1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/uio.h> 38 #include <linux/hugetlb.h> 39 #include <linux/fs_parser.h> 40 #include <linux/swapfile.h> 41 #include "swap.h" 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/pagevec.h> 63 #include <linux/percpu_counter.h> 64 #include <linux/falloc.h> 65 #include <linux/splice.h> 66 #include <linux/security.h> 67 #include <linux/swapops.h> 68 #include <linux/mempolicy.h> 69 #include <linux/namei.h> 70 #include <linux/ctype.h> 71 #include <linux/migrate.h> 72 #include <linux/highmem.h> 73 #include <linux/seq_file.h> 74 #include <linux/magic.h> 75 #include <linux/syscalls.h> 76 #include <linux/fcntl.h> 77 #include <uapi/linux/memfd.h> 78 #include <linux/userfaultfd_k.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 82 #include <linux/uaccess.h> 83 84 #include "internal.h" 85 86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 88 89 /* Pretend that each entry is of this size in directory's i_size */ 90 #define BOGO_DIRENT_SIZE 20 91 92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 93 #define SHORT_SYMLINK_LEN 128 94 95 /* 96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 97 * inode->i_private (with i_rwsem making sure that it has only one user at 98 * a time): we would prefer not to enlarge the shmem inode just for that. 99 */ 100 struct shmem_falloc { 101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 102 pgoff_t start; /* start of range currently being fallocated */ 103 pgoff_t next; /* the next page offset to be fallocated */ 104 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 106 }; 107 108 struct shmem_options { 109 unsigned long long blocks; 110 unsigned long long inodes; 111 struct mempolicy *mpol; 112 kuid_t uid; 113 kgid_t gid; 114 umode_t mode; 115 bool full_inums; 116 int huge; 117 int seen; 118 #define SHMEM_SEEN_BLOCKS 1 119 #define SHMEM_SEEN_INODES 2 120 #define SHMEM_SEEN_HUGE 4 121 #define SHMEM_SEEN_INUMS 8 122 }; 123 124 #ifdef CONFIG_TMPFS 125 static unsigned long shmem_default_max_blocks(void) 126 { 127 return totalram_pages() / 2; 128 } 129 130 static unsigned long shmem_default_max_inodes(void) 131 { 132 unsigned long nr_pages = totalram_pages(); 133 134 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 135 } 136 #endif 137 138 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 139 struct folio **foliop, enum sgp_type sgp, 140 gfp_t gfp, struct vm_area_struct *vma, 141 vm_fault_t *fault_type); 142 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 143 struct page **pagep, enum sgp_type sgp, 144 gfp_t gfp, struct vm_area_struct *vma, 145 struct vm_fault *vmf, vm_fault_t *fault_type); 146 147 int shmem_getpage(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp) 149 { 150 return shmem_getpage_gfp(inode, index, pagep, sgp, 151 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 152 } 153 154 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 155 { 156 return sb->s_fs_info; 157 } 158 159 /* 160 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 161 * for shared memory and for shared anonymous (/dev/zero) mappings 162 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 163 * consistent with the pre-accounting of private mappings ... 164 */ 165 static inline int shmem_acct_size(unsigned long flags, loff_t size) 166 { 167 return (flags & VM_NORESERVE) ? 168 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 169 } 170 171 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 172 { 173 if (!(flags & VM_NORESERVE)) 174 vm_unacct_memory(VM_ACCT(size)); 175 } 176 177 static inline int shmem_reacct_size(unsigned long flags, 178 loff_t oldsize, loff_t newsize) 179 { 180 if (!(flags & VM_NORESERVE)) { 181 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 182 return security_vm_enough_memory_mm(current->mm, 183 VM_ACCT(newsize) - VM_ACCT(oldsize)); 184 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 185 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 186 } 187 return 0; 188 } 189 190 /* 191 * ... whereas tmpfs objects are accounted incrementally as 192 * pages are allocated, in order to allow large sparse files. 193 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 194 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 195 */ 196 static inline int shmem_acct_block(unsigned long flags, long pages) 197 { 198 if (!(flags & VM_NORESERVE)) 199 return 0; 200 201 return security_vm_enough_memory_mm(current->mm, 202 pages * VM_ACCT(PAGE_SIZE)); 203 } 204 205 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 206 { 207 if (flags & VM_NORESERVE) 208 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 209 } 210 211 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 212 { 213 struct shmem_inode_info *info = SHMEM_I(inode); 214 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 215 216 if (shmem_acct_block(info->flags, pages)) 217 return false; 218 219 if (sbinfo->max_blocks) { 220 if (percpu_counter_compare(&sbinfo->used_blocks, 221 sbinfo->max_blocks - pages) > 0) 222 goto unacct; 223 percpu_counter_add(&sbinfo->used_blocks, pages); 224 } 225 226 return true; 227 228 unacct: 229 shmem_unacct_blocks(info->flags, pages); 230 return false; 231 } 232 233 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 234 { 235 struct shmem_inode_info *info = SHMEM_I(inode); 236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 237 238 if (sbinfo->max_blocks) 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 shmem_unacct_blocks(info->flags, pages); 241 } 242 243 static const struct super_operations shmem_ops; 244 const struct address_space_operations shmem_aops; 245 static const struct file_operations shmem_file_operations; 246 static const struct inode_operations shmem_inode_operations; 247 static const struct inode_operations shmem_dir_inode_operations; 248 static const struct inode_operations shmem_special_inode_operations; 249 static const struct vm_operations_struct shmem_vm_ops; 250 static struct file_system_type shmem_fs_type; 251 252 bool vma_is_shmem(struct vm_area_struct *vma) 253 { 254 return vma->vm_ops == &shmem_vm_ops; 255 } 256 257 static LIST_HEAD(shmem_swaplist); 258 static DEFINE_MUTEX(shmem_swaplist_mutex); 259 260 /* 261 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 262 * produces a novel ino for the newly allocated inode. 263 * 264 * It may also be called when making a hard link to permit the space needed by 265 * each dentry. However, in that case, no new inode number is needed since that 266 * internally draws from another pool of inode numbers (currently global 267 * get_next_ino()). This case is indicated by passing NULL as inop. 268 */ 269 #define SHMEM_INO_BATCH 1024 270 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 271 { 272 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 273 ino_t ino; 274 275 if (!(sb->s_flags & SB_KERNMOUNT)) { 276 raw_spin_lock(&sbinfo->stat_lock); 277 if (sbinfo->max_inodes) { 278 if (!sbinfo->free_inodes) { 279 raw_spin_unlock(&sbinfo->stat_lock); 280 return -ENOSPC; 281 } 282 sbinfo->free_inodes--; 283 } 284 if (inop) { 285 ino = sbinfo->next_ino++; 286 if (unlikely(is_zero_ino(ino))) 287 ino = sbinfo->next_ino++; 288 if (unlikely(!sbinfo->full_inums && 289 ino > UINT_MAX)) { 290 /* 291 * Emulate get_next_ino uint wraparound for 292 * compatibility 293 */ 294 if (IS_ENABLED(CONFIG_64BIT)) 295 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 296 __func__, MINOR(sb->s_dev)); 297 sbinfo->next_ino = 1; 298 ino = sbinfo->next_ino++; 299 } 300 *inop = ino; 301 } 302 raw_spin_unlock(&sbinfo->stat_lock); 303 } else if (inop) { 304 /* 305 * __shmem_file_setup, one of our callers, is lock-free: it 306 * doesn't hold stat_lock in shmem_reserve_inode since 307 * max_inodes is always 0, and is called from potentially 308 * unknown contexts. As such, use a per-cpu batched allocator 309 * which doesn't require the per-sb stat_lock unless we are at 310 * the batch boundary. 311 * 312 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 313 * shmem mounts are not exposed to userspace, so we don't need 314 * to worry about things like glibc compatibility. 315 */ 316 ino_t *next_ino; 317 318 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 319 ino = *next_ino; 320 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 321 raw_spin_lock(&sbinfo->stat_lock); 322 ino = sbinfo->next_ino; 323 sbinfo->next_ino += SHMEM_INO_BATCH; 324 raw_spin_unlock(&sbinfo->stat_lock); 325 if (unlikely(is_zero_ino(ino))) 326 ino++; 327 } 328 *inop = ino; 329 *next_ino = ++ino; 330 put_cpu(); 331 } 332 333 return 0; 334 } 335 336 static void shmem_free_inode(struct super_block *sb) 337 { 338 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 339 if (sbinfo->max_inodes) { 340 raw_spin_lock(&sbinfo->stat_lock); 341 sbinfo->free_inodes++; 342 raw_spin_unlock(&sbinfo->stat_lock); 343 } 344 } 345 346 /** 347 * shmem_recalc_inode - recalculate the block usage of an inode 348 * @inode: inode to recalc 349 * 350 * We have to calculate the free blocks since the mm can drop 351 * undirtied hole pages behind our back. 352 * 353 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 354 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 355 * 356 * It has to be called with the spinlock held. 357 */ 358 static void shmem_recalc_inode(struct inode *inode) 359 { 360 struct shmem_inode_info *info = SHMEM_I(inode); 361 long freed; 362 363 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 364 if (freed > 0) { 365 info->alloced -= freed; 366 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 367 shmem_inode_unacct_blocks(inode, freed); 368 } 369 } 370 371 bool shmem_charge(struct inode *inode, long pages) 372 { 373 struct shmem_inode_info *info = SHMEM_I(inode); 374 unsigned long flags; 375 376 if (!shmem_inode_acct_block(inode, pages)) 377 return false; 378 379 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 380 inode->i_mapping->nrpages += pages; 381 382 spin_lock_irqsave(&info->lock, flags); 383 info->alloced += pages; 384 inode->i_blocks += pages * BLOCKS_PER_PAGE; 385 shmem_recalc_inode(inode); 386 spin_unlock_irqrestore(&info->lock, flags); 387 388 return true; 389 } 390 391 void shmem_uncharge(struct inode *inode, long pages) 392 { 393 struct shmem_inode_info *info = SHMEM_I(inode); 394 unsigned long flags; 395 396 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 397 398 spin_lock_irqsave(&info->lock, flags); 399 info->alloced -= pages; 400 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 401 shmem_recalc_inode(inode); 402 spin_unlock_irqrestore(&info->lock, flags); 403 404 shmem_inode_unacct_blocks(inode, pages); 405 } 406 407 /* 408 * Replace item expected in xarray by a new item, while holding xa_lock. 409 */ 410 static int shmem_replace_entry(struct address_space *mapping, 411 pgoff_t index, void *expected, void *replacement) 412 { 413 XA_STATE(xas, &mapping->i_pages, index); 414 void *item; 415 416 VM_BUG_ON(!expected); 417 VM_BUG_ON(!replacement); 418 item = xas_load(&xas); 419 if (item != expected) 420 return -ENOENT; 421 xas_store(&xas, replacement); 422 return 0; 423 } 424 425 /* 426 * Sometimes, before we decide whether to proceed or to fail, we must check 427 * that an entry was not already brought back from swap by a racing thread. 428 * 429 * Checking page is not enough: by the time a SwapCache page is locked, it 430 * might be reused, and again be SwapCache, using the same swap as before. 431 */ 432 static bool shmem_confirm_swap(struct address_space *mapping, 433 pgoff_t index, swp_entry_t swap) 434 { 435 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 436 } 437 438 /* 439 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 440 * 441 * SHMEM_HUGE_NEVER: 442 * disables huge pages for the mount; 443 * SHMEM_HUGE_ALWAYS: 444 * enables huge pages for the mount; 445 * SHMEM_HUGE_WITHIN_SIZE: 446 * only allocate huge pages if the page will be fully within i_size, 447 * also respect fadvise()/madvise() hints; 448 * SHMEM_HUGE_ADVISE: 449 * only allocate huge pages if requested with fadvise()/madvise(); 450 */ 451 452 #define SHMEM_HUGE_NEVER 0 453 #define SHMEM_HUGE_ALWAYS 1 454 #define SHMEM_HUGE_WITHIN_SIZE 2 455 #define SHMEM_HUGE_ADVISE 3 456 457 /* 458 * Special values. 459 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 460 * 461 * SHMEM_HUGE_DENY: 462 * disables huge on shm_mnt and all mounts, for emergency use; 463 * SHMEM_HUGE_FORCE: 464 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 465 * 466 */ 467 #define SHMEM_HUGE_DENY (-1) 468 #define SHMEM_HUGE_FORCE (-2) 469 470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 471 /* ifdef here to avoid bloating shmem.o when not necessary */ 472 473 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 474 475 bool shmem_is_huge(struct vm_area_struct *vma, 476 struct inode *inode, pgoff_t index) 477 { 478 loff_t i_size; 479 480 if (!S_ISREG(inode->i_mode)) 481 return false; 482 if (shmem_huge == SHMEM_HUGE_DENY) 483 return false; 484 if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) || 485 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))) 486 return false; 487 if (shmem_huge == SHMEM_HUGE_FORCE) 488 return true; 489 490 switch (SHMEM_SB(inode->i_sb)->huge) { 491 case SHMEM_HUGE_ALWAYS: 492 return true; 493 case SHMEM_HUGE_WITHIN_SIZE: 494 index = round_up(index + 1, HPAGE_PMD_NR); 495 i_size = round_up(i_size_read(inode), PAGE_SIZE); 496 if (i_size >> PAGE_SHIFT >= index) 497 return true; 498 fallthrough; 499 case SHMEM_HUGE_ADVISE: 500 if (vma && (vma->vm_flags & VM_HUGEPAGE)) 501 return true; 502 fallthrough; 503 default: 504 return false; 505 } 506 } 507 508 #if defined(CONFIG_SYSFS) 509 static int shmem_parse_huge(const char *str) 510 { 511 if (!strcmp(str, "never")) 512 return SHMEM_HUGE_NEVER; 513 if (!strcmp(str, "always")) 514 return SHMEM_HUGE_ALWAYS; 515 if (!strcmp(str, "within_size")) 516 return SHMEM_HUGE_WITHIN_SIZE; 517 if (!strcmp(str, "advise")) 518 return SHMEM_HUGE_ADVISE; 519 if (!strcmp(str, "deny")) 520 return SHMEM_HUGE_DENY; 521 if (!strcmp(str, "force")) 522 return SHMEM_HUGE_FORCE; 523 return -EINVAL; 524 } 525 #endif 526 527 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 528 static const char *shmem_format_huge(int huge) 529 { 530 switch (huge) { 531 case SHMEM_HUGE_NEVER: 532 return "never"; 533 case SHMEM_HUGE_ALWAYS: 534 return "always"; 535 case SHMEM_HUGE_WITHIN_SIZE: 536 return "within_size"; 537 case SHMEM_HUGE_ADVISE: 538 return "advise"; 539 case SHMEM_HUGE_DENY: 540 return "deny"; 541 case SHMEM_HUGE_FORCE: 542 return "force"; 543 default: 544 VM_BUG_ON(1); 545 return "bad_val"; 546 } 547 } 548 #endif 549 550 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 551 struct shrink_control *sc, unsigned long nr_to_split) 552 { 553 LIST_HEAD(list), *pos, *next; 554 LIST_HEAD(to_remove); 555 struct inode *inode; 556 struct shmem_inode_info *info; 557 struct folio *folio; 558 unsigned long batch = sc ? sc->nr_to_scan : 128; 559 int split = 0; 560 561 if (list_empty(&sbinfo->shrinklist)) 562 return SHRINK_STOP; 563 564 spin_lock(&sbinfo->shrinklist_lock); 565 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 566 info = list_entry(pos, struct shmem_inode_info, shrinklist); 567 568 /* pin the inode */ 569 inode = igrab(&info->vfs_inode); 570 571 /* inode is about to be evicted */ 572 if (!inode) { 573 list_del_init(&info->shrinklist); 574 goto next; 575 } 576 577 /* Check if there's anything to gain */ 578 if (round_up(inode->i_size, PAGE_SIZE) == 579 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 580 list_move(&info->shrinklist, &to_remove); 581 goto next; 582 } 583 584 list_move(&info->shrinklist, &list); 585 next: 586 sbinfo->shrinklist_len--; 587 if (!--batch) 588 break; 589 } 590 spin_unlock(&sbinfo->shrinklist_lock); 591 592 list_for_each_safe(pos, next, &to_remove) { 593 info = list_entry(pos, struct shmem_inode_info, shrinklist); 594 inode = &info->vfs_inode; 595 list_del_init(&info->shrinklist); 596 iput(inode); 597 } 598 599 list_for_each_safe(pos, next, &list) { 600 int ret; 601 pgoff_t index; 602 603 info = list_entry(pos, struct shmem_inode_info, shrinklist); 604 inode = &info->vfs_inode; 605 606 if (nr_to_split && split >= nr_to_split) 607 goto move_back; 608 609 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 610 folio = filemap_get_folio(inode->i_mapping, index); 611 if (!folio) 612 goto drop; 613 614 /* No huge page at the end of the file: nothing to split */ 615 if (!folio_test_large(folio)) { 616 folio_put(folio); 617 goto drop; 618 } 619 620 /* 621 * Move the inode on the list back to shrinklist if we failed 622 * to lock the page at this time. 623 * 624 * Waiting for the lock may lead to deadlock in the 625 * reclaim path. 626 */ 627 if (!folio_trylock(folio)) { 628 folio_put(folio); 629 goto move_back; 630 } 631 632 ret = split_huge_page(&folio->page); 633 folio_unlock(folio); 634 folio_put(folio); 635 636 /* If split failed move the inode on the list back to shrinklist */ 637 if (ret) 638 goto move_back; 639 640 split++; 641 drop: 642 list_del_init(&info->shrinklist); 643 goto put; 644 move_back: 645 /* 646 * Make sure the inode is either on the global list or deleted 647 * from any local list before iput() since it could be deleted 648 * in another thread once we put the inode (then the local list 649 * is corrupted). 650 */ 651 spin_lock(&sbinfo->shrinklist_lock); 652 list_move(&info->shrinklist, &sbinfo->shrinklist); 653 sbinfo->shrinklist_len++; 654 spin_unlock(&sbinfo->shrinklist_lock); 655 put: 656 iput(inode); 657 } 658 659 return split; 660 } 661 662 static long shmem_unused_huge_scan(struct super_block *sb, 663 struct shrink_control *sc) 664 { 665 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 666 667 if (!READ_ONCE(sbinfo->shrinklist_len)) 668 return SHRINK_STOP; 669 670 return shmem_unused_huge_shrink(sbinfo, sc, 0); 671 } 672 673 static long shmem_unused_huge_count(struct super_block *sb, 674 struct shrink_control *sc) 675 { 676 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 677 return READ_ONCE(sbinfo->shrinklist_len); 678 } 679 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 680 681 #define shmem_huge SHMEM_HUGE_DENY 682 683 bool shmem_is_huge(struct vm_area_struct *vma, 684 struct inode *inode, pgoff_t index) 685 { 686 return false; 687 } 688 689 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 690 struct shrink_control *sc, unsigned long nr_to_split) 691 { 692 return 0; 693 } 694 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 695 696 /* 697 * Like filemap_add_folio, but error if expected item has gone. 698 */ 699 static int shmem_add_to_page_cache(struct folio *folio, 700 struct address_space *mapping, 701 pgoff_t index, void *expected, gfp_t gfp, 702 struct mm_struct *charge_mm) 703 { 704 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 705 long nr = folio_nr_pages(folio); 706 int error; 707 708 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 709 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 710 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 711 VM_BUG_ON(expected && folio_test_large(folio)); 712 713 folio_ref_add(folio, nr); 714 folio->mapping = mapping; 715 folio->index = index; 716 717 if (!folio_test_swapcache(folio)) { 718 error = mem_cgroup_charge(folio, charge_mm, gfp); 719 if (error) { 720 if (folio_test_pmd_mappable(folio)) { 721 count_vm_event(THP_FILE_FALLBACK); 722 count_vm_event(THP_FILE_FALLBACK_CHARGE); 723 } 724 goto error; 725 } 726 } 727 folio_throttle_swaprate(folio, gfp); 728 729 do { 730 xas_lock_irq(&xas); 731 if (expected != xas_find_conflict(&xas)) { 732 xas_set_err(&xas, -EEXIST); 733 goto unlock; 734 } 735 if (expected && xas_find_conflict(&xas)) { 736 xas_set_err(&xas, -EEXIST); 737 goto unlock; 738 } 739 xas_store(&xas, folio); 740 if (xas_error(&xas)) 741 goto unlock; 742 if (folio_test_pmd_mappable(folio)) { 743 count_vm_event(THP_FILE_ALLOC); 744 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 745 } 746 mapping->nrpages += nr; 747 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 748 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 749 unlock: 750 xas_unlock_irq(&xas); 751 } while (xas_nomem(&xas, gfp)); 752 753 if (xas_error(&xas)) { 754 error = xas_error(&xas); 755 goto error; 756 } 757 758 return 0; 759 error: 760 folio->mapping = NULL; 761 folio_ref_sub(folio, nr); 762 return error; 763 } 764 765 /* 766 * Like delete_from_page_cache, but substitutes swap for page. 767 */ 768 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 769 { 770 struct address_space *mapping = page->mapping; 771 int error; 772 773 VM_BUG_ON_PAGE(PageCompound(page), page); 774 775 xa_lock_irq(&mapping->i_pages); 776 error = shmem_replace_entry(mapping, page->index, page, radswap); 777 page->mapping = NULL; 778 mapping->nrpages--; 779 __dec_lruvec_page_state(page, NR_FILE_PAGES); 780 __dec_lruvec_page_state(page, NR_SHMEM); 781 xa_unlock_irq(&mapping->i_pages); 782 put_page(page); 783 BUG_ON(error); 784 } 785 786 /* 787 * Remove swap entry from page cache, free the swap and its page cache. 788 */ 789 static int shmem_free_swap(struct address_space *mapping, 790 pgoff_t index, void *radswap) 791 { 792 void *old; 793 794 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 795 if (old != radswap) 796 return -ENOENT; 797 free_swap_and_cache(radix_to_swp_entry(radswap)); 798 return 0; 799 } 800 801 /* 802 * Determine (in bytes) how many of the shmem object's pages mapped by the 803 * given offsets are swapped out. 804 * 805 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 806 * as long as the inode doesn't go away and racy results are not a problem. 807 */ 808 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 809 pgoff_t start, pgoff_t end) 810 { 811 XA_STATE(xas, &mapping->i_pages, start); 812 struct page *page; 813 unsigned long swapped = 0; 814 815 rcu_read_lock(); 816 xas_for_each(&xas, page, end - 1) { 817 if (xas_retry(&xas, page)) 818 continue; 819 if (xa_is_value(page)) 820 swapped++; 821 822 if (need_resched()) { 823 xas_pause(&xas); 824 cond_resched_rcu(); 825 } 826 } 827 828 rcu_read_unlock(); 829 830 return swapped << PAGE_SHIFT; 831 } 832 833 /* 834 * Determine (in bytes) how many of the shmem object's pages mapped by the 835 * given vma is swapped out. 836 * 837 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 838 * as long as the inode doesn't go away and racy results are not a problem. 839 */ 840 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 841 { 842 struct inode *inode = file_inode(vma->vm_file); 843 struct shmem_inode_info *info = SHMEM_I(inode); 844 struct address_space *mapping = inode->i_mapping; 845 unsigned long swapped; 846 847 /* Be careful as we don't hold info->lock */ 848 swapped = READ_ONCE(info->swapped); 849 850 /* 851 * The easier cases are when the shmem object has nothing in swap, or 852 * the vma maps it whole. Then we can simply use the stats that we 853 * already track. 854 */ 855 if (!swapped) 856 return 0; 857 858 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 859 return swapped << PAGE_SHIFT; 860 861 /* Here comes the more involved part */ 862 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 863 vma->vm_pgoff + vma_pages(vma)); 864 } 865 866 /* 867 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 868 */ 869 void shmem_unlock_mapping(struct address_space *mapping) 870 { 871 struct folio_batch fbatch; 872 pgoff_t index = 0; 873 874 folio_batch_init(&fbatch); 875 /* 876 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 877 */ 878 while (!mapping_unevictable(mapping) && 879 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 880 check_move_unevictable_folios(&fbatch); 881 folio_batch_release(&fbatch); 882 cond_resched(); 883 } 884 } 885 886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 887 { 888 struct folio *folio; 889 struct page *page; 890 891 /* 892 * At first avoid shmem_getpage(,,,SGP_READ): that fails 893 * beyond i_size, and reports fallocated pages as holes. 894 */ 895 folio = __filemap_get_folio(inode->i_mapping, index, 896 FGP_ENTRY | FGP_LOCK, 0); 897 if (!xa_is_value(folio)) 898 return folio; 899 /* 900 * But read a page back from swap if any of it is within i_size 901 * (although in some cases this is just a waste of time). 902 */ 903 page = NULL; 904 shmem_getpage(inode, index, &page, SGP_READ); 905 return page ? page_folio(page) : NULL; 906 } 907 908 /* 909 * Remove range of pages and swap entries from page cache, and free them. 910 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 911 */ 912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 913 bool unfalloc) 914 { 915 struct address_space *mapping = inode->i_mapping; 916 struct shmem_inode_info *info = SHMEM_I(inode); 917 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 918 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 919 struct folio_batch fbatch; 920 pgoff_t indices[PAGEVEC_SIZE]; 921 struct folio *folio; 922 bool same_folio; 923 long nr_swaps_freed = 0; 924 pgoff_t index; 925 int i; 926 927 if (lend == -1) 928 end = -1; /* unsigned, so actually very big */ 929 930 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 931 info->fallocend = start; 932 933 folio_batch_init(&fbatch); 934 index = start; 935 while (index < end && find_lock_entries(mapping, index, end - 1, 936 &fbatch, indices)) { 937 for (i = 0; i < folio_batch_count(&fbatch); i++) { 938 folio = fbatch.folios[i]; 939 940 index = indices[i]; 941 942 if (xa_is_value(folio)) { 943 if (unfalloc) 944 continue; 945 nr_swaps_freed += !shmem_free_swap(mapping, 946 index, folio); 947 continue; 948 } 949 index += folio_nr_pages(folio) - 1; 950 951 if (!unfalloc || !folio_test_uptodate(folio)) 952 truncate_inode_folio(mapping, folio); 953 folio_unlock(folio); 954 } 955 folio_batch_remove_exceptionals(&fbatch); 956 folio_batch_release(&fbatch); 957 cond_resched(); 958 index++; 959 } 960 961 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 962 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 963 if (folio) { 964 same_folio = lend < folio_pos(folio) + folio_size(folio); 965 folio_mark_dirty(folio); 966 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 967 start = folio->index + folio_nr_pages(folio); 968 if (same_folio) 969 end = folio->index; 970 } 971 folio_unlock(folio); 972 folio_put(folio); 973 folio = NULL; 974 } 975 976 if (!same_folio) 977 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 978 if (folio) { 979 folio_mark_dirty(folio); 980 if (!truncate_inode_partial_folio(folio, lstart, lend)) 981 end = folio->index; 982 folio_unlock(folio); 983 folio_put(folio); 984 } 985 986 index = start; 987 while (index < end) { 988 cond_resched(); 989 990 if (!find_get_entries(mapping, index, end - 1, &fbatch, 991 indices)) { 992 /* If all gone or hole-punch or unfalloc, we're done */ 993 if (index == start || end != -1) 994 break; 995 /* But if truncating, restart to make sure all gone */ 996 index = start; 997 continue; 998 } 999 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1000 folio = fbatch.folios[i]; 1001 1002 index = indices[i]; 1003 if (xa_is_value(folio)) { 1004 if (unfalloc) 1005 continue; 1006 if (shmem_free_swap(mapping, index, folio)) { 1007 /* Swap was replaced by page: retry */ 1008 index--; 1009 break; 1010 } 1011 nr_swaps_freed++; 1012 continue; 1013 } 1014 1015 folio_lock(folio); 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) { 1018 if (folio_mapping(folio) != mapping) { 1019 /* Page was replaced by swap: retry */ 1020 folio_unlock(folio); 1021 index--; 1022 break; 1023 } 1024 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1025 folio); 1026 truncate_inode_folio(mapping, folio); 1027 } 1028 index = folio->index + folio_nr_pages(folio) - 1; 1029 folio_unlock(folio); 1030 } 1031 folio_batch_remove_exceptionals(&fbatch); 1032 folio_batch_release(&fbatch); 1033 index++; 1034 } 1035 1036 spin_lock_irq(&info->lock); 1037 info->swapped -= nr_swaps_freed; 1038 shmem_recalc_inode(inode); 1039 spin_unlock_irq(&info->lock); 1040 } 1041 1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1043 { 1044 shmem_undo_range(inode, lstart, lend, false); 1045 inode->i_ctime = inode->i_mtime = current_time(inode); 1046 } 1047 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1048 1049 static int shmem_getattr(struct user_namespace *mnt_userns, 1050 const struct path *path, struct kstat *stat, 1051 u32 request_mask, unsigned int query_flags) 1052 { 1053 struct inode *inode = path->dentry->d_inode; 1054 struct shmem_inode_info *info = SHMEM_I(inode); 1055 1056 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1057 spin_lock_irq(&info->lock); 1058 shmem_recalc_inode(inode); 1059 spin_unlock_irq(&info->lock); 1060 } 1061 if (info->fsflags & FS_APPEND_FL) 1062 stat->attributes |= STATX_ATTR_APPEND; 1063 if (info->fsflags & FS_IMMUTABLE_FL) 1064 stat->attributes |= STATX_ATTR_IMMUTABLE; 1065 if (info->fsflags & FS_NODUMP_FL) 1066 stat->attributes |= STATX_ATTR_NODUMP; 1067 stat->attributes_mask |= (STATX_ATTR_APPEND | 1068 STATX_ATTR_IMMUTABLE | 1069 STATX_ATTR_NODUMP); 1070 generic_fillattr(&init_user_ns, inode, stat); 1071 1072 if (shmem_is_huge(NULL, inode, 0)) 1073 stat->blksize = HPAGE_PMD_SIZE; 1074 1075 if (request_mask & STATX_BTIME) { 1076 stat->result_mask |= STATX_BTIME; 1077 stat->btime.tv_sec = info->i_crtime.tv_sec; 1078 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1079 } 1080 1081 return 0; 1082 } 1083 1084 static int shmem_setattr(struct user_namespace *mnt_userns, 1085 struct dentry *dentry, struct iattr *attr) 1086 { 1087 struct inode *inode = d_inode(dentry); 1088 struct shmem_inode_info *info = SHMEM_I(inode); 1089 int error; 1090 1091 error = setattr_prepare(&init_user_ns, dentry, attr); 1092 if (error) 1093 return error; 1094 1095 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1096 loff_t oldsize = inode->i_size; 1097 loff_t newsize = attr->ia_size; 1098 1099 /* protected by i_rwsem */ 1100 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1101 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1102 return -EPERM; 1103 1104 if (newsize != oldsize) { 1105 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1106 oldsize, newsize); 1107 if (error) 1108 return error; 1109 i_size_write(inode, newsize); 1110 inode->i_ctime = inode->i_mtime = current_time(inode); 1111 } 1112 if (newsize <= oldsize) { 1113 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1114 if (oldsize > holebegin) 1115 unmap_mapping_range(inode->i_mapping, 1116 holebegin, 0, 1); 1117 if (info->alloced) 1118 shmem_truncate_range(inode, 1119 newsize, (loff_t)-1); 1120 /* unmap again to remove racily COWed private pages */ 1121 if (oldsize > holebegin) 1122 unmap_mapping_range(inode->i_mapping, 1123 holebegin, 0, 1); 1124 } 1125 } 1126 1127 setattr_copy(&init_user_ns, inode, attr); 1128 if (attr->ia_valid & ATTR_MODE) 1129 error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode); 1130 return error; 1131 } 1132 1133 static void shmem_evict_inode(struct inode *inode) 1134 { 1135 struct shmem_inode_info *info = SHMEM_I(inode); 1136 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1137 1138 if (shmem_mapping(inode->i_mapping)) { 1139 shmem_unacct_size(info->flags, inode->i_size); 1140 inode->i_size = 0; 1141 mapping_set_exiting(inode->i_mapping); 1142 shmem_truncate_range(inode, 0, (loff_t)-1); 1143 if (!list_empty(&info->shrinklist)) { 1144 spin_lock(&sbinfo->shrinklist_lock); 1145 if (!list_empty(&info->shrinklist)) { 1146 list_del_init(&info->shrinklist); 1147 sbinfo->shrinklist_len--; 1148 } 1149 spin_unlock(&sbinfo->shrinklist_lock); 1150 } 1151 while (!list_empty(&info->swaplist)) { 1152 /* Wait while shmem_unuse() is scanning this inode... */ 1153 wait_var_event(&info->stop_eviction, 1154 !atomic_read(&info->stop_eviction)); 1155 mutex_lock(&shmem_swaplist_mutex); 1156 /* ...but beware of the race if we peeked too early */ 1157 if (!atomic_read(&info->stop_eviction)) 1158 list_del_init(&info->swaplist); 1159 mutex_unlock(&shmem_swaplist_mutex); 1160 } 1161 } 1162 1163 simple_xattrs_free(&info->xattrs); 1164 WARN_ON(inode->i_blocks); 1165 shmem_free_inode(inode->i_sb); 1166 clear_inode(inode); 1167 } 1168 1169 static int shmem_find_swap_entries(struct address_space *mapping, 1170 pgoff_t start, struct folio_batch *fbatch, 1171 pgoff_t *indices, unsigned int type) 1172 { 1173 XA_STATE(xas, &mapping->i_pages, start); 1174 struct folio *folio; 1175 swp_entry_t entry; 1176 1177 rcu_read_lock(); 1178 xas_for_each(&xas, folio, ULONG_MAX) { 1179 if (xas_retry(&xas, folio)) 1180 continue; 1181 1182 if (!xa_is_value(folio)) 1183 continue; 1184 1185 entry = radix_to_swp_entry(folio); 1186 /* 1187 * swapin error entries can be found in the mapping. But they're 1188 * deliberately ignored here as we've done everything we can do. 1189 */ 1190 if (swp_type(entry) != type) 1191 continue; 1192 1193 indices[folio_batch_count(fbatch)] = xas.xa_index; 1194 if (!folio_batch_add(fbatch, folio)) 1195 break; 1196 1197 if (need_resched()) { 1198 xas_pause(&xas); 1199 cond_resched_rcu(); 1200 } 1201 } 1202 rcu_read_unlock(); 1203 1204 return xas.xa_index; 1205 } 1206 1207 /* 1208 * Move the swapped pages for an inode to page cache. Returns the count 1209 * of pages swapped in, or the error in case of failure. 1210 */ 1211 static int shmem_unuse_swap_entries(struct inode *inode, 1212 struct folio_batch *fbatch, pgoff_t *indices) 1213 { 1214 int i = 0; 1215 int ret = 0; 1216 int error = 0; 1217 struct address_space *mapping = inode->i_mapping; 1218 1219 for (i = 0; i < folio_batch_count(fbatch); i++) { 1220 struct folio *folio = fbatch->folios[i]; 1221 1222 if (!xa_is_value(folio)) 1223 continue; 1224 error = shmem_swapin_folio(inode, indices[i], 1225 &folio, SGP_CACHE, 1226 mapping_gfp_mask(mapping), 1227 NULL, NULL); 1228 if (error == 0) { 1229 folio_unlock(folio); 1230 folio_put(folio); 1231 ret++; 1232 } 1233 if (error == -ENOMEM) 1234 break; 1235 error = 0; 1236 } 1237 return error ? error : ret; 1238 } 1239 1240 /* 1241 * If swap found in inode, free it and move page from swapcache to filecache. 1242 */ 1243 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1244 { 1245 struct address_space *mapping = inode->i_mapping; 1246 pgoff_t start = 0; 1247 struct folio_batch fbatch; 1248 pgoff_t indices[PAGEVEC_SIZE]; 1249 int ret = 0; 1250 1251 do { 1252 folio_batch_init(&fbatch); 1253 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1254 if (folio_batch_count(&fbatch) == 0) { 1255 ret = 0; 1256 break; 1257 } 1258 1259 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1260 if (ret < 0) 1261 break; 1262 1263 start = indices[folio_batch_count(&fbatch) - 1]; 1264 } while (true); 1265 1266 return ret; 1267 } 1268 1269 /* 1270 * Read all the shared memory data that resides in the swap 1271 * device 'type' back into memory, so the swap device can be 1272 * unused. 1273 */ 1274 int shmem_unuse(unsigned int type) 1275 { 1276 struct shmem_inode_info *info, *next; 1277 int error = 0; 1278 1279 if (list_empty(&shmem_swaplist)) 1280 return 0; 1281 1282 mutex_lock(&shmem_swaplist_mutex); 1283 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1284 if (!info->swapped) { 1285 list_del_init(&info->swaplist); 1286 continue; 1287 } 1288 /* 1289 * Drop the swaplist mutex while searching the inode for swap; 1290 * but before doing so, make sure shmem_evict_inode() will not 1291 * remove placeholder inode from swaplist, nor let it be freed 1292 * (igrab() would protect from unlink, but not from unmount). 1293 */ 1294 atomic_inc(&info->stop_eviction); 1295 mutex_unlock(&shmem_swaplist_mutex); 1296 1297 error = shmem_unuse_inode(&info->vfs_inode, type); 1298 cond_resched(); 1299 1300 mutex_lock(&shmem_swaplist_mutex); 1301 next = list_next_entry(info, swaplist); 1302 if (!info->swapped) 1303 list_del_init(&info->swaplist); 1304 if (atomic_dec_and_test(&info->stop_eviction)) 1305 wake_up_var(&info->stop_eviction); 1306 if (error) 1307 break; 1308 } 1309 mutex_unlock(&shmem_swaplist_mutex); 1310 1311 return error; 1312 } 1313 1314 /* 1315 * Move the page from the page cache to the swap cache. 1316 */ 1317 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1318 { 1319 struct folio *folio = page_folio(page); 1320 struct shmem_inode_info *info; 1321 struct address_space *mapping; 1322 struct inode *inode; 1323 swp_entry_t swap; 1324 pgoff_t index; 1325 1326 /* 1327 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1328 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1329 * and its shmem_writeback() needs them to be split when swapping. 1330 */ 1331 if (PageTransCompound(page)) { 1332 /* Ensure the subpages are still dirty */ 1333 SetPageDirty(page); 1334 if (split_huge_page(page) < 0) 1335 goto redirty; 1336 ClearPageDirty(page); 1337 } 1338 1339 BUG_ON(!PageLocked(page)); 1340 mapping = page->mapping; 1341 index = page->index; 1342 inode = mapping->host; 1343 info = SHMEM_I(inode); 1344 if (info->flags & VM_LOCKED) 1345 goto redirty; 1346 if (!total_swap_pages) 1347 goto redirty; 1348 1349 /* 1350 * Our capabilities prevent regular writeback or sync from ever calling 1351 * shmem_writepage; but a stacking filesystem might use ->writepage of 1352 * its underlying filesystem, in which case tmpfs should write out to 1353 * swap only in response to memory pressure, and not for the writeback 1354 * threads or sync. 1355 */ 1356 if (!wbc->for_reclaim) { 1357 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1358 goto redirty; 1359 } 1360 1361 /* 1362 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1363 * value into swapfile.c, the only way we can correctly account for a 1364 * fallocated page arriving here is now to initialize it and write it. 1365 * 1366 * That's okay for a page already fallocated earlier, but if we have 1367 * not yet completed the fallocation, then (a) we want to keep track 1368 * of this page in case we have to undo it, and (b) it may not be a 1369 * good idea to continue anyway, once we're pushing into swap. So 1370 * reactivate the page, and let shmem_fallocate() quit when too many. 1371 */ 1372 if (!PageUptodate(page)) { 1373 if (inode->i_private) { 1374 struct shmem_falloc *shmem_falloc; 1375 spin_lock(&inode->i_lock); 1376 shmem_falloc = inode->i_private; 1377 if (shmem_falloc && 1378 !shmem_falloc->waitq && 1379 index >= shmem_falloc->start && 1380 index < shmem_falloc->next) 1381 shmem_falloc->nr_unswapped++; 1382 else 1383 shmem_falloc = NULL; 1384 spin_unlock(&inode->i_lock); 1385 if (shmem_falloc) 1386 goto redirty; 1387 } 1388 clear_highpage(page); 1389 flush_dcache_page(page); 1390 SetPageUptodate(page); 1391 } 1392 1393 swap = folio_alloc_swap(folio); 1394 if (!swap.val) 1395 goto redirty; 1396 1397 /* 1398 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1399 * if it's not already there. Do it now before the page is 1400 * moved to swap cache, when its pagelock no longer protects 1401 * the inode from eviction. But don't unlock the mutex until 1402 * we've incremented swapped, because shmem_unuse_inode() will 1403 * prune a !swapped inode from the swaplist under this mutex. 1404 */ 1405 mutex_lock(&shmem_swaplist_mutex); 1406 if (list_empty(&info->swaplist)) 1407 list_add(&info->swaplist, &shmem_swaplist); 1408 1409 if (add_to_swap_cache(page, swap, 1410 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1411 NULL) == 0) { 1412 spin_lock_irq(&info->lock); 1413 shmem_recalc_inode(inode); 1414 info->swapped++; 1415 spin_unlock_irq(&info->lock); 1416 1417 swap_shmem_alloc(swap); 1418 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1419 1420 mutex_unlock(&shmem_swaplist_mutex); 1421 BUG_ON(page_mapped(page)); 1422 swap_writepage(page, wbc); 1423 return 0; 1424 } 1425 1426 mutex_unlock(&shmem_swaplist_mutex); 1427 put_swap_page(page, swap); 1428 redirty: 1429 set_page_dirty(page); 1430 if (wbc->for_reclaim) 1431 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1432 unlock_page(page); 1433 return 0; 1434 } 1435 1436 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1437 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1438 { 1439 char buffer[64]; 1440 1441 if (!mpol || mpol->mode == MPOL_DEFAULT) 1442 return; /* show nothing */ 1443 1444 mpol_to_str(buffer, sizeof(buffer), mpol); 1445 1446 seq_printf(seq, ",mpol=%s", buffer); 1447 } 1448 1449 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1450 { 1451 struct mempolicy *mpol = NULL; 1452 if (sbinfo->mpol) { 1453 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1454 mpol = sbinfo->mpol; 1455 mpol_get(mpol); 1456 raw_spin_unlock(&sbinfo->stat_lock); 1457 } 1458 return mpol; 1459 } 1460 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1461 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1462 { 1463 } 1464 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1465 { 1466 return NULL; 1467 } 1468 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1469 #ifndef CONFIG_NUMA 1470 #define vm_policy vm_private_data 1471 #endif 1472 1473 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1474 struct shmem_inode_info *info, pgoff_t index) 1475 { 1476 /* Create a pseudo vma that just contains the policy */ 1477 vma_init(vma, NULL); 1478 /* Bias interleave by inode number to distribute better across nodes */ 1479 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1480 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1481 } 1482 1483 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1484 { 1485 /* Drop reference taken by mpol_shared_policy_lookup() */ 1486 mpol_cond_put(vma->vm_policy); 1487 } 1488 1489 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1490 struct shmem_inode_info *info, pgoff_t index) 1491 { 1492 struct vm_area_struct pvma; 1493 struct page *page; 1494 struct vm_fault vmf = { 1495 .vma = &pvma, 1496 }; 1497 1498 shmem_pseudo_vma_init(&pvma, info, index); 1499 page = swap_cluster_readahead(swap, gfp, &vmf); 1500 shmem_pseudo_vma_destroy(&pvma); 1501 1502 return page; 1503 } 1504 1505 /* 1506 * Make sure huge_gfp is always more limited than limit_gfp. 1507 * Some of the flags set permissions, while others set limitations. 1508 */ 1509 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1510 { 1511 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1512 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1513 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1514 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1515 1516 /* Allow allocations only from the originally specified zones. */ 1517 result |= zoneflags; 1518 1519 /* 1520 * Minimize the result gfp by taking the union with the deny flags, 1521 * and the intersection of the allow flags. 1522 */ 1523 result |= (limit_gfp & denyflags); 1524 result |= (huge_gfp & limit_gfp) & allowflags; 1525 1526 return result; 1527 } 1528 1529 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1530 struct shmem_inode_info *info, pgoff_t index) 1531 { 1532 struct vm_area_struct pvma; 1533 struct address_space *mapping = info->vfs_inode.i_mapping; 1534 pgoff_t hindex; 1535 struct folio *folio; 1536 1537 hindex = round_down(index, HPAGE_PMD_NR); 1538 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1539 XA_PRESENT)) 1540 return NULL; 1541 1542 shmem_pseudo_vma_init(&pvma, info, hindex); 1543 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1544 shmem_pseudo_vma_destroy(&pvma); 1545 if (!folio) 1546 count_vm_event(THP_FILE_FALLBACK); 1547 return folio; 1548 } 1549 1550 static struct folio *shmem_alloc_folio(gfp_t gfp, 1551 struct shmem_inode_info *info, pgoff_t index) 1552 { 1553 struct vm_area_struct pvma; 1554 struct folio *folio; 1555 1556 shmem_pseudo_vma_init(&pvma, info, index); 1557 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1558 shmem_pseudo_vma_destroy(&pvma); 1559 1560 return folio; 1561 } 1562 1563 static struct page *shmem_alloc_page(gfp_t gfp, 1564 struct shmem_inode_info *info, pgoff_t index) 1565 { 1566 return &shmem_alloc_folio(gfp, info, index)->page; 1567 } 1568 1569 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1570 pgoff_t index, bool huge) 1571 { 1572 struct shmem_inode_info *info = SHMEM_I(inode); 1573 struct folio *folio; 1574 int nr; 1575 int err = -ENOSPC; 1576 1577 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1578 huge = false; 1579 nr = huge ? HPAGE_PMD_NR : 1; 1580 1581 if (!shmem_inode_acct_block(inode, nr)) 1582 goto failed; 1583 1584 if (huge) 1585 folio = shmem_alloc_hugefolio(gfp, info, index); 1586 else 1587 folio = shmem_alloc_folio(gfp, info, index); 1588 if (folio) { 1589 __folio_set_locked(folio); 1590 __folio_set_swapbacked(folio); 1591 return folio; 1592 } 1593 1594 err = -ENOMEM; 1595 shmem_inode_unacct_blocks(inode, nr); 1596 failed: 1597 return ERR_PTR(err); 1598 } 1599 1600 /* 1601 * When a page is moved from swapcache to shmem filecache (either by the 1602 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1603 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1604 * ignorance of the mapping it belongs to. If that mapping has special 1605 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1606 * we may need to copy to a suitable page before moving to filecache. 1607 * 1608 * In a future release, this may well be extended to respect cpuset and 1609 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1610 * but for now it is a simple matter of zone. 1611 */ 1612 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1613 { 1614 return folio_zonenum(folio) > gfp_zone(gfp); 1615 } 1616 1617 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1618 struct shmem_inode_info *info, pgoff_t index) 1619 { 1620 struct page *oldpage, *newpage; 1621 struct folio *old, *new; 1622 struct address_space *swap_mapping; 1623 swp_entry_t entry; 1624 pgoff_t swap_index; 1625 int error; 1626 1627 oldpage = *pagep; 1628 entry.val = page_private(oldpage); 1629 swap_index = swp_offset(entry); 1630 swap_mapping = page_mapping(oldpage); 1631 1632 /* 1633 * We have arrived here because our zones are constrained, so don't 1634 * limit chance of success by further cpuset and node constraints. 1635 */ 1636 gfp &= ~GFP_CONSTRAINT_MASK; 1637 newpage = shmem_alloc_page(gfp, info, index); 1638 if (!newpage) 1639 return -ENOMEM; 1640 1641 get_page(newpage); 1642 copy_highpage(newpage, oldpage); 1643 flush_dcache_page(newpage); 1644 1645 __SetPageLocked(newpage); 1646 __SetPageSwapBacked(newpage); 1647 SetPageUptodate(newpage); 1648 set_page_private(newpage, entry.val); 1649 SetPageSwapCache(newpage); 1650 1651 /* 1652 * Our caller will very soon move newpage out of swapcache, but it's 1653 * a nice clean interface for us to replace oldpage by newpage there. 1654 */ 1655 xa_lock_irq(&swap_mapping->i_pages); 1656 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1657 if (!error) { 1658 old = page_folio(oldpage); 1659 new = page_folio(newpage); 1660 mem_cgroup_migrate(old, new); 1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1663 } 1664 xa_unlock_irq(&swap_mapping->i_pages); 1665 1666 if (unlikely(error)) { 1667 /* 1668 * Is this possible? I think not, now that our callers check 1669 * both PageSwapCache and page_private after getting page lock; 1670 * but be defensive. Reverse old to newpage for clear and free. 1671 */ 1672 oldpage = newpage; 1673 } else { 1674 lru_cache_add(newpage); 1675 *pagep = newpage; 1676 } 1677 1678 ClearPageSwapCache(oldpage); 1679 set_page_private(oldpage, 0); 1680 1681 unlock_page(oldpage); 1682 put_page(oldpage); 1683 put_page(oldpage); 1684 return error; 1685 } 1686 1687 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1688 struct folio *folio, swp_entry_t swap) 1689 { 1690 struct address_space *mapping = inode->i_mapping; 1691 struct shmem_inode_info *info = SHMEM_I(inode); 1692 swp_entry_t swapin_error; 1693 void *old; 1694 1695 swapin_error = make_swapin_error_entry(&folio->page); 1696 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1697 swp_to_radix_entry(swap), 1698 swp_to_radix_entry(swapin_error), 0); 1699 if (old != swp_to_radix_entry(swap)) 1700 return; 1701 1702 folio_wait_writeback(folio); 1703 delete_from_swap_cache(folio); 1704 spin_lock_irq(&info->lock); 1705 /* 1706 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't 1707 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in 1708 * shmem_evict_inode. 1709 */ 1710 info->alloced--; 1711 info->swapped--; 1712 shmem_recalc_inode(inode); 1713 spin_unlock_irq(&info->lock); 1714 swap_free(swap); 1715 } 1716 1717 /* 1718 * Swap in the folio pointed to by *foliop. 1719 * Caller has to make sure that *foliop contains a valid swapped folio. 1720 * Returns 0 and the folio in foliop if success. On failure, returns the 1721 * error code and NULL in *foliop. 1722 */ 1723 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1724 struct folio **foliop, enum sgp_type sgp, 1725 gfp_t gfp, struct vm_area_struct *vma, 1726 vm_fault_t *fault_type) 1727 { 1728 struct address_space *mapping = inode->i_mapping; 1729 struct shmem_inode_info *info = SHMEM_I(inode); 1730 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1731 struct page *page; 1732 struct folio *folio = NULL; 1733 swp_entry_t swap; 1734 int error; 1735 1736 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1737 swap = radix_to_swp_entry(*foliop); 1738 *foliop = NULL; 1739 1740 if (is_swapin_error_entry(swap)) 1741 return -EIO; 1742 1743 /* Look it up and read it in.. */ 1744 page = lookup_swap_cache(swap, NULL, 0); 1745 if (!page) { 1746 /* Or update major stats only when swapin succeeds?? */ 1747 if (fault_type) { 1748 *fault_type |= VM_FAULT_MAJOR; 1749 count_vm_event(PGMAJFAULT); 1750 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1751 } 1752 /* Here we actually start the io */ 1753 page = shmem_swapin(swap, gfp, info, index); 1754 if (!page) { 1755 error = -ENOMEM; 1756 goto failed; 1757 } 1758 } 1759 folio = page_folio(page); 1760 1761 /* We have to do this with folio locked to prevent races */ 1762 folio_lock(folio); 1763 if (!folio_test_swapcache(folio) || 1764 folio_swap_entry(folio).val != swap.val || 1765 !shmem_confirm_swap(mapping, index, swap)) { 1766 error = -EEXIST; 1767 goto unlock; 1768 } 1769 if (!folio_test_uptodate(folio)) { 1770 error = -EIO; 1771 goto failed; 1772 } 1773 folio_wait_writeback(folio); 1774 1775 /* 1776 * Some architectures may have to restore extra metadata to the 1777 * folio after reading from swap. 1778 */ 1779 arch_swap_restore(swap, folio); 1780 1781 if (shmem_should_replace_folio(folio, gfp)) { 1782 error = shmem_replace_page(&page, gfp, info, index); 1783 if (error) 1784 goto failed; 1785 } 1786 1787 error = shmem_add_to_page_cache(folio, mapping, index, 1788 swp_to_radix_entry(swap), gfp, 1789 charge_mm); 1790 if (error) 1791 goto failed; 1792 1793 spin_lock_irq(&info->lock); 1794 info->swapped--; 1795 shmem_recalc_inode(inode); 1796 spin_unlock_irq(&info->lock); 1797 1798 if (sgp == SGP_WRITE) 1799 folio_mark_accessed(folio); 1800 1801 delete_from_swap_cache(folio); 1802 folio_mark_dirty(folio); 1803 swap_free(swap); 1804 1805 *foliop = folio; 1806 return 0; 1807 failed: 1808 if (!shmem_confirm_swap(mapping, index, swap)) 1809 error = -EEXIST; 1810 if (error == -EIO) 1811 shmem_set_folio_swapin_error(inode, index, folio, swap); 1812 unlock: 1813 if (folio) { 1814 folio_unlock(folio); 1815 folio_put(folio); 1816 } 1817 1818 return error; 1819 } 1820 1821 /* 1822 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1823 * 1824 * If we allocate a new one we do not mark it dirty. That's up to the 1825 * vm. If we swap it in we mark it dirty since we also free the swap 1826 * entry since a page cannot live in both the swap and page cache. 1827 * 1828 * vma, vmf, and fault_type are only supplied by shmem_fault: 1829 * otherwise they are NULL. 1830 */ 1831 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1832 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1833 struct vm_area_struct *vma, struct vm_fault *vmf, 1834 vm_fault_t *fault_type) 1835 { 1836 struct address_space *mapping = inode->i_mapping; 1837 struct shmem_inode_info *info = SHMEM_I(inode); 1838 struct shmem_sb_info *sbinfo; 1839 struct mm_struct *charge_mm; 1840 struct folio *folio; 1841 pgoff_t hindex = index; 1842 gfp_t huge_gfp; 1843 int error; 1844 int once = 0; 1845 int alloced = 0; 1846 1847 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1848 return -EFBIG; 1849 repeat: 1850 if (sgp <= SGP_CACHE && 1851 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1852 return -EINVAL; 1853 } 1854 1855 sbinfo = SHMEM_SB(inode->i_sb); 1856 charge_mm = vma ? vma->vm_mm : NULL; 1857 1858 folio = __filemap_get_folio(mapping, index, FGP_ENTRY | FGP_LOCK, 0); 1859 if (folio && vma && userfaultfd_minor(vma)) { 1860 if (!xa_is_value(folio)) { 1861 folio_unlock(folio); 1862 folio_put(folio); 1863 } 1864 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1865 return 0; 1866 } 1867 1868 if (xa_is_value(folio)) { 1869 error = shmem_swapin_folio(inode, index, &folio, 1870 sgp, gfp, vma, fault_type); 1871 if (error == -EEXIST) 1872 goto repeat; 1873 1874 *pagep = &folio->page; 1875 return error; 1876 } 1877 1878 if (folio) { 1879 hindex = folio->index; 1880 if (sgp == SGP_WRITE) 1881 folio_mark_accessed(folio); 1882 if (folio_test_uptodate(folio)) 1883 goto out; 1884 /* fallocated page */ 1885 if (sgp != SGP_READ) 1886 goto clear; 1887 folio_unlock(folio); 1888 folio_put(folio); 1889 } 1890 1891 /* 1892 * SGP_READ: succeed on hole, with NULL page, letting caller zero. 1893 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail. 1894 */ 1895 *pagep = NULL; 1896 if (sgp == SGP_READ) 1897 return 0; 1898 if (sgp == SGP_NOALLOC) 1899 return -ENOENT; 1900 1901 /* 1902 * Fast cache lookup and swap lookup did not find it: allocate. 1903 */ 1904 1905 if (vma && userfaultfd_missing(vma)) { 1906 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1907 return 0; 1908 } 1909 1910 if (!shmem_is_huge(vma, inode, index)) 1911 goto alloc_nohuge; 1912 1913 huge_gfp = vma_thp_gfp_mask(vma); 1914 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 1915 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 1916 if (IS_ERR(folio)) { 1917 alloc_nohuge: 1918 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 1919 } 1920 if (IS_ERR(folio)) { 1921 int retry = 5; 1922 1923 error = PTR_ERR(folio); 1924 folio = NULL; 1925 if (error != -ENOSPC) 1926 goto unlock; 1927 /* 1928 * Try to reclaim some space by splitting a huge page 1929 * beyond i_size on the filesystem. 1930 */ 1931 while (retry--) { 1932 int ret; 1933 1934 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1935 if (ret == SHRINK_STOP) 1936 break; 1937 if (ret) 1938 goto alloc_nohuge; 1939 } 1940 goto unlock; 1941 } 1942 1943 hindex = round_down(index, folio_nr_pages(folio)); 1944 1945 if (sgp == SGP_WRITE) 1946 __folio_set_referenced(folio); 1947 1948 error = shmem_add_to_page_cache(folio, mapping, hindex, 1949 NULL, gfp & GFP_RECLAIM_MASK, 1950 charge_mm); 1951 if (error) 1952 goto unacct; 1953 folio_add_lru(folio); 1954 1955 spin_lock_irq(&info->lock); 1956 info->alloced += folio_nr_pages(folio); 1957 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio); 1958 shmem_recalc_inode(inode); 1959 spin_unlock_irq(&info->lock); 1960 alloced = true; 1961 1962 if (folio_test_pmd_mappable(folio) && 1963 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1964 hindex + HPAGE_PMD_NR - 1) { 1965 /* 1966 * Part of the huge page is beyond i_size: subject 1967 * to shrink under memory pressure. 1968 */ 1969 spin_lock(&sbinfo->shrinklist_lock); 1970 /* 1971 * _careful to defend against unlocked access to 1972 * ->shrink_list in shmem_unused_huge_shrink() 1973 */ 1974 if (list_empty_careful(&info->shrinklist)) { 1975 list_add_tail(&info->shrinklist, 1976 &sbinfo->shrinklist); 1977 sbinfo->shrinklist_len++; 1978 } 1979 spin_unlock(&sbinfo->shrinklist_lock); 1980 } 1981 1982 /* 1983 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1984 */ 1985 if (sgp == SGP_FALLOC) 1986 sgp = SGP_WRITE; 1987 clear: 1988 /* 1989 * Let SGP_WRITE caller clear ends if write does not fill page; 1990 * but SGP_FALLOC on a page fallocated earlier must initialize 1991 * it now, lest undo on failure cancel our earlier guarantee. 1992 */ 1993 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 1994 long i, n = folio_nr_pages(folio); 1995 1996 for (i = 0; i < n; i++) 1997 clear_highpage(folio_page(folio, i)); 1998 flush_dcache_folio(folio); 1999 folio_mark_uptodate(folio); 2000 } 2001 2002 /* Perhaps the file has been truncated since we checked */ 2003 if (sgp <= SGP_CACHE && 2004 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2005 if (alloced) { 2006 folio_clear_dirty(folio); 2007 filemap_remove_folio(folio); 2008 spin_lock_irq(&info->lock); 2009 shmem_recalc_inode(inode); 2010 spin_unlock_irq(&info->lock); 2011 } 2012 error = -EINVAL; 2013 goto unlock; 2014 } 2015 out: 2016 *pagep = folio_page(folio, index - hindex); 2017 return 0; 2018 2019 /* 2020 * Error recovery. 2021 */ 2022 unacct: 2023 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2024 2025 if (folio_test_large(folio)) { 2026 folio_unlock(folio); 2027 folio_put(folio); 2028 goto alloc_nohuge; 2029 } 2030 unlock: 2031 if (folio) { 2032 folio_unlock(folio); 2033 folio_put(folio); 2034 } 2035 if (error == -ENOSPC && !once++) { 2036 spin_lock_irq(&info->lock); 2037 shmem_recalc_inode(inode); 2038 spin_unlock_irq(&info->lock); 2039 goto repeat; 2040 } 2041 if (error == -EEXIST) 2042 goto repeat; 2043 return error; 2044 } 2045 2046 /* 2047 * This is like autoremove_wake_function, but it removes the wait queue 2048 * entry unconditionally - even if something else had already woken the 2049 * target. 2050 */ 2051 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2052 { 2053 int ret = default_wake_function(wait, mode, sync, key); 2054 list_del_init(&wait->entry); 2055 return ret; 2056 } 2057 2058 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2059 { 2060 struct vm_area_struct *vma = vmf->vma; 2061 struct inode *inode = file_inode(vma->vm_file); 2062 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2063 int err; 2064 vm_fault_t ret = VM_FAULT_LOCKED; 2065 2066 /* 2067 * Trinity finds that probing a hole which tmpfs is punching can 2068 * prevent the hole-punch from ever completing: which in turn 2069 * locks writers out with its hold on i_rwsem. So refrain from 2070 * faulting pages into the hole while it's being punched. Although 2071 * shmem_undo_range() does remove the additions, it may be unable to 2072 * keep up, as each new page needs its own unmap_mapping_range() call, 2073 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2074 * 2075 * It does not matter if we sometimes reach this check just before the 2076 * hole-punch begins, so that one fault then races with the punch: 2077 * we just need to make racing faults a rare case. 2078 * 2079 * The implementation below would be much simpler if we just used a 2080 * standard mutex or completion: but we cannot take i_rwsem in fault, 2081 * and bloating every shmem inode for this unlikely case would be sad. 2082 */ 2083 if (unlikely(inode->i_private)) { 2084 struct shmem_falloc *shmem_falloc; 2085 2086 spin_lock(&inode->i_lock); 2087 shmem_falloc = inode->i_private; 2088 if (shmem_falloc && 2089 shmem_falloc->waitq && 2090 vmf->pgoff >= shmem_falloc->start && 2091 vmf->pgoff < shmem_falloc->next) { 2092 struct file *fpin; 2093 wait_queue_head_t *shmem_falloc_waitq; 2094 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2095 2096 ret = VM_FAULT_NOPAGE; 2097 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2098 if (fpin) 2099 ret = VM_FAULT_RETRY; 2100 2101 shmem_falloc_waitq = shmem_falloc->waitq; 2102 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2103 TASK_UNINTERRUPTIBLE); 2104 spin_unlock(&inode->i_lock); 2105 schedule(); 2106 2107 /* 2108 * shmem_falloc_waitq points into the shmem_fallocate() 2109 * stack of the hole-punching task: shmem_falloc_waitq 2110 * is usually invalid by the time we reach here, but 2111 * finish_wait() does not dereference it in that case; 2112 * though i_lock needed lest racing with wake_up_all(). 2113 */ 2114 spin_lock(&inode->i_lock); 2115 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2116 spin_unlock(&inode->i_lock); 2117 2118 if (fpin) 2119 fput(fpin); 2120 return ret; 2121 } 2122 spin_unlock(&inode->i_lock); 2123 } 2124 2125 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE, 2126 gfp, vma, vmf, &ret); 2127 if (err) 2128 return vmf_error(err); 2129 return ret; 2130 } 2131 2132 unsigned long shmem_get_unmapped_area(struct file *file, 2133 unsigned long uaddr, unsigned long len, 2134 unsigned long pgoff, unsigned long flags) 2135 { 2136 unsigned long (*get_area)(struct file *, 2137 unsigned long, unsigned long, unsigned long, unsigned long); 2138 unsigned long addr; 2139 unsigned long offset; 2140 unsigned long inflated_len; 2141 unsigned long inflated_addr; 2142 unsigned long inflated_offset; 2143 2144 if (len > TASK_SIZE) 2145 return -ENOMEM; 2146 2147 get_area = current->mm->get_unmapped_area; 2148 addr = get_area(file, uaddr, len, pgoff, flags); 2149 2150 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2151 return addr; 2152 if (IS_ERR_VALUE(addr)) 2153 return addr; 2154 if (addr & ~PAGE_MASK) 2155 return addr; 2156 if (addr > TASK_SIZE - len) 2157 return addr; 2158 2159 if (shmem_huge == SHMEM_HUGE_DENY) 2160 return addr; 2161 if (len < HPAGE_PMD_SIZE) 2162 return addr; 2163 if (flags & MAP_FIXED) 2164 return addr; 2165 /* 2166 * Our priority is to support MAP_SHARED mapped hugely; 2167 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2168 * But if caller specified an address hint and we allocated area there 2169 * successfully, respect that as before. 2170 */ 2171 if (uaddr == addr) 2172 return addr; 2173 2174 if (shmem_huge != SHMEM_HUGE_FORCE) { 2175 struct super_block *sb; 2176 2177 if (file) { 2178 VM_BUG_ON(file->f_op != &shmem_file_operations); 2179 sb = file_inode(file)->i_sb; 2180 } else { 2181 /* 2182 * Called directly from mm/mmap.c, or drivers/char/mem.c 2183 * for "/dev/zero", to create a shared anonymous object. 2184 */ 2185 if (IS_ERR(shm_mnt)) 2186 return addr; 2187 sb = shm_mnt->mnt_sb; 2188 } 2189 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2190 return addr; 2191 } 2192 2193 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2194 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2195 return addr; 2196 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2197 return addr; 2198 2199 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2200 if (inflated_len > TASK_SIZE) 2201 return addr; 2202 if (inflated_len < len) 2203 return addr; 2204 2205 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2206 if (IS_ERR_VALUE(inflated_addr)) 2207 return addr; 2208 if (inflated_addr & ~PAGE_MASK) 2209 return addr; 2210 2211 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2212 inflated_addr += offset - inflated_offset; 2213 if (inflated_offset > offset) 2214 inflated_addr += HPAGE_PMD_SIZE; 2215 2216 if (inflated_addr > TASK_SIZE - len) 2217 return addr; 2218 return inflated_addr; 2219 } 2220 2221 #ifdef CONFIG_NUMA 2222 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2223 { 2224 struct inode *inode = file_inode(vma->vm_file); 2225 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2226 } 2227 2228 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2229 unsigned long addr) 2230 { 2231 struct inode *inode = file_inode(vma->vm_file); 2232 pgoff_t index; 2233 2234 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2235 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2236 } 2237 #endif 2238 2239 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2240 { 2241 struct inode *inode = file_inode(file); 2242 struct shmem_inode_info *info = SHMEM_I(inode); 2243 int retval = -ENOMEM; 2244 2245 /* 2246 * What serializes the accesses to info->flags? 2247 * ipc_lock_object() when called from shmctl_do_lock(), 2248 * no serialization needed when called from shm_destroy(). 2249 */ 2250 if (lock && !(info->flags & VM_LOCKED)) { 2251 if (!user_shm_lock(inode->i_size, ucounts)) 2252 goto out_nomem; 2253 info->flags |= VM_LOCKED; 2254 mapping_set_unevictable(file->f_mapping); 2255 } 2256 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2257 user_shm_unlock(inode->i_size, ucounts); 2258 info->flags &= ~VM_LOCKED; 2259 mapping_clear_unevictable(file->f_mapping); 2260 } 2261 retval = 0; 2262 2263 out_nomem: 2264 return retval; 2265 } 2266 2267 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2268 { 2269 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2270 int ret; 2271 2272 ret = seal_check_future_write(info->seals, vma); 2273 if (ret) 2274 return ret; 2275 2276 /* arm64 - allow memory tagging on RAM-based files */ 2277 vma->vm_flags |= VM_MTE_ALLOWED; 2278 2279 file_accessed(file); 2280 vma->vm_ops = &shmem_vm_ops; 2281 return 0; 2282 } 2283 2284 /* Mask out flags that are inappropriate for the given type of inode. */ 2285 static unsigned shmem_mask_flags(umode_t mode, __u32 flags) 2286 { 2287 if (S_ISDIR(mode)) 2288 return flags; 2289 else if (S_ISREG(mode)) 2290 return flags & SHMEM_REG_FLMASK; 2291 else 2292 return flags & SHMEM_OTHER_FLMASK; 2293 } 2294 2295 static struct inode *shmem_get_inode(struct super_block *sb, struct inode *dir, 2296 umode_t mode, dev_t dev, unsigned long flags) 2297 { 2298 struct inode *inode; 2299 struct shmem_inode_info *info; 2300 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2301 ino_t ino; 2302 2303 if (shmem_reserve_inode(sb, &ino)) 2304 return NULL; 2305 2306 inode = new_inode(sb); 2307 if (inode) { 2308 inode->i_ino = ino; 2309 inode_init_owner(&init_user_ns, inode, dir, mode); 2310 inode->i_blocks = 0; 2311 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2312 inode->i_generation = prandom_u32(); 2313 info = SHMEM_I(inode); 2314 memset(info, 0, (char *)inode - (char *)info); 2315 spin_lock_init(&info->lock); 2316 atomic_set(&info->stop_eviction, 0); 2317 info->seals = F_SEAL_SEAL; 2318 info->flags = flags & VM_NORESERVE; 2319 info->i_crtime = inode->i_mtime; 2320 info->fsflags = (dir == NULL) ? 0 : 2321 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2322 info->fsflags = shmem_mask_flags(mode, info->fsflags); 2323 INIT_LIST_HEAD(&info->shrinklist); 2324 INIT_LIST_HEAD(&info->swaplist); 2325 simple_xattrs_init(&info->xattrs); 2326 cache_no_acl(inode); 2327 mapping_set_large_folios(inode->i_mapping); 2328 2329 switch (mode & S_IFMT) { 2330 default: 2331 inode->i_op = &shmem_special_inode_operations; 2332 init_special_inode(inode, mode, dev); 2333 break; 2334 case S_IFREG: 2335 inode->i_mapping->a_ops = &shmem_aops; 2336 inode->i_op = &shmem_inode_operations; 2337 inode->i_fop = &shmem_file_operations; 2338 mpol_shared_policy_init(&info->policy, 2339 shmem_get_sbmpol(sbinfo)); 2340 break; 2341 case S_IFDIR: 2342 inc_nlink(inode); 2343 /* Some things misbehave if size == 0 on a directory */ 2344 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2345 inode->i_op = &shmem_dir_inode_operations; 2346 inode->i_fop = &simple_dir_operations; 2347 break; 2348 case S_IFLNK: 2349 /* 2350 * Must not load anything in the rbtree, 2351 * mpol_free_shared_policy will not be called. 2352 */ 2353 mpol_shared_policy_init(&info->policy, NULL); 2354 break; 2355 } 2356 2357 lockdep_annotate_inode_mutex_key(inode); 2358 } else 2359 shmem_free_inode(sb); 2360 return inode; 2361 } 2362 2363 #ifdef CONFIG_USERFAULTFD 2364 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2365 pmd_t *dst_pmd, 2366 struct vm_area_struct *dst_vma, 2367 unsigned long dst_addr, 2368 unsigned long src_addr, 2369 bool zeropage, bool wp_copy, 2370 struct page **pagep) 2371 { 2372 struct inode *inode = file_inode(dst_vma->vm_file); 2373 struct shmem_inode_info *info = SHMEM_I(inode); 2374 struct address_space *mapping = inode->i_mapping; 2375 gfp_t gfp = mapping_gfp_mask(mapping); 2376 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2377 void *page_kaddr; 2378 struct folio *folio; 2379 struct page *page; 2380 int ret; 2381 pgoff_t max_off; 2382 2383 if (!shmem_inode_acct_block(inode, 1)) { 2384 /* 2385 * We may have got a page, returned -ENOENT triggering a retry, 2386 * and now we find ourselves with -ENOMEM. Release the page, to 2387 * avoid a BUG_ON in our caller. 2388 */ 2389 if (unlikely(*pagep)) { 2390 put_page(*pagep); 2391 *pagep = NULL; 2392 } 2393 return -ENOMEM; 2394 } 2395 2396 if (!*pagep) { 2397 ret = -ENOMEM; 2398 page = shmem_alloc_page(gfp, info, pgoff); 2399 if (!page) 2400 goto out_unacct_blocks; 2401 2402 if (!zeropage) { /* COPY */ 2403 page_kaddr = kmap_atomic(page); 2404 ret = copy_from_user(page_kaddr, 2405 (const void __user *)src_addr, 2406 PAGE_SIZE); 2407 kunmap_atomic(page_kaddr); 2408 2409 /* fallback to copy_from_user outside mmap_lock */ 2410 if (unlikely(ret)) { 2411 *pagep = page; 2412 ret = -ENOENT; 2413 /* don't free the page */ 2414 goto out_unacct_blocks; 2415 } 2416 2417 flush_dcache_page(page); 2418 } else { /* ZEROPAGE */ 2419 clear_user_highpage(page, dst_addr); 2420 } 2421 } else { 2422 page = *pagep; 2423 *pagep = NULL; 2424 } 2425 2426 VM_BUG_ON(PageLocked(page)); 2427 VM_BUG_ON(PageSwapBacked(page)); 2428 __SetPageLocked(page); 2429 __SetPageSwapBacked(page); 2430 __SetPageUptodate(page); 2431 2432 ret = -EFAULT; 2433 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2434 if (unlikely(pgoff >= max_off)) 2435 goto out_release; 2436 2437 folio = page_folio(page); 2438 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2439 gfp & GFP_RECLAIM_MASK, dst_mm); 2440 if (ret) 2441 goto out_release; 2442 2443 ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr, 2444 page, true, wp_copy); 2445 if (ret) 2446 goto out_delete_from_cache; 2447 2448 spin_lock_irq(&info->lock); 2449 info->alloced++; 2450 inode->i_blocks += BLOCKS_PER_PAGE; 2451 shmem_recalc_inode(inode); 2452 spin_unlock_irq(&info->lock); 2453 2454 unlock_page(page); 2455 return 0; 2456 out_delete_from_cache: 2457 delete_from_page_cache(page); 2458 out_release: 2459 unlock_page(page); 2460 put_page(page); 2461 out_unacct_blocks: 2462 shmem_inode_unacct_blocks(inode, 1); 2463 return ret; 2464 } 2465 #endif /* CONFIG_USERFAULTFD */ 2466 2467 #ifdef CONFIG_TMPFS 2468 static const struct inode_operations shmem_symlink_inode_operations; 2469 static const struct inode_operations shmem_short_symlink_operations; 2470 2471 #ifdef CONFIG_TMPFS_XATTR 2472 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2473 #else 2474 #define shmem_initxattrs NULL 2475 #endif 2476 2477 static int 2478 shmem_write_begin(struct file *file, struct address_space *mapping, 2479 loff_t pos, unsigned len, 2480 struct page **pagep, void **fsdata) 2481 { 2482 struct inode *inode = mapping->host; 2483 struct shmem_inode_info *info = SHMEM_I(inode); 2484 pgoff_t index = pos >> PAGE_SHIFT; 2485 int ret = 0; 2486 2487 /* i_rwsem is held by caller */ 2488 if (unlikely(info->seals & (F_SEAL_GROW | 2489 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2490 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2491 return -EPERM; 2492 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2493 return -EPERM; 2494 } 2495 2496 ret = shmem_getpage(inode, index, pagep, SGP_WRITE); 2497 2498 if (ret) 2499 return ret; 2500 2501 if (PageHWPoison(*pagep)) { 2502 unlock_page(*pagep); 2503 put_page(*pagep); 2504 *pagep = NULL; 2505 return -EIO; 2506 } 2507 2508 return 0; 2509 } 2510 2511 static int 2512 shmem_write_end(struct file *file, struct address_space *mapping, 2513 loff_t pos, unsigned len, unsigned copied, 2514 struct page *page, void *fsdata) 2515 { 2516 struct inode *inode = mapping->host; 2517 2518 if (pos + copied > inode->i_size) 2519 i_size_write(inode, pos + copied); 2520 2521 if (!PageUptodate(page)) { 2522 struct page *head = compound_head(page); 2523 if (PageTransCompound(page)) { 2524 int i; 2525 2526 for (i = 0; i < HPAGE_PMD_NR; i++) { 2527 if (head + i == page) 2528 continue; 2529 clear_highpage(head + i); 2530 flush_dcache_page(head + i); 2531 } 2532 } 2533 if (copied < PAGE_SIZE) { 2534 unsigned from = pos & (PAGE_SIZE - 1); 2535 zero_user_segments(page, 0, from, 2536 from + copied, PAGE_SIZE); 2537 } 2538 SetPageUptodate(head); 2539 } 2540 set_page_dirty(page); 2541 unlock_page(page); 2542 put_page(page); 2543 2544 return copied; 2545 } 2546 2547 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2548 { 2549 struct file *file = iocb->ki_filp; 2550 struct inode *inode = file_inode(file); 2551 struct address_space *mapping = inode->i_mapping; 2552 pgoff_t index; 2553 unsigned long offset; 2554 int error = 0; 2555 ssize_t retval = 0; 2556 loff_t *ppos = &iocb->ki_pos; 2557 2558 index = *ppos >> PAGE_SHIFT; 2559 offset = *ppos & ~PAGE_MASK; 2560 2561 for (;;) { 2562 struct page *page = NULL; 2563 pgoff_t end_index; 2564 unsigned long nr, ret; 2565 loff_t i_size = i_size_read(inode); 2566 2567 end_index = i_size >> PAGE_SHIFT; 2568 if (index > end_index) 2569 break; 2570 if (index == end_index) { 2571 nr = i_size & ~PAGE_MASK; 2572 if (nr <= offset) 2573 break; 2574 } 2575 2576 error = shmem_getpage(inode, index, &page, SGP_READ); 2577 if (error) { 2578 if (error == -EINVAL) 2579 error = 0; 2580 break; 2581 } 2582 if (page) { 2583 unlock_page(page); 2584 2585 if (PageHWPoison(page)) { 2586 put_page(page); 2587 error = -EIO; 2588 break; 2589 } 2590 } 2591 2592 /* 2593 * We must evaluate after, since reads (unlike writes) 2594 * are called without i_rwsem protection against truncate 2595 */ 2596 nr = PAGE_SIZE; 2597 i_size = i_size_read(inode); 2598 end_index = i_size >> PAGE_SHIFT; 2599 if (index == end_index) { 2600 nr = i_size & ~PAGE_MASK; 2601 if (nr <= offset) { 2602 if (page) 2603 put_page(page); 2604 break; 2605 } 2606 } 2607 nr -= offset; 2608 2609 if (page) { 2610 /* 2611 * If users can be writing to this page using arbitrary 2612 * virtual addresses, take care about potential aliasing 2613 * before reading the page on the kernel side. 2614 */ 2615 if (mapping_writably_mapped(mapping)) 2616 flush_dcache_page(page); 2617 /* 2618 * Mark the page accessed if we read the beginning. 2619 */ 2620 if (!offset) 2621 mark_page_accessed(page); 2622 /* 2623 * Ok, we have the page, and it's up-to-date, so 2624 * now we can copy it to user space... 2625 */ 2626 ret = copy_page_to_iter(page, offset, nr, to); 2627 put_page(page); 2628 2629 } else if (user_backed_iter(to)) { 2630 /* 2631 * Copy to user tends to be so well optimized, but 2632 * clear_user() not so much, that it is noticeably 2633 * faster to copy the zero page instead of clearing. 2634 */ 2635 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2636 } else { 2637 /* 2638 * But submitting the same page twice in a row to 2639 * splice() - or others? - can result in confusion: 2640 * so don't attempt that optimization on pipes etc. 2641 */ 2642 ret = iov_iter_zero(nr, to); 2643 } 2644 2645 retval += ret; 2646 offset += ret; 2647 index += offset >> PAGE_SHIFT; 2648 offset &= ~PAGE_MASK; 2649 2650 if (!iov_iter_count(to)) 2651 break; 2652 if (ret < nr) { 2653 error = -EFAULT; 2654 break; 2655 } 2656 cond_resched(); 2657 } 2658 2659 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2660 file_accessed(file); 2661 return retval ? retval : error; 2662 } 2663 2664 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2665 { 2666 struct address_space *mapping = file->f_mapping; 2667 struct inode *inode = mapping->host; 2668 2669 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2670 return generic_file_llseek_size(file, offset, whence, 2671 MAX_LFS_FILESIZE, i_size_read(inode)); 2672 if (offset < 0) 2673 return -ENXIO; 2674 2675 inode_lock(inode); 2676 /* We're holding i_rwsem so we can access i_size directly */ 2677 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 2678 if (offset >= 0) 2679 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2680 inode_unlock(inode); 2681 return offset; 2682 } 2683 2684 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2685 loff_t len) 2686 { 2687 struct inode *inode = file_inode(file); 2688 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2689 struct shmem_inode_info *info = SHMEM_I(inode); 2690 struct shmem_falloc shmem_falloc; 2691 pgoff_t start, index, end, undo_fallocend; 2692 int error; 2693 2694 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2695 return -EOPNOTSUPP; 2696 2697 inode_lock(inode); 2698 2699 if (mode & FALLOC_FL_PUNCH_HOLE) { 2700 struct address_space *mapping = file->f_mapping; 2701 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2702 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2703 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2704 2705 /* protected by i_rwsem */ 2706 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2707 error = -EPERM; 2708 goto out; 2709 } 2710 2711 shmem_falloc.waitq = &shmem_falloc_waitq; 2712 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2713 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2714 spin_lock(&inode->i_lock); 2715 inode->i_private = &shmem_falloc; 2716 spin_unlock(&inode->i_lock); 2717 2718 if ((u64)unmap_end > (u64)unmap_start) 2719 unmap_mapping_range(mapping, unmap_start, 2720 1 + unmap_end - unmap_start, 0); 2721 shmem_truncate_range(inode, offset, offset + len - 1); 2722 /* No need to unmap again: hole-punching leaves COWed pages */ 2723 2724 spin_lock(&inode->i_lock); 2725 inode->i_private = NULL; 2726 wake_up_all(&shmem_falloc_waitq); 2727 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2728 spin_unlock(&inode->i_lock); 2729 error = 0; 2730 goto out; 2731 } 2732 2733 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2734 error = inode_newsize_ok(inode, offset + len); 2735 if (error) 2736 goto out; 2737 2738 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2739 error = -EPERM; 2740 goto out; 2741 } 2742 2743 start = offset >> PAGE_SHIFT; 2744 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2745 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2746 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2747 error = -ENOSPC; 2748 goto out; 2749 } 2750 2751 shmem_falloc.waitq = NULL; 2752 shmem_falloc.start = start; 2753 shmem_falloc.next = start; 2754 shmem_falloc.nr_falloced = 0; 2755 shmem_falloc.nr_unswapped = 0; 2756 spin_lock(&inode->i_lock); 2757 inode->i_private = &shmem_falloc; 2758 spin_unlock(&inode->i_lock); 2759 2760 /* 2761 * info->fallocend is only relevant when huge pages might be 2762 * involved: to prevent split_huge_page() freeing fallocated 2763 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 2764 */ 2765 undo_fallocend = info->fallocend; 2766 if (info->fallocend < end) 2767 info->fallocend = end; 2768 2769 for (index = start; index < end; ) { 2770 struct page *page; 2771 2772 /* 2773 * Good, the fallocate(2) manpage permits EINTR: we may have 2774 * been interrupted because we are using up too much memory. 2775 */ 2776 if (signal_pending(current)) 2777 error = -EINTR; 2778 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2779 error = -ENOMEM; 2780 else 2781 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2782 if (error) { 2783 info->fallocend = undo_fallocend; 2784 /* Remove the !PageUptodate pages we added */ 2785 if (index > start) { 2786 shmem_undo_range(inode, 2787 (loff_t)start << PAGE_SHIFT, 2788 ((loff_t)index << PAGE_SHIFT) - 1, true); 2789 } 2790 goto undone; 2791 } 2792 2793 index++; 2794 /* 2795 * Here is a more important optimization than it appears: 2796 * a second SGP_FALLOC on the same huge page will clear it, 2797 * making it PageUptodate and un-undoable if we fail later. 2798 */ 2799 if (PageTransCompound(page)) { 2800 index = round_up(index, HPAGE_PMD_NR); 2801 /* Beware 32-bit wraparound */ 2802 if (!index) 2803 index--; 2804 } 2805 2806 /* 2807 * Inform shmem_writepage() how far we have reached. 2808 * No need for lock or barrier: we have the page lock. 2809 */ 2810 if (!PageUptodate(page)) 2811 shmem_falloc.nr_falloced += index - shmem_falloc.next; 2812 shmem_falloc.next = index; 2813 2814 /* 2815 * If !PageUptodate, leave it that way so that freeable pages 2816 * can be recognized if we need to rollback on error later. 2817 * But set_page_dirty so that memory pressure will swap rather 2818 * than free the pages we are allocating (and SGP_CACHE pages 2819 * might still be clean: we now need to mark those dirty too). 2820 */ 2821 set_page_dirty(page); 2822 unlock_page(page); 2823 put_page(page); 2824 cond_resched(); 2825 } 2826 2827 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2828 i_size_write(inode, offset + len); 2829 inode->i_ctime = current_time(inode); 2830 undone: 2831 spin_lock(&inode->i_lock); 2832 inode->i_private = NULL; 2833 spin_unlock(&inode->i_lock); 2834 out: 2835 inode_unlock(inode); 2836 return error; 2837 } 2838 2839 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2840 { 2841 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2842 2843 buf->f_type = TMPFS_MAGIC; 2844 buf->f_bsize = PAGE_SIZE; 2845 buf->f_namelen = NAME_MAX; 2846 if (sbinfo->max_blocks) { 2847 buf->f_blocks = sbinfo->max_blocks; 2848 buf->f_bavail = 2849 buf->f_bfree = sbinfo->max_blocks - 2850 percpu_counter_sum(&sbinfo->used_blocks); 2851 } 2852 if (sbinfo->max_inodes) { 2853 buf->f_files = sbinfo->max_inodes; 2854 buf->f_ffree = sbinfo->free_inodes; 2855 } 2856 /* else leave those fields 0 like simple_statfs */ 2857 2858 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * File creation. Allocate an inode, and we're done.. 2865 */ 2866 static int 2867 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2868 struct dentry *dentry, umode_t mode, dev_t dev) 2869 { 2870 struct inode *inode; 2871 int error = -ENOSPC; 2872 2873 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2874 if (inode) { 2875 error = simple_acl_create(dir, inode); 2876 if (error) 2877 goto out_iput; 2878 error = security_inode_init_security(inode, dir, 2879 &dentry->d_name, 2880 shmem_initxattrs, NULL); 2881 if (error && error != -EOPNOTSUPP) 2882 goto out_iput; 2883 2884 error = 0; 2885 dir->i_size += BOGO_DIRENT_SIZE; 2886 dir->i_ctime = dir->i_mtime = current_time(dir); 2887 d_instantiate(dentry, inode); 2888 dget(dentry); /* Extra count - pin the dentry in core */ 2889 } 2890 return error; 2891 out_iput: 2892 iput(inode); 2893 return error; 2894 } 2895 2896 static int 2897 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 2898 struct dentry *dentry, umode_t mode) 2899 { 2900 struct inode *inode; 2901 int error = -ENOSPC; 2902 2903 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2904 if (inode) { 2905 error = security_inode_init_security(inode, dir, 2906 NULL, 2907 shmem_initxattrs, NULL); 2908 if (error && error != -EOPNOTSUPP) 2909 goto out_iput; 2910 error = simple_acl_create(dir, inode); 2911 if (error) 2912 goto out_iput; 2913 d_tmpfile(dentry, inode); 2914 } 2915 return error; 2916 out_iput: 2917 iput(inode); 2918 return error; 2919 } 2920 2921 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2922 struct dentry *dentry, umode_t mode) 2923 { 2924 int error; 2925 2926 if ((error = shmem_mknod(&init_user_ns, dir, dentry, 2927 mode | S_IFDIR, 0))) 2928 return error; 2929 inc_nlink(dir); 2930 return 0; 2931 } 2932 2933 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir, 2934 struct dentry *dentry, umode_t mode, bool excl) 2935 { 2936 return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 2937 } 2938 2939 /* 2940 * Link a file.. 2941 */ 2942 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2943 { 2944 struct inode *inode = d_inode(old_dentry); 2945 int ret = 0; 2946 2947 /* 2948 * No ordinary (disk based) filesystem counts links as inodes; 2949 * but each new link needs a new dentry, pinning lowmem, and 2950 * tmpfs dentries cannot be pruned until they are unlinked. 2951 * But if an O_TMPFILE file is linked into the tmpfs, the 2952 * first link must skip that, to get the accounting right. 2953 */ 2954 if (inode->i_nlink) { 2955 ret = shmem_reserve_inode(inode->i_sb, NULL); 2956 if (ret) 2957 goto out; 2958 } 2959 2960 dir->i_size += BOGO_DIRENT_SIZE; 2961 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2962 inc_nlink(inode); 2963 ihold(inode); /* New dentry reference */ 2964 dget(dentry); /* Extra pinning count for the created dentry */ 2965 d_instantiate(dentry, inode); 2966 out: 2967 return ret; 2968 } 2969 2970 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2971 { 2972 struct inode *inode = d_inode(dentry); 2973 2974 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2975 shmem_free_inode(inode->i_sb); 2976 2977 dir->i_size -= BOGO_DIRENT_SIZE; 2978 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2979 drop_nlink(inode); 2980 dput(dentry); /* Undo the count from "create" - this does all the work */ 2981 return 0; 2982 } 2983 2984 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2985 { 2986 if (!simple_empty(dentry)) 2987 return -ENOTEMPTY; 2988 2989 drop_nlink(d_inode(dentry)); 2990 drop_nlink(dir); 2991 return shmem_unlink(dir, dentry); 2992 } 2993 2994 static int shmem_whiteout(struct user_namespace *mnt_userns, 2995 struct inode *old_dir, struct dentry *old_dentry) 2996 { 2997 struct dentry *whiteout; 2998 int error; 2999 3000 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3001 if (!whiteout) 3002 return -ENOMEM; 3003 3004 error = shmem_mknod(&init_user_ns, old_dir, whiteout, 3005 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3006 dput(whiteout); 3007 if (error) 3008 return error; 3009 3010 /* 3011 * Cheat and hash the whiteout while the old dentry is still in 3012 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3013 * 3014 * d_lookup() will consistently find one of them at this point, 3015 * not sure which one, but that isn't even important. 3016 */ 3017 d_rehash(whiteout); 3018 return 0; 3019 } 3020 3021 /* 3022 * The VFS layer already does all the dentry stuff for rename, 3023 * we just have to decrement the usage count for the target if 3024 * it exists so that the VFS layer correctly free's it when it 3025 * gets overwritten. 3026 */ 3027 static int shmem_rename2(struct user_namespace *mnt_userns, 3028 struct inode *old_dir, struct dentry *old_dentry, 3029 struct inode *new_dir, struct dentry *new_dentry, 3030 unsigned int flags) 3031 { 3032 struct inode *inode = d_inode(old_dentry); 3033 int they_are_dirs = S_ISDIR(inode->i_mode); 3034 3035 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3036 return -EINVAL; 3037 3038 if (flags & RENAME_EXCHANGE) 3039 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 3040 3041 if (!simple_empty(new_dentry)) 3042 return -ENOTEMPTY; 3043 3044 if (flags & RENAME_WHITEOUT) { 3045 int error; 3046 3047 error = shmem_whiteout(&init_user_ns, old_dir, old_dentry); 3048 if (error) 3049 return error; 3050 } 3051 3052 if (d_really_is_positive(new_dentry)) { 3053 (void) shmem_unlink(new_dir, new_dentry); 3054 if (they_are_dirs) { 3055 drop_nlink(d_inode(new_dentry)); 3056 drop_nlink(old_dir); 3057 } 3058 } else if (they_are_dirs) { 3059 drop_nlink(old_dir); 3060 inc_nlink(new_dir); 3061 } 3062 3063 old_dir->i_size -= BOGO_DIRENT_SIZE; 3064 new_dir->i_size += BOGO_DIRENT_SIZE; 3065 old_dir->i_ctime = old_dir->i_mtime = 3066 new_dir->i_ctime = new_dir->i_mtime = 3067 inode->i_ctime = current_time(old_dir); 3068 return 0; 3069 } 3070 3071 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir, 3072 struct dentry *dentry, const char *symname) 3073 { 3074 int error; 3075 int len; 3076 struct inode *inode; 3077 struct page *page; 3078 3079 len = strlen(symname) + 1; 3080 if (len > PAGE_SIZE) 3081 return -ENAMETOOLONG; 3082 3083 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3084 VM_NORESERVE); 3085 if (!inode) 3086 return -ENOSPC; 3087 3088 error = security_inode_init_security(inode, dir, &dentry->d_name, 3089 shmem_initxattrs, NULL); 3090 if (error && error != -EOPNOTSUPP) { 3091 iput(inode); 3092 return error; 3093 } 3094 3095 inode->i_size = len-1; 3096 if (len <= SHORT_SYMLINK_LEN) { 3097 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3098 if (!inode->i_link) { 3099 iput(inode); 3100 return -ENOMEM; 3101 } 3102 inode->i_op = &shmem_short_symlink_operations; 3103 } else { 3104 inode_nohighmem(inode); 3105 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3106 if (error) { 3107 iput(inode); 3108 return error; 3109 } 3110 inode->i_mapping->a_ops = &shmem_aops; 3111 inode->i_op = &shmem_symlink_inode_operations; 3112 memcpy(page_address(page), symname, len); 3113 SetPageUptodate(page); 3114 set_page_dirty(page); 3115 unlock_page(page); 3116 put_page(page); 3117 } 3118 dir->i_size += BOGO_DIRENT_SIZE; 3119 dir->i_ctime = dir->i_mtime = current_time(dir); 3120 d_instantiate(dentry, inode); 3121 dget(dentry); 3122 return 0; 3123 } 3124 3125 static void shmem_put_link(void *arg) 3126 { 3127 mark_page_accessed(arg); 3128 put_page(arg); 3129 } 3130 3131 static const char *shmem_get_link(struct dentry *dentry, 3132 struct inode *inode, 3133 struct delayed_call *done) 3134 { 3135 struct page *page = NULL; 3136 int error; 3137 if (!dentry) { 3138 page = find_get_page(inode->i_mapping, 0); 3139 if (!page) 3140 return ERR_PTR(-ECHILD); 3141 if (PageHWPoison(page) || 3142 !PageUptodate(page)) { 3143 put_page(page); 3144 return ERR_PTR(-ECHILD); 3145 } 3146 } else { 3147 error = shmem_getpage(inode, 0, &page, SGP_READ); 3148 if (error) 3149 return ERR_PTR(error); 3150 if (!page) 3151 return ERR_PTR(-ECHILD); 3152 if (PageHWPoison(page)) { 3153 unlock_page(page); 3154 put_page(page); 3155 return ERR_PTR(-ECHILD); 3156 } 3157 unlock_page(page); 3158 } 3159 set_delayed_call(done, shmem_put_link, page); 3160 return page_address(page); 3161 } 3162 3163 #ifdef CONFIG_TMPFS_XATTR 3164 3165 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3166 { 3167 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3168 3169 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3170 3171 return 0; 3172 } 3173 3174 static int shmem_fileattr_set(struct user_namespace *mnt_userns, 3175 struct dentry *dentry, struct fileattr *fa) 3176 { 3177 struct inode *inode = d_inode(dentry); 3178 struct shmem_inode_info *info = SHMEM_I(inode); 3179 3180 if (fileattr_has_fsx(fa)) 3181 return -EOPNOTSUPP; 3182 3183 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3184 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3185 3186 inode->i_flags &= ~(S_APPEND | S_IMMUTABLE | S_NOATIME); 3187 if (info->fsflags & FS_APPEND_FL) 3188 inode->i_flags |= S_APPEND; 3189 if (info->fsflags & FS_IMMUTABLE_FL) 3190 inode->i_flags |= S_IMMUTABLE; 3191 if (info->fsflags & FS_NOATIME_FL) 3192 inode->i_flags |= S_NOATIME; 3193 3194 inode->i_ctime = current_time(inode); 3195 return 0; 3196 } 3197 3198 /* 3199 * Superblocks without xattr inode operations may get some security.* xattr 3200 * support from the LSM "for free". As soon as we have any other xattrs 3201 * like ACLs, we also need to implement the security.* handlers at 3202 * filesystem level, though. 3203 */ 3204 3205 /* 3206 * Callback for security_inode_init_security() for acquiring xattrs. 3207 */ 3208 static int shmem_initxattrs(struct inode *inode, 3209 const struct xattr *xattr_array, 3210 void *fs_info) 3211 { 3212 struct shmem_inode_info *info = SHMEM_I(inode); 3213 const struct xattr *xattr; 3214 struct simple_xattr *new_xattr; 3215 size_t len; 3216 3217 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3218 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3219 if (!new_xattr) 3220 return -ENOMEM; 3221 3222 len = strlen(xattr->name) + 1; 3223 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3224 GFP_KERNEL); 3225 if (!new_xattr->name) { 3226 kvfree(new_xattr); 3227 return -ENOMEM; 3228 } 3229 3230 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3231 XATTR_SECURITY_PREFIX_LEN); 3232 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3233 xattr->name, len); 3234 3235 simple_xattr_list_add(&info->xattrs, new_xattr); 3236 } 3237 3238 return 0; 3239 } 3240 3241 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3242 struct dentry *unused, struct inode *inode, 3243 const char *name, void *buffer, size_t size) 3244 { 3245 struct shmem_inode_info *info = SHMEM_I(inode); 3246 3247 name = xattr_full_name(handler, name); 3248 return simple_xattr_get(&info->xattrs, name, buffer, size); 3249 } 3250 3251 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3252 struct user_namespace *mnt_userns, 3253 struct dentry *unused, struct inode *inode, 3254 const char *name, const void *value, 3255 size_t size, int flags) 3256 { 3257 struct shmem_inode_info *info = SHMEM_I(inode); 3258 3259 name = xattr_full_name(handler, name); 3260 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3261 } 3262 3263 static const struct xattr_handler shmem_security_xattr_handler = { 3264 .prefix = XATTR_SECURITY_PREFIX, 3265 .get = shmem_xattr_handler_get, 3266 .set = shmem_xattr_handler_set, 3267 }; 3268 3269 static const struct xattr_handler shmem_trusted_xattr_handler = { 3270 .prefix = XATTR_TRUSTED_PREFIX, 3271 .get = shmem_xattr_handler_get, 3272 .set = shmem_xattr_handler_set, 3273 }; 3274 3275 static const struct xattr_handler *shmem_xattr_handlers[] = { 3276 #ifdef CONFIG_TMPFS_POSIX_ACL 3277 &posix_acl_access_xattr_handler, 3278 &posix_acl_default_xattr_handler, 3279 #endif 3280 &shmem_security_xattr_handler, 3281 &shmem_trusted_xattr_handler, 3282 NULL 3283 }; 3284 3285 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3286 { 3287 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3288 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3289 } 3290 #endif /* CONFIG_TMPFS_XATTR */ 3291 3292 static const struct inode_operations shmem_short_symlink_operations = { 3293 .getattr = shmem_getattr, 3294 .get_link = simple_get_link, 3295 #ifdef CONFIG_TMPFS_XATTR 3296 .listxattr = shmem_listxattr, 3297 #endif 3298 }; 3299 3300 static const struct inode_operations shmem_symlink_inode_operations = { 3301 .getattr = shmem_getattr, 3302 .get_link = shmem_get_link, 3303 #ifdef CONFIG_TMPFS_XATTR 3304 .listxattr = shmem_listxattr, 3305 #endif 3306 }; 3307 3308 static struct dentry *shmem_get_parent(struct dentry *child) 3309 { 3310 return ERR_PTR(-ESTALE); 3311 } 3312 3313 static int shmem_match(struct inode *ino, void *vfh) 3314 { 3315 __u32 *fh = vfh; 3316 __u64 inum = fh[2]; 3317 inum = (inum << 32) | fh[1]; 3318 return ino->i_ino == inum && fh[0] == ino->i_generation; 3319 } 3320 3321 /* Find any alias of inode, but prefer a hashed alias */ 3322 static struct dentry *shmem_find_alias(struct inode *inode) 3323 { 3324 struct dentry *alias = d_find_alias(inode); 3325 3326 return alias ?: d_find_any_alias(inode); 3327 } 3328 3329 3330 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3331 struct fid *fid, int fh_len, int fh_type) 3332 { 3333 struct inode *inode; 3334 struct dentry *dentry = NULL; 3335 u64 inum; 3336 3337 if (fh_len < 3) 3338 return NULL; 3339 3340 inum = fid->raw[2]; 3341 inum = (inum << 32) | fid->raw[1]; 3342 3343 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3344 shmem_match, fid->raw); 3345 if (inode) { 3346 dentry = shmem_find_alias(inode); 3347 iput(inode); 3348 } 3349 3350 return dentry; 3351 } 3352 3353 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3354 struct inode *parent) 3355 { 3356 if (*len < 3) { 3357 *len = 3; 3358 return FILEID_INVALID; 3359 } 3360 3361 if (inode_unhashed(inode)) { 3362 /* Unfortunately insert_inode_hash is not idempotent, 3363 * so as we hash inodes here rather than at creation 3364 * time, we need a lock to ensure we only try 3365 * to do it once 3366 */ 3367 static DEFINE_SPINLOCK(lock); 3368 spin_lock(&lock); 3369 if (inode_unhashed(inode)) 3370 __insert_inode_hash(inode, 3371 inode->i_ino + inode->i_generation); 3372 spin_unlock(&lock); 3373 } 3374 3375 fh[0] = inode->i_generation; 3376 fh[1] = inode->i_ino; 3377 fh[2] = ((__u64)inode->i_ino) >> 32; 3378 3379 *len = 3; 3380 return 1; 3381 } 3382 3383 static const struct export_operations shmem_export_ops = { 3384 .get_parent = shmem_get_parent, 3385 .encode_fh = shmem_encode_fh, 3386 .fh_to_dentry = shmem_fh_to_dentry, 3387 }; 3388 3389 enum shmem_param { 3390 Opt_gid, 3391 Opt_huge, 3392 Opt_mode, 3393 Opt_mpol, 3394 Opt_nr_blocks, 3395 Opt_nr_inodes, 3396 Opt_size, 3397 Opt_uid, 3398 Opt_inode32, 3399 Opt_inode64, 3400 }; 3401 3402 static const struct constant_table shmem_param_enums_huge[] = { 3403 {"never", SHMEM_HUGE_NEVER }, 3404 {"always", SHMEM_HUGE_ALWAYS }, 3405 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3406 {"advise", SHMEM_HUGE_ADVISE }, 3407 {} 3408 }; 3409 3410 const struct fs_parameter_spec shmem_fs_parameters[] = { 3411 fsparam_u32 ("gid", Opt_gid), 3412 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3413 fsparam_u32oct("mode", Opt_mode), 3414 fsparam_string("mpol", Opt_mpol), 3415 fsparam_string("nr_blocks", Opt_nr_blocks), 3416 fsparam_string("nr_inodes", Opt_nr_inodes), 3417 fsparam_string("size", Opt_size), 3418 fsparam_u32 ("uid", Opt_uid), 3419 fsparam_flag ("inode32", Opt_inode32), 3420 fsparam_flag ("inode64", Opt_inode64), 3421 {} 3422 }; 3423 3424 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3425 { 3426 struct shmem_options *ctx = fc->fs_private; 3427 struct fs_parse_result result; 3428 unsigned long long size; 3429 char *rest; 3430 int opt; 3431 3432 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3433 if (opt < 0) 3434 return opt; 3435 3436 switch (opt) { 3437 case Opt_size: 3438 size = memparse(param->string, &rest); 3439 if (*rest == '%') { 3440 size <<= PAGE_SHIFT; 3441 size *= totalram_pages(); 3442 do_div(size, 100); 3443 rest++; 3444 } 3445 if (*rest) 3446 goto bad_value; 3447 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3448 ctx->seen |= SHMEM_SEEN_BLOCKS; 3449 break; 3450 case Opt_nr_blocks: 3451 ctx->blocks = memparse(param->string, &rest); 3452 if (*rest || ctx->blocks > S64_MAX) 3453 goto bad_value; 3454 ctx->seen |= SHMEM_SEEN_BLOCKS; 3455 break; 3456 case Opt_nr_inodes: 3457 ctx->inodes = memparse(param->string, &rest); 3458 if (*rest) 3459 goto bad_value; 3460 ctx->seen |= SHMEM_SEEN_INODES; 3461 break; 3462 case Opt_mode: 3463 ctx->mode = result.uint_32 & 07777; 3464 break; 3465 case Opt_uid: 3466 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3467 if (!uid_valid(ctx->uid)) 3468 goto bad_value; 3469 break; 3470 case Opt_gid: 3471 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3472 if (!gid_valid(ctx->gid)) 3473 goto bad_value; 3474 break; 3475 case Opt_huge: 3476 ctx->huge = result.uint_32; 3477 if (ctx->huge != SHMEM_HUGE_NEVER && 3478 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3479 has_transparent_hugepage())) 3480 goto unsupported_parameter; 3481 ctx->seen |= SHMEM_SEEN_HUGE; 3482 break; 3483 case Opt_mpol: 3484 if (IS_ENABLED(CONFIG_NUMA)) { 3485 mpol_put(ctx->mpol); 3486 ctx->mpol = NULL; 3487 if (mpol_parse_str(param->string, &ctx->mpol)) 3488 goto bad_value; 3489 break; 3490 } 3491 goto unsupported_parameter; 3492 case Opt_inode32: 3493 ctx->full_inums = false; 3494 ctx->seen |= SHMEM_SEEN_INUMS; 3495 break; 3496 case Opt_inode64: 3497 if (sizeof(ino_t) < 8) { 3498 return invalfc(fc, 3499 "Cannot use inode64 with <64bit inums in kernel\n"); 3500 } 3501 ctx->full_inums = true; 3502 ctx->seen |= SHMEM_SEEN_INUMS; 3503 break; 3504 } 3505 return 0; 3506 3507 unsupported_parameter: 3508 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3509 bad_value: 3510 return invalfc(fc, "Bad value for '%s'", param->key); 3511 } 3512 3513 static int shmem_parse_options(struct fs_context *fc, void *data) 3514 { 3515 char *options = data; 3516 3517 if (options) { 3518 int err = security_sb_eat_lsm_opts(options, &fc->security); 3519 if (err) 3520 return err; 3521 } 3522 3523 while (options != NULL) { 3524 char *this_char = options; 3525 for (;;) { 3526 /* 3527 * NUL-terminate this option: unfortunately, 3528 * mount options form a comma-separated list, 3529 * but mpol's nodelist may also contain commas. 3530 */ 3531 options = strchr(options, ','); 3532 if (options == NULL) 3533 break; 3534 options++; 3535 if (!isdigit(*options)) { 3536 options[-1] = '\0'; 3537 break; 3538 } 3539 } 3540 if (*this_char) { 3541 char *value = strchr(this_char, '='); 3542 size_t len = 0; 3543 int err; 3544 3545 if (value) { 3546 *value++ = '\0'; 3547 len = strlen(value); 3548 } 3549 err = vfs_parse_fs_string(fc, this_char, value, len); 3550 if (err < 0) 3551 return err; 3552 } 3553 } 3554 return 0; 3555 } 3556 3557 /* 3558 * Reconfigure a shmem filesystem. 3559 * 3560 * Note that we disallow change from limited->unlimited blocks/inodes while any 3561 * are in use; but we must separately disallow unlimited->limited, because in 3562 * that case we have no record of how much is already in use. 3563 */ 3564 static int shmem_reconfigure(struct fs_context *fc) 3565 { 3566 struct shmem_options *ctx = fc->fs_private; 3567 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3568 unsigned long inodes; 3569 struct mempolicy *mpol = NULL; 3570 const char *err; 3571 3572 raw_spin_lock(&sbinfo->stat_lock); 3573 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3574 3575 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3576 if (!sbinfo->max_blocks) { 3577 err = "Cannot retroactively limit size"; 3578 goto out; 3579 } 3580 if (percpu_counter_compare(&sbinfo->used_blocks, 3581 ctx->blocks) > 0) { 3582 err = "Too small a size for current use"; 3583 goto out; 3584 } 3585 } 3586 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3587 if (!sbinfo->max_inodes) { 3588 err = "Cannot retroactively limit inodes"; 3589 goto out; 3590 } 3591 if (ctx->inodes < inodes) { 3592 err = "Too few inodes for current use"; 3593 goto out; 3594 } 3595 } 3596 3597 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3598 sbinfo->next_ino > UINT_MAX) { 3599 err = "Current inum too high to switch to 32-bit inums"; 3600 goto out; 3601 } 3602 3603 if (ctx->seen & SHMEM_SEEN_HUGE) 3604 sbinfo->huge = ctx->huge; 3605 if (ctx->seen & SHMEM_SEEN_INUMS) 3606 sbinfo->full_inums = ctx->full_inums; 3607 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3608 sbinfo->max_blocks = ctx->blocks; 3609 if (ctx->seen & SHMEM_SEEN_INODES) { 3610 sbinfo->max_inodes = ctx->inodes; 3611 sbinfo->free_inodes = ctx->inodes - inodes; 3612 } 3613 3614 /* 3615 * Preserve previous mempolicy unless mpol remount option was specified. 3616 */ 3617 if (ctx->mpol) { 3618 mpol = sbinfo->mpol; 3619 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3620 ctx->mpol = NULL; 3621 } 3622 raw_spin_unlock(&sbinfo->stat_lock); 3623 mpol_put(mpol); 3624 return 0; 3625 out: 3626 raw_spin_unlock(&sbinfo->stat_lock); 3627 return invalfc(fc, "%s", err); 3628 } 3629 3630 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3631 { 3632 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3633 3634 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3635 seq_printf(seq, ",size=%luk", 3636 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3637 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3638 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3639 if (sbinfo->mode != (0777 | S_ISVTX)) 3640 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3641 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3642 seq_printf(seq, ",uid=%u", 3643 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3644 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3645 seq_printf(seq, ",gid=%u", 3646 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3647 3648 /* 3649 * Showing inode{64,32} might be useful even if it's the system default, 3650 * since then people don't have to resort to checking both here and 3651 * /proc/config.gz to confirm 64-bit inums were successfully applied 3652 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3653 * 3654 * We hide it when inode64 isn't the default and we are using 32-bit 3655 * inodes, since that probably just means the feature isn't even under 3656 * consideration. 3657 * 3658 * As such: 3659 * 3660 * +-----------------+-----------------+ 3661 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3662 * +------------------+-----------------+-----------------+ 3663 * | full_inums=true | show | show | 3664 * | full_inums=false | show | hide | 3665 * +------------------+-----------------+-----------------+ 3666 * 3667 */ 3668 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3669 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3671 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3672 if (sbinfo->huge) 3673 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3674 #endif 3675 shmem_show_mpol(seq, sbinfo->mpol); 3676 return 0; 3677 } 3678 3679 #endif /* CONFIG_TMPFS */ 3680 3681 static void shmem_put_super(struct super_block *sb) 3682 { 3683 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3684 3685 free_percpu(sbinfo->ino_batch); 3686 percpu_counter_destroy(&sbinfo->used_blocks); 3687 mpol_put(sbinfo->mpol); 3688 kfree(sbinfo); 3689 sb->s_fs_info = NULL; 3690 } 3691 3692 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3693 { 3694 struct shmem_options *ctx = fc->fs_private; 3695 struct inode *inode; 3696 struct shmem_sb_info *sbinfo; 3697 3698 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3699 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3700 L1_CACHE_BYTES), GFP_KERNEL); 3701 if (!sbinfo) 3702 return -ENOMEM; 3703 3704 sb->s_fs_info = sbinfo; 3705 3706 #ifdef CONFIG_TMPFS 3707 /* 3708 * Per default we only allow half of the physical ram per 3709 * tmpfs instance, limiting inodes to one per page of lowmem; 3710 * but the internal instance is left unlimited. 3711 */ 3712 if (!(sb->s_flags & SB_KERNMOUNT)) { 3713 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3714 ctx->blocks = shmem_default_max_blocks(); 3715 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3716 ctx->inodes = shmem_default_max_inodes(); 3717 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3718 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3719 } else { 3720 sb->s_flags |= SB_NOUSER; 3721 } 3722 sb->s_export_op = &shmem_export_ops; 3723 sb->s_flags |= SB_NOSEC; 3724 #else 3725 sb->s_flags |= SB_NOUSER; 3726 #endif 3727 sbinfo->max_blocks = ctx->blocks; 3728 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3729 if (sb->s_flags & SB_KERNMOUNT) { 3730 sbinfo->ino_batch = alloc_percpu(ino_t); 3731 if (!sbinfo->ino_batch) 3732 goto failed; 3733 } 3734 sbinfo->uid = ctx->uid; 3735 sbinfo->gid = ctx->gid; 3736 sbinfo->full_inums = ctx->full_inums; 3737 sbinfo->mode = ctx->mode; 3738 sbinfo->huge = ctx->huge; 3739 sbinfo->mpol = ctx->mpol; 3740 ctx->mpol = NULL; 3741 3742 raw_spin_lock_init(&sbinfo->stat_lock); 3743 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3744 goto failed; 3745 spin_lock_init(&sbinfo->shrinklist_lock); 3746 INIT_LIST_HEAD(&sbinfo->shrinklist); 3747 3748 sb->s_maxbytes = MAX_LFS_FILESIZE; 3749 sb->s_blocksize = PAGE_SIZE; 3750 sb->s_blocksize_bits = PAGE_SHIFT; 3751 sb->s_magic = TMPFS_MAGIC; 3752 sb->s_op = &shmem_ops; 3753 sb->s_time_gran = 1; 3754 #ifdef CONFIG_TMPFS_XATTR 3755 sb->s_xattr = shmem_xattr_handlers; 3756 #endif 3757 #ifdef CONFIG_TMPFS_POSIX_ACL 3758 sb->s_flags |= SB_POSIXACL; 3759 #endif 3760 uuid_gen(&sb->s_uuid); 3761 3762 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3763 if (!inode) 3764 goto failed; 3765 inode->i_uid = sbinfo->uid; 3766 inode->i_gid = sbinfo->gid; 3767 sb->s_root = d_make_root(inode); 3768 if (!sb->s_root) 3769 goto failed; 3770 return 0; 3771 3772 failed: 3773 shmem_put_super(sb); 3774 return -ENOMEM; 3775 } 3776 3777 static int shmem_get_tree(struct fs_context *fc) 3778 { 3779 return get_tree_nodev(fc, shmem_fill_super); 3780 } 3781 3782 static void shmem_free_fc(struct fs_context *fc) 3783 { 3784 struct shmem_options *ctx = fc->fs_private; 3785 3786 if (ctx) { 3787 mpol_put(ctx->mpol); 3788 kfree(ctx); 3789 } 3790 } 3791 3792 static const struct fs_context_operations shmem_fs_context_ops = { 3793 .free = shmem_free_fc, 3794 .get_tree = shmem_get_tree, 3795 #ifdef CONFIG_TMPFS 3796 .parse_monolithic = shmem_parse_options, 3797 .parse_param = shmem_parse_one, 3798 .reconfigure = shmem_reconfigure, 3799 #endif 3800 }; 3801 3802 static struct kmem_cache *shmem_inode_cachep; 3803 3804 static struct inode *shmem_alloc_inode(struct super_block *sb) 3805 { 3806 struct shmem_inode_info *info; 3807 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 3808 if (!info) 3809 return NULL; 3810 return &info->vfs_inode; 3811 } 3812 3813 static void shmem_free_in_core_inode(struct inode *inode) 3814 { 3815 if (S_ISLNK(inode->i_mode)) 3816 kfree(inode->i_link); 3817 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3818 } 3819 3820 static void shmem_destroy_inode(struct inode *inode) 3821 { 3822 if (S_ISREG(inode->i_mode)) 3823 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3824 } 3825 3826 static void shmem_init_inode(void *foo) 3827 { 3828 struct shmem_inode_info *info = foo; 3829 inode_init_once(&info->vfs_inode); 3830 } 3831 3832 static void shmem_init_inodecache(void) 3833 { 3834 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3835 sizeof(struct shmem_inode_info), 3836 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3837 } 3838 3839 static void shmem_destroy_inodecache(void) 3840 { 3841 kmem_cache_destroy(shmem_inode_cachep); 3842 } 3843 3844 /* Keep the page in page cache instead of truncating it */ 3845 static int shmem_error_remove_page(struct address_space *mapping, 3846 struct page *page) 3847 { 3848 return 0; 3849 } 3850 3851 const struct address_space_operations shmem_aops = { 3852 .writepage = shmem_writepage, 3853 .dirty_folio = noop_dirty_folio, 3854 #ifdef CONFIG_TMPFS 3855 .write_begin = shmem_write_begin, 3856 .write_end = shmem_write_end, 3857 #endif 3858 #ifdef CONFIG_MIGRATION 3859 .migrate_folio = migrate_folio, 3860 #endif 3861 .error_remove_page = shmem_error_remove_page, 3862 }; 3863 EXPORT_SYMBOL(shmem_aops); 3864 3865 static const struct file_operations shmem_file_operations = { 3866 .mmap = shmem_mmap, 3867 .get_unmapped_area = shmem_get_unmapped_area, 3868 #ifdef CONFIG_TMPFS 3869 .llseek = shmem_file_llseek, 3870 .read_iter = shmem_file_read_iter, 3871 .write_iter = generic_file_write_iter, 3872 .fsync = noop_fsync, 3873 .splice_read = generic_file_splice_read, 3874 .splice_write = iter_file_splice_write, 3875 .fallocate = shmem_fallocate, 3876 #endif 3877 }; 3878 3879 static const struct inode_operations shmem_inode_operations = { 3880 .getattr = shmem_getattr, 3881 .setattr = shmem_setattr, 3882 #ifdef CONFIG_TMPFS_XATTR 3883 .listxattr = shmem_listxattr, 3884 .set_acl = simple_set_acl, 3885 .fileattr_get = shmem_fileattr_get, 3886 .fileattr_set = shmem_fileattr_set, 3887 #endif 3888 }; 3889 3890 static const struct inode_operations shmem_dir_inode_operations = { 3891 #ifdef CONFIG_TMPFS 3892 .getattr = shmem_getattr, 3893 .create = shmem_create, 3894 .lookup = simple_lookup, 3895 .link = shmem_link, 3896 .unlink = shmem_unlink, 3897 .symlink = shmem_symlink, 3898 .mkdir = shmem_mkdir, 3899 .rmdir = shmem_rmdir, 3900 .mknod = shmem_mknod, 3901 .rename = shmem_rename2, 3902 .tmpfile = shmem_tmpfile, 3903 #endif 3904 #ifdef CONFIG_TMPFS_XATTR 3905 .listxattr = shmem_listxattr, 3906 .fileattr_get = shmem_fileattr_get, 3907 .fileattr_set = shmem_fileattr_set, 3908 #endif 3909 #ifdef CONFIG_TMPFS_POSIX_ACL 3910 .setattr = shmem_setattr, 3911 .set_acl = simple_set_acl, 3912 #endif 3913 }; 3914 3915 static const struct inode_operations shmem_special_inode_operations = { 3916 .getattr = shmem_getattr, 3917 #ifdef CONFIG_TMPFS_XATTR 3918 .listxattr = shmem_listxattr, 3919 #endif 3920 #ifdef CONFIG_TMPFS_POSIX_ACL 3921 .setattr = shmem_setattr, 3922 .set_acl = simple_set_acl, 3923 #endif 3924 }; 3925 3926 static const struct super_operations shmem_ops = { 3927 .alloc_inode = shmem_alloc_inode, 3928 .free_inode = shmem_free_in_core_inode, 3929 .destroy_inode = shmem_destroy_inode, 3930 #ifdef CONFIG_TMPFS 3931 .statfs = shmem_statfs, 3932 .show_options = shmem_show_options, 3933 #endif 3934 .evict_inode = shmem_evict_inode, 3935 .drop_inode = generic_delete_inode, 3936 .put_super = shmem_put_super, 3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3938 .nr_cached_objects = shmem_unused_huge_count, 3939 .free_cached_objects = shmem_unused_huge_scan, 3940 #endif 3941 }; 3942 3943 static const struct vm_operations_struct shmem_vm_ops = { 3944 .fault = shmem_fault, 3945 .map_pages = filemap_map_pages, 3946 #ifdef CONFIG_NUMA 3947 .set_policy = shmem_set_policy, 3948 .get_policy = shmem_get_policy, 3949 #endif 3950 }; 3951 3952 int shmem_init_fs_context(struct fs_context *fc) 3953 { 3954 struct shmem_options *ctx; 3955 3956 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3957 if (!ctx) 3958 return -ENOMEM; 3959 3960 ctx->mode = 0777 | S_ISVTX; 3961 ctx->uid = current_fsuid(); 3962 ctx->gid = current_fsgid(); 3963 3964 fc->fs_private = ctx; 3965 fc->ops = &shmem_fs_context_ops; 3966 return 0; 3967 } 3968 3969 static struct file_system_type shmem_fs_type = { 3970 .owner = THIS_MODULE, 3971 .name = "tmpfs", 3972 .init_fs_context = shmem_init_fs_context, 3973 #ifdef CONFIG_TMPFS 3974 .parameters = shmem_fs_parameters, 3975 #endif 3976 .kill_sb = kill_litter_super, 3977 .fs_flags = FS_USERNS_MOUNT, 3978 }; 3979 3980 void __init shmem_init(void) 3981 { 3982 int error; 3983 3984 shmem_init_inodecache(); 3985 3986 error = register_filesystem(&shmem_fs_type); 3987 if (error) { 3988 pr_err("Could not register tmpfs\n"); 3989 goto out2; 3990 } 3991 3992 shm_mnt = kern_mount(&shmem_fs_type); 3993 if (IS_ERR(shm_mnt)) { 3994 error = PTR_ERR(shm_mnt); 3995 pr_err("Could not kern_mount tmpfs\n"); 3996 goto out1; 3997 } 3998 3999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4000 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4001 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4002 else 4003 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4004 #endif 4005 return; 4006 4007 out1: 4008 unregister_filesystem(&shmem_fs_type); 4009 out2: 4010 shmem_destroy_inodecache(); 4011 shm_mnt = ERR_PTR(error); 4012 } 4013 4014 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4015 static ssize_t shmem_enabled_show(struct kobject *kobj, 4016 struct kobj_attribute *attr, char *buf) 4017 { 4018 static const int values[] = { 4019 SHMEM_HUGE_ALWAYS, 4020 SHMEM_HUGE_WITHIN_SIZE, 4021 SHMEM_HUGE_ADVISE, 4022 SHMEM_HUGE_NEVER, 4023 SHMEM_HUGE_DENY, 4024 SHMEM_HUGE_FORCE, 4025 }; 4026 int len = 0; 4027 int i; 4028 4029 for (i = 0; i < ARRAY_SIZE(values); i++) { 4030 len += sysfs_emit_at(buf, len, 4031 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4032 i ? " " : "", 4033 shmem_format_huge(values[i])); 4034 } 4035 4036 len += sysfs_emit_at(buf, len, "\n"); 4037 4038 return len; 4039 } 4040 4041 static ssize_t shmem_enabled_store(struct kobject *kobj, 4042 struct kobj_attribute *attr, const char *buf, size_t count) 4043 { 4044 char tmp[16]; 4045 int huge; 4046 4047 if (count + 1 > sizeof(tmp)) 4048 return -EINVAL; 4049 memcpy(tmp, buf, count); 4050 tmp[count] = '\0'; 4051 if (count && tmp[count - 1] == '\n') 4052 tmp[count - 1] = '\0'; 4053 4054 huge = shmem_parse_huge(tmp); 4055 if (huge == -EINVAL) 4056 return -EINVAL; 4057 if (!has_transparent_hugepage() && 4058 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4059 return -EINVAL; 4060 4061 shmem_huge = huge; 4062 if (shmem_huge > SHMEM_HUGE_DENY) 4063 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4064 return count; 4065 } 4066 4067 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4068 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4069 4070 #else /* !CONFIG_SHMEM */ 4071 4072 /* 4073 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4074 * 4075 * This is intended for small system where the benefits of the full 4076 * shmem code (swap-backed and resource-limited) are outweighed by 4077 * their complexity. On systems without swap this code should be 4078 * effectively equivalent, but much lighter weight. 4079 */ 4080 4081 static struct file_system_type shmem_fs_type = { 4082 .name = "tmpfs", 4083 .init_fs_context = ramfs_init_fs_context, 4084 .parameters = ramfs_fs_parameters, 4085 .kill_sb = kill_litter_super, 4086 .fs_flags = FS_USERNS_MOUNT, 4087 }; 4088 4089 void __init shmem_init(void) 4090 { 4091 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4092 4093 shm_mnt = kern_mount(&shmem_fs_type); 4094 BUG_ON(IS_ERR(shm_mnt)); 4095 } 4096 4097 int shmem_unuse(unsigned int type) 4098 { 4099 return 0; 4100 } 4101 4102 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4103 { 4104 return 0; 4105 } 4106 4107 void shmem_unlock_mapping(struct address_space *mapping) 4108 { 4109 } 4110 4111 #ifdef CONFIG_MMU 4112 unsigned long shmem_get_unmapped_area(struct file *file, 4113 unsigned long addr, unsigned long len, 4114 unsigned long pgoff, unsigned long flags) 4115 { 4116 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4117 } 4118 #endif 4119 4120 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4121 { 4122 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4123 } 4124 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4125 4126 #define shmem_vm_ops generic_file_vm_ops 4127 #define shmem_file_operations ramfs_file_operations 4128 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4129 #define shmem_acct_size(flags, size) 0 4130 #define shmem_unacct_size(flags, size) do {} while (0) 4131 4132 #endif /* CONFIG_SHMEM */ 4133 4134 /* common code */ 4135 4136 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4137 unsigned long flags, unsigned int i_flags) 4138 { 4139 struct inode *inode; 4140 struct file *res; 4141 4142 if (IS_ERR(mnt)) 4143 return ERR_CAST(mnt); 4144 4145 if (size < 0 || size > MAX_LFS_FILESIZE) 4146 return ERR_PTR(-EINVAL); 4147 4148 if (shmem_acct_size(flags, size)) 4149 return ERR_PTR(-ENOMEM); 4150 4151 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4152 flags); 4153 if (unlikely(!inode)) { 4154 shmem_unacct_size(flags, size); 4155 return ERR_PTR(-ENOSPC); 4156 } 4157 inode->i_flags |= i_flags; 4158 inode->i_size = size; 4159 clear_nlink(inode); /* It is unlinked */ 4160 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4161 if (!IS_ERR(res)) 4162 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4163 &shmem_file_operations); 4164 if (IS_ERR(res)) 4165 iput(inode); 4166 return res; 4167 } 4168 4169 /** 4170 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4171 * kernel internal. There will be NO LSM permission checks against the 4172 * underlying inode. So users of this interface must do LSM checks at a 4173 * higher layer. The users are the big_key and shm implementations. LSM 4174 * checks are provided at the key or shm level rather than the inode. 4175 * @name: name for dentry (to be seen in /proc/<pid>/maps 4176 * @size: size to be set for the file 4177 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4178 */ 4179 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4180 { 4181 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4182 } 4183 4184 /** 4185 * shmem_file_setup - get an unlinked file living in tmpfs 4186 * @name: name for dentry (to be seen in /proc/<pid>/maps 4187 * @size: size to be set for the file 4188 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4189 */ 4190 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4191 { 4192 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4193 } 4194 EXPORT_SYMBOL_GPL(shmem_file_setup); 4195 4196 /** 4197 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4198 * @mnt: the tmpfs mount where the file will be created 4199 * @name: name for dentry (to be seen in /proc/<pid>/maps 4200 * @size: size to be set for the file 4201 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4202 */ 4203 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4204 loff_t size, unsigned long flags) 4205 { 4206 return __shmem_file_setup(mnt, name, size, flags, 0); 4207 } 4208 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4209 4210 /** 4211 * shmem_zero_setup - setup a shared anonymous mapping 4212 * @vma: the vma to be mmapped is prepared by do_mmap 4213 */ 4214 int shmem_zero_setup(struct vm_area_struct *vma) 4215 { 4216 struct file *file; 4217 loff_t size = vma->vm_end - vma->vm_start; 4218 4219 /* 4220 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4221 * between XFS directory reading and selinux: since this file is only 4222 * accessible to the user through its mapping, use S_PRIVATE flag to 4223 * bypass file security, in the same way as shmem_kernel_file_setup(). 4224 */ 4225 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4226 if (IS_ERR(file)) 4227 return PTR_ERR(file); 4228 4229 if (vma->vm_file) 4230 fput(vma->vm_file); 4231 vma->vm_file = file; 4232 vma->vm_ops = &shmem_vm_ops; 4233 4234 return 0; 4235 } 4236 4237 /** 4238 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4239 * @mapping: the page's address_space 4240 * @index: the page index 4241 * @gfp: the page allocator flags to use if allocating 4242 * 4243 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4244 * with any new page allocations done using the specified allocation flags. 4245 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4246 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4247 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4248 * 4249 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4250 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4251 */ 4252 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4253 pgoff_t index, gfp_t gfp) 4254 { 4255 #ifdef CONFIG_SHMEM 4256 struct inode *inode = mapping->host; 4257 struct page *page; 4258 int error; 4259 4260 BUG_ON(!shmem_mapping(mapping)); 4261 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4262 gfp, NULL, NULL, NULL); 4263 if (error) 4264 return ERR_PTR(error); 4265 4266 unlock_page(page); 4267 if (PageHWPoison(page)) { 4268 put_page(page); 4269 return ERR_PTR(-EIO); 4270 } 4271 4272 return page; 4273 #else 4274 /* 4275 * The tiny !SHMEM case uses ramfs without swap 4276 */ 4277 return read_cache_page_gfp(mapping, index, gfp); 4278 #endif 4279 } 4280 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4281