1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include <linux/iversion.h> 42 #include "swap.h" 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 94 #define SHORT_SYMLINK_LEN 128 95 96 /* 97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 98 * inode->i_private (with i_rwsem making sure that it has only one user at 99 * a time): we would prefer not to enlarge the shmem inode just for that. 100 */ 101 struct shmem_falloc { 102 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 103 pgoff_t start; /* start of range currently being fallocated */ 104 pgoff_t next; /* the next page offset to be fallocated */ 105 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 106 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 107 }; 108 109 struct shmem_options { 110 unsigned long long blocks; 111 unsigned long long inodes; 112 struct mempolicy *mpol; 113 kuid_t uid; 114 kgid_t gid; 115 umode_t mode; 116 bool full_inums; 117 int huge; 118 int seen; 119 #define SHMEM_SEEN_BLOCKS 1 120 #define SHMEM_SEEN_INODES 2 121 #define SHMEM_SEEN_HUGE 4 122 #define SHMEM_SEEN_INUMS 8 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 140 struct folio **foliop, enum sgp_type sgp, 141 gfp_t gfp, struct vm_area_struct *vma, 142 vm_fault_t *fault_type); 143 144 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 145 { 146 return sb->s_fs_info; 147 } 148 149 /* 150 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 151 * for shared memory and for shared anonymous (/dev/zero) mappings 152 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 153 * consistent with the pre-accounting of private mappings ... 154 */ 155 static inline int shmem_acct_size(unsigned long flags, loff_t size) 156 { 157 return (flags & VM_NORESERVE) ? 158 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 159 } 160 161 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 162 { 163 if (!(flags & VM_NORESERVE)) 164 vm_unacct_memory(VM_ACCT(size)); 165 } 166 167 static inline int shmem_reacct_size(unsigned long flags, 168 loff_t oldsize, loff_t newsize) 169 { 170 if (!(flags & VM_NORESERVE)) { 171 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 172 return security_vm_enough_memory_mm(current->mm, 173 VM_ACCT(newsize) - VM_ACCT(oldsize)); 174 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 175 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 176 } 177 return 0; 178 } 179 180 /* 181 * ... whereas tmpfs objects are accounted incrementally as 182 * pages are allocated, in order to allow large sparse files. 183 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 184 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 185 */ 186 static inline int shmem_acct_block(unsigned long flags, long pages) 187 { 188 if (!(flags & VM_NORESERVE)) 189 return 0; 190 191 return security_vm_enough_memory_mm(current->mm, 192 pages * VM_ACCT(PAGE_SIZE)); 193 } 194 195 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 196 { 197 if (flags & VM_NORESERVE) 198 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 199 } 200 201 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 202 { 203 struct shmem_inode_info *info = SHMEM_I(inode); 204 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 205 206 if (shmem_acct_block(info->flags, pages)) 207 return false; 208 209 if (sbinfo->max_blocks) { 210 if (percpu_counter_compare(&sbinfo->used_blocks, 211 sbinfo->max_blocks - pages) > 0) 212 goto unacct; 213 percpu_counter_add(&sbinfo->used_blocks, pages); 214 } 215 216 return true; 217 218 unacct: 219 shmem_unacct_blocks(info->flags, pages); 220 return false; 221 } 222 223 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 228 if (sbinfo->max_blocks) 229 percpu_counter_sub(&sbinfo->used_blocks, pages); 230 shmem_unacct_blocks(info->flags, pages); 231 } 232 233 static const struct super_operations shmem_ops; 234 const struct address_space_operations shmem_aops; 235 static const struct file_operations shmem_file_operations; 236 static const struct inode_operations shmem_inode_operations; 237 static const struct inode_operations shmem_dir_inode_operations; 238 static const struct inode_operations shmem_special_inode_operations; 239 static const struct vm_operations_struct shmem_vm_ops; 240 static const struct vm_operations_struct shmem_anon_vm_ops; 241 static struct file_system_type shmem_fs_type; 242 243 bool vma_is_anon_shmem(struct vm_area_struct *vma) 244 { 245 return vma->vm_ops == &shmem_anon_vm_ops; 246 } 247 248 bool vma_is_shmem(struct vm_area_struct *vma) 249 { 250 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 251 } 252 253 static LIST_HEAD(shmem_swaplist); 254 static DEFINE_MUTEX(shmem_swaplist_mutex); 255 256 /* 257 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 258 * produces a novel ino for the newly allocated inode. 259 * 260 * It may also be called when making a hard link to permit the space needed by 261 * each dentry. However, in that case, no new inode number is needed since that 262 * internally draws from another pool of inode numbers (currently global 263 * get_next_ino()). This case is indicated by passing NULL as inop. 264 */ 265 #define SHMEM_INO_BATCH 1024 266 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 267 { 268 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 269 ino_t ino; 270 271 if (!(sb->s_flags & SB_KERNMOUNT)) { 272 raw_spin_lock(&sbinfo->stat_lock); 273 if (sbinfo->max_inodes) { 274 if (!sbinfo->free_inodes) { 275 raw_spin_unlock(&sbinfo->stat_lock); 276 return -ENOSPC; 277 } 278 sbinfo->free_inodes--; 279 } 280 if (inop) { 281 ino = sbinfo->next_ino++; 282 if (unlikely(is_zero_ino(ino))) 283 ino = sbinfo->next_ino++; 284 if (unlikely(!sbinfo->full_inums && 285 ino > UINT_MAX)) { 286 /* 287 * Emulate get_next_ino uint wraparound for 288 * compatibility 289 */ 290 if (IS_ENABLED(CONFIG_64BIT)) 291 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 292 __func__, MINOR(sb->s_dev)); 293 sbinfo->next_ino = 1; 294 ino = sbinfo->next_ino++; 295 } 296 *inop = ino; 297 } 298 raw_spin_unlock(&sbinfo->stat_lock); 299 } else if (inop) { 300 /* 301 * __shmem_file_setup, one of our callers, is lock-free: it 302 * doesn't hold stat_lock in shmem_reserve_inode since 303 * max_inodes is always 0, and is called from potentially 304 * unknown contexts. As such, use a per-cpu batched allocator 305 * which doesn't require the per-sb stat_lock unless we are at 306 * the batch boundary. 307 * 308 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 309 * shmem mounts are not exposed to userspace, so we don't need 310 * to worry about things like glibc compatibility. 311 */ 312 ino_t *next_ino; 313 314 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 315 ino = *next_ino; 316 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 317 raw_spin_lock(&sbinfo->stat_lock); 318 ino = sbinfo->next_ino; 319 sbinfo->next_ino += SHMEM_INO_BATCH; 320 raw_spin_unlock(&sbinfo->stat_lock); 321 if (unlikely(is_zero_ino(ino))) 322 ino++; 323 } 324 *inop = ino; 325 *next_ino = ++ino; 326 put_cpu(); 327 } 328 329 return 0; 330 } 331 332 static void shmem_free_inode(struct super_block *sb) 333 { 334 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 335 if (sbinfo->max_inodes) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 sbinfo->free_inodes++; 338 raw_spin_unlock(&sbinfo->stat_lock); 339 } 340 } 341 342 /** 343 * shmem_recalc_inode - recalculate the block usage of an inode 344 * @inode: inode to recalc 345 * 346 * We have to calculate the free blocks since the mm can drop 347 * undirtied hole pages behind our back. 348 * 349 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 350 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 351 * 352 * It has to be called with the spinlock held. 353 */ 354 static void shmem_recalc_inode(struct inode *inode) 355 { 356 struct shmem_inode_info *info = SHMEM_I(inode); 357 long freed; 358 359 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 360 if (freed > 0) { 361 info->alloced -= freed; 362 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 363 shmem_inode_unacct_blocks(inode, freed); 364 } 365 } 366 367 bool shmem_charge(struct inode *inode, long pages) 368 { 369 struct shmem_inode_info *info = SHMEM_I(inode); 370 unsigned long flags; 371 372 if (!shmem_inode_acct_block(inode, pages)) 373 return false; 374 375 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 376 inode->i_mapping->nrpages += pages; 377 378 spin_lock_irqsave(&info->lock, flags); 379 info->alloced += pages; 380 inode->i_blocks += pages * BLOCKS_PER_PAGE; 381 shmem_recalc_inode(inode); 382 spin_unlock_irqrestore(&info->lock, flags); 383 384 return true; 385 } 386 387 void shmem_uncharge(struct inode *inode, long pages) 388 { 389 struct shmem_inode_info *info = SHMEM_I(inode); 390 unsigned long flags; 391 392 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 393 394 spin_lock_irqsave(&info->lock, flags); 395 info->alloced -= pages; 396 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 397 shmem_recalc_inode(inode); 398 spin_unlock_irqrestore(&info->lock, flags); 399 400 shmem_inode_unacct_blocks(inode, pages); 401 } 402 403 /* 404 * Replace item expected in xarray by a new item, while holding xa_lock. 405 */ 406 static int shmem_replace_entry(struct address_space *mapping, 407 pgoff_t index, void *expected, void *replacement) 408 { 409 XA_STATE(xas, &mapping->i_pages, index); 410 void *item; 411 412 VM_BUG_ON(!expected); 413 VM_BUG_ON(!replacement); 414 item = xas_load(&xas); 415 if (item != expected) 416 return -ENOENT; 417 xas_store(&xas, replacement); 418 return 0; 419 } 420 421 /* 422 * Sometimes, before we decide whether to proceed or to fail, we must check 423 * that an entry was not already brought back from swap by a racing thread. 424 * 425 * Checking page is not enough: by the time a SwapCache page is locked, it 426 * might be reused, and again be SwapCache, using the same swap as before. 427 */ 428 static bool shmem_confirm_swap(struct address_space *mapping, 429 pgoff_t index, swp_entry_t swap) 430 { 431 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 432 } 433 434 /* 435 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 436 * 437 * SHMEM_HUGE_NEVER: 438 * disables huge pages for the mount; 439 * SHMEM_HUGE_ALWAYS: 440 * enables huge pages for the mount; 441 * SHMEM_HUGE_WITHIN_SIZE: 442 * only allocate huge pages if the page will be fully within i_size, 443 * also respect fadvise()/madvise() hints; 444 * SHMEM_HUGE_ADVISE: 445 * only allocate huge pages if requested with fadvise()/madvise(); 446 */ 447 448 #define SHMEM_HUGE_NEVER 0 449 #define SHMEM_HUGE_ALWAYS 1 450 #define SHMEM_HUGE_WITHIN_SIZE 2 451 #define SHMEM_HUGE_ADVISE 3 452 453 /* 454 * Special values. 455 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 456 * 457 * SHMEM_HUGE_DENY: 458 * disables huge on shm_mnt and all mounts, for emergency use; 459 * SHMEM_HUGE_FORCE: 460 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 461 * 462 */ 463 #define SHMEM_HUGE_DENY (-1) 464 #define SHMEM_HUGE_FORCE (-2) 465 466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 467 /* ifdef here to avoid bloating shmem.o when not necessary */ 468 469 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 470 471 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 472 pgoff_t index, bool shmem_huge_force) 473 { 474 loff_t i_size; 475 476 if (!S_ISREG(inode->i_mode)) 477 return false; 478 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 479 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 480 return false; 481 if (shmem_huge == SHMEM_HUGE_DENY) 482 return false; 483 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 484 return true; 485 486 switch (SHMEM_SB(inode->i_sb)->huge) { 487 case SHMEM_HUGE_ALWAYS: 488 return true; 489 case SHMEM_HUGE_WITHIN_SIZE: 490 index = round_up(index + 1, HPAGE_PMD_NR); 491 i_size = round_up(i_size_read(inode), PAGE_SIZE); 492 if (i_size >> PAGE_SHIFT >= index) 493 return true; 494 fallthrough; 495 case SHMEM_HUGE_ADVISE: 496 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 497 return true; 498 fallthrough; 499 default: 500 return false; 501 } 502 } 503 504 #if defined(CONFIG_SYSFS) 505 static int shmem_parse_huge(const char *str) 506 { 507 if (!strcmp(str, "never")) 508 return SHMEM_HUGE_NEVER; 509 if (!strcmp(str, "always")) 510 return SHMEM_HUGE_ALWAYS; 511 if (!strcmp(str, "within_size")) 512 return SHMEM_HUGE_WITHIN_SIZE; 513 if (!strcmp(str, "advise")) 514 return SHMEM_HUGE_ADVISE; 515 if (!strcmp(str, "deny")) 516 return SHMEM_HUGE_DENY; 517 if (!strcmp(str, "force")) 518 return SHMEM_HUGE_FORCE; 519 return -EINVAL; 520 } 521 #endif 522 523 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 524 static const char *shmem_format_huge(int huge) 525 { 526 switch (huge) { 527 case SHMEM_HUGE_NEVER: 528 return "never"; 529 case SHMEM_HUGE_ALWAYS: 530 return "always"; 531 case SHMEM_HUGE_WITHIN_SIZE: 532 return "within_size"; 533 case SHMEM_HUGE_ADVISE: 534 return "advise"; 535 case SHMEM_HUGE_DENY: 536 return "deny"; 537 case SHMEM_HUGE_FORCE: 538 return "force"; 539 default: 540 VM_BUG_ON(1); 541 return "bad_val"; 542 } 543 } 544 #endif 545 546 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 547 struct shrink_control *sc, unsigned long nr_to_split) 548 { 549 LIST_HEAD(list), *pos, *next; 550 LIST_HEAD(to_remove); 551 struct inode *inode; 552 struct shmem_inode_info *info; 553 struct folio *folio; 554 unsigned long batch = sc ? sc->nr_to_scan : 128; 555 int split = 0; 556 557 if (list_empty(&sbinfo->shrinklist)) 558 return SHRINK_STOP; 559 560 spin_lock(&sbinfo->shrinklist_lock); 561 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 562 info = list_entry(pos, struct shmem_inode_info, shrinklist); 563 564 /* pin the inode */ 565 inode = igrab(&info->vfs_inode); 566 567 /* inode is about to be evicted */ 568 if (!inode) { 569 list_del_init(&info->shrinklist); 570 goto next; 571 } 572 573 /* Check if there's anything to gain */ 574 if (round_up(inode->i_size, PAGE_SIZE) == 575 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 576 list_move(&info->shrinklist, &to_remove); 577 goto next; 578 } 579 580 list_move(&info->shrinklist, &list); 581 next: 582 sbinfo->shrinklist_len--; 583 if (!--batch) 584 break; 585 } 586 spin_unlock(&sbinfo->shrinklist_lock); 587 588 list_for_each_safe(pos, next, &to_remove) { 589 info = list_entry(pos, struct shmem_inode_info, shrinklist); 590 inode = &info->vfs_inode; 591 list_del_init(&info->shrinklist); 592 iput(inode); 593 } 594 595 list_for_each_safe(pos, next, &list) { 596 int ret; 597 pgoff_t index; 598 599 info = list_entry(pos, struct shmem_inode_info, shrinklist); 600 inode = &info->vfs_inode; 601 602 if (nr_to_split && split >= nr_to_split) 603 goto move_back; 604 605 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 606 folio = filemap_get_folio(inode->i_mapping, index); 607 if (!folio) 608 goto drop; 609 610 /* No huge page at the end of the file: nothing to split */ 611 if (!folio_test_large(folio)) { 612 folio_put(folio); 613 goto drop; 614 } 615 616 /* 617 * Move the inode on the list back to shrinklist if we failed 618 * to lock the page at this time. 619 * 620 * Waiting for the lock may lead to deadlock in the 621 * reclaim path. 622 */ 623 if (!folio_trylock(folio)) { 624 folio_put(folio); 625 goto move_back; 626 } 627 628 ret = split_folio(folio); 629 folio_unlock(folio); 630 folio_put(folio); 631 632 /* If split failed move the inode on the list back to shrinklist */ 633 if (ret) 634 goto move_back; 635 636 split++; 637 drop: 638 list_del_init(&info->shrinklist); 639 goto put; 640 move_back: 641 /* 642 * Make sure the inode is either on the global list or deleted 643 * from any local list before iput() since it could be deleted 644 * in another thread once we put the inode (then the local list 645 * is corrupted). 646 */ 647 spin_lock(&sbinfo->shrinklist_lock); 648 list_move(&info->shrinklist, &sbinfo->shrinklist); 649 sbinfo->shrinklist_len++; 650 spin_unlock(&sbinfo->shrinklist_lock); 651 put: 652 iput(inode); 653 } 654 655 return split; 656 } 657 658 static long shmem_unused_huge_scan(struct super_block *sb, 659 struct shrink_control *sc) 660 { 661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 662 663 if (!READ_ONCE(sbinfo->shrinklist_len)) 664 return SHRINK_STOP; 665 666 return shmem_unused_huge_shrink(sbinfo, sc, 0); 667 } 668 669 static long shmem_unused_huge_count(struct super_block *sb, 670 struct shrink_control *sc) 671 { 672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 673 return READ_ONCE(sbinfo->shrinklist_len); 674 } 675 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 676 677 #define shmem_huge SHMEM_HUGE_DENY 678 679 bool shmem_is_huge(struct vm_area_struct *vma, struct inode *inode, 680 pgoff_t index, bool shmem_huge_force) 681 { 682 return false; 683 } 684 685 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 686 struct shrink_control *sc, unsigned long nr_to_split) 687 { 688 return 0; 689 } 690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 691 692 /* 693 * Like filemap_add_folio, but error if expected item has gone. 694 */ 695 static int shmem_add_to_page_cache(struct folio *folio, 696 struct address_space *mapping, 697 pgoff_t index, void *expected, gfp_t gfp, 698 struct mm_struct *charge_mm) 699 { 700 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 701 long nr = folio_nr_pages(folio); 702 int error; 703 704 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 705 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 706 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 707 VM_BUG_ON(expected && folio_test_large(folio)); 708 709 folio_ref_add(folio, nr); 710 folio->mapping = mapping; 711 folio->index = index; 712 713 if (!folio_test_swapcache(folio)) { 714 error = mem_cgroup_charge(folio, charge_mm, gfp); 715 if (error) { 716 if (folio_test_pmd_mappable(folio)) { 717 count_vm_event(THP_FILE_FALLBACK); 718 count_vm_event(THP_FILE_FALLBACK_CHARGE); 719 } 720 goto error; 721 } 722 } 723 folio_throttle_swaprate(folio, gfp); 724 725 do { 726 xas_lock_irq(&xas); 727 if (expected != xas_find_conflict(&xas)) { 728 xas_set_err(&xas, -EEXIST); 729 goto unlock; 730 } 731 if (expected && xas_find_conflict(&xas)) { 732 xas_set_err(&xas, -EEXIST); 733 goto unlock; 734 } 735 xas_store(&xas, folio); 736 if (xas_error(&xas)) 737 goto unlock; 738 if (folio_test_pmd_mappable(folio)) { 739 count_vm_event(THP_FILE_ALLOC); 740 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 741 } 742 mapping->nrpages += nr; 743 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 744 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 745 unlock: 746 xas_unlock_irq(&xas); 747 } while (xas_nomem(&xas, gfp)); 748 749 if (xas_error(&xas)) { 750 error = xas_error(&xas); 751 goto error; 752 } 753 754 return 0; 755 error: 756 folio->mapping = NULL; 757 folio_ref_sub(folio, nr); 758 return error; 759 } 760 761 /* 762 * Like delete_from_page_cache, but substitutes swap for @folio. 763 */ 764 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 765 { 766 struct address_space *mapping = folio->mapping; 767 long nr = folio_nr_pages(folio); 768 int error; 769 770 xa_lock_irq(&mapping->i_pages); 771 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 772 folio->mapping = NULL; 773 mapping->nrpages -= nr; 774 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 775 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 776 xa_unlock_irq(&mapping->i_pages); 777 folio_put(folio); 778 BUG_ON(error); 779 } 780 781 /* 782 * Remove swap entry from page cache, free the swap and its page cache. 783 */ 784 static int shmem_free_swap(struct address_space *mapping, 785 pgoff_t index, void *radswap) 786 { 787 void *old; 788 789 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 790 if (old != radswap) 791 return -ENOENT; 792 free_swap_and_cache(radix_to_swp_entry(radswap)); 793 return 0; 794 } 795 796 /* 797 * Determine (in bytes) how many of the shmem object's pages mapped by the 798 * given offsets are swapped out. 799 * 800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 801 * as long as the inode doesn't go away and racy results are not a problem. 802 */ 803 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 804 pgoff_t start, pgoff_t end) 805 { 806 XA_STATE(xas, &mapping->i_pages, start); 807 struct page *page; 808 unsigned long swapped = 0; 809 810 rcu_read_lock(); 811 xas_for_each(&xas, page, end - 1) { 812 if (xas_retry(&xas, page)) 813 continue; 814 if (xa_is_value(page)) 815 swapped++; 816 817 if (need_resched()) { 818 xas_pause(&xas); 819 cond_resched_rcu(); 820 } 821 } 822 823 rcu_read_unlock(); 824 825 return swapped << PAGE_SHIFT; 826 } 827 828 /* 829 * Determine (in bytes) how many of the shmem object's pages mapped by the 830 * given vma is swapped out. 831 * 832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 833 * as long as the inode doesn't go away and racy results are not a problem. 834 */ 835 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 836 { 837 struct inode *inode = file_inode(vma->vm_file); 838 struct shmem_inode_info *info = SHMEM_I(inode); 839 struct address_space *mapping = inode->i_mapping; 840 unsigned long swapped; 841 842 /* Be careful as we don't hold info->lock */ 843 swapped = READ_ONCE(info->swapped); 844 845 /* 846 * The easier cases are when the shmem object has nothing in swap, or 847 * the vma maps it whole. Then we can simply use the stats that we 848 * already track. 849 */ 850 if (!swapped) 851 return 0; 852 853 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 854 return swapped << PAGE_SHIFT; 855 856 /* Here comes the more involved part */ 857 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 858 vma->vm_pgoff + vma_pages(vma)); 859 } 860 861 /* 862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 863 */ 864 void shmem_unlock_mapping(struct address_space *mapping) 865 { 866 struct folio_batch fbatch; 867 pgoff_t index = 0; 868 869 folio_batch_init(&fbatch); 870 /* 871 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 872 */ 873 while (!mapping_unevictable(mapping) && 874 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 875 check_move_unevictable_folios(&fbatch); 876 folio_batch_release(&fbatch); 877 cond_resched(); 878 } 879 } 880 881 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 882 { 883 struct folio *folio; 884 885 /* 886 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 887 * beyond i_size, and reports fallocated pages as holes. 888 */ 889 folio = __filemap_get_folio(inode->i_mapping, index, 890 FGP_ENTRY | FGP_LOCK, 0); 891 if (!xa_is_value(folio)) 892 return folio; 893 /* 894 * But read a page back from swap if any of it is within i_size 895 * (although in some cases this is just a waste of time). 896 */ 897 folio = NULL; 898 shmem_get_folio(inode, index, &folio, SGP_READ); 899 return folio; 900 } 901 902 /* 903 * Remove range of pages and swap entries from page cache, and free them. 904 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 905 */ 906 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 907 bool unfalloc) 908 { 909 struct address_space *mapping = inode->i_mapping; 910 struct shmem_inode_info *info = SHMEM_I(inode); 911 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 912 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 913 struct folio_batch fbatch; 914 pgoff_t indices[PAGEVEC_SIZE]; 915 struct folio *folio; 916 bool same_folio; 917 long nr_swaps_freed = 0; 918 pgoff_t index; 919 int i; 920 921 if (lend == -1) 922 end = -1; /* unsigned, so actually very big */ 923 924 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 925 info->fallocend = start; 926 927 folio_batch_init(&fbatch); 928 index = start; 929 while (index < end && find_lock_entries(mapping, &index, end - 1, 930 &fbatch, indices)) { 931 for (i = 0; i < folio_batch_count(&fbatch); i++) { 932 folio = fbatch.folios[i]; 933 934 if (xa_is_value(folio)) { 935 if (unfalloc) 936 continue; 937 nr_swaps_freed += !shmem_free_swap(mapping, 938 indices[i], folio); 939 continue; 940 } 941 942 if (!unfalloc || !folio_test_uptodate(folio)) 943 truncate_inode_folio(mapping, folio); 944 folio_unlock(folio); 945 } 946 folio_batch_remove_exceptionals(&fbatch); 947 folio_batch_release(&fbatch); 948 cond_resched(); 949 } 950 951 /* 952 * When undoing a failed fallocate, we want none of the partial folio 953 * zeroing and splitting below, but shall want to truncate the whole 954 * folio when !uptodate indicates that it was added by this fallocate, 955 * even when [lstart, lend] covers only a part of the folio. 956 */ 957 if (unfalloc) 958 goto whole_folios; 959 960 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 961 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 962 if (folio) { 963 same_folio = lend < folio_pos(folio) + folio_size(folio); 964 folio_mark_dirty(folio); 965 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 966 start = folio->index + folio_nr_pages(folio); 967 if (same_folio) 968 end = folio->index; 969 } 970 folio_unlock(folio); 971 folio_put(folio); 972 folio = NULL; 973 } 974 975 if (!same_folio) 976 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 977 if (folio) { 978 folio_mark_dirty(folio); 979 if (!truncate_inode_partial_folio(folio, lstart, lend)) 980 end = folio->index; 981 folio_unlock(folio); 982 folio_put(folio); 983 } 984 985 whole_folios: 986 987 index = start; 988 while (index < end) { 989 cond_resched(); 990 991 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 992 indices)) { 993 /* If all gone or hole-punch or unfalloc, we're done */ 994 if (index == start || end != -1) 995 break; 996 /* But if truncating, restart to make sure all gone */ 997 index = start; 998 continue; 999 } 1000 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1001 folio = fbatch.folios[i]; 1002 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, indices[i], folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index = indices[i]; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index = indices[i]; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 folio_unlock(folio); 1029 } 1030 folio_batch_remove_exceptionals(&fbatch); 1031 folio_batch_release(&fbatch); 1032 } 1033 1034 spin_lock_irq(&info->lock); 1035 info->swapped -= nr_swaps_freed; 1036 shmem_recalc_inode(inode); 1037 spin_unlock_irq(&info->lock); 1038 } 1039 1040 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1041 { 1042 shmem_undo_range(inode, lstart, lend, false); 1043 inode->i_ctime = inode->i_mtime = current_time(inode); 1044 inode_inc_iversion(inode); 1045 } 1046 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1047 1048 static int shmem_getattr(struct user_namespace *mnt_userns, 1049 const struct path *path, struct kstat *stat, 1050 u32 request_mask, unsigned int query_flags) 1051 { 1052 struct inode *inode = path->dentry->d_inode; 1053 struct shmem_inode_info *info = SHMEM_I(inode); 1054 1055 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1056 spin_lock_irq(&info->lock); 1057 shmem_recalc_inode(inode); 1058 spin_unlock_irq(&info->lock); 1059 } 1060 if (info->fsflags & FS_APPEND_FL) 1061 stat->attributes |= STATX_ATTR_APPEND; 1062 if (info->fsflags & FS_IMMUTABLE_FL) 1063 stat->attributes |= STATX_ATTR_IMMUTABLE; 1064 if (info->fsflags & FS_NODUMP_FL) 1065 stat->attributes |= STATX_ATTR_NODUMP; 1066 stat->attributes_mask |= (STATX_ATTR_APPEND | 1067 STATX_ATTR_IMMUTABLE | 1068 STATX_ATTR_NODUMP); 1069 generic_fillattr(&init_user_ns, inode, stat); 1070 1071 if (shmem_is_huge(NULL, inode, 0, false)) 1072 stat->blksize = HPAGE_PMD_SIZE; 1073 1074 if (request_mask & STATX_BTIME) { 1075 stat->result_mask |= STATX_BTIME; 1076 stat->btime.tv_sec = info->i_crtime.tv_sec; 1077 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1078 } 1079 1080 return 0; 1081 } 1082 1083 static int shmem_setattr(struct user_namespace *mnt_userns, 1084 struct dentry *dentry, struct iattr *attr) 1085 { 1086 struct inode *inode = d_inode(dentry); 1087 struct shmem_inode_info *info = SHMEM_I(inode); 1088 int error; 1089 bool update_mtime = false; 1090 bool update_ctime = true; 1091 1092 error = setattr_prepare(&init_user_ns, dentry, attr); 1093 if (error) 1094 return error; 1095 1096 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1097 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1098 return -EPERM; 1099 } 1100 } 1101 1102 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1103 loff_t oldsize = inode->i_size; 1104 loff_t newsize = attr->ia_size; 1105 1106 /* protected by i_rwsem */ 1107 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1108 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1109 return -EPERM; 1110 1111 if (newsize != oldsize) { 1112 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1113 oldsize, newsize); 1114 if (error) 1115 return error; 1116 i_size_write(inode, newsize); 1117 update_mtime = true; 1118 } else { 1119 update_ctime = false; 1120 } 1121 if (newsize <= oldsize) { 1122 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1123 if (oldsize > holebegin) 1124 unmap_mapping_range(inode->i_mapping, 1125 holebegin, 0, 1); 1126 if (info->alloced) 1127 shmem_truncate_range(inode, 1128 newsize, (loff_t)-1); 1129 /* unmap again to remove racily COWed private pages */ 1130 if (oldsize > holebegin) 1131 unmap_mapping_range(inode->i_mapping, 1132 holebegin, 0, 1); 1133 } 1134 } 1135 1136 setattr_copy(&init_user_ns, inode, attr); 1137 if (attr->ia_valid & ATTR_MODE) 1138 error = posix_acl_chmod(&init_user_ns, dentry, inode->i_mode); 1139 if (!error && update_ctime) { 1140 inode->i_ctime = current_time(inode); 1141 if (update_mtime) 1142 inode->i_mtime = inode->i_ctime; 1143 inode_inc_iversion(inode); 1144 } 1145 return error; 1146 } 1147 1148 static void shmem_evict_inode(struct inode *inode) 1149 { 1150 struct shmem_inode_info *info = SHMEM_I(inode); 1151 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1152 1153 if (shmem_mapping(inode->i_mapping)) { 1154 shmem_unacct_size(info->flags, inode->i_size); 1155 inode->i_size = 0; 1156 mapping_set_exiting(inode->i_mapping); 1157 shmem_truncate_range(inode, 0, (loff_t)-1); 1158 if (!list_empty(&info->shrinklist)) { 1159 spin_lock(&sbinfo->shrinklist_lock); 1160 if (!list_empty(&info->shrinklist)) { 1161 list_del_init(&info->shrinklist); 1162 sbinfo->shrinklist_len--; 1163 } 1164 spin_unlock(&sbinfo->shrinklist_lock); 1165 } 1166 while (!list_empty(&info->swaplist)) { 1167 /* Wait while shmem_unuse() is scanning this inode... */ 1168 wait_var_event(&info->stop_eviction, 1169 !atomic_read(&info->stop_eviction)); 1170 mutex_lock(&shmem_swaplist_mutex); 1171 /* ...but beware of the race if we peeked too early */ 1172 if (!atomic_read(&info->stop_eviction)) 1173 list_del_init(&info->swaplist); 1174 mutex_unlock(&shmem_swaplist_mutex); 1175 } 1176 } 1177 1178 simple_xattrs_free(&info->xattrs); 1179 WARN_ON(inode->i_blocks); 1180 shmem_free_inode(inode->i_sb); 1181 clear_inode(inode); 1182 } 1183 1184 static int shmem_find_swap_entries(struct address_space *mapping, 1185 pgoff_t start, struct folio_batch *fbatch, 1186 pgoff_t *indices, unsigned int type) 1187 { 1188 XA_STATE(xas, &mapping->i_pages, start); 1189 struct folio *folio; 1190 swp_entry_t entry; 1191 1192 rcu_read_lock(); 1193 xas_for_each(&xas, folio, ULONG_MAX) { 1194 if (xas_retry(&xas, folio)) 1195 continue; 1196 1197 if (!xa_is_value(folio)) 1198 continue; 1199 1200 entry = radix_to_swp_entry(folio); 1201 /* 1202 * swapin error entries can be found in the mapping. But they're 1203 * deliberately ignored here as we've done everything we can do. 1204 */ 1205 if (swp_type(entry) != type) 1206 continue; 1207 1208 indices[folio_batch_count(fbatch)] = xas.xa_index; 1209 if (!folio_batch_add(fbatch, folio)) 1210 break; 1211 1212 if (need_resched()) { 1213 xas_pause(&xas); 1214 cond_resched_rcu(); 1215 } 1216 } 1217 rcu_read_unlock(); 1218 1219 return xas.xa_index; 1220 } 1221 1222 /* 1223 * Move the swapped pages for an inode to page cache. Returns the count 1224 * of pages swapped in, or the error in case of failure. 1225 */ 1226 static int shmem_unuse_swap_entries(struct inode *inode, 1227 struct folio_batch *fbatch, pgoff_t *indices) 1228 { 1229 int i = 0; 1230 int ret = 0; 1231 int error = 0; 1232 struct address_space *mapping = inode->i_mapping; 1233 1234 for (i = 0; i < folio_batch_count(fbatch); i++) { 1235 struct folio *folio = fbatch->folios[i]; 1236 1237 if (!xa_is_value(folio)) 1238 continue; 1239 error = shmem_swapin_folio(inode, indices[i], 1240 &folio, SGP_CACHE, 1241 mapping_gfp_mask(mapping), 1242 NULL, NULL); 1243 if (error == 0) { 1244 folio_unlock(folio); 1245 folio_put(folio); 1246 ret++; 1247 } 1248 if (error == -ENOMEM) 1249 break; 1250 error = 0; 1251 } 1252 return error ? error : ret; 1253 } 1254 1255 /* 1256 * If swap found in inode, free it and move page from swapcache to filecache. 1257 */ 1258 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1259 { 1260 struct address_space *mapping = inode->i_mapping; 1261 pgoff_t start = 0; 1262 struct folio_batch fbatch; 1263 pgoff_t indices[PAGEVEC_SIZE]; 1264 int ret = 0; 1265 1266 do { 1267 folio_batch_init(&fbatch); 1268 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1269 if (folio_batch_count(&fbatch) == 0) { 1270 ret = 0; 1271 break; 1272 } 1273 1274 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1275 if (ret < 0) 1276 break; 1277 1278 start = indices[folio_batch_count(&fbatch) - 1]; 1279 } while (true); 1280 1281 return ret; 1282 } 1283 1284 /* 1285 * Read all the shared memory data that resides in the swap 1286 * device 'type' back into memory, so the swap device can be 1287 * unused. 1288 */ 1289 int shmem_unuse(unsigned int type) 1290 { 1291 struct shmem_inode_info *info, *next; 1292 int error = 0; 1293 1294 if (list_empty(&shmem_swaplist)) 1295 return 0; 1296 1297 mutex_lock(&shmem_swaplist_mutex); 1298 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1299 if (!info->swapped) { 1300 list_del_init(&info->swaplist); 1301 continue; 1302 } 1303 /* 1304 * Drop the swaplist mutex while searching the inode for swap; 1305 * but before doing so, make sure shmem_evict_inode() will not 1306 * remove placeholder inode from swaplist, nor let it be freed 1307 * (igrab() would protect from unlink, but not from unmount). 1308 */ 1309 atomic_inc(&info->stop_eviction); 1310 mutex_unlock(&shmem_swaplist_mutex); 1311 1312 error = shmem_unuse_inode(&info->vfs_inode, type); 1313 cond_resched(); 1314 1315 mutex_lock(&shmem_swaplist_mutex); 1316 next = list_next_entry(info, swaplist); 1317 if (!info->swapped) 1318 list_del_init(&info->swaplist); 1319 if (atomic_dec_and_test(&info->stop_eviction)) 1320 wake_up_var(&info->stop_eviction); 1321 if (error) 1322 break; 1323 } 1324 mutex_unlock(&shmem_swaplist_mutex); 1325 1326 return error; 1327 } 1328 1329 /* 1330 * Move the page from the page cache to the swap cache. 1331 */ 1332 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1333 { 1334 struct folio *folio = page_folio(page); 1335 struct shmem_inode_info *info; 1336 struct address_space *mapping; 1337 struct inode *inode; 1338 swp_entry_t swap; 1339 pgoff_t index; 1340 1341 /* 1342 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1343 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1344 * and its shmem_writeback() needs them to be split when swapping. 1345 */ 1346 if (folio_test_large(folio)) { 1347 /* Ensure the subpages are still dirty */ 1348 folio_test_set_dirty(folio); 1349 if (split_huge_page(page) < 0) 1350 goto redirty; 1351 folio = page_folio(page); 1352 folio_clear_dirty(folio); 1353 } 1354 1355 BUG_ON(!folio_test_locked(folio)); 1356 mapping = folio->mapping; 1357 index = folio->index; 1358 inode = mapping->host; 1359 info = SHMEM_I(inode); 1360 if (info->flags & VM_LOCKED) 1361 goto redirty; 1362 if (!total_swap_pages) 1363 goto redirty; 1364 1365 /* 1366 * Our capabilities prevent regular writeback or sync from ever calling 1367 * shmem_writepage; but a stacking filesystem might use ->writepage of 1368 * its underlying filesystem, in which case tmpfs should write out to 1369 * swap only in response to memory pressure, and not for the writeback 1370 * threads or sync. 1371 */ 1372 if (!wbc->for_reclaim) { 1373 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1374 goto redirty; 1375 } 1376 1377 /* 1378 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1379 * value into swapfile.c, the only way we can correctly account for a 1380 * fallocated folio arriving here is now to initialize it and write it. 1381 * 1382 * That's okay for a folio already fallocated earlier, but if we have 1383 * not yet completed the fallocation, then (a) we want to keep track 1384 * of this folio in case we have to undo it, and (b) it may not be a 1385 * good idea to continue anyway, once we're pushing into swap. So 1386 * reactivate the folio, and let shmem_fallocate() quit when too many. 1387 */ 1388 if (!folio_test_uptodate(folio)) { 1389 if (inode->i_private) { 1390 struct shmem_falloc *shmem_falloc; 1391 spin_lock(&inode->i_lock); 1392 shmem_falloc = inode->i_private; 1393 if (shmem_falloc && 1394 !shmem_falloc->waitq && 1395 index >= shmem_falloc->start && 1396 index < shmem_falloc->next) 1397 shmem_falloc->nr_unswapped++; 1398 else 1399 shmem_falloc = NULL; 1400 spin_unlock(&inode->i_lock); 1401 if (shmem_falloc) 1402 goto redirty; 1403 } 1404 folio_zero_range(folio, 0, folio_size(folio)); 1405 flush_dcache_folio(folio); 1406 folio_mark_uptodate(folio); 1407 } 1408 1409 swap = folio_alloc_swap(folio); 1410 if (!swap.val) 1411 goto redirty; 1412 1413 /* 1414 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1415 * if it's not already there. Do it now before the folio is 1416 * moved to swap cache, when its pagelock no longer protects 1417 * the inode from eviction. But don't unlock the mutex until 1418 * we've incremented swapped, because shmem_unuse_inode() will 1419 * prune a !swapped inode from the swaplist under this mutex. 1420 */ 1421 mutex_lock(&shmem_swaplist_mutex); 1422 if (list_empty(&info->swaplist)) 1423 list_add(&info->swaplist, &shmem_swaplist); 1424 1425 if (add_to_swap_cache(folio, swap, 1426 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1427 NULL) == 0) { 1428 spin_lock_irq(&info->lock); 1429 shmem_recalc_inode(inode); 1430 info->swapped++; 1431 spin_unlock_irq(&info->lock); 1432 1433 swap_shmem_alloc(swap); 1434 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1435 1436 mutex_unlock(&shmem_swaplist_mutex); 1437 BUG_ON(folio_mapped(folio)); 1438 swap_writepage(&folio->page, wbc); 1439 return 0; 1440 } 1441 1442 mutex_unlock(&shmem_swaplist_mutex); 1443 put_swap_folio(folio, swap); 1444 redirty: 1445 folio_mark_dirty(folio); 1446 if (wbc->for_reclaim) 1447 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1448 folio_unlock(folio); 1449 return 0; 1450 } 1451 1452 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1453 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1454 { 1455 char buffer[64]; 1456 1457 if (!mpol || mpol->mode == MPOL_DEFAULT) 1458 return; /* show nothing */ 1459 1460 mpol_to_str(buffer, sizeof(buffer), mpol); 1461 1462 seq_printf(seq, ",mpol=%s", buffer); 1463 } 1464 1465 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1466 { 1467 struct mempolicy *mpol = NULL; 1468 if (sbinfo->mpol) { 1469 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1470 mpol = sbinfo->mpol; 1471 mpol_get(mpol); 1472 raw_spin_unlock(&sbinfo->stat_lock); 1473 } 1474 return mpol; 1475 } 1476 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1477 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1478 { 1479 } 1480 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1481 { 1482 return NULL; 1483 } 1484 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1485 #ifndef CONFIG_NUMA 1486 #define vm_policy vm_private_data 1487 #endif 1488 1489 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1490 struct shmem_inode_info *info, pgoff_t index) 1491 { 1492 /* Create a pseudo vma that just contains the policy */ 1493 vma_init(vma, NULL); 1494 /* Bias interleave by inode number to distribute better across nodes */ 1495 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1496 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1497 } 1498 1499 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1500 { 1501 /* Drop reference taken by mpol_shared_policy_lookup() */ 1502 mpol_cond_put(vma->vm_policy); 1503 } 1504 1505 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1506 struct shmem_inode_info *info, pgoff_t index) 1507 { 1508 struct vm_area_struct pvma; 1509 struct page *page; 1510 struct vm_fault vmf = { 1511 .vma = &pvma, 1512 }; 1513 1514 shmem_pseudo_vma_init(&pvma, info, index); 1515 page = swap_cluster_readahead(swap, gfp, &vmf); 1516 shmem_pseudo_vma_destroy(&pvma); 1517 1518 if (!page) 1519 return NULL; 1520 return page_folio(page); 1521 } 1522 1523 /* 1524 * Make sure huge_gfp is always more limited than limit_gfp. 1525 * Some of the flags set permissions, while others set limitations. 1526 */ 1527 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1528 { 1529 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1530 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1531 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1532 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1533 1534 /* Allow allocations only from the originally specified zones. */ 1535 result |= zoneflags; 1536 1537 /* 1538 * Minimize the result gfp by taking the union with the deny flags, 1539 * and the intersection of the allow flags. 1540 */ 1541 result |= (limit_gfp & denyflags); 1542 result |= (huge_gfp & limit_gfp) & allowflags; 1543 1544 return result; 1545 } 1546 1547 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1548 struct shmem_inode_info *info, pgoff_t index) 1549 { 1550 struct vm_area_struct pvma; 1551 struct address_space *mapping = info->vfs_inode.i_mapping; 1552 pgoff_t hindex; 1553 struct folio *folio; 1554 1555 hindex = round_down(index, HPAGE_PMD_NR); 1556 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1557 XA_PRESENT)) 1558 return NULL; 1559 1560 shmem_pseudo_vma_init(&pvma, info, hindex); 1561 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1562 shmem_pseudo_vma_destroy(&pvma); 1563 if (!folio) 1564 count_vm_event(THP_FILE_FALLBACK); 1565 return folio; 1566 } 1567 1568 static struct folio *shmem_alloc_folio(gfp_t gfp, 1569 struct shmem_inode_info *info, pgoff_t index) 1570 { 1571 struct vm_area_struct pvma; 1572 struct folio *folio; 1573 1574 shmem_pseudo_vma_init(&pvma, info, index); 1575 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1576 shmem_pseudo_vma_destroy(&pvma); 1577 1578 return folio; 1579 } 1580 1581 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1582 pgoff_t index, bool huge) 1583 { 1584 struct shmem_inode_info *info = SHMEM_I(inode); 1585 struct folio *folio; 1586 int nr; 1587 int err = -ENOSPC; 1588 1589 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1590 huge = false; 1591 nr = huge ? HPAGE_PMD_NR : 1; 1592 1593 if (!shmem_inode_acct_block(inode, nr)) 1594 goto failed; 1595 1596 if (huge) 1597 folio = shmem_alloc_hugefolio(gfp, info, index); 1598 else 1599 folio = shmem_alloc_folio(gfp, info, index); 1600 if (folio) { 1601 __folio_set_locked(folio); 1602 __folio_set_swapbacked(folio); 1603 return folio; 1604 } 1605 1606 err = -ENOMEM; 1607 shmem_inode_unacct_blocks(inode, nr); 1608 failed: 1609 return ERR_PTR(err); 1610 } 1611 1612 /* 1613 * When a page is moved from swapcache to shmem filecache (either by the 1614 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1615 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1616 * ignorance of the mapping it belongs to. If that mapping has special 1617 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1618 * we may need to copy to a suitable page before moving to filecache. 1619 * 1620 * In a future release, this may well be extended to respect cpuset and 1621 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1622 * but for now it is a simple matter of zone. 1623 */ 1624 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1625 { 1626 return folio_zonenum(folio) > gfp_zone(gfp); 1627 } 1628 1629 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1630 struct shmem_inode_info *info, pgoff_t index) 1631 { 1632 struct folio *old, *new; 1633 struct address_space *swap_mapping; 1634 swp_entry_t entry; 1635 pgoff_t swap_index; 1636 int error; 1637 1638 old = *foliop; 1639 entry = folio_swap_entry(old); 1640 swap_index = swp_offset(entry); 1641 swap_mapping = swap_address_space(entry); 1642 1643 /* 1644 * We have arrived here because our zones are constrained, so don't 1645 * limit chance of success by further cpuset and node constraints. 1646 */ 1647 gfp &= ~GFP_CONSTRAINT_MASK; 1648 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1649 new = shmem_alloc_folio(gfp, info, index); 1650 if (!new) 1651 return -ENOMEM; 1652 1653 folio_get(new); 1654 folio_copy(new, old); 1655 flush_dcache_folio(new); 1656 1657 __folio_set_locked(new); 1658 __folio_set_swapbacked(new); 1659 folio_mark_uptodate(new); 1660 folio_set_swap_entry(new, entry); 1661 folio_set_swapcache(new); 1662 1663 /* 1664 * Our caller will very soon move newpage out of swapcache, but it's 1665 * a nice clean interface for us to replace oldpage by newpage there. 1666 */ 1667 xa_lock_irq(&swap_mapping->i_pages); 1668 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1669 if (!error) { 1670 mem_cgroup_migrate(old, new); 1671 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1672 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1673 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1674 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1675 } 1676 xa_unlock_irq(&swap_mapping->i_pages); 1677 1678 if (unlikely(error)) { 1679 /* 1680 * Is this possible? I think not, now that our callers check 1681 * both PageSwapCache and page_private after getting page lock; 1682 * but be defensive. Reverse old to newpage for clear and free. 1683 */ 1684 old = new; 1685 } else { 1686 folio_add_lru(new); 1687 *foliop = new; 1688 } 1689 1690 folio_clear_swapcache(old); 1691 old->private = NULL; 1692 1693 folio_unlock(old); 1694 folio_put_refs(old, 2); 1695 return error; 1696 } 1697 1698 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1699 struct folio *folio, swp_entry_t swap) 1700 { 1701 struct address_space *mapping = inode->i_mapping; 1702 struct shmem_inode_info *info = SHMEM_I(inode); 1703 swp_entry_t swapin_error; 1704 void *old; 1705 1706 swapin_error = make_swapin_error_entry(); 1707 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1708 swp_to_radix_entry(swap), 1709 swp_to_radix_entry(swapin_error), 0); 1710 if (old != swp_to_radix_entry(swap)) 1711 return; 1712 1713 folio_wait_writeback(folio); 1714 delete_from_swap_cache(folio); 1715 spin_lock_irq(&info->lock); 1716 /* 1717 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1718 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1719 * shmem_evict_inode. 1720 */ 1721 info->alloced--; 1722 info->swapped--; 1723 shmem_recalc_inode(inode); 1724 spin_unlock_irq(&info->lock); 1725 swap_free(swap); 1726 } 1727 1728 /* 1729 * Swap in the folio pointed to by *foliop. 1730 * Caller has to make sure that *foliop contains a valid swapped folio. 1731 * Returns 0 and the folio in foliop if success. On failure, returns the 1732 * error code and NULL in *foliop. 1733 */ 1734 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1735 struct folio **foliop, enum sgp_type sgp, 1736 gfp_t gfp, struct vm_area_struct *vma, 1737 vm_fault_t *fault_type) 1738 { 1739 struct address_space *mapping = inode->i_mapping; 1740 struct shmem_inode_info *info = SHMEM_I(inode); 1741 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1742 struct folio *folio = NULL; 1743 swp_entry_t swap; 1744 int error; 1745 1746 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1747 swap = radix_to_swp_entry(*foliop); 1748 *foliop = NULL; 1749 1750 if (is_swapin_error_entry(swap)) 1751 return -EIO; 1752 1753 /* Look it up and read it in.. */ 1754 folio = swap_cache_get_folio(swap, NULL, 0); 1755 if (!folio) { 1756 /* Or update major stats only when swapin succeeds?? */ 1757 if (fault_type) { 1758 *fault_type |= VM_FAULT_MAJOR; 1759 count_vm_event(PGMAJFAULT); 1760 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1761 } 1762 /* Here we actually start the io */ 1763 folio = shmem_swapin(swap, gfp, info, index); 1764 if (!folio) { 1765 error = -ENOMEM; 1766 goto failed; 1767 } 1768 } 1769 1770 /* We have to do this with folio locked to prevent races */ 1771 folio_lock(folio); 1772 if (!folio_test_swapcache(folio) || 1773 folio_swap_entry(folio).val != swap.val || 1774 !shmem_confirm_swap(mapping, index, swap)) { 1775 error = -EEXIST; 1776 goto unlock; 1777 } 1778 if (!folio_test_uptodate(folio)) { 1779 error = -EIO; 1780 goto failed; 1781 } 1782 folio_wait_writeback(folio); 1783 1784 /* 1785 * Some architectures may have to restore extra metadata to the 1786 * folio after reading from swap. 1787 */ 1788 arch_swap_restore(swap, folio); 1789 1790 if (shmem_should_replace_folio(folio, gfp)) { 1791 error = shmem_replace_folio(&folio, gfp, info, index); 1792 if (error) 1793 goto failed; 1794 } 1795 1796 error = shmem_add_to_page_cache(folio, mapping, index, 1797 swp_to_radix_entry(swap), gfp, 1798 charge_mm); 1799 if (error) 1800 goto failed; 1801 1802 spin_lock_irq(&info->lock); 1803 info->swapped--; 1804 shmem_recalc_inode(inode); 1805 spin_unlock_irq(&info->lock); 1806 1807 if (sgp == SGP_WRITE) 1808 folio_mark_accessed(folio); 1809 1810 delete_from_swap_cache(folio); 1811 folio_mark_dirty(folio); 1812 swap_free(swap); 1813 1814 *foliop = folio; 1815 return 0; 1816 failed: 1817 if (!shmem_confirm_swap(mapping, index, swap)) 1818 error = -EEXIST; 1819 if (error == -EIO) 1820 shmem_set_folio_swapin_error(inode, index, folio, swap); 1821 unlock: 1822 if (folio) { 1823 folio_unlock(folio); 1824 folio_put(folio); 1825 } 1826 1827 return error; 1828 } 1829 1830 /* 1831 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1832 * 1833 * If we allocate a new one we do not mark it dirty. That's up to the 1834 * vm. If we swap it in we mark it dirty since we also free the swap 1835 * entry since a page cannot live in both the swap and page cache. 1836 * 1837 * vma, vmf, and fault_type are only supplied by shmem_fault: 1838 * otherwise they are NULL. 1839 */ 1840 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1841 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1842 struct vm_area_struct *vma, struct vm_fault *vmf, 1843 vm_fault_t *fault_type) 1844 { 1845 struct address_space *mapping = inode->i_mapping; 1846 struct shmem_inode_info *info = SHMEM_I(inode); 1847 struct shmem_sb_info *sbinfo; 1848 struct mm_struct *charge_mm; 1849 struct folio *folio; 1850 pgoff_t hindex; 1851 gfp_t huge_gfp; 1852 int error; 1853 int once = 0; 1854 int alloced = 0; 1855 1856 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1857 return -EFBIG; 1858 repeat: 1859 if (sgp <= SGP_CACHE && 1860 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1861 return -EINVAL; 1862 } 1863 1864 sbinfo = SHMEM_SB(inode->i_sb); 1865 charge_mm = vma ? vma->vm_mm : NULL; 1866 1867 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1868 if (folio && vma && userfaultfd_minor(vma)) { 1869 if (!xa_is_value(folio)) { 1870 folio_unlock(folio); 1871 folio_put(folio); 1872 } 1873 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1874 return 0; 1875 } 1876 1877 if (xa_is_value(folio)) { 1878 error = shmem_swapin_folio(inode, index, &folio, 1879 sgp, gfp, vma, fault_type); 1880 if (error == -EEXIST) 1881 goto repeat; 1882 1883 *foliop = folio; 1884 return error; 1885 } 1886 1887 if (folio) { 1888 if (sgp == SGP_WRITE) 1889 folio_mark_accessed(folio); 1890 if (folio_test_uptodate(folio)) 1891 goto out; 1892 /* fallocated folio */ 1893 if (sgp != SGP_READ) 1894 goto clear; 1895 folio_unlock(folio); 1896 folio_put(folio); 1897 } 1898 1899 /* 1900 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1901 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1902 */ 1903 *foliop = NULL; 1904 if (sgp == SGP_READ) 1905 return 0; 1906 if (sgp == SGP_NOALLOC) 1907 return -ENOENT; 1908 1909 /* 1910 * Fast cache lookup and swap lookup did not find it: allocate. 1911 */ 1912 1913 if (vma && userfaultfd_missing(vma)) { 1914 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1915 return 0; 1916 } 1917 1918 if (!shmem_is_huge(vma, inode, index, false)) 1919 goto alloc_nohuge; 1920 1921 huge_gfp = vma_thp_gfp_mask(vma); 1922 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1923 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1924 if (IS_ERR(folio)) { 1925 alloc_nohuge: 1926 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1927 } 1928 if (IS_ERR(folio)) { 1929 int retry = 5; 1930 1931 error = PTR_ERR(folio); 1932 folio = NULL; 1933 if (error != -ENOSPC) 1934 goto unlock; 1935 /* 1936 * Try to reclaim some space by splitting a large folio 1937 * beyond i_size on the filesystem. 1938 */ 1939 while (retry--) { 1940 int ret; 1941 1942 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1943 if (ret == SHRINK_STOP) 1944 break; 1945 if (ret) 1946 goto alloc_nohuge; 1947 } 1948 goto unlock; 1949 } 1950 1951 hindex = round_down(index, folio_nr_pages(folio)); 1952 1953 if (sgp == SGP_WRITE) 1954 __folio_set_referenced(folio); 1955 1956 error = shmem_add_to_page_cache(folio, mapping, hindex, 1957 NULL, gfp & GFP_RECLAIM_MASK, 1958 charge_mm); 1959 if (error) 1960 goto unacct; 1961 folio_add_lru(folio); 1962 1963 spin_lock_irq(&info->lock); 1964 info->alloced += folio_nr_pages(folio); 1965 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1966 shmem_recalc_inode(inode); 1967 spin_unlock_irq(&info->lock); 1968 alloced = true; 1969 1970 if (folio_test_pmd_mappable(folio) && 1971 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1972 folio_next_index(folio) - 1) { 1973 /* 1974 * Part of the large folio is beyond i_size: subject 1975 * to shrink under memory pressure. 1976 */ 1977 spin_lock(&sbinfo->shrinklist_lock); 1978 /* 1979 * _careful to defend against unlocked access to 1980 * ->shrink_list in shmem_unused_huge_shrink() 1981 */ 1982 if (list_empty_careful(&info->shrinklist)) { 1983 list_add_tail(&info->shrinklist, 1984 &sbinfo->shrinklist); 1985 sbinfo->shrinklist_len++; 1986 } 1987 spin_unlock(&sbinfo->shrinklist_lock); 1988 } 1989 1990 /* 1991 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 1992 */ 1993 if (sgp == SGP_FALLOC) 1994 sgp = SGP_WRITE; 1995 clear: 1996 /* 1997 * Let SGP_WRITE caller clear ends if write does not fill folio; 1998 * but SGP_FALLOC on a folio fallocated earlier must initialize 1999 * it now, lest undo on failure cancel our earlier guarantee. 2000 */ 2001 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2002 long i, n = folio_nr_pages(folio); 2003 2004 for (i = 0; i < n; i++) 2005 clear_highpage(folio_page(folio, i)); 2006 flush_dcache_folio(folio); 2007 folio_mark_uptodate(folio); 2008 } 2009 2010 /* Perhaps the file has been truncated since we checked */ 2011 if (sgp <= SGP_CACHE && 2012 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2013 if (alloced) { 2014 folio_clear_dirty(folio); 2015 filemap_remove_folio(folio); 2016 spin_lock_irq(&info->lock); 2017 shmem_recalc_inode(inode); 2018 spin_unlock_irq(&info->lock); 2019 } 2020 error = -EINVAL; 2021 goto unlock; 2022 } 2023 out: 2024 *foliop = folio; 2025 return 0; 2026 2027 /* 2028 * Error recovery. 2029 */ 2030 unacct: 2031 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2032 2033 if (folio_test_large(folio)) { 2034 folio_unlock(folio); 2035 folio_put(folio); 2036 goto alloc_nohuge; 2037 } 2038 unlock: 2039 if (folio) { 2040 folio_unlock(folio); 2041 folio_put(folio); 2042 } 2043 if (error == -ENOSPC && !once++) { 2044 spin_lock_irq(&info->lock); 2045 shmem_recalc_inode(inode); 2046 spin_unlock_irq(&info->lock); 2047 goto repeat; 2048 } 2049 if (error == -EEXIST) 2050 goto repeat; 2051 return error; 2052 } 2053 2054 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2055 enum sgp_type sgp) 2056 { 2057 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2058 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2059 } 2060 2061 /* 2062 * This is like autoremove_wake_function, but it removes the wait queue 2063 * entry unconditionally - even if something else had already woken the 2064 * target. 2065 */ 2066 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2067 { 2068 int ret = default_wake_function(wait, mode, sync, key); 2069 list_del_init(&wait->entry); 2070 return ret; 2071 } 2072 2073 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2074 { 2075 struct vm_area_struct *vma = vmf->vma; 2076 struct inode *inode = file_inode(vma->vm_file); 2077 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2078 struct folio *folio = NULL; 2079 int err; 2080 vm_fault_t ret = VM_FAULT_LOCKED; 2081 2082 /* 2083 * Trinity finds that probing a hole which tmpfs is punching can 2084 * prevent the hole-punch from ever completing: which in turn 2085 * locks writers out with its hold on i_rwsem. So refrain from 2086 * faulting pages into the hole while it's being punched. Although 2087 * shmem_undo_range() does remove the additions, it may be unable to 2088 * keep up, as each new page needs its own unmap_mapping_range() call, 2089 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2090 * 2091 * It does not matter if we sometimes reach this check just before the 2092 * hole-punch begins, so that one fault then races with the punch: 2093 * we just need to make racing faults a rare case. 2094 * 2095 * The implementation below would be much simpler if we just used a 2096 * standard mutex or completion: but we cannot take i_rwsem in fault, 2097 * and bloating every shmem inode for this unlikely case would be sad. 2098 */ 2099 if (unlikely(inode->i_private)) { 2100 struct shmem_falloc *shmem_falloc; 2101 2102 spin_lock(&inode->i_lock); 2103 shmem_falloc = inode->i_private; 2104 if (shmem_falloc && 2105 shmem_falloc->waitq && 2106 vmf->pgoff >= shmem_falloc->start && 2107 vmf->pgoff < shmem_falloc->next) { 2108 struct file *fpin; 2109 wait_queue_head_t *shmem_falloc_waitq; 2110 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2111 2112 ret = VM_FAULT_NOPAGE; 2113 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2114 if (fpin) 2115 ret = VM_FAULT_RETRY; 2116 2117 shmem_falloc_waitq = shmem_falloc->waitq; 2118 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2119 TASK_UNINTERRUPTIBLE); 2120 spin_unlock(&inode->i_lock); 2121 schedule(); 2122 2123 /* 2124 * shmem_falloc_waitq points into the shmem_fallocate() 2125 * stack of the hole-punching task: shmem_falloc_waitq 2126 * is usually invalid by the time we reach here, but 2127 * finish_wait() does not dereference it in that case; 2128 * though i_lock needed lest racing with wake_up_all(). 2129 */ 2130 spin_lock(&inode->i_lock); 2131 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2132 spin_unlock(&inode->i_lock); 2133 2134 if (fpin) 2135 fput(fpin); 2136 return ret; 2137 } 2138 spin_unlock(&inode->i_lock); 2139 } 2140 2141 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2142 gfp, vma, vmf, &ret); 2143 if (err) 2144 return vmf_error(err); 2145 if (folio) 2146 vmf->page = folio_file_page(folio, vmf->pgoff); 2147 return ret; 2148 } 2149 2150 unsigned long shmem_get_unmapped_area(struct file *file, 2151 unsigned long uaddr, unsigned long len, 2152 unsigned long pgoff, unsigned long flags) 2153 { 2154 unsigned long (*get_area)(struct file *, 2155 unsigned long, unsigned long, unsigned long, unsigned long); 2156 unsigned long addr; 2157 unsigned long offset; 2158 unsigned long inflated_len; 2159 unsigned long inflated_addr; 2160 unsigned long inflated_offset; 2161 2162 if (len > TASK_SIZE) 2163 return -ENOMEM; 2164 2165 get_area = current->mm->get_unmapped_area; 2166 addr = get_area(file, uaddr, len, pgoff, flags); 2167 2168 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2169 return addr; 2170 if (IS_ERR_VALUE(addr)) 2171 return addr; 2172 if (addr & ~PAGE_MASK) 2173 return addr; 2174 if (addr > TASK_SIZE - len) 2175 return addr; 2176 2177 if (shmem_huge == SHMEM_HUGE_DENY) 2178 return addr; 2179 if (len < HPAGE_PMD_SIZE) 2180 return addr; 2181 if (flags & MAP_FIXED) 2182 return addr; 2183 /* 2184 * Our priority is to support MAP_SHARED mapped hugely; 2185 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2186 * But if caller specified an address hint and we allocated area there 2187 * successfully, respect that as before. 2188 */ 2189 if (uaddr == addr) 2190 return addr; 2191 2192 if (shmem_huge != SHMEM_HUGE_FORCE) { 2193 struct super_block *sb; 2194 2195 if (file) { 2196 VM_BUG_ON(file->f_op != &shmem_file_operations); 2197 sb = file_inode(file)->i_sb; 2198 } else { 2199 /* 2200 * Called directly from mm/mmap.c, or drivers/char/mem.c 2201 * for "/dev/zero", to create a shared anonymous object. 2202 */ 2203 if (IS_ERR(shm_mnt)) 2204 return addr; 2205 sb = shm_mnt->mnt_sb; 2206 } 2207 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2208 return addr; 2209 } 2210 2211 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2212 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2213 return addr; 2214 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2215 return addr; 2216 2217 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2218 if (inflated_len > TASK_SIZE) 2219 return addr; 2220 if (inflated_len < len) 2221 return addr; 2222 2223 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2224 if (IS_ERR_VALUE(inflated_addr)) 2225 return addr; 2226 if (inflated_addr & ~PAGE_MASK) 2227 return addr; 2228 2229 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2230 inflated_addr += offset - inflated_offset; 2231 if (inflated_offset > offset) 2232 inflated_addr += HPAGE_PMD_SIZE; 2233 2234 if (inflated_addr > TASK_SIZE - len) 2235 return addr; 2236 return inflated_addr; 2237 } 2238 2239 #ifdef CONFIG_NUMA 2240 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2241 { 2242 struct inode *inode = file_inode(vma->vm_file); 2243 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2244 } 2245 2246 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2247 unsigned long addr) 2248 { 2249 struct inode *inode = file_inode(vma->vm_file); 2250 pgoff_t index; 2251 2252 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2253 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2254 } 2255 #endif 2256 2257 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2258 { 2259 struct inode *inode = file_inode(file); 2260 struct shmem_inode_info *info = SHMEM_I(inode); 2261 int retval = -ENOMEM; 2262 2263 /* 2264 * What serializes the accesses to info->flags? 2265 * ipc_lock_object() when called from shmctl_do_lock(), 2266 * no serialization needed when called from shm_destroy(). 2267 */ 2268 if (lock && !(info->flags & VM_LOCKED)) { 2269 if (!user_shm_lock(inode->i_size, ucounts)) 2270 goto out_nomem; 2271 info->flags |= VM_LOCKED; 2272 mapping_set_unevictable(file->f_mapping); 2273 } 2274 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2275 user_shm_unlock(inode->i_size, ucounts); 2276 info->flags &= ~VM_LOCKED; 2277 mapping_clear_unevictable(file->f_mapping); 2278 } 2279 retval = 0; 2280 2281 out_nomem: 2282 return retval; 2283 } 2284 2285 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2286 { 2287 struct inode *inode = file_inode(file); 2288 struct shmem_inode_info *info = SHMEM_I(inode); 2289 int ret; 2290 2291 ret = seal_check_future_write(info->seals, vma); 2292 if (ret) 2293 return ret; 2294 2295 /* arm64 - allow memory tagging on RAM-based files */ 2296 vma->vm_flags |= VM_MTE_ALLOWED; 2297 2298 file_accessed(file); 2299 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2300 if (inode->i_nlink) 2301 vma->vm_ops = &shmem_vm_ops; 2302 else 2303 vma->vm_ops = &shmem_anon_vm_ops; 2304 return 0; 2305 } 2306 2307 #ifdef CONFIG_TMPFS_XATTR 2308 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2309 2310 /* 2311 * chattr's fsflags are unrelated to extended attributes, 2312 * but tmpfs has chosen to enable them under the same config option. 2313 */ 2314 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2315 { 2316 unsigned int i_flags = 0; 2317 2318 if (fsflags & FS_NOATIME_FL) 2319 i_flags |= S_NOATIME; 2320 if (fsflags & FS_APPEND_FL) 2321 i_flags |= S_APPEND; 2322 if (fsflags & FS_IMMUTABLE_FL) 2323 i_flags |= S_IMMUTABLE; 2324 /* 2325 * But FS_NODUMP_FL does not require any action in i_flags. 2326 */ 2327 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2328 } 2329 #else 2330 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2331 { 2332 } 2333 #define shmem_initxattrs NULL 2334 #endif 2335 2336 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2337 umode_t mode, dev_t dev, unsigned long flags) 2338 { 2339 struct inode *inode; 2340 struct shmem_inode_info *info; 2341 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2342 ino_t ino; 2343 2344 if (shmem_reserve_inode(sb, &ino)) 2345 return NULL; 2346 2347 inode = new_inode(sb); 2348 if (inode) { 2349 inode->i_ino = ino; 2350 inode_init_owner(&init_user_ns, inode, dir, mode); 2351 inode->i_blocks = 0; 2352 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2353 inode->i_generation = get_random_u32(); 2354 info = SHMEM_I(inode); 2355 memset(info, 0, (char *)inode - (char *)info); 2356 spin_lock_init(&info->lock); 2357 atomic_set(&info->stop_eviction, 0); 2358 info->seals = F_SEAL_SEAL; 2359 info->flags = flags & VM_NORESERVE; 2360 info->i_crtime = inode->i_mtime; 2361 info->fsflags = (dir == NULL) ? 0 : 2362 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2363 if (info->fsflags) 2364 shmem_set_inode_flags(inode, info->fsflags); 2365 INIT_LIST_HEAD(&info->shrinklist); 2366 INIT_LIST_HEAD(&info->swaplist); 2367 simple_xattrs_init(&info->xattrs); 2368 cache_no_acl(inode); 2369 mapping_set_large_folios(inode->i_mapping); 2370 2371 switch (mode & S_IFMT) { 2372 default: 2373 inode->i_op = &shmem_special_inode_operations; 2374 init_special_inode(inode, mode, dev); 2375 break; 2376 case S_IFREG: 2377 inode->i_mapping->a_ops = &shmem_aops; 2378 inode->i_op = &shmem_inode_operations; 2379 inode->i_fop = &shmem_file_operations; 2380 mpol_shared_policy_init(&info->policy, 2381 shmem_get_sbmpol(sbinfo)); 2382 break; 2383 case S_IFDIR: 2384 inc_nlink(inode); 2385 /* Some things misbehave if size == 0 on a directory */ 2386 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2387 inode->i_op = &shmem_dir_inode_operations; 2388 inode->i_fop = &simple_dir_operations; 2389 break; 2390 case S_IFLNK: 2391 /* 2392 * Must not load anything in the rbtree, 2393 * mpol_free_shared_policy will not be called. 2394 */ 2395 mpol_shared_policy_init(&info->policy, NULL); 2396 break; 2397 } 2398 2399 lockdep_annotate_inode_mutex_key(inode); 2400 } else 2401 shmem_free_inode(sb); 2402 return inode; 2403 } 2404 2405 #ifdef CONFIG_USERFAULTFD 2406 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2407 pmd_t *dst_pmd, 2408 struct vm_area_struct *dst_vma, 2409 unsigned long dst_addr, 2410 unsigned long src_addr, 2411 bool zeropage, bool wp_copy, 2412 struct page **pagep) 2413 { 2414 struct inode *inode = file_inode(dst_vma->vm_file); 2415 struct shmem_inode_info *info = SHMEM_I(inode); 2416 struct address_space *mapping = inode->i_mapping; 2417 gfp_t gfp = mapping_gfp_mask(mapping); 2418 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2419 void *page_kaddr; 2420 struct folio *folio; 2421 int ret; 2422 pgoff_t max_off; 2423 2424 if (!shmem_inode_acct_block(inode, 1)) { 2425 /* 2426 * We may have got a page, returned -ENOENT triggering a retry, 2427 * and now we find ourselves with -ENOMEM. Release the page, to 2428 * avoid a BUG_ON in our caller. 2429 */ 2430 if (unlikely(*pagep)) { 2431 put_page(*pagep); 2432 *pagep = NULL; 2433 } 2434 return -ENOMEM; 2435 } 2436 2437 if (!*pagep) { 2438 ret = -ENOMEM; 2439 folio = shmem_alloc_folio(gfp, info, pgoff); 2440 if (!folio) 2441 goto out_unacct_blocks; 2442 2443 if (!zeropage) { /* COPY */ 2444 page_kaddr = kmap_local_folio(folio, 0); 2445 /* 2446 * The read mmap_lock is held here. Despite the 2447 * mmap_lock being read recursive a deadlock is still 2448 * possible if a writer has taken a lock. For example: 2449 * 2450 * process A thread 1 takes read lock on own mmap_lock 2451 * process A thread 2 calls mmap, blocks taking write lock 2452 * process B thread 1 takes page fault, read lock on own mmap lock 2453 * process B thread 2 calls mmap, blocks taking write lock 2454 * process A thread 1 blocks taking read lock on process B 2455 * process B thread 1 blocks taking read lock on process A 2456 * 2457 * Disable page faults to prevent potential deadlock 2458 * and retry the copy outside the mmap_lock. 2459 */ 2460 pagefault_disable(); 2461 ret = copy_from_user(page_kaddr, 2462 (const void __user *)src_addr, 2463 PAGE_SIZE); 2464 pagefault_enable(); 2465 kunmap_local(page_kaddr); 2466 2467 /* fallback to copy_from_user outside mmap_lock */ 2468 if (unlikely(ret)) { 2469 *pagep = &folio->page; 2470 ret = -ENOENT; 2471 /* don't free the page */ 2472 goto out_unacct_blocks; 2473 } 2474 2475 flush_dcache_folio(folio); 2476 } else { /* ZEROPAGE */ 2477 clear_user_highpage(&folio->page, dst_addr); 2478 } 2479 } else { 2480 folio = page_folio(*pagep); 2481 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2482 *pagep = NULL; 2483 } 2484 2485 VM_BUG_ON(folio_test_locked(folio)); 2486 VM_BUG_ON(folio_test_swapbacked(folio)); 2487 __folio_set_locked(folio); 2488 __folio_set_swapbacked(folio); 2489 __folio_mark_uptodate(folio); 2490 2491 ret = -EFAULT; 2492 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2493 if (unlikely(pgoff >= max_off)) 2494 goto out_release; 2495 2496 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2497 gfp & GFP_RECLAIM_MASK, dst_mm); 2498 if (ret) 2499 goto out_release; 2500 2501 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2502 &folio->page, true, wp_copy); 2503 if (ret) 2504 goto out_delete_from_cache; 2505 2506 spin_lock_irq(&info->lock); 2507 info->alloced++; 2508 inode->i_blocks += BLOCKS_PER_PAGE; 2509 shmem_recalc_inode(inode); 2510 spin_unlock_irq(&info->lock); 2511 2512 folio_unlock(folio); 2513 return 0; 2514 out_delete_from_cache: 2515 filemap_remove_folio(folio); 2516 out_release: 2517 folio_unlock(folio); 2518 folio_put(folio); 2519 out_unacct_blocks: 2520 shmem_inode_unacct_blocks(inode, 1); 2521 return ret; 2522 } 2523 #endif /* CONFIG_USERFAULTFD */ 2524 2525 #ifdef CONFIG_TMPFS 2526 static const struct inode_operations shmem_symlink_inode_operations; 2527 static const struct inode_operations shmem_short_symlink_operations; 2528 2529 static int 2530 shmem_write_begin(struct file *file, struct address_space *mapping, 2531 loff_t pos, unsigned len, 2532 struct page **pagep, void **fsdata) 2533 { 2534 struct inode *inode = mapping->host; 2535 struct shmem_inode_info *info = SHMEM_I(inode); 2536 pgoff_t index = pos >> PAGE_SHIFT; 2537 struct folio *folio; 2538 int ret = 0; 2539 2540 /* i_rwsem is held by caller */ 2541 if (unlikely(info->seals & (F_SEAL_GROW | 2542 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2543 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2544 return -EPERM; 2545 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2546 return -EPERM; 2547 } 2548 2549 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2550 2551 if (ret) 2552 return ret; 2553 2554 *pagep = folio_file_page(folio, index); 2555 if (PageHWPoison(*pagep)) { 2556 folio_unlock(folio); 2557 folio_put(folio); 2558 *pagep = NULL; 2559 return -EIO; 2560 } 2561 2562 return 0; 2563 } 2564 2565 static int 2566 shmem_write_end(struct file *file, struct address_space *mapping, 2567 loff_t pos, unsigned len, unsigned copied, 2568 struct page *page, void *fsdata) 2569 { 2570 struct inode *inode = mapping->host; 2571 2572 if (pos + copied > inode->i_size) 2573 i_size_write(inode, pos + copied); 2574 2575 if (!PageUptodate(page)) { 2576 struct page *head = compound_head(page); 2577 if (PageTransCompound(page)) { 2578 int i; 2579 2580 for (i = 0; i < HPAGE_PMD_NR; i++) { 2581 if (head + i == page) 2582 continue; 2583 clear_highpage(head + i); 2584 flush_dcache_page(head + i); 2585 } 2586 } 2587 if (copied < PAGE_SIZE) { 2588 unsigned from = pos & (PAGE_SIZE - 1); 2589 zero_user_segments(page, 0, from, 2590 from + copied, PAGE_SIZE); 2591 } 2592 SetPageUptodate(head); 2593 } 2594 set_page_dirty(page); 2595 unlock_page(page); 2596 put_page(page); 2597 2598 return copied; 2599 } 2600 2601 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2602 { 2603 struct file *file = iocb->ki_filp; 2604 struct inode *inode = file_inode(file); 2605 struct address_space *mapping = inode->i_mapping; 2606 pgoff_t index; 2607 unsigned long offset; 2608 int error = 0; 2609 ssize_t retval = 0; 2610 loff_t *ppos = &iocb->ki_pos; 2611 2612 index = *ppos >> PAGE_SHIFT; 2613 offset = *ppos & ~PAGE_MASK; 2614 2615 for (;;) { 2616 struct folio *folio = NULL; 2617 struct page *page = NULL; 2618 pgoff_t end_index; 2619 unsigned long nr, ret; 2620 loff_t i_size = i_size_read(inode); 2621 2622 end_index = i_size >> PAGE_SHIFT; 2623 if (index > end_index) 2624 break; 2625 if (index == end_index) { 2626 nr = i_size & ~PAGE_MASK; 2627 if (nr <= offset) 2628 break; 2629 } 2630 2631 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2632 if (error) { 2633 if (error == -EINVAL) 2634 error = 0; 2635 break; 2636 } 2637 if (folio) { 2638 folio_unlock(folio); 2639 2640 page = folio_file_page(folio, index); 2641 if (PageHWPoison(page)) { 2642 folio_put(folio); 2643 error = -EIO; 2644 break; 2645 } 2646 } 2647 2648 /* 2649 * We must evaluate after, since reads (unlike writes) 2650 * are called without i_rwsem protection against truncate 2651 */ 2652 nr = PAGE_SIZE; 2653 i_size = i_size_read(inode); 2654 end_index = i_size >> PAGE_SHIFT; 2655 if (index == end_index) { 2656 nr = i_size & ~PAGE_MASK; 2657 if (nr <= offset) { 2658 if (folio) 2659 folio_put(folio); 2660 break; 2661 } 2662 } 2663 nr -= offset; 2664 2665 if (folio) { 2666 /* 2667 * If users can be writing to this page using arbitrary 2668 * virtual addresses, take care about potential aliasing 2669 * before reading the page on the kernel side. 2670 */ 2671 if (mapping_writably_mapped(mapping)) 2672 flush_dcache_page(page); 2673 /* 2674 * Mark the page accessed if we read the beginning. 2675 */ 2676 if (!offset) 2677 folio_mark_accessed(folio); 2678 /* 2679 * Ok, we have the page, and it's up-to-date, so 2680 * now we can copy it to user space... 2681 */ 2682 ret = copy_page_to_iter(page, offset, nr, to); 2683 folio_put(folio); 2684 2685 } else if (user_backed_iter(to)) { 2686 /* 2687 * Copy to user tends to be so well optimized, but 2688 * clear_user() not so much, that it is noticeably 2689 * faster to copy the zero page instead of clearing. 2690 */ 2691 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2692 } else { 2693 /* 2694 * But submitting the same page twice in a row to 2695 * splice() - or others? - can result in confusion: 2696 * so don't attempt that optimization on pipes etc. 2697 */ 2698 ret = iov_iter_zero(nr, to); 2699 } 2700 2701 retval += ret; 2702 offset += ret; 2703 index += offset >> PAGE_SHIFT; 2704 offset &= ~PAGE_MASK; 2705 2706 if (!iov_iter_count(to)) 2707 break; 2708 if (ret < nr) { 2709 error = -EFAULT; 2710 break; 2711 } 2712 cond_resched(); 2713 } 2714 2715 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2716 file_accessed(file); 2717 return retval ? retval : error; 2718 } 2719 2720 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2721 { 2722 struct address_space *mapping = file->f_mapping; 2723 struct inode *inode = mapping->host; 2724 2725 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2726 return generic_file_llseek_size(file, offset, whence, 2727 MAX_LFS_FILESIZE, i_size_read(inode)); 2728 if (offset < 0) 2729 return -ENXIO; 2730 2731 inode_lock(inode); 2732 /* We're holding i_rwsem so we can access i_size directly */ 2733 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2734 if (offset >= 0) 2735 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2736 inode_unlock(inode); 2737 return offset; 2738 } 2739 2740 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2741 loff_t len) 2742 { 2743 struct inode *inode = file_inode(file); 2744 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2745 struct shmem_inode_info *info = SHMEM_I(inode); 2746 struct shmem_falloc shmem_falloc; 2747 pgoff_t start, index, end, undo_fallocend; 2748 int error; 2749 2750 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2751 return -EOPNOTSUPP; 2752 2753 inode_lock(inode); 2754 2755 if (mode & FALLOC_FL_PUNCH_HOLE) { 2756 struct address_space *mapping = file->f_mapping; 2757 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2758 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2759 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2760 2761 /* protected by i_rwsem */ 2762 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2763 error = -EPERM; 2764 goto out; 2765 } 2766 2767 shmem_falloc.waitq = &shmem_falloc_waitq; 2768 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2769 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2770 spin_lock(&inode->i_lock); 2771 inode->i_private = &shmem_falloc; 2772 spin_unlock(&inode->i_lock); 2773 2774 if ((u64)unmap_end > (u64)unmap_start) 2775 unmap_mapping_range(mapping, unmap_start, 2776 1 + unmap_end - unmap_start, 0); 2777 shmem_truncate_range(inode, offset, offset + len - 1); 2778 /* No need to unmap again: hole-punching leaves COWed pages */ 2779 2780 spin_lock(&inode->i_lock); 2781 inode->i_private = NULL; 2782 wake_up_all(&shmem_falloc_waitq); 2783 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2784 spin_unlock(&inode->i_lock); 2785 error = 0; 2786 goto out; 2787 } 2788 2789 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2790 error = inode_newsize_ok(inode, offset + len); 2791 if (error) 2792 goto out; 2793 2794 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2795 error = -EPERM; 2796 goto out; 2797 } 2798 2799 start = offset >> PAGE_SHIFT; 2800 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2801 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2802 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2803 error = -ENOSPC; 2804 goto out; 2805 } 2806 2807 shmem_falloc.waitq = NULL; 2808 shmem_falloc.start = start; 2809 shmem_falloc.next = start; 2810 shmem_falloc.nr_falloced = 0; 2811 shmem_falloc.nr_unswapped = 0; 2812 spin_lock(&inode->i_lock); 2813 inode->i_private = &shmem_falloc; 2814 spin_unlock(&inode->i_lock); 2815 2816 /* 2817 * info->fallocend is only relevant when huge pages might be 2818 * involved: to prevent split_huge_page() freeing fallocated 2819 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2820 */ 2821 undo_fallocend = info->fallocend; 2822 if (info->fallocend < end) 2823 info->fallocend = end; 2824 2825 for (index = start; index < end; ) { 2826 struct folio *folio; 2827 2828 /* 2829 * Good, the fallocate(2) manpage permits EINTR: we may have 2830 * been interrupted because we are using up too much memory. 2831 */ 2832 if (signal_pending(current)) 2833 error = -EINTR; 2834 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2835 error = -ENOMEM; 2836 else 2837 error = shmem_get_folio(inode, index, &folio, 2838 SGP_FALLOC); 2839 if (error) { 2840 info->fallocend = undo_fallocend; 2841 /* Remove the !uptodate folios we added */ 2842 if (index > start) { 2843 shmem_undo_range(inode, 2844 (loff_t)start << PAGE_SHIFT, 2845 ((loff_t)index << PAGE_SHIFT) - 1, true); 2846 } 2847 goto undone; 2848 } 2849 2850 /* 2851 * Here is a more important optimization than it appears: 2852 * a second SGP_FALLOC on the same large folio will clear it, 2853 * making it uptodate and un-undoable if we fail later. 2854 */ 2855 index = folio_next_index(folio); 2856 /* Beware 32-bit wraparound */ 2857 if (!index) 2858 index--; 2859 2860 /* 2861 * Inform shmem_writepage() how far we have reached. 2862 * No need for lock or barrier: we have the page lock. 2863 */ 2864 if (!folio_test_uptodate(folio)) 2865 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2866 shmem_falloc.next = index; 2867 2868 /* 2869 * If !uptodate, leave it that way so that freeable folios 2870 * can be recognized if we need to rollback on error later. 2871 * But mark it dirty so that memory pressure will swap rather 2872 * than free the folios we are allocating (and SGP_CACHE folios 2873 * might still be clean: we now need to mark those dirty too). 2874 */ 2875 folio_mark_dirty(folio); 2876 folio_unlock(folio); 2877 folio_put(folio); 2878 cond_resched(); 2879 } 2880 2881 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2882 i_size_write(inode, offset + len); 2883 undone: 2884 spin_lock(&inode->i_lock); 2885 inode->i_private = NULL; 2886 spin_unlock(&inode->i_lock); 2887 out: 2888 if (!error) 2889 file_modified(file); 2890 inode_unlock(inode); 2891 return error; 2892 } 2893 2894 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2895 { 2896 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2897 2898 buf->f_type = TMPFS_MAGIC; 2899 buf->f_bsize = PAGE_SIZE; 2900 buf->f_namelen = NAME_MAX; 2901 if (sbinfo->max_blocks) { 2902 buf->f_blocks = sbinfo->max_blocks; 2903 buf->f_bavail = 2904 buf->f_bfree = sbinfo->max_blocks - 2905 percpu_counter_sum(&sbinfo->used_blocks); 2906 } 2907 if (sbinfo->max_inodes) { 2908 buf->f_files = sbinfo->max_inodes; 2909 buf->f_ffree = sbinfo->free_inodes; 2910 } 2911 /* else leave those fields 0 like simple_statfs */ 2912 2913 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2914 2915 return 0; 2916 } 2917 2918 /* 2919 * File creation. Allocate an inode, and we're done.. 2920 */ 2921 static int 2922 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2923 struct dentry *dentry, umode_t mode, dev_t dev) 2924 { 2925 struct inode *inode; 2926 int error = -ENOSPC; 2927 2928 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2929 if (inode) { 2930 error = simple_acl_create(dir, inode); 2931 if (error) 2932 goto out_iput; 2933 error = security_inode_init_security(inode, dir, 2934 &dentry->d_name, 2935 shmem_initxattrs, NULL); 2936 if (error && error != -EOPNOTSUPP) 2937 goto out_iput; 2938 2939 error = 0; 2940 dir->i_size += BOGO_DIRENT_SIZE; 2941 dir->i_ctime = dir->i_mtime = current_time(dir); 2942 inode_inc_iversion(dir); 2943 d_instantiate(dentry, inode); 2944 dget(dentry); /* Extra count - pin the dentry in core */ 2945 } 2946 return error; 2947 out_iput: 2948 iput(inode); 2949 return error; 2950 } 2951 2952 static int 2953 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2954 struct file *file, umode_t mode) 2955 { 2956 struct inode *inode; 2957 int error = -ENOSPC; 2958 2959 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2960 if (inode) { 2961 error = security_inode_init_security(inode, dir, 2962 NULL, 2963 shmem_initxattrs, NULL); 2964 if (error && error != -EOPNOTSUPP) 2965 goto out_iput; 2966 error = simple_acl_create(dir, inode); 2967 if (error) 2968 goto out_iput; 2969 d_tmpfile(file, inode); 2970 } 2971 return finish_open_simple(file, error); 2972 out_iput: 2973 iput(inode); 2974 return error; 2975 } 2976 2977 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2978 struct dentry *dentry, umode_t mode) 2979 { 2980 int error; 2981 2982 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2983 mode | S_IFDIR, 0))) 2984 return error; 2985 inc_nlink(dir); 2986 return 0; 2987 } 2988 2989 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2990 struct dentry *dentry, umode_t mode, bool excl) 2991 { 2992 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2993 } 2994 2995 /* 2996 * Link a file.. 2997 */ 2998 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2999 { 3000 struct inode *inode = d_inode(old_dentry); 3001 int ret = 0; 3002 3003 /* 3004 * No ordinary (disk based) filesystem counts links as inodes; 3005 * but each new link needs a new dentry, pinning lowmem, and 3006 * tmpfs dentries cannot be pruned until they are unlinked. 3007 * But if an O_TMPFILE file is linked into the tmpfs, the 3008 * first link must skip that, to get the accounting right. 3009 */ 3010 if (inode->i_nlink) { 3011 ret = shmem_reserve_inode(inode->i_sb, NULL); 3012 if (ret) 3013 goto out; 3014 } 3015 3016 dir->i_size += BOGO_DIRENT_SIZE; 3017 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3018 inode_inc_iversion(dir); 3019 inc_nlink(inode); 3020 ihold(inode); /* New dentry reference */ 3021 dget(dentry); /* Extra pinning count for the created dentry */ 3022 d_instantiate(dentry, inode); 3023 out: 3024 return ret; 3025 } 3026 3027 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3028 { 3029 struct inode *inode = d_inode(dentry); 3030 3031 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3032 shmem_free_inode(inode->i_sb); 3033 3034 dir->i_size -= BOGO_DIRENT_SIZE; 3035 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3036 inode_inc_iversion(dir); 3037 drop_nlink(inode); 3038 dput(dentry); /* Undo the count from "create" - this does all the work */ 3039 return 0; 3040 } 3041 3042 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3043 { 3044 if (!simple_empty(dentry)) 3045 return -ENOTEMPTY; 3046 3047 drop_nlink(d_inode(dentry)); 3048 drop_nlink(dir); 3049 return shmem_unlink(dir, dentry); 3050 } 3051 3052 static int shmem_whiteout(struct user_namespace *mnt_userns, 3053 struct inode *old_dir, struct dentry *old_dentry) 3054 { 3055 struct dentry *whiteout; 3056 int error; 3057 3058 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3059 if (!whiteout) 3060 return -ENOMEM; 3061 3062 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3063 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3064 dput(whiteout); 3065 if (error) 3066 return error; 3067 3068 /* 3069 * Cheat and hash the whiteout while the old dentry is still in 3070 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3071 * 3072 * d_lookup() will consistently find one of them at this point, 3073 * not sure which one, but that isn't even important. 3074 */ 3075 d_rehash(whiteout); 3076 return 0; 3077 } 3078 3079 /* 3080 * The VFS layer already does all the dentry stuff for rename, 3081 * we just have to decrement the usage count for the target if 3082 * it exists so that the VFS layer correctly free's it when it 3083 * gets overwritten. 3084 */ 3085 static int shmem_rename2(struct user_namespace *mnt_userns, 3086 struct inode *old_dir, struct dentry *old_dentry, 3087 struct inode *new_dir, struct dentry *new_dentry, 3088 unsigned int flags) 3089 { 3090 struct inode *inode = d_inode(old_dentry); 3091 int they_are_dirs = S_ISDIR(inode->i_mode); 3092 3093 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3094 return -EINVAL; 3095 3096 if (flags & RENAME_EXCHANGE) 3097 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3098 3099 if (!simple_empty(new_dentry)) 3100 return -ENOTEMPTY; 3101 3102 if (flags & RENAME_WHITEOUT) { 3103 int error; 3104 3105 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3106 if (error) 3107 return error; 3108 } 3109 3110 if (d_really_is_positive(new_dentry)) { 3111 (void) shmem_unlink(new_dir, new_dentry); 3112 if (they_are_dirs) { 3113 drop_nlink(d_inode(new_dentry)); 3114 drop_nlink(old_dir); 3115 } 3116 } else if (they_are_dirs) { 3117 drop_nlink(old_dir); 3118 inc_nlink(new_dir); 3119 } 3120 3121 old_dir->i_size -= BOGO_DIRENT_SIZE; 3122 new_dir->i_size += BOGO_DIRENT_SIZE; 3123 old_dir->i_ctime = old_dir->i_mtime = 3124 new_dir->i_ctime = new_dir->i_mtime = 3125 inode->i_ctime = current_time(old_dir); 3126 inode_inc_iversion(old_dir); 3127 inode_inc_iversion(new_dir); 3128 return 0; 3129 } 3130 3131 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3132 struct dentry *dentry, const char *symname) 3133 { 3134 int error; 3135 int len; 3136 struct inode *inode; 3137 struct folio *folio; 3138 3139 len = strlen(symname) + 1; 3140 if (len > PAGE_SIZE) 3141 return -ENAMETOOLONG; 3142 3143 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3144 VM_NORESERVE); 3145 if (!inode) 3146 return -ENOSPC; 3147 3148 error = security_inode_init_security(inode, dir, &dentry->d_name, 3149 shmem_initxattrs, NULL); 3150 if (error && error != -EOPNOTSUPP) { 3151 iput(inode); 3152 return error; 3153 } 3154 3155 inode->i_size = len-1; 3156 if (len <= SHORT_SYMLINK_LEN) { 3157 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3158 if (!inode->i_link) { 3159 iput(inode); 3160 return -ENOMEM; 3161 } 3162 inode->i_op = &shmem_short_symlink_operations; 3163 } else { 3164 inode_nohighmem(inode); 3165 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3166 if (error) { 3167 iput(inode); 3168 return error; 3169 } 3170 inode->i_mapping->a_ops = &shmem_aops; 3171 inode->i_op = &shmem_symlink_inode_operations; 3172 memcpy(folio_address(folio), symname, len); 3173 folio_mark_uptodate(folio); 3174 folio_mark_dirty(folio); 3175 folio_unlock(folio); 3176 folio_put(folio); 3177 } 3178 dir->i_size += BOGO_DIRENT_SIZE; 3179 dir->i_ctime = dir->i_mtime = current_time(dir); 3180 inode_inc_iversion(dir); 3181 d_instantiate(dentry, inode); 3182 dget(dentry); 3183 return 0; 3184 } 3185 3186 static void shmem_put_link(void *arg) 3187 { 3188 folio_mark_accessed(arg); 3189 folio_put(arg); 3190 } 3191 3192 static const char *shmem_get_link(struct dentry *dentry, 3193 struct inode *inode, 3194 struct delayed_call *done) 3195 { 3196 struct folio *folio = NULL; 3197 int error; 3198 3199 if (!dentry) { 3200 folio = filemap_get_folio(inode->i_mapping, 0); 3201 if (!folio) 3202 return ERR_PTR(-ECHILD); 3203 if (PageHWPoison(folio_page(folio, 0)) || 3204 !folio_test_uptodate(folio)) { 3205 folio_put(folio); 3206 return ERR_PTR(-ECHILD); 3207 } 3208 } else { 3209 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3210 if (error) 3211 return ERR_PTR(error); 3212 if (!folio) 3213 return ERR_PTR(-ECHILD); 3214 if (PageHWPoison(folio_page(folio, 0))) { 3215 folio_unlock(folio); 3216 folio_put(folio); 3217 return ERR_PTR(-ECHILD); 3218 } 3219 folio_unlock(folio); 3220 } 3221 set_delayed_call(done, shmem_put_link, folio); 3222 return folio_address(folio); 3223 } 3224 3225 #ifdef CONFIG_TMPFS_XATTR 3226 3227 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3228 { 3229 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3230 3231 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3232 3233 return 0; 3234 } 3235 3236 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3237 struct dentry *dentry, struct fileattr *fa) 3238 { 3239 struct inode *inode = d_inode(dentry); 3240 struct shmem_inode_info *info = SHMEM_I(inode); 3241 3242 if (fileattr_has_fsx(fa)) 3243 return -EOPNOTSUPP; 3244 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3245 return -EOPNOTSUPP; 3246 3247 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3248 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3249 3250 shmem_set_inode_flags(inode, info->fsflags); 3251 inode->i_ctime = current_time(inode); 3252 inode_inc_iversion(inode); 3253 return 0; 3254 } 3255 3256 /* 3257 * Superblocks without xattr inode operations may get some security.* xattr 3258 * support from the LSM "for free". As soon as we have any other xattrs 3259 * like ACLs, we also need to implement the security.* handlers at 3260 * filesystem level, though. 3261 */ 3262 3263 /* 3264 * Callback for security_inode_init_security() for acquiring xattrs. 3265 */ 3266 static int shmem_initxattrs(struct inode *inode, 3267 const struct xattr *xattr_array, 3268 void *fs_info) 3269 { 3270 struct shmem_inode_info *info = SHMEM_I(inode); 3271 const struct xattr *xattr; 3272 struct simple_xattr *new_xattr; 3273 size_t len; 3274 3275 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3276 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3277 if (!new_xattr) 3278 return -ENOMEM; 3279 3280 len = strlen(xattr->name) + 1; 3281 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3282 GFP_KERNEL); 3283 if (!new_xattr->name) { 3284 kvfree(new_xattr); 3285 return -ENOMEM; 3286 } 3287 3288 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3289 XATTR_SECURITY_PREFIX_LEN); 3290 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3291 xattr->name, len); 3292 3293 simple_xattr_add(&info->xattrs, new_xattr); 3294 } 3295 3296 return 0; 3297 } 3298 3299 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3300 struct dentry *unused, struct inode *inode, 3301 const char *name, void *buffer, size_t size) 3302 { 3303 struct shmem_inode_info *info = SHMEM_I(inode); 3304 3305 name = xattr_full_name(handler, name); 3306 return simple_xattr_get(&info->xattrs, name, buffer, size); 3307 } 3308 3309 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3310 struct user_namespace *mnt_userns, 3311 struct dentry *unused, struct inode *inode, 3312 const char *name, const void *value, 3313 size_t size, int flags) 3314 { 3315 struct shmem_inode_info *info = SHMEM_I(inode); 3316 int err; 3317 3318 name = xattr_full_name(handler, name); 3319 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3320 if (!err) { 3321 inode->i_ctime = current_time(inode); 3322 inode_inc_iversion(inode); 3323 } 3324 return err; 3325 } 3326 3327 static const struct xattr_handler shmem_security_xattr_handler = { 3328 .prefix = XATTR_SECURITY_PREFIX, 3329 .get = shmem_xattr_handler_get, 3330 .set = shmem_xattr_handler_set, 3331 }; 3332 3333 static const struct xattr_handler shmem_trusted_xattr_handler = { 3334 .prefix = XATTR_TRUSTED_PREFIX, 3335 .get = shmem_xattr_handler_get, 3336 .set = shmem_xattr_handler_set, 3337 }; 3338 3339 static const struct xattr_handler *shmem_xattr_handlers[] = { 3340 #ifdef CONFIG_TMPFS_POSIX_ACL 3341 &posix_acl_access_xattr_handler, 3342 &posix_acl_default_xattr_handler, 3343 #endif 3344 &shmem_security_xattr_handler, 3345 &shmem_trusted_xattr_handler, 3346 NULL 3347 }; 3348 3349 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3350 { 3351 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3352 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3353 } 3354 #endif /* CONFIG_TMPFS_XATTR */ 3355 3356 static const struct inode_operations shmem_short_symlink_operations = { 3357 .getattr = shmem_getattr, 3358 .get_link = simple_get_link, 3359 #ifdef CONFIG_TMPFS_XATTR 3360 .listxattr = shmem_listxattr, 3361 #endif 3362 }; 3363 3364 static const struct inode_operations shmem_symlink_inode_operations = { 3365 .getattr = shmem_getattr, 3366 .get_link = shmem_get_link, 3367 #ifdef CONFIG_TMPFS_XATTR 3368 .listxattr = shmem_listxattr, 3369 #endif 3370 }; 3371 3372 static struct dentry *shmem_get_parent(struct dentry *child) 3373 { 3374 return ERR_PTR(-ESTALE); 3375 } 3376 3377 static int shmem_match(struct inode *ino, void *vfh) 3378 { 3379 __u32 *fh = vfh; 3380 __u64 inum = fh[2]; 3381 inum = (inum << 32) | fh[1]; 3382 return ino->i_ino == inum && fh[0] == ino->i_generation; 3383 } 3384 3385 /* Find any alias of inode, but prefer a hashed alias */ 3386 static struct dentry *shmem_find_alias(struct inode *inode) 3387 { 3388 struct dentry *alias = d_find_alias(inode); 3389 3390 return alias ?: d_find_any_alias(inode); 3391 } 3392 3393 3394 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3395 struct fid *fid, int fh_len, int fh_type) 3396 { 3397 struct inode *inode; 3398 struct dentry *dentry = NULL; 3399 u64 inum; 3400 3401 if (fh_len < 3) 3402 return NULL; 3403 3404 inum = fid->raw[2]; 3405 inum = (inum << 32) | fid->raw[1]; 3406 3407 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3408 shmem_match, fid->raw); 3409 if (inode) { 3410 dentry = shmem_find_alias(inode); 3411 iput(inode); 3412 } 3413 3414 return dentry; 3415 } 3416 3417 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3418 struct inode *parent) 3419 { 3420 if (*len < 3) { 3421 *len = 3; 3422 return FILEID_INVALID; 3423 } 3424 3425 if (inode_unhashed(inode)) { 3426 /* Unfortunately insert_inode_hash is not idempotent, 3427 * so as we hash inodes here rather than at creation 3428 * time, we need a lock to ensure we only try 3429 * to do it once 3430 */ 3431 static DEFINE_SPINLOCK(lock); 3432 spin_lock(&lock); 3433 if (inode_unhashed(inode)) 3434 __insert_inode_hash(inode, 3435 inode->i_ino + inode->i_generation); 3436 spin_unlock(&lock); 3437 } 3438 3439 fh[0] = inode->i_generation; 3440 fh[1] = inode->i_ino; 3441 fh[2] = ((__u64)inode->i_ino) >> 32; 3442 3443 *len = 3; 3444 return 1; 3445 } 3446 3447 static const struct export_operations shmem_export_ops = { 3448 .get_parent = shmem_get_parent, 3449 .encode_fh = shmem_encode_fh, 3450 .fh_to_dentry = shmem_fh_to_dentry, 3451 }; 3452 3453 enum shmem_param { 3454 Opt_gid, 3455 Opt_huge, 3456 Opt_mode, 3457 Opt_mpol, 3458 Opt_nr_blocks, 3459 Opt_nr_inodes, 3460 Opt_size, 3461 Opt_uid, 3462 Opt_inode32, 3463 Opt_inode64, 3464 }; 3465 3466 static const struct constant_table shmem_param_enums_huge[] = { 3467 {"never", SHMEM_HUGE_NEVER }, 3468 {"always", SHMEM_HUGE_ALWAYS }, 3469 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3470 {"advise", SHMEM_HUGE_ADVISE }, 3471 {} 3472 }; 3473 3474 const struct fs_parameter_spec shmem_fs_parameters[] = { 3475 fsparam_u32 ("gid", Opt_gid), 3476 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3477 fsparam_u32oct("mode", Opt_mode), 3478 fsparam_string("mpol", Opt_mpol), 3479 fsparam_string("nr_blocks", Opt_nr_blocks), 3480 fsparam_string("nr_inodes", Opt_nr_inodes), 3481 fsparam_string("size", Opt_size), 3482 fsparam_u32 ("uid", Opt_uid), 3483 fsparam_flag ("inode32", Opt_inode32), 3484 fsparam_flag ("inode64", Opt_inode64), 3485 {} 3486 }; 3487 3488 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3489 { 3490 struct shmem_options *ctx = fc->fs_private; 3491 struct fs_parse_result result; 3492 unsigned long long size; 3493 char *rest; 3494 int opt; 3495 3496 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3497 if (opt < 0) 3498 return opt; 3499 3500 switch (opt) { 3501 case Opt_size: 3502 size = memparse(param->string, &rest); 3503 if (*rest == '%') { 3504 size <<= PAGE_SHIFT; 3505 size *= totalram_pages(); 3506 do_div(size, 100); 3507 rest++; 3508 } 3509 if (*rest) 3510 goto bad_value; 3511 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3512 ctx->seen |= SHMEM_SEEN_BLOCKS; 3513 break; 3514 case Opt_nr_blocks: 3515 ctx->blocks = memparse(param->string, &rest); 3516 if (*rest || ctx->blocks > S64_MAX) 3517 goto bad_value; 3518 ctx->seen |= SHMEM_SEEN_BLOCKS; 3519 break; 3520 case Opt_nr_inodes: 3521 ctx->inodes = memparse(param->string, &rest); 3522 if (*rest) 3523 goto bad_value; 3524 ctx->seen |= SHMEM_SEEN_INODES; 3525 break; 3526 case Opt_mode: 3527 ctx->mode = result.uint_32 & 07777; 3528 break; 3529 case Opt_uid: 3530 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3531 if (!uid_valid(ctx->uid)) 3532 goto bad_value; 3533 break; 3534 case Opt_gid: 3535 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3536 if (!gid_valid(ctx->gid)) 3537 goto bad_value; 3538 break; 3539 case Opt_huge: 3540 ctx->huge = result.uint_32; 3541 if (ctx->huge != SHMEM_HUGE_NEVER && 3542 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3543 has_transparent_hugepage())) 3544 goto unsupported_parameter; 3545 ctx->seen |= SHMEM_SEEN_HUGE; 3546 break; 3547 case Opt_mpol: 3548 if (IS_ENABLED(CONFIG_NUMA)) { 3549 mpol_put(ctx->mpol); 3550 ctx->mpol = NULL; 3551 if (mpol_parse_str(param->string, &ctx->mpol)) 3552 goto bad_value; 3553 break; 3554 } 3555 goto unsupported_parameter; 3556 case Opt_inode32: 3557 ctx->full_inums = false; 3558 ctx->seen |= SHMEM_SEEN_INUMS; 3559 break; 3560 case Opt_inode64: 3561 if (sizeof(ino_t) < 8) { 3562 return invalfc(fc, 3563 "Cannot use inode64 with <64bit inums in kernel\n"); 3564 } 3565 ctx->full_inums = true; 3566 ctx->seen |= SHMEM_SEEN_INUMS; 3567 break; 3568 } 3569 return 0; 3570 3571 unsupported_parameter: 3572 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3573 bad_value: 3574 return invalfc(fc, "Bad value for '%s'", param->key); 3575 } 3576 3577 static int shmem_parse_options(struct fs_context *fc, void *data) 3578 { 3579 char *options = data; 3580 3581 if (options) { 3582 int err = security_sb_eat_lsm_opts(options, &fc->security); 3583 if (err) 3584 return err; 3585 } 3586 3587 while (options != NULL) { 3588 char *this_char = options; 3589 for (;;) { 3590 /* 3591 * NUL-terminate this option: unfortunately, 3592 * mount options form a comma-separated list, 3593 * but mpol's nodelist may also contain commas. 3594 */ 3595 options = strchr(options, ','); 3596 if (options == NULL) 3597 break; 3598 options++; 3599 if (!isdigit(*options)) { 3600 options[-1] = '\0'; 3601 break; 3602 } 3603 } 3604 if (*this_char) { 3605 char *value = strchr(this_char, '='); 3606 size_t len = 0; 3607 int err; 3608 3609 if (value) { 3610 *value++ = '\0'; 3611 len = strlen(value); 3612 } 3613 err = vfs_parse_fs_string(fc, this_char, value, len); 3614 if (err < 0) 3615 return err; 3616 } 3617 } 3618 return 0; 3619 } 3620 3621 /* 3622 * Reconfigure a shmem filesystem. 3623 * 3624 * Note that we disallow change from limited->unlimited blocks/inodes while any 3625 * are in use; but we must separately disallow unlimited->limited, because in 3626 * that case we have no record of how much is already in use. 3627 */ 3628 static int shmem_reconfigure(struct fs_context *fc) 3629 { 3630 struct shmem_options *ctx = fc->fs_private; 3631 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3632 unsigned long inodes; 3633 struct mempolicy *mpol = NULL; 3634 const char *err; 3635 3636 raw_spin_lock(&sbinfo->stat_lock); 3637 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3638 3639 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3640 if (!sbinfo->max_blocks) { 3641 err = "Cannot retroactively limit size"; 3642 goto out; 3643 } 3644 if (percpu_counter_compare(&sbinfo->used_blocks, 3645 ctx->blocks) > 0) { 3646 err = "Too small a size for current use"; 3647 goto out; 3648 } 3649 } 3650 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3651 if (!sbinfo->max_inodes) { 3652 err = "Cannot retroactively limit inodes"; 3653 goto out; 3654 } 3655 if (ctx->inodes < inodes) { 3656 err = "Too few inodes for current use"; 3657 goto out; 3658 } 3659 } 3660 3661 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3662 sbinfo->next_ino > UINT_MAX) { 3663 err = "Current inum too high to switch to 32-bit inums"; 3664 goto out; 3665 } 3666 3667 if (ctx->seen & SHMEM_SEEN_HUGE) 3668 sbinfo->huge = ctx->huge; 3669 if (ctx->seen & SHMEM_SEEN_INUMS) 3670 sbinfo->full_inums = ctx->full_inums; 3671 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3672 sbinfo->max_blocks = ctx->blocks; 3673 if (ctx->seen & SHMEM_SEEN_INODES) { 3674 sbinfo->max_inodes = ctx->inodes; 3675 sbinfo->free_inodes = ctx->inodes - inodes; 3676 } 3677 3678 /* 3679 * Preserve previous mempolicy unless mpol remount option was specified. 3680 */ 3681 if (ctx->mpol) { 3682 mpol = sbinfo->mpol; 3683 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3684 ctx->mpol = NULL; 3685 } 3686 raw_spin_unlock(&sbinfo->stat_lock); 3687 mpol_put(mpol); 3688 return 0; 3689 out: 3690 raw_spin_unlock(&sbinfo->stat_lock); 3691 return invalfc(fc, "%s", err); 3692 } 3693 3694 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3695 { 3696 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3697 3698 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3699 seq_printf(seq, ",size=%luk", 3700 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3701 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3702 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3703 if (sbinfo->mode != (0777 | S_ISVTX)) 3704 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3705 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3706 seq_printf(seq, ",uid=%u", 3707 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3708 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3709 seq_printf(seq, ",gid=%u", 3710 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3711 3712 /* 3713 * Showing inode{64,32} might be useful even if it's the system default, 3714 * since then people don't have to resort to checking both here and 3715 * /proc/config.gz to confirm 64-bit inums were successfully applied 3716 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3717 * 3718 * We hide it when inode64 isn't the default and we are using 32-bit 3719 * inodes, since that probably just means the feature isn't even under 3720 * consideration. 3721 * 3722 * As such: 3723 * 3724 * +-----------------+-----------------+ 3725 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3726 * +------------------+-----------------+-----------------+ 3727 * | full_inums=true | show | show | 3728 * | full_inums=false | show | hide | 3729 * +------------------+-----------------+-----------------+ 3730 * 3731 */ 3732 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3733 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3734 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3735 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3736 if (sbinfo->huge) 3737 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3738 #endif 3739 shmem_show_mpol(seq, sbinfo->mpol); 3740 return 0; 3741 } 3742 3743 #endif /* CONFIG_TMPFS */ 3744 3745 static void shmem_put_super(struct super_block *sb) 3746 { 3747 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3748 3749 free_percpu(sbinfo->ino_batch); 3750 percpu_counter_destroy(&sbinfo->used_blocks); 3751 mpol_put(sbinfo->mpol); 3752 kfree(sbinfo); 3753 sb->s_fs_info = NULL; 3754 } 3755 3756 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3757 { 3758 struct shmem_options *ctx = fc->fs_private; 3759 struct inode *inode; 3760 struct shmem_sb_info *sbinfo; 3761 3762 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3763 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3764 L1_CACHE_BYTES), GFP_KERNEL); 3765 if (!sbinfo) 3766 return -ENOMEM; 3767 3768 sb->s_fs_info = sbinfo; 3769 3770 #ifdef CONFIG_TMPFS 3771 /* 3772 * Per default we only allow half of the physical ram per 3773 * tmpfs instance, limiting inodes to one per page of lowmem; 3774 * but the internal instance is left unlimited. 3775 */ 3776 if (!(sb->s_flags & SB_KERNMOUNT)) { 3777 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3778 ctx->blocks = shmem_default_max_blocks(); 3779 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3780 ctx->inodes = shmem_default_max_inodes(); 3781 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3782 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3783 } else { 3784 sb->s_flags |= SB_NOUSER; 3785 } 3786 sb->s_export_op = &shmem_export_ops; 3787 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 3788 #else 3789 sb->s_flags |= SB_NOUSER; 3790 #endif 3791 sbinfo->max_blocks = ctx->blocks; 3792 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3793 if (sb->s_flags & SB_KERNMOUNT) { 3794 sbinfo->ino_batch = alloc_percpu(ino_t); 3795 if (!sbinfo->ino_batch) 3796 goto failed; 3797 } 3798 sbinfo->uid = ctx->uid; 3799 sbinfo->gid = ctx->gid; 3800 sbinfo->full_inums = ctx->full_inums; 3801 sbinfo->mode = ctx->mode; 3802 sbinfo->huge = ctx->huge; 3803 sbinfo->mpol = ctx->mpol; 3804 ctx->mpol = NULL; 3805 3806 raw_spin_lock_init(&sbinfo->stat_lock); 3807 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3808 goto failed; 3809 spin_lock_init(&sbinfo->shrinklist_lock); 3810 INIT_LIST_HEAD(&sbinfo->shrinklist); 3811 3812 sb->s_maxbytes = MAX_LFS_FILESIZE; 3813 sb->s_blocksize = PAGE_SIZE; 3814 sb->s_blocksize_bits = PAGE_SHIFT; 3815 sb->s_magic = TMPFS_MAGIC; 3816 sb->s_op = &shmem_ops; 3817 sb->s_time_gran = 1; 3818 #ifdef CONFIG_TMPFS_XATTR 3819 sb->s_xattr = shmem_xattr_handlers; 3820 #endif 3821 #ifdef CONFIG_TMPFS_POSIX_ACL 3822 sb->s_flags |= SB_POSIXACL; 3823 #endif 3824 uuid_gen(&sb->s_uuid); 3825 3826 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3827 if (!inode) 3828 goto failed; 3829 inode->i_uid = sbinfo->uid; 3830 inode->i_gid = sbinfo->gid; 3831 sb->s_root = d_make_root(inode); 3832 if (!sb->s_root) 3833 goto failed; 3834 return 0; 3835 3836 failed: 3837 shmem_put_super(sb); 3838 return -ENOMEM; 3839 } 3840 3841 static int shmem_get_tree(struct fs_context *fc) 3842 { 3843 return get_tree_nodev(fc, shmem_fill_super); 3844 } 3845 3846 static void shmem_free_fc(struct fs_context *fc) 3847 { 3848 struct shmem_options *ctx = fc->fs_private; 3849 3850 if (ctx) { 3851 mpol_put(ctx->mpol); 3852 kfree(ctx); 3853 } 3854 } 3855 3856 static const struct fs_context_operations shmem_fs_context_ops = { 3857 .free = shmem_free_fc, 3858 .get_tree = shmem_get_tree, 3859 #ifdef CONFIG_TMPFS 3860 .parse_monolithic = shmem_parse_options, 3861 .parse_param = shmem_parse_one, 3862 .reconfigure = shmem_reconfigure, 3863 #endif 3864 }; 3865 3866 static struct kmem_cache *shmem_inode_cachep; 3867 3868 static struct inode *shmem_alloc_inode(struct super_block *sb) 3869 { 3870 struct shmem_inode_info *info; 3871 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3872 if (!info) 3873 return NULL; 3874 return &info->vfs_inode; 3875 } 3876 3877 static void shmem_free_in_core_inode(struct inode *inode) 3878 { 3879 if (S_ISLNK(inode->i_mode)) 3880 kfree(inode->i_link); 3881 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3882 } 3883 3884 static void shmem_destroy_inode(struct inode *inode) 3885 { 3886 if (S_ISREG(inode->i_mode)) 3887 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3888 } 3889 3890 static void shmem_init_inode(void *foo) 3891 { 3892 struct shmem_inode_info *info = foo; 3893 inode_init_once(&info->vfs_inode); 3894 } 3895 3896 static void shmem_init_inodecache(void) 3897 { 3898 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3899 sizeof(struct shmem_inode_info), 3900 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3901 } 3902 3903 static void shmem_destroy_inodecache(void) 3904 { 3905 kmem_cache_destroy(shmem_inode_cachep); 3906 } 3907 3908 /* Keep the page in page cache instead of truncating it */ 3909 static int shmem_error_remove_page(struct address_space *mapping, 3910 struct page *page) 3911 { 3912 return 0; 3913 } 3914 3915 const struct address_space_operations shmem_aops = { 3916 .writepage = shmem_writepage, 3917 .dirty_folio = noop_dirty_folio, 3918 #ifdef CONFIG_TMPFS 3919 .write_begin = shmem_write_begin, 3920 .write_end = shmem_write_end, 3921 #endif 3922 #ifdef CONFIG_MIGRATION 3923 .migrate_folio = migrate_folio, 3924 #endif 3925 .error_remove_page = shmem_error_remove_page, 3926 }; 3927 EXPORT_SYMBOL(shmem_aops); 3928 3929 static const struct file_operations shmem_file_operations = { 3930 .mmap = shmem_mmap, 3931 .open = generic_file_open, 3932 .get_unmapped_area = shmem_get_unmapped_area, 3933 #ifdef CONFIG_TMPFS 3934 .llseek = shmem_file_llseek, 3935 .read_iter = shmem_file_read_iter, 3936 .write_iter = generic_file_write_iter, 3937 .fsync = noop_fsync, 3938 .splice_read = generic_file_splice_read, 3939 .splice_write = iter_file_splice_write, 3940 .fallocate = shmem_fallocate, 3941 #endif 3942 }; 3943 3944 static const struct inode_operations shmem_inode_operations = { 3945 .getattr = shmem_getattr, 3946 .setattr = shmem_setattr, 3947 #ifdef CONFIG_TMPFS_XATTR 3948 .listxattr = shmem_listxattr, 3949 .set_acl = simple_set_acl, 3950 .fileattr_get = shmem_fileattr_get, 3951 .fileattr_set = shmem_fileattr_set, 3952 #endif 3953 }; 3954 3955 static const struct inode_operations shmem_dir_inode_operations = { 3956 #ifdef CONFIG_TMPFS 3957 .getattr = shmem_getattr, 3958 .create = shmem_create, 3959 .lookup = simple_lookup, 3960 .link = shmem_link, 3961 .unlink = shmem_unlink, 3962 .symlink = shmem_symlink, 3963 .mkdir = shmem_mkdir, 3964 .rmdir = shmem_rmdir, 3965 .mknod = shmem_mknod, 3966 .rename = shmem_rename2, 3967 .tmpfile = shmem_tmpfile, 3968 #endif 3969 #ifdef CONFIG_TMPFS_XATTR 3970 .listxattr = shmem_listxattr, 3971 .fileattr_get = shmem_fileattr_get, 3972 .fileattr_set = shmem_fileattr_set, 3973 #endif 3974 #ifdef CONFIG_TMPFS_POSIX_ACL 3975 .setattr = shmem_setattr, 3976 .set_acl = simple_set_acl, 3977 #endif 3978 }; 3979 3980 static const struct inode_operations shmem_special_inode_operations = { 3981 .getattr = shmem_getattr, 3982 #ifdef CONFIG_TMPFS_XATTR 3983 .listxattr = shmem_listxattr, 3984 #endif 3985 #ifdef CONFIG_TMPFS_POSIX_ACL 3986 .setattr = shmem_setattr, 3987 .set_acl = simple_set_acl, 3988 #endif 3989 }; 3990 3991 static const struct super_operations shmem_ops = { 3992 .alloc_inode = shmem_alloc_inode, 3993 .free_inode = shmem_free_in_core_inode, 3994 .destroy_inode = shmem_destroy_inode, 3995 #ifdef CONFIG_TMPFS 3996 .statfs = shmem_statfs, 3997 .show_options = shmem_show_options, 3998 #endif 3999 .evict_inode = shmem_evict_inode, 4000 .drop_inode = generic_delete_inode, 4001 .put_super = shmem_put_super, 4002 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4003 .nr_cached_objects = shmem_unused_huge_count, 4004 .free_cached_objects = shmem_unused_huge_scan, 4005 #endif 4006 }; 4007 4008 static const struct vm_operations_struct shmem_vm_ops = { 4009 .fault = shmem_fault, 4010 .map_pages = filemap_map_pages, 4011 #ifdef CONFIG_NUMA 4012 .set_policy = shmem_set_policy, 4013 .get_policy = shmem_get_policy, 4014 #endif 4015 }; 4016 4017 static const struct vm_operations_struct shmem_anon_vm_ops = { 4018 .fault = shmem_fault, 4019 .map_pages = filemap_map_pages, 4020 #ifdef CONFIG_NUMA 4021 .set_policy = shmem_set_policy, 4022 .get_policy = shmem_get_policy, 4023 #endif 4024 }; 4025 4026 int shmem_init_fs_context(struct fs_context *fc) 4027 { 4028 struct shmem_options *ctx; 4029 4030 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4031 if (!ctx) 4032 return -ENOMEM; 4033 4034 ctx->mode = 0777 | S_ISVTX; 4035 ctx->uid = current_fsuid(); 4036 ctx->gid = current_fsgid(); 4037 4038 fc->fs_private = ctx; 4039 fc->ops = &shmem_fs_context_ops; 4040 return 0; 4041 } 4042 4043 static struct file_system_type shmem_fs_type = { 4044 .owner = THIS_MODULE, 4045 .name = "tmpfs", 4046 .init_fs_context = shmem_init_fs_context, 4047 #ifdef CONFIG_TMPFS 4048 .parameters = shmem_fs_parameters, 4049 #endif 4050 .kill_sb = kill_litter_super, 4051 .fs_flags = FS_USERNS_MOUNT, 4052 }; 4053 4054 void __init shmem_init(void) 4055 { 4056 int error; 4057 4058 shmem_init_inodecache(); 4059 4060 error = register_filesystem(&shmem_fs_type); 4061 if (error) { 4062 pr_err("Could not register tmpfs\n"); 4063 goto out2; 4064 } 4065 4066 shm_mnt = kern_mount(&shmem_fs_type); 4067 if (IS_ERR(shm_mnt)) { 4068 error = PTR_ERR(shm_mnt); 4069 pr_err("Could not kern_mount tmpfs\n"); 4070 goto out1; 4071 } 4072 4073 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4074 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4075 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4076 else 4077 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4078 #endif 4079 return; 4080 4081 out1: 4082 unregister_filesystem(&shmem_fs_type); 4083 out2: 4084 shmem_destroy_inodecache(); 4085 shm_mnt = ERR_PTR(error); 4086 } 4087 4088 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4089 static ssize_t shmem_enabled_show(struct kobject *kobj, 4090 struct kobj_attribute *attr, char *buf) 4091 { 4092 static const int values[] = { 4093 SHMEM_HUGE_ALWAYS, 4094 SHMEM_HUGE_WITHIN_SIZE, 4095 SHMEM_HUGE_ADVISE, 4096 SHMEM_HUGE_NEVER, 4097 SHMEM_HUGE_DENY, 4098 SHMEM_HUGE_FORCE, 4099 }; 4100 int len = 0; 4101 int i; 4102 4103 for (i = 0; i < ARRAY_SIZE(values); i++) { 4104 len += sysfs_emit_at(buf, len, 4105 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4106 i ? " " : "", 4107 shmem_format_huge(values[i])); 4108 } 4109 4110 len += sysfs_emit_at(buf, len, "\n"); 4111 4112 return len; 4113 } 4114 4115 static ssize_t shmem_enabled_store(struct kobject *kobj, 4116 struct kobj_attribute *attr, const char *buf, size_t count) 4117 { 4118 char tmp[16]; 4119 int huge; 4120 4121 if (count + 1 > sizeof(tmp)) 4122 return -EINVAL; 4123 memcpy(tmp, buf, count); 4124 tmp[count] = '\0'; 4125 if (count && tmp[count - 1] == '\n') 4126 tmp[count - 1] = '\0'; 4127 4128 huge = shmem_parse_huge(tmp); 4129 if (huge == -EINVAL) 4130 return -EINVAL; 4131 if (!has_transparent_hugepage() && 4132 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4133 return -EINVAL; 4134 4135 shmem_huge = huge; 4136 if (shmem_huge > SHMEM_HUGE_DENY) 4137 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4138 return count; 4139 } 4140 4141 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4143 4144 #else /* !CONFIG_SHMEM */ 4145 4146 /* 4147 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4148 * 4149 * This is intended for small system where the benefits of the full 4150 * shmem code (swap-backed and resource-limited) are outweighed by 4151 * their complexity. On systems without swap this code should be 4152 * effectively equivalent, but much lighter weight. 4153 */ 4154 4155 static struct file_system_type shmem_fs_type = { 4156 .name = "tmpfs", 4157 .init_fs_context = ramfs_init_fs_context, 4158 .parameters = ramfs_fs_parameters, 4159 .kill_sb = kill_litter_super, 4160 .fs_flags = FS_USERNS_MOUNT, 4161 }; 4162 4163 void __init shmem_init(void) 4164 { 4165 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4166 4167 shm_mnt = kern_mount(&shmem_fs_type); 4168 BUG_ON(IS_ERR(shm_mnt)); 4169 } 4170 4171 int shmem_unuse(unsigned int type) 4172 { 4173 return 0; 4174 } 4175 4176 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4177 { 4178 return 0; 4179 } 4180 4181 void shmem_unlock_mapping(struct address_space *mapping) 4182 { 4183 } 4184 4185 #ifdef CONFIG_MMU 4186 unsigned long shmem_get_unmapped_area(struct file *file, 4187 unsigned long addr, unsigned long len, 4188 unsigned long pgoff, unsigned long flags) 4189 { 4190 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4191 } 4192 #endif 4193 4194 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4195 { 4196 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4197 } 4198 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4199 4200 #define shmem_vm_ops generic_file_vm_ops 4201 #define shmem_anon_vm_ops generic_file_vm_ops 4202 #define shmem_file_operations ramfs_file_operations 4203 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4204 #define shmem_acct_size(flags, size) 0 4205 #define shmem_unacct_size(flags, size) do {} while (0) 4206 4207 #endif /* CONFIG_SHMEM */ 4208 4209 /* common code */ 4210 4211 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4212 unsigned long flags, unsigned int i_flags) 4213 { 4214 struct inode *inode; 4215 struct file *res; 4216 4217 if (IS_ERR(mnt)) 4218 return ERR_CAST(mnt); 4219 4220 if (size < 0 || size > MAX_LFS_FILESIZE) 4221 return ERR_PTR(-EINVAL); 4222 4223 if (shmem_acct_size(flags, size)) 4224 return ERR_PTR(-ENOMEM); 4225 4226 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4227 flags); 4228 if (unlikely(!inode)) { 4229 shmem_unacct_size(flags, size); 4230 return ERR_PTR(-ENOSPC); 4231 } 4232 inode->i_flags |= i_flags; 4233 inode->i_size = size; 4234 clear_nlink(inode); /* It is unlinked */ 4235 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4236 if (!IS_ERR(res)) 4237 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4238 &shmem_file_operations); 4239 if (IS_ERR(res)) 4240 iput(inode); 4241 return res; 4242 } 4243 4244 /** 4245 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4246 * kernel internal. There will be NO LSM permission checks against the 4247 * underlying inode. So users of this interface must do LSM checks at a 4248 * higher layer. The users are the big_key and shm implementations. LSM 4249 * checks are provided at the key or shm level rather than the inode. 4250 * @name: name for dentry (to be seen in /proc/<pid>/maps 4251 * @size: size to be set for the file 4252 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4253 */ 4254 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4255 { 4256 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4257 } 4258 4259 /** 4260 * shmem_file_setup - get an unlinked file living in tmpfs 4261 * @name: name for dentry (to be seen in /proc/<pid>/maps 4262 * @size: size to be set for the file 4263 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4264 */ 4265 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4266 { 4267 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4268 } 4269 EXPORT_SYMBOL_GPL(shmem_file_setup); 4270 4271 /** 4272 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4273 * @mnt: the tmpfs mount where the file will be created 4274 * @name: name for dentry (to be seen in /proc/<pid>/maps 4275 * @size: size to be set for the file 4276 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4277 */ 4278 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4279 loff_t size, unsigned long flags) 4280 { 4281 return __shmem_file_setup(mnt, name, size, flags, 0); 4282 } 4283 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4284 4285 /** 4286 * shmem_zero_setup - setup a shared anonymous mapping 4287 * @vma: the vma to be mmapped is prepared by do_mmap 4288 */ 4289 int shmem_zero_setup(struct vm_area_struct *vma) 4290 { 4291 struct file *file; 4292 loff_t size = vma->vm_end - vma->vm_start; 4293 4294 /* 4295 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4296 * between XFS directory reading and selinux: since this file is only 4297 * accessible to the user through its mapping, use S_PRIVATE flag to 4298 * bypass file security, in the same way as shmem_kernel_file_setup(). 4299 */ 4300 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4301 if (IS_ERR(file)) 4302 return PTR_ERR(file); 4303 4304 if (vma->vm_file) 4305 fput(vma->vm_file); 4306 vma->vm_file = file; 4307 vma->vm_ops = &shmem_anon_vm_ops; 4308 4309 return 0; 4310 } 4311 4312 /** 4313 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4314 * @mapping: the page's address_space 4315 * @index: the page index 4316 * @gfp: the page allocator flags to use if allocating 4317 * 4318 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4319 * with any new page allocations done using the specified allocation flags. 4320 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4321 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4322 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4323 * 4324 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4325 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4326 */ 4327 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4328 pgoff_t index, gfp_t gfp) 4329 { 4330 #ifdef CONFIG_SHMEM 4331 struct inode *inode = mapping->host; 4332 struct folio *folio; 4333 struct page *page; 4334 int error; 4335 4336 BUG_ON(!shmem_mapping(mapping)); 4337 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4338 gfp, NULL, NULL, NULL); 4339 if (error) 4340 return ERR_PTR(error); 4341 4342 folio_unlock(folio); 4343 page = folio_file_page(folio, index); 4344 if (PageHWPoison(page)) { 4345 folio_put(folio); 4346 return ERR_PTR(-EIO); 4347 } 4348 4349 return page; 4350 #else 4351 /* 4352 * The tiny !SHMEM case uses ramfs without swap 4353 */ 4354 return read_cache_page_gfp(mapping, index, gfp); 4355 #endif 4356 } 4357 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4358