xref: /linux/mm/shmem.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/swap.h>
37 #include <linux/uio.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 #include "swap.h"
42 
43 static struct vfsmount *shm_mnt;
44 
45 #ifdef CONFIG_SHMEM
46 /*
47  * This virtual memory filesystem is heavily based on the ramfs. It
48  * extends ramfs by the ability to use swap and honor resource limits
49  * which makes it a completely usable filesystem.
50  */
51 
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 
84 #include "internal.h"
85 
86 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
87 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
88 
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
91 
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
94 
95 /*
96  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97  * inode->i_private (with i_rwsem making sure that it has only one user at
98  * a time): we would prefer not to enlarge the shmem inode just for that.
99  */
100 struct shmem_falloc {
101 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 	pgoff_t start;		/* start of range currently being fallocated */
103 	pgoff_t next;		/* the next page offset to be fallocated */
104 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
105 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
106 };
107 
108 struct shmem_options {
109 	unsigned long long blocks;
110 	unsigned long long inodes;
111 	struct mempolicy *mpol;
112 	kuid_t uid;
113 	kgid_t gid;
114 	umode_t mode;
115 	bool full_inums;
116 	int huge;
117 	int seen;
118 #define SHMEM_SEEN_BLOCKS 1
119 #define SHMEM_SEEN_INODES 2
120 #define SHMEM_SEEN_HUGE 4
121 #define SHMEM_SEEN_INUMS 8
122 };
123 
124 #ifdef CONFIG_TMPFS
125 static unsigned long shmem_default_max_blocks(void)
126 {
127 	return totalram_pages() / 2;
128 }
129 
130 static unsigned long shmem_default_max_inodes(void)
131 {
132 	unsigned long nr_pages = totalram_pages();
133 
134 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
135 }
136 #endif
137 
138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
139 			     struct folio **foliop, enum sgp_type sgp,
140 			     gfp_t gfp, struct vm_area_struct *vma,
141 			     vm_fault_t *fault_type);
142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
143 		struct page **pagep, enum sgp_type sgp,
144 		gfp_t gfp, struct vm_area_struct *vma,
145 		struct vm_fault *vmf, vm_fault_t *fault_type);
146 
147 int shmem_getpage(struct inode *inode, pgoff_t index,
148 		struct page **pagep, enum sgp_type sgp)
149 {
150 	return shmem_getpage_gfp(inode, index, pagep, sgp,
151 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
152 }
153 
154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
155 {
156 	return sb->s_fs_info;
157 }
158 
159 /*
160  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
161  * for shared memory and for shared anonymous (/dev/zero) mappings
162  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
163  * consistent with the pre-accounting of private mappings ...
164  */
165 static inline int shmem_acct_size(unsigned long flags, loff_t size)
166 {
167 	return (flags & VM_NORESERVE) ?
168 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
169 }
170 
171 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
172 {
173 	if (!(flags & VM_NORESERVE))
174 		vm_unacct_memory(VM_ACCT(size));
175 }
176 
177 static inline int shmem_reacct_size(unsigned long flags,
178 		loff_t oldsize, loff_t newsize)
179 {
180 	if (!(flags & VM_NORESERVE)) {
181 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
182 			return security_vm_enough_memory_mm(current->mm,
183 					VM_ACCT(newsize) - VM_ACCT(oldsize));
184 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
185 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
186 	}
187 	return 0;
188 }
189 
190 /*
191  * ... whereas tmpfs objects are accounted incrementally as
192  * pages are allocated, in order to allow large sparse files.
193  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
194  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
195  */
196 static inline int shmem_acct_block(unsigned long flags, long pages)
197 {
198 	if (!(flags & VM_NORESERVE))
199 		return 0;
200 
201 	return security_vm_enough_memory_mm(current->mm,
202 			pages * VM_ACCT(PAGE_SIZE));
203 }
204 
205 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
206 {
207 	if (flags & VM_NORESERVE)
208 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
212 {
213 	struct shmem_inode_info *info = SHMEM_I(inode);
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return false;
218 
219 	if (sbinfo->max_blocks) {
220 		if (percpu_counter_compare(&sbinfo->used_blocks,
221 					   sbinfo->max_blocks - pages) > 0)
222 			goto unacct;
223 		percpu_counter_add(&sbinfo->used_blocks, pages);
224 	}
225 
226 	return true;
227 
228 unacct:
229 	shmem_unacct_blocks(info->flags, pages);
230 	return false;
231 }
232 
233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
234 {
235 	struct shmem_inode_info *info = SHMEM_I(inode);
236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
237 
238 	if (sbinfo->max_blocks)
239 		percpu_counter_sub(&sbinfo->used_blocks, pages);
240 	shmem_unacct_blocks(info->flags, pages);
241 }
242 
243 static const struct super_operations shmem_ops;
244 const struct address_space_operations shmem_aops;
245 static const struct file_operations shmem_file_operations;
246 static const struct inode_operations shmem_inode_operations;
247 static const struct inode_operations shmem_dir_inode_operations;
248 static const struct inode_operations shmem_special_inode_operations;
249 static const struct vm_operations_struct shmem_vm_ops;
250 static struct file_system_type shmem_fs_type;
251 
252 bool vma_is_shmem(struct vm_area_struct *vma)
253 {
254 	return vma->vm_ops == &shmem_vm_ops;
255 }
256 
257 static LIST_HEAD(shmem_swaplist);
258 static DEFINE_MUTEX(shmem_swaplist_mutex);
259 
260 /*
261  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
262  * produces a novel ino for the newly allocated inode.
263  *
264  * It may also be called when making a hard link to permit the space needed by
265  * each dentry. However, in that case, no new inode number is needed since that
266  * internally draws from another pool of inode numbers (currently global
267  * get_next_ino()). This case is indicated by passing NULL as inop.
268  */
269 #define SHMEM_INO_BATCH 1024
270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
271 {
272 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
273 	ino_t ino;
274 
275 	if (!(sb->s_flags & SB_KERNMOUNT)) {
276 		raw_spin_lock(&sbinfo->stat_lock);
277 		if (sbinfo->max_inodes) {
278 			if (!sbinfo->free_inodes) {
279 				raw_spin_unlock(&sbinfo->stat_lock);
280 				return -ENOSPC;
281 			}
282 			sbinfo->free_inodes--;
283 		}
284 		if (inop) {
285 			ino = sbinfo->next_ino++;
286 			if (unlikely(is_zero_ino(ino)))
287 				ino = sbinfo->next_ino++;
288 			if (unlikely(!sbinfo->full_inums &&
289 				     ino > UINT_MAX)) {
290 				/*
291 				 * Emulate get_next_ino uint wraparound for
292 				 * compatibility
293 				 */
294 				if (IS_ENABLED(CONFIG_64BIT))
295 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
296 						__func__, MINOR(sb->s_dev));
297 				sbinfo->next_ino = 1;
298 				ino = sbinfo->next_ino++;
299 			}
300 			*inop = ino;
301 		}
302 		raw_spin_unlock(&sbinfo->stat_lock);
303 	} else if (inop) {
304 		/*
305 		 * __shmem_file_setup, one of our callers, is lock-free: it
306 		 * doesn't hold stat_lock in shmem_reserve_inode since
307 		 * max_inodes is always 0, and is called from potentially
308 		 * unknown contexts. As such, use a per-cpu batched allocator
309 		 * which doesn't require the per-sb stat_lock unless we are at
310 		 * the batch boundary.
311 		 *
312 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
313 		 * shmem mounts are not exposed to userspace, so we don't need
314 		 * to worry about things like glibc compatibility.
315 		 */
316 		ino_t *next_ino;
317 
318 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
319 		ino = *next_ino;
320 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
321 			raw_spin_lock(&sbinfo->stat_lock);
322 			ino = sbinfo->next_ino;
323 			sbinfo->next_ino += SHMEM_INO_BATCH;
324 			raw_spin_unlock(&sbinfo->stat_lock);
325 			if (unlikely(is_zero_ino(ino)))
326 				ino++;
327 		}
328 		*inop = ino;
329 		*next_ino = ++ino;
330 		put_cpu();
331 	}
332 
333 	return 0;
334 }
335 
336 static void shmem_free_inode(struct super_block *sb)
337 {
338 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
339 	if (sbinfo->max_inodes) {
340 		raw_spin_lock(&sbinfo->stat_lock);
341 		sbinfo->free_inodes++;
342 		raw_spin_unlock(&sbinfo->stat_lock);
343 	}
344 }
345 
346 /**
347  * shmem_recalc_inode - recalculate the block usage of an inode
348  * @inode: inode to recalc
349  *
350  * We have to calculate the free blocks since the mm can drop
351  * undirtied hole pages behind our back.
352  *
353  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
354  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
355  *
356  * It has to be called with the spinlock held.
357  */
358 static void shmem_recalc_inode(struct inode *inode)
359 {
360 	struct shmem_inode_info *info = SHMEM_I(inode);
361 	long freed;
362 
363 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
364 	if (freed > 0) {
365 		info->alloced -= freed;
366 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
367 		shmem_inode_unacct_blocks(inode, freed);
368 	}
369 }
370 
371 bool shmem_charge(struct inode *inode, long pages)
372 {
373 	struct shmem_inode_info *info = SHMEM_I(inode);
374 	unsigned long flags;
375 
376 	if (!shmem_inode_acct_block(inode, pages))
377 		return false;
378 
379 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
380 	inode->i_mapping->nrpages += pages;
381 
382 	spin_lock_irqsave(&info->lock, flags);
383 	info->alloced += pages;
384 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
385 	shmem_recalc_inode(inode);
386 	spin_unlock_irqrestore(&info->lock, flags);
387 
388 	return true;
389 }
390 
391 void shmem_uncharge(struct inode *inode, long pages)
392 {
393 	struct shmem_inode_info *info = SHMEM_I(inode);
394 	unsigned long flags;
395 
396 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
397 
398 	spin_lock_irqsave(&info->lock, flags);
399 	info->alloced -= pages;
400 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
401 	shmem_recalc_inode(inode);
402 	spin_unlock_irqrestore(&info->lock, flags);
403 
404 	shmem_inode_unacct_blocks(inode, pages);
405 }
406 
407 /*
408  * Replace item expected in xarray by a new item, while holding xa_lock.
409  */
410 static int shmem_replace_entry(struct address_space *mapping,
411 			pgoff_t index, void *expected, void *replacement)
412 {
413 	XA_STATE(xas, &mapping->i_pages, index);
414 	void *item;
415 
416 	VM_BUG_ON(!expected);
417 	VM_BUG_ON(!replacement);
418 	item = xas_load(&xas);
419 	if (item != expected)
420 		return -ENOENT;
421 	xas_store(&xas, replacement);
422 	return 0;
423 }
424 
425 /*
426  * Sometimes, before we decide whether to proceed or to fail, we must check
427  * that an entry was not already brought back from swap by a racing thread.
428  *
429  * Checking page is not enough: by the time a SwapCache page is locked, it
430  * might be reused, and again be SwapCache, using the same swap as before.
431  */
432 static bool shmem_confirm_swap(struct address_space *mapping,
433 			       pgoff_t index, swp_entry_t swap)
434 {
435 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
436 }
437 
438 /*
439  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
440  *
441  * SHMEM_HUGE_NEVER:
442  *	disables huge pages for the mount;
443  * SHMEM_HUGE_ALWAYS:
444  *	enables huge pages for the mount;
445  * SHMEM_HUGE_WITHIN_SIZE:
446  *	only allocate huge pages if the page will be fully within i_size,
447  *	also respect fadvise()/madvise() hints;
448  * SHMEM_HUGE_ADVISE:
449  *	only allocate huge pages if requested with fadvise()/madvise();
450  */
451 
452 #define SHMEM_HUGE_NEVER	0
453 #define SHMEM_HUGE_ALWAYS	1
454 #define SHMEM_HUGE_WITHIN_SIZE	2
455 #define SHMEM_HUGE_ADVISE	3
456 
457 /*
458  * Special values.
459  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
460  *
461  * SHMEM_HUGE_DENY:
462  *	disables huge on shm_mnt and all mounts, for emergency use;
463  * SHMEM_HUGE_FORCE:
464  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
465  *
466  */
467 #define SHMEM_HUGE_DENY		(-1)
468 #define SHMEM_HUGE_FORCE	(-2)
469 
470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
471 /* ifdef here to avoid bloating shmem.o when not necessary */
472 
473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
474 
475 bool shmem_is_huge(struct vm_area_struct *vma,
476 		   struct inode *inode, pgoff_t index)
477 {
478 	loff_t i_size;
479 
480 	if (!S_ISREG(inode->i_mode))
481 		return false;
482 	if (shmem_huge == SHMEM_HUGE_DENY)
483 		return false;
484 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
485 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
486 		return false;
487 	if (shmem_huge == SHMEM_HUGE_FORCE)
488 		return true;
489 
490 	switch (SHMEM_SB(inode->i_sb)->huge) {
491 	case SHMEM_HUGE_ALWAYS:
492 		return true;
493 	case SHMEM_HUGE_WITHIN_SIZE:
494 		index = round_up(index + 1, HPAGE_PMD_NR);
495 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
496 		if (i_size >> PAGE_SHIFT >= index)
497 			return true;
498 		fallthrough;
499 	case SHMEM_HUGE_ADVISE:
500 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
501 			return true;
502 		fallthrough;
503 	default:
504 		return false;
505 	}
506 }
507 
508 #if defined(CONFIG_SYSFS)
509 static int shmem_parse_huge(const char *str)
510 {
511 	if (!strcmp(str, "never"))
512 		return SHMEM_HUGE_NEVER;
513 	if (!strcmp(str, "always"))
514 		return SHMEM_HUGE_ALWAYS;
515 	if (!strcmp(str, "within_size"))
516 		return SHMEM_HUGE_WITHIN_SIZE;
517 	if (!strcmp(str, "advise"))
518 		return SHMEM_HUGE_ADVISE;
519 	if (!strcmp(str, "deny"))
520 		return SHMEM_HUGE_DENY;
521 	if (!strcmp(str, "force"))
522 		return SHMEM_HUGE_FORCE;
523 	return -EINVAL;
524 }
525 #endif
526 
527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
528 static const char *shmem_format_huge(int huge)
529 {
530 	switch (huge) {
531 	case SHMEM_HUGE_NEVER:
532 		return "never";
533 	case SHMEM_HUGE_ALWAYS:
534 		return "always";
535 	case SHMEM_HUGE_WITHIN_SIZE:
536 		return "within_size";
537 	case SHMEM_HUGE_ADVISE:
538 		return "advise";
539 	case SHMEM_HUGE_DENY:
540 		return "deny";
541 	case SHMEM_HUGE_FORCE:
542 		return "force";
543 	default:
544 		VM_BUG_ON(1);
545 		return "bad_val";
546 	}
547 }
548 #endif
549 
550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
551 		struct shrink_control *sc, unsigned long nr_to_split)
552 {
553 	LIST_HEAD(list), *pos, *next;
554 	LIST_HEAD(to_remove);
555 	struct inode *inode;
556 	struct shmem_inode_info *info;
557 	struct folio *folio;
558 	unsigned long batch = sc ? sc->nr_to_scan : 128;
559 	int split = 0;
560 
561 	if (list_empty(&sbinfo->shrinklist))
562 		return SHRINK_STOP;
563 
564 	spin_lock(&sbinfo->shrinklist_lock);
565 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
566 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
567 
568 		/* pin the inode */
569 		inode = igrab(&info->vfs_inode);
570 
571 		/* inode is about to be evicted */
572 		if (!inode) {
573 			list_del_init(&info->shrinklist);
574 			goto next;
575 		}
576 
577 		/* Check if there's anything to gain */
578 		if (round_up(inode->i_size, PAGE_SIZE) ==
579 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
580 			list_move(&info->shrinklist, &to_remove);
581 			goto next;
582 		}
583 
584 		list_move(&info->shrinklist, &list);
585 next:
586 		sbinfo->shrinklist_len--;
587 		if (!--batch)
588 			break;
589 	}
590 	spin_unlock(&sbinfo->shrinklist_lock);
591 
592 	list_for_each_safe(pos, next, &to_remove) {
593 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
594 		inode = &info->vfs_inode;
595 		list_del_init(&info->shrinklist);
596 		iput(inode);
597 	}
598 
599 	list_for_each_safe(pos, next, &list) {
600 		int ret;
601 		pgoff_t index;
602 
603 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
604 		inode = &info->vfs_inode;
605 
606 		if (nr_to_split && split >= nr_to_split)
607 			goto move_back;
608 
609 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
610 		folio = filemap_get_folio(inode->i_mapping, index);
611 		if (!folio)
612 			goto drop;
613 
614 		/* No huge page at the end of the file: nothing to split */
615 		if (!folio_test_large(folio)) {
616 			folio_put(folio);
617 			goto drop;
618 		}
619 
620 		/*
621 		 * Move the inode on the list back to shrinklist if we failed
622 		 * to lock the page at this time.
623 		 *
624 		 * Waiting for the lock may lead to deadlock in the
625 		 * reclaim path.
626 		 */
627 		if (!folio_trylock(folio)) {
628 			folio_put(folio);
629 			goto move_back;
630 		}
631 
632 		ret = split_huge_page(&folio->page);
633 		folio_unlock(folio);
634 		folio_put(folio);
635 
636 		/* If split failed move the inode on the list back to shrinklist */
637 		if (ret)
638 			goto move_back;
639 
640 		split++;
641 drop:
642 		list_del_init(&info->shrinklist);
643 		goto put;
644 move_back:
645 		/*
646 		 * Make sure the inode is either on the global list or deleted
647 		 * from any local list before iput() since it could be deleted
648 		 * in another thread once we put the inode (then the local list
649 		 * is corrupted).
650 		 */
651 		spin_lock(&sbinfo->shrinklist_lock);
652 		list_move(&info->shrinklist, &sbinfo->shrinklist);
653 		sbinfo->shrinklist_len++;
654 		spin_unlock(&sbinfo->shrinklist_lock);
655 put:
656 		iput(inode);
657 	}
658 
659 	return split;
660 }
661 
662 static long shmem_unused_huge_scan(struct super_block *sb,
663 		struct shrink_control *sc)
664 {
665 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
666 
667 	if (!READ_ONCE(sbinfo->shrinklist_len))
668 		return SHRINK_STOP;
669 
670 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
671 }
672 
673 static long shmem_unused_huge_count(struct super_block *sb,
674 		struct shrink_control *sc)
675 {
676 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
677 	return READ_ONCE(sbinfo->shrinklist_len);
678 }
679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
680 
681 #define shmem_huge SHMEM_HUGE_DENY
682 
683 bool shmem_is_huge(struct vm_area_struct *vma,
684 		   struct inode *inode, pgoff_t index)
685 {
686 	return false;
687 }
688 
689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
690 		struct shrink_control *sc, unsigned long nr_to_split)
691 {
692 	return 0;
693 }
694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
695 
696 /*
697  * Like filemap_add_folio, but error if expected item has gone.
698  */
699 static int shmem_add_to_page_cache(struct folio *folio,
700 				   struct address_space *mapping,
701 				   pgoff_t index, void *expected, gfp_t gfp,
702 				   struct mm_struct *charge_mm)
703 {
704 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
705 	long nr = folio_nr_pages(folio);
706 	int error;
707 
708 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
709 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
710 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
711 	VM_BUG_ON(expected && folio_test_large(folio));
712 
713 	folio_ref_add(folio, nr);
714 	folio->mapping = mapping;
715 	folio->index = index;
716 
717 	if (!folio_test_swapcache(folio)) {
718 		error = mem_cgroup_charge(folio, charge_mm, gfp);
719 		if (error) {
720 			if (folio_test_pmd_mappable(folio)) {
721 				count_vm_event(THP_FILE_FALLBACK);
722 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
723 			}
724 			goto error;
725 		}
726 	}
727 	folio_throttle_swaprate(folio, gfp);
728 
729 	do {
730 		xas_lock_irq(&xas);
731 		if (expected != xas_find_conflict(&xas)) {
732 			xas_set_err(&xas, -EEXIST);
733 			goto unlock;
734 		}
735 		if (expected && xas_find_conflict(&xas)) {
736 			xas_set_err(&xas, -EEXIST);
737 			goto unlock;
738 		}
739 		xas_store(&xas, folio);
740 		if (xas_error(&xas))
741 			goto unlock;
742 		if (folio_test_pmd_mappable(folio)) {
743 			count_vm_event(THP_FILE_ALLOC);
744 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
745 		}
746 		mapping->nrpages += nr;
747 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
748 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
749 unlock:
750 		xas_unlock_irq(&xas);
751 	} while (xas_nomem(&xas, gfp));
752 
753 	if (xas_error(&xas)) {
754 		error = xas_error(&xas);
755 		goto error;
756 	}
757 
758 	return 0;
759 error:
760 	folio->mapping = NULL;
761 	folio_ref_sub(folio, nr);
762 	return error;
763 }
764 
765 /*
766  * Like delete_from_page_cache, but substitutes swap for page.
767  */
768 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
769 {
770 	struct address_space *mapping = page->mapping;
771 	int error;
772 
773 	VM_BUG_ON_PAGE(PageCompound(page), page);
774 
775 	xa_lock_irq(&mapping->i_pages);
776 	error = shmem_replace_entry(mapping, page->index, page, radswap);
777 	page->mapping = NULL;
778 	mapping->nrpages--;
779 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
780 	__dec_lruvec_page_state(page, NR_SHMEM);
781 	xa_unlock_irq(&mapping->i_pages);
782 	put_page(page);
783 	BUG_ON(error);
784 }
785 
786 /*
787  * Remove swap entry from page cache, free the swap and its page cache.
788  */
789 static int shmem_free_swap(struct address_space *mapping,
790 			   pgoff_t index, void *radswap)
791 {
792 	void *old;
793 
794 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
795 	if (old != radswap)
796 		return -ENOENT;
797 	free_swap_and_cache(radix_to_swp_entry(radswap));
798 	return 0;
799 }
800 
801 /*
802  * Determine (in bytes) how many of the shmem object's pages mapped by the
803  * given offsets are swapped out.
804  *
805  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
806  * as long as the inode doesn't go away and racy results are not a problem.
807  */
808 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
809 						pgoff_t start, pgoff_t end)
810 {
811 	XA_STATE(xas, &mapping->i_pages, start);
812 	struct page *page;
813 	unsigned long swapped = 0;
814 
815 	rcu_read_lock();
816 	xas_for_each(&xas, page, end - 1) {
817 		if (xas_retry(&xas, page))
818 			continue;
819 		if (xa_is_value(page))
820 			swapped++;
821 
822 		if (need_resched()) {
823 			xas_pause(&xas);
824 			cond_resched_rcu();
825 		}
826 	}
827 
828 	rcu_read_unlock();
829 
830 	return swapped << PAGE_SHIFT;
831 }
832 
833 /*
834  * Determine (in bytes) how many of the shmem object's pages mapped by the
835  * given vma is swapped out.
836  *
837  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
838  * as long as the inode doesn't go away and racy results are not a problem.
839  */
840 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
841 {
842 	struct inode *inode = file_inode(vma->vm_file);
843 	struct shmem_inode_info *info = SHMEM_I(inode);
844 	struct address_space *mapping = inode->i_mapping;
845 	unsigned long swapped;
846 
847 	/* Be careful as we don't hold info->lock */
848 	swapped = READ_ONCE(info->swapped);
849 
850 	/*
851 	 * The easier cases are when the shmem object has nothing in swap, or
852 	 * the vma maps it whole. Then we can simply use the stats that we
853 	 * already track.
854 	 */
855 	if (!swapped)
856 		return 0;
857 
858 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
859 		return swapped << PAGE_SHIFT;
860 
861 	/* Here comes the more involved part */
862 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
863 					vma->vm_pgoff + vma_pages(vma));
864 }
865 
866 /*
867  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
868  */
869 void shmem_unlock_mapping(struct address_space *mapping)
870 {
871 	struct folio_batch fbatch;
872 	pgoff_t index = 0;
873 
874 	folio_batch_init(&fbatch);
875 	/*
876 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
877 	 */
878 	while (!mapping_unevictable(mapping) &&
879 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
880 		check_move_unevictable_folios(&fbatch);
881 		folio_batch_release(&fbatch);
882 		cond_resched();
883 	}
884 }
885 
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 	struct folio *folio;
889 	struct page *page;
890 
891 	/*
892 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 	 * beyond i_size, and reports fallocated pages as holes.
894 	 */
895 	folio = __filemap_get_folio(inode->i_mapping, index,
896 					FGP_ENTRY | FGP_LOCK, 0);
897 	if (!xa_is_value(folio))
898 		return folio;
899 	/*
900 	 * But read a page back from swap if any of it is within i_size
901 	 * (although in some cases this is just a waste of time).
902 	 */
903 	page = NULL;
904 	shmem_getpage(inode, index, &page, SGP_READ);
905 	return page ? page_folio(page) : NULL;
906 }
907 
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 								 bool unfalloc)
914 {
915 	struct address_space *mapping = inode->i_mapping;
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 	struct folio_batch fbatch;
920 	pgoff_t indices[PAGEVEC_SIZE];
921 	struct folio *folio;
922 	bool same_folio;
923 	long nr_swaps_freed = 0;
924 	pgoff_t index;
925 	int i;
926 
927 	if (lend == -1)
928 		end = -1;	/* unsigned, so actually very big */
929 
930 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 		info->fallocend = start;
932 
933 	folio_batch_init(&fbatch);
934 	index = start;
935 	while (index < end && find_lock_entries(mapping, index, end - 1,
936 			&fbatch, indices)) {
937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 			folio = fbatch.folios[i];
939 
940 			index = indices[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 								index, folio);
947 				continue;
948 			}
949 			index += folio_nr_pages(folio) - 1;
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 		index++;
959 	}
960 
961 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 	if (folio) {
964 		same_folio = lend < folio_pos(folio) + folio_size(folio);
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 			start = folio->index + folio_nr_pages(folio);
968 			if (same_folio)
969 				end = folio->index;
970 		}
971 		folio_unlock(folio);
972 		folio_put(folio);
973 		folio = NULL;
974 	}
975 
976 	if (!same_folio)
977 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 	if (folio) {
979 		folio_mark_dirty(folio);
980 		if (!truncate_inode_partial_folio(folio, lstart, lend))
981 			end = folio->index;
982 		folio_unlock(folio);
983 		folio_put(folio);
984 	}
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			index = indices[i];
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, index, folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index--;
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index--;
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			index = folio->index + folio_nr_pages(folio) - 1;
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		index++;
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	if (info->fsflags & FS_APPEND_FL)
1062 		stat->attributes |= STATX_ATTR_APPEND;
1063 	if (info->fsflags & FS_IMMUTABLE_FL)
1064 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1065 	if (info->fsflags & FS_NODUMP_FL)
1066 		stat->attributes |= STATX_ATTR_NODUMP;
1067 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1068 			STATX_ATTR_IMMUTABLE |
1069 			STATX_ATTR_NODUMP);
1070 	generic_fillattr(&init_user_ns, inode, stat);
1071 
1072 	if (shmem_is_huge(NULL, inode, 0))
1073 		stat->blksize = HPAGE_PMD_SIZE;
1074 
1075 	if (request_mask & STATX_BTIME) {
1076 		stat->result_mask |= STATX_BTIME;
1077 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1078 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static int shmem_setattr(struct user_namespace *mnt_userns,
1085 			 struct dentry *dentry, struct iattr *attr)
1086 {
1087 	struct inode *inode = d_inode(dentry);
1088 	struct shmem_inode_info *info = SHMEM_I(inode);
1089 	int error;
1090 
1091 	error = setattr_prepare(&init_user_ns, dentry, attr);
1092 	if (error)
1093 		return error;
1094 
1095 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1096 		loff_t oldsize = inode->i_size;
1097 		loff_t newsize = attr->ia_size;
1098 
1099 		/* protected by i_rwsem */
1100 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1101 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1102 			return -EPERM;
1103 
1104 		if (newsize != oldsize) {
1105 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1106 					oldsize, newsize);
1107 			if (error)
1108 				return error;
1109 			i_size_write(inode, newsize);
1110 			inode->i_ctime = inode->i_mtime = current_time(inode);
1111 		}
1112 		if (newsize <= oldsize) {
1113 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1114 			if (oldsize > holebegin)
1115 				unmap_mapping_range(inode->i_mapping,
1116 							holebegin, 0, 1);
1117 			if (info->alloced)
1118 				shmem_truncate_range(inode,
1119 							newsize, (loff_t)-1);
1120 			/* unmap again to remove racily COWed private pages */
1121 			if (oldsize > holebegin)
1122 				unmap_mapping_range(inode->i_mapping,
1123 							holebegin, 0, 1);
1124 		}
1125 	}
1126 
1127 	setattr_copy(&init_user_ns, inode, attr);
1128 	if (attr->ia_valid & ATTR_MODE)
1129 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1130 	return error;
1131 }
1132 
1133 static void shmem_evict_inode(struct inode *inode)
1134 {
1135 	struct shmem_inode_info *info = SHMEM_I(inode);
1136 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1137 
1138 	if (shmem_mapping(inode->i_mapping)) {
1139 		shmem_unacct_size(info->flags, inode->i_size);
1140 		inode->i_size = 0;
1141 		mapping_set_exiting(inode->i_mapping);
1142 		shmem_truncate_range(inode, 0, (loff_t)-1);
1143 		if (!list_empty(&info->shrinklist)) {
1144 			spin_lock(&sbinfo->shrinklist_lock);
1145 			if (!list_empty(&info->shrinklist)) {
1146 				list_del_init(&info->shrinklist);
1147 				sbinfo->shrinklist_len--;
1148 			}
1149 			spin_unlock(&sbinfo->shrinklist_lock);
1150 		}
1151 		while (!list_empty(&info->swaplist)) {
1152 			/* Wait while shmem_unuse() is scanning this inode... */
1153 			wait_var_event(&info->stop_eviction,
1154 				       !atomic_read(&info->stop_eviction));
1155 			mutex_lock(&shmem_swaplist_mutex);
1156 			/* ...but beware of the race if we peeked too early */
1157 			if (!atomic_read(&info->stop_eviction))
1158 				list_del_init(&info->swaplist);
1159 			mutex_unlock(&shmem_swaplist_mutex);
1160 		}
1161 	}
1162 
1163 	simple_xattrs_free(&info->xattrs);
1164 	WARN_ON(inode->i_blocks);
1165 	shmem_free_inode(inode->i_sb);
1166 	clear_inode(inode);
1167 }
1168 
1169 static int shmem_find_swap_entries(struct address_space *mapping,
1170 				   pgoff_t start, struct folio_batch *fbatch,
1171 				   pgoff_t *indices, unsigned int type)
1172 {
1173 	XA_STATE(xas, &mapping->i_pages, start);
1174 	struct folio *folio;
1175 	swp_entry_t entry;
1176 
1177 	rcu_read_lock();
1178 	xas_for_each(&xas, folio, ULONG_MAX) {
1179 		if (xas_retry(&xas, folio))
1180 			continue;
1181 
1182 		if (!xa_is_value(folio))
1183 			continue;
1184 
1185 		entry = radix_to_swp_entry(folio);
1186 		/*
1187 		 * swapin error entries can be found in the mapping. But they're
1188 		 * deliberately ignored here as we've done everything we can do.
1189 		 */
1190 		if (swp_type(entry) != type)
1191 			continue;
1192 
1193 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1194 		if (!folio_batch_add(fbatch, folio))
1195 			break;
1196 
1197 		if (need_resched()) {
1198 			xas_pause(&xas);
1199 			cond_resched_rcu();
1200 		}
1201 	}
1202 	rcu_read_unlock();
1203 
1204 	return xas.xa_index;
1205 }
1206 
1207 /*
1208  * Move the swapped pages for an inode to page cache. Returns the count
1209  * of pages swapped in, or the error in case of failure.
1210  */
1211 static int shmem_unuse_swap_entries(struct inode *inode,
1212 		struct folio_batch *fbatch, pgoff_t *indices)
1213 {
1214 	int i = 0;
1215 	int ret = 0;
1216 	int error = 0;
1217 	struct address_space *mapping = inode->i_mapping;
1218 
1219 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1220 		struct folio *folio = fbatch->folios[i];
1221 
1222 		if (!xa_is_value(folio))
1223 			continue;
1224 		error = shmem_swapin_folio(inode, indices[i],
1225 					  &folio, SGP_CACHE,
1226 					  mapping_gfp_mask(mapping),
1227 					  NULL, NULL);
1228 		if (error == 0) {
1229 			folio_unlock(folio);
1230 			folio_put(folio);
1231 			ret++;
1232 		}
1233 		if (error == -ENOMEM)
1234 			break;
1235 		error = 0;
1236 	}
1237 	return error ? error : ret;
1238 }
1239 
1240 /*
1241  * If swap found in inode, free it and move page from swapcache to filecache.
1242  */
1243 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1244 {
1245 	struct address_space *mapping = inode->i_mapping;
1246 	pgoff_t start = 0;
1247 	struct folio_batch fbatch;
1248 	pgoff_t indices[PAGEVEC_SIZE];
1249 	int ret = 0;
1250 
1251 	do {
1252 		folio_batch_init(&fbatch);
1253 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1254 		if (folio_batch_count(&fbatch) == 0) {
1255 			ret = 0;
1256 			break;
1257 		}
1258 
1259 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1260 		if (ret < 0)
1261 			break;
1262 
1263 		start = indices[folio_batch_count(&fbatch) - 1];
1264 	} while (true);
1265 
1266 	return ret;
1267 }
1268 
1269 /*
1270  * Read all the shared memory data that resides in the swap
1271  * device 'type' back into memory, so the swap device can be
1272  * unused.
1273  */
1274 int shmem_unuse(unsigned int type)
1275 {
1276 	struct shmem_inode_info *info, *next;
1277 	int error = 0;
1278 
1279 	if (list_empty(&shmem_swaplist))
1280 		return 0;
1281 
1282 	mutex_lock(&shmem_swaplist_mutex);
1283 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1284 		if (!info->swapped) {
1285 			list_del_init(&info->swaplist);
1286 			continue;
1287 		}
1288 		/*
1289 		 * Drop the swaplist mutex while searching the inode for swap;
1290 		 * but before doing so, make sure shmem_evict_inode() will not
1291 		 * remove placeholder inode from swaplist, nor let it be freed
1292 		 * (igrab() would protect from unlink, but not from unmount).
1293 		 */
1294 		atomic_inc(&info->stop_eviction);
1295 		mutex_unlock(&shmem_swaplist_mutex);
1296 
1297 		error = shmem_unuse_inode(&info->vfs_inode, type);
1298 		cond_resched();
1299 
1300 		mutex_lock(&shmem_swaplist_mutex);
1301 		next = list_next_entry(info, swaplist);
1302 		if (!info->swapped)
1303 			list_del_init(&info->swaplist);
1304 		if (atomic_dec_and_test(&info->stop_eviction))
1305 			wake_up_var(&info->stop_eviction);
1306 		if (error)
1307 			break;
1308 	}
1309 	mutex_unlock(&shmem_swaplist_mutex);
1310 
1311 	return error;
1312 }
1313 
1314 /*
1315  * Move the page from the page cache to the swap cache.
1316  */
1317 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1318 {
1319 	struct folio *folio = page_folio(page);
1320 	struct shmem_inode_info *info;
1321 	struct address_space *mapping;
1322 	struct inode *inode;
1323 	swp_entry_t swap;
1324 	pgoff_t index;
1325 
1326 	/*
1327 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1328 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1329 	 * and its shmem_writeback() needs them to be split when swapping.
1330 	 */
1331 	if (PageTransCompound(page)) {
1332 		/* Ensure the subpages are still dirty */
1333 		SetPageDirty(page);
1334 		if (split_huge_page(page) < 0)
1335 			goto redirty;
1336 		ClearPageDirty(page);
1337 	}
1338 
1339 	BUG_ON(!PageLocked(page));
1340 	mapping = page->mapping;
1341 	index = page->index;
1342 	inode = mapping->host;
1343 	info = SHMEM_I(inode);
1344 	if (info->flags & VM_LOCKED)
1345 		goto redirty;
1346 	if (!total_swap_pages)
1347 		goto redirty;
1348 
1349 	/*
1350 	 * Our capabilities prevent regular writeback or sync from ever calling
1351 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1352 	 * its underlying filesystem, in which case tmpfs should write out to
1353 	 * swap only in response to memory pressure, and not for the writeback
1354 	 * threads or sync.
1355 	 */
1356 	if (!wbc->for_reclaim) {
1357 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1358 		goto redirty;
1359 	}
1360 
1361 	/*
1362 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1363 	 * value into swapfile.c, the only way we can correctly account for a
1364 	 * fallocated page arriving here is now to initialize it and write it.
1365 	 *
1366 	 * That's okay for a page already fallocated earlier, but if we have
1367 	 * not yet completed the fallocation, then (a) we want to keep track
1368 	 * of this page in case we have to undo it, and (b) it may not be a
1369 	 * good idea to continue anyway, once we're pushing into swap.  So
1370 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1371 	 */
1372 	if (!PageUptodate(page)) {
1373 		if (inode->i_private) {
1374 			struct shmem_falloc *shmem_falloc;
1375 			spin_lock(&inode->i_lock);
1376 			shmem_falloc = inode->i_private;
1377 			if (shmem_falloc &&
1378 			    !shmem_falloc->waitq &&
1379 			    index >= shmem_falloc->start &&
1380 			    index < shmem_falloc->next)
1381 				shmem_falloc->nr_unswapped++;
1382 			else
1383 				shmem_falloc = NULL;
1384 			spin_unlock(&inode->i_lock);
1385 			if (shmem_falloc)
1386 				goto redirty;
1387 		}
1388 		clear_highpage(page);
1389 		flush_dcache_page(page);
1390 		SetPageUptodate(page);
1391 	}
1392 
1393 	swap = folio_alloc_swap(folio);
1394 	if (!swap.val)
1395 		goto redirty;
1396 
1397 	/*
1398 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1399 	 * if it's not already there.  Do it now before the page is
1400 	 * moved to swap cache, when its pagelock no longer protects
1401 	 * the inode from eviction.  But don't unlock the mutex until
1402 	 * we've incremented swapped, because shmem_unuse_inode() will
1403 	 * prune a !swapped inode from the swaplist under this mutex.
1404 	 */
1405 	mutex_lock(&shmem_swaplist_mutex);
1406 	if (list_empty(&info->swaplist))
1407 		list_add(&info->swaplist, &shmem_swaplist);
1408 
1409 	if (add_to_swap_cache(page, swap,
1410 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1411 			NULL) == 0) {
1412 		spin_lock_irq(&info->lock);
1413 		shmem_recalc_inode(inode);
1414 		info->swapped++;
1415 		spin_unlock_irq(&info->lock);
1416 
1417 		swap_shmem_alloc(swap);
1418 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1419 
1420 		mutex_unlock(&shmem_swaplist_mutex);
1421 		BUG_ON(page_mapped(page));
1422 		swap_writepage(page, wbc);
1423 		return 0;
1424 	}
1425 
1426 	mutex_unlock(&shmem_swaplist_mutex);
1427 	put_swap_page(page, swap);
1428 redirty:
1429 	set_page_dirty(page);
1430 	if (wbc->for_reclaim)
1431 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1432 	unlock_page(page);
1433 	return 0;
1434 }
1435 
1436 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1437 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1438 {
1439 	char buffer[64];
1440 
1441 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1442 		return;		/* show nothing */
1443 
1444 	mpol_to_str(buffer, sizeof(buffer), mpol);
1445 
1446 	seq_printf(seq, ",mpol=%s", buffer);
1447 }
1448 
1449 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1450 {
1451 	struct mempolicy *mpol = NULL;
1452 	if (sbinfo->mpol) {
1453 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1454 		mpol = sbinfo->mpol;
1455 		mpol_get(mpol);
1456 		raw_spin_unlock(&sbinfo->stat_lock);
1457 	}
1458 	return mpol;
1459 }
1460 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1461 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1462 {
1463 }
1464 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1465 {
1466 	return NULL;
1467 }
1468 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1469 #ifndef CONFIG_NUMA
1470 #define vm_policy vm_private_data
1471 #endif
1472 
1473 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1474 		struct shmem_inode_info *info, pgoff_t index)
1475 {
1476 	/* Create a pseudo vma that just contains the policy */
1477 	vma_init(vma, NULL);
1478 	/* Bias interleave by inode number to distribute better across nodes */
1479 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1480 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1481 }
1482 
1483 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1484 {
1485 	/* Drop reference taken by mpol_shared_policy_lookup() */
1486 	mpol_cond_put(vma->vm_policy);
1487 }
1488 
1489 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1490 			struct shmem_inode_info *info, pgoff_t index)
1491 {
1492 	struct vm_area_struct pvma;
1493 	struct page *page;
1494 	struct vm_fault vmf = {
1495 		.vma = &pvma,
1496 	};
1497 
1498 	shmem_pseudo_vma_init(&pvma, info, index);
1499 	page = swap_cluster_readahead(swap, gfp, &vmf);
1500 	shmem_pseudo_vma_destroy(&pvma);
1501 
1502 	return page;
1503 }
1504 
1505 /*
1506  * Make sure huge_gfp is always more limited than limit_gfp.
1507  * Some of the flags set permissions, while others set limitations.
1508  */
1509 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1510 {
1511 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1512 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1513 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1514 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1515 
1516 	/* Allow allocations only from the originally specified zones. */
1517 	result |= zoneflags;
1518 
1519 	/*
1520 	 * Minimize the result gfp by taking the union with the deny flags,
1521 	 * and the intersection of the allow flags.
1522 	 */
1523 	result |= (limit_gfp & denyflags);
1524 	result |= (huge_gfp & limit_gfp) & allowflags;
1525 
1526 	return result;
1527 }
1528 
1529 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1530 		struct shmem_inode_info *info, pgoff_t index)
1531 {
1532 	struct vm_area_struct pvma;
1533 	struct address_space *mapping = info->vfs_inode.i_mapping;
1534 	pgoff_t hindex;
1535 	struct folio *folio;
1536 
1537 	hindex = round_down(index, HPAGE_PMD_NR);
1538 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1539 								XA_PRESENT))
1540 		return NULL;
1541 
1542 	shmem_pseudo_vma_init(&pvma, info, hindex);
1543 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1544 	shmem_pseudo_vma_destroy(&pvma);
1545 	if (!folio)
1546 		count_vm_event(THP_FILE_FALLBACK);
1547 	return folio;
1548 }
1549 
1550 static struct folio *shmem_alloc_folio(gfp_t gfp,
1551 			struct shmem_inode_info *info, pgoff_t index)
1552 {
1553 	struct vm_area_struct pvma;
1554 	struct folio *folio;
1555 
1556 	shmem_pseudo_vma_init(&pvma, info, index);
1557 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1558 	shmem_pseudo_vma_destroy(&pvma);
1559 
1560 	return folio;
1561 }
1562 
1563 static struct page *shmem_alloc_page(gfp_t gfp,
1564 			struct shmem_inode_info *info, pgoff_t index)
1565 {
1566 	return &shmem_alloc_folio(gfp, info, index)->page;
1567 }
1568 
1569 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1570 		pgoff_t index, bool huge)
1571 {
1572 	struct shmem_inode_info *info = SHMEM_I(inode);
1573 	struct folio *folio;
1574 	int nr;
1575 	int err = -ENOSPC;
1576 
1577 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1578 		huge = false;
1579 	nr = huge ? HPAGE_PMD_NR : 1;
1580 
1581 	if (!shmem_inode_acct_block(inode, nr))
1582 		goto failed;
1583 
1584 	if (huge)
1585 		folio = shmem_alloc_hugefolio(gfp, info, index);
1586 	else
1587 		folio = shmem_alloc_folio(gfp, info, index);
1588 	if (folio) {
1589 		__folio_set_locked(folio);
1590 		__folio_set_swapbacked(folio);
1591 		return folio;
1592 	}
1593 
1594 	err = -ENOMEM;
1595 	shmem_inode_unacct_blocks(inode, nr);
1596 failed:
1597 	return ERR_PTR(err);
1598 }
1599 
1600 /*
1601  * When a page is moved from swapcache to shmem filecache (either by the
1602  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1603  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1604  * ignorance of the mapping it belongs to.  If that mapping has special
1605  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1606  * we may need to copy to a suitable page before moving to filecache.
1607  *
1608  * In a future release, this may well be extended to respect cpuset and
1609  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1610  * but for now it is a simple matter of zone.
1611  */
1612 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1613 {
1614 	return folio_zonenum(folio) > gfp_zone(gfp);
1615 }
1616 
1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1618 				struct shmem_inode_info *info, pgoff_t index)
1619 {
1620 	struct page *oldpage, *newpage;
1621 	struct folio *old, *new;
1622 	struct address_space *swap_mapping;
1623 	swp_entry_t entry;
1624 	pgoff_t swap_index;
1625 	int error;
1626 
1627 	oldpage = *pagep;
1628 	entry.val = page_private(oldpage);
1629 	swap_index = swp_offset(entry);
1630 	swap_mapping = page_mapping(oldpage);
1631 
1632 	/*
1633 	 * We have arrived here because our zones are constrained, so don't
1634 	 * limit chance of success by further cpuset and node constraints.
1635 	 */
1636 	gfp &= ~GFP_CONSTRAINT_MASK;
1637 	newpage = shmem_alloc_page(gfp, info, index);
1638 	if (!newpage)
1639 		return -ENOMEM;
1640 
1641 	get_page(newpage);
1642 	copy_highpage(newpage, oldpage);
1643 	flush_dcache_page(newpage);
1644 
1645 	__SetPageLocked(newpage);
1646 	__SetPageSwapBacked(newpage);
1647 	SetPageUptodate(newpage);
1648 	set_page_private(newpage, entry.val);
1649 	SetPageSwapCache(newpage);
1650 
1651 	/*
1652 	 * Our caller will very soon move newpage out of swapcache, but it's
1653 	 * a nice clean interface for us to replace oldpage by newpage there.
1654 	 */
1655 	xa_lock_irq(&swap_mapping->i_pages);
1656 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1657 	if (!error) {
1658 		old = page_folio(oldpage);
1659 		new = page_folio(newpage);
1660 		mem_cgroup_migrate(old, new);
1661 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1662 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1663 	}
1664 	xa_unlock_irq(&swap_mapping->i_pages);
1665 
1666 	if (unlikely(error)) {
1667 		/*
1668 		 * Is this possible?  I think not, now that our callers check
1669 		 * both PageSwapCache and page_private after getting page lock;
1670 		 * but be defensive.  Reverse old to newpage for clear and free.
1671 		 */
1672 		oldpage = newpage;
1673 	} else {
1674 		lru_cache_add(newpage);
1675 		*pagep = newpage;
1676 	}
1677 
1678 	ClearPageSwapCache(oldpage);
1679 	set_page_private(oldpage, 0);
1680 
1681 	unlock_page(oldpage);
1682 	put_page(oldpage);
1683 	put_page(oldpage);
1684 	return error;
1685 }
1686 
1687 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1688 					 struct folio *folio, swp_entry_t swap)
1689 {
1690 	struct address_space *mapping = inode->i_mapping;
1691 	struct shmem_inode_info *info = SHMEM_I(inode);
1692 	swp_entry_t swapin_error;
1693 	void *old;
1694 
1695 	swapin_error = make_swapin_error_entry(&folio->page);
1696 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1697 			     swp_to_radix_entry(swap),
1698 			     swp_to_radix_entry(swapin_error), 0);
1699 	if (old != swp_to_radix_entry(swap))
1700 		return;
1701 
1702 	folio_wait_writeback(folio);
1703 	delete_from_swap_cache(folio);
1704 	spin_lock_irq(&info->lock);
1705 	/*
1706 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1707 	 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1708 	 * shmem_evict_inode.
1709 	 */
1710 	info->alloced--;
1711 	info->swapped--;
1712 	shmem_recalc_inode(inode);
1713 	spin_unlock_irq(&info->lock);
1714 	swap_free(swap);
1715 }
1716 
1717 /*
1718  * Swap in the folio pointed to by *foliop.
1719  * Caller has to make sure that *foliop contains a valid swapped folio.
1720  * Returns 0 and the folio in foliop if success. On failure, returns the
1721  * error code and NULL in *foliop.
1722  */
1723 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1724 			     struct folio **foliop, enum sgp_type sgp,
1725 			     gfp_t gfp, struct vm_area_struct *vma,
1726 			     vm_fault_t *fault_type)
1727 {
1728 	struct address_space *mapping = inode->i_mapping;
1729 	struct shmem_inode_info *info = SHMEM_I(inode);
1730 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1731 	struct page *page;
1732 	struct folio *folio = NULL;
1733 	swp_entry_t swap;
1734 	int error;
1735 
1736 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1737 	swap = radix_to_swp_entry(*foliop);
1738 	*foliop = NULL;
1739 
1740 	if (is_swapin_error_entry(swap))
1741 		return -EIO;
1742 
1743 	/* Look it up and read it in.. */
1744 	page = lookup_swap_cache(swap, NULL, 0);
1745 	if (!page) {
1746 		/* Or update major stats only when swapin succeeds?? */
1747 		if (fault_type) {
1748 			*fault_type |= VM_FAULT_MAJOR;
1749 			count_vm_event(PGMAJFAULT);
1750 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1751 		}
1752 		/* Here we actually start the io */
1753 		page = shmem_swapin(swap, gfp, info, index);
1754 		if (!page) {
1755 			error = -ENOMEM;
1756 			goto failed;
1757 		}
1758 	}
1759 	folio = page_folio(page);
1760 
1761 	/* We have to do this with folio locked to prevent races */
1762 	folio_lock(folio);
1763 	if (!folio_test_swapcache(folio) ||
1764 	    folio_swap_entry(folio).val != swap.val ||
1765 	    !shmem_confirm_swap(mapping, index, swap)) {
1766 		error = -EEXIST;
1767 		goto unlock;
1768 	}
1769 	if (!folio_test_uptodate(folio)) {
1770 		error = -EIO;
1771 		goto failed;
1772 	}
1773 	folio_wait_writeback(folio);
1774 
1775 	/*
1776 	 * Some architectures may have to restore extra metadata to the
1777 	 * folio after reading from swap.
1778 	 */
1779 	arch_swap_restore(swap, folio);
1780 
1781 	if (shmem_should_replace_folio(folio, gfp)) {
1782 		error = shmem_replace_page(&page, gfp, info, index);
1783 		if (error)
1784 			goto failed;
1785 	}
1786 
1787 	error = shmem_add_to_page_cache(folio, mapping, index,
1788 					swp_to_radix_entry(swap), gfp,
1789 					charge_mm);
1790 	if (error)
1791 		goto failed;
1792 
1793 	spin_lock_irq(&info->lock);
1794 	info->swapped--;
1795 	shmem_recalc_inode(inode);
1796 	spin_unlock_irq(&info->lock);
1797 
1798 	if (sgp == SGP_WRITE)
1799 		folio_mark_accessed(folio);
1800 
1801 	delete_from_swap_cache(folio);
1802 	folio_mark_dirty(folio);
1803 	swap_free(swap);
1804 
1805 	*foliop = folio;
1806 	return 0;
1807 failed:
1808 	if (!shmem_confirm_swap(mapping, index, swap))
1809 		error = -EEXIST;
1810 	if (error == -EIO)
1811 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1812 unlock:
1813 	if (folio) {
1814 		folio_unlock(folio);
1815 		folio_put(folio);
1816 	}
1817 
1818 	return error;
1819 }
1820 
1821 /*
1822  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1823  *
1824  * If we allocate a new one we do not mark it dirty. That's up to the
1825  * vm. If we swap it in we mark it dirty since we also free the swap
1826  * entry since a page cannot live in both the swap and page cache.
1827  *
1828  * vma, vmf, and fault_type are only supplied by shmem_fault:
1829  * otherwise they are NULL.
1830  */
1831 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1832 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1833 	struct vm_area_struct *vma, struct vm_fault *vmf,
1834 			vm_fault_t *fault_type)
1835 {
1836 	struct address_space *mapping = inode->i_mapping;
1837 	struct shmem_inode_info *info = SHMEM_I(inode);
1838 	struct shmem_sb_info *sbinfo;
1839 	struct mm_struct *charge_mm;
1840 	struct folio *folio;
1841 	pgoff_t hindex = index;
1842 	gfp_t huge_gfp;
1843 	int error;
1844 	int once = 0;
1845 	int alloced = 0;
1846 
1847 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1848 		return -EFBIG;
1849 repeat:
1850 	if (sgp <= SGP_CACHE &&
1851 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1852 		return -EINVAL;
1853 	}
1854 
1855 	sbinfo = SHMEM_SB(inode->i_sb);
1856 	charge_mm = vma ? vma->vm_mm : NULL;
1857 
1858 	folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0);
1859 	if (folio && vma && userfaultfd_minor(vma)) {
1860 		if (!xa_is_value(folio)) {
1861 			folio_unlock(folio);
1862 			folio_put(folio);
1863 		}
1864 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1865 		return 0;
1866 	}
1867 
1868 	if (xa_is_value(folio)) {
1869 		error = shmem_swapin_folio(inode, index, &folio,
1870 					  sgp, gfp, vma, fault_type);
1871 		if (error == -EEXIST)
1872 			goto repeat;
1873 
1874 		*pagep = &folio->page;
1875 		return error;
1876 	}
1877 
1878 	if (folio) {
1879 		hindex = folio->index;
1880 		if (sgp == SGP_WRITE)
1881 			folio_mark_accessed(folio);
1882 		if (folio_test_uptodate(folio))
1883 			goto out;
1884 		/* fallocated page */
1885 		if (sgp != SGP_READ)
1886 			goto clear;
1887 		folio_unlock(folio);
1888 		folio_put(folio);
1889 	}
1890 
1891 	/*
1892 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1893 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1894 	 */
1895 	*pagep = NULL;
1896 	if (sgp == SGP_READ)
1897 		return 0;
1898 	if (sgp == SGP_NOALLOC)
1899 		return -ENOENT;
1900 
1901 	/*
1902 	 * Fast cache lookup and swap lookup did not find it: allocate.
1903 	 */
1904 
1905 	if (vma && userfaultfd_missing(vma)) {
1906 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1907 		return 0;
1908 	}
1909 
1910 	if (!shmem_is_huge(vma, inode, index))
1911 		goto alloc_nohuge;
1912 
1913 	huge_gfp = vma_thp_gfp_mask(vma);
1914 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1915 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1916 	if (IS_ERR(folio)) {
1917 alloc_nohuge:
1918 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1919 	}
1920 	if (IS_ERR(folio)) {
1921 		int retry = 5;
1922 
1923 		error = PTR_ERR(folio);
1924 		folio = NULL;
1925 		if (error != -ENOSPC)
1926 			goto unlock;
1927 		/*
1928 		 * Try to reclaim some space by splitting a huge page
1929 		 * beyond i_size on the filesystem.
1930 		 */
1931 		while (retry--) {
1932 			int ret;
1933 
1934 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1935 			if (ret == SHRINK_STOP)
1936 				break;
1937 			if (ret)
1938 				goto alloc_nohuge;
1939 		}
1940 		goto unlock;
1941 	}
1942 
1943 	hindex = round_down(index, folio_nr_pages(folio));
1944 
1945 	if (sgp == SGP_WRITE)
1946 		__folio_set_referenced(folio);
1947 
1948 	error = shmem_add_to_page_cache(folio, mapping, hindex,
1949 					NULL, gfp & GFP_RECLAIM_MASK,
1950 					charge_mm);
1951 	if (error)
1952 		goto unacct;
1953 	folio_add_lru(folio);
1954 
1955 	spin_lock_irq(&info->lock);
1956 	info->alloced += folio_nr_pages(folio);
1957 	inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1958 	shmem_recalc_inode(inode);
1959 	spin_unlock_irq(&info->lock);
1960 	alloced = true;
1961 
1962 	if (folio_test_pmd_mappable(folio) &&
1963 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1964 			hindex + HPAGE_PMD_NR - 1) {
1965 		/*
1966 		 * Part of the huge page is beyond i_size: subject
1967 		 * to shrink under memory pressure.
1968 		 */
1969 		spin_lock(&sbinfo->shrinklist_lock);
1970 		/*
1971 		 * _careful to defend against unlocked access to
1972 		 * ->shrink_list in shmem_unused_huge_shrink()
1973 		 */
1974 		if (list_empty_careful(&info->shrinklist)) {
1975 			list_add_tail(&info->shrinklist,
1976 				      &sbinfo->shrinklist);
1977 			sbinfo->shrinklist_len++;
1978 		}
1979 		spin_unlock(&sbinfo->shrinklist_lock);
1980 	}
1981 
1982 	/*
1983 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1984 	 */
1985 	if (sgp == SGP_FALLOC)
1986 		sgp = SGP_WRITE;
1987 clear:
1988 	/*
1989 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1990 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1991 	 * it now, lest undo on failure cancel our earlier guarantee.
1992 	 */
1993 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
1994 		long i, n = folio_nr_pages(folio);
1995 
1996 		for (i = 0; i < n; i++)
1997 			clear_highpage(folio_page(folio, i));
1998 		flush_dcache_folio(folio);
1999 		folio_mark_uptodate(folio);
2000 	}
2001 
2002 	/* Perhaps the file has been truncated since we checked */
2003 	if (sgp <= SGP_CACHE &&
2004 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2005 		if (alloced) {
2006 			folio_clear_dirty(folio);
2007 			filemap_remove_folio(folio);
2008 			spin_lock_irq(&info->lock);
2009 			shmem_recalc_inode(inode);
2010 			spin_unlock_irq(&info->lock);
2011 		}
2012 		error = -EINVAL;
2013 		goto unlock;
2014 	}
2015 out:
2016 	*pagep = folio_page(folio, index - hindex);
2017 	return 0;
2018 
2019 	/*
2020 	 * Error recovery.
2021 	 */
2022 unacct:
2023 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2024 
2025 	if (folio_test_large(folio)) {
2026 		folio_unlock(folio);
2027 		folio_put(folio);
2028 		goto alloc_nohuge;
2029 	}
2030 unlock:
2031 	if (folio) {
2032 		folio_unlock(folio);
2033 		folio_put(folio);
2034 	}
2035 	if (error == -ENOSPC && !once++) {
2036 		spin_lock_irq(&info->lock);
2037 		shmem_recalc_inode(inode);
2038 		spin_unlock_irq(&info->lock);
2039 		goto repeat;
2040 	}
2041 	if (error == -EEXIST)
2042 		goto repeat;
2043 	return error;
2044 }
2045 
2046 /*
2047  * This is like autoremove_wake_function, but it removes the wait queue
2048  * entry unconditionally - even if something else had already woken the
2049  * target.
2050  */
2051 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2052 {
2053 	int ret = default_wake_function(wait, mode, sync, key);
2054 	list_del_init(&wait->entry);
2055 	return ret;
2056 }
2057 
2058 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2059 {
2060 	struct vm_area_struct *vma = vmf->vma;
2061 	struct inode *inode = file_inode(vma->vm_file);
2062 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2063 	int err;
2064 	vm_fault_t ret = VM_FAULT_LOCKED;
2065 
2066 	/*
2067 	 * Trinity finds that probing a hole which tmpfs is punching can
2068 	 * prevent the hole-punch from ever completing: which in turn
2069 	 * locks writers out with its hold on i_rwsem.  So refrain from
2070 	 * faulting pages into the hole while it's being punched.  Although
2071 	 * shmem_undo_range() does remove the additions, it may be unable to
2072 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2073 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2074 	 *
2075 	 * It does not matter if we sometimes reach this check just before the
2076 	 * hole-punch begins, so that one fault then races with the punch:
2077 	 * we just need to make racing faults a rare case.
2078 	 *
2079 	 * The implementation below would be much simpler if we just used a
2080 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2081 	 * and bloating every shmem inode for this unlikely case would be sad.
2082 	 */
2083 	if (unlikely(inode->i_private)) {
2084 		struct shmem_falloc *shmem_falloc;
2085 
2086 		spin_lock(&inode->i_lock);
2087 		shmem_falloc = inode->i_private;
2088 		if (shmem_falloc &&
2089 		    shmem_falloc->waitq &&
2090 		    vmf->pgoff >= shmem_falloc->start &&
2091 		    vmf->pgoff < shmem_falloc->next) {
2092 			struct file *fpin;
2093 			wait_queue_head_t *shmem_falloc_waitq;
2094 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2095 
2096 			ret = VM_FAULT_NOPAGE;
2097 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2098 			if (fpin)
2099 				ret = VM_FAULT_RETRY;
2100 
2101 			shmem_falloc_waitq = shmem_falloc->waitq;
2102 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2103 					TASK_UNINTERRUPTIBLE);
2104 			spin_unlock(&inode->i_lock);
2105 			schedule();
2106 
2107 			/*
2108 			 * shmem_falloc_waitq points into the shmem_fallocate()
2109 			 * stack of the hole-punching task: shmem_falloc_waitq
2110 			 * is usually invalid by the time we reach here, but
2111 			 * finish_wait() does not dereference it in that case;
2112 			 * though i_lock needed lest racing with wake_up_all().
2113 			 */
2114 			spin_lock(&inode->i_lock);
2115 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2116 			spin_unlock(&inode->i_lock);
2117 
2118 			if (fpin)
2119 				fput(fpin);
2120 			return ret;
2121 		}
2122 		spin_unlock(&inode->i_lock);
2123 	}
2124 
2125 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2126 				  gfp, vma, vmf, &ret);
2127 	if (err)
2128 		return vmf_error(err);
2129 	return ret;
2130 }
2131 
2132 unsigned long shmem_get_unmapped_area(struct file *file,
2133 				      unsigned long uaddr, unsigned long len,
2134 				      unsigned long pgoff, unsigned long flags)
2135 {
2136 	unsigned long (*get_area)(struct file *,
2137 		unsigned long, unsigned long, unsigned long, unsigned long);
2138 	unsigned long addr;
2139 	unsigned long offset;
2140 	unsigned long inflated_len;
2141 	unsigned long inflated_addr;
2142 	unsigned long inflated_offset;
2143 
2144 	if (len > TASK_SIZE)
2145 		return -ENOMEM;
2146 
2147 	get_area = current->mm->get_unmapped_area;
2148 	addr = get_area(file, uaddr, len, pgoff, flags);
2149 
2150 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2151 		return addr;
2152 	if (IS_ERR_VALUE(addr))
2153 		return addr;
2154 	if (addr & ~PAGE_MASK)
2155 		return addr;
2156 	if (addr > TASK_SIZE - len)
2157 		return addr;
2158 
2159 	if (shmem_huge == SHMEM_HUGE_DENY)
2160 		return addr;
2161 	if (len < HPAGE_PMD_SIZE)
2162 		return addr;
2163 	if (flags & MAP_FIXED)
2164 		return addr;
2165 	/*
2166 	 * Our priority is to support MAP_SHARED mapped hugely;
2167 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2168 	 * But if caller specified an address hint and we allocated area there
2169 	 * successfully, respect that as before.
2170 	 */
2171 	if (uaddr == addr)
2172 		return addr;
2173 
2174 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2175 		struct super_block *sb;
2176 
2177 		if (file) {
2178 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2179 			sb = file_inode(file)->i_sb;
2180 		} else {
2181 			/*
2182 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2183 			 * for "/dev/zero", to create a shared anonymous object.
2184 			 */
2185 			if (IS_ERR(shm_mnt))
2186 				return addr;
2187 			sb = shm_mnt->mnt_sb;
2188 		}
2189 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2190 			return addr;
2191 	}
2192 
2193 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2194 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2195 		return addr;
2196 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2197 		return addr;
2198 
2199 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2200 	if (inflated_len > TASK_SIZE)
2201 		return addr;
2202 	if (inflated_len < len)
2203 		return addr;
2204 
2205 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2206 	if (IS_ERR_VALUE(inflated_addr))
2207 		return addr;
2208 	if (inflated_addr & ~PAGE_MASK)
2209 		return addr;
2210 
2211 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2212 	inflated_addr += offset - inflated_offset;
2213 	if (inflated_offset > offset)
2214 		inflated_addr += HPAGE_PMD_SIZE;
2215 
2216 	if (inflated_addr > TASK_SIZE - len)
2217 		return addr;
2218 	return inflated_addr;
2219 }
2220 
2221 #ifdef CONFIG_NUMA
2222 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2223 {
2224 	struct inode *inode = file_inode(vma->vm_file);
2225 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2226 }
2227 
2228 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2229 					  unsigned long addr)
2230 {
2231 	struct inode *inode = file_inode(vma->vm_file);
2232 	pgoff_t index;
2233 
2234 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2235 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2236 }
2237 #endif
2238 
2239 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2240 {
2241 	struct inode *inode = file_inode(file);
2242 	struct shmem_inode_info *info = SHMEM_I(inode);
2243 	int retval = -ENOMEM;
2244 
2245 	/*
2246 	 * What serializes the accesses to info->flags?
2247 	 * ipc_lock_object() when called from shmctl_do_lock(),
2248 	 * no serialization needed when called from shm_destroy().
2249 	 */
2250 	if (lock && !(info->flags & VM_LOCKED)) {
2251 		if (!user_shm_lock(inode->i_size, ucounts))
2252 			goto out_nomem;
2253 		info->flags |= VM_LOCKED;
2254 		mapping_set_unevictable(file->f_mapping);
2255 	}
2256 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2257 		user_shm_unlock(inode->i_size, ucounts);
2258 		info->flags &= ~VM_LOCKED;
2259 		mapping_clear_unevictable(file->f_mapping);
2260 	}
2261 	retval = 0;
2262 
2263 out_nomem:
2264 	return retval;
2265 }
2266 
2267 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2268 {
2269 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2270 	int ret;
2271 
2272 	ret = seal_check_future_write(info->seals, vma);
2273 	if (ret)
2274 		return ret;
2275 
2276 	/* arm64 - allow memory tagging on RAM-based files */
2277 	vma->vm_flags |= VM_MTE_ALLOWED;
2278 
2279 	file_accessed(file);
2280 	vma->vm_ops = &shmem_vm_ops;
2281 	return 0;
2282 }
2283 
2284 /* Mask out flags that are inappropriate for the given type of inode. */
2285 static unsigned shmem_mask_flags(umode_t mode, __u32 flags)
2286 {
2287 	if (S_ISDIR(mode))
2288 		return flags;
2289 	else if (S_ISREG(mode))
2290 		return flags & SHMEM_REG_FLMASK;
2291 	else
2292 		return flags & SHMEM_OTHER_FLMASK;
2293 }
2294 
2295 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir,
2296 				     umode_t mode, dev_t dev, unsigned long flags)
2297 {
2298 	struct inode *inode;
2299 	struct shmem_inode_info *info;
2300 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2301 	ino_t ino;
2302 
2303 	if (shmem_reserve_inode(sb, &ino))
2304 		return NULL;
2305 
2306 	inode = new_inode(sb);
2307 	if (inode) {
2308 		inode->i_ino = ino;
2309 		inode_init_owner(&init_user_ns, inode, dir, mode);
2310 		inode->i_blocks = 0;
2311 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2312 		inode->i_generation = prandom_u32();
2313 		info = SHMEM_I(inode);
2314 		memset(info, 0, (char *)inode - (char *)info);
2315 		spin_lock_init(&info->lock);
2316 		atomic_set(&info->stop_eviction, 0);
2317 		info->seals = F_SEAL_SEAL;
2318 		info->flags = flags & VM_NORESERVE;
2319 		info->i_crtime = inode->i_mtime;
2320 		info->fsflags = (dir == NULL) ? 0 :
2321 			SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2322 		info->fsflags = shmem_mask_flags(mode, info->fsflags);
2323 		INIT_LIST_HEAD(&info->shrinklist);
2324 		INIT_LIST_HEAD(&info->swaplist);
2325 		simple_xattrs_init(&info->xattrs);
2326 		cache_no_acl(inode);
2327 		mapping_set_large_folios(inode->i_mapping);
2328 
2329 		switch (mode & S_IFMT) {
2330 		default:
2331 			inode->i_op = &shmem_special_inode_operations;
2332 			init_special_inode(inode, mode, dev);
2333 			break;
2334 		case S_IFREG:
2335 			inode->i_mapping->a_ops = &shmem_aops;
2336 			inode->i_op = &shmem_inode_operations;
2337 			inode->i_fop = &shmem_file_operations;
2338 			mpol_shared_policy_init(&info->policy,
2339 						 shmem_get_sbmpol(sbinfo));
2340 			break;
2341 		case S_IFDIR:
2342 			inc_nlink(inode);
2343 			/* Some things misbehave if size == 0 on a directory */
2344 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2345 			inode->i_op = &shmem_dir_inode_operations;
2346 			inode->i_fop = &simple_dir_operations;
2347 			break;
2348 		case S_IFLNK:
2349 			/*
2350 			 * Must not load anything in the rbtree,
2351 			 * mpol_free_shared_policy will not be called.
2352 			 */
2353 			mpol_shared_policy_init(&info->policy, NULL);
2354 			break;
2355 		}
2356 
2357 		lockdep_annotate_inode_mutex_key(inode);
2358 	} else
2359 		shmem_free_inode(sb);
2360 	return inode;
2361 }
2362 
2363 #ifdef CONFIG_USERFAULTFD
2364 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2365 			   pmd_t *dst_pmd,
2366 			   struct vm_area_struct *dst_vma,
2367 			   unsigned long dst_addr,
2368 			   unsigned long src_addr,
2369 			   bool zeropage, bool wp_copy,
2370 			   struct page **pagep)
2371 {
2372 	struct inode *inode = file_inode(dst_vma->vm_file);
2373 	struct shmem_inode_info *info = SHMEM_I(inode);
2374 	struct address_space *mapping = inode->i_mapping;
2375 	gfp_t gfp = mapping_gfp_mask(mapping);
2376 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2377 	void *page_kaddr;
2378 	struct folio *folio;
2379 	struct page *page;
2380 	int ret;
2381 	pgoff_t max_off;
2382 
2383 	if (!shmem_inode_acct_block(inode, 1)) {
2384 		/*
2385 		 * We may have got a page, returned -ENOENT triggering a retry,
2386 		 * and now we find ourselves with -ENOMEM. Release the page, to
2387 		 * avoid a BUG_ON in our caller.
2388 		 */
2389 		if (unlikely(*pagep)) {
2390 			put_page(*pagep);
2391 			*pagep = NULL;
2392 		}
2393 		return -ENOMEM;
2394 	}
2395 
2396 	if (!*pagep) {
2397 		ret = -ENOMEM;
2398 		page = shmem_alloc_page(gfp, info, pgoff);
2399 		if (!page)
2400 			goto out_unacct_blocks;
2401 
2402 		if (!zeropage) {	/* COPY */
2403 			page_kaddr = kmap_atomic(page);
2404 			ret = copy_from_user(page_kaddr,
2405 					     (const void __user *)src_addr,
2406 					     PAGE_SIZE);
2407 			kunmap_atomic(page_kaddr);
2408 
2409 			/* fallback to copy_from_user outside mmap_lock */
2410 			if (unlikely(ret)) {
2411 				*pagep = page;
2412 				ret = -ENOENT;
2413 				/* don't free the page */
2414 				goto out_unacct_blocks;
2415 			}
2416 
2417 			flush_dcache_page(page);
2418 		} else {		/* ZEROPAGE */
2419 			clear_user_highpage(page, dst_addr);
2420 		}
2421 	} else {
2422 		page = *pagep;
2423 		*pagep = NULL;
2424 	}
2425 
2426 	VM_BUG_ON(PageLocked(page));
2427 	VM_BUG_ON(PageSwapBacked(page));
2428 	__SetPageLocked(page);
2429 	__SetPageSwapBacked(page);
2430 	__SetPageUptodate(page);
2431 
2432 	ret = -EFAULT;
2433 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2434 	if (unlikely(pgoff >= max_off))
2435 		goto out_release;
2436 
2437 	folio = page_folio(page);
2438 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2439 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2440 	if (ret)
2441 		goto out_release;
2442 
2443 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2444 				       page, true, wp_copy);
2445 	if (ret)
2446 		goto out_delete_from_cache;
2447 
2448 	spin_lock_irq(&info->lock);
2449 	info->alloced++;
2450 	inode->i_blocks += BLOCKS_PER_PAGE;
2451 	shmem_recalc_inode(inode);
2452 	spin_unlock_irq(&info->lock);
2453 
2454 	unlock_page(page);
2455 	return 0;
2456 out_delete_from_cache:
2457 	delete_from_page_cache(page);
2458 out_release:
2459 	unlock_page(page);
2460 	put_page(page);
2461 out_unacct_blocks:
2462 	shmem_inode_unacct_blocks(inode, 1);
2463 	return ret;
2464 }
2465 #endif /* CONFIG_USERFAULTFD */
2466 
2467 #ifdef CONFIG_TMPFS
2468 static const struct inode_operations shmem_symlink_inode_operations;
2469 static const struct inode_operations shmem_short_symlink_operations;
2470 
2471 #ifdef CONFIG_TMPFS_XATTR
2472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2473 #else
2474 #define shmem_initxattrs NULL
2475 #endif
2476 
2477 static int
2478 shmem_write_begin(struct file *file, struct address_space *mapping,
2479 			loff_t pos, unsigned len,
2480 			struct page **pagep, void **fsdata)
2481 {
2482 	struct inode *inode = mapping->host;
2483 	struct shmem_inode_info *info = SHMEM_I(inode);
2484 	pgoff_t index = pos >> PAGE_SHIFT;
2485 	int ret = 0;
2486 
2487 	/* i_rwsem is held by caller */
2488 	if (unlikely(info->seals & (F_SEAL_GROW |
2489 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2490 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2491 			return -EPERM;
2492 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2493 			return -EPERM;
2494 	}
2495 
2496 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2497 
2498 	if (ret)
2499 		return ret;
2500 
2501 	if (PageHWPoison(*pagep)) {
2502 		unlock_page(*pagep);
2503 		put_page(*pagep);
2504 		*pagep = NULL;
2505 		return -EIO;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int
2512 shmem_write_end(struct file *file, struct address_space *mapping,
2513 			loff_t pos, unsigned len, unsigned copied,
2514 			struct page *page, void *fsdata)
2515 {
2516 	struct inode *inode = mapping->host;
2517 
2518 	if (pos + copied > inode->i_size)
2519 		i_size_write(inode, pos + copied);
2520 
2521 	if (!PageUptodate(page)) {
2522 		struct page *head = compound_head(page);
2523 		if (PageTransCompound(page)) {
2524 			int i;
2525 
2526 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2527 				if (head + i == page)
2528 					continue;
2529 				clear_highpage(head + i);
2530 				flush_dcache_page(head + i);
2531 			}
2532 		}
2533 		if (copied < PAGE_SIZE) {
2534 			unsigned from = pos & (PAGE_SIZE - 1);
2535 			zero_user_segments(page, 0, from,
2536 					from + copied, PAGE_SIZE);
2537 		}
2538 		SetPageUptodate(head);
2539 	}
2540 	set_page_dirty(page);
2541 	unlock_page(page);
2542 	put_page(page);
2543 
2544 	return copied;
2545 }
2546 
2547 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2548 {
2549 	struct file *file = iocb->ki_filp;
2550 	struct inode *inode = file_inode(file);
2551 	struct address_space *mapping = inode->i_mapping;
2552 	pgoff_t index;
2553 	unsigned long offset;
2554 	int error = 0;
2555 	ssize_t retval = 0;
2556 	loff_t *ppos = &iocb->ki_pos;
2557 
2558 	index = *ppos >> PAGE_SHIFT;
2559 	offset = *ppos & ~PAGE_MASK;
2560 
2561 	for (;;) {
2562 		struct page *page = NULL;
2563 		pgoff_t end_index;
2564 		unsigned long nr, ret;
2565 		loff_t i_size = i_size_read(inode);
2566 
2567 		end_index = i_size >> PAGE_SHIFT;
2568 		if (index > end_index)
2569 			break;
2570 		if (index == end_index) {
2571 			nr = i_size & ~PAGE_MASK;
2572 			if (nr <= offset)
2573 				break;
2574 		}
2575 
2576 		error = shmem_getpage(inode, index, &page, SGP_READ);
2577 		if (error) {
2578 			if (error == -EINVAL)
2579 				error = 0;
2580 			break;
2581 		}
2582 		if (page) {
2583 			unlock_page(page);
2584 
2585 			if (PageHWPoison(page)) {
2586 				put_page(page);
2587 				error = -EIO;
2588 				break;
2589 			}
2590 		}
2591 
2592 		/*
2593 		 * We must evaluate after, since reads (unlike writes)
2594 		 * are called without i_rwsem protection against truncate
2595 		 */
2596 		nr = PAGE_SIZE;
2597 		i_size = i_size_read(inode);
2598 		end_index = i_size >> PAGE_SHIFT;
2599 		if (index == end_index) {
2600 			nr = i_size & ~PAGE_MASK;
2601 			if (nr <= offset) {
2602 				if (page)
2603 					put_page(page);
2604 				break;
2605 			}
2606 		}
2607 		nr -= offset;
2608 
2609 		if (page) {
2610 			/*
2611 			 * If users can be writing to this page using arbitrary
2612 			 * virtual addresses, take care about potential aliasing
2613 			 * before reading the page on the kernel side.
2614 			 */
2615 			if (mapping_writably_mapped(mapping))
2616 				flush_dcache_page(page);
2617 			/*
2618 			 * Mark the page accessed if we read the beginning.
2619 			 */
2620 			if (!offset)
2621 				mark_page_accessed(page);
2622 			/*
2623 			 * Ok, we have the page, and it's up-to-date, so
2624 			 * now we can copy it to user space...
2625 			 */
2626 			ret = copy_page_to_iter(page, offset, nr, to);
2627 			put_page(page);
2628 
2629 		} else if (user_backed_iter(to)) {
2630 			/*
2631 			 * Copy to user tends to be so well optimized, but
2632 			 * clear_user() not so much, that it is noticeably
2633 			 * faster to copy the zero page instead of clearing.
2634 			 */
2635 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2636 		} else {
2637 			/*
2638 			 * But submitting the same page twice in a row to
2639 			 * splice() - or others? - can result in confusion:
2640 			 * so don't attempt that optimization on pipes etc.
2641 			 */
2642 			ret = iov_iter_zero(nr, to);
2643 		}
2644 
2645 		retval += ret;
2646 		offset += ret;
2647 		index += offset >> PAGE_SHIFT;
2648 		offset &= ~PAGE_MASK;
2649 
2650 		if (!iov_iter_count(to))
2651 			break;
2652 		if (ret < nr) {
2653 			error = -EFAULT;
2654 			break;
2655 		}
2656 		cond_resched();
2657 	}
2658 
2659 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2660 	file_accessed(file);
2661 	return retval ? retval : error;
2662 }
2663 
2664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2665 {
2666 	struct address_space *mapping = file->f_mapping;
2667 	struct inode *inode = mapping->host;
2668 
2669 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2670 		return generic_file_llseek_size(file, offset, whence,
2671 					MAX_LFS_FILESIZE, i_size_read(inode));
2672 	if (offset < 0)
2673 		return -ENXIO;
2674 
2675 	inode_lock(inode);
2676 	/* We're holding i_rwsem so we can access i_size directly */
2677 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2678 	if (offset >= 0)
2679 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2680 	inode_unlock(inode);
2681 	return offset;
2682 }
2683 
2684 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2685 							 loff_t len)
2686 {
2687 	struct inode *inode = file_inode(file);
2688 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2689 	struct shmem_inode_info *info = SHMEM_I(inode);
2690 	struct shmem_falloc shmem_falloc;
2691 	pgoff_t start, index, end, undo_fallocend;
2692 	int error;
2693 
2694 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2695 		return -EOPNOTSUPP;
2696 
2697 	inode_lock(inode);
2698 
2699 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2700 		struct address_space *mapping = file->f_mapping;
2701 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2702 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2703 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2704 
2705 		/* protected by i_rwsem */
2706 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2707 			error = -EPERM;
2708 			goto out;
2709 		}
2710 
2711 		shmem_falloc.waitq = &shmem_falloc_waitq;
2712 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2713 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2714 		spin_lock(&inode->i_lock);
2715 		inode->i_private = &shmem_falloc;
2716 		spin_unlock(&inode->i_lock);
2717 
2718 		if ((u64)unmap_end > (u64)unmap_start)
2719 			unmap_mapping_range(mapping, unmap_start,
2720 					    1 + unmap_end - unmap_start, 0);
2721 		shmem_truncate_range(inode, offset, offset + len - 1);
2722 		/* No need to unmap again: hole-punching leaves COWed pages */
2723 
2724 		spin_lock(&inode->i_lock);
2725 		inode->i_private = NULL;
2726 		wake_up_all(&shmem_falloc_waitq);
2727 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2728 		spin_unlock(&inode->i_lock);
2729 		error = 0;
2730 		goto out;
2731 	}
2732 
2733 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2734 	error = inode_newsize_ok(inode, offset + len);
2735 	if (error)
2736 		goto out;
2737 
2738 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2739 		error = -EPERM;
2740 		goto out;
2741 	}
2742 
2743 	start = offset >> PAGE_SHIFT;
2744 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2745 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2746 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2747 		error = -ENOSPC;
2748 		goto out;
2749 	}
2750 
2751 	shmem_falloc.waitq = NULL;
2752 	shmem_falloc.start = start;
2753 	shmem_falloc.next  = start;
2754 	shmem_falloc.nr_falloced = 0;
2755 	shmem_falloc.nr_unswapped = 0;
2756 	spin_lock(&inode->i_lock);
2757 	inode->i_private = &shmem_falloc;
2758 	spin_unlock(&inode->i_lock);
2759 
2760 	/*
2761 	 * info->fallocend is only relevant when huge pages might be
2762 	 * involved: to prevent split_huge_page() freeing fallocated
2763 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2764 	 */
2765 	undo_fallocend = info->fallocend;
2766 	if (info->fallocend < end)
2767 		info->fallocend = end;
2768 
2769 	for (index = start; index < end; ) {
2770 		struct page *page;
2771 
2772 		/*
2773 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2774 		 * been interrupted because we are using up too much memory.
2775 		 */
2776 		if (signal_pending(current))
2777 			error = -EINTR;
2778 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2779 			error = -ENOMEM;
2780 		else
2781 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2782 		if (error) {
2783 			info->fallocend = undo_fallocend;
2784 			/* Remove the !PageUptodate pages we added */
2785 			if (index > start) {
2786 				shmem_undo_range(inode,
2787 				    (loff_t)start << PAGE_SHIFT,
2788 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2789 			}
2790 			goto undone;
2791 		}
2792 
2793 		index++;
2794 		/*
2795 		 * Here is a more important optimization than it appears:
2796 		 * a second SGP_FALLOC on the same huge page will clear it,
2797 		 * making it PageUptodate and un-undoable if we fail later.
2798 		 */
2799 		if (PageTransCompound(page)) {
2800 			index = round_up(index, HPAGE_PMD_NR);
2801 			/* Beware 32-bit wraparound */
2802 			if (!index)
2803 				index--;
2804 		}
2805 
2806 		/*
2807 		 * Inform shmem_writepage() how far we have reached.
2808 		 * No need for lock or barrier: we have the page lock.
2809 		 */
2810 		if (!PageUptodate(page))
2811 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2812 		shmem_falloc.next = index;
2813 
2814 		/*
2815 		 * If !PageUptodate, leave it that way so that freeable pages
2816 		 * can be recognized if we need to rollback on error later.
2817 		 * But set_page_dirty so that memory pressure will swap rather
2818 		 * than free the pages we are allocating (and SGP_CACHE pages
2819 		 * might still be clean: we now need to mark those dirty too).
2820 		 */
2821 		set_page_dirty(page);
2822 		unlock_page(page);
2823 		put_page(page);
2824 		cond_resched();
2825 	}
2826 
2827 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2828 		i_size_write(inode, offset + len);
2829 	inode->i_ctime = current_time(inode);
2830 undone:
2831 	spin_lock(&inode->i_lock);
2832 	inode->i_private = NULL;
2833 	spin_unlock(&inode->i_lock);
2834 out:
2835 	inode_unlock(inode);
2836 	return error;
2837 }
2838 
2839 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2840 {
2841 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2842 
2843 	buf->f_type = TMPFS_MAGIC;
2844 	buf->f_bsize = PAGE_SIZE;
2845 	buf->f_namelen = NAME_MAX;
2846 	if (sbinfo->max_blocks) {
2847 		buf->f_blocks = sbinfo->max_blocks;
2848 		buf->f_bavail =
2849 		buf->f_bfree  = sbinfo->max_blocks -
2850 				percpu_counter_sum(&sbinfo->used_blocks);
2851 	}
2852 	if (sbinfo->max_inodes) {
2853 		buf->f_files = sbinfo->max_inodes;
2854 		buf->f_ffree = sbinfo->free_inodes;
2855 	}
2856 	/* else leave those fields 0 like simple_statfs */
2857 
2858 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * File creation. Allocate an inode, and we're done..
2865  */
2866 static int
2867 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2868 	    struct dentry *dentry, umode_t mode, dev_t dev)
2869 {
2870 	struct inode *inode;
2871 	int error = -ENOSPC;
2872 
2873 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2874 	if (inode) {
2875 		error = simple_acl_create(dir, inode);
2876 		if (error)
2877 			goto out_iput;
2878 		error = security_inode_init_security(inode, dir,
2879 						     &dentry->d_name,
2880 						     shmem_initxattrs, NULL);
2881 		if (error && error != -EOPNOTSUPP)
2882 			goto out_iput;
2883 
2884 		error = 0;
2885 		dir->i_size += BOGO_DIRENT_SIZE;
2886 		dir->i_ctime = dir->i_mtime = current_time(dir);
2887 		d_instantiate(dentry, inode);
2888 		dget(dentry); /* Extra count - pin the dentry in core */
2889 	}
2890 	return error;
2891 out_iput:
2892 	iput(inode);
2893 	return error;
2894 }
2895 
2896 static int
2897 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2898 	      struct dentry *dentry, umode_t mode)
2899 {
2900 	struct inode *inode;
2901 	int error = -ENOSPC;
2902 
2903 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2904 	if (inode) {
2905 		error = security_inode_init_security(inode, dir,
2906 						     NULL,
2907 						     shmem_initxattrs, NULL);
2908 		if (error && error != -EOPNOTSUPP)
2909 			goto out_iput;
2910 		error = simple_acl_create(dir, inode);
2911 		if (error)
2912 			goto out_iput;
2913 		d_tmpfile(dentry, inode);
2914 	}
2915 	return error;
2916 out_iput:
2917 	iput(inode);
2918 	return error;
2919 }
2920 
2921 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2922 		       struct dentry *dentry, umode_t mode)
2923 {
2924 	int error;
2925 
2926 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2927 				 mode | S_IFDIR, 0)))
2928 		return error;
2929 	inc_nlink(dir);
2930 	return 0;
2931 }
2932 
2933 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2934 			struct dentry *dentry, umode_t mode, bool excl)
2935 {
2936 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2937 }
2938 
2939 /*
2940  * Link a file..
2941  */
2942 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2943 {
2944 	struct inode *inode = d_inode(old_dentry);
2945 	int ret = 0;
2946 
2947 	/*
2948 	 * No ordinary (disk based) filesystem counts links as inodes;
2949 	 * but each new link needs a new dentry, pinning lowmem, and
2950 	 * tmpfs dentries cannot be pruned until they are unlinked.
2951 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2952 	 * first link must skip that, to get the accounting right.
2953 	 */
2954 	if (inode->i_nlink) {
2955 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2956 		if (ret)
2957 			goto out;
2958 	}
2959 
2960 	dir->i_size += BOGO_DIRENT_SIZE;
2961 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2962 	inc_nlink(inode);
2963 	ihold(inode);	/* New dentry reference */
2964 	dget(dentry);		/* Extra pinning count for the created dentry */
2965 	d_instantiate(dentry, inode);
2966 out:
2967 	return ret;
2968 }
2969 
2970 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2971 {
2972 	struct inode *inode = d_inode(dentry);
2973 
2974 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2975 		shmem_free_inode(inode->i_sb);
2976 
2977 	dir->i_size -= BOGO_DIRENT_SIZE;
2978 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2979 	drop_nlink(inode);
2980 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2981 	return 0;
2982 }
2983 
2984 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2985 {
2986 	if (!simple_empty(dentry))
2987 		return -ENOTEMPTY;
2988 
2989 	drop_nlink(d_inode(dentry));
2990 	drop_nlink(dir);
2991 	return shmem_unlink(dir, dentry);
2992 }
2993 
2994 static int shmem_whiteout(struct user_namespace *mnt_userns,
2995 			  struct inode *old_dir, struct dentry *old_dentry)
2996 {
2997 	struct dentry *whiteout;
2998 	int error;
2999 
3000 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3001 	if (!whiteout)
3002 		return -ENOMEM;
3003 
3004 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
3005 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3006 	dput(whiteout);
3007 	if (error)
3008 		return error;
3009 
3010 	/*
3011 	 * Cheat and hash the whiteout while the old dentry is still in
3012 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3013 	 *
3014 	 * d_lookup() will consistently find one of them at this point,
3015 	 * not sure which one, but that isn't even important.
3016 	 */
3017 	d_rehash(whiteout);
3018 	return 0;
3019 }
3020 
3021 /*
3022  * The VFS layer already does all the dentry stuff for rename,
3023  * we just have to decrement the usage count for the target if
3024  * it exists so that the VFS layer correctly free's it when it
3025  * gets overwritten.
3026  */
3027 static int shmem_rename2(struct user_namespace *mnt_userns,
3028 			 struct inode *old_dir, struct dentry *old_dentry,
3029 			 struct inode *new_dir, struct dentry *new_dentry,
3030 			 unsigned int flags)
3031 {
3032 	struct inode *inode = d_inode(old_dentry);
3033 	int they_are_dirs = S_ISDIR(inode->i_mode);
3034 
3035 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3036 		return -EINVAL;
3037 
3038 	if (flags & RENAME_EXCHANGE)
3039 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3040 
3041 	if (!simple_empty(new_dentry))
3042 		return -ENOTEMPTY;
3043 
3044 	if (flags & RENAME_WHITEOUT) {
3045 		int error;
3046 
3047 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
3048 		if (error)
3049 			return error;
3050 	}
3051 
3052 	if (d_really_is_positive(new_dentry)) {
3053 		(void) shmem_unlink(new_dir, new_dentry);
3054 		if (they_are_dirs) {
3055 			drop_nlink(d_inode(new_dentry));
3056 			drop_nlink(old_dir);
3057 		}
3058 	} else if (they_are_dirs) {
3059 		drop_nlink(old_dir);
3060 		inc_nlink(new_dir);
3061 	}
3062 
3063 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3064 	new_dir->i_size += BOGO_DIRENT_SIZE;
3065 	old_dir->i_ctime = old_dir->i_mtime =
3066 	new_dir->i_ctime = new_dir->i_mtime =
3067 	inode->i_ctime = current_time(old_dir);
3068 	return 0;
3069 }
3070 
3071 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3072 			 struct dentry *dentry, const char *symname)
3073 {
3074 	int error;
3075 	int len;
3076 	struct inode *inode;
3077 	struct page *page;
3078 
3079 	len = strlen(symname) + 1;
3080 	if (len > PAGE_SIZE)
3081 		return -ENAMETOOLONG;
3082 
3083 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3084 				VM_NORESERVE);
3085 	if (!inode)
3086 		return -ENOSPC;
3087 
3088 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3089 					     shmem_initxattrs, NULL);
3090 	if (error && error != -EOPNOTSUPP) {
3091 		iput(inode);
3092 		return error;
3093 	}
3094 
3095 	inode->i_size = len-1;
3096 	if (len <= SHORT_SYMLINK_LEN) {
3097 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3098 		if (!inode->i_link) {
3099 			iput(inode);
3100 			return -ENOMEM;
3101 		}
3102 		inode->i_op = &shmem_short_symlink_operations;
3103 	} else {
3104 		inode_nohighmem(inode);
3105 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3106 		if (error) {
3107 			iput(inode);
3108 			return error;
3109 		}
3110 		inode->i_mapping->a_ops = &shmem_aops;
3111 		inode->i_op = &shmem_symlink_inode_operations;
3112 		memcpy(page_address(page), symname, len);
3113 		SetPageUptodate(page);
3114 		set_page_dirty(page);
3115 		unlock_page(page);
3116 		put_page(page);
3117 	}
3118 	dir->i_size += BOGO_DIRENT_SIZE;
3119 	dir->i_ctime = dir->i_mtime = current_time(dir);
3120 	d_instantiate(dentry, inode);
3121 	dget(dentry);
3122 	return 0;
3123 }
3124 
3125 static void shmem_put_link(void *arg)
3126 {
3127 	mark_page_accessed(arg);
3128 	put_page(arg);
3129 }
3130 
3131 static const char *shmem_get_link(struct dentry *dentry,
3132 				  struct inode *inode,
3133 				  struct delayed_call *done)
3134 {
3135 	struct page *page = NULL;
3136 	int error;
3137 	if (!dentry) {
3138 		page = find_get_page(inode->i_mapping, 0);
3139 		if (!page)
3140 			return ERR_PTR(-ECHILD);
3141 		if (PageHWPoison(page) ||
3142 		    !PageUptodate(page)) {
3143 			put_page(page);
3144 			return ERR_PTR(-ECHILD);
3145 		}
3146 	} else {
3147 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3148 		if (error)
3149 			return ERR_PTR(error);
3150 		if (!page)
3151 			return ERR_PTR(-ECHILD);
3152 		if (PageHWPoison(page)) {
3153 			unlock_page(page);
3154 			put_page(page);
3155 			return ERR_PTR(-ECHILD);
3156 		}
3157 		unlock_page(page);
3158 	}
3159 	set_delayed_call(done, shmem_put_link, page);
3160 	return page_address(page);
3161 }
3162 
3163 #ifdef CONFIG_TMPFS_XATTR
3164 
3165 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3166 {
3167 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3168 
3169 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3170 
3171 	return 0;
3172 }
3173 
3174 static int shmem_fileattr_set(struct user_namespace *mnt_userns,
3175 			      struct dentry *dentry, struct fileattr *fa)
3176 {
3177 	struct inode *inode = d_inode(dentry);
3178 	struct shmem_inode_info *info = SHMEM_I(inode);
3179 
3180 	if (fileattr_has_fsx(fa))
3181 		return -EOPNOTSUPP;
3182 
3183 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3184 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3185 
3186 	inode->i_flags &= ~(S_APPEND | S_IMMUTABLE | S_NOATIME);
3187 	if (info->fsflags & FS_APPEND_FL)
3188 		inode->i_flags |= S_APPEND;
3189 	if (info->fsflags & FS_IMMUTABLE_FL)
3190 		inode->i_flags |= S_IMMUTABLE;
3191 	if (info->fsflags & FS_NOATIME_FL)
3192 		inode->i_flags |= S_NOATIME;
3193 
3194 	inode->i_ctime = current_time(inode);
3195 	return 0;
3196 }
3197 
3198 /*
3199  * Superblocks without xattr inode operations may get some security.* xattr
3200  * support from the LSM "for free". As soon as we have any other xattrs
3201  * like ACLs, we also need to implement the security.* handlers at
3202  * filesystem level, though.
3203  */
3204 
3205 /*
3206  * Callback for security_inode_init_security() for acquiring xattrs.
3207  */
3208 static int shmem_initxattrs(struct inode *inode,
3209 			    const struct xattr *xattr_array,
3210 			    void *fs_info)
3211 {
3212 	struct shmem_inode_info *info = SHMEM_I(inode);
3213 	const struct xattr *xattr;
3214 	struct simple_xattr *new_xattr;
3215 	size_t len;
3216 
3217 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3218 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3219 		if (!new_xattr)
3220 			return -ENOMEM;
3221 
3222 		len = strlen(xattr->name) + 1;
3223 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3224 					  GFP_KERNEL);
3225 		if (!new_xattr->name) {
3226 			kvfree(new_xattr);
3227 			return -ENOMEM;
3228 		}
3229 
3230 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3231 		       XATTR_SECURITY_PREFIX_LEN);
3232 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3233 		       xattr->name, len);
3234 
3235 		simple_xattr_list_add(&info->xattrs, new_xattr);
3236 	}
3237 
3238 	return 0;
3239 }
3240 
3241 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3242 				   struct dentry *unused, struct inode *inode,
3243 				   const char *name, void *buffer, size_t size)
3244 {
3245 	struct shmem_inode_info *info = SHMEM_I(inode);
3246 
3247 	name = xattr_full_name(handler, name);
3248 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3249 }
3250 
3251 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3252 				   struct user_namespace *mnt_userns,
3253 				   struct dentry *unused, struct inode *inode,
3254 				   const char *name, const void *value,
3255 				   size_t size, int flags)
3256 {
3257 	struct shmem_inode_info *info = SHMEM_I(inode);
3258 
3259 	name = xattr_full_name(handler, name);
3260 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3261 }
3262 
3263 static const struct xattr_handler shmem_security_xattr_handler = {
3264 	.prefix = XATTR_SECURITY_PREFIX,
3265 	.get = shmem_xattr_handler_get,
3266 	.set = shmem_xattr_handler_set,
3267 };
3268 
3269 static const struct xattr_handler shmem_trusted_xattr_handler = {
3270 	.prefix = XATTR_TRUSTED_PREFIX,
3271 	.get = shmem_xattr_handler_get,
3272 	.set = shmem_xattr_handler_set,
3273 };
3274 
3275 static const struct xattr_handler *shmem_xattr_handlers[] = {
3276 #ifdef CONFIG_TMPFS_POSIX_ACL
3277 	&posix_acl_access_xattr_handler,
3278 	&posix_acl_default_xattr_handler,
3279 #endif
3280 	&shmem_security_xattr_handler,
3281 	&shmem_trusted_xattr_handler,
3282 	NULL
3283 };
3284 
3285 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3286 {
3287 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3288 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3289 }
3290 #endif /* CONFIG_TMPFS_XATTR */
3291 
3292 static const struct inode_operations shmem_short_symlink_operations = {
3293 	.getattr	= shmem_getattr,
3294 	.get_link	= simple_get_link,
3295 #ifdef CONFIG_TMPFS_XATTR
3296 	.listxattr	= shmem_listxattr,
3297 #endif
3298 };
3299 
3300 static const struct inode_operations shmem_symlink_inode_operations = {
3301 	.getattr	= shmem_getattr,
3302 	.get_link	= shmem_get_link,
3303 #ifdef CONFIG_TMPFS_XATTR
3304 	.listxattr	= shmem_listxattr,
3305 #endif
3306 };
3307 
3308 static struct dentry *shmem_get_parent(struct dentry *child)
3309 {
3310 	return ERR_PTR(-ESTALE);
3311 }
3312 
3313 static int shmem_match(struct inode *ino, void *vfh)
3314 {
3315 	__u32 *fh = vfh;
3316 	__u64 inum = fh[2];
3317 	inum = (inum << 32) | fh[1];
3318 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3319 }
3320 
3321 /* Find any alias of inode, but prefer a hashed alias */
3322 static struct dentry *shmem_find_alias(struct inode *inode)
3323 {
3324 	struct dentry *alias = d_find_alias(inode);
3325 
3326 	return alias ?: d_find_any_alias(inode);
3327 }
3328 
3329 
3330 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3331 		struct fid *fid, int fh_len, int fh_type)
3332 {
3333 	struct inode *inode;
3334 	struct dentry *dentry = NULL;
3335 	u64 inum;
3336 
3337 	if (fh_len < 3)
3338 		return NULL;
3339 
3340 	inum = fid->raw[2];
3341 	inum = (inum << 32) | fid->raw[1];
3342 
3343 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3344 			shmem_match, fid->raw);
3345 	if (inode) {
3346 		dentry = shmem_find_alias(inode);
3347 		iput(inode);
3348 	}
3349 
3350 	return dentry;
3351 }
3352 
3353 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3354 				struct inode *parent)
3355 {
3356 	if (*len < 3) {
3357 		*len = 3;
3358 		return FILEID_INVALID;
3359 	}
3360 
3361 	if (inode_unhashed(inode)) {
3362 		/* Unfortunately insert_inode_hash is not idempotent,
3363 		 * so as we hash inodes here rather than at creation
3364 		 * time, we need a lock to ensure we only try
3365 		 * to do it once
3366 		 */
3367 		static DEFINE_SPINLOCK(lock);
3368 		spin_lock(&lock);
3369 		if (inode_unhashed(inode))
3370 			__insert_inode_hash(inode,
3371 					    inode->i_ino + inode->i_generation);
3372 		spin_unlock(&lock);
3373 	}
3374 
3375 	fh[0] = inode->i_generation;
3376 	fh[1] = inode->i_ino;
3377 	fh[2] = ((__u64)inode->i_ino) >> 32;
3378 
3379 	*len = 3;
3380 	return 1;
3381 }
3382 
3383 static const struct export_operations shmem_export_ops = {
3384 	.get_parent     = shmem_get_parent,
3385 	.encode_fh      = shmem_encode_fh,
3386 	.fh_to_dentry	= shmem_fh_to_dentry,
3387 };
3388 
3389 enum shmem_param {
3390 	Opt_gid,
3391 	Opt_huge,
3392 	Opt_mode,
3393 	Opt_mpol,
3394 	Opt_nr_blocks,
3395 	Opt_nr_inodes,
3396 	Opt_size,
3397 	Opt_uid,
3398 	Opt_inode32,
3399 	Opt_inode64,
3400 };
3401 
3402 static const struct constant_table shmem_param_enums_huge[] = {
3403 	{"never",	SHMEM_HUGE_NEVER },
3404 	{"always",	SHMEM_HUGE_ALWAYS },
3405 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3406 	{"advise",	SHMEM_HUGE_ADVISE },
3407 	{}
3408 };
3409 
3410 const struct fs_parameter_spec shmem_fs_parameters[] = {
3411 	fsparam_u32   ("gid",		Opt_gid),
3412 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3413 	fsparam_u32oct("mode",		Opt_mode),
3414 	fsparam_string("mpol",		Opt_mpol),
3415 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3416 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3417 	fsparam_string("size",		Opt_size),
3418 	fsparam_u32   ("uid",		Opt_uid),
3419 	fsparam_flag  ("inode32",	Opt_inode32),
3420 	fsparam_flag  ("inode64",	Opt_inode64),
3421 	{}
3422 };
3423 
3424 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3425 {
3426 	struct shmem_options *ctx = fc->fs_private;
3427 	struct fs_parse_result result;
3428 	unsigned long long size;
3429 	char *rest;
3430 	int opt;
3431 
3432 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3433 	if (opt < 0)
3434 		return opt;
3435 
3436 	switch (opt) {
3437 	case Opt_size:
3438 		size = memparse(param->string, &rest);
3439 		if (*rest == '%') {
3440 			size <<= PAGE_SHIFT;
3441 			size *= totalram_pages();
3442 			do_div(size, 100);
3443 			rest++;
3444 		}
3445 		if (*rest)
3446 			goto bad_value;
3447 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3448 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3449 		break;
3450 	case Opt_nr_blocks:
3451 		ctx->blocks = memparse(param->string, &rest);
3452 		if (*rest || ctx->blocks > S64_MAX)
3453 			goto bad_value;
3454 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3455 		break;
3456 	case Opt_nr_inodes:
3457 		ctx->inodes = memparse(param->string, &rest);
3458 		if (*rest)
3459 			goto bad_value;
3460 		ctx->seen |= SHMEM_SEEN_INODES;
3461 		break;
3462 	case Opt_mode:
3463 		ctx->mode = result.uint_32 & 07777;
3464 		break;
3465 	case Opt_uid:
3466 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3467 		if (!uid_valid(ctx->uid))
3468 			goto bad_value;
3469 		break;
3470 	case Opt_gid:
3471 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3472 		if (!gid_valid(ctx->gid))
3473 			goto bad_value;
3474 		break;
3475 	case Opt_huge:
3476 		ctx->huge = result.uint_32;
3477 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3478 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3479 		      has_transparent_hugepage()))
3480 			goto unsupported_parameter;
3481 		ctx->seen |= SHMEM_SEEN_HUGE;
3482 		break;
3483 	case Opt_mpol:
3484 		if (IS_ENABLED(CONFIG_NUMA)) {
3485 			mpol_put(ctx->mpol);
3486 			ctx->mpol = NULL;
3487 			if (mpol_parse_str(param->string, &ctx->mpol))
3488 				goto bad_value;
3489 			break;
3490 		}
3491 		goto unsupported_parameter;
3492 	case Opt_inode32:
3493 		ctx->full_inums = false;
3494 		ctx->seen |= SHMEM_SEEN_INUMS;
3495 		break;
3496 	case Opt_inode64:
3497 		if (sizeof(ino_t) < 8) {
3498 			return invalfc(fc,
3499 				       "Cannot use inode64 with <64bit inums in kernel\n");
3500 		}
3501 		ctx->full_inums = true;
3502 		ctx->seen |= SHMEM_SEEN_INUMS;
3503 		break;
3504 	}
3505 	return 0;
3506 
3507 unsupported_parameter:
3508 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3509 bad_value:
3510 	return invalfc(fc, "Bad value for '%s'", param->key);
3511 }
3512 
3513 static int shmem_parse_options(struct fs_context *fc, void *data)
3514 {
3515 	char *options = data;
3516 
3517 	if (options) {
3518 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3519 		if (err)
3520 			return err;
3521 	}
3522 
3523 	while (options != NULL) {
3524 		char *this_char = options;
3525 		for (;;) {
3526 			/*
3527 			 * NUL-terminate this option: unfortunately,
3528 			 * mount options form a comma-separated list,
3529 			 * but mpol's nodelist may also contain commas.
3530 			 */
3531 			options = strchr(options, ',');
3532 			if (options == NULL)
3533 				break;
3534 			options++;
3535 			if (!isdigit(*options)) {
3536 				options[-1] = '\0';
3537 				break;
3538 			}
3539 		}
3540 		if (*this_char) {
3541 			char *value = strchr(this_char, '=');
3542 			size_t len = 0;
3543 			int err;
3544 
3545 			if (value) {
3546 				*value++ = '\0';
3547 				len = strlen(value);
3548 			}
3549 			err = vfs_parse_fs_string(fc, this_char, value, len);
3550 			if (err < 0)
3551 				return err;
3552 		}
3553 	}
3554 	return 0;
3555 }
3556 
3557 /*
3558  * Reconfigure a shmem filesystem.
3559  *
3560  * Note that we disallow change from limited->unlimited blocks/inodes while any
3561  * are in use; but we must separately disallow unlimited->limited, because in
3562  * that case we have no record of how much is already in use.
3563  */
3564 static int shmem_reconfigure(struct fs_context *fc)
3565 {
3566 	struct shmem_options *ctx = fc->fs_private;
3567 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3568 	unsigned long inodes;
3569 	struct mempolicy *mpol = NULL;
3570 	const char *err;
3571 
3572 	raw_spin_lock(&sbinfo->stat_lock);
3573 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3574 
3575 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3576 		if (!sbinfo->max_blocks) {
3577 			err = "Cannot retroactively limit size";
3578 			goto out;
3579 		}
3580 		if (percpu_counter_compare(&sbinfo->used_blocks,
3581 					   ctx->blocks) > 0) {
3582 			err = "Too small a size for current use";
3583 			goto out;
3584 		}
3585 	}
3586 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3587 		if (!sbinfo->max_inodes) {
3588 			err = "Cannot retroactively limit inodes";
3589 			goto out;
3590 		}
3591 		if (ctx->inodes < inodes) {
3592 			err = "Too few inodes for current use";
3593 			goto out;
3594 		}
3595 	}
3596 
3597 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3598 	    sbinfo->next_ino > UINT_MAX) {
3599 		err = "Current inum too high to switch to 32-bit inums";
3600 		goto out;
3601 	}
3602 
3603 	if (ctx->seen & SHMEM_SEEN_HUGE)
3604 		sbinfo->huge = ctx->huge;
3605 	if (ctx->seen & SHMEM_SEEN_INUMS)
3606 		sbinfo->full_inums = ctx->full_inums;
3607 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3608 		sbinfo->max_blocks  = ctx->blocks;
3609 	if (ctx->seen & SHMEM_SEEN_INODES) {
3610 		sbinfo->max_inodes  = ctx->inodes;
3611 		sbinfo->free_inodes = ctx->inodes - inodes;
3612 	}
3613 
3614 	/*
3615 	 * Preserve previous mempolicy unless mpol remount option was specified.
3616 	 */
3617 	if (ctx->mpol) {
3618 		mpol = sbinfo->mpol;
3619 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3620 		ctx->mpol = NULL;
3621 	}
3622 	raw_spin_unlock(&sbinfo->stat_lock);
3623 	mpol_put(mpol);
3624 	return 0;
3625 out:
3626 	raw_spin_unlock(&sbinfo->stat_lock);
3627 	return invalfc(fc, "%s", err);
3628 }
3629 
3630 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3631 {
3632 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3633 
3634 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3635 		seq_printf(seq, ",size=%luk",
3636 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3637 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3638 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3639 	if (sbinfo->mode != (0777 | S_ISVTX))
3640 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3641 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3642 		seq_printf(seq, ",uid=%u",
3643 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3644 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3645 		seq_printf(seq, ",gid=%u",
3646 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3647 
3648 	/*
3649 	 * Showing inode{64,32} might be useful even if it's the system default,
3650 	 * since then people don't have to resort to checking both here and
3651 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3652 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3653 	 *
3654 	 * We hide it when inode64 isn't the default and we are using 32-bit
3655 	 * inodes, since that probably just means the feature isn't even under
3656 	 * consideration.
3657 	 *
3658 	 * As such:
3659 	 *
3660 	 *                     +-----------------+-----------------+
3661 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3662 	 *  +------------------+-----------------+-----------------+
3663 	 *  | full_inums=true  | show            | show            |
3664 	 *  | full_inums=false | show            | hide            |
3665 	 *  +------------------+-----------------+-----------------+
3666 	 *
3667 	 */
3668 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3669 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3671 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3672 	if (sbinfo->huge)
3673 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3674 #endif
3675 	shmem_show_mpol(seq, sbinfo->mpol);
3676 	return 0;
3677 }
3678 
3679 #endif /* CONFIG_TMPFS */
3680 
3681 static void shmem_put_super(struct super_block *sb)
3682 {
3683 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3684 
3685 	free_percpu(sbinfo->ino_batch);
3686 	percpu_counter_destroy(&sbinfo->used_blocks);
3687 	mpol_put(sbinfo->mpol);
3688 	kfree(sbinfo);
3689 	sb->s_fs_info = NULL;
3690 }
3691 
3692 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3693 {
3694 	struct shmem_options *ctx = fc->fs_private;
3695 	struct inode *inode;
3696 	struct shmem_sb_info *sbinfo;
3697 
3698 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3699 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3700 				L1_CACHE_BYTES), GFP_KERNEL);
3701 	if (!sbinfo)
3702 		return -ENOMEM;
3703 
3704 	sb->s_fs_info = sbinfo;
3705 
3706 #ifdef CONFIG_TMPFS
3707 	/*
3708 	 * Per default we only allow half of the physical ram per
3709 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3710 	 * but the internal instance is left unlimited.
3711 	 */
3712 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3713 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3714 			ctx->blocks = shmem_default_max_blocks();
3715 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3716 			ctx->inodes = shmem_default_max_inodes();
3717 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3718 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3719 	} else {
3720 		sb->s_flags |= SB_NOUSER;
3721 	}
3722 	sb->s_export_op = &shmem_export_ops;
3723 	sb->s_flags |= SB_NOSEC;
3724 #else
3725 	sb->s_flags |= SB_NOUSER;
3726 #endif
3727 	sbinfo->max_blocks = ctx->blocks;
3728 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3729 	if (sb->s_flags & SB_KERNMOUNT) {
3730 		sbinfo->ino_batch = alloc_percpu(ino_t);
3731 		if (!sbinfo->ino_batch)
3732 			goto failed;
3733 	}
3734 	sbinfo->uid = ctx->uid;
3735 	sbinfo->gid = ctx->gid;
3736 	sbinfo->full_inums = ctx->full_inums;
3737 	sbinfo->mode = ctx->mode;
3738 	sbinfo->huge = ctx->huge;
3739 	sbinfo->mpol = ctx->mpol;
3740 	ctx->mpol = NULL;
3741 
3742 	raw_spin_lock_init(&sbinfo->stat_lock);
3743 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3744 		goto failed;
3745 	spin_lock_init(&sbinfo->shrinklist_lock);
3746 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3747 
3748 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3749 	sb->s_blocksize = PAGE_SIZE;
3750 	sb->s_blocksize_bits = PAGE_SHIFT;
3751 	sb->s_magic = TMPFS_MAGIC;
3752 	sb->s_op = &shmem_ops;
3753 	sb->s_time_gran = 1;
3754 #ifdef CONFIG_TMPFS_XATTR
3755 	sb->s_xattr = shmem_xattr_handlers;
3756 #endif
3757 #ifdef CONFIG_TMPFS_POSIX_ACL
3758 	sb->s_flags |= SB_POSIXACL;
3759 #endif
3760 	uuid_gen(&sb->s_uuid);
3761 
3762 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3763 	if (!inode)
3764 		goto failed;
3765 	inode->i_uid = sbinfo->uid;
3766 	inode->i_gid = sbinfo->gid;
3767 	sb->s_root = d_make_root(inode);
3768 	if (!sb->s_root)
3769 		goto failed;
3770 	return 0;
3771 
3772 failed:
3773 	shmem_put_super(sb);
3774 	return -ENOMEM;
3775 }
3776 
3777 static int shmem_get_tree(struct fs_context *fc)
3778 {
3779 	return get_tree_nodev(fc, shmem_fill_super);
3780 }
3781 
3782 static void shmem_free_fc(struct fs_context *fc)
3783 {
3784 	struct shmem_options *ctx = fc->fs_private;
3785 
3786 	if (ctx) {
3787 		mpol_put(ctx->mpol);
3788 		kfree(ctx);
3789 	}
3790 }
3791 
3792 static const struct fs_context_operations shmem_fs_context_ops = {
3793 	.free			= shmem_free_fc,
3794 	.get_tree		= shmem_get_tree,
3795 #ifdef CONFIG_TMPFS
3796 	.parse_monolithic	= shmem_parse_options,
3797 	.parse_param		= shmem_parse_one,
3798 	.reconfigure		= shmem_reconfigure,
3799 #endif
3800 };
3801 
3802 static struct kmem_cache *shmem_inode_cachep;
3803 
3804 static struct inode *shmem_alloc_inode(struct super_block *sb)
3805 {
3806 	struct shmem_inode_info *info;
3807 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3808 	if (!info)
3809 		return NULL;
3810 	return &info->vfs_inode;
3811 }
3812 
3813 static void shmem_free_in_core_inode(struct inode *inode)
3814 {
3815 	if (S_ISLNK(inode->i_mode))
3816 		kfree(inode->i_link);
3817 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3818 }
3819 
3820 static void shmem_destroy_inode(struct inode *inode)
3821 {
3822 	if (S_ISREG(inode->i_mode))
3823 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3824 }
3825 
3826 static void shmem_init_inode(void *foo)
3827 {
3828 	struct shmem_inode_info *info = foo;
3829 	inode_init_once(&info->vfs_inode);
3830 }
3831 
3832 static void shmem_init_inodecache(void)
3833 {
3834 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3835 				sizeof(struct shmem_inode_info),
3836 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3837 }
3838 
3839 static void shmem_destroy_inodecache(void)
3840 {
3841 	kmem_cache_destroy(shmem_inode_cachep);
3842 }
3843 
3844 /* Keep the page in page cache instead of truncating it */
3845 static int shmem_error_remove_page(struct address_space *mapping,
3846 				   struct page *page)
3847 {
3848 	return 0;
3849 }
3850 
3851 const struct address_space_operations shmem_aops = {
3852 	.writepage	= shmem_writepage,
3853 	.dirty_folio	= noop_dirty_folio,
3854 #ifdef CONFIG_TMPFS
3855 	.write_begin	= shmem_write_begin,
3856 	.write_end	= shmem_write_end,
3857 #endif
3858 #ifdef CONFIG_MIGRATION
3859 	.migrate_folio	= migrate_folio,
3860 #endif
3861 	.error_remove_page = shmem_error_remove_page,
3862 };
3863 EXPORT_SYMBOL(shmem_aops);
3864 
3865 static const struct file_operations shmem_file_operations = {
3866 	.mmap		= shmem_mmap,
3867 	.get_unmapped_area = shmem_get_unmapped_area,
3868 #ifdef CONFIG_TMPFS
3869 	.llseek		= shmem_file_llseek,
3870 	.read_iter	= shmem_file_read_iter,
3871 	.write_iter	= generic_file_write_iter,
3872 	.fsync		= noop_fsync,
3873 	.splice_read	= generic_file_splice_read,
3874 	.splice_write	= iter_file_splice_write,
3875 	.fallocate	= shmem_fallocate,
3876 #endif
3877 };
3878 
3879 static const struct inode_operations shmem_inode_operations = {
3880 	.getattr	= shmem_getattr,
3881 	.setattr	= shmem_setattr,
3882 #ifdef CONFIG_TMPFS_XATTR
3883 	.listxattr	= shmem_listxattr,
3884 	.set_acl	= simple_set_acl,
3885 	.fileattr_get	= shmem_fileattr_get,
3886 	.fileattr_set	= shmem_fileattr_set,
3887 #endif
3888 };
3889 
3890 static const struct inode_operations shmem_dir_inode_operations = {
3891 #ifdef CONFIG_TMPFS
3892 	.getattr	= shmem_getattr,
3893 	.create		= shmem_create,
3894 	.lookup		= simple_lookup,
3895 	.link		= shmem_link,
3896 	.unlink		= shmem_unlink,
3897 	.symlink	= shmem_symlink,
3898 	.mkdir		= shmem_mkdir,
3899 	.rmdir		= shmem_rmdir,
3900 	.mknod		= shmem_mknod,
3901 	.rename		= shmem_rename2,
3902 	.tmpfile	= shmem_tmpfile,
3903 #endif
3904 #ifdef CONFIG_TMPFS_XATTR
3905 	.listxattr	= shmem_listxattr,
3906 	.fileattr_get	= shmem_fileattr_get,
3907 	.fileattr_set	= shmem_fileattr_set,
3908 #endif
3909 #ifdef CONFIG_TMPFS_POSIX_ACL
3910 	.setattr	= shmem_setattr,
3911 	.set_acl	= simple_set_acl,
3912 #endif
3913 };
3914 
3915 static const struct inode_operations shmem_special_inode_operations = {
3916 	.getattr	= shmem_getattr,
3917 #ifdef CONFIG_TMPFS_XATTR
3918 	.listxattr	= shmem_listxattr,
3919 #endif
3920 #ifdef CONFIG_TMPFS_POSIX_ACL
3921 	.setattr	= shmem_setattr,
3922 	.set_acl	= simple_set_acl,
3923 #endif
3924 };
3925 
3926 static const struct super_operations shmem_ops = {
3927 	.alloc_inode	= shmem_alloc_inode,
3928 	.free_inode	= shmem_free_in_core_inode,
3929 	.destroy_inode	= shmem_destroy_inode,
3930 #ifdef CONFIG_TMPFS
3931 	.statfs		= shmem_statfs,
3932 	.show_options	= shmem_show_options,
3933 #endif
3934 	.evict_inode	= shmem_evict_inode,
3935 	.drop_inode	= generic_delete_inode,
3936 	.put_super	= shmem_put_super,
3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3938 	.nr_cached_objects	= shmem_unused_huge_count,
3939 	.free_cached_objects	= shmem_unused_huge_scan,
3940 #endif
3941 };
3942 
3943 static const struct vm_operations_struct shmem_vm_ops = {
3944 	.fault		= shmem_fault,
3945 	.map_pages	= filemap_map_pages,
3946 #ifdef CONFIG_NUMA
3947 	.set_policy     = shmem_set_policy,
3948 	.get_policy     = shmem_get_policy,
3949 #endif
3950 };
3951 
3952 int shmem_init_fs_context(struct fs_context *fc)
3953 {
3954 	struct shmem_options *ctx;
3955 
3956 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3957 	if (!ctx)
3958 		return -ENOMEM;
3959 
3960 	ctx->mode = 0777 | S_ISVTX;
3961 	ctx->uid = current_fsuid();
3962 	ctx->gid = current_fsgid();
3963 
3964 	fc->fs_private = ctx;
3965 	fc->ops = &shmem_fs_context_ops;
3966 	return 0;
3967 }
3968 
3969 static struct file_system_type shmem_fs_type = {
3970 	.owner		= THIS_MODULE,
3971 	.name		= "tmpfs",
3972 	.init_fs_context = shmem_init_fs_context,
3973 #ifdef CONFIG_TMPFS
3974 	.parameters	= shmem_fs_parameters,
3975 #endif
3976 	.kill_sb	= kill_litter_super,
3977 	.fs_flags	= FS_USERNS_MOUNT,
3978 };
3979 
3980 void __init shmem_init(void)
3981 {
3982 	int error;
3983 
3984 	shmem_init_inodecache();
3985 
3986 	error = register_filesystem(&shmem_fs_type);
3987 	if (error) {
3988 		pr_err("Could not register tmpfs\n");
3989 		goto out2;
3990 	}
3991 
3992 	shm_mnt = kern_mount(&shmem_fs_type);
3993 	if (IS_ERR(shm_mnt)) {
3994 		error = PTR_ERR(shm_mnt);
3995 		pr_err("Could not kern_mount tmpfs\n");
3996 		goto out1;
3997 	}
3998 
3999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4000 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4001 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4002 	else
4003 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4004 #endif
4005 	return;
4006 
4007 out1:
4008 	unregister_filesystem(&shmem_fs_type);
4009 out2:
4010 	shmem_destroy_inodecache();
4011 	shm_mnt = ERR_PTR(error);
4012 }
4013 
4014 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4015 static ssize_t shmem_enabled_show(struct kobject *kobj,
4016 				  struct kobj_attribute *attr, char *buf)
4017 {
4018 	static const int values[] = {
4019 		SHMEM_HUGE_ALWAYS,
4020 		SHMEM_HUGE_WITHIN_SIZE,
4021 		SHMEM_HUGE_ADVISE,
4022 		SHMEM_HUGE_NEVER,
4023 		SHMEM_HUGE_DENY,
4024 		SHMEM_HUGE_FORCE,
4025 	};
4026 	int len = 0;
4027 	int i;
4028 
4029 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4030 		len += sysfs_emit_at(buf, len,
4031 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4032 				     i ? " " : "",
4033 				     shmem_format_huge(values[i]));
4034 	}
4035 
4036 	len += sysfs_emit_at(buf, len, "\n");
4037 
4038 	return len;
4039 }
4040 
4041 static ssize_t shmem_enabled_store(struct kobject *kobj,
4042 		struct kobj_attribute *attr, const char *buf, size_t count)
4043 {
4044 	char tmp[16];
4045 	int huge;
4046 
4047 	if (count + 1 > sizeof(tmp))
4048 		return -EINVAL;
4049 	memcpy(tmp, buf, count);
4050 	tmp[count] = '\0';
4051 	if (count && tmp[count - 1] == '\n')
4052 		tmp[count - 1] = '\0';
4053 
4054 	huge = shmem_parse_huge(tmp);
4055 	if (huge == -EINVAL)
4056 		return -EINVAL;
4057 	if (!has_transparent_hugepage() &&
4058 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4059 		return -EINVAL;
4060 
4061 	shmem_huge = huge;
4062 	if (shmem_huge > SHMEM_HUGE_DENY)
4063 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4064 	return count;
4065 }
4066 
4067 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4068 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4069 
4070 #else /* !CONFIG_SHMEM */
4071 
4072 /*
4073  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4074  *
4075  * This is intended for small system where the benefits of the full
4076  * shmem code (swap-backed and resource-limited) are outweighed by
4077  * their complexity. On systems without swap this code should be
4078  * effectively equivalent, but much lighter weight.
4079  */
4080 
4081 static struct file_system_type shmem_fs_type = {
4082 	.name		= "tmpfs",
4083 	.init_fs_context = ramfs_init_fs_context,
4084 	.parameters	= ramfs_fs_parameters,
4085 	.kill_sb	= kill_litter_super,
4086 	.fs_flags	= FS_USERNS_MOUNT,
4087 };
4088 
4089 void __init shmem_init(void)
4090 {
4091 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4092 
4093 	shm_mnt = kern_mount(&shmem_fs_type);
4094 	BUG_ON(IS_ERR(shm_mnt));
4095 }
4096 
4097 int shmem_unuse(unsigned int type)
4098 {
4099 	return 0;
4100 }
4101 
4102 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4103 {
4104 	return 0;
4105 }
4106 
4107 void shmem_unlock_mapping(struct address_space *mapping)
4108 {
4109 }
4110 
4111 #ifdef CONFIG_MMU
4112 unsigned long shmem_get_unmapped_area(struct file *file,
4113 				      unsigned long addr, unsigned long len,
4114 				      unsigned long pgoff, unsigned long flags)
4115 {
4116 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4117 }
4118 #endif
4119 
4120 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4121 {
4122 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4123 }
4124 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4125 
4126 #define shmem_vm_ops				generic_file_vm_ops
4127 #define shmem_file_operations			ramfs_file_operations
4128 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4129 #define shmem_acct_size(flags, size)		0
4130 #define shmem_unacct_size(flags, size)		do {} while (0)
4131 
4132 #endif /* CONFIG_SHMEM */
4133 
4134 /* common code */
4135 
4136 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4137 				       unsigned long flags, unsigned int i_flags)
4138 {
4139 	struct inode *inode;
4140 	struct file *res;
4141 
4142 	if (IS_ERR(mnt))
4143 		return ERR_CAST(mnt);
4144 
4145 	if (size < 0 || size > MAX_LFS_FILESIZE)
4146 		return ERR_PTR(-EINVAL);
4147 
4148 	if (shmem_acct_size(flags, size))
4149 		return ERR_PTR(-ENOMEM);
4150 
4151 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4152 				flags);
4153 	if (unlikely(!inode)) {
4154 		shmem_unacct_size(flags, size);
4155 		return ERR_PTR(-ENOSPC);
4156 	}
4157 	inode->i_flags |= i_flags;
4158 	inode->i_size = size;
4159 	clear_nlink(inode);	/* It is unlinked */
4160 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4161 	if (!IS_ERR(res))
4162 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4163 				&shmem_file_operations);
4164 	if (IS_ERR(res))
4165 		iput(inode);
4166 	return res;
4167 }
4168 
4169 /**
4170  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4171  * 	kernel internal.  There will be NO LSM permission checks against the
4172  * 	underlying inode.  So users of this interface must do LSM checks at a
4173  *	higher layer.  The users are the big_key and shm implementations.  LSM
4174  *	checks are provided at the key or shm level rather than the inode.
4175  * @name: name for dentry (to be seen in /proc/<pid>/maps
4176  * @size: size to be set for the file
4177  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4178  */
4179 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4180 {
4181 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4182 }
4183 
4184 /**
4185  * shmem_file_setup - get an unlinked file living in tmpfs
4186  * @name: name for dentry (to be seen in /proc/<pid>/maps
4187  * @size: size to be set for the file
4188  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4189  */
4190 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4191 {
4192 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4193 }
4194 EXPORT_SYMBOL_GPL(shmem_file_setup);
4195 
4196 /**
4197  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4198  * @mnt: the tmpfs mount where the file will be created
4199  * @name: name for dentry (to be seen in /proc/<pid>/maps
4200  * @size: size to be set for the file
4201  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4202  */
4203 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4204 				       loff_t size, unsigned long flags)
4205 {
4206 	return __shmem_file_setup(mnt, name, size, flags, 0);
4207 }
4208 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4209 
4210 /**
4211  * shmem_zero_setup - setup a shared anonymous mapping
4212  * @vma: the vma to be mmapped is prepared by do_mmap
4213  */
4214 int shmem_zero_setup(struct vm_area_struct *vma)
4215 {
4216 	struct file *file;
4217 	loff_t size = vma->vm_end - vma->vm_start;
4218 
4219 	/*
4220 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4221 	 * between XFS directory reading and selinux: since this file is only
4222 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4223 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4224 	 */
4225 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4226 	if (IS_ERR(file))
4227 		return PTR_ERR(file);
4228 
4229 	if (vma->vm_file)
4230 		fput(vma->vm_file);
4231 	vma->vm_file = file;
4232 	vma->vm_ops = &shmem_vm_ops;
4233 
4234 	return 0;
4235 }
4236 
4237 /**
4238  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4239  * @mapping:	the page's address_space
4240  * @index:	the page index
4241  * @gfp:	the page allocator flags to use if allocating
4242  *
4243  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4244  * with any new page allocations done using the specified allocation flags.
4245  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4246  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4247  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4248  *
4249  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4250  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4251  */
4252 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4253 					 pgoff_t index, gfp_t gfp)
4254 {
4255 #ifdef CONFIG_SHMEM
4256 	struct inode *inode = mapping->host;
4257 	struct page *page;
4258 	int error;
4259 
4260 	BUG_ON(!shmem_mapping(mapping));
4261 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4262 				  gfp, NULL, NULL, NULL);
4263 	if (error)
4264 		return ERR_PTR(error);
4265 
4266 	unlock_page(page);
4267 	if (PageHWPoison(page)) {
4268 		put_page(page);
4269 		return ERR_PTR(-EIO);
4270 	}
4271 
4272 	return page;
4273 #else
4274 	/*
4275 	 * The tiny !SHMEM case uses ramfs without swap
4276 	 */
4277 	return read_cache_page_gfp(mapping, index, gfp);
4278 #endif
4279 }
4280 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4281