1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 #include <asm/pgtable.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 96 #define SHORT_SYMLINK_LEN 128 97 98 /* 99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 100 * inode->i_private (with i_mutex making sure that it has only one user at 101 * a time): we would prefer not to enlarge the shmem inode just for that. 102 */ 103 struct shmem_falloc { 104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 105 pgoff_t start; /* start of range currently being fallocated */ 106 pgoff_t next; /* the next page offset to be fallocated */ 107 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 109 }; 110 111 struct shmem_options { 112 unsigned long long blocks; 113 unsigned long long inodes; 114 struct mempolicy *mpol; 115 kuid_t uid; 116 kgid_t gid; 117 umode_t mode; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 }; 124 125 #ifdef CONFIG_TMPFS 126 static unsigned long shmem_default_max_blocks(void) 127 { 128 return totalram_pages() / 2; 129 } 130 131 static unsigned long shmem_default_max_inodes(void) 132 { 133 unsigned long nr_pages = totalram_pages(); 134 135 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 136 } 137 #endif 138 139 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 140 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 141 struct shmem_inode_info *info, pgoff_t index); 142 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 vm_fault_t *fault_type); 146 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 147 struct page **pagep, enum sgp_type sgp, 148 gfp_t gfp, struct vm_area_struct *vma, 149 struct vm_fault *vmf, vm_fault_t *fault_type); 150 151 int shmem_getpage(struct inode *inode, pgoff_t index, 152 struct page **pagep, enum sgp_type sgp) 153 { 154 return shmem_getpage_gfp(inode, index, pagep, sgp, 155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 156 } 157 158 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 159 { 160 return sb->s_fs_info; 161 } 162 163 /* 164 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 165 * for shared memory and for shared anonymous (/dev/zero) mappings 166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 167 * consistent with the pre-accounting of private mappings ... 168 */ 169 static inline int shmem_acct_size(unsigned long flags, loff_t size) 170 { 171 return (flags & VM_NORESERVE) ? 172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 173 } 174 175 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 176 { 177 if (!(flags & VM_NORESERVE)) 178 vm_unacct_memory(VM_ACCT(size)); 179 } 180 181 static inline int shmem_reacct_size(unsigned long flags, 182 loff_t oldsize, loff_t newsize) 183 { 184 if (!(flags & VM_NORESERVE)) { 185 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 186 return security_vm_enough_memory_mm(current->mm, 187 VM_ACCT(newsize) - VM_ACCT(oldsize)); 188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 190 } 191 return 0; 192 } 193 194 /* 195 * ... whereas tmpfs objects are accounted incrementally as 196 * pages are allocated, in order to allow large sparse files. 197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 199 */ 200 static inline int shmem_acct_block(unsigned long flags, long pages) 201 { 202 if (!(flags & VM_NORESERVE)) 203 return 0; 204 205 return security_vm_enough_memory_mm(current->mm, 206 pages * VM_ACCT(PAGE_SIZE)); 207 } 208 209 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 210 { 211 if (flags & VM_NORESERVE) 212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 213 } 214 215 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 216 { 217 struct shmem_inode_info *info = SHMEM_I(inode); 218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 219 220 if (shmem_acct_block(info->flags, pages)) 221 return false; 222 223 if (sbinfo->max_blocks) { 224 if (percpu_counter_compare(&sbinfo->used_blocks, 225 sbinfo->max_blocks - pages) > 0) 226 goto unacct; 227 percpu_counter_add(&sbinfo->used_blocks, pages); 228 } 229 230 return true; 231 232 unacct: 233 shmem_unacct_blocks(info->flags, pages); 234 return false; 235 } 236 237 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 238 { 239 struct shmem_inode_info *info = SHMEM_I(inode); 240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 241 242 if (sbinfo->max_blocks) 243 percpu_counter_sub(&sbinfo->used_blocks, pages); 244 shmem_unacct_blocks(info->flags, pages); 245 } 246 247 static const struct super_operations shmem_ops; 248 static const struct address_space_operations shmem_aops; 249 static const struct file_operations shmem_file_operations; 250 static const struct inode_operations shmem_inode_operations; 251 static const struct inode_operations shmem_dir_inode_operations; 252 static const struct inode_operations shmem_special_inode_operations; 253 static const struct vm_operations_struct shmem_vm_ops; 254 static struct file_system_type shmem_fs_type; 255 256 bool vma_is_shmem(struct vm_area_struct *vma) 257 { 258 return vma->vm_ops == &shmem_vm_ops; 259 } 260 261 static LIST_HEAD(shmem_swaplist); 262 static DEFINE_MUTEX(shmem_swaplist_mutex); 263 264 static int shmem_reserve_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 if (!sbinfo->free_inodes) { 270 spin_unlock(&sbinfo->stat_lock); 271 return -ENOSPC; 272 } 273 sbinfo->free_inodes--; 274 spin_unlock(&sbinfo->stat_lock); 275 } 276 return 0; 277 } 278 279 static void shmem_free_inode(struct super_block *sb) 280 { 281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 282 if (sbinfo->max_inodes) { 283 spin_lock(&sbinfo->stat_lock); 284 sbinfo->free_inodes++; 285 spin_unlock(&sbinfo->stat_lock); 286 } 287 } 288 289 /** 290 * shmem_recalc_inode - recalculate the block usage of an inode 291 * @inode: inode to recalc 292 * 293 * We have to calculate the free blocks since the mm can drop 294 * undirtied hole pages behind our back. 295 * 296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 298 * 299 * It has to be called with the spinlock held. 300 */ 301 static void shmem_recalc_inode(struct inode *inode) 302 { 303 struct shmem_inode_info *info = SHMEM_I(inode); 304 long freed; 305 306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 307 if (freed > 0) { 308 info->alloced -= freed; 309 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 310 shmem_inode_unacct_blocks(inode, freed); 311 } 312 } 313 314 bool shmem_charge(struct inode *inode, long pages) 315 { 316 struct shmem_inode_info *info = SHMEM_I(inode); 317 unsigned long flags; 318 319 if (!shmem_inode_acct_block(inode, pages)) 320 return false; 321 322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 323 inode->i_mapping->nrpages += pages; 324 325 spin_lock_irqsave(&info->lock, flags); 326 info->alloced += pages; 327 inode->i_blocks += pages * BLOCKS_PER_PAGE; 328 shmem_recalc_inode(inode); 329 spin_unlock_irqrestore(&info->lock, flags); 330 331 return true; 332 } 333 334 void shmem_uncharge(struct inode *inode, long pages) 335 { 336 struct shmem_inode_info *info = SHMEM_I(inode); 337 unsigned long flags; 338 339 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 340 341 spin_lock_irqsave(&info->lock, flags); 342 info->alloced -= pages; 343 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 344 shmem_recalc_inode(inode); 345 spin_unlock_irqrestore(&info->lock, flags); 346 347 shmem_inode_unacct_blocks(inode, pages); 348 } 349 350 /* 351 * Replace item expected in xarray by a new item, while holding xa_lock. 352 */ 353 static int shmem_replace_entry(struct address_space *mapping, 354 pgoff_t index, void *expected, void *replacement) 355 { 356 XA_STATE(xas, &mapping->i_pages, index); 357 void *item; 358 359 VM_BUG_ON(!expected); 360 VM_BUG_ON(!replacement); 361 item = xas_load(&xas); 362 if (item != expected) 363 return -ENOENT; 364 xas_store(&xas, replacement); 365 return 0; 366 } 367 368 /* 369 * Sometimes, before we decide whether to proceed or to fail, we must check 370 * that an entry was not already brought back from swap by a racing thread. 371 * 372 * Checking page is not enough: by the time a SwapCache page is locked, it 373 * might be reused, and again be SwapCache, using the same swap as before. 374 */ 375 static bool shmem_confirm_swap(struct address_space *mapping, 376 pgoff_t index, swp_entry_t swap) 377 { 378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 379 } 380 381 /* 382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 383 * 384 * SHMEM_HUGE_NEVER: 385 * disables huge pages for the mount; 386 * SHMEM_HUGE_ALWAYS: 387 * enables huge pages for the mount; 388 * SHMEM_HUGE_WITHIN_SIZE: 389 * only allocate huge pages if the page will be fully within i_size, 390 * also respect fadvise()/madvise() hints; 391 * SHMEM_HUGE_ADVISE: 392 * only allocate huge pages if requested with fadvise()/madvise(); 393 */ 394 395 #define SHMEM_HUGE_NEVER 0 396 #define SHMEM_HUGE_ALWAYS 1 397 #define SHMEM_HUGE_WITHIN_SIZE 2 398 #define SHMEM_HUGE_ADVISE 3 399 400 /* 401 * Special values. 402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 403 * 404 * SHMEM_HUGE_DENY: 405 * disables huge on shm_mnt and all mounts, for emergency use; 406 * SHMEM_HUGE_FORCE: 407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 408 * 409 */ 410 #define SHMEM_HUGE_DENY (-1) 411 #define SHMEM_HUGE_FORCE (-2) 412 413 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 414 /* ifdef here to avoid bloating shmem.o when not necessary */ 415 416 static int shmem_huge __read_mostly; 417 418 #if defined(CONFIG_SYSFS) 419 static int shmem_parse_huge(const char *str) 420 { 421 if (!strcmp(str, "never")) 422 return SHMEM_HUGE_NEVER; 423 if (!strcmp(str, "always")) 424 return SHMEM_HUGE_ALWAYS; 425 if (!strcmp(str, "within_size")) 426 return SHMEM_HUGE_WITHIN_SIZE; 427 if (!strcmp(str, "advise")) 428 return SHMEM_HUGE_ADVISE; 429 if (!strcmp(str, "deny")) 430 return SHMEM_HUGE_DENY; 431 if (!strcmp(str, "force")) 432 return SHMEM_HUGE_FORCE; 433 return -EINVAL; 434 } 435 #endif 436 437 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 438 static const char *shmem_format_huge(int huge) 439 { 440 switch (huge) { 441 case SHMEM_HUGE_NEVER: 442 return "never"; 443 case SHMEM_HUGE_ALWAYS: 444 return "always"; 445 case SHMEM_HUGE_WITHIN_SIZE: 446 return "within_size"; 447 case SHMEM_HUGE_ADVISE: 448 return "advise"; 449 case SHMEM_HUGE_DENY: 450 return "deny"; 451 case SHMEM_HUGE_FORCE: 452 return "force"; 453 default: 454 VM_BUG_ON(1); 455 return "bad_val"; 456 } 457 } 458 #endif 459 460 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 461 struct shrink_control *sc, unsigned long nr_to_split) 462 { 463 LIST_HEAD(list), *pos, *next; 464 LIST_HEAD(to_remove); 465 struct inode *inode; 466 struct shmem_inode_info *info; 467 struct page *page; 468 unsigned long batch = sc ? sc->nr_to_scan : 128; 469 int removed = 0, split = 0; 470 471 if (list_empty(&sbinfo->shrinklist)) 472 return SHRINK_STOP; 473 474 spin_lock(&sbinfo->shrinklist_lock); 475 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 476 info = list_entry(pos, struct shmem_inode_info, shrinklist); 477 478 /* pin the inode */ 479 inode = igrab(&info->vfs_inode); 480 481 /* inode is about to be evicted */ 482 if (!inode) { 483 list_del_init(&info->shrinklist); 484 removed++; 485 goto next; 486 } 487 488 /* Check if there's anything to gain */ 489 if (round_up(inode->i_size, PAGE_SIZE) == 490 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 491 list_move(&info->shrinklist, &to_remove); 492 removed++; 493 goto next; 494 } 495 496 list_move(&info->shrinklist, &list); 497 next: 498 if (!--batch) 499 break; 500 } 501 spin_unlock(&sbinfo->shrinklist_lock); 502 503 list_for_each_safe(pos, next, &to_remove) { 504 info = list_entry(pos, struct shmem_inode_info, shrinklist); 505 inode = &info->vfs_inode; 506 list_del_init(&info->shrinklist); 507 iput(inode); 508 } 509 510 list_for_each_safe(pos, next, &list) { 511 int ret; 512 513 info = list_entry(pos, struct shmem_inode_info, shrinklist); 514 inode = &info->vfs_inode; 515 516 if (nr_to_split && split >= nr_to_split) 517 goto leave; 518 519 page = find_get_page(inode->i_mapping, 520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 521 if (!page) 522 goto drop; 523 524 /* No huge page at the end of the file: nothing to split */ 525 if (!PageTransHuge(page)) { 526 put_page(page); 527 goto drop; 528 } 529 530 /* 531 * Leave the inode on the list if we failed to lock 532 * the page at this time. 533 * 534 * Waiting for the lock may lead to deadlock in the 535 * reclaim path. 536 */ 537 if (!trylock_page(page)) { 538 put_page(page); 539 goto leave; 540 } 541 542 ret = split_huge_page(page); 543 unlock_page(page); 544 put_page(page); 545 546 /* If split failed leave the inode on the list */ 547 if (ret) 548 goto leave; 549 550 split++; 551 drop: 552 list_del_init(&info->shrinklist); 553 removed++; 554 leave: 555 iput(inode); 556 } 557 558 spin_lock(&sbinfo->shrinklist_lock); 559 list_splice_tail(&list, &sbinfo->shrinklist); 560 sbinfo->shrinklist_len -= removed; 561 spin_unlock(&sbinfo->shrinklist_lock); 562 563 return split; 564 } 565 566 static long shmem_unused_huge_scan(struct super_block *sb, 567 struct shrink_control *sc) 568 { 569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 570 571 if (!READ_ONCE(sbinfo->shrinklist_len)) 572 return SHRINK_STOP; 573 574 return shmem_unused_huge_shrink(sbinfo, sc, 0); 575 } 576 577 static long shmem_unused_huge_count(struct super_block *sb, 578 struct shrink_control *sc) 579 { 580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 581 return READ_ONCE(sbinfo->shrinklist_len); 582 } 583 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 584 585 #define shmem_huge SHMEM_HUGE_DENY 586 587 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 588 struct shrink_control *sc, unsigned long nr_to_split) 589 { 590 return 0; 591 } 592 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 593 594 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 595 { 596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 598 shmem_huge != SHMEM_HUGE_DENY) 599 return true; 600 return false; 601 } 602 603 /* 604 * Like add_to_page_cache_locked, but error if expected item has gone. 605 */ 606 static int shmem_add_to_page_cache(struct page *page, 607 struct address_space *mapping, 608 pgoff_t index, void *expected, gfp_t gfp) 609 { 610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 611 unsigned long i = 0; 612 unsigned long nr = compound_nr(page); 613 614 VM_BUG_ON_PAGE(PageTail(page), page); 615 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 618 VM_BUG_ON(expected && PageTransHuge(page)); 619 620 page_ref_add(page, nr); 621 page->mapping = mapping; 622 page->index = index; 623 624 do { 625 void *entry; 626 xas_lock_irq(&xas); 627 entry = xas_find_conflict(&xas); 628 if (entry != expected) 629 xas_set_err(&xas, -EEXIST); 630 xas_create_range(&xas); 631 if (xas_error(&xas)) 632 goto unlock; 633 next: 634 xas_store(&xas, page); 635 if (++i < nr) { 636 xas_next(&xas); 637 goto next; 638 } 639 if (PageTransHuge(page)) { 640 count_vm_event(THP_FILE_ALLOC); 641 __inc_node_page_state(page, NR_SHMEM_THPS); 642 } 643 mapping->nrpages += nr; 644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 646 unlock: 647 xas_unlock_irq(&xas); 648 } while (xas_nomem(&xas, gfp)); 649 650 if (xas_error(&xas)) { 651 page->mapping = NULL; 652 page_ref_sub(page, nr); 653 return xas_error(&xas); 654 } 655 656 return 0; 657 } 658 659 /* 660 * Like delete_from_page_cache, but substitutes swap for page. 661 */ 662 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 663 { 664 struct address_space *mapping = page->mapping; 665 int error; 666 667 VM_BUG_ON_PAGE(PageCompound(page), page); 668 669 xa_lock_irq(&mapping->i_pages); 670 error = shmem_replace_entry(mapping, page->index, page, radswap); 671 page->mapping = NULL; 672 mapping->nrpages--; 673 __dec_node_page_state(page, NR_FILE_PAGES); 674 __dec_node_page_state(page, NR_SHMEM); 675 xa_unlock_irq(&mapping->i_pages); 676 put_page(page); 677 BUG_ON(error); 678 } 679 680 /* 681 * Remove swap entry from page cache, free the swap and its page cache. 682 */ 683 static int shmem_free_swap(struct address_space *mapping, 684 pgoff_t index, void *radswap) 685 { 686 void *old; 687 688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 689 if (old != radswap) 690 return -ENOENT; 691 free_swap_and_cache(radix_to_swp_entry(radswap)); 692 return 0; 693 } 694 695 /* 696 * Determine (in bytes) how many of the shmem object's pages mapped by the 697 * given offsets are swapped out. 698 * 699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 700 * as long as the inode doesn't go away and racy results are not a problem. 701 */ 702 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 703 pgoff_t start, pgoff_t end) 704 { 705 XA_STATE(xas, &mapping->i_pages, start); 706 struct page *page; 707 unsigned long swapped = 0; 708 709 rcu_read_lock(); 710 xas_for_each(&xas, page, end - 1) { 711 if (xas_retry(&xas, page)) 712 continue; 713 if (xa_is_value(page)) 714 swapped++; 715 716 if (need_resched()) { 717 xas_pause(&xas); 718 cond_resched_rcu(); 719 } 720 } 721 722 rcu_read_unlock(); 723 724 return swapped << PAGE_SHIFT; 725 } 726 727 /* 728 * Determine (in bytes) how many of the shmem object's pages mapped by the 729 * given vma is swapped out. 730 * 731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 732 * as long as the inode doesn't go away and racy results are not a problem. 733 */ 734 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 735 { 736 struct inode *inode = file_inode(vma->vm_file); 737 struct shmem_inode_info *info = SHMEM_I(inode); 738 struct address_space *mapping = inode->i_mapping; 739 unsigned long swapped; 740 741 /* Be careful as we don't hold info->lock */ 742 swapped = READ_ONCE(info->swapped); 743 744 /* 745 * The easier cases are when the shmem object has nothing in swap, or 746 * the vma maps it whole. Then we can simply use the stats that we 747 * already track. 748 */ 749 if (!swapped) 750 return 0; 751 752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 753 return swapped << PAGE_SHIFT; 754 755 /* Here comes the more involved part */ 756 return shmem_partial_swap_usage(mapping, 757 linear_page_index(vma, vma->vm_start), 758 linear_page_index(vma, vma->vm_end)); 759 } 760 761 /* 762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 763 */ 764 void shmem_unlock_mapping(struct address_space *mapping) 765 { 766 struct pagevec pvec; 767 pgoff_t indices[PAGEVEC_SIZE]; 768 pgoff_t index = 0; 769 770 pagevec_init(&pvec); 771 /* 772 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 773 */ 774 while (!mapping_unevictable(mapping)) { 775 /* 776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 778 */ 779 pvec.nr = find_get_entries(mapping, index, 780 PAGEVEC_SIZE, pvec.pages, indices); 781 if (!pvec.nr) 782 break; 783 index = indices[pvec.nr - 1] + 1; 784 pagevec_remove_exceptionals(&pvec); 785 check_move_unevictable_pages(&pvec); 786 pagevec_release(&pvec); 787 cond_resched(); 788 } 789 } 790 791 /* 792 * Remove range of pages and swap entries from page cache, and free them. 793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 794 */ 795 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 796 bool unfalloc) 797 { 798 struct address_space *mapping = inode->i_mapping; 799 struct shmem_inode_info *info = SHMEM_I(inode); 800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 801 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 802 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 804 struct pagevec pvec; 805 pgoff_t indices[PAGEVEC_SIZE]; 806 long nr_swaps_freed = 0; 807 pgoff_t index; 808 int i; 809 810 if (lend == -1) 811 end = -1; /* unsigned, so actually very big */ 812 813 pagevec_init(&pvec); 814 index = start; 815 while (index < end) { 816 pvec.nr = find_get_entries(mapping, index, 817 min(end - index, (pgoff_t)PAGEVEC_SIZE), 818 pvec.pages, indices); 819 if (!pvec.nr) 820 break; 821 for (i = 0; i < pagevec_count(&pvec); i++) { 822 struct page *page = pvec.pages[i]; 823 824 index = indices[i]; 825 if (index >= end) 826 break; 827 828 if (xa_is_value(page)) { 829 if (unfalloc) 830 continue; 831 nr_swaps_freed += !shmem_free_swap(mapping, 832 index, page); 833 continue; 834 } 835 836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 837 838 if (!trylock_page(page)) 839 continue; 840 841 if (PageTransTail(page)) { 842 /* Middle of THP: zero out the page */ 843 clear_highpage(page); 844 unlock_page(page); 845 continue; 846 } else if (PageTransHuge(page)) { 847 if (index == round_down(end, HPAGE_PMD_NR)) { 848 /* 849 * Range ends in the middle of THP: 850 * zero out the page 851 */ 852 clear_highpage(page); 853 unlock_page(page); 854 continue; 855 } 856 index += HPAGE_PMD_NR - 1; 857 i += HPAGE_PMD_NR - 1; 858 } 859 860 if (!unfalloc || !PageUptodate(page)) { 861 VM_BUG_ON_PAGE(PageTail(page), page); 862 if (page_mapping(page) == mapping) { 863 VM_BUG_ON_PAGE(PageWriteback(page), page); 864 truncate_inode_page(mapping, page); 865 } 866 } 867 unlock_page(page); 868 } 869 pagevec_remove_exceptionals(&pvec); 870 pagevec_release(&pvec); 871 cond_resched(); 872 index++; 873 } 874 875 if (partial_start) { 876 struct page *page = NULL; 877 shmem_getpage(inode, start - 1, &page, SGP_READ); 878 if (page) { 879 unsigned int top = PAGE_SIZE; 880 if (start > end) { 881 top = partial_end; 882 partial_end = 0; 883 } 884 zero_user_segment(page, partial_start, top); 885 set_page_dirty(page); 886 unlock_page(page); 887 put_page(page); 888 } 889 } 890 if (partial_end) { 891 struct page *page = NULL; 892 shmem_getpage(inode, end, &page, SGP_READ); 893 if (page) { 894 zero_user_segment(page, 0, partial_end); 895 set_page_dirty(page); 896 unlock_page(page); 897 put_page(page); 898 } 899 } 900 if (start >= end) 901 return; 902 903 index = start; 904 while (index < end) { 905 cond_resched(); 906 907 pvec.nr = find_get_entries(mapping, index, 908 min(end - index, (pgoff_t)PAGEVEC_SIZE), 909 pvec.pages, indices); 910 if (!pvec.nr) { 911 /* If all gone or hole-punch or unfalloc, we're done */ 912 if (index == start || end != -1) 913 break; 914 /* But if truncating, restart to make sure all gone */ 915 index = start; 916 continue; 917 } 918 for (i = 0; i < pagevec_count(&pvec); i++) { 919 struct page *page = pvec.pages[i]; 920 921 index = indices[i]; 922 if (index >= end) 923 break; 924 925 if (xa_is_value(page)) { 926 if (unfalloc) 927 continue; 928 if (shmem_free_swap(mapping, index, page)) { 929 /* Swap was replaced by page: retry */ 930 index--; 931 break; 932 } 933 nr_swaps_freed++; 934 continue; 935 } 936 937 lock_page(page); 938 939 if (PageTransTail(page)) { 940 /* Middle of THP: zero out the page */ 941 clear_highpage(page); 942 unlock_page(page); 943 /* 944 * Partial thp truncate due 'start' in middle 945 * of THP: don't need to look on these pages 946 * again on !pvec.nr restart. 947 */ 948 if (index != round_down(end, HPAGE_PMD_NR)) 949 start++; 950 continue; 951 } else if (PageTransHuge(page)) { 952 if (index == round_down(end, HPAGE_PMD_NR)) { 953 /* 954 * Range ends in the middle of THP: 955 * zero out the page 956 */ 957 clear_highpage(page); 958 unlock_page(page); 959 continue; 960 } 961 index += HPAGE_PMD_NR - 1; 962 i += HPAGE_PMD_NR - 1; 963 } 964 965 if (!unfalloc || !PageUptodate(page)) { 966 VM_BUG_ON_PAGE(PageTail(page), page); 967 if (page_mapping(page) == mapping) { 968 VM_BUG_ON_PAGE(PageWriteback(page), page); 969 truncate_inode_page(mapping, page); 970 } else { 971 /* Page was replaced by swap: retry */ 972 unlock_page(page); 973 index--; 974 break; 975 } 976 } 977 unlock_page(page); 978 } 979 pagevec_remove_exceptionals(&pvec); 980 pagevec_release(&pvec); 981 index++; 982 } 983 984 spin_lock_irq(&info->lock); 985 info->swapped -= nr_swaps_freed; 986 shmem_recalc_inode(inode); 987 spin_unlock_irq(&info->lock); 988 } 989 990 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 991 { 992 shmem_undo_range(inode, lstart, lend, false); 993 inode->i_ctime = inode->i_mtime = current_time(inode); 994 } 995 EXPORT_SYMBOL_GPL(shmem_truncate_range); 996 997 static int shmem_getattr(const struct path *path, struct kstat *stat, 998 u32 request_mask, unsigned int query_flags) 999 { 1000 struct inode *inode = path->dentry->d_inode; 1001 struct shmem_inode_info *info = SHMEM_I(inode); 1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1003 1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1005 spin_lock_irq(&info->lock); 1006 shmem_recalc_inode(inode); 1007 spin_unlock_irq(&info->lock); 1008 } 1009 generic_fillattr(inode, stat); 1010 1011 if (is_huge_enabled(sb_info)) 1012 stat->blksize = HPAGE_PMD_SIZE; 1013 1014 return 0; 1015 } 1016 1017 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1018 { 1019 struct inode *inode = d_inode(dentry); 1020 struct shmem_inode_info *info = SHMEM_I(inode); 1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1022 int error; 1023 1024 error = setattr_prepare(dentry, attr); 1025 if (error) 1026 return error; 1027 1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1029 loff_t oldsize = inode->i_size; 1030 loff_t newsize = attr->ia_size; 1031 1032 /* protected by i_mutex */ 1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1034 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1035 return -EPERM; 1036 1037 if (newsize != oldsize) { 1038 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1039 oldsize, newsize); 1040 if (error) 1041 return error; 1042 i_size_write(inode, newsize); 1043 inode->i_ctime = inode->i_mtime = current_time(inode); 1044 } 1045 if (newsize <= oldsize) { 1046 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1047 if (oldsize > holebegin) 1048 unmap_mapping_range(inode->i_mapping, 1049 holebegin, 0, 1); 1050 if (info->alloced) 1051 shmem_truncate_range(inode, 1052 newsize, (loff_t)-1); 1053 /* unmap again to remove racily COWed private pages */ 1054 if (oldsize > holebegin) 1055 unmap_mapping_range(inode->i_mapping, 1056 holebegin, 0, 1); 1057 1058 /* 1059 * Part of the huge page can be beyond i_size: subject 1060 * to shrink under memory pressure. 1061 */ 1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1063 spin_lock(&sbinfo->shrinklist_lock); 1064 /* 1065 * _careful to defend against unlocked access to 1066 * ->shrink_list in shmem_unused_huge_shrink() 1067 */ 1068 if (list_empty_careful(&info->shrinklist)) { 1069 list_add_tail(&info->shrinklist, 1070 &sbinfo->shrinklist); 1071 sbinfo->shrinklist_len++; 1072 } 1073 spin_unlock(&sbinfo->shrinklist_lock); 1074 } 1075 } 1076 } 1077 1078 setattr_copy(inode, attr); 1079 if (attr->ia_valid & ATTR_MODE) 1080 error = posix_acl_chmod(inode, inode->i_mode); 1081 return error; 1082 } 1083 1084 static void shmem_evict_inode(struct inode *inode) 1085 { 1086 struct shmem_inode_info *info = SHMEM_I(inode); 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1088 1089 if (inode->i_mapping->a_ops == &shmem_aops) { 1090 shmem_unacct_size(info->flags, inode->i_size); 1091 inode->i_size = 0; 1092 shmem_truncate_range(inode, 0, (loff_t)-1); 1093 if (!list_empty(&info->shrinklist)) { 1094 spin_lock(&sbinfo->shrinklist_lock); 1095 if (!list_empty(&info->shrinklist)) { 1096 list_del_init(&info->shrinklist); 1097 sbinfo->shrinklist_len--; 1098 } 1099 spin_unlock(&sbinfo->shrinklist_lock); 1100 } 1101 while (!list_empty(&info->swaplist)) { 1102 /* Wait while shmem_unuse() is scanning this inode... */ 1103 wait_var_event(&info->stop_eviction, 1104 !atomic_read(&info->stop_eviction)); 1105 mutex_lock(&shmem_swaplist_mutex); 1106 /* ...but beware of the race if we peeked too early */ 1107 if (!atomic_read(&info->stop_eviction)) 1108 list_del_init(&info->swaplist); 1109 mutex_unlock(&shmem_swaplist_mutex); 1110 } 1111 } 1112 1113 simple_xattrs_free(&info->xattrs); 1114 WARN_ON(inode->i_blocks); 1115 shmem_free_inode(inode->i_sb); 1116 clear_inode(inode); 1117 } 1118 1119 extern struct swap_info_struct *swap_info[]; 1120 1121 static int shmem_find_swap_entries(struct address_space *mapping, 1122 pgoff_t start, unsigned int nr_entries, 1123 struct page **entries, pgoff_t *indices, 1124 unsigned int type, bool frontswap) 1125 { 1126 XA_STATE(xas, &mapping->i_pages, start); 1127 struct page *page; 1128 swp_entry_t entry; 1129 unsigned int ret = 0; 1130 1131 if (!nr_entries) 1132 return 0; 1133 1134 rcu_read_lock(); 1135 xas_for_each(&xas, page, ULONG_MAX) { 1136 if (xas_retry(&xas, page)) 1137 continue; 1138 1139 if (!xa_is_value(page)) 1140 continue; 1141 1142 entry = radix_to_swp_entry(page); 1143 if (swp_type(entry) != type) 1144 continue; 1145 if (frontswap && 1146 !frontswap_test(swap_info[type], swp_offset(entry))) 1147 continue; 1148 1149 indices[ret] = xas.xa_index; 1150 entries[ret] = page; 1151 1152 if (need_resched()) { 1153 xas_pause(&xas); 1154 cond_resched_rcu(); 1155 } 1156 if (++ret == nr_entries) 1157 break; 1158 } 1159 rcu_read_unlock(); 1160 1161 return ret; 1162 } 1163 1164 /* 1165 * Move the swapped pages for an inode to page cache. Returns the count 1166 * of pages swapped in, or the error in case of failure. 1167 */ 1168 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1169 pgoff_t *indices) 1170 { 1171 int i = 0; 1172 int ret = 0; 1173 int error = 0; 1174 struct address_space *mapping = inode->i_mapping; 1175 1176 for (i = 0; i < pvec.nr; i++) { 1177 struct page *page = pvec.pages[i]; 1178 1179 if (!xa_is_value(page)) 1180 continue; 1181 error = shmem_swapin_page(inode, indices[i], 1182 &page, SGP_CACHE, 1183 mapping_gfp_mask(mapping), 1184 NULL, NULL); 1185 if (error == 0) { 1186 unlock_page(page); 1187 put_page(page); 1188 ret++; 1189 } 1190 if (error == -ENOMEM) 1191 break; 1192 error = 0; 1193 } 1194 return error ? error : ret; 1195 } 1196 1197 /* 1198 * If swap found in inode, free it and move page from swapcache to filecache. 1199 */ 1200 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1201 bool frontswap, unsigned long *fs_pages_to_unuse) 1202 { 1203 struct address_space *mapping = inode->i_mapping; 1204 pgoff_t start = 0; 1205 struct pagevec pvec; 1206 pgoff_t indices[PAGEVEC_SIZE]; 1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1208 int ret = 0; 1209 1210 pagevec_init(&pvec); 1211 do { 1212 unsigned int nr_entries = PAGEVEC_SIZE; 1213 1214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1215 nr_entries = *fs_pages_to_unuse; 1216 1217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1218 pvec.pages, indices, 1219 type, frontswap); 1220 if (pvec.nr == 0) { 1221 ret = 0; 1222 break; 1223 } 1224 1225 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1226 if (ret < 0) 1227 break; 1228 1229 if (frontswap_partial) { 1230 *fs_pages_to_unuse -= ret; 1231 if (*fs_pages_to_unuse == 0) { 1232 ret = FRONTSWAP_PAGES_UNUSED; 1233 break; 1234 } 1235 } 1236 1237 start = indices[pvec.nr - 1]; 1238 } while (true); 1239 1240 return ret; 1241 } 1242 1243 /* 1244 * Read all the shared memory data that resides in the swap 1245 * device 'type' back into memory, so the swap device can be 1246 * unused. 1247 */ 1248 int shmem_unuse(unsigned int type, bool frontswap, 1249 unsigned long *fs_pages_to_unuse) 1250 { 1251 struct shmem_inode_info *info, *next; 1252 int error = 0; 1253 1254 if (list_empty(&shmem_swaplist)) 1255 return 0; 1256 1257 mutex_lock(&shmem_swaplist_mutex); 1258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1259 if (!info->swapped) { 1260 list_del_init(&info->swaplist); 1261 continue; 1262 } 1263 /* 1264 * Drop the swaplist mutex while searching the inode for swap; 1265 * but before doing so, make sure shmem_evict_inode() will not 1266 * remove placeholder inode from swaplist, nor let it be freed 1267 * (igrab() would protect from unlink, but not from unmount). 1268 */ 1269 atomic_inc(&info->stop_eviction); 1270 mutex_unlock(&shmem_swaplist_mutex); 1271 1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1273 fs_pages_to_unuse); 1274 cond_resched(); 1275 1276 mutex_lock(&shmem_swaplist_mutex); 1277 next = list_next_entry(info, swaplist); 1278 if (!info->swapped) 1279 list_del_init(&info->swaplist); 1280 if (atomic_dec_and_test(&info->stop_eviction)) 1281 wake_up_var(&info->stop_eviction); 1282 if (error) 1283 break; 1284 } 1285 mutex_unlock(&shmem_swaplist_mutex); 1286 1287 return error; 1288 } 1289 1290 /* 1291 * Move the page from the page cache to the swap cache. 1292 */ 1293 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1294 { 1295 struct shmem_inode_info *info; 1296 struct address_space *mapping; 1297 struct inode *inode; 1298 swp_entry_t swap; 1299 pgoff_t index; 1300 1301 VM_BUG_ON_PAGE(PageCompound(page), page); 1302 BUG_ON(!PageLocked(page)); 1303 mapping = page->mapping; 1304 index = page->index; 1305 inode = mapping->host; 1306 info = SHMEM_I(inode); 1307 if (info->flags & VM_LOCKED) 1308 goto redirty; 1309 if (!total_swap_pages) 1310 goto redirty; 1311 1312 /* 1313 * Our capabilities prevent regular writeback or sync from ever calling 1314 * shmem_writepage; but a stacking filesystem might use ->writepage of 1315 * its underlying filesystem, in which case tmpfs should write out to 1316 * swap only in response to memory pressure, and not for the writeback 1317 * threads or sync. 1318 */ 1319 if (!wbc->for_reclaim) { 1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1321 goto redirty; 1322 } 1323 1324 /* 1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1326 * value into swapfile.c, the only way we can correctly account for a 1327 * fallocated page arriving here is now to initialize it and write it. 1328 * 1329 * That's okay for a page already fallocated earlier, but if we have 1330 * not yet completed the fallocation, then (a) we want to keep track 1331 * of this page in case we have to undo it, and (b) it may not be a 1332 * good idea to continue anyway, once we're pushing into swap. So 1333 * reactivate the page, and let shmem_fallocate() quit when too many. 1334 */ 1335 if (!PageUptodate(page)) { 1336 if (inode->i_private) { 1337 struct shmem_falloc *shmem_falloc; 1338 spin_lock(&inode->i_lock); 1339 shmem_falloc = inode->i_private; 1340 if (shmem_falloc && 1341 !shmem_falloc->waitq && 1342 index >= shmem_falloc->start && 1343 index < shmem_falloc->next) 1344 shmem_falloc->nr_unswapped++; 1345 else 1346 shmem_falloc = NULL; 1347 spin_unlock(&inode->i_lock); 1348 if (shmem_falloc) 1349 goto redirty; 1350 } 1351 clear_highpage(page); 1352 flush_dcache_page(page); 1353 SetPageUptodate(page); 1354 } 1355 1356 swap = get_swap_page(page); 1357 if (!swap.val) 1358 goto redirty; 1359 1360 /* 1361 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1362 * if it's not already there. Do it now before the page is 1363 * moved to swap cache, when its pagelock no longer protects 1364 * the inode from eviction. But don't unlock the mutex until 1365 * we've incremented swapped, because shmem_unuse_inode() will 1366 * prune a !swapped inode from the swaplist under this mutex. 1367 */ 1368 mutex_lock(&shmem_swaplist_mutex); 1369 if (list_empty(&info->swaplist)) 1370 list_add(&info->swaplist, &shmem_swaplist); 1371 1372 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1373 spin_lock_irq(&info->lock); 1374 shmem_recalc_inode(inode); 1375 info->swapped++; 1376 spin_unlock_irq(&info->lock); 1377 1378 swap_shmem_alloc(swap); 1379 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1380 1381 mutex_unlock(&shmem_swaplist_mutex); 1382 BUG_ON(page_mapped(page)); 1383 swap_writepage(page, wbc); 1384 return 0; 1385 } 1386 1387 mutex_unlock(&shmem_swaplist_mutex); 1388 put_swap_page(page, swap); 1389 redirty: 1390 set_page_dirty(page); 1391 if (wbc->for_reclaim) 1392 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1393 unlock_page(page); 1394 return 0; 1395 } 1396 1397 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1398 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1399 { 1400 char buffer[64]; 1401 1402 if (!mpol || mpol->mode == MPOL_DEFAULT) 1403 return; /* show nothing */ 1404 1405 mpol_to_str(buffer, sizeof(buffer), mpol); 1406 1407 seq_printf(seq, ",mpol=%s", buffer); 1408 } 1409 1410 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1411 { 1412 struct mempolicy *mpol = NULL; 1413 if (sbinfo->mpol) { 1414 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1415 mpol = sbinfo->mpol; 1416 mpol_get(mpol); 1417 spin_unlock(&sbinfo->stat_lock); 1418 } 1419 return mpol; 1420 } 1421 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1422 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1423 { 1424 } 1425 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1426 { 1427 return NULL; 1428 } 1429 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1430 #ifndef CONFIG_NUMA 1431 #define vm_policy vm_private_data 1432 #endif 1433 1434 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1435 struct shmem_inode_info *info, pgoff_t index) 1436 { 1437 /* Create a pseudo vma that just contains the policy */ 1438 vma_init(vma, NULL); 1439 /* Bias interleave by inode number to distribute better across nodes */ 1440 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1441 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1442 } 1443 1444 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1445 { 1446 /* Drop reference taken by mpol_shared_policy_lookup() */ 1447 mpol_cond_put(vma->vm_policy); 1448 } 1449 1450 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1451 struct shmem_inode_info *info, pgoff_t index) 1452 { 1453 struct vm_area_struct pvma; 1454 struct page *page; 1455 struct vm_fault vmf; 1456 1457 shmem_pseudo_vma_init(&pvma, info, index); 1458 vmf.vma = &pvma; 1459 vmf.address = 0; 1460 page = swap_cluster_readahead(swap, gfp, &vmf); 1461 shmem_pseudo_vma_destroy(&pvma); 1462 1463 return page; 1464 } 1465 1466 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1467 struct shmem_inode_info *info, pgoff_t index) 1468 { 1469 struct vm_area_struct pvma; 1470 struct address_space *mapping = info->vfs_inode.i_mapping; 1471 pgoff_t hindex; 1472 struct page *page; 1473 1474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1475 return NULL; 1476 1477 hindex = round_down(index, HPAGE_PMD_NR); 1478 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1479 XA_PRESENT)) 1480 return NULL; 1481 1482 shmem_pseudo_vma_init(&pvma, info, hindex); 1483 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1484 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1485 shmem_pseudo_vma_destroy(&pvma); 1486 if (page) 1487 prep_transhuge_page(page); 1488 return page; 1489 } 1490 1491 static struct page *shmem_alloc_page(gfp_t gfp, 1492 struct shmem_inode_info *info, pgoff_t index) 1493 { 1494 struct vm_area_struct pvma; 1495 struct page *page; 1496 1497 shmem_pseudo_vma_init(&pvma, info, index); 1498 page = alloc_page_vma(gfp, &pvma, 0); 1499 shmem_pseudo_vma_destroy(&pvma); 1500 1501 return page; 1502 } 1503 1504 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1505 struct inode *inode, 1506 pgoff_t index, bool huge) 1507 { 1508 struct shmem_inode_info *info = SHMEM_I(inode); 1509 struct page *page; 1510 int nr; 1511 int err = -ENOSPC; 1512 1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1514 huge = false; 1515 nr = huge ? HPAGE_PMD_NR : 1; 1516 1517 if (!shmem_inode_acct_block(inode, nr)) 1518 goto failed; 1519 1520 if (huge) 1521 page = shmem_alloc_hugepage(gfp, info, index); 1522 else 1523 page = shmem_alloc_page(gfp, info, index); 1524 if (page) { 1525 __SetPageLocked(page); 1526 __SetPageSwapBacked(page); 1527 return page; 1528 } 1529 1530 err = -ENOMEM; 1531 shmem_inode_unacct_blocks(inode, nr); 1532 failed: 1533 return ERR_PTR(err); 1534 } 1535 1536 /* 1537 * When a page is moved from swapcache to shmem filecache (either by the 1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1540 * ignorance of the mapping it belongs to. If that mapping has special 1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1542 * we may need to copy to a suitable page before moving to filecache. 1543 * 1544 * In a future release, this may well be extended to respect cpuset and 1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1546 * but for now it is a simple matter of zone. 1547 */ 1548 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1549 { 1550 return page_zonenum(page) > gfp_zone(gfp); 1551 } 1552 1553 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1554 struct shmem_inode_info *info, pgoff_t index) 1555 { 1556 struct page *oldpage, *newpage; 1557 struct address_space *swap_mapping; 1558 swp_entry_t entry; 1559 pgoff_t swap_index; 1560 int error; 1561 1562 oldpage = *pagep; 1563 entry.val = page_private(oldpage); 1564 swap_index = swp_offset(entry); 1565 swap_mapping = page_mapping(oldpage); 1566 1567 /* 1568 * We have arrived here because our zones are constrained, so don't 1569 * limit chance of success by further cpuset and node constraints. 1570 */ 1571 gfp &= ~GFP_CONSTRAINT_MASK; 1572 newpage = shmem_alloc_page(gfp, info, index); 1573 if (!newpage) 1574 return -ENOMEM; 1575 1576 get_page(newpage); 1577 copy_highpage(newpage, oldpage); 1578 flush_dcache_page(newpage); 1579 1580 __SetPageLocked(newpage); 1581 __SetPageSwapBacked(newpage); 1582 SetPageUptodate(newpage); 1583 set_page_private(newpage, entry.val); 1584 SetPageSwapCache(newpage); 1585 1586 /* 1587 * Our caller will very soon move newpage out of swapcache, but it's 1588 * a nice clean interface for us to replace oldpage by newpage there. 1589 */ 1590 xa_lock_irq(&swap_mapping->i_pages); 1591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1592 if (!error) { 1593 __inc_node_page_state(newpage, NR_FILE_PAGES); 1594 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1595 } 1596 xa_unlock_irq(&swap_mapping->i_pages); 1597 1598 if (unlikely(error)) { 1599 /* 1600 * Is this possible? I think not, now that our callers check 1601 * both PageSwapCache and page_private after getting page lock; 1602 * but be defensive. Reverse old to newpage for clear and free. 1603 */ 1604 oldpage = newpage; 1605 } else { 1606 mem_cgroup_migrate(oldpage, newpage); 1607 lru_cache_add_anon(newpage); 1608 *pagep = newpage; 1609 } 1610 1611 ClearPageSwapCache(oldpage); 1612 set_page_private(oldpage, 0); 1613 1614 unlock_page(oldpage); 1615 put_page(oldpage); 1616 put_page(oldpage); 1617 return error; 1618 } 1619 1620 /* 1621 * Swap in the page pointed to by *pagep. 1622 * Caller has to make sure that *pagep contains a valid swapped page. 1623 * Returns 0 and the page in pagep if success. On failure, returns the 1624 * the error code and NULL in *pagep. 1625 */ 1626 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1627 struct page **pagep, enum sgp_type sgp, 1628 gfp_t gfp, struct vm_area_struct *vma, 1629 vm_fault_t *fault_type) 1630 { 1631 struct address_space *mapping = inode->i_mapping; 1632 struct shmem_inode_info *info = SHMEM_I(inode); 1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1634 struct mem_cgroup *memcg; 1635 struct page *page; 1636 swp_entry_t swap; 1637 int error; 1638 1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1640 swap = radix_to_swp_entry(*pagep); 1641 *pagep = NULL; 1642 1643 /* Look it up and read it in.. */ 1644 page = lookup_swap_cache(swap, NULL, 0); 1645 if (!page) { 1646 /* Or update major stats only when swapin succeeds?? */ 1647 if (fault_type) { 1648 *fault_type |= VM_FAULT_MAJOR; 1649 count_vm_event(PGMAJFAULT); 1650 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1651 } 1652 /* Here we actually start the io */ 1653 page = shmem_swapin(swap, gfp, info, index); 1654 if (!page) { 1655 error = -ENOMEM; 1656 goto failed; 1657 } 1658 } 1659 1660 /* We have to do this with page locked to prevent races */ 1661 lock_page(page); 1662 if (!PageSwapCache(page) || page_private(page) != swap.val || 1663 !shmem_confirm_swap(mapping, index, swap)) { 1664 error = -EEXIST; 1665 goto unlock; 1666 } 1667 if (!PageUptodate(page)) { 1668 error = -EIO; 1669 goto failed; 1670 } 1671 wait_on_page_writeback(page); 1672 1673 if (shmem_should_replace_page(page, gfp)) { 1674 error = shmem_replace_page(&page, gfp, info, index); 1675 if (error) 1676 goto failed; 1677 } 1678 1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1680 false); 1681 if (!error) { 1682 error = shmem_add_to_page_cache(page, mapping, index, 1683 swp_to_radix_entry(swap), gfp); 1684 /* 1685 * We already confirmed swap under page lock, and make 1686 * no memory allocation here, so usually no possibility 1687 * of error; but free_swap_and_cache() only trylocks a 1688 * page, so it is just possible that the entry has been 1689 * truncated or holepunched since swap was confirmed. 1690 * shmem_undo_range() will have done some of the 1691 * unaccounting, now delete_from_swap_cache() will do 1692 * the rest. 1693 */ 1694 if (error) { 1695 mem_cgroup_cancel_charge(page, memcg, false); 1696 delete_from_swap_cache(page); 1697 } 1698 } 1699 if (error) 1700 goto failed; 1701 1702 mem_cgroup_commit_charge(page, memcg, true, false); 1703 1704 spin_lock_irq(&info->lock); 1705 info->swapped--; 1706 shmem_recalc_inode(inode); 1707 spin_unlock_irq(&info->lock); 1708 1709 if (sgp == SGP_WRITE) 1710 mark_page_accessed(page); 1711 1712 delete_from_swap_cache(page); 1713 set_page_dirty(page); 1714 swap_free(swap); 1715 1716 *pagep = page; 1717 return 0; 1718 failed: 1719 if (!shmem_confirm_swap(mapping, index, swap)) 1720 error = -EEXIST; 1721 unlock: 1722 if (page) { 1723 unlock_page(page); 1724 put_page(page); 1725 } 1726 1727 return error; 1728 } 1729 1730 /* 1731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1732 * 1733 * If we allocate a new one we do not mark it dirty. That's up to the 1734 * vm. If we swap it in we mark it dirty since we also free the swap 1735 * entry since a page cannot live in both the swap and page cache. 1736 * 1737 * vmf and fault_type are only supplied by shmem_fault: 1738 * otherwise they are NULL. 1739 */ 1740 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1742 struct vm_area_struct *vma, struct vm_fault *vmf, 1743 vm_fault_t *fault_type) 1744 { 1745 struct address_space *mapping = inode->i_mapping; 1746 struct shmem_inode_info *info = SHMEM_I(inode); 1747 struct shmem_sb_info *sbinfo; 1748 struct mm_struct *charge_mm; 1749 struct mem_cgroup *memcg; 1750 struct page *page; 1751 enum sgp_type sgp_huge = sgp; 1752 pgoff_t hindex = index; 1753 int error; 1754 int once = 0; 1755 int alloced = 0; 1756 1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1758 return -EFBIG; 1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1760 sgp = SGP_CACHE; 1761 repeat: 1762 if (sgp <= SGP_CACHE && 1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1764 return -EINVAL; 1765 } 1766 1767 sbinfo = SHMEM_SB(inode->i_sb); 1768 charge_mm = vma ? vma->vm_mm : current->mm; 1769 1770 page = find_lock_entry(mapping, index); 1771 if (xa_is_value(page)) { 1772 error = shmem_swapin_page(inode, index, &page, 1773 sgp, gfp, vma, fault_type); 1774 if (error == -EEXIST) 1775 goto repeat; 1776 1777 *pagep = page; 1778 return error; 1779 } 1780 1781 if (page && sgp == SGP_WRITE) 1782 mark_page_accessed(page); 1783 1784 /* fallocated page? */ 1785 if (page && !PageUptodate(page)) { 1786 if (sgp != SGP_READ) 1787 goto clear; 1788 unlock_page(page); 1789 put_page(page); 1790 page = NULL; 1791 } 1792 if (page || sgp == SGP_READ) { 1793 *pagep = page; 1794 return 0; 1795 } 1796 1797 /* 1798 * Fast cache lookup did not find it: 1799 * bring it back from swap or allocate. 1800 */ 1801 1802 if (vma && userfaultfd_missing(vma)) { 1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1804 return 0; 1805 } 1806 1807 /* shmem_symlink() */ 1808 if (mapping->a_ops != &shmem_aops) 1809 goto alloc_nohuge; 1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1811 goto alloc_nohuge; 1812 if (shmem_huge == SHMEM_HUGE_FORCE) 1813 goto alloc_huge; 1814 switch (sbinfo->huge) { 1815 loff_t i_size; 1816 pgoff_t off; 1817 case SHMEM_HUGE_NEVER: 1818 goto alloc_nohuge; 1819 case SHMEM_HUGE_WITHIN_SIZE: 1820 off = round_up(index, HPAGE_PMD_NR); 1821 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1822 if (i_size >= HPAGE_PMD_SIZE && 1823 i_size >> PAGE_SHIFT >= off) 1824 goto alloc_huge; 1825 /* fallthrough */ 1826 case SHMEM_HUGE_ADVISE: 1827 if (sgp_huge == SGP_HUGE) 1828 goto alloc_huge; 1829 /* TODO: implement fadvise() hints */ 1830 goto alloc_nohuge; 1831 } 1832 1833 alloc_huge: 1834 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1835 if (IS_ERR(page)) { 1836 alloc_nohuge: 1837 page = shmem_alloc_and_acct_page(gfp, inode, 1838 index, false); 1839 } 1840 if (IS_ERR(page)) { 1841 int retry = 5; 1842 1843 error = PTR_ERR(page); 1844 page = NULL; 1845 if (error != -ENOSPC) 1846 goto unlock; 1847 /* 1848 * Try to reclaim some space by splitting a huge page 1849 * beyond i_size on the filesystem. 1850 */ 1851 while (retry--) { 1852 int ret; 1853 1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1855 if (ret == SHRINK_STOP) 1856 break; 1857 if (ret) 1858 goto alloc_nohuge; 1859 } 1860 goto unlock; 1861 } 1862 1863 if (PageTransHuge(page)) 1864 hindex = round_down(index, HPAGE_PMD_NR); 1865 else 1866 hindex = index; 1867 1868 if (sgp == SGP_WRITE) 1869 __SetPageReferenced(page); 1870 1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1872 PageTransHuge(page)); 1873 if (error) 1874 goto unacct; 1875 error = shmem_add_to_page_cache(page, mapping, hindex, 1876 NULL, gfp & GFP_RECLAIM_MASK); 1877 if (error) { 1878 mem_cgroup_cancel_charge(page, memcg, 1879 PageTransHuge(page)); 1880 goto unacct; 1881 } 1882 mem_cgroup_commit_charge(page, memcg, false, 1883 PageTransHuge(page)); 1884 lru_cache_add_anon(page); 1885 1886 spin_lock_irq(&info->lock); 1887 info->alloced += compound_nr(page); 1888 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1889 shmem_recalc_inode(inode); 1890 spin_unlock_irq(&info->lock); 1891 alloced = true; 1892 1893 if (PageTransHuge(page) && 1894 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1895 hindex + HPAGE_PMD_NR - 1) { 1896 /* 1897 * Part of the huge page is beyond i_size: subject 1898 * to shrink under memory pressure. 1899 */ 1900 spin_lock(&sbinfo->shrinklist_lock); 1901 /* 1902 * _careful to defend against unlocked access to 1903 * ->shrink_list in shmem_unused_huge_shrink() 1904 */ 1905 if (list_empty_careful(&info->shrinklist)) { 1906 list_add_tail(&info->shrinklist, 1907 &sbinfo->shrinklist); 1908 sbinfo->shrinklist_len++; 1909 } 1910 spin_unlock(&sbinfo->shrinklist_lock); 1911 } 1912 1913 /* 1914 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1915 */ 1916 if (sgp == SGP_FALLOC) 1917 sgp = SGP_WRITE; 1918 clear: 1919 /* 1920 * Let SGP_WRITE caller clear ends if write does not fill page; 1921 * but SGP_FALLOC on a page fallocated earlier must initialize 1922 * it now, lest undo on failure cancel our earlier guarantee. 1923 */ 1924 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1925 struct page *head = compound_head(page); 1926 int i; 1927 1928 for (i = 0; i < compound_nr(head); i++) { 1929 clear_highpage(head + i); 1930 flush_dcache_page(head + i); 1931 } 1932 SetPageUptodate(head); 1933 } 1934 1935 /* Perhaps the file has been truncated since we checked */ 1936 if (sgp <= SGP_CACHE && 1937 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1938 if (alloced) { 1939 ClearPageDirty(page); 1940 delete_from_page_cache(page); 1941 spin_lock_irq(&info->lock); 1942 shmem_recalc_inode(inode); 1943 spin_unlock_irq(&info->lock); 1944 } 1945 error = -EINVAL; 1946 goto unlock; 1947 } 1948 *pagep = page + index - hindex; 1949 return 0; 1950 1951 /* 1952 * Error recovery. 1953 */ 1954 unacct: 1955 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1956 1957 if (PageTransHuge(page)) { 1958 unlock_page(page); 1959 put_page(page); 1960 goto alloc_nohuge; 1961 } 1962 unlock: 1963 if (page) { 1964 unlock_page(page); 1965 put_page(page); 1966 } 1967 if (error == -ENOSPC && !once++) { 1968 spin_lock_irq(&info->lock); 1969 shmem_recalc_inode(inode); 1970 spin_unlock_irq(&info->lock); 1971 goto repeat; 1972 } 1973 if (error == -EEXIST) 1974 goto repeat; 1975 return error; 1976 } 1977 1978 /* 1979 * This is like autoremove_wake_function, but it removes the wait queue 1980 * entry unconditionally - even if something else had already woken the 1981 * target. 1982 */ 1983 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1984 { 1985 int ret = default_wake_function(wait, mode, sync, key); 1986 list_del_init(&wait->entry); 1987 return ret; 1988 } 1989 1990 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1991 { 1992 struct vm_area_struct *vma = vmf->vma; 1993 struct inode *inode = file_inode(vma->vm_file); 1994 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1995 enum sgp_type sgp; 1996 int err; 1997 vm_fault_t ret = VM_FAULT_LOCKED; 1998 1999 /* 2000 * Trinity finds that probing a hole which tmpfs is punching can 2001 * prevent the hole-punch from ever completing: which in turn 2002 * locks writers out with its hold on i_mutex. So refrain from 2003 * faulting pages into the hole while it's being punched. Although 2004 * shmem_undo_range() does remove the additions, it may be unable to 2005 * keep up, as each new page needs its own unmap_mapping_range() call, 2006 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2007 * 2008 * It does not matter if we sometimes reach this check just before the 2009 * hole-punch begins, so that one fault then races with the punch: 2010 * we just need to make racing faults a rare case. 2011 * 2012 * The implementation below would be much simpler if we just used a 2013 * standard mutex or completion: but we cannot take i_mutex in fault, 2014 * and bloating every shmem inode for this unlikely case would be sad. 2015 */ 2016 if (unlikely(inode->i_private)) { 2017 struct shmem_falloc *shmem_falloc; 2018 2019 spin_lock(&inode->i_lock); 2020 shmem_falloc = inode->i_private; 2021 if (shmem_falloc && 2022 shmem_falloc->waitq && 2023 vmf->pgoff >= shmem_falloc->start && 2024 vmf->pgoff < shmem_falloc->next) { 2025 struct file *fpin; 2026 wait_queue_head_t *shmem_falloc_waitq; 2027 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2028 2029 ret = VM_FAULT_NOPAGE; 2030 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2031 if (fpin) 2032 ret = VM_FAULT_RETRY; 2033 2034 shmem_falloc_waitq = shmem_falloc->waitq; 2035 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2036 TASK_UNINTERRUPTIBLE); 2037 spin_unlock(&inode->i_lock); 2038 schedule(); 2039 2040 /* 2041 * shmem_falloc_waitq points into the shmem_fallocate() 2042 * stack of the hole-punching task: shmem_falloc_waitq 2043 * is usually invalid by the time we reach here, but 2044 * finish_wait() does not dereference it in that case; 2045 * though i_lock needed lest racing with wake_up_all(). 2046 */ 2047 spin_lock(&inode->i_lock); 2048 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2049 spin_unlock(&inode->i_lock); 2050 2051 if (fpin) 2052 fput(fpin); 2053 return ret; 2054 } 2055 spin_unlock(&inode->i_lock); 2056 } 2057 2058 sgp = SGP_CACHE; 2059 2060 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2061 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2062 sgp = SGP_NOHUGE; 2063 else if (vma->vm_flags & VM_HUGEPAGE) 2064 sgp = SGP_HUGE; 2065 2066 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2067 gfp, vma, vmf, &ret); 2068 if (err) 2069 return vmf_error(err); 2070 return ret; 2071 } 2072 2073 unsigned long shmem_get_unmapped_area(struct file *file, 2074 unsigned long uaddr, unsigned long len, 2075 unsigned long pgoff, unsigned long flags) 2076 { 2077 unsigned long (*get_area)(struct file *, 2078 unsigned long, unsigned long, unsigned long, unsigned long); 2079 unsigned long addr; 2080 unsigned long offset; 2081 unsigned long inflated_len; 2082 unsigned long inflated_addr; 2083 unsigned long inflated_offset; 2084 2085 if (len > TASK_SIZE) 2086 return -ENOMEM; 2087 2088 get_area = current->mm->get_unmapped_area; 2089 addr = get_area(file, uaddr, len, pgoff, flags); 2090 2091 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2092 return addr; 2093 if (IS_ERR_VALUE(addr)) 2094 return addr; 2095 if (addr & ~PAGE_MASK) 2096 return addr; 2097 if (addr > TASK_SIZE - len) 2098 return addr; 2099 2100 if (shmem_huge == SHMEM_HUGE_DENY) 2101 return addr; 2102 if (len < HPAGE_PMD_SIZE) 2103 return addr; 2104 if (flags & MAP_FIXED) 2105 return addr; 2106 /* 2107 * Our priority is to support MAP_SHARED mapped hugely; 2108 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2109 * But if caller specified an address hint, respect that as before. 2110 */ 2111 if (uaddr) 2112 return addr; 2113 2114 if (shmem_huge != SHMEM_HUGE_FORCE) { 2115 struct super_block *sb; 2116 2117 if (file) { 2118 VM_BUG_ON(file->f_op != &shmem_file_operations); 2119 sb = file_inode(file)->i_sb; 2120 } else { 2121 /* 2122 * Called directly from mm/mmap.c, or drivers/char/mem.c 2123 * for "/dev/zero", to create a shared anonymous object. 2124 */ 2125 if (IS_ERR(shm_mnt)) 2126 return addr; 2127 sb = shm_mnt->mnt_sb; 2128 } 2129 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2130 return addr; 2131 } 2132 2133 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2134 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2135 return addr; 2136 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2137 return addr; 2138 2139 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2140 if (inflated_len > TASK_SIZE) 2141 return addr; 2142 if (inflated_len < len) 2143 return addr; 2144 2145 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2146 if (IS_ERR_VALUE(inflated_addr)) 2147 return addr; 2148 if (inflated_addr & ~PAGE_MASK) 2149 return addr; 2150 2151 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2152 inflated_addr += offset - inflated_offset; 2153 if (inflated_offset > offset) 2154 inflated_addr += HPAGE_PMD_SIZE; 2155 2156 if (inflated_addr > TASK_SIZE - len) 2157 return addr; 2158 return inflated_addr; 2159 } 2160 2161 #ifdef CONFIG_NUMA 2162 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2163 { 2164 struct inode *inode = file_inode(vma->vm_file); 2165 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2166 } 2167 2168 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2169 unsigned long addr) 2170 { 2171 struct inode *inode = file_inode(vma->vm_file); 2172 pgoff_t index; 2173 2174 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2175 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2176 } 2177 #endif 2178 2179 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2180 { 2181 struct inode *inode = file_inode(file); 2182 struct shmem_inode_info *info = SHMEM_I(inode); 2183 int retval = -ENOMEM; 2184 2185 spin_lock_irq(&info->lock); 2186 if (lock && !(info->flags & VM_LOCKED)) { 2187 if (!user_shm_lock(inode->i_size, user)) 2188 goto out_nomem; 2189 info->flags |= VM_LOCKED; 2190 mapping_set_unevictable(file->f_mapping); 2191 } 2192 if (!lock && (info->flags & VM_LOCKED) && user) { 2193 user_shm_unlock(inode->i_size, user); 2194 info->flags &= ~VM_LOCKED; 2195 mapping_clear_unevictable(file->f_mapping); 2196 } 2197 retval = 0; 2198 2199 out_nomem: 2200 spin_unlock_irq(&info->lock); 2201 return retval; 2202 } 2203 2204 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2205 { 2206 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2207 2208 if (info->seals & F_SEAL_FUTURE_WRITE) { 2209 /* 2210 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2211 * "future write" seal active. 2212 */ 2213 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2214 return -EPERM; 2215 2216 /* 2217 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2218 * MAP_SHARED and read-only, take care to not allow mprotect to 2219 * revert protections on such mappings. Do this only for shared 2220 * mappings. For private mappings, don't need to mask 2221 * VM_MAYWRITE as we still want them to be COW-writable. 2222 */ 2223 if (vma->vm_flags & VM_SHARED) 2224 vma->vm_flags &= ~(VM_MAYWRITE); 2225 } 2226 2227 file_accessed(file); 2228 vma->vm_ops = &shmem_vm_ops; 2229 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2230 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2231 (vma->vm_end & HPAGE_PMD_MASK)) { 2232 khugepaged_enter(vma, vma->vm_flags); 2233 } 2234 return 0; 2235 } 2236 2237 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2238 umode_t mode, dev_t dev, unsigned long flags) 2239 { 2240 struct inode *inode; 2241 struct shmem_inode_info *info; 2242 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2243 2244 if (shmem_reserve_inode(sb)) 2245 return NULL; 2246 2247 inode = new_inode(sb); 2248 if (inode) { 2249 inode->i_ino = get_next_ino(); 2250 inode_init_owner(inode, dir, mode); 2251 inode->i_blocks = 0; 2252 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2253 inode->i_generation = prandom_u32(); 2254 info = SHMEM_I(inode); 2255 memset(info, 0, (char *)inode - (char *)info); 2256 spin_lock_init(&info->lock); 2257 atomic_set(&info->stop_eviction, 0); 2258 info->seals = F_SEAL_SEAL; 2259 info->flags = flags & VM_NORESERVE; 2260 INIT_LIST_HEAD(&info->shrinklist); 2261 INIT_LIST_HEAD(&info->swaplist); 2262 simple_xattrs_init(&info->xattrs); 2263 cache_no_acl(inode); 2264 2265 switch (mode & S_IFMT) { 2266 default: 2267 inode->i_op = &shmem_special_inode_operations; 2268 init_special_inode(inode, mode, dev); 2269 break; 2270 case S_IFREG: 2271 inode->i_mapping->a_ops = &shmem_aops; 2272 inode->i_op = &shmem_inode_operations; 2273 inode->i_fop = &shmem_file_operations; 2274 mpol_shared_policy_init(&info->policy, 2275 shmem_get_sbmpol(sbinfo)); 2276 break; 2277 case S_IFDIR: 2278 inc_nlink(inode); 2279 /* Some things misbehave if size == 0 on a directory */ 2280 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2281 inode->i_op = &shmem_dir_inode_operations; 2282 inode->i_fop = &simple_dir_operations; 2283 break; 2284 case S_IFLNK: 2285 /* 2286 * Must not load anything in the rbtree, 2287 * mpol_free_shared_policy will not be called. 2288 */ 2289 mpol_shared_policy_init(&info->policy, NULL); 2290 break; 2291 } 2292 2293 lockdep_annotate_inode_mutex_key(inode); 2294 } else 2295 shmem_free_inode(sb); 2296 return inode; 2297 } 2298 2299 bool shmem_mapping(struct address_space *mapping) 2300 { 2301 return mapping->a_ops == &shmem_aops; 2302 } 2303 2304 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2305 pmd_t *dst_pmd, 2306 struct vm_area_struct *dst_vma, 2307 unsigned long dst_addr, 2308 unsigned long src_addr, 2309 bool zeropage, 2310 struct page **pagep) 2311 { 2312 struct inode *inode = file_inode(dst_vma->vm_file); 2313 struct shmem_inode_info *info = SHMEM_I(inode); 2314 struct address_space *mapping = inode->i_mapping; 2315 gfp_t gfp = mapping_gfp_mask(mapping); 2316 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2317 struct mem_cgroup *memcg; 2318 spinlock_t *ptl; 2319 void *page_kaddr; 2320 struct page *page; 2321 pte_t _dst_pte, *dst_pte; 2322 int ret; 2323 pgoff_t offset, max_off; 2324 2325 ret = -ENOMEM; 2326 if (!shmem_inode_acct_block(inode, 1)) 2327 goto out; 2328 2329 if (!*pagep) { 2330 page = shmem_alloc_page(gfp, info, pgoff); 2331 if (!page) 2332 goto out_unacct_blocks; 2333 2334 if (!zeropage) { /* mcopy_atomic */ 2335 page_kaddr = kmap_atomic(page); 2336 ret = copy_from_user(page_kaddr, 2337 (const void __user *)src_addr, 2338 PAGE_SIZE); 2339 kunmap_atomic(page_kaddr); 2340 2341 /* fallback to copy_from_user outside mmap_sem */ 2342 if (unlikely(ret)) { 2343 *pagep = page; 2344 shmem_inode_unacct_blocks(inode, 1); 2345 /* don't free the page */ 2346 return -ENOENT; 2347 } 2348 } else { /* mfill_zeropage_atomic */ 2349 clear_highpage(page); 2350 } 2351 } else { 2352 page = *pagep; 2353 *pagep = NULL; 2354 } 2355 2356 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2357 __SetPageLocked(page); 2358 __SetPageSwapBacked(page); 2359 __SetPageUptodate(page); 2360 2361 ret = -EFAULT; 2362 offset = linear_page_index(dst_vma, dst_addr); 2363 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2364 if (unlikely(offset >= max_off)) 2365 goto out_release; 2366 2367 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2368 if (ret) 2369 goto out_release; 2370 2371 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2372 gfp & GFP_RECLAIM_MASK); 2373 if (ret) 2374 goto out_release_uncharge; 2375 2376 mem_cgroup_commit_charge(page, memcg, false, false); 2377 2378 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2379 if (dst_vma->vm_flags & VM_WRITE) 2380 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2381 else { 2382 /* 2383 * We don't set the pte dirty if the vma has no 2384 * VM_WRITE permission, so mark the page dirty or it 2385 * could be freed from under us. We could do it 2386 * unconditionally before unlock_page(), but doing it 2387 * only if VM_WRITE is not set is faster. 2388 */ 2389 set_page_dirty(page); 2390 } 2391 2392 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2393 2394 ret = -EFAULT; 2395 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2396 if (unlikely(offset >= max_off)) 2397 goto out_release_uncharge_unlock; 2398 2399 ret = -EEXIST; 2400 if (!pte_none(*dst_pte)) 2401 goto out_release_uncharge_unlock; 2402 2403 lru_cache_add_anon(page); 2404 2405 spin_lock(&info->lock); 2406 info->alloced++; 2407 inode->i_blocks += BLOCKS_PER_PAGE; 2408 shmem_recalc_inode(inode); 2409 spin_unlock(&info->lock); 2410 2411 inc_mm_counter(dst_mm, mm_counter_file(page)); 2412 page_add_file_rmap(page, false); 2413 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2414 2415 /* No need to invalidate - it was non-present before */ 2416 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2417 pte_unmap_unlock(dst_pte, ptl); 2418 unlock_page(page); 2419 ret = 0; 2420 out: 2421 return ret; 2422 out_release_uncharge_unlock: 2423 pte_unmap_unlock(dst_pte, ptl); 2424 ClearPageDirty(page); 2425 delete_from_page_cache(page); 2426 out_release_uncharge: 2427 mem_cgroup_cancel_charge(page, memcg, false); 2428 out_release: 2429 unlock_page(page); 2430 put_page(page); 2431 out_unacct_blocks: 2432 shmem_inode_unacct_blocks(inode, 1); 2433 goto out; 2434 } 2435 2436 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2437 pmd_t *dst_pmd, 2438 struct vm_area_struct *dst_vma, 2439 unsigned long dst_addr, 2440 unsigned long src_addr, 2441 struct page **pagep) 2442 { 2443 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2444 dst_addr, src_addr, false, pagep); 2445 } 2446 2447 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2448 pmd_t *dst_pmd, 2449 struct vm_area_struct *dst_vma, 2450 unsigned long dst_addr) 2451 { 2452 struct page *page = NULL; 2453 2454 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2455 dst_addr, 0, true, &page); 2456 } 2457 2458 #ifdef CONFIG_TMPFS 2459 static const struct inode_operations shmem_symlink_inode_operations; 2460 static const struct inode_operations shmem_short_symlink_operations; 2461 2462 #ifdef CONFIG_TMPFS_XATTR 2463 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2464 #else 2465 #define shmem_initxattrs NULL 2466 #endif 2467 2468 static int 2469 shmem_write_begin(struct file *file, struct address_space *mapping, 2470 loff_t pos, unsigned len, unsigned flags, 2471 struct page **pagep, void **fsdata) 2472 { 2473 struct inode *inode = mapping->host; 2474 struct shmem_inode_info *info = SHMEM_I(inode); 2475 pgoff_t index = pos >> PAGE_SHIFT; 2476 2477 /* i_mutex is held by caller */ 2478 if (unlikely(info->seals & (F_SEAL_GROW | 2479 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2480 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2481 return -EPERM; 2482 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2483 return -EPERM; 2484 } 2485 2486 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2487 } 2488 2489 static int 2490 shmem_write_end(struct file *file, struct address_space *mapping, 2491 loff_t pos, unsigned len, unsigned copied, 2492 struct page *page, void *fsdata) 2493 { 2494 struct inode *inode = mapping->host; 2495 2496 if (pos + copied > inode->i_size) 2497 i_size_write(inode, pos + copied); 2498 2499 if (!PageUptodate(page)) { 2500 struct page *head = compound_head(page); 2501 if (PageTransCompound(page)) { 2502 int i; 2503 2504 for (i = 0; i < HPAGE_PMD_NR; i++) { 2505 if (head + i == page) 2506 continue; 2507 clear_highpage(head + i); 2508 flush_dcache_page(head + i); 2509 } 2510 } 2511 if (copied < PAGE_SIZE) { 2512 unsigned from = pos & (PAGE_SIZE - 1); 2513 zero_user_segments(page, 0, from, 2514 from + copied, PAGE_SIZE); 2515 } 2516 SetPageUptodate(head); 2517 } 2518 set_page_dirty(page); 2519 unlock_page(page); 2520 put_page(page); 2521 2522 return copied; 2523 } 2524 2525 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2526 { 2527 struct file *file = iocb->ki_filp; 2528 struct inode *inode = file_inode(file); 2529 struct address_space *mapping = inode->i_mapping; 2530 pgoff_t index; 2531 unsigned long offset; 2532 enum sgp_type sgp = SGP_READ; 2533 int error = 0; 2534 ssize_t retval = 0; 2535 loff_t *ppos = &iocb->ki_pos; 2536 2537 /* 2538 * Might this read be for a stacking filesystem? Then when reading 2539 * holes of a sparse file, we actually need to allocate those pages, 2540 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2541 */ 2542 if (!iter_is_iovec(to)) 2543 sgp = SGP_CACHE; 2544 2545 index = *ppos >> PAGE_SHIFT; 2546 offset = *ppos & ~PAGE_MASK; 2547 2548 for (;;) { 2549 struct page *page = NULL; 2550 pgoff_t end_index; 2551 unsigned long nr, ret; 2552 loff_t i_size = i_size_read(inode); 2553 2554 end_index = i_size >> PAGE_SHIFT; 2555 if (index > end_index) 2556 break; 2557 if (index == end_index) { 2558 nr = i_size & ~PAGE_MASK; 2559 if (nr <= offset) 2560 break; 2561 } 2562 2563 error = shmem_getpage(inode, index, &page, sgp); 2564 if (error) { 2565 if (error == -EINVAL) 2566 error = 0; 2567 break; 2568 } 2569 if (page) { 2570 if (sgp == SGP_CACHE) 2571 set_page_dirty(page); 2572 unlock_page(page); 2573 } 2574 2575 /* 2576 * We must evaluate after, since reads (unlike writes) 2577 * are called without i_mutex protection against truncate 2578 */ 2579 nr = PAGE_SIZE; 2580 i_size = i_size_read(inode); 2581 end_index = i_size >> PAGE_SHIFT; 2582 if (index == end_index) { 2583 nr = i_size & ~PAGE_MASK; 2584 if (nr <= offset) { 2585 if (page) 2586 put_page(page); 2587 break; 2588 } 2589 } 2590 nr -= offset; 2591 2592 if (page) { 2593 /* 2594 * If users can be writing to this page using arbitrary 2595 * virtual addresses, take care about potential aliasing 2596 * before reading the page on the kernel side. 2597 */ 2598 if (mapping_writably_mapped(mapping)) 2599 flush_dcache_page(page); 2600 /* 2601 * Mark the page accessed if we read the beginning. 2602 */ 2603 if (!offset) 2604 mark_page_accessed(page); 2605 } else { 2606 page = ZERO_PAGE(0); 2607 get_page(page); 2608 } 2609 2610 /* 2611 * Ok, we have the page, and it's up-to-date, so 2612 * now we can copy it to user space... 2613 */ 2614 ret = copy_page_to_iter(page, offset, nr, to); 2615 retval += ret; 2616 offset += ret; 2617 index += offset >> PAGE_SHIFT; 2618 offset &= ~PAGE_MASK; 2619 2620 put_page(page); 2621 if (!iov_iter_count(to)) 2622 break; 2623 if (ret < nr) { 2624 error = -EFAULT; 2625 break; 2626 } 2627 cond_resched(); 2628 } 2629 2630 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2631 file_accessed(file); 2632 return retval ? retval : error; 2633 } 2634 2635 /* 2636 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2637 */ 2638 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2639 pgoff_t index, pgoff_t end, int whence) 2640 { 2641 struct page *page; 2642 struct pagevec pvec; 2643 pgoff_t indices[PAGEVEC_SIZE]; 2644 bool done = false; 2645 int i; 2646 2647 pagevec_init(&pvec); 2648 pvec.nr = 1; /* start small: we may be there already */ 2649 while (!done) { 2650 pvec.nr = find_get_entries(mapping, index, 2651 pvec.nr, pvec.pages, indices); 2652 if (!pvec.nr) { 2653 if (whence == SEEK_DATA) 2654 index = end; 2655 break; 2656 } 2657 for (i = 0; i < pvec.nr; i++, index++) { 2658 if (index < indices[i]) { 2659 if (whence == SEEK_HOLE) { 2660 done = true; 2661 break; 2662 } 2663 index = indices[i]; 2664 } 2665 page = pvec.pages[i]; 2666 if (page && !xa_is_value(page)) { 2667 if (!PageUptodate(page)) 2668 page = NULL; 2669 } 2670 if (index >= end || 2671 (page && whence == SEEK_DATA) || 2672 (!page && whence == SEEK_HOLE)) { 2673 done = true; 2674 break; 2675 } 2676 } 2677 pagevec_remove_exceptionals(&pvec); 2678 pagevec_release(&pvec); 2679 pvec.nr = PAGEVEC_SIZE; 2680 cond_resched(); 2681 } 2682 return index; 2683 } 2684 2685 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2686 { 2687 struct address_space *mapping = file->f_mapping; 2688 struct inode *inode = mapping->host; 2689 pgoff_t start, end; 2690 loff_t new_offset; 2691 2692 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2693 return generic_file_llseek_size(file, offset, whence, 2694 MAX_LFS_FILESIZE, i_size_read(inode)); 2695 inode_lock(inode); 2696 /* We're holding i_mutex so we can access i_size directly */ 2697 2698 if (offset < 0 || offset >= inode->i_size) 2699 offset = -ENXIO; 2700 else { 2701 start = offset >> PAGE_SHIFT; 2702 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2703 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2704 new_offset <<= PAGE_SHIFT; 2705 if (new_offset > offset) { 2706 if (new_offset < inode->i_size) 2707 offset = new_offset; 2708 else if (whence == SEEK_DATA) 2709 offset = -ENXIO; 2710 else 2711 offset = inode->i_size; 2712 } 2713 } 2714 2715 if (offset >= 0) 2716 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2717 inode_unlock(inode); 2718 return offset; 2719 } 2720 2721 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2722 loff_t len) 2723 { 2724 struct inode *inode = file_inode(file); 2725 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2726 struct shmem_inode_info *info = SHMEM_I(inode); 2727 struct shmem_falloc shmem_falloc; 2728 pgoff_t start, index, end; 2729 int error; 2730 2731 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2732 return -EOPNOTSUPP; 2733 2734 inode_lock(inode); 2735 2736 if (mode & FALLOC_FL_PUNCH_HOLE) { 2737 struct address_space *mapping = file->f_mapping; 2738 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2739 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2740 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2741 2742 /* protected by i_mutex */ 2743 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2744 error = -EPERM; 2745 goto out; 2746 } 2747 2748 shmem_falloc.waitq = &shmem_falloc_waitq; 2749 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2750 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2751 spin_lock(&inode->i_lock); 2752 inode->i_private = &shmem_falloc; 2753 spin_unlock(&inode->i_lock); 2754 2755 if ((u64)unmap_end > (u64)unmap_start) 2756 unmap_mapping_range(mapping, unmap_start, 2757 1 + unmap_end - unmap_start, 0); 2758 shmem_truncate_range(inode, offset, offset + len - 1); 2759 /* No need to unmap again: hole-punching leaves COWed pages */ 2760 2761 spin_lock(&inode->i_lock); 2762 inode->i_private = NULL; 2763 wake_up_all(&shmem_falloc_waitq); 2764 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2765 spin_unlock(&inode->i_lock); 2766 error = 0; 2767 goto out; 2768 } 2769 2770 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2771 error = inode_newsize_ok(inode, offset + len); 2772 if (error) 2773 goto out; 2774 2775 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2776 error = -EPERM; 2777 goto out; 2778 } 2779 2780 start = offset >> PAGE_SHIFT; 2781 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2782 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2783 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2784 error = -ENOSPC; 2785 goto out; 2786 } 2787 2788 shmem_falloc.waitq = NULL; 2789 shmem_falloc.start = start; 2790 shmem_falloc.next = start; 2791 shmem_falloc.nr_falloced = 0; 2792 shmem_falloc.nr_unswapped = 0; 2793 spin_lock(&inode->i_lock); 2794 inode->i_private = &shmem_falloc; 2795 spin_unlock(&inode->i_lock); 2796 2797 for (index = start; index < end; index++) { 2798 struct page *page; 2799 2800 /* 2801 * Good, the fallocate(2) manpage permits EINTR: we may have 2802 * been interrupted because we are using up too much memory. 2803 */ 2804 if (signal_pending(current)) 2805 error = -EINTR; 2806 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2807 error = -ENOMEM; 2808 else 2809 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2810 if (error) { 2811 /* Remove the !PageUptodate pages we added */ 2812 if (index > start) { 2813 shmem_undo_range(inode, 2814 (loff_t)start << PAGE_SHIFT, 2815 ((loff_t)index << PAGE_SHIFT) - 1, true); 2816 } 2817 goto undone; 2818 } 2819 2820 /* 2821 * Inform shmem_writepage() how far we have reached. 2822 * No need for lock or barrier: we have the page lock. 2823 */ 2824 shmem_falloc.next++; 2825 if (!PageUptodate(page)) 2826 shmem_falloc.nr_falloced++; 2827 2828 /* 2829 * If !PageUptodate, leave it that way so that freeable pages 2830 * can be recognized if we need to rollback on error later. 2831 * But set_page_dirty so that memory pressure will swap rather 2832 * than free the pages we are allocating (and SGP_CACHE pages 2833 * might still be clean: we now need to mark those dirty too). 2834 */ 2835 set_page_dirty(page); 2836 unlock_page(page); 2837 put_page(page); 2838 cond_resched(); 2839 } 2840 2841 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2842 i_size_write(inode, offset + len); 2843 inode->i_ctime = current_time(inode); 2844 undone: 2845 spin_lock(&inode->i_lock); 2846 inode->i_private = NULL; 2847 spin_unlock(&inode->i_lock); 2848 out: 2849 inode_unlock(inode); 2850 return error; 2851 } 2852 2853 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2854 { 2855 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2856 2857 buf->f_type = TMPFS_MAGIC; 2858 buf->f_bsize = PAGE_SIZE; 2859 buf->f_namelen = NAME_MAX; 2860 if (sbinfo->max_blocks) { 2861 buf->f_blocks = sbinfo->max_blocks; 2862 buf->f_bavail = 2863 buf->f_bfree = sbinfo->max_blocks - 2864 percpu_counter_sum(&sbinfo->used_blocks); 2865 } 2866 if (sbinfo->max_inodes) { 2867 buf->f_files = sbinfo->max_inodes; 2868 buf->f_ffree = sbinfo->free_inodes; 2869 } 2870 /* else leave those fields 0 like simple_statfs */ 2871 return 0; 2872 } 2873 2874 /* 2875 * File creation. Allocate an inode, and we're done.. 2876 */ 2877 static int 2878 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2879 { 2880 struct inode *inode; 2881 int error = -ENOSPC; 2882 2883 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2884 if (inode) { 2885 error = simple_acl_create(dir, inode); 2886 if (error) 2887 goto out_iput; 2888 error = security_inode_init_security(inode, dir, 2889 &dentry->d_name, 2890 shmem_initxattrs, NULL); 2891 if (error && error != -EOPNOTSUPP) 2892 goto out_iput; 2893 2894 error = 0; 2895 dir->i_size += BOGO_DIRENT_SIZE; 2896 dir->i_ctime = dir->i_mtime = current_time(dir); 2897 d_instantiate(dentry, inode); 2898 dget(dentry); /* Extra count - pin the dentry in core */ 2899 } 2900 return error; 2901 out_iput: 2902 iput(inode); 2903 return error; 2904 } 2905 2906 static int 2907 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2908 { 2909 struct inode *inode; 2910 int error = -ENOSPC; 2911 2912 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2913 if (inode) { 2914 error = security_inode_init_security(inode, dir, 2915 NULL, 2916 shmem_initxattrs, NULL); 2917 if (error && error != -EOPNOTSUPP) 2918 goto out_iput; 2919 error = simple_acl_create(dir, inode); 2920 if (error) 2921 goto out_iput; 2922 d_tmpfile(dentry, inode); 2923 } 2924 return error; 2925 out_iput: 2926 iput(inode); 2927 return error; 2928 } 2929 2930 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2931 { 2932 int error; 2933 2934 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2935 return error; 2936 inc_nlink(dir); 2937 return 0; 2938 } 2939 2940 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2941 bool excl) 2942 { 2943 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2944 } 2945 2946 /* 2947 * Link a file.. 2948 */ 2949 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2950 { 2951 struct inode *inode = d_inode(old_dentry); 2952 int ret = 0; 2953 2954 /* 2955 * No ordinary (disk based) filesystem counts links as inodes; 2956 * but each new link needs a new dentry, pinning lowmem, and 2957 * tmpfs dentries cannot be pruned until they are unlinked. 2958 * But if an O_TMPFILE file is linked into the tmpfs, the 2959 * first link must skip that, to get the accounting right. 2960 */ 2961 if (inode->i_nlink) { 2962 ret = shmem_reserve_inode(inode->i_sb); 2963 if (ret) 2964 goto out; 2965 } 2966 2967 dir->i_size += BOGO_DIRENT_SIZE; 2968 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2969 inc_nlink(inode); 2970 ihold(inode); /* New dentry reference */ 2971 dget(dentry); /* Extra pinning count for the created dentry */ 2972 d_instantiate(dentry, inode); 2973 out: 2974 return ret; 2975 } 2976 2977 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2978 { 2979 struct inode *inode = d_inode(dentry); 2980 2981 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2982 shmem_free_inode(inode->i_sb); 2983 2984 dir->i_size -= BOGO_DIRENT_SIZE; 2985 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2986 drop_nlink(inode); 2987 dput(dentry); /* Undo the count from "create" - this does all the work */ 2988 return 0; 2989 } 2990 2991 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2992 { 2993 if (!simple_empty(dentry)) 2994 return -ENOTEMPTY; 2995 2996 drop_nlink(d_inode(dentry)); 2997 drop_nlink(dir); 2998 return shmem_unlink(dir, dentry); 2999 } 3000 3001 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3002 { 3003 bool old_is_dir = d_is_dir(old_dentry); 3004 bool new_is_dir = d_is_dir(new_dentry); 3005 3006 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3007 if (old_is_dir) { 3008 drop_nlink(old_dir); 3009 inc_nlink(new_dir); 3010 } else { 3011 drop_nlink(new_dir); 3012 inc_nlink(old_dir); 3013 } 3014 } 3015 old_dir->i_ctime = old_dir->i_mtime = 3016 new_dir->i_ctime = new_dir->i_mtime = 3017 d_inode(old_dentry)->i_ctime = 3018 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3019 3020 return 0; 3021 } 3022 3023 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3024 { 3025 struct dentry *whiteout; 3026 int error; 3027 3028 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3029 if (!whiteout) 3030 return -ENOMEM; 3031 3032 error = shmem_mknod(old_dir, whiteout, 3033 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3034 dput(whiteout); 3035 if (error) 3036 return error; 3037 3038 /* 3039 * Cheat and hash the whiteout while the old dentry is still in 3040 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3041 * 3042 * d_lookup() will consistently find one of them at this point, 3043 * not sure which one, but that isn't even important. 3044 */ 3045 d_rehash(whiteout); 3046 return 0; 3047 } 3048 3049 /* 3050 * The VFS layer already does all the dentry stuff for rename, 3051 * we just have to decrement the usage count for the target if 3052 * it exists so that the VFS layer correctly free's it when it 3053 * gets overwritten. 3054 */ 3055 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3056 { 3057 struct inode *inode = d_inode(old_dentry); 3058 int they_are_dirs = S_ISDIR(inode->i_mode); 3059 3060 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3061 return -EINVAL; 3062 3063 if (flags & RENAME_EXCHANGE) 3064 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3065 3066 if (!simple_empty(new_dentry)) 3067 return -ENOTEMPTY; 3068 3069 if (flags & RENAME_WHITEOUT) { 3070 int error; 3071 3072 error = shmem_whiteout(old_dir, old_dentry); 3073 if (error) 3074 return error; 3075 } 3076 3077 if (d_really_is_positive(new_dentry)) { 3078 (void) shmem_unlink(new_dir, new_dentry); 3079 if (they_are_dirs) { 3080 drop_nlink(d_inode(new_dentry)); 3081 drop_nlink(old_dir); 3082 } 3083 } else if (they_are_dirs) { 3084 drop_nlink(old_dir); 3085 inc_nlink(new_dir); 3086 } 3087 3088 old_dir->i_size -= BOGO_DIRENT_SIZE; 3089 new_dir->i_size += BOGO_DIRENT_SIZE; 3090 old_dir->i_ctime = old_dir->i_mtime = 3091 new_dir->i_ctime = new_dir->i_mtime = 3092 inode->i_ctime = current_time(old_dir); 3093 return 0; 3094 } 3095 3096 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3097 { 3098 int error; 3099 int len; 3100 struct inode *inode; 3101 struct page *page; 3102 3103 len = strlen(symname) + 1; 3104 if (len > PAGE_SIZE) 3105 return -ENAMETOOLONG; 3106 3107 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3108 VM_NORESERVE); 3109 if (!inode) 3110 return -ENOSPC; 3111 3112 error = security_inode_init_security(inode, dir, &dentry->d_name, 3113 shmem_initxattrs, NULL); 3114 if (error) { 3115 if (error != -EOPNOTSUPP) { 3116 iput(inode); 3117 return error; 3118 } 3119 error = 0; 3120 } 3121 3122 inode->i_size = len-1; 3123 if (len <= SHORT_SYMLINK_LEN) { 3124 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3125 if (!inode->i_link) { 3126 iput(inode); 3127 return -ENOMEM; 3128 } 3129 inode->i_op = &shmem_short_symlink_operations; 3130 } else { 3131 inode_nohighmem(inode); 3132 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3133 if (error) { 3134 iput(inode); 3135 return error; 3136 } 3137 inode->i_mapping->a_ops = &shmem_aops; 3138 inode->i_op = &shmem_symlink_inode_operations; 3139 memcpy(page_address(page), symname, len); 3140 SetPageUptodate(page); 3141 set_page_dirty(page); 3142 unlock_page(page); 3143 put_page(page); 3144 } 3145 dir->i_size += BOGO_DIRENT_SIZE; 3146 dir->i_ctime = dir->i_mtime = current_time(dir); 3147 d_instantiate(dentry, inode); 3148 dget(dentry); 3149 return 0; 3150 } 3151 3152 static void shmem_put_link(void *arg) 3153 { 3154 mark_page_accessed(arg); 3155 put_page(arg); 3156 } 3157 3158 static const char *shmem_get_link(struct dentry *dentry, 3159 struct inode *inode, 3160 struct delayed_call *done) 3161 { 3162 struct page *page = NULL; 3163 int error; 3164 if (!dentry) { 3165 page = find_get_page(inode->i_mapping, 0); 3166 if (!page) 3167 return ERR_PTR(-ECHILD); 3168 if (!PageUptodate(page)) { 3169 put_page(page); 3170 return ERR_PTR(-ECHILD); 3171 } 3172 } else { 3173 error = shmem_getpage(inode, 0, &page, SGP_READ); 3174 if (error) 3175 return ERR_PTR(error); 3176 unlock_page(page); 3177 } 3178 set_delayed_call(done, shmem_put_link, page); 3179 return page_address(page); 3180 } 3181 3182 #ifdef CONFIG_TMPFS_XATTR 3183 /* 3184 * Superblocks without xattr inode operations may get some security.* xattr 3185 * support from the LSM "for free". As soon as we have any other xattrs 3186 * like ACLs, we also need to implement the security.* handlers at 3187 * filesystem level, though. 3188 */ 3189 3190 /* 3191 * Callback for security_inode_init_security() for acquiring xattrs. 3192 */ 3193 static int shmem_initxattrs(struct inode *inode, 3194 const struct xattr *xattr_array, 3195 void *fs_info) 3196 { 3197 struct shmem_inode_info *info = SHMEM_I(inode); 3198 const struct xattr *xattr; 3199 struct simple_xattr *new_xattr; 3200 size_t len; 3201 3202 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3203 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3204 if (!new_xattr) 3205 return -ENOMEM; 3206 3207 len = strlen(xattr->name) + 1; 3208 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3209 GFP_KERNEL); 3210 if (!new_xattr->name) { 3211 kfree(new_xattr); 3212 return -ENOMEM; 3213 } 3214 3215 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3216 XATTR_SECURITY_PREFIX_LEN); 3217 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3218 xattr->name, len); 3219 3220 simple_xattr_list_add(&info->xattrs, new_xattr); 3221 } 3222 3223 return 0; 3224 } 3225 3226 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3227 struct dentry *unused, struct inode *inode, 3228 const char *name, void *buffer, size_t size) 3229 { 3230 struct shmem_inode_info *info = SHMEM_I(inode); 3231 3232 name = xattr_full_name(handler, name); 3233 return simple_xattr_get(&info->xattrs, name, buffer, size); 3234 } 3235 3236 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3237 struct dentry *unused, struct inode *inode, 3238 const char *name, const void *value, 3239 size_t size, int flags) 3240 { 3241 struct shmem_inode_info *info = SHMEM_I(inode); 3242 3243 name = xattr_full_name(handler, name); 3244 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3245 } 3246 3247 static const struct xattr_handler shmem_security_xattr_handler = { 3248 .prefix = XATTR_SECURITY_PREFIX, 3249 .get = shmem_xattr_handler_get, 3250 .set = shmem_xattr_handler_set, 3251 }; 3252 3253 static const struct xattr_handler shmem_trusted_xattr_handler = { 3254 .prefix = XATTR_TRUSTED_PREFIX, 3255 .get = shmem_xattr_handler_get, 3256 .set = shmem_xattr_handler_set, 3257 }; 3258 3259 static const struct xattr_handler *shmem_xattr_handlers[] = { 3260 #ifdef CONFIG_TMPFS_POSIX_ACL 3261 &posix_acl_access_xattr_handler, 3262 &posix_acl_default_xattr_handler, 3263 #endif 3264 &shmem_security_xattr_handler, 3265 &shmem_trusted_xattr_handler, 3266 NULL 3267 }; 3268 3269 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3270 { 3271 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3272 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3273 } 3274 #endif /* CONFIG_TMPFS_XATTR */ 3275 3276 static const struct inode_operations shmem_short_symlink_operations = { 3277 .get_link = simple_get_link, 3278 #ifdef CONFIG_TMPFS_XATTR 3279 .listxattr = shmem_listxattr, 3280 #endif 3281 }; 3282 3283 static const struct inode_operations shmem_symlink_inode_operations = { 3284 .get_link = shmem_get_link, 3285 #ifdef CONFIG_TMPFS_XATTR 3286 .listxattr = shmem_listxattr, 3287 #endif 3288 }; 3289 3290 static struct dentry *shmem_get_parent(struct dentry *child) 3291 { 3292 return ERR_PTR(-ESTALE); 3293 } 3294 3295 static int shmem_match(struct inode *ino, void *vfh) 3296 { 3297 __u32 *fh = vfh; 3298 __u64 inum = fh[2]; 3299 inum = (inum << 32) | fh[1]; 3300 return ino->i_ino == inum && fh[0] == ino->i_generation; 3301 } 3302 3303 /* Find any alias of inode, but prefer a hashed alias */ 3304 static struct dentry *shmem_find_alias(struct inode *inode) 3305 { 3306 struct dentry *alias = d_find_alias(inode); 3307 3308 return alias ?: d_find_any_alias(inode); 3309 } 3310 3311 3312 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3313 struct fid *fid, int fh_len, int fh_type) 3314 { 3315 struct inode *inode; 3316 struct dentry *dentry = NULL; 3317 u64 inum; 3318 3319 if (fh_len < 3) 3320 return NULL; 3321 3322 inum = fid->raw[2]; 3323 inum = (inum << 32) | fid->raw[1]; 3324 3325 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3326 shmem_match, fid->raw); 3327 if (inode) { 3328 dentry = shmem_find_alias(inode); 3329 iput(inode); 3330 } 3331 3332 return dentry; 3333 } 3334 3335 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3336 struct inode *parent) 3337 { 3338 if (*len < 3) { 3339 *len = 3; 3340 return FILEID_INVALID; 3341 } 3342 3343 if (inode_unhashed(inode)) { 3344 /* Unfortunately insert_inode_hash is not idempotent, 3345 * so as we hash inodes here rather than at creation 3346 * time, we need a lock to ensure we only try 3347 * to do it once 3348 */ 3349 static DEFINE_SPINLOCK(lock); 3350 spin_lock(&lock); 3351 if (inode_unhashed(inode)) 3352 __insert_inode_hash(inode, 3353 inode->i_ino + inode->i_generation); 3354 spin_unlock(&lock); 3355 } 3356 3357 fh[0] = inode->i_generation; 3358 fh[1] = inode->i_ino; 3359 fh[2] = ((__u64)inode->i_ino) >> 32; 3360 3361 *len = 3; 3362 return 1; 3363 } 3364 3365 static const struct export_operations shmem_export_ops = { 3366 .get_parent = shmem_get_parent, 3367 .encode_fh = shmem_encode_fh, 3368 .fh_to_dentry = shmem_fh_to_dentry, 3369 }; 3370 3371 enum shmem_param { 3372 Opt_gid, 3373 Opt_huge, 3374 Opt_mode, 3375 Opt_mpol, 3376 Opt_nr_blocks, 3377 Opt_nr_inodes, 3378 Opt_size, 3379 Opt_uid, 3380 }; 3381 3382 static const struct fs_parameter_spec shmem_param_specs[] = { 3383 fsparam_u32 ("gid", Opt_gid), 3384 fsparam_enum ("huge", Opt_huge), 3385 fsparam_u32oct("mode", Opt_mode), 3386 fsparam_string("mpol", Opt_mpol), 3387 fsparam_string("nr_blocks", Opt_nr_blocks), 3388 fsparam_string("nr_inodes", Opt_nr_inodes), 3389 fsparam_string("size", Opt_size), 3390 fsparam_u32 ("uid", Opt_uid), 3391 {} 3392 }; 3393 3394 static const struct fs_parameter_enum shmem_param_enums[] = { 3395 { Opt_huge, "never", SHMEM_HUGE_NEVER }, 3396 { Opt_huge, "always", SHMEM_HUGE_ALWAYS }, 3397 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE }, 3398 { Opt_huge, "advise", SHMEM_HUGE_ADVISE }, 3399 {} 3400 }; 3401 3402 const struct fs_parameter_description shmem_fs_parameters = { 3403 .name = "tmpfs", 3404 .specs = shmem_param_specs, 3405 .enums = shmem_param_enums, 3406 }; 3407 3408 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3409 { 3410 struct shmem_options *ctx = fc->fs_private; 3411 struct fs_parse_result result; 3412 unsigned long long size; 3413 char *rest; 3414 int opt; 3415 3416 opt = fs_parse(fc, &shmem_fs_parameters, param, &result); 3417 if (opt < 0) 3418 return opt; 3419 3420 switch (opt) { 3421 case Opt_size: 3422 size = memparse(param->string, &rest); 3423 if (*rest == '%') { 3424 size <<= PAGE_SHIFT; 3425 size *= totalram_pages(); 3426 do_div(size, 100); 3427 rest++; 3428 } 3429 if (*rest) 3430 goto bad_value; 3431 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3432 ctx->seen |= SHMEM_SEEN_BLOCKS; 3433 break; 3434 case Opt_nr_blocks: 3435 ctx->blocks = memparse(param->string, &rest); 3436 if (*rest) 3437 goto bad_value; 3438 ctx->seen |= SHMEM_SEEN_BLOCKS; 3439 break; 3440 case Opt_nr_inodes: 3441 ctx->inodes = memparse(param->string, &rest); 3442 if (*rest) 3443 goto bad_value; 3444 ctx->seen |= SHMEM_SEEN_INODES; 3445 break; 3446 case Opt_mode: 3447 ctx->mode = result.uint_32 & 07777; 3448 break; 3449 case Opt_uid: 3450 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3451 if (!uid_valid(ctx->uid)) 3452 goto bad_value; 3453 break; 3454 case Opt_gid: 3455 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3456 if (!gid_valid(ctx->gid)) 3457 goto bad_value; 3458 break; 3459 case Opt_huge: 3460 ctx->huge = result.uint_32; 3461 if (ctx->huge != SHMEM_HUGE_NEVER && 3462 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 3463 has_transparent_hugepage())) 3464 goto unsupported_parameter; 3465 ctx->seen |= SHMEM_SEEN_HUGE; 3466 break; 3467 case Opt_mpol: 3468 if (IS_ENABLED(CONFIG_NUMA)) { 3469 mpol_put(ctx->mpol); 3470 ctx->mpol = NULL; 3471 if (mpol_parse_str(param->string, &ctx->mpol)) 3472 goto bad_value; 3473 break; 3474 } 3475 goto unsupported_parameter; 3476 } 3477 return 0; 3478 3479 unsupported_parameter: 3480 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key); 3481 bad_value: 3482 return invalf(fc, "tmpfs: Bad value for '%s'", param->key); 3483 } 3484 3485 static int shmem_parse_options(struct fs_context *fc, void *data) 3486 { 3487 char *options = data; 3488 3489 if (options) { 3490 int err = security_sb_eat_lsm_opts(options, &fc->security); 3491 if (err) 3492 return err; 3493 } 3494 3495 while (options != NULL) { 3496 char *this_char = options; 3497 for (;;) { 3498 /* 3499 * NUL-terminate this option: unfortunately, 3500 * mount options form a comma-separated list, 3501 * but mpol's nodelist may also contain commas. 3502 */ 3503 options = strchr(options, ','); 3504 if (options == NULL) 3505 break; 3506 options++; 3507 if (!isdigit(*options)) { 3508 options[-1] = '\0'; 3509 break; 3510 } 3511 } 3512 if (*this_char) { 3513 char *value = strchr(this_char,'='); 3514 size_t len = 0; 3515 int err; 3516 3517 if (value) { 3518 *value++ = '\0'; 3519 len = strlen(value); 3520 } 3521 err = vfs_parse_fs_string(fc, this_char, value, len); 3522 if (err < 0) 3523 return err; 3524 } 3525 } 3526 return 0; 3527 } 3528 3529 /* 3530 * Reconfigure a shmem filesystem. 3531 * 3532 * Note that we disallow change from limited->unlimited blocks/inodes while any 3533 * are in use; but we must separately disallow unlimited->limited, because in 3534 * that case we have no record of how much is already in use. 3535 */ 3536 static int shmem_reconfigure(struct fs_context *fc) 3537 { 3538 struct shmem_options *ctx = fc->fs_private; 3539 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3540 unsigned long inodes; 3541 const char *err; 3542 3543 spin_lock(&sbinfo->stat_lock); 3544 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3545 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3546 if (!sbinfo->max_blocks) { 3547 err = "Cannot retroactively limit size"; 3548 goto out; 3549 } 3550 if (percpu_counter_compare(&sbinfo->used_blocks, 3551 ctx->blocks) > 0) { 3552 err = "Too small a size for current use"; 3553 goto out; 3554 } 3555 } 3556 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3557 if (!sbinfo->max_inodes) { 3558 err = "Cannot retroactively limit inodes"; 3559 goto out; 3560 } 3561 if (ctx->inodes < inodes) { 3562 err = "Too few inodes for current use"; 3563 goto out; 3564 } 3565 } 3566 3567 if (ctx->seen & SHMEM_SEEN_HUGE) 3568 sbinfo->huge = ctx->huge; 3569 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3570 sbinfo->max_blocks = ctx->blocks; 3571 if (ctx->seen & SHMEM_SEEN_INODES) { 3572 sbinfo->max_inodes = ctx->inodes; 3573 sbinfo->free_inodes = ctx->inodes - inodes; 3574 } 3575 3576 /* 3577 * Preserve previous mempolicy unless mpol remount option was specified. 3578 */ 3579 if (ctx->mpol) { 3580 mpol_put(sbinfo->mpol); 3581 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3582 ctx->mpol = NULL; 3583 } 3584 spin_unlock(&sbinfo->stat_lock); 3585 return 0; 3586 out: 3587 spin_unlock(&sbinfo->stat_lock); 3588 return invalf(fc, "tmpfs: %s", err); 3589 } 3590 3591 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3592 { 3593 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3594 3595 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3596 seq_printf(seq, ",size=%luk", 3597 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3598 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3599 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3600 if (sbinfo->mode != (0777 | S_ISVTX)) 3601 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3602 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3603 seq_printf(seq, ",uid=%u", 3604 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3605 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3606 seq_printf(seq, ",gid=%u", 3607 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3608 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3609 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3610 if (sbinfo->huge) 3611 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3612 #endif 3613 shmem_show_mpol(seq, sbinfo->mpol); 3614 return 0; 3615 } 3616 3617 #endif /* CONFIG_TMPFS */ 3618 3619 static void shmem_put_super(struct super_block *sb) 3620 { 3621 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3622 3623 percpu_counter_destroy(&sbinfo->used_blocks); 3624 mpol_put(sbinfo->mpol); 3625 kfree(sbinfo); 3626 sb->s_fs_info = NULL; 3627 } 3628 3629 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3630 { 3631 struct shmem_options *ctx = fc->fs_private; 3632 struct inode *inode; 3633 struct shmem_sb_info *sbinfo; 3634 int err = -ENOMEM; 3635 3636 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3637 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3638 L1_CACHE_BYTES), GFP_KERNEL); 3639 if (!sbinfo) 3640 return -ENOMEM; 3641 3642 sb->s_fs_info = sbinfo; 3643 3644 #ifdef CONFIG_TMPFS 3645 /* 3646 * Per default we only allow half of the physical ram per 3647 * tmpfs instance, limiting inodes to one per page of lowmem; 3648 * but the internal instance is left unlimited. 3649 */ 3650 if (!(sb->s_flags & SB_KERNMOUNT)) { 3651 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3652 ctx->blocks = shmem_default_max_blocks(); 3653 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3654 ctx->inodes = shmem_default_max_inodes(); 3655 } else { 3656 sb->s_flags |= SB_NOUSER; 3657 } 3658 sb->s_export_op = &shmem_export_ops; 3659 sb->s_flags |= SB_NOSEC; 3660 #else 3661 sb->s_flags |= SB_NOUSER; 3662 #endif 3663 sbinfo->max_blocks = ctx->blocks; 3664 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3665 sbinfo->uid = ctx->uid; 3666 sbinfo->gid = ctx->gid; 3667 sbinfo->mode = ctx->mode; 3668 sbinfo->huge = ctx->huge; 3669 sbinfo->mpol = ctx->mpol; 3670 ctx->mpol = NULL; 3671 3672 spin_lock_init(&sbinfo->stat_lock); 3673 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3674 goto failed; 3675 spin_lock_init(&sbinfo->shrinklist_lock); 3676 INIT_LIST_HEAD(&sbinfo->shrinklist); 3677 3678 sb->s_maxbytes = MAX_LFS_FILESIZE; 3679 sb->s_blocksize = PAGE_SIZE; 3680 sb->s_blocksize_bits = PAGE_SHIFT; 3681 sb->s_magic = TMPFS_MAGIC; 3682 sb->s_op = &shmem_ops; 3683 sb->s_time_gran = 1; 3684 #ifdef CONFIG_TMPFS_XATTR 3685 sb->s_xattr = shmem_xattr_handlers; 3686 #endif 3687 #ifdef CONFIG_TMPFS_POSIX_ACL 3688 sb->s_flags |= SB_POSIXACL; 3689 #endif 3690 uuid_gen(&sb->s_uuid); 3691 3692 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3693 if (!inode) 3694 goto failed; 3695 inode->i_uid = sbinfo->uid; 3696 inode->i_gid = sbinfo->gid; 3697 sb->s_root = d_make_root(inode); 3698 if (!sb->s_root) 3699 goto failed; 3700 return 0; 3701 3702 failed: 3703 shmem_put_super(sb); 3704 return err; 3705 } 3706 3707 static int shmem_get_tree(struct fs_context *fc) 3708 { 3709 return get_tree_nodev(fc, shmem_fill_super); 3710 } 3711 3712 static void shmem_free_fc(struct fs_context *fc) 3713 { 3714 struct shmem_options *ctx = fc->fs_private; 3715 3716 if (ctx) { 3717 mpol_put(ctx->mpol); 3718 kfree(ctx); 3719 } 3720 } 3721 3722 static const struct fs_context_operations shmem_fs_context_ops = { 3723 .free = shmem_free_fc, 3724 .get_tree = shmem_get_tree, 3725 #ifdef CONFIG_TMPFS 3726 .parse_monolithic = shmem_parse_options, 3727 .parse_param = shmem_parse_one, 3728 .reconfigure = shmem_reconfigure, 3729 #endif 3730 }; 3731 3732 static struct kmem_cache *shmem_inode_cachep; 3733 3734 static struct inode *shmem_alloc_inode(struct super_block *sb) 3735 { 3736 struct shmem_inode_info *info; 3737 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3738 if (!info) 3739 return NULL; 3740 return &info->vfs_inode; 3741 } 3742 3743 static void shmem_free_in_core_inode(struct inode *inode) 3744 { 3745 if (S_ISLNK(inode->i_mode)) 3746 kfree(inode->i_link); 3747 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3748 } 3749 3750 static void shmem_destroy_inode(struct inode *inode) 3751 { 3752 if (S_ISREG(inode->i_mode)) 3753 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3754 } 3755 3756 static void shmem_init_inode(void *foo) 3757 { 3758 struct shmem_inode_info *info = foo; 3759 inode_init_once(&info->vfs_inode); 3760 } 3761 3762 static void shmem_init_inodecache(void) 3763 { 3764 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3765 sizeof(struct shmem_inode_info), 3766 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3767 } 3768 3769 static void shmem_destroy_inodecache(void) 3770 { 3771 kmem_cache_destroy(shmem_inode_cachep); 3772 } 3773 3774 static const struct address_space_operations shmem_aops = { 3775 .writepage = shmem_writepage, 3776 .set_page_dirty = __set_page_dirty_no_writeback, 3777 #ifdef CONFIG_TMPFS 3778 .write_begin = shmem_write_begin, 3779 .write_end = shmem_write_end, 3780 #endif 3781 #ifdef CONFIG_MIGRATION 3782 .migratepage = migrate_page, 3783 #endif 3784 .error_remove_page = generic_error_remove_page, 3785 }; 3786 3787 static const struct file_operations shmem_file_operations = { 3788 .mmap = shmem_mmap, 3789 .get_unmapped_area = shmem_get_unmapped_area, 3790 #ifdef CONFIG_TMPFS 3791 .llseek = shmem_file_llseek, 3792 .read_iter = shmem_file_read_iter, 3793 .write_iter = generic_file_write_iter, 3794 .fsync = noop_fsync, 3795 .splice_read = generic_file_splice_read, 3796 .splice_write = iter_file_splice_write, 3797 .fallocate = shmem_fallocate, 3798 #endif 3799 }; 3800 3801 static const struct inode_operations shmem_inode_operations = { 3802 .getattr = shmem_getattr, 3803 .setattr = shmem_setattr, 3804 #ifdef CONFIG_TMPFS_XATTR 3805 .listxattr = shmem_listxattr, 3806 .set_acl = simple_set_acl, 3807 #endif 3808 }; 3809 3810 static const struct inode_operations shmem_dir_inode_operations = { 3811 #ifdef CONFIG_TMPFS 3812 .create = shmem_create, 3813 .lookup = simple_lookup, 3814 .link = shmem_link, 3815 .unlink = shmem_unlink, 3816 .symlink = shmem_symlink, 3817 .mkdir = shmem_mkdir, 3818 .rmdir = shmem_rmdir, 3819 .mknod = shmem_mknod, 3820 .rename = shmem_rename2, 3821 .tmpfile = shmem_tmpfile, 3822 #endif 3823 #ifdef CONFIG_TMPFS_XATTR 3824 .listxattr = shmem_listxattr, 3825 #endif 3826 #ifdef CONFIG_TMPFS_POSIX_ACL 3827 .setattr = shmem_setattr, 3828 .set_acl = simple_set_acl, 3829 #endif 3830 }; 3831 3832 static const struct inode_operations shmem_special_inode_operations = { 3833 #ifdef CONFIG_TMPFS_XATTR 3834 .listxattr = shmem_listxattr, 3835 #endif 3836 #ifdef CONFIG_TMPFS_POSIX_ACL 3837 .setattr = shmem_setattr, 3838 .set_acl = simple_set_acl, 3839 #endif 3840 }; 3841 3842 static const struct super_operations shmem_ops = { 3843 .alloc_inode = shmem_alloc_inode, 3844 .free_inode = shmem_free_in_core_inode, 3845 .destroy_inode = shmem_destroy_inode, 3846 #ifdef CONFIG_TMPFS 3847 .statfs = shmem_statfs, 3848 .show_options = shmem_show_options, 3849 #endif 3850 .evict_inode = shmem_evict_inode, 3851 .drop_inode = generic_delete_inode, 3852 .put_super = shmem_put_super, 3853 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3854 .nr_cached_objects = shmem_unused_huge_count, 3855 .free_cached_objects = shmem_unused_huge_scan, 3856 #endif 3857 }; 3858 3859 static const struct vm_operations_struct shmem_vm_ops = { 3860 .fault = shmem_fault, 3861 .map_pages = filemap_map_pages, 3862 #ifdef CONFIG_NUMA 3863 .set_policy = shmem_set_policy, 3864 .get_policy = shmem_get_policy, 3865 #endif 3866 }; 3867 3868 int shmem_init_fs_context(struct fs_context *fc) 3869 { 3870 struct shmem_options *ctx; 3871 3872 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3873 if (!ctx) 3874 return -ENOMEM; 3875 3876 ctx->mode = 0777 | S_ISVTX; 3877 ctx->uid = current_fsuid(); 3878 ctx->gid = current_fsgid(); 3879 3880 fc->fs_private = ctx; 3881 fc->ops = &shmem_fs_context_ops; 3882 return 0; 3883 } 3884 3885 static struct file_system_type shmem_fs_type = { 3886 .owner = THIS_MODULE, 3887 .name = "tmpfs", 3888 .init_fs_context = shmem_init_fs_context, 3889 #ifdef CONFIG_TMPFS 3890 .parameters = &shmem_fs_parameters, 3891 #endif 3892 .kill_sb = kill_litter_super, 3893 .fs_flags = FS_USERNS_MOUNT, 3894 }; 3895 3896 int __init shmem_init(void) 3897 { 3898 int error; 3899 3900 shmem_init_inodecache(); 3901 3902 error = register_filesystem(&shmem_fs_type); 3903 if (error) { 3904 pr_err("Could not register tmpfs\n"); 3905 goto out2; 3906 } 3907 3908 shm_mnt = kern_mount(&shmem_fs_type); 3909 if (IS_ERR(shm_mnt)) { 3910 error = PTR_ERR(shm_mnt); 3911 pr_err("Could not kern_mount tmpfs\n"); 3912 goto out1; 3913 } 3914 3915 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3916 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3917 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3918 else 3919 shmem_huge = 0; /* just in case it was patched */ 3920 #endif 3921 return 0; 3922 3923 out1: 3924 unregister_filesystem(&shmem_fs_type); 3925 out2: 3926 shmem_destroy_inodecache(); 3927 shm_mnt = ERR_PTR(error); 3928 return error; 3929 } 3930 3931 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3932 static ssize_t shmem_enabled_show(struct kobject *kobj, 3933 struct kobj_attribute *attr, char *buf) 3934 { 3935 int values[] = { 3936 SHMEM_HUGE_ALWAYS, 3937 SHMEM_HUGE_WITHIN_SIZE, 3938 SHMEM_HUGE_ADVISE, 3939 SHMEM_HUGE_NEVER, 3940 SHMEM_HUGE_DENY, 3941 SHMEM_HUGE_FORCE, 3942 }; 3943 int i, count; 3944 3945 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3946 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3947 3948 count += sprintf(buf + count, fmt, 3949 shmem_format_huge(values[i])); 3950 } 3951 buf[count - 1] = '\n'; 3952 return count; 3953 } 3954 3955 static ssize_t shmem_enabled_store(struct kobject *kobj, 3956 struct kobj_attribute *attr, const char *buf, size_t count) 3957 { 3958 char tmp[16]; 3959 int huge; 3960 3961 if (count + 1 > sizeof(tmp)) 3962 return -EINVAL; 3963 memcpy(tmp, buf, count); 3964 tmp[count] = '\0'; 3965 if (count && tmp[count - 1] == '\n') 3966 tmp[count - 1] = '\0'; 3967 3968 huge = shmem_parse_huge(tmp); 3969 if (huge == -EINVAL) 3970 return -EINVAL; 3971 if (!has_transparent_hugepage() && 3972 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3973 return -EINVAL; 3974 3975 shmem_huge = huge; 3976 if (shmem_huge > SHMEM_HUGE_DENY) 3977 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3978 return count; 3979 } 3980 3981 struct kobj_attribute shmem_enabled_attr = 3982 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3983 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3984 3985 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3986 bool shmem_huge_enabled(struct vm_area_struct *vma) 3987 { 3988 struct inode *inode = file_inode(vma->vm_file); 3989 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3990 loff_t i_size; 3991 pgoff_t off; 3992 3993 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3994 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3995 return false; 3996 if (shmem_huge == SHMEM_HUGE_FORCE) 3997 return true; 3998 if (shmem_huge == SHMEM_HUGE_DENY) 3999 return false; 4000 switch (sbinfo->huge) { 4001 case SHMEM_HUGE_NEVER: 4002 return false; 4003 case SHMEM_HUGE_ALWAYS: 4004 return true; 4005 case SHMEM_HUGE_WITHIN_SIZE: 4006 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4007 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4008 if (i_size >= HPAGE_PMD_SIZE && 4009 i_size >> PAGE_SHIFT >= off) 4010 return true; 4011 /* fall through */ 4012 case SHMEM_HUGE_ADVISE: 4013 /* TODO: implement fadvise() hints */ 4014 return (vma->vm_flags & VM_HUGEPAGE); 4015 default: 4016 VM_BUG_ON(1); 4017 return false; 4018 } 4019 } 4020 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 4021 4022 #else /* !CONFIG_SHMEM */ 4023 4024 /* 4025 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4026 * 4027 * This is intended for small system where the benefits of the full 4028 * shmem code (swap-backed and resource-limited) are outweighed by 4029 * their complexity. On systems without swap this code should be 4030 * effectively equivalent, but much lighter weight. 4031 */ 4032 4033 static struct file_system_type shmem_fs_type = { 4034 .name = "tmpfs", 4035 .init_fs_context = ramfs_init_fs_context, 4036 .parameters = &ramfs_fs_parameters, 4037 .kill_sb = kill_litter_super, 4038 .fs_flags = FS_USERNS_MOUNT, 4039 }; 4040 4041 int __init shmem_init(void) 4042 { 4043 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4044 4045 shm_mnt = kern_mount(&shmem_fs_type); 4046 BUG_ON(IS_ERR(shm_mnt)); 4047 4048 return 0; 4049 } 4050 4051 int shmem_unuse(unsigned int type, bool frontswap, 4052 unsigned long *fs_pages_to_unuse) 4053 { 4054 return 0; 4055 } 4056 4057 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4058 { 4059 return 0; 4060 } 4061 4062 void shmem_unlock_mapping(struct address_space *mapping) 4063 { 4064 } 4065 4066 #ifdef CONFIG_MMU 4067 unsigned long shmem_get_unmapped_area(struct file *file, 4068 unsigned long addr, unsigned long len, 4069 unsigned long pgoff, unsigned long flags) 4070 { 4071 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4072 } 4073 #endif 4074 4075 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4076 { 4077 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4078 } 4079 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4080 4081 #define shmem_vm_ops generic_file_vm_ops 4082 #define shmem_file_operations ramfs_file_operations 4083 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4084 #define shmem_acct_size(flags, size) 0 4085 #define shmem_unacct_size(flags, size) do {} while (0) 4086 4087 #endif /* CONFIG_SHMEM */ 4088 4089 /* common code */ 4090 4091 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4092 unsigned long flags, unsigned int i_flags) 4093 { 4094 struct inode *inode; 4095 struct file *res; 4096 4097 if (IS_ERR(mnt)) 4098 return ERR_CAST(mnt); 4099 4100 if (size < 0 || size > MAX_LFS_FILESIZE) 4101 return ERR_PTR(-EINVAL); 4102 4103 if (shmem_acct_size(flags, size)) 4104 return ERR_PTR(-ENOMEM); 4105 4106 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4107 flags); 4108 if (unlikely(!inode)) { 4109 shmem_unacct_size(flags, size); 4110 return ERR_PTR(-ENOSPC); 4111 } 4112 inode->i_flags |= i_flags; 4113 inode->i_size = size; 4114 clear_nlink(inode); /* It is unlinked */ 4115 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4116 if (!IS_ERR(res)) 4117 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4118 &shmem_file_operations); 4119 if (IS_ERR(res)) 4120 iput(inode); 4121 return res; 4122 } 4123 4124 /** 4125 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4126 * kernel internal. There will be NO LSM permission checks against the 4127 * underlying inode. So users of this interface must do LSM checks at a 4128 * higher layer. The users are the big_key and shm implementations. LSM 4129 * checks are provided at the key or shm level rather than the inode. 4130 * @name: name for dentry (to be seen in /proc/<pid>/maps 4131 * @size: size to be set for the file 4132 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4133 */ 4134 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4135 { 4136 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4137 } 4138 4139 /** 4140 * shmem_file_setup - get an unlinked file living in tmpfs 4141 * @name: name for dentry (to be seen in /proc/<pid>/maps 4142 * @size: size to be set for the file 4143 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4144 */ 4145 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4146 { 4147 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4148 } 4149 EXPORT_SYMBOL_GPL(shmem_file_setup); 4150 4151 /** 4152 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4153 * @mnt: the tmpfs mount where the file will be created 4154 * @name: name for dentry (to be seen in /proc/<pid>/maps 4155 * @size: size to be set for the file 4156 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4157 */ 4158 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4159 loff_t size, unsigned long flags) 4160 { 4161 return __shmem_file_setup(mnt, name, size, flags, 0); 4162 } 4163 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4164 4165 /** 4166 * shmem_zero_setup - setup a shared anonymous mapping 4167 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4168 */ 4169 int shmem_zero_setup(struct vm_area_struct *vma) 4170 { 4171 struct file *file; 4172 loff_t size = vma->vm_end - vma->vm_start; 4173 4174 /* 4175 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4176 * between XFS directory reading and selinux: since this file is only 4177 * accessible to the user through its mapping, use S_PRIVATE flag to 4178 * bypass file security, in the same way as shmem_kernel_file_setup(). 4179 */ 4180 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4181 if (IS_ERR(file)) 4182 return PTR_ERR(file); 4183 4184 if (vma->vm_file) 4185 fput(vma->vm_file); 4186 vma->vm_file = file; 4187 vma->vm_ops = &shmem_vm_ops; 4188 4189 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4190 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4191 (vma->vm_end & HPAGE_PMD_MASK)) { 4192 khugepaged_enter(vma, vma->vm_flags); 4193 } 4194 4195 return 0; 4196 } 4197 4198 /** 4199 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4200 * @mapping: the page's address_space 4201 * @index: the page index 4202 * @gfp: the page allocator flags to use if allocating 4203 * 4204 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4205 * with any new page allocations done using the specified allocation flags. 4206 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4207 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4208 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4209 * 4210 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4211 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4212 */ 4213 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4214 pgoff_t index, gfp_t gfp) 4215 { 4216 #ifdef CONFIG_SHMEM 4217 struct inode *inode = mapping->host; 4218 struct page *page; 4219 int error; 4220 4221 BUG_ON(mapping->a_ops != &shmem_aops); 4222 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4223 gfp, NULL, NULL, NULL); 4224 if (error) 4225 page = ERR_PTR(error); 4226 else 4227 unlock_page(page); 4228 return page; 4229 #else 4230 /* 4231 * The tiny !SHMEM case uses ramfs without swap 4232 */ 4233 return read_cache_page_gfp(mapping, index, gfp); 4234 #endif 4235 } 4236 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4237