct shmem_inode_info *info;
1336 	struct address_space *mapping;
1337 	struct inode *inode;
1338 	swp_entry_t swap;
1339 	pgoff_t index;
1340 
1341 	/*
1342 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1343 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1344 	 * and its shmem_writeback() needs them to be split when swapping.
1345 	 */
1346 	if (folio_test_large(folio)) {
1347 		/* Ensure the subpages are still dirty */
1348 		folio_test_set_dirty(folio);
1349 		if (split_huge_page(page) < 0)
1350 			goto redirty;
1351 		folio = page_folio(page);
1352 		folio_clear_dirty(folio);
1353 	}
1354 
1355 	BUG_ON(!folio_test_locked(folio));
1356 	mapping = folio->mapping;
1357 	index = folio->index;
1358 	inode = mapping->host;
1359 	info = SHMEM_I(inode);
1360 	if (info->flags & VM_LOCKED)
1361 		goto redirty;
1362 	if (!total_swap_pages)
1363 		goto redirty;
1364 
1365 	/*
1366 	 * Our capabilities prevent regular writeback or sync from ever calling
1367 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1368 	 * its underlying filesystem, in which case tmpfs should write out to
1369 	 * swap only in response to memory pressure, and not for the writeback
1370 	 * threads or sync.
1371 	 */
1372 	if (!wbc->for_reclaim) {
1373 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1374 		goto redirty;
1375 	}
1376 
1377 	/*
1378 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1379 	 * value into swapfile.c, the only way we can correctly account for a
1380 	 * fallocated folio arriving here is now to initialize it and write it.
1381 	 *
1382 	 * That's okay for a folio already fallocated earlier, but if we have
1383 	 * not yet completed the fallocation, then (a) we want to keep track
1384 	 * of this folio in case we have to undo it, and (b) it may not be a
1385 	 * good idea to continue anyway, once we're pushing into swap.  So
1386 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1387 	 */
1388 	if (!folio_test_uptodate(folio)) {
1389 		if (inode->i_private) {
1390 			struct shmem_falloc *shmem_falloc;
1391 			spin_lock(&inode->i_lock);
1392 			shmem_falloc = inode->i_private;
1393 			if (shmem_falloc &&
1394 			    !shmem_falloc->waitq &&
1395 			    index >= shmem_falloc->start &&
1396 			    index < shmem_falloc->next)
1397 				shmem_falloc->nr_unswapped++;
1398 			else
1399 				shmem_falloc = NULL;
1400 			spin_unlock(&inode->i_lock);
1401 			if (shmem_falloc)
1402 				goto redirty;
1403 		}
1404 		folio_zero_range(folio, 0, folio_size(folio));
1405 		flush_dcache_folio(folio);
1406 		folio_mark_uptodate(folio);
1407 	}
1408 
1409 	swap = folio_alloc_swap(folio);
1410 	if (!swap.val)
1411 		goto redirty;
1412 
1413 	/*
1414 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1415 	 * if it's not already there.  Do it now before the folio is
1416 	 * moved to swap cache, when its pagelock no longer protects
1417 	 * the inode from eviction.  But don't unlock the mutex until
1418 	 * we've incremented swapped, because shmem_unuse_inode() will
1419 	 * prune a !swapped inode from the swaplist under this mutex.
1420 	 */
1421 	mutex_lock(&shmem_swaplist_mutex);
1422 	if (list_empty(&info->swaplist))
1423 		list_add(&info->swaplist, &shmem_swaplist);
1424 
1425 	if (add_to_swap_cache(folio, swap,
1426 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1427 			NULL) == 0) {
1428 		spin_lock_irq(&info->lock);
1429 		shmem_recalc_inode(inode);
1430 		info->swapped++;
1431 		spin_unlock_irq(&info->lock);
1432 
1433 		swap_shmem_alloc(swap);
1434 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1435 
1436 		mutex_unlock(&shmem_swaplist_mutex);
1437 		BUG_ON(folio_mapped(folio));
1438 		swap_writepage(&folio->page, wbc);
1439 		return 0;
1440 	}
1441 
1442 	mutex_unlock(&shmem_swaplist_mutex);
1443 	put_swap_folio(folio, swap);
1444 redirty:
1445 	folio_mark_dirty(folio);
1446 	if (wbc->for_reclaim)
1447 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1448 	folio_unlock(folio);
1449 	return 0;
1450 }
1451 
1452 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1453 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1454 {
1455 	char buffer[64];
1456 
1457 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1458 		return;		/* show nothing */
1459 
1460 	mpol_to_str(buffer, sizeof(buffer), mpol);
1461 
1462 	seq_printf(seq, ",mpol=%s", buffer);
1463 }
1464 
1465 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1466 {
1467 	struct mempolicy *mpol = NULL;
1468 	if (sbinfo->mpol) {
1469 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1470 		mpol = sbinfo->mpol;
1471 		mpol_get(mpol);
1472 		raw_spin_unlock(&sbinfo->stat_lock);
1473 	}
1474 	return mpol;
1475 }
1476 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1477 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1478 {
1479 }
1480 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1481 {
1482 	return NULL;
1483 }
1484 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1485 #ifndef CONFIG_NUMA
1486 #define vm_policy vm_private_data
1487 #endif
1488 
1489 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1490 		struct shmem_inode_info *info, pgoff_t index)
1491 {
1492 	/* Create a pseudo vma that just contains the policy */
1493 	vma_init(vma, NULL);
1494 	/* Bias interleave by inode number to distribute better across nodes */
1495 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1496 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1497 }
1498 
1499 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1500 {
1501 	/* Drop reference taken by mpol_shared_policy_lookup() */
1502 	mpol_cond_put(vma->vm_policy);
1503 }
1504 
1505 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1506 			struct shmem_inode_info *info, pgoff_t index)
1507 {
1508 	struct vm_area_struct pvma;
1509 	struct page *page;
1510 	struct vm_fault vmf = {
1511 		.vma = &pvma,
1512 	};
1513 
1514 	shmem_pseudo_vma_init(&pvma, info, index);
1515 	page = swap_cluster_readahead(swap, gfp, &vmf);
1516 	shmem_pseudo_vma_destroy(&pvma);
1517 
1518 	if (!page)
1519 		return NULL;
1520 	return page_folio(page);
1521 }
1522 
1523 /*
1524  * Make sure huge_gfp is always more limited than limit_gfp.
1525  * Some of the flags set permissions, while others set limitations.
1526  */
1527 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1528 {
1529 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1530 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1531 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1532 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1533 
1534 	/* Allow allocations only from the originally specified zones. */
1535 	result |= zoneflags;
1536 
1537 	/*
1538 	 * Minimize the result gfp by taking the union with the deny flags,
1539 	 * and the intersection of the allow flags.
1540 	 */
1541 	result |= (limit_gfp & denyflags);
1542 	result |= (huge_gfp & limit_gfp) & allowflags;
1543 
1544 	return result;
1545 }
1546 
1547 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1548 		struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 	struct vm_area_struct pvma;
1551 	struct address_space *mapping = info->vfs_inode.i_mapping;
1552 	pgoff_t hindex;
1553 	struct folio *folio;
1554 
1555 	hindex = round_down(index, HPAGE_PMD_NR);
1556 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1557 								XA_PRESENT))
1558 		return NULL;
1559 
1560 	shmem_pseudo_vma_init(&pvma, info, hindex);
1561 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1562 	shmem_pseudo_vma_destroy(&pvma);
1563 	if (!folio)
1564 		count_vm_event(THP_FILE_FALLBACK);
1565 	return folio;
1566 }
1567 
1568 static struct folio *shmem_alloc_folio(gfp_t gfp,
1569 			struct shmem_inode_info *info, pgoff_t index)
1570 {
1571 	struct vm_area_struct pvma;
1572 	struct folio *folio;
1573 
1574 	shmem_pseudo_vma_init(&pvma, info, index);
1575 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1576 	shmem_pseudo_vma_destroy(&pvma);
1577 
1578 	return folio;
1579 }
1580 
1581 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1582 		pgoff_t index, bool huge)
1583 {
1584 	struct shmem_inode_info *info = SHMEM_I(inode);
1585 	struct folio *folio;
1586 	int nr;
1587 	int err = -ENOSPC;
1588 
1589 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1590 		huge = false;
1591 	nr = huge ? HPAGE_PMD_NR : 1;
1592 
1593 	if (!shmem_inode_acct_block(inode, nr))
1594 		goto failed;
1595 
1596 	if (huge)
1597 		folio = shmem_alloc_hugefolio(gfp, info, index);
1598 	else
1599 		folio = shmem_alloc_folio(gfp, info, index);
1600 	if (folio) {
1601 		__folio_set_locked(folio);
1602 		__folio_set_swapbacked(folio);
1603 		return folio;
1604 	}
1605 
1606 	err = -ENOMEM;
1607 	shmem_inode_unacct_blocks(inode, nr);
1608 failed:
1609 	return ERR_PTR(err);
1610 }
1611 
1612 /*
1613  * When a page is moved from swapcache to shmem filecache (either by the
1614  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1615  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1616  * ignorance of the mapping it belongs to.  If that mapping has special
1617  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1618  * we may need to copy to a suitable page before moving to filecache.
1619  *
1620  * In a future release, this may well be extended to respect cpuset and
1621  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1622  * but for now it is a simple matter of zone.
1623  */
1624 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1625 {
1626 	return folio_zonenum(folio) > gfp_zone(gfp);
1627 }
1628 
1629 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1630 				struct shmem_inode_info *info, pgoff_t index)
1631 {
1632 	struct folio *old, *new;
1633 	struct address_space *swap_mapping;
1634 	swp_entry_t entry;
1635 	pgoff_t swap_index;
1636 	int error;
1637 
1638 	old = *foliop;
1639 	entry = folio_swap_entry(old);
1640 	swap_index = swp_offset(entry);
1641 	swap_mapping = swap_address_space(entry);
1642 
1643 	/*
1644 	 * We have arrived here because our zones are constrained, so don't
1645 	 * limit chance of success by further cpuset and node constraints.
1646 	 */
1647 	gfp &= ~GFP_CONSTRAINT_MASK;
1648 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1649 	new = shmem_alloc_folio(gfp, info, index);
1650 	if (!new)
1651 		return -ENOMEM;
1652 
1653 	folio_get(new);
1654 	folio_copy(new, old);
1655 	flush_dcache_folio(new);
1656 
1657 	__folio_set_locked(new);
1658 	__folio_set_swapbacked(new);
1659 	folio_mark_uptodate(new);
1660 	folio_set_swap_entry(new, entry);
1661 	folio_set_swapcache(new);
1662 
1663 	/*
1664 	 * Our caller will very soon move newpage out of swapcache, but it's
1665 	 * a nice clean interface for us to replace oldpage by newpage there.
1666 	 */
1667 	xa_lock_irq(&swap_mapping->i_pages);
1668 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1669 	if (!error) {
1670 		mem_cgroup_migrate(old, new);
1671 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1672 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1673 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1674 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1675 	}
1676 	xa_unlock_irq(&swap_mapping->i_pages);
1677 
1678 	if (unlikely(error)) {
1679 		/*
1680 		 * Is this possible?  I think not, now that our callers check
1681 		 * both PageSwapCache and page_private after getting page lock;
1682 		 * but be defensive.  Reverse old to newpage for clear and free.
1683 		 */
1684 		old = new;
1685 	} else {
1686 		folio_add_lru(new);
1687 		*foliop = new;
1688 	}
1689 
1690 	folio_clear_swapcache(old);
1691 	old->private = NULL;
1692 
1693 	folio_unlock(old);
1694 	folio_put_refs(old, 2);
1695 	return error;
1696 }
1697 
1698 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1699 					 struct folio *folio, swp_entry_t swap)
1700 {
1701 	struct address_space *mapping = inode->i_mapping;
1702 	struct shmem_inode_info *info = SHMEM_I(inode);
1703 	swp_entry_t swapin_error;
1704 	void *old;
1705 
1706 	swapin_error = make_swapin_error_entry();
1707 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1708 			     swp_to_radix_entry(swap),
1709 			     swp_to_radix_entry(swapin_error), 0);
1710 	if (old != swp_to_radix_entry(swap))
1711 		return;
1712 
1713 	folio_wait_writeback(folio);
1714 	delete_from_swap_cache(folio);
1715 	spin_lock_irq(&info->lock);
1716 	/*
1717 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1718 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1719 	 * shmem_evict_inode.
1720 	 */
1721 	info->alloced--;
1722 	info->swapped--;
1723 	shmem_recalc_inode(inode);
1724 	spin_unlock_irq(&info->lock);
1725 	swap_free(swap);
1726 }
1727 
1728 /*
1729  * Swap in the folio pointed to by *foliop.
1730  * Caller has to make sure that *foliop contains a valid swapped folio.
1731  * Returns 0 and the folio in foliop if success. On failure, returns the
1732  * error code and NULL in *foliop.
1733  */
1734 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1735 			     struct folio **foliop, enum sgp_type sgp,
1736 			     gfp_t gfp, struct vm_area_struct *vma,
1737 			     vm_fault_t *fault_type)
1738 {
1739 	struct address_space *mapping = inode->i_mapping;
1740 	struct shmem_inode_info *info = SHMEM_I(inode);
1741 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1742 	struct folio *folio = NULL;
1743 	swp_entry_t swap;
1744 	int error;
1745 
1746 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1747 	swap = radix_to_swp_entry(*foliop);
1748 	*foliop = NULL;
1749 
1750 	if (is_swapin_error_entry(swap))
1751 		return -EIO;
1752 
1753 	/* Look it up and read it in.. */
1754 	folio = swap_cache_get_folio(swap, NULL, 0);
1755 	if (!folio) {
1756 		/* Or update major stats only when swapin succeeds?? */
1757 		if (fault_type) {
1758 			*fault_type |= VM_FAULT_MAJOR;
1759 			count_vm_event(PGMAJFAULT);
1760 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1761 		}
1762 		/* Here we actually start the io */
1763 		folio = shmem_swapin(swap, gfp, info, index);
1764 		if (!folio) {
1765 			error = -ENOMEM;
1766 			goto failed;
1767 		}
1768 	}
1769 
1770 	/* We have to do this with folio locked to prevent races */
1771 	folio_lock(folio);
1772 	if (!folio_test_swapcache(folio) ||
1773 	    folio_swap_entry(folio).val != swap.val ||
1774 	    !shmem_confirm_swap(mapping, index, swap)) {
1775 		error = -EEXIST;
1776 		goto unlock;
1777 	}
1778 	if (!folio_test_uptodate(folio)) {
1779 		error = -EIO;
1780 		goto failed;
1781 	}
1782 	folio_wait_writeback(folio);
1783 
1784 	/*
1785 	 * Some architectures may have to restore extra metadata to the
1786 	 * folio after reading from swap.
1787 	 */
1788 	arch_swap_restore(swap, folio);
1789 
1790 	if (shmem_should_replace_folio(folio, gfp)) {
1791 		error = shmem_replace_folio(&folio, gfp, info, index);
1792 		if (error)
1793 			goto failed;
1794 	}
1795 
1796 	error = shmem_add_to_page_cache(folio, mapping, index,
1797 					swp_to_radix_entry(swap), gfp,
1798 					charge_mm);
1799 	if (error)
1800 		goto failed;
1801 
1802 	spin_lock_irq(&info->lock);
1803 	info->swapped--;
1804 	shmem_recalc_inode(inode);
1805 	spin_unlock_irq(&info->lock);
1806 
1807 	if (sgp == SGP_WRITE)
1808 		folio_mark_accessed(folio);
1809 
1810 	delete_from_swap_cache(folio);
1811 	folio_mark_dirty(folio);
1812 	swap_free(swap);
1813 
1814 	*foliop = folio;
1815 	return 0;
1816 failed:
1817 	if (!shmem_confirm_swap(mapping, index, swap))
1818 		error = -EEXIST;
1819 	if (error == -EIO)
1820 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1821 unlock:
1822 	if (folio) {
1823 		folio_unlock(folio);
1824 		folio_put(folio);
1825 	}
1826 
1827 	return error;
1828 }
1829 
1830 /*
1831  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1832  *
1833  * If we allocate a new one we do not mark it dirty. That's up to the
1834  * vm. If we swap it in we mark it dirty since we also free the swap
1835  * entry since a page cannot live in both the swap and page cache.
1836  *
1837  * vma, vmf, and fault_type are only supplied by shmem_fault:
1838  * otherwise they are NULL.
1839  */
1840 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1841 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1842 		struct vm_area_struct *vma, struct vm_fault *vmf,
1843 		vm_fault_t *fault_type)
1844 {
1845 	struct address_space *mapping = inode->i_mapping;
1846 	struct shmem_inode_info *info = SHMEM_I(inode);
1847 	struct shmem_sb_info *sbinfo;
1848 	struct mm_struct *charge_mm;
1849 	struct folio *folio;
1850 	pgoff_t hindex;
1851 	gfp_t huge_gfp;
1852 	int error;
1853 	int once = 0;
1854 	int alloced = 0;
1855 
1856 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1857 		return -EFBIG;
1858 repeat:
1859 	if (sgp <= SGP_CACHE &&
1860 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1861 		return -EINVAL;
1862 	}
1863 
1864 	sbinfo = SHMEM_SB(inode->i_sb);
1865 	charge_mm = vma ? vma->vm_mm : NULL;
1866 
1867 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1868 	if (folio && vma && userfaultfd_minor(vma)) {
1869 		if (!xa_is_value(folio)) {
1870 			folio_unlock(folio);
1871 			folio_put(folio);
1872 		}
1873 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1874 		return 0;
1875 	}
1876 
1877 	if (xa_is_value(folio)) {
1878 		error = shmem_swapin_folio(inode, index, &folio,
1879 					  sgp, gfp, vma, fault_type);
1880 		if (error == -EEXIST)
1881 			goto repeat;
1882 
1883 		*foliop = folio;
1884 		return error;
1885 	}
1886 
1887 	if (folio) {
1888 		if (sgp == SGP_WRITE)
1889 			folio_mark_accessed(folio);
1890 		if (folio_test_uptodate(folio))
1891 			goto out;
1892 		/* fallocated folio */
1893 		if (sgp != SGP_READ)
1894 			goto clear;
1895 		folio_unlock(folio);
1896 		folio_put(folio);
1897 	}
1898 
1899 	/*
1900 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1901 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1902 	 */
1903 	*foliop = NULL;
1904 	if (sgp == SGP_READ)
1905 		return 0;
1906 	if (sgp == SGP_NOALLOC)
1907 		return -ENOENT;
1908 
1909 	/*
1910 	 * Fast cache lookup and swap lookup did not find it: allocate.
1911 	 */
1912 
1913 	if (vma && userfaultfd_missing(vma)) {
1914 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1915 		return 0;
1916 	}
1917 
1918 	if (!shmem_is_huge(vma, inode, index, false))
1919 		goto alloc_nohuge;
1920 
1921 	huge_gfp = vma_thp_gfp_mask(vma);
1922 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1923 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1924 	if (IS_ERR(folio)) {
1925 alloc_nohuge:
1926 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1927 	}
1928 	if (IS_ERR(folio)) {
1929 		int retry = 5;
1930 
1931 		error = PTR_ERR(folio);
1932 		folio = NULL;
1933 		if (error != -ENOSPC)
1934 			goto unlock;
1935 		/*
1936 		 * Try to reclaim some space by splitting a large folio
1937 		 * beyond i_size on the filesystem.
1938 		 */
1939 		while (retry--) {
1940 			int ret;
1941 
1942 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1943 			if (ret == SHRINK_STOP)
1944 				break;
1945 			if (ret)
1946 				goto alloc_nohuge;
1947 		}
1948 		goto unlock;
1949 	}
1950 
1951 	hindex = round_down(index, folio_nr_pages(folio));
1952 
1953 	if (sgp == SGP_WRITE)
1954 		__folio_set_referenced(folio);
1955 
1956 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1957 					NULL, gfp & GFP_RECLAIM_MASK,
1958 					charge_mm);
1959 	if (error)
1960 		goto unacct;
1961 	folio_add_lru(folio);
1962 
1963 	spin_lock_irq(&info->lock);
1964 	info->alloced += folio_nr_pages(folio);
1965 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1966 	shmem_recalc_inode(inode);
1967 	spin_unlock_irq(&info->lock);
1968 	alloced = true;
1969 
1970 	if (folio_test_pmd_mappable(folio) &&
1971 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1972 					folio_next_index(folio) - 1) {
1973 		/*
1974 		 * Part of the large folio is beyond i_size: subject
1975 		 * to shrink under memory pressure.
1976 		 */
1977 		spin_lock(&sbinfo->shrinklist_lock);
1978 		/*
1979 		 * _careful to defend against unlocked access to
1980 		 * ->shrink_list in shmem_unused_huge_shrink()
1981 		 */
1982 		if (list_empty_careful(&info->shrinklist)) {
1983 			list_add_tail(&info->shrinklist,
1984 				      &sbinfo->shrinklist);
1985 			sbinfo->shrinklist_len++;
1986 		}
1987 		spin_unlock(&sbinfo->shrinklist_lock);
1988 	}
1989 
1990 	/*
1991 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
1992 	 */
1993 	if (sgp == SGP_FALLOC)
1994 		sgp = SGP_WRITE;
1995 clear:
1996 	/*
1997 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
1998 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
1999 	 * it now, lest undo on failure cancel our earlier guarantee.
2000 	 */
2001 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2002 		long i, n = folio_nr_pages(folio);
2003 
2004 		for (i = 0; i < n; i++)
2005 			clear_highpage(folio_page(folio, i));
2006 		flush_dcache_folio(folio);
2007 		folio_mark_uptodate(folio);
2008 	}
2009 
2010 	/* Perhaps the file has been truncated since we checked */
2011 	if (sgp <= SGP_CACHE &&
2012 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2013 		if (alloced) {
2014 			folio_clear_dirty(folio);
2015 			filemap_remove_folio(folio);
2016 			spin_lock_irq(&info->lock);
2017 			shmem_recalc_inode(inode);
2018 			spin_unlock_irq(&info->lock);
2019 		}
2020 		error = -EINVAL;
2021 		goto unlock;
2022 	}
2023 out:
2024 	*foliop = folio;
2025 	return 0;
2026 
2027 	/*
2028 	 * Error recovery.
2029 	 */
2030 unacct:
2031 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2032 
2033 	if (folio_test_large(folio)) {
2034 		folio_unlock(folio);
2035 		folio_put(folio);
2036 		goto alloc_nohuge;
2037 	}
2038 unlock:
2039 	if (folio) {
2040 		folio_unlock(folio);
2041 		folio_put(folio);
2042 	}
2043 	if (error == -ENOSPC && !once++) {
2044 		spin_lock_irq(&info->lock);
2045 		shmem_recalc_inode(inode);
2046 		spin_unlock_irq(&info->lock);
2047 		goto repeat;
2048 	}
2049 	if (error == -EEXIST)
2050 		goto repeat;
2051 	return error;
2052 }
2053 
2054 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2055 		enum sgp_type sgp)
2056 {
2057 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2058 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2059 }
2060 
2061 /*
2062  * This is like autoremove_wake_function, but it removes the wait queue
2063  * entry unconditionally - even if something else had already woken the
2064  * target.
2065  */
2066 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2067 {
2068 	int ret = default_wake_function(wait, mode, sync, key);
2069 	list_del_init(&wait->entry);
2070 	return ret;
2071 }
2072 
2073 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2074 {
2075 	struct vm_area_struct *vma = vmf->vma;
2076 	struct inode *inode = file_inode(vma->vm_file);
2077 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2078 	struct folio *folio = NULL;
2079 	int err;
2080 	vm_fault_t ret = VM_FAULT_LOCKED;
2081 
2082 	/*
2083 	 * Trinity finds that probing a hole which tmpfs is punching can
2084 	 * prevent the hole-punch from ever completing: which in turn
2085 	 * locks writers out with its hold on i_rwsem.  So refrain from
2086 	 * faulting pages into the hole while it's being punched.  Although
2087 	 * shmem_undo_range() does remove the additions, it may be unable to
2088 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2089 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2090 	 *
2091 	 * It does not matter if we sometimes reach this check just before the
2092 	 * hole-punch begins, so that one fault then races with the punch:
2093 	 * we just need to make racing faults a rare case.
2094 	 *
2095 	 * The implementation below would be much simpler if we just used a
2096 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2097 	 * and bloating every shmem inode for this unlikely case would be sad.
2098 	 */
2099 	if (unlikely(inode->i_private)) {
2100 		struct shmem_falloc *shmem_falloc;
2101 
2102 		spin_lock(&inode->i_lock);
2103 		shmem_falloc = inode->i_private;
2104 		if (shmem_falloc &&
2105 		    shmem_falloc->waitq &&
2106 		    vmf->pgoff >= shmem_falloc->start &&
2107 		    vmf->pgoff < shmem_falloc->next) {
2108 			struct file *fpin;
2109 			wait_queue_head_t *shmem_falloc_waitq;
2110 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2111 
2112 			ret = VM_FAULT_NOPAGE;
2113 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2114 			if (fpin)
2115 				ret = VM_FAULT_RETRY;
2116 
2117 			shmem_falloc_waitq = shmem_falloc->waitq;
2118 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2119 					TASK_UNINTERRUPTIBLE);
2120 			spin_unlock(&inode->i_lock);
2121 			schedule();
2122 
2123 			/*
2124 			 * shmem_falloc_waitq points into the shmem_fallocate()
2125 			 * stack of the hole-punching task: shmem_falloc_waitq
2126 			 * is usually invalid by the time we reach here, but
2127 			 * finish_wait() does not dereference it in that case;
2128 			 * though i_lock needed lest racing with wake_up_all().
2129 			 */
2130 			spin_lock(&inode->i_lock);
2131 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2132 			spin_unlock(&inode->i_lock);
2133 
2134 			if (fpin)
2135 				fput(fpin);
2136 			return ret;
2137 		}
2138 		spin_unlock(&inode->i_lock);
2139 	}
2140 
2141 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2142 				  gfp, vma, vmf, &ret);
2143 	if (err)
2144 		return vmf_error(err);
2145 	if (folio)
2146 		vmf->page = folio_file_page(folio, vmf->pgoff);
2147 	return ret;
2148 }
2149 
2150 unsigned long shmem_get_unmapped_area(struct file *file,
2151 				      unsigned long uaddr, unsigned long len,
2152 				      unsigned long pgoff, unsigned long flags)
2153 {
2154 	unsigned long (*get_area)(struct file *,
2155 		unsigned long, unsigned long, unsigned long, unsigned long);
2156 	unsigned long addr;
2157 	unsigned long offset;
2158 	unsigned long inflated_len;
2159 	unsigned long inflated_addr;
2160 	unsigned long inflated_offset;
2161 
2162 	if (len > TASK_SIZE)
2163 		return -ENOMEM;
2164 
2165 	get_area = current->mm->get_unmapped_area;
2166 	addr = get_area(file, uaddr, len, pgoff, flags);
2167 
2168 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2169 		return addr;
2170 	if (IS_ERR_VALUE(addr))
2171 		return addr;
2172 	if (addr & ~PAGE_MASK)
2173 		return addr;
2174 	if (addr > TASK_SIZE - len)
2175 		return addr;
2176 
2177 	if (shmem_huge == SHMEM_HUGE_DENY)
2178 		return addr;
2179 	if (len < HPAGE_PMD_SIZE)
2180 		return addr;
2181 	if (flags & MAP_FIXED)
2182 		return addr;
2183 	/*
2184 	 * Our priority is to support MAP_SHARED mapped hugely;
2185 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2186 	 * But if caller specified an address hint and we allocated area there
2187 	 * successfully, respect that as before.
2188 	 */
2189 	if (uaddr == addr)
2190 		return addr;
2191 
2192 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2193 		struct super_block *sb;
2194 
2195 		if (file) {
2196 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2197 			sb = file_inode(file)->i_sb;
2198 		} else {
2199 			/*
2200 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2201 			 * for "/dev/zero", to create a shared anonymous object.
2202 			 */
2203 			if (IS_ERR(shm_mnt))
2204 				return addr;
2205 			sb = shm_mnt->mnt_sb;
2206 		}
2207 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2208 			return addr;
2209 	}
2210 
2211 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2212 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2213 		return addr;
2214 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2215 		return addr;
2216 
2217 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2218 	if (inflated_len > TASK_SIZE)
2219 		return addr;
2220 	if (inflated_len < len)
2221 		return addr;
2222 
2223 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2224 	if (IS_ERR_VALUE(inflated_addr))
2225 		return addr;
2226 	if (inflated_addr & ~PAGE_MASK)
2227 		return addr;
2228 
2229 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2230 	inflated_addr += offset - inflated_offset;
2231 	if (inflated_offset > offset)
2232 		inflated_addr += HPAGE_PMD_SIZE;
2233 
2234 	if (inflated_addr > TASK_SIZE - len)
2235 		return addr;
2236 	return inflated_addr;
2237 }
2238 
2239 #ifdef CONFIG_NUMA
2240 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2241 {
2242 	struct inode *inode = file_inode(vma->vm_file);
2243 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2244 }
2245 
2246 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2247 					  unsigned long addr)
2248 {
2249 	struct inode *inode = file_inode(vma->vm_file);
2250 	pgoff_t index;
2251 
2252 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2253 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2254 }
2255 #endif
2256 
2257 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2258 {
2259 	struct inode *inode = file_inode(file);
2260 	struct shmem_inode_info *info = SHMEM_I(inode);
2261 	int retval = -ENOMEM;
2262 
2263 	/*
2264 	 * What serializes the accesses to info->flags?
2265 	 * ipc_lock_object() when called from shmctl_do_lock(),
2266 	 * no serialization needed when called from shm_destroy().
2267 	 */
2268 	if (lock && !(info->flags & VM_LOCKED)) {
2269 		if (!user_shm_lock(inode->i_size, ucounts))
2270 			goto out_nomem;
2271 		info->flags |= VM_LOCKED;
2272 		mapping_set_unevictable(file->f_mapping);
2273 	}
2274 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2275 		user_shm_unlock(inode->i_size, ucounts);
2276 		info->flags &= ~VM_LOCKED;
2277 		mapping_clear_unevictable(file->f_mapping);
2278 	}
2279 	retval = 0;
2280 
2281 out_nomem:
2282 	return retval;
2283 }
2284 
2285 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2286 {
2287 	struct inode *inode = file_inode(file);
2288 	struct shmem_inode_info *info = SHMEM_I(inode);
2289 	int ret;
2290 
2291 	ret = seal_check_future_write(info->seals, vma);
2292 	if (ret)
2293 		return ret;
2294 
2295 	/* arm64 - allow memory tagging on RAM-based files */
2296 	vma->vm_flags |= VM_MTE_ALLOWED;
2297 
2298 	file_accessed(file);
2299 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2300 	if (inode->i_nlink)
2301 		vma->vm_ops = &shmem_vm_ops;
2302 	else
2303 		vma->vm_ops = &shmem_anon_vm_ops;
2304 	return 0;
2305 }
2306 
2307 #ifdef CONFIG_TMPFS_XATTR
2308 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2309 
2310 /*
2311  * chattr's fsflags are unrelated to extended attributes,
2312  * but tmpfs has chosen to enable them under the same config option.
2313  */
2314 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2315 {
2316 	unsigned int i_flags = 0;
2317 
2318 	if (fsflags & FS_NOATIME_FL)
2319 		i_flags |= S_NOATIME;
2320 	if (fsflags & FS_APPEND_FL)
2321 		i_flags |= S_APPEND;
2322 	if (fsflags & FS_IMMUTABLE_FL)
2323 		i_flags |= S_IMMUTABLE;
2324 	/*
2325 	 * But FS_NODUMP_FL does not require any action in i_flags.
2326 	 */
2327 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2328 }
2329 #else
2330 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2331 {
2332 }
2333 #define shmem_initxattrs NULL
2334 #endif
2335 
2336 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2337 				     umode_t mode, dev_t dev, unsigned long flags)
2338 {
2339 	struct inode *inode;
2340 	struct shmem_inode_info *info;
2341 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2342 	ino_t ino;
2343 
2344 	if (shmem_reserve_inode(sb, &ino))
2345 		return NULL;
2346 
2347 	inode = new_inode(sb);
2348 	if (inode) {
2349 		inode->i_ino = ino;
2350 		inode_init_owner(&init_user_ns, inode, dir, mode);
2351 		inode->i_blocks = 0;
2352 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2353 		inode->i_generation = get_random_u32();
2354 		info = SHMEM_I(inode);
2355 		memset(info, 0, (char *)inode - (char *)info);
2356 		spin_lock_init(&info->lock);
2357 		atomic_set(&info->stop_eviction, 0);
2358 		info->seals = F_SEAL_SEAL;
2359 		info->flags = flags & VM_NORESERVE;
2360 		info->i_crtime = inode->i_mtime;
2361 		info->fsflags = (dir == NULL) ? 0 :
2362 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2363 		if (info->fsflags)
2364 			shmem_set_inode_flags(inode, info->fsflags);
2365 		INIT_LIST_HEAD(&info->shrinklist);
2366 		INIT_LIST_HEAD(&info->swaplist);
2367 		simple_xattrs_init(&info->xattrs);
2368 		cache_no_acl(inode);
2369 		mapping_set_large_folios(inode->i_mapping);
2370 
2371 		switch (mode & S_IFMT) {
2372 		default:
2373 			inode->i_op = &shmem_special_inode_operations;
2374 			init_special_inode(inode, mode, dev);
2375 			break;
2376 		case S_IFREG:
2377 			inode->i_mapping->a_ops = &shmem_aops;
2378 			inode->i_op = &shmem_inode_operations;
2379 			inode->i_fop = &shmem_file_operations;
2380 			mpol_shared_policy_init(&info->policy,
2381 						 shmem_get_sbmpol(sbinfo));
2382 			break;
2383 		case S_IFDIR:
2384 			inc_nlink(inode);
2385 			/* Some things misbehave if size == 0 on a directory */
2386 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2387 			inode->i_op = &shmem_dir_inode_operations;
2388 			inode->i_fop = &simple_dir_operations;
2389 			break;
2390 		case S_IFLNK:
2391 			/*
2392 			 * Must not load anything in the rbtree,
2393 			 * mpol_free_shared_policy will not be called.
2394 			 */
2395 			mpol_shared_policy_init(&info->policy, NULL);
2396 			break;
2397 		}
2398 
2399 		lockdep_annotate_inode_mutex_key(inode);
2400 	} else
2401 		shmem_free_inode(sb);
2402 	return inode;
2403 }
2404 
2405 #ifdef CONFIG_USERFAULTFD
2406 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2407 			   pmd_t *dst_pmd,
2408 			   struct vm_area_struct *dst_vma,
2409 			   unsigned long dst_addr,
2410 			   unsigned long src_addr,
2411 			   bool zeropage, bool wp_copy,
2412 			   struct page **pagep)
2413 {
2414 	struct inode *inode = file_inode(dst_vma->vm_file);
2415 	struct shmem_inode_info *info = SHMEM_I(inode);
2416 	struct address_space *mapping = inode->i_mapping;
2417 	gfp_t gfp = mapping_gfp_mask(mapping);
2418 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2419 	void *page_kaddr;
2420 	struct folio *folio;
2421 	int ret;
2422 	pgoff_t max_off;
2423 
2424 	if (!shmem_inode_acct_block(inode, 1)) {
2425 		/*
2426 		 * We may have got a page, returned -ENOENT triggering a retry,
2427 		 * and now we find ourselves with -ENOMEM. Release the page, to
2428 		 * avoid a BUG_ON in our caller.
2429 		 */
2430 		if (unlikely(*pagep)) {
2431 			put_page(*pagep);
2432 			*pagep = NULL;
2433 		}
2434 		return -ENOMEM;
2435 	}
2436 
2437 	if (!*pagep) {
2438 		ret = -ENOMEM;
2439 		folio = shmem_alloc_folio(gfp, info, pgoff);
2440 		if (!folio)
2441 			goto out_unacct_blocks;
2442 
2443 		if (!zeropage) {	/* COPY */
2444 			page_kaddr = kmap_local_folio(folio, 0);
2445 			/*
2446 			 * The read mmap_lock is held here.  Despite the
2447 			 * mmap_lock being read recursive a deadlock is still
2448 			 * possible if a writer has taken a lock.  For example:
2449 			 *
2450 			 * process A thread 1 takes read lock on own mmap_lock
2451 			 * process A thread 2 calls mmap, blocks taking write lock
2452 			 * process B thread 1 takes page fault, read lock on own mmap lock
2453 			 * process B thread 2 calls mmap, blocks taking write lock
2454 			 * process A thread 1 blocks taking read lock on process B
2455 			 * process B thread 1 blocks taking read lock on process A
2456 			 *
2457 			 * Disable page faults to prevent potential deadlock
2458 			 * and retry the copy outside the mmap_lock.
2459 			 */
2460 			pagefault_disable();
2461 			ret = copy_from_user(page_kaddr,
2462 					     (const void __user *)src_addr,
2463 					     PAGE_SIZE);
2464 			pagefault_enable();
2465 			kunmap_local(page_kaddr);
2466 
2467 			/* fallback to copy_from_user outside mmap_lock */
2468 			if (unlikely(ret)) {
2469 				*pagep = &folio->page;
2470 				ret = -ENOENT;
2471 				/* don't free the page */
2472 				goto out_unacct_blocks;
2473 			}
2474 
2475 			flush_dcache_folio(folio);
2476 		} else {		/* ZEROPAGE */
2477 			clear_user_highpage(&folio->page, dst_addr);
2478 		}
2479 	} else {
2480 		folio = page_folio(*pagep);
2481 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2482 		*pagep = NULL;
2483 	}
2484 
2485 	VM_BUG_ON(folio_test_locked(folio));
2486 	VM_BUG_ON(folio_test_swapbacked(folio));
2487 	__folio_set_locked(folio);
2488 	__folio_set_swapbacked(folio);
2489 	__folio_mark_uptodate(folio);
2490 
2491 	ret = -EFAULT;
2492 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2493 	if (unlikely(pgoff >= max_off))
2494 		goto out_release;
2495 
2496 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2497 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2498 	if (ret)
2499 		goto out_release;
2500 
2501 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2502 				       &folio->page, true, wp_copy);
2503 	if (ret)
2504 		goto out_delete_from_cache;
2505 
2506 	spin_lock_irq(&info->lock);
2507 	info->alloced++;
2508 	inode->i_blocks += BLOCKS_PER_PAGE;
2509 	shmem_recalc_inode(inode);
2510 	spin_unlock_irq(&info->lock);
2511 
2512 	folio_unlock(folio);
2513 	return 0;
2514 out_delete_from_cache:
2515 	filemap_remove_folio(folio);
2516 out_release:
2517 	folio_unlock(folio);
2518 	folio_put(folio);
2519 out_unacct_blocks:
2520 	shmem_inode_unacct_blocks(inode, 1);
2521 	return ret;
2522 }
2523 #endif /* CONFIG_USERFAULTFD */
2524 
2525 #ifdef CONFIG_TMPFS
2526 static const struct inode_operations shmem_symlink_inode_operations;
2527 static const struct inode_operations shmem_short_symlink_operations;
2528 
2529 static int
2530 shmem_write_begin(struct file *file, struct address_space *mapping,
2531 			loff_t pos, unsigned len,
2532 			struct page **pagep, void **fsdata)
2533 {
2534 	struct inode *inode = mapping->host;
2535 	struct shmem_inode_info *info = SHMEM_I(inode);
2536 	pgoff_t index = pos >> PAGE_SHIFT;
2537 	struct folio *folio;
2538 	int ret = 0;
2539 
2540 	/* i_rwsem is held by caller */
2541 	if (unlikely(info->seals & (F_SEAL_GROW |
2542 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2543 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2544 			return -EPERM;
2545 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2546 			return -EPERM;
2547 	}
2548 
2549 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2550 
2551 	if (ret)
2552 		return ret;
2553 
2554 	*pagep = folio_file_page(folio, index);
2555 	if (PageHWPoison(*pagep)) {
2556 		folio_unlock(folio);
2557 		folio_put(folio);
2558 		*pagep = NULL;
2559 		return -EIO;
2560 	}
2561 
2562 	return 0;
2563 }
2564 
2565 static int
2566 shmem_write_end(struct file *file, struct address_space *mapping,
2567 			loff_t pos, unsigned len, unsigned copied,
2568 			struct page *page, void *fsdata)
2569 {
2570 	struct inode *inode = mapping->host;
2571 
2572 	if (pos + copied > inode->i_size)
2573 		i_size_write(inode, pos + copied);
2574 
2575 	if (!PageUptodate(page)) {
2576 		struct page *head = compound_head(page);
2577 		if (PageTransCompound(page)) {
2578 			int i;
2579 
2580 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2581 				if (head + i == page)
2582 					continue;
2583 				clear_highpage(head + i);
2584 				flush_dcache_page(head + i);
2585 			}
2586 		}
2587 		if (copied < PAGE_SIZE) {
2588 			unsigned from = pos & (PAGE_SIZE - 1);
2589 			zero_user_segments(page, 0, from,
2590 					from + copied, PAGE_SIZE);
2591 		}
2592 		SetPageUptodate(head);
2593 	}
2594 	set_page_dirty(page);
2595 	unlock_page(page);
2596 	put_page(page);
2597 
2598 	return copied;
2599 }
2600 
2601 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2602 {
2603 	struct file *file = iocb->ki_filp;
2604 	struct inode *inode = file_inode(file);
2605 	struct address_space *mapping = inode->i_mapping;
2606 	pgoff_t index;
2607 	unsigned long offset;
2608 	int error = 0;
2609 	ssize_t retval = 0;
2610 	loff_t *ppos = &iocb->ki_pos;
2611 
2612 	index = *ppos >> PAGE_SHIFT;
2613 	offset = *ppos & ~PAGE_MASK;
2614 
2615 	for (;;) {
2616 		struct folio *folio = NULL;
2617 		struct page *page = NULL;
2618 		pgoff_t end_index;
2619 		unsigned long nr, ret;
2620 		loff_t i_size = i_size_read(inode);
2621 
2622 		end_index = i_size >> PAGE_SHIFT;
2623 		if (index > end_index)
2624 			break;
2625 		if (index == end_index) {
2626 			nr = i_size & ~PAGE_MASK;
2627 			if (nr <= offset)
2628 				break;
2629 		}
2630 
2631 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2632 		if (error) {
2633 			if (error == -EINVAL)
2634 				error = 0;
2635 			break;
2636 		}
2637 		if (folio) {
2638 			folio_unlock(folio);
2639 
2640 			page = folio_file_page(folio, index);
2641 			if (PageHWPoison(page)) {
2642 				folio_put(folio);
2643 				error = -EIO;
2644 				break;
2645 			}
2646 		}
2647 
2648 		/*
2649 		 * We must evaluate after, since reads (unlike writes)
2650 		 * are called without i_rwsem protection against truncate
2651 		 */
2652 		nr = PAGE_SIZE;
2653 		i_size = i_size_read(inode);
2654 		end_index = i_size >> PAGE_SHIFT;
2655 		if (index == end_index) {
2656 			nr = i_size & ~PAGE_MASK;
2657 			if (nr <= offset) {
2658 				if (folio)
2659 					folio_put(folio);
2660 				break;
2661 			}
2662 		}
2663 		nr -= offset;
2664 
2665 		if (folio) {
2666 			/*
2667 			 * If users can be writing to this page using arbitrary
2668 			 * virtual addresses, take care about potential aliasing
2669 			 * before reading the page on the kernel side.
2670 			 */
2671 			if (mapping_writably_mapped(mapping))
2672 				flush_dcache_page(page);
2673 			/*
2674 			 * Mark the page accessed if we read the beginning.
2675 			 */
2676 			if (!offset)
2677 				folio_mark_accessed(folio);
2678 			/*
2679 			 * Ok, we have the page, and it's up-to-date, so
2680 			 * now we can copy it to user space...
2681 			 */
2682 			ret = copy_page_to_iter(page, offset, nr, to);
2683 			folio_put(folio);
2684 
2685 		} else if (user_backed_iter(to)) {
2686 			/*
2687 			 * Copy to user tends to be so well optimized, but
2688 			 * clear_user() not so much, that it is noticeably
2689 			 * faster to copy the zero page instead of clearing.
2690 			 */
2691 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2692 		} else {
2693 			/*
2694 			 * But submitting the same page twice in a row to
2695 			 * splice() - or others? - can result in confusion:
2696 			 * so don't attempt that optimization on pipes etc.
2697 			 */
2698 			ret = iov_iter_zero(nr, to);
2699 		}
2700 
2701 		retval += ret;
2702 		offset += ret;
2703 		index += offset >> PAGE_SHIFT;
2704 		offset &= ~PAGE_MASK;
2705 
2706 		if (!iov_iter_count(to))
2707 			break;
2708 		if (ret < nr) {
2709 			error = -EFAULT;
2710 			break;
2711 		}
2712 		cond_resched();
2713 	}
2714 
2715 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2716 	file_accessed(file);
2717 	return retval ? retval : error;
2718 }
2719 
2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2721 {
2722 	struct address_space *mapping = file->f_mapping;
2723 	struct inode *inode = mapping->host;
2724 
2725 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2726 		return generic_file_llseek_size(file, offset, whence,
2727 					MAX_LFS_FILESIZE, i_size_read(inode));
2728 	if (offset < 0)
2729 		return -ENXIO;
2730 
2731 	inode_lock(inode);
2732 	/* We're holding i_rwsem so we can access i_size directly */
2733 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2734 	if (offset >= 0)
2735 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2736 	inode_unlock(inode);
2737 	return offset;
2738 }
2739 
2740 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2741 							 loff_t len)
2742 {
2743 	struct inode *inode = file_inode(file);
2744 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2745 	struct shmem_inode_info *info = SHMEM_I(inode);
2746 	struct shmem_falloc shmem_falloc;
2747 	pgoff_t start, index, end, undo_fallocend;
2748 	int error;
2749 
2750 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2751 		return -EOPNOTSUPP;
2752 
2753 	inode_lock(inode);
2754 
2755 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2756 		struct address_space *mapping = file->f_mapping;
2757 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2758 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2759 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2760 
2761 		/* protected by i_rwsem */
2762 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2763 			error = -EPERM;
2764 			goto out;
2765 		}
2766 
2767 		shmem_falloc.waitq = &shmem_falloc_waitq;
2768 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2769 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2770 		spin_lock(&inode->i_lock);
2771 		inode->i_private = &shmem_falloc;
2772 		spin_unlock(&inode->i_lock);
2773 
2774 		if ((u64)unmap_end > (u64)unmap_start)
2775 			unmap_mapping_range(mapping, unmap_start,
2776 					    1 + unmap_end - unmap_start, 0);
2777 		shmem_truncate_range(inode, offset, offset + len - 1);
2778 		/* No need to unmap again: hole-punching leaves COWed pages */
2779 
2780 		spin_lock(&inode->i_lock);
2781 		inode->i_private = NULL;
2782 		wake_up_all(&shmem_falloc_waitq);
2783 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2784 		spin_unlock(&inode->i_lock);
2785 		error = 0;
2786 		goto out;
2787 	}
2788 
2789 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2790 	error = inode_newsize_ok(inode, offset + len);
2791 	if (error)
2792 		goto out;
2793 
2794 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2795 		error = -EPERM;
2796 		goto out;
2797 	}
2798 
2799 	start = offset >> PAGE_SHIFT;
2800 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2801 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2802 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2803 		error = -ENOSPC;
2804 		goto out;
2805 	}
2806 
2807 	shmem_falloc.waitq = NULL;
2808 	shmem_falloc.start = start;
2809 	shmem_falloc.next  = start;
2810 	shmem_falloc.nr_falloced = 0;
2811 	shmem_falloc.nr_unswapped = 0;
2812 	spin_lock(&inode->i_lock);
2813 	inode->i_private = &shmem_falloc;
2814 	spin_unlock(&inode->i_lock);
2815 
2816 	/*
2817 	 * info->fallocend is only relevant when huge pages might be
2818 	 * involved: to prevent split_huge_page() freeing fallocated
2819 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2820 	 */
2821 	undo_fallocend = info->fallocend;
2822 	if (info->fallocend < end)
2823 		info->fallocend = end;
2824 
2825 	for (index = start; index < end; ) {
2826 		struct folio *folio;
2827 
2828 		/*
2829 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2830 		 * been interrupted because we are using up too much memory.
2831 		 */
2832 		if (signal_pending(current))
2833 			error = -EINTR;
2834 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2835 			error = -ENOMEM;
2836 		else
2837 			error = shmem_get_folio(inode, index, &folio,
2838 						SGP_FALLOC);
2839 		if (error) {
2840 			info->fallocend = undo_fallocend;
2841 			/* Remove the !uptodate folios we added */
2842 			if (index > start) {
2843 				shmem_undo_range(inode,
2844 				    (loff_t)start << PAGE_SHIFT,
2845 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2846 			}
2847 			goto undone;
2848 		}
2849 
2850 		/*
2851 		 * Here is a more important optimization than it appears:
2852 		 * a second SGP_FALLOC on the same large folio will clear it,
2853 		 * making it uptodate and un-undoable if we fail later.
2854 		 */
2855 		index = folio_next_index(folio);
2856 		/* Beware 32-bit wraparound */
2857 		if (!index)
2858 			index--;
2859 
2860 		/*
2861 		 * Inform shmem_writepage() how far we have reached.
2862 		 * No need for lock or barrier: we have the page lock.
2863 		 */
2864 		if (!folio_test_uptodate(folio))
2865 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2866 		shmem_falloc.next = index;
2867 
2868 		/*
2869 		 * If !uptodate, leave it that way so that freeable folios
2870 		 * can be recognized if we need to rollback on error later.
2871 		 * But mark it dirty so that memory pressure will swap rather
2872 		 * than free the folios we are allocating (and SGP_CACHE folios
2873 		 * might still be clean: we now need to mark those dirty too).
2874 		 */
2875 		folio_mark_dirty(folio);
2876 		folio_unlock(folio);
2877 		folio_put(folio);
2878 		cond_resched();
2879 	}
2880 
2881 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2882 		i_size_write(inode, offset + len);
2883 undone:
2884 	spin_lock(&inode->i_lock);
2885 	inode->i_private = NULL;
2886 	spin_unlock(&inode->i_lock);
2887 out:
2888 	if (!error)
2889 		file_modified(file);
2890 	inode_unlock(inode);
2891 	return error;
2892 }
2893 
2894 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2895 {
2896 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2897 
2898 	buf->f_type = TMPFS_MAGIC;
2899 	buf->f_bsize = PAGE_SIZE;
2900 	buf->f_namelen = NAME_MAX;
2901 	if (sbinfo->max_blocks) {
2902 		buf->f_blocks = sbinfo->max_blocks;
2903 		buf->f_bavail =
2904 		buf->f_bfree  = sbinfo->max_blocks -
2905 				percpu_counter_sum(&sbinfo->used_blocks);
2906 	}
2907 	if (sbinfo->max_inodes) {
2908 		buf->f_files = sbinfo->max_inodes;
2909 		buf->f_ffree = sbinfo->free_inodes;
2910 	}
2911 	/* else leave those fields 0 like simple_statfs */
2912 
2913 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2914 
2915 	return 0;
2916 }
2917 
2918 /*
2919  * File creation. Allocate an inode, and we're done..
2920  */
2921 static int
2922 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2923 	    struct dentry *dentry, umode_t mode, dev_t dev)
2924 {
2925 	struct inode *inode;
2926 	int error = -ENOSPC;
2927 
2928 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2929 	if (inode) {
2930 		error = simple_acl_create(dir, inode);
2931 		if (error)
2932 			goto out_iput;
2933 		error = security_inode_init_security(inode, dir,
2934 						     &dentry->d_name,
2935 						     shmem_initxattrs, NULL);
2936 		if (error && error != -EOPNOTSUPP)
2937 			goto out_iput;
2938 
2939 		error = 0;
2940 		dir->i_size += BOGO_DIRENT_SIZE;
2941 		dir->i_ctime = dir->i_mtime = current_time(dir);
2942 		inode_inc_iversion(dir);
2943 		d_instantiate(dentry, inode);
2944 		dget(dentry); /* Extra count - pin the dentry in core */
2945 	}
2946 	return error;
2947 out_iput:
2948 	iput(inode);
2949 	return error;
2950 }
2951 
2952 static int
2953 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2954 	      struct file *file, umode_t mode)
2955 {
2956 	struct inode *inode;
2957 	int error = -ENOSPC;
2958 
2959 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2960 	if (inode) {
2961 		error = security_inode_init_security(inode, dir,
2962 						     NULL,
2963 						     shmem_initxattrs, NULL);
2964 		if (error && error != -EOPNOTSUPP)
2965 			goto out_iput;
2966 		error = simple_acl_create(dir, inode);
2967 		if (error)
2968 			goto out_iput;
2969 		d_tmpfile(file, inode);
2970 	}
2971 	return finish_open_simple(file, error);
2972 out_iput:
2973 	iput(inode);
2974 	return error;
2975 }
2976 
2977 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2978 		       struct dentry *dentry, umode_t mode)
2979 {
2980 	int error;
2981 
2982 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2983 				 mode | S_IFDIR, 0)))
2984 		return error;
2985 	inc_nlink(dir);
2986 	return 0;
2987 }
2988 
2989 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2990 			struct dentry *dentry, umode_t mode, bool excl)
2991 {
2992 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2993 }
2994 
2995 /*
2996  * Link a file..
2997  */
2998 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2999 {
3000 	struct inode *inode = d_inode(old_dentry);
3001 	int ret = 0;
3002 
3003 	/*
3004 	 * No ordinary (disk based) filesystem counts links as inodes;
3005 	 * but each new link needs a new dentry, pinning lowmem, and
3006 	 * tmpfs dentries cannot be pruned until they are unlinked.
3007 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3008 	 * first link must skip that, to get the accounting right.
3009 	 */
3010 	if (inode->i_nlink) {
3011 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3012 		if (ret)
3013 			goto out;
3014 	}
3015 
3016 	dir->i_size += BOGO_DIRENT_SIZE;
3017 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3018 	inode_inc_iversion(dir);
3019 	inc_nlink(inode);
3020 	ihold(inode);	/* New dentry reference */
3021 	dget(dentry);		/* Extra pinning count for the created dentry */
3022 	d_instantiate(dentry, inode);
3023 out:
3024 	return ret;
3025 }
3026 
3027 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3028 {
3029 	struct inode *inode = d_inode(dentry);
3030 
3031 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3032 		shmem_free_inode(inode->i_sb);
3033 
3034 	dir->i_size -= BOGO_DIRENT_SIZE;
3035 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3036 	inode_inc_iversion(dir);
3037 	drop_nlink(inode);
3038 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3039 	return 0;
3040 }
3041 
3042 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3043 {
3044 	if (!simple_empty(dentry))
3045 		return -ENOTEMPTY;
3046 
3047 	drop_nlink(d_inode(dentry));
3048 	drop_nlink(dir);
3049 	return shmem_unlink(dir, dentry);
3050 }
3051 
3052 static int shmem_whiteout(struct user_namespace *mnt_userns,
3053 			  struct inode *old_dir, struct dentry *old_dentry)
3054 {
3055 	struct dentry *whiteout;
3056 	int error;
3057 
3058 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3059 	if (!whiteout)
3060 		return -ENOMEM;
3061 
3062 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3063 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3064 	dput(whiteout);
3065 	if (error)
3066 		return error;
3067 
3068 	/*
3069 	 * Cheat and hash the whiteout while the old dentry is still in
3070 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3071 	 *
3072 	 * d_lookup() will consistently find one of them at this point,
3073 	 * not sure which one, but that isn't even important.
3074 	 */
3075 	d_rehash(whiteout);
3076 	return 0;
3077 }
3078 
3079 /*
3080  * The VFS layer already does all the dentry stuff for rename,
3081  * we just have to decrement the usage count for the target if
3082  * it exists so that the VFS layer correctly free's it when it
3083  * gets overwritten.
3084  */
3085 static int shmem_rename2(struct user_namespace *mnt_userns,
3086 			 struct inode *old_dir, struct dentry *old_dentry,
3087 			 struct inode *new_dir, struct dentry *new_dentry,
3088 			 unsigned int flags)
3089 {
3090 	struct inode *inode = d_inode(old_dentry);
3091 	int they_are_dirs = S_ISDIR(inode->i_mode);
3092 
3093 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3094 		return -EINVAL;
3095 
3096 	if (flags & RENAME_EXCHANGE)
3097 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3098 
3099 	if (!simple_empty(new_dentry))
3100 		return -ENOTEMPTY;
3101 
3102 	if (flags & RENAME_WHITEOUT) {
3103 		int error;
3104 
3105 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3106 		if (error)
3107 			return error;
3108 	}
3109 
3110 	if (d_really_is_positive(new_dentry)) {
3111 		(void) shmem_unlink(new_dir, new_dentry);
3112 		if (they_are_dirs) {
3113 			drop_nlink(d_inode(new_dentry));
3114 			drop_nlink(old_dir);
3115 		}
3116 	} else if (they_are_dirs) {
3117 		drop_nlink(old_dir);
3118 		inc_nlink(new_dir);
3119 	}
3120 
3121 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3122 	new_dir->i_size += BOGO_DIRENT_SIZE;
3123 	old_dir->i_ctime = old_dir->i_mtime =
3124 	new_dir->i_ctime = new_dir->i_mtime =
3125 	inode->i_ctime = current_time(old_dir);
3126 	inode_inc_iversion(old_dir);
3127 	inode_inc_iversion(new_dir);
3128 	return 0;
3129 }
3130 
3131 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3132 			 struct dentry *dentry, const char *symname)
3133 {
3134 	int error;
3135 	int len;
3136 	struct inode *inode;
3137 	struct folio *folio;
3138 
3139 	len = strlen(symname) + 1;
3140 	if (len > PAGE_SIZE)
3141 		return -ENAMETOOLONG;
3142 
3143 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3144 				VM_NORESERVE);
3145 	if (!inode)
3146 		return -ENOSPC;
3147 
3148 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3149 					     shmem_initxattrs, NULL);
3150 	if (error && error != -EOPNOTSUPP) {
3151 		iput(inode);
3152 		return error;
3153 	}
3154 
3155 	inode->i_size = len-1;
3156 	if (len <= SHORT_SYMLINK_LEN) {
3157 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3158 		if (!inode->i_link) {
3159 			iput(inode);
3160 			return -ENOMEM;
3161 		}
3162 		inode->i_op = &shmem_short_symlink_operations;
3163 	} else {
3164 		inode_nohighmem(inode);
3165 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3166 		if (error) {
3167 			iput(inode);
3168 			return error;
3169 		}
3170 		inode->i_mapping->a_ops = &shmem_aops;
3171 		inode->i_op = &shmem_symlink_inode_operations;
3172 		memcpy(folio_address(folio), symname, len);
3173 		folio_mark_uptodate(folio);
3174 		folio_mark_dirty(folio);
3175 		folio_unlock(folio);
3176 		folio_put(folio);
3177 	}
3178 	dir->i_size += BOGO_DIRENT_SIZE;
3179 	dir->i_ctime = dir->i_mtime = current_time(dir);
3180 	inode_inc_iversion(dir);
3181 	d_instantiate(dentry, inode);
3182 	dget(dentry);
3183 	return 0;
3184 }
3185 
3186 static void shmem_put_link(void *arg)
3187 {
3188 	folio_mark_accessed(arg);
3189 	folio_put(arg);
3190 }
3191 
3192 static const char *shmem_get_link(struct dentry *dentry,
3193 				  struct inode *inode,
3194 				  struct delayed_call *done)
3195 {
3196 	struct folio *folio = NULL;
3197 	int error;
3198 
3199 	if (!dentry) {
3200 		folio = filemap_get_folio(inode->i_mapping, 0);
3201 		if (!folio)
3202 			return ERR_PTR(-ECHILD);
3203 		if (PageHWPoison(folio_page(folio, 0)) ||
3204 		    !folio_test_uptodate(folio)) {
3205 			folio_put(folio);
3206 			return ERR_PTR(-ECHILD);
3207 		}
3208 	} else {
3209 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3210 		if (error)
3211 			return ERR_PTR(error);
3212 		if (!folio)
3213 			return ERR_PTR(-ECHILD);
3214 		if (PageHWPoison(folio_page(folio, 0))) {
3215 			folio_unlock(folio);
3216 			folio_put(folio);
3217 			return ERR_PTR(-ECHILD);
3218 		}
3219 		folio_unlock(folio);
3220 	}
3221 	set_delayed_call(done, shmem_put_link, folio);
3222 	return folio_address(folio);
3223 }
3224 
3225 #ifdef CONFIG_TMPFS_XATTR
3226 
3227 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3228 {
3229 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3230 
3231 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3232 
3233 	return 0;
3234 }
3235 
3236 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3237 			      struct dentry *dentry, struct fileattr *fa)
3238 {
3239 	struct inode *inode = d_inode(dentry);
3240 	struct shmem_inode_info *info = SHMEM_I(inode);
3241 
3242 	if (fileattr_has_fsx(fa))
3243 		return -EOPNOTSUPP;
3244 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3245 		return -EOPNOTSUPP;
3246 
3247 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3248 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3249 
3250 	shmem_set_inode_flags(inode, info->fsflags);
3251 	inode->i_ctime = current_time(inode);
3252 	inode_inc_iversion(inode);
3253 	return 0;
3254 }
3255 
3256 /*
3257  * Superblocks without xattr inode operations may get some security.* xattr
3258  * support from the LSM "for free". As soon as we have any other xattrs
3259  * like ACLs, we also need to implement the security.* handlers at
3260  * filesystem level, though.
3261  */
3262 
3263 /*
3264  * Callback for security_inode_init_security() for acquiring xattrs.
3265  */
3266 static int shmem_initxattrs(struct inode *inode,
3267 			    const struct xattr *xattr_array,
3268 			    void *fs_info)
3269 {
3270 	struct shmem_inode_info *info = SHMEM_I(inode);
3271 	const struct xattr *xattr;
3272 	struct simple_xattr *new_xattr;
3273 	size_t len;
3274 
3275 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3276 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3277 		if (!new_xattr)
3278 			return -ENOMEM;
3279 
3280 		len = strlen(xattr->name) + 1;
3281 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3282 					  GFP_KERNEL);
3283 		if (!new_xattr->name) {
3284 			kvfree(new_xattr);
3285 			return -ENOMEM;
3286 		}
3287 
3288 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3289 		       XATTR_SECURITY_PREFIX_LEN);
3290 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3291 		       xattr->name, len);
3292 
3293 		simple_xattr_add(&info->xattrs, new_xattr);
3294 	}
3295 
3296 	return 0;
3297 }
3298 
3299 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3300 				   struct dentry *unused, struct inode *inode,
3301 				   const char *name, void *buffer, size_t size)
3302 {
3303 	struct shmem_inode_info *info = SHMEM_I(inode);
3304 
3305 	name = xattr_full_name(handler, name);
3306 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3307 }
3308 
3309 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3310 				   struct user_namespace *mnt_userns,
3311 				   struct dentry *unused, struct inode *inode,
3312 				   const char *name, const void *value,
3313 				   size_t size, int flags)
3314 {
3315 	struct shmem_inode_info *info = SHMEM_I(inode);
3316 	int err;
3317 
3318 	name = xattr_full_name(handler, name);
3319 	err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3320 	if (!err) {
3321 		inode->i_ctime = current_time(inode);
3322 		inode_inc_iversion(inode);
3323 	}
3324 	return err;
3325 }
3326 
3327 static const struct xattr_handler shmem_security_xattr_handler = {
3328 	.prefix = XATTR_SECURITY_PREFIX,
3329 	.get = shmem_xattr_handler_get,
3330 	.set = shmem_xattr_handler_set,
3331 };
3332 
3333 static const struct xattr_handler shmem_trusted_xattr_handler = {
3334 	.prefix = XATTR_TRUSTED_PREFIX,
3335 	.get = shmem_xattr_handler_get,
3336 	.set = shmem_xattr_handler_set,
3337 };
3338 
3339 static const struct xattr_handler *shmem_xattr_handlers[] = {
3340 #ifdef CONFIG_TMPFS_POSIX_ACL
3341 	&posix_acl_access_xattr_handler,
3342 	&posix_acl_default_xattr_handler,
3343 #endif
3344 	&shmem_security_xattr_handler,
3345 	&shmem_trusted_xattr_handler,
3346 	NULL
3347 };
3348 
3349 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3350 {
3351 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3352 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3353 }
3354 #endif /* CONFIG_TMPFS_XATTR */
3355 
3356 static const struct inode_operations shmem_short_symlink_operations = {
3357 	.getattr	= shmem_getattr,
3358 	.get_link	= simple_get_link,
3359 #ifdef CONFIG_TMPFS_XATTR
3360 	.listxattr	= shmem_listxattr,
3361 #endif
3362 };
3363 
3364 static const struct inode_operations shmem_symlink_inode_operations = {
3365 	.getattr	= shmem_getattr,
3366 	.get_link	= shmem_get_link,
3367 #ifdef CONFIG_TMPFS_XATTR
3368 	.listxattr	= shmem_listxattr,
3369 #endif
3370 };
3371 
3372 static struct dentry *shmem_get_parent(struct dentry *child)
3373 {
3374 	return ERR_PTR(-ESTALE);
3375 }
3376 
3377 static int shmem_match(struct inode *ino, void *vfh)
3378 {
3379 	__u32 *fh = vfh;
3380 	__u64 inum = fh[2];
3381 	inum = (inum << 32) | fh[1];
3382 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3383 }
3384 
3385 /* Find any alias of inode, but prefer a hashed alias */
3386 static struct dentry *shmem_find_alias(struct inode *inode)
3387 {
3388 	struct dentry *alias = d_find_alias(inode);
3389 
3390 	return alias ?: d_find_any_alias(inode);
3391 }
3392 
3393 
3394 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3395 		struct fid *fid, int fh_len, int fh_type)
3396 {
3397 	struct inode *inode;
3398 	struct dentry *dentry = NULL;
3399 	u64 inum;
3400 
3401 	if (fh_len < 3)
3402 		return NULL;
3403 
3404 	inum = fid->raw[2];
3405 	inum = (inum << 32) | fid->raw[1];
3406 
3407 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3408 			shmem_match, fid->raw);
3409 	if (inode) {
3410 		dentry = shmem_find_alias(inode);
3411 		iput(inode);
3412 	}
3413 
3414 	return dentry;
3415 }
3416 
3417 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3418 				struct inode *parent)
3419 {
3420 	if (*len < 3) {
3421 		*len = 3;
3422 		return FILEID_INVALID;
3423 	}
3424 
3425 	if (inode_unhashed(inode)) {
3426 		/* Unfortunately insert_inode_hash is not idempotent,
3427 		 * so as we hash inodes here rather than at creation
3428 		 * time, we need a lock to ensure we only try
3429 		 * to do it once
3430 		 */
3431 		static DEFINE_SPINLOCK(lock);
3432 		spin_lock(&lock);
3433 		if (inode_unhashed(inode))
3434 			__insert_inode_hash(inode,
3435 					    inode->i_ino + inode->i_generation);
3436 		spin_unlock(&lock);
3437 	}
3438 
3439 	fh[0] = inode->i_generation;
3440 	fh[1] = inode->i_ino;
3441 	fh[2] = ((__u64)inode->i_ino) >> 32;
3442 
3443 	*len = 3;
3444 	return 1;
3445 }
3446 
3447 static const struct export_operations shmem_export_ops = {
3448 	.get_parent     = shmem_get_parent,
3449 	.encode_fh      = shmem_encode_fh,
3450 	.fh_to_dentry	= shmem_fh_to_dentry,
3451 };
3452 
3453 enum shmem_param {
3454 	Opt_gid,
3455 	Opt_huge,
3456 	Opt_mode,
3457 	Opt_mpol,
3458 	Opt_nr_blocks,
3459 	Opt_nr_inodes,
3460 	Opt_size,
3461 	Opt_uid,
3462 	Opt_inode32,
3463 	Opt_inode64,
3464 };
3465 
3466 static const struct constant_table shmem_param_enums_huge[] = {
3467 	{"never",	SHMEM_HUGE_NEVER },
3468 	{"always",	SHMEM_HUGE_ALWAYS },
3469 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3470 	{"advise",	SHMEM_HUGE_ADVISE },
3471 	{}
3472 };
3473 
3474 const struct fs_parameter_spec shmem_fs_parameters[] = {
3475 	fsparam_u32   ("gid",		Opt_gid),
3476 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3477 	fsparam_u32oct("mode",		Opt_mode),
3478 	fsparam_string("mpol",		Opt_mpol),
3479 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3480 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3481 	fsparam_string("size",		Opt_size),
3482 	fsparam_u32   ("uid",		Opt_uid),
3483 	fsparam_flag  ("inode32",	Opt_inode32),
3484 	fsparam_flag  ("inode64",	Opt_inode64),
3485 	{}
3486 };
3487 
3488 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3489 {
3490 	struct shmem_options *ctx = fc->fs_private;
3491 	struct fs_parse_result result;
3492 	unsigned long long size;
3493 	char *rest;
3494 	int opt;
3495 
3496 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3497 	if (opt < 0)
3498 		return opt;
3499 
3500 	switch (opt) {
3501 	case Opt_size:
3502 		size = memparse(param->string, &rest);
3503 		if (*rest == '%') {
3504 			size <<= PAGE_SHIFT;
3505 			size *= totalram_pages();
3506 			do_div(size, 100);
3507 			rest++;
3508 		}
3509 		if (*rest)
3510 			goto bad_value;
3511 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3512 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3513 		break;
3514 	case Opt_nr_blocks:
3515 		ctx->blocks = memparse(param->string, &rest);
3516 		if (*rest || ctx->blocks > S64_MAX)
3517 			goto bad_value;
3518 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3519 		break;
3520 	case Opt_nr_inodes:
3521 		ctx->inodes = memparse(param->string, &rest);
3522 		if (*rest)
3523 			goto bad_value;
3524 		ctx->seen |= SHMEM_SEEN_INODES;
3525 		break;
3526 	case Opt_mode:
3527 		ctx->mode = result.uint_32 & 07777;
3528 		break;
3529 	case Opt_uid:
3530 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3531 		if (!uid_valid(ctx->uid))
3532 			goto bad_value;
3533 		break;
3534 	case Opt_gid:
3535 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3536 		if (!gid_valid(ctx->gid))
3537 			goto bad_value;
3538 		break;
3539 	case Opt_huge:
3540 		ctx->huge = result.uint_32;
3541 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3542 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3543 		      has_transparent_hugepage()))
3544 			goto unsupported_parameter;
3545 		ctx->seen |= SHMEM_SEEN_HUGE;
3546 		break;
3547 	case Opt_mpol:
3548 		if (IS_ENABLED(CONFIG_NUMA)) {
3549 			mpol_put(ctx->mpol);
3550 			ctx->mpol = NULL;
3551 			if (mpol_parse_str(param->string, &ctx->mpol))
3552 				goto bad_value;
3553 			break;
3554 		}
3555 		goto unsupported_parameter;
3556 	case Opt_inode32:
3557 		ctx->full_inums = false;
3558 		ctx->seen |= SHMEM_SEEN_INUMS;
3559 		break;
3560 	case Opt_inode64:
3561 		if (sizeof(ino_t) < 8) {
3562 			return invalfc(fc,
3563 				       "Cannot use inode64 with <64bit inums in kernel\n");
3564 		}
3565 		ctx->full_inums = true;
3566 		ctx->seen |= SHMEM_SEEN_INUMS;
3567 		break;
3568 	}
3569 	return 0;
3570 
3571 unsupported_parameter:
3572 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3573 bad_value:
3574 	return invalfc(fc, "Bad value for '%s'", param->key);
3575 }
3576 
3577 static int shmem_parse_options(struct fs_context *fc, void *data)
3578 {
3579 	char *options = data;
3580 
3581 	if (options) {
3582 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3583 		if (err)
3584 			return err;
3585 	}
3586 
3587 	while (options != NULL) {
3588 		char *this_char = options;
3589 		for (;;) {
3590 			/*
3591 			 * NUL-terminate this option: unfortunately,
3592 			 * mount options form a comma-separated list,
3593 			 * but mpol's nodelist may also contain commas.
3594 			 */
3595 			options = strchr(options, ',');
3596 			if (options == NULL)
3597 				break;
3598 			options++;
3599 			if (!isdigit(*options)) {
3600 				options[-1] = '\0';
3601 				break;
3602 			}
3603 		}
3604 		if (*this_char) {
3605 			char *value = strchr(this_char, '=');
3606 			size_t len = 0;
3607 			int err;
3608 
3609 			if (value) {
3610 				*value++ = '\0';
3611 				len = strlen(value);
3612 			}
3613 			err = vfs_parse_fs_string(fc, this_char, value, len);
3614 			if (err < 0)
3615 				return err;
3616 		}
3617 	}
3618 	return 0;
3619 }
3620 
3621 /*
3622  * Reconfigure a shmem filesystem.
3623  *
3624  * Note that we disallow change from limited->unlimited blocks/inodes while any
3625  * are in use; but we must separately disallow unlimited->limited, because in
3626  * that case we have no record of how much is already in use.
3627  */
3628 static int shmem_reconfigure(struct fs_context *fc)
3629 {
3630 	struct shmem_options *ctx = fc->fs_private;
3631 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3632 	unsigned long inodes;
3633 	struct mempolicy *mpol = NULL;
3634 	const char *err;
3635 
3636 	raw_spin_lock(&sbinfo->stat_lock);
3637 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3638 
3639 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3640 		if (!sbinfo->max_blocks) {
3641 			err = "Cannot retroactively limit size";
3642 			goto out;
3643 		}
3644 		if (percpu_counter_compare(&sbinfo->used_blocks,
3645 					   ctx->blocks) > 0) {
3646 			err = "Too small a size for current use";
3647 			goto out;
3648 		}
3649 	}
3650 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3651 		if (!sbinfo->max_inodes) {
3652 			err = "Cannot retroactively limit inodes";
3653 			goto out;
3654 		}
3655 		if (ctx->inodes < inodes) {
3656 			err = "Too few inodes for current use";
3657 			goto out;
3658 		}
3659 	}
3660 
3661 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3662 	    sbinfo->next_ino > UINT_MAX) {
3663 		err = "Current inum too high to switch to 32-bit inums";
3664 		goto out;
3665 	}
3666 
3667 	if (ctx->seen & SHMEM_SEEN_HUGE)
3668 		sbinfo->huge = ctx->huge;
3669 	if (ctx->seen & SHMEM_SEEN_INUMS)
3670 		sbinfo->full_inums = ctx->full_inums;
3671 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3672 		sbinfo->max_blocks  = ctx->blocks;
3673 	if (ctx->seen & SHMEM_SEEN_INODES) {
3674 		sbinfo->max_inodes  = ctx->inodes;
3675 		sbinfo->free_inodes = ctx->inodes - inodes;
3676 	}
3677 
3678 	/*
3679 	 * Preserve previous mempolicy unless mpol remount option was specified.
3680 	 */
3681 	if (ctx->mpol) {
3682 		mpol = sbinfo->mpol;
3683 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3684 		ctx->mpol = NULL;
3685 	}
3686 	raw_spin_unlock(&sbinfo->stat_lock);
3687 	mpol_put(mpol);
3688 	return 0;
3689 out:
3690 	raw_spin_unlock(&sbinfo->stat_lock);
3691 	return invalfc(fc, "%s", err);
3692 }
3693 
3694 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3695 {
3696 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3697 
3698 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3699 		seq_printf(seq, ",size=%luk",
3700 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3701 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3702 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3703 	if (sbinfo->mode != (0777 | S_ISVTX))
3704 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3705 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3706 		seq_printf(seq, ",uid=%u",
3707 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3708 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3709 		seq_printf(seq, ",gid=%u",
3710 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3711 
3712 	/*
3713 	 * Showing inode{64,32} might be useful even if it's the system default,
3714 	 * since then people don't have to resort to checking both here and
3715 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3716 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3717 	 *
3718 	 * We hide it when inode64 isn't the default and we are using 32-bit
3719 	 * inodes, since that probably just means the feature isn't even under
3720 	 * consideration.
3721 	 *
3722 	 * As such:
3723 	 *
3724 	 *                     +-----------------+-----------------+
3725 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3726 	 *  +------------------+-----------------+-----------------+
3727 	 *  | full_inums=true  | show            | show            |
3728 	 *  | full_inums=false | show            | hide            |
3729 	 *  +------------------+-----------------+-----------------+
3730 	 *
3731 	 */
3732 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3733 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3735 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3736 	if (sbinfo->huge)
3737 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3738 #endif
3739 	shmem_show_mpol(seq, sbinfo->mpol);
3740 	return 0;
3741 }
3742 
3743 #endif /* CONFIG_TMPFS */
3744 
3745 static void shmem_put_super(struct super_block *sb)
3746 {
3747 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3748 
3749 	free_percpu(sbinfo->ino_batch);
3750 	percpu_counter_destroy(&sbinfo->used_blocks);
3751 	mpol_put(sbinfo->mpol);
3752 	kfree(sbinfo);
3753 	sb->s_fs_info = NULL;
3754 }
3755 
3756 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3757 {
3758 	struct shmem_options *ctx = fc->fs_private;
3759 	struct inode *inode;
3760 	struct shmem_sb_info *sbinfo;
3761 
3762 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3763 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3764 				L1_CACHE_BYTES), GFP_KERNEL);
3765 	if (!sbinfo)
3766 		return -ENOMEM;
3767 
3768 	sb->s_fs_info = sbinfo;
3769 
3770 #ifdef CONFIG_TMPFS
3771 	/*
3772 	 * Per default we only allow half of the physical ram per
3773 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3774 	 * but the internal instance is left unlimited.
3775 	 */
3776 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3777 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3778 			ctx->blocks = shmem_default_max_blocks();
3779 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3780 			ctx->inodes = shmem_default_max_inodes();
3781 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3782 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3783 	} else {
3784 		sb->s_flags |= SB_NOUSER;
3785 	}
3786 	sb->s_export_op = &shmem_export_ops;
3787 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3788 #else
3789 	sb->s_flags |= SB_NOUSER;
3790 #endif
3791 	sbinfo->max_blocks = ctx->blocks;
3792 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3793 	if (sb->s_flags & SB_KERNMOUNT) {
3794 		sbinfo->ino_batch = alloc_percpu(ino_t);
3795 		if (!sbinfo->ino_batch)
3796 			goto failed;
3797 	}
3798 	sbinfo->uid = ctx->uid;
3799 	sbinfo->gid = ctx->gid;
3800 	sbinfo->full_inums = ctx->full_inums;
3801 	sbinfo->mode = ctx->mode;
3802 	sbinfo->huge = ctx->huge;
3803 	sbinfo->mpol = ctx->mpol;
3804 	ctx->mpol = NULL;
3805 
3806 	raw_spin_lock_init(&sbinfo->stat_lock);
3807 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3808 		goto failed;
3809 	spin_lock_init(&sbinfo->shrinklist_lock);
3810 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3811 
3812 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3813 	sb->s_blocksize = PAGE_SIZE;
3814 	sb->s_blocksize_bits = PAGE_SHIFT;
3815 	sb->s_magic = TMPFS_MAGIC;
3816 	sb->s_op = &shmem_ops;
3817 	sb->s_time_gran = 1;
3818 #ifdef CONFIG_TMPFS_XATTR
3819 	sb->s_xattr = shmem_xattr_handlers;
3820 #endif
3821 #ifdef CONFIG_TMPFS_POSIX_ACL
3822 	sb->s_flags |= SB_POSIXACL;
3823 #endif
3824 	uuid_gen(&sb->s_uuid);
3825 
3826 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3827 	if (!inode)
3828 		goto failed;
3829 	inode->i_uid = sbinfo->uid;
3830 	inode->i_gid = sbinfo->gid;
3831 	sb->s_root = d_make_root(inode);
3832 	if (!sb->s_root)
3833 		goto failed;
3834 	return 0;
3835 
3836 failed:
3837 	shmem_put_super(sb);
3838 	return -ENOMEM;
3839 }
3840 
3841 static int shmem_get_tree(struct fs_context *fc)
3842 {
3843 	return get_tree_nodev(fc, shmem_fill_super);
3844 }
3845 
3846 static void shmem_free_fc(struct fs_context *fc)
3847 {
3848 	struct shmem_options *ctx = fc->fs_private;
3849 
3850 	if (ctx) {
3851 		mpol_put(ctx->mpol);
3852 		kfree(ctx);
3853 	}
3854 }
3855 
3856 static const struct fs_context_operations shmem_fs_context_ops = {
3857 	.free			= shmem_free_fc,
3858 	.get_tree		= shmem_get_tree,
3859 #ifdef CONFIG_TMPFS
3860 	.parse_monolithic	= shmem_parse_options,
3861 	.parse_param		= shmem_parse_one,
3862 	.reconfigure		= shmem_reconfigure,
3863 #endif
3864 };
3865 
3866 static struct kmem_cache *shmem_inode_cachep;
3867 
3868 static struct inode *shmem_alloc_inode(struct super_block *sb)
3869 {
3870 	struct shmem_inode_info *info;
3871 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3872 	if (!info)
3873 		return NULL;
3874 	return &info->vfs_inode;
3875 }
3876 
3877 static void shmem_free_in_core_inode(struct inode *inode)
3878 {
3879 	if (S_ISLNK(inode->i_mode))
3880 		kfree(inode->i_link);
3881 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3882 }
3883 
3884 static void shmem_destroy_inode(struct inode *inode)
3885 {
3886 	if (S_ISREG(inode->i_mode))
3887 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3888 }
3889 
3890 static void shmem_init_inode(void *foo)
3891 {
3892 	struct shmem_inode_info *info = foo;
3893 	inode_init_once(&info->vfs_inode);
3894 }
3895 
3896 static void shmem_init_inodecache(void)
3897 {
3898 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3899 				sizeof(struct shmem_inode_info),
3900 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3901 }
3902 
3903 static void shmem_destroy_inodecache(void)
3904 {
3905 	kmem_cache_destroy(shmem_inode_cachep);
3906 }
3907 
3908 /* Keep the page in page cache instead of truncating it */
3909 static int shmem_error_remove_page(struct address_space *mapping,
3910 				   struct page *page)
3911 {
3912 	return 0;
3913 }
3914 
3915 const struct address_space_operations shmem_aops = {
3916 	.writepage	= shmem_writepage,
3917 	.dirty_folio	= noop_dirty_folio,
3918 #ifdef CONFIG_TMPFS
3919 	.write_begin	= shmem_write_begin,
3920 	.write_end	= shmem_write_end,
3921 #endif
3922 #ifdef CONFIG_MIGRATION
3923 	.migrate_folio	= migrate_folio,
3924 #endif
3925 	.error_remove_page = shmem_error_remove_page,
3926 };
3927 EXPORT_SYMBOL(shmem_aops);
3928 
3929 static const struct file_operations shmem_file_operations = {
3930 	.mmap		= shmem_mmap,
3931 	.open		= generic_file_open,
3932 	.get_unmapped_area = shmem_get_unmapped_area,
3933 #ifdef CONFIG_TMPFS
3934 	.llseek		= shmem_file_llseek,
3935 	.read_iter	= shmem_file_read_iter,
3936 	.write_iter	= generic_file_write_iter,
3937 	.fsync		= noop_fsync,
3938 	.splice_read	= generic_file_splice_read,
3939 	.splice_write	= iter_file_splice_write,
3940 	.fallocate	= shmem_fallocate,
3941 #endif
3942 };
3943 
3944 static const struct inode_operations shmem_inode_operations = {
3945 	.getattr	= shmem_getattr,
3946 	.setattr	= shmem_setattr,
3947 #ifdef CONFIG_TMPFS_XATTR
3948 	.listxattr	= shmem_listxattr,
3949 	.set_acl	= simple_set_acl,
3950 	.fileattr_get	= shmem_fileattr_get,
3951 	.fileattr_set	= shmem_fileattr_set,
3952 #endif
3953 };
3954 
3955 static const struct inode_operations shmem_dir_inode_operations = {
3956 #ifdef CONFIG_TMPFS
3957 	.getattr	= shmem_getattr,
3958 	.create		= shmem_create,
3959 	.lookup		= simple_lookup,
3960 	.link		= shmem_link,
3961 	.unlink		= shmem_unlink,
3962 	.symlink	= shmem_symlink,
3963 	.mkdir		= shmem_mkdir,
3964 	.rmdir		= shmem_rmdir,
3965 	.mknod		= shmem_mknod,
3966 	.rename		= shmem_rename2,
3967 	.tmpfile	= shmem_tmpfile,
3968 #endif
3969 #ifdef CONFIG_TMPFS_XATTR
3970 	.listxattr	= shmem_listxattr,
3971 	.fileattr_get	= shmem_fileattr_get,
3972 	.fileattr_set	= shmem_fileattr_set,
3973 #endif
3974 #ifdef CONFIG_TMPFS_POSIX_ACL
3975 	.setattr	= shmem_setattr,
3976 	.set_acl	= simple_set_acl,
3977 #endif
3978 };
3979 
3980 static const struct inode_operations shmem_special_inode_operations = {
3981 	.getattr	= shmem_getattr,
3982 #ifdef CONFIG_TMPFS_XATTR
3983 	.listxattr	= shmem_listxattr,
3984 #endif
3985 #ifdef CONFIG_TMPFS_POSIX_ACL
3986 	.setattr	= shmem_setattr,
3987 	.set_acl	= simple_set_acl,
3988 #endif
3989 };
3990 
3991 static const struct super_operations shmem_ops = {
3992 	.alloc_inode	= shmem_alloc_inode,
3993 	.free_inode	= shmem_free_in_core_inode,
3994 	.destroy_inode	= shmem_destroy_inode,
3995 #ifdef CONFIG_TMPFS
3996 	.statfs		= shmem_statfs,
3997 	.show_options	= shmem_show_options,
3998 #endif
3999 	.evict_inode	= shmem_evict_inode,
4000 	.drop_inode	= generic_delete_inode,
4001 	.put_super	= shmem_put_super,
4002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4003 	.nr_cached_objects	= shmem_unused_huge_count,
4004 	.free_cached_objects	= shmem_unused_huge_scan,
4005 #endif
4006 };
4007 
4008 static const struct vm_operations_struct shmem_vm_ops = {
4009 	.fault		= shmem_fault,
4010 	.map_pages	= filemap_map_pages,
4011 #ifdef CONFIG_NUMA
4012 	.set_policy     = shmem_set_policy,
4013 	.get_policy     = shmem_get_policy,
4014 #endif
4015 };
4016 
4017 static const struct vm_operations_struct shmem_anon_vm_ops = {
4018 	.fault		= shmem_fault,
4019 	.map_pages	= filemap_map_pages,
4020 #ifdef CONFIG_NUMA
4021 	.set_policy     = shmem_set_policy,
4022 	.get_policy     = shmem_get_policy,
4023 #endif
4024 };
4025 
4026 int shmem_init_fs_context(struct fs_context *fc)
4027 {
4028 	struct shmem_options *ctx;
4029 
4030 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4031 	if (!ctx)
4032 		return -ENOMEM;
4033 
4034 	ctx->mode = 0777 | S_ISVTX;
4035 	ctx->uid = current_fsuid();
4036 	ctx->gid = current_fsgid();
4037 
4038 	fc->fs_private = ctx;
4039 	fc->ops = &shmem_fs_context_ops;
4040 	return 0;
4041 }
4042 
4043 static struct file_system_type shmem_fs_type = {
4044 	.owner		= THIS_MODULE,
4045 	.name		= "tmpfs",
4046 	.init_fs_context = shmem_init_fs_context,
4047 #ifdef CONFIG_TMPFS
4048 	.parameters	= shmem_fs_parameters,
4049 #endif
4050 	.kill_sb	= kill_litter_super,
4051 	.fs_flags	= FS_USERNS_MOUNT,
4052 };
4053 
4054 void __init shmem_init(void)
4055 {
4056 	int error;
4057 
4058 	shmem_init_inodecache();
4059 
4060 	error = register_filesystem(&shmem_fs_type);
4061 	if (error) {
4062 		pr_err("Could not register tmpfs\n");
4063 		goto out2;
4064 	}
4065 
4066 	shm_mnt = kern_mount(&shmem_fs_type);
4067 	if (IS_ERR(shm_mnt)) {
4068 		error = PTR_ERR(shm_mnt);
4069 		pr_err("Could not kern_mount tmpfs\n");
4070 		goto out1;
4071 	}
4072 
4073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4074 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4075 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4076 	else
4077 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4078 #endif
4079 	return;
4080 
4081 out1:
4082 	unregister_filesystem(&shmem_fs_type);
4083 out2:
4084 	shmem_destroy_inodecache();
4085 	shm_mnt = ERR_PTR(error);
4086 }
4087 
4088 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4089 static ssize_t shmem_enabled_show(struct kobject *kobj,
4090 				  struct kobj_attribute *attr, char *buf)
4091 {
4092 	static const int values[] = {
4093 		SHMEM_HUGE_ALWAYS,
4094 		SHMEM_HUGE_WITHIN_SIZE,
4095 		SHMEM_HUGE_ADVISE,
4096 		SHMEM_HUGE_NEVER,
4097 		SHMEM_HUGE_DENY,
4098 		SHMEM_HUGE_FORCE,
4099 	};
4100 	int len = 0;
4101 	int i;
4102 
4103 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4104 		len += sysfs_emit_at(buf, len,
4105 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4106 				     i ? " " : "",
4107 				     shmem_format_huge(values[i]));
4108 	}
4109 
4110 	len += sysfs_emit_at(buf, len, "\n");
4111 
4112 	return len;
4113 }
4114 
4115 static ssize_t shmem_enabled_store(struct kobject *kobj,
4116 		struct kobj_attribute *attr, const char *buf, size_t count)
4117 {
4118 	char tmp[16];
4119 	int huge;
4120 
4121 	if (count + 1 > sizeof(tmp))
4122 		return -EINVAL;
4123 	memcpy(tmp, buf, count);
4124 	tmp[count] = '\0';
4125 	if (count && tmp[count - 1] == '\n')
4126 		tmp[count - 1] = '\0';
4127 
4128 	huge = shmem_parse_huge(tmp);
4129 	if (huge == -EINVAL)
4130 		return -EINVAL;
4131 	if (!has_transparent_hugepage() &&
4132 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4133 		return -EINVAL;
4134 
4135 	shmem_huge = huge;
4136 	if (shmem_huge > SHMEM_HUGE_DENY)
4137 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4138 	return count;
4139 }
4140 
4141 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4143 
4144 #else /* !CONFIG_SHMEM */
4145 
4146 /*
4147  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4148  *
4149  * This is intended for small system where the benefits of the full
4150  * shmem code (swap-backed and resource-limited) are outweighed by
4151  * their complexity. On systems without swap this code should be
4152  * effectively equivalent, but much lighter weight.
4153  */
4154 
4155 static struct file_system_type shmem_fs_type = {
4156 	.name		= "tmpfs",
4157 	.init_fs_context = ramfs_init_fs_context,
4158 	.parameters	= ramfs_fs_parameters,
4159 	.kill_sb	= kill_litter_super,
4160 	.fs_flags	= FS_USERNS_MOUNT,
4161 };
4162 
4163 void __init shmem_init(void)
4164 {
4165 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4166 
4167 	shm_mnt = kern_mount(&shmem_fs_type);
4168 	BUG_ON(IS_ERR(shm_mnt));
4169 }
4170 
4171 int shmem_unuse(unsigned int type)
4172 {
4173 	return 0;
4174 }
4175 
4176 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4177 {
4178 	return 0;
4179 }
4180 
4181 void shmem_unlock_mapping(struct address_space *mapping)
4182 {
4183 }
4184 
4185 #ifdef CONFIG_MMU
4186 unsigned long shmem_get_unmapped_area(struct file *file,
4187 				      unsigned long addr, unsigned long len,
4188 				      unsigned long pgoff, unsigned long flags)
4189 {
4190 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4191 }
4192 #endif
4193 
4194 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4195 {
4196 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4197 }
4198 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4199 
4200 #define shmem_vm_ops				generic_file_vm_ops
4201 #define shmem_anon_vm_ops			generic_file_vm_ops
4202 #define shmem_file_operations			ramfs_file_operations
4203 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4204 #define shmem_acct_size(flags, size)		0
4205 #define shmem_unacct_size(flags, size)		do {} while (0)
4206 
4207 #endif /* CONFIG_SHMEM */
4208 
4209 /* common code */
4210 
4211 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4212 				       unsigned long flags, unsigned int i_flags)
4213 {
4214 	struct inode *inode;
4215 	struct file *res;
4216 
4217 	if (IS_ERR(mnt))
4218 		return ERR_CAST(mnt);
4219 
4220 	if (size < 0 || size > MAX_LFS_FILESIZE)
4221 		return ERR_PTR(-EINVAL);
4222 
4223 	if (shmem_acct_size(flags, size))
4224 		return ERR_PTR(-ENOMEM);
4225 
4226 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4227 				flags);
4228 	if (unlikely(!inode)) {
4229 		shmem_unacct_size(flags, size);
4230 		return ERR_PTR(-ENOSPC);
4231 	}
4232 	inode->i_flags |= i_flags;
4233 	inode->i_size = size;
4234 	clear_nlink(inode);	/* It is unlinked */
4235 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4236 	if (!IS_ERR(res))
4237 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4238 				&shmem_file_operations);
4239 	if (IS_ERR(res))
4240 		iput(inode);
4241 	return res;
4242 }
4243 
4244 /**
4245  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4246  * 	kernel internal.  There will be NO LSM permission checks against the
4247  * 	underlying inode.  So users of this interface must do LSM checks at a
4248  *	higher layer.  The users are the big_key and shm implementations.  LSM
4249  *	checks are provided at the key or shm level rather than the inode.
4250  * @name: name for dentry (to be seen in /proc/<pid>/maps
4251  * @size: size to be set for the file
4252  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4253  */
4254 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4255 {
4256 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4257 }
4258 
4259 /**
4260  * shmem_file_setup - get an unlinked file living in tmpfs
4261  * @name: name for dentry (to be seen in /proc/<pid>/maps
4262  * @size: size to be set for the file
4263  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4264  */
4265 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4266 {
4267 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4268 }
4269 EXPORT_SYMBOL_GPL(shmem_file_setup);
4270 
4271 /**
4272  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4273  * @mnt: the tmpfs mount where the file will be created
4274  * @name: name for dentry (to be seen in /proc/<pid>/maps
4275  * @size: size to be set for the file
4276  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4277  */
4278 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4279 				       loff_t size, unsigned long flags)
4280 {
4281 	return __shmem_file_setup(mnt, name, size, flags, 0);
4282 }
4283 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4284 
4285 /**
4286  * shmem_zero_setup - setup a shared anonymous mapping
4287  * @vma: the vma to be mmapped is prepared by do_mmap
4288  */
4289 int shmem_zero_setup(struct vm_area_struct *vma)
4290 {
4291 	struct file *file;
4292 	loff_t size = vma->vm_end - vma->vm_start;
4293 
4294 	/*
4295 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4296 	 * between XFS directory reading and selinux: since this file is only
4297 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4298 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4299 	 */
4300 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4301 	if (IS_ERR(file))
4302 		return PTR_ERR(file);
4303 
4304 	if (vma->vm_file)
4305 		fput(vma->vm_file);
4306 	vma->vm_file = file;
4307 	vma->vm_ops = &shmem_anon_vm_ops;
4308 
4309 	return 0;
4310 }
4311 
4312 /**
4313  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4314  * @mapping:	the page's address_space
4315  * @index:	the page index
4316  * @gfp:	the page allocator flags to use if allocating
4317  *
4318  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4319  * with any new page allocations done using the specified allocation flags.
4320  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4321  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4322  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4323  *
4324  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4325  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4326  */
4327 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4328 					 pgoff_t index, gfp_t gfp)
4329 {
4330 #ifdef CONFIG_SHMEM
4331 	struct inode *inode = mapping->host;
4332 	struct folio *folio;
4333 	struct page *page;
4334 	int error;
4335 
4336 	BUG_ON(!shmem_mapping(mapping));
4337 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4338 				  gfp, NULL, NULL, NULL);
4339 	if (error)
4340 		return ERR_PTR(error);
4341 
4342 	folio_unlock(folio);
4343 	page = folio_file_page(folio, index);
4344 	if (PageHWPoison(page)) {
4345 		folio_put(folio);
4346 		return ERR_PTR(-EIO);
4347 	}
4348 
4349 	return page;
4350 #else
4351 	/*
4352 	 * The tiny !SHMEM case uses ramfs without swap
4353 	 */
4354 	return read_cache_page_gfp(mapping, index, gfp);
4355 #endif
4356 }
4357 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4358