xref: /linux/mm/shmem.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69 
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72 
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75 
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78 
79 struct shmem_xattr {
80 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81 	char *name;		/* xattr name */
82 	size_t size;
83 	char value[0];
84 };
85 
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 	SGP_READ,	/* don't exceed i_size, don't allocate page */
89 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91 	SGP_WRITE,	/* may exceed i_size, may allocate page */
92 };
93 
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97 	return totalram_pages / 2;
98 }
99 
100 static unsigned long shmem_default_max_inodes(void)
101 {
102 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105 
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108 
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 	struct page **pagep, enum sgp_type sgp, int *fault_type)
111 {
112 	return shmem_getpage_gfp(inode, index, pagep, sgp,
113 			mapping_gfp_mask(inode->i_mapping), fault_type);
114 }
115 
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117 {
118 	return sb->s_fs_info;
119 }
120 
121 /*
122  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123  * for shared memory and for shared anonymous (/dev/zero) mappings
124  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125  * consistent with the pre-accounting of private mappings ...
126  */
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
128 {
129 	return (flags & VM_NORESERVE) ?
130 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
131 }
132 
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134 {
135 	if (!(flags & VM_NORESERVE))
136 		vm_unacct_memory(VM_ACCT(size));
137 }
138 
139 /*
140  * ... whereas tmpfs objects are accounted incrementally as
141  * pages are allocated, in order to allow huge sparse files.
142  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144  */
145 static inline int shmem_acct_block(unsigned long flags)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149 }
150 
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152 {
153 	if (flags & VM_NORESERVE)
154 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155 }
156 
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
164 
165 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166 	.ra_pages	= 0,	/* No readahead */
167 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168 };
169 
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
172 
173 static int shmem_reserve_inode(struct super_block *sb)
174 {
175 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 	if (sbinfo->max_inodes) {
177 		spin_lock(&sbinfo->stat_lock);
178 		if (!sbinfo->free_inodes) {
179 			spin_unlock(&sbinfo->stat_lock);
180 			return -ENOSPC;
181 		}
182 		sbinfo->free_inodes--;
183 		spin_unlock(&sbinfo->stat_lock);
184 	}
185 	return 0;
186 }
187 
188 static void shmem_free_inode(struct super_block *sb)
189 {
190 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 	if (sbinfo->max_inodes) {
192 		spin_lock(&sbinfo->stat_lock);
193 		sbinfo->free_inodes++;
194 		spin_unlock(&sbinfo->stat_lock);
195 	}
196 }
197 
198 /**
199  * shmem_recalc_inode - recalculate the block usage of an inode
200  * @inode: inode to recalc
201  *
202  * We have to calculate the free blocks since the mm can drop
203  * undirtied hole pages behind our back.
204  *
205  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207  *
208  * It has to be called with the spinlock held.
209  */
210 static void shmem_recalc_inode(struct inode *inode)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	long freed;
214 
215 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 	if (freed > 0) {
217 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 		if (sbinfo->max_blocks)
219 			percpu_counter_add(&sbinfo->used_blocks, -freed);
220 		info->alloced -= freed;
221 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 		shmem_unacct_blocks(info->flags, freed);
223 	}
224 }
225 
226 /*
227  * Replace item expected in radix tree by a new item, while holding tree lock.
228  */
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230 			pgoff_t index, void *expected, void *replacement)
231 {
232 	void **pslot;
233 	void *item = NULL;
234 
235 	VM_BUG_ON(!expected);
236 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 	if (pslot)
238 		item = radix_tree_deref_slot_protected(pslot,
239 							&mapping->tree_lock);
240 	if (item != expected)
241 		return -ENOENT;
242 	if (replacement)
243 		radix_tree_replace_slot(pslot, replacement);
244 	else
245 		radix_tree_delete(&mapping->page_tree, index);
246 	return 0;
247 }
248 
249 /*
250  * Like add_to_page_cache_locked, but error if expected item has gone.
251  */
252 static int shmem_add_to_page_cache(struct page *page,
253 				   struct address_space *mapping,
254 				   pgoff_t index, gfp_t gfp, void *expected)
255 {
256 	int error = 0;
257 
258 	VM_BUG_ON(!PageLocked(page));
259 	VM_BUG_ON(!PageSwapBacked(page));
260 
261 	if (!expected)
262 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 	if (!error) {
264 		page_cache_get(page);
265 		page->mapping = mapping;
266 		page->index = index;
267 
268 		spin_lock_irq(&mapping->tree_lock);
269 		if (!expected)
270 			error = radix_tree_insert(&mapping->page_tree,
271 							index, page);
272 		else
273 			error = shmem_radix_tree_replace(mapping, index,
274 							expected, page);
275 		if (!error) {
276 			mapping->nrpages++;
277 			__inc_zone_page_state(page, NR_FILE_PAGES);
278 			__inc_zone_page_state(page, NR_SHMEM);
279 			spin_unlock_irq(&mapping->tree_lock);
280 		} else {
281 			page->mapping = NULL;
282 			spin_unlock_irq(&mapping->tree_lock);
283 			page_cache_release(page);
284 		}
285 		if (!expected)
286 			radix_tree_preload_end();
287 	}
288 	if (error)
289 		mem_cgroup_uncharge_cache_page(page);
290 	return error;
291 }
292 
293 /*
294  * Like delete_from_page_cache, but substitutes swap for page.
295  */
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297 {
298 	struct address_space *mapping = page->mapping;
299 	int error;
300 
301 	spin_lock_irq(&mapping->tree_lock);
302 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 	page->mapping = NULL;
304 	mapping->nrpages--;
305 	__dec_zone_page_state(page, NR_FILE_PAGES);
306 	__dec_zone_page_state(page, NR_SHMEM);
307 	spin_unlock_irq(&mapping->tree_lock);
308 	page_cache_release(page);
309 	BUG_ON(error);
310 }
311 
312 /*
313  * Like find_get_pages, but collecting swap entries as well as pages.
314  */
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 					pgoff_t start, unsigned int nr_pages,
317 					struct page **pages, pgoff_t *indices)
318 {
319 	unsigned int i;
320 	unsigned int ret;
321 	unsigned int nr_found;
322 
323 	rcu_read_lock();
324 restart:
325 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 				(void ***)pages, indices, start, nr_pages);
327 	ret = 0;
328 	for (i = 0; i < nr_found; i++) {
329 		struct page *page;
330 repeat:
331 		page = radix_tree_deref_slot((void **)pages[i]);
332 		if (unlikely(!page))
333 			continue;
334 		if (radix_tree_exception(page)) {
335 			if (radix_tree_deref_retry(page))
336 				goto restart;
337 			/*
338 			 * Otherwise, we must be storing a swap entry
339 			 * here as an exceptional entry: so return it
340 			 * without attempting to raise page count.
341 			 */
342 			goto export;
343 		}
344 		if (!page_cache_get_speculative(page))
345 			goto repeat;
346 
347 		/* Has the page moved? */
348 		if (unlikely(page != *((void **)pages[i]))) {
349 			page_cache_release(page);
350 			goto repeat;
351 		}
352 export:
353 		indices[ret] = indices[i];
354 		pages[ret] = page;
355 		ret++;
356 	}
357 	if (unlikely(!ret && nr_found))
358 		goto restart;
359 	rcu_read_unlock();
360 	return ret;
361 }
362 
363 /*
364  * Remove swap entry from radix tree, free the swap and its page cache.
365  */
366 static int shmem_free_swap(struct address_space *mapping,
367 			   pgoff_t index, void *radswap)
368 {
369 	int error;
370 
371 	spin_lock_irq(&mapping->tree_lock);
372 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 	spin_unlock_irq(&mapping->tree_lock);
374 	if (!error)
375 		free_swap_and_cache(radix_to_swp_entry(radswap));
376 	return error;
377 }
378 
379 /*
380  * Pagevec may contain swap entries, so shuffle up pages before releasing.
381  */
382 static void shmem_deswap_pagevec(struct pagevec *pvec)
383 {
384 	int i, j;
385 
386 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 		struct page *page = pvec->pages[i];
388 		if (!radix_tree_exceptional_entry(page))
389 			pvec->pages[j++] = page;
390 	}
391 	pvec->nr = j;
392 }
393 
394 /*
395  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
396  */
397 void shmem_unlock_mapping(struct address_space *mapping)
398 {
399 	struct pagevec pvec;
400 	pgoff_t indices[PAGEVEC_SIZE];
401 	pgoff_t index = 0;
402 
403 	pagevec_init(&pvec, 0);
404 	/*
405 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
406 	 */
407 	while (!mapping_unevictable(mapping)) {
408 		/*
409 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
410 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
411 		 */
412 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
413 					PAGEVEC_SIZE, pvec.pages, indices);
414 		if (!pvec.nr)
415 			break;
416 		index = indices[pvec.nr - 1] + 1;
417 		shmem_deswap_pagevec(&pvec);
418 		check_move_unevictable_pages(pvec.pages, pvec.nr);
419 		pagevec_release(&pvec);
420 		cond_resched();
421 	}
422 }
423 
424 /*
425  * Remove range of pages and swap entries from radix tree, and free them.
426  */
427 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
428 {
429 	struct address_space *mapping = inode->i_mapping;
430 	struct shmem_inode_info *info = SHMEM_I(inode);
431 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
432 	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
433 	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
434 	struct pagevec pvec;
435 	pgoff_t indices[PAGEVEC_SIZE];
436 	long nr_swaps_freed = 0;
437 	pgoff_t index;
438 	int i;
439 
440 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
441 
442 	pagevec_init(&pvec, 0);
443 	index = start;
444 	while (index <= end) {
445 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
446 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
447 							pvec.pages, indices);
448 		if (!pvec.nr)
449 			break;
450 		mem_cgroup_uncharge_start();
451 		for (i = 0; i < pagevec_count(&pvec); i++) {
452 			struct page *page = pvec.pages[i];
453 
454 			index = indices[i];
455 			if (index > end)
456 				break;
457 
458 			if (radix_tree_exceptional_entry(page)) {
459 				nr_swaps_freed += !shmem_free_swap(mapping,
460 								index, page);
461 				continue;
462 			}
463 
464 			if (!trylock_page(page))
465 				continue;
466 			if (page->mapping == mapping) {
467 				VM_BUG_ON(PageWriteback(page));
468 				truncate_inode_page(mapping, page);
469 			}
470 			unlock_page(page);
471 		}
472 		shmem_deswap_pagevec(&pvec);
473 		pagevec_release(&pvec);
474 		mem_cgroup_uncharge_end();
475 		cond_resched();
476 		index++;
477 	}
478 
479 	if (partial) {
480 		struct page *page = NULL;
481 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
482 		if (page) {
483 			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
484 			set_page_dirty(page);
485 			unlock_page(page);
486 			page_cache_release(page);
487 		}
488 	}
489 
490 	index = start;
491 	for ( ; ; ) {
492 		cond_resched();
493 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
494 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
495 							pvec.pages, indices);
496 		if (!pvec.nr) {
497 			if (index == start)
498 				break;
499 			index = start;
500 			continue;
501 		}
502 		if (index == start && indices[0] > end) {
503 			shmem_deswap_pagevec(&pvec);
504 			pagevec_release(&pvec);
505 			break;
506 		}
507 		mem_cgroup_uncharge_start();
508 		for (i = 0; i < pagevec_count(&pvec); i++) {
509 			struct page *page = pvec.pages[i];
510 
511 			index = indices[i];
512 			if (index > end)
513 				break;
514 
515 			if (radix_tree_exceptional_entry(page)) {
516 				nr_swaps_freed += !shmem_free_swap(mapping,
517 								index, page);
518 				continue;
519 			}
520 
521 			lock_page(page);
522 			if (page->mapping == mapping) {
523 				VM_BUG_ON(PageWriteback(page));
524 				truncate_inode_page(mapping, page);
525 			}
526 			unlock_page(page);
527 		}
528 		shmem_deswap_pagevec(&pvec);
529 		pagevec_release(&pvec);
530 		mem_cgroup_uncharge_end();
531 		index++;
532 	}
533 
534 	spin_lock(&info->lock);
535 	info->swapped -= nr_swaps_freed;
536 	shmem_recalc_inode(inode);
537 	spin_unlock(&info->lock);
538 
539 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
540 }
541 EXPORT_SYMBOL_GPL(shmem_truncate_range);
542 
543 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
544 {
545 	struct inode *inode = dentry->d_inode;
546 	int error;
547 
548 	error = inode_change_ok(inode, attr);
549 	if (error)
550 		return error;
551 
552 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
553 		loff_t oldsize = inode->i_size;
554 		loff_t newsize = attr->ia_size;
555 
556 		if (newsize != oldsize) {
557 			i_size_write(inode, newsize);
558 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
559 		}
560 		if (newsize < oldsize) {
561 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
562 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
563 			shmem_truncate_range(inode, newsize, (loff_t)-1);
564 			/* unmap again to remove racily COWed private pages */
565 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
566 		}
567 	}
568 
569 	setattr_copy(inode, attr);
570 #ifdef CONFIG_TMPFS_POSIX_ACL
571 	if (attr->ia_valid & ATTR_MODE)
572 		error = generic_acl_chmod(inode);
573 #endif
574 	return error;
575 }
576 
577 static void shmem_evict_inode(struct inode *inode)
578 {
579 	struct shmem_inode_info *info = SHMEM_I(inode);
580 	struct shmem_xattr *xattr, *nxattr;
581 
582 	if (inode->i_mapping->a_ops == &shmem_aops) {
583 		shmem_unacct_size(info->flags, inode->i_size);
584 		inode->i_size = 0;
585 		shmem_truncate_range(inode, 0, (loff_t)-1);
586 		if (!list_empty(&info->swaplist)) {
587 			mutex_lock(&shmem_swaplist_mutex);
588 			list_del_init(&info->swaplist);
589 			mutex_unlock(&shmem_swaplist_mutex);
590 		}
591 	} else
592 		kfree(info->symlink);
593 
594 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
595 		kfree(xattr->name);
596 		kfree(xattr);
597 	}
598 	BUG_ON(inode->i_blocks);
599 	shmem_free_inode(inode->i_sb);
600 	end_writeback(inode);
601 }
602 
603 /*
604  * If swap found in inode, free it and move page from swapcache to filecache.
605  */
606 static int shmem_unuse_inode(struct shmem_inode_info *info,
607 			     swp_entry_t swap, struct page *page)
608 {
609 	struct address_space *mapping = info->vfs_inode.i_mapping;
610 	void *radswap;
611 	pgoff_t index;
612 	int error;
613 
614 	radswap = swp_to_radix_entry(swap);
615 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
616 	if (index == -1)
617 		return 0;
618 
619 	/*
620 	 * Move _head_ to start search for next from here.
621 	 * But be careful: shmem_evict_inode checks list_empty without taking
622 	 * mutex, and there's an instant in list_move_tail when info->swaplist
623 	 * would appear empty, if it were the only one on shmem_swaplist.
624 	 */
625 	if (shmem_swaplist.next != &info->swaplist)
626 		list_move_tail(&shmem_swaplist, &info->swaplist);
627 
628 	/*
629 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
630 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
631 	 * beneath us (pagelock doesn't help until the page is in pagecache).
632 	 */
633 	error = shmem_add_to_page_cache(page, mapping, index,
634 						GFP_NOWAIT, radswap);
635 	/* which does mem_cgroup_uncharge_cache_page on error */
636 
637 	if (error != -ENOMEM) {
638 		/*
639 		 * Truncation and eviction use free_swap_and_cache(), which
640 		 * only does trylock page: if we raced, best clean up here.
641 		 */
642 		delete_from_swap_cache(page);
643 		set_page_dirty(page);
644 		if (!error) {
645 			spin_lock(&info->lock);
646 			info->swapped--;
647 			spin_unlock(&info->lock);
648 			swap_free(swap);
649 		}
650 		error = 1;	/* not an error, but entry was found */
651 	}
652 	return error;
653 }
654 
655 /*
656  * Search through swapped inodes to find and replace swap by page.
657  */
658 int shmem_unuse(swp_entry_t swap, struct page *page)
659 {
660 	struct list_head *this, *next;
661 	struct shmem_inode_info *info;
662 	int found = 0;
663 	int error;
664 
665 	/*
666 	 * Charge page using GFP_KERNEL while we can wait, before taking
667 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
668 	 * Charged back to the user (not to caller) when swap account is used.
669 	 */
670 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
671 	if (error)
672 		goto out;
673 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
674 
675 	mutex_lock(&shmem_swaplist_mutex);
676 	list_for_each_safe(this, next, &shmem_swaplist) {
677 		info = list_entry(this, struct shmem_inode_info, swaplist);
678 		if (info->swapped)
679 			found = shmem_unuse_inode(info, swap, page);
680 		else
681 			list_del_init(&info->swaplist);
682 		cond_resched();
683 		if (found)
684 			break;
685 	}
686 	mutex_unlock(&shmem_swaplist_mutex);
687 
688 	if (!found)
689 		mem_cgroup_uncharge_cache_page(page);
690 	if (found < 0)
691 		error = found;
692 out:
693 	unlock_page(page);
694 	page_cache_release(page);
695 	return error;
696 }
697 
698 /*
699  * Move the page from the page cache to the swap cache.
700  */
701 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
702 {
703 	struct shmem_inode_info *info;
704 	struct address_space *mapping;
705 	struct inode *inode;
706 	swp_entry_t swap;
707 	pgoff_t index;
708 
709 	BUG_ON(!PageLocked(page));
710 	mapping = page->mapping;
711 	index = page->index;
712 	inode = mapping->host;
713 	info = SHMEM_I(inode);
714 	if (info->flags & VM_LOCKED)
715 		goto redirty;
716 	if (!total_swap_pages)
717 		goto redirty;
718 
719 	/*
720 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
721 	 * sync from ever calling shmem_writepage; but a stacking filesystem
722 	 * might use ->writepage of its underlying filesystem, in which case
723 	 * tmpfs should write out to swap only in response to memory pressure,
724 	 * and not for the writeback threads or sync.
725 	 */
726 	if (!wbc->for_reclaim) {
727 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
728 		goto redirty;
729 	}
730 	swap = get_swap_page();
731 	if (!swap.val)
732 		goto redirty;
733 
734 	/*
735 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
736 	 * if it's not already there.  Do it now before the page is
737 	 * moved to swap cache, when its pagelock no longer protects
738 	 * the inode from eviction.  But don't unlock the mutex until
739 	 * we've incremented swapped, because shmem_unuse_inode() will
740 	 * prune a !swapped inode from the swaplist under this mutex.
741 	 */
742 	mutex_lock(&shmem_swaplist_mutex);
743 	if (list_empty(&info->swaplist))
744 		list_add_tail(&info->swaplist, &shmem_swaplist);
745 
746 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
747 		swap_shmem_alloc(swap);
748 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
749 
750 		spin_lock(&info->lock);
751 		info->swapped++;
752 		shmem_recalc_inode(inode);
753 		spin_unlock(&info->lock);
754 
755 		mutex_unlock(&shmem_swaplist_mutex);
756 		BUG_ON(page_mapped(page));
757 		swap_writepage(page, wbc);
758 		return 0;
759 	}
760 
761 	mutex_unlock(&shmem_swaplist_mutex);
762 	swapcache_free(swap, NULL);
763 redirty:
764 	set_page_dirty(page);
765 	if (wbc->for_reclaim)
766 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
767 	unlock_page(page);
768 	return 0;
769 }
770 
771 #ifdef CONFIG_NUMA
772 #ifdef CONFIG_TMPFS
773 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
774 {
775 	char buffer[64];
776 
777 	if (!mpol || mpol->mode == MPOL_DEFAULT)
778 		return;		/* show nothing */
779 
780 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
781 
782 	seq_printf(seq, ",mpol=%s", buffer);
783 }
784 
785 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
786 {
787 	struct mempolicy *mpol = NULL;
788 	if (sbinfo->mpol) {
789 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
790 		mpol = sbinfo->mpol;
791 		mpol_get(mpol);
792 		spin_unlock(&sbinfo->stat_lock);
793 	}
794 	return mpol;
795 }
796 #endif /* CONFIG_TMPFS */
797 
798 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
799 			struct shmem_inode_info *info, pgoff_t index)
800 {
801 	struct mempolicy mpol, *spol;
802 	struct vm_area_struct pvma;
803 
804 	spol = mpol_cond_copy(&mpol,
805 			mpol_shared_policy_lookup(&info->policy, index));
806 
807 	/* Create a pseudo vma that just contains the policy */
808 	pvma.vm_start = 0;
809 	pvma.vm_pgoff = index;
810 	pvma.vm_ops = NULL;
811 	pvma.vm_policy = spol;
812 	return swapin_readahead(swap, gfp, &pvma, 0);
813 }
814 
815 static struct page *shmem_alloc_page(gfp_t gfp,
816 			struct shmem_inode_info *info, pgoff_t index)
817 {
818 	struct vm_area_struct pvma;
819 
820 	/* Create a pseudo vma that just contains the policy */
821 	pvma.vm_start = 0;
822 	pvma.vm_pgoff = index;
823 	pvma.vm_ops = NULL;
824 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
825 
826 	/*
827 	 * alloc_page_vma() will drop the shared policy reference
828 	 */
829 	return alloc_page_vma(gfp, &pvma, 0);
830 }
831 #else /* !CONFIG_NUMA */
832 #ifdef CONFIG_TMPFS
833 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
834 {
835 }
836 #endif /* CONFIG_TMPFS */
837 
838 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
839 			struct shmem_inode_info *info, pgoff_t index)
840 {
841 	return swapin_readahead(swap, gfp, NULL, 0);
842 }
843 
844 static inline struct page *shmem_alloc_page(gfp_t gfp,
845 			struct shmem_inode_info *info, pgoff_t index)
846 {
847 	return alloc_page(gfp);
848 }
849 #endif /* CONFIG_NUMA */
850 
851 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
852 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
853 {
854 	return NULL;
855 }
856 #endif
857 
858 /*
859  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
860  *
861  * If we allocate a new one we do not mark it dirty. That's up to the
862  * vm. If we swap it in we mark it dirty since we also free the swap
863  * entry since a page cannot live in both the swap and page cache
864  */
865 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
866 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
867 {
868 	struct address_space *mapping = inode->i_mapping;
869 	struct shmem_inode_info *info;
870 	struct shmem_sb_info *sbinfo;
871 	struct page *page;
872 	swp_entry_t swap;
873 	int error;
874 	int once = 0;
875 
876 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
877 		return -EFBIG;
878 repeat:
879 	swap.val = 0;
880 	page = find_lock_page(mapping, index);
881 	if (radix_tree_exceptional_entry(page)) {
882 		swap = radix_to_swp_entry(page);
883 		page = NULL;
884 	}
885 
886 	if (sgp != SGP_WRITE &&
887 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
888 		error = -EINVAL;
889 		goto failed;
890 	}
891 
892 	if (page || (sgp == SGP_READ && !swap.val)) {
893 		/*
894 		 * Once we can get the page lock, it must be uptodate:
895 		 * if there were an error in reading back from swap,
896 		 * the page would not be inserted into the filecache.
897 		 */
898 		BUG_ON(page && !PageUptodate(page));
899 		*pagep = page;
900 		return 0;
901 	}
902 
903 	/*
904 	 * Fast cache lookup did not find it:
905 	 * bring it back from swap or allocate.
906 	 */
907 	info = SHMEM_I(inode);
908 	sbinfo = SHMEM_SB(inode->i_sb);
909 
910 	if (swap.val) {
911 		/* Look it up and read it in.. */
912 		page = lookup_swap_cache(swap);
913 		if (!page) {
914 			/* here we actually do the io */
915 			if (fault_type)
916 				*fault_type |= VM_FAULT_MAJOR;
917 			page = shmem_swapin(swap, gfp, info, index);
918 			if (!page) {
919 				error = -ENOMEM;
920 				goto failed;
921 			}
922 		}
923 
924 		/* We have to do this with page locked to prevent races */
925 		lock_page(page);
926 		if (!PageUptodate(page)) {
927 			error = -EIO;
928 			goto failed;
929 		}
930 		wait_on_page_writeback(page);
931 
932 		/* Someone may have already done it for us */
933 		if (page->mapping) {
934 			if (page->mapping == mapping &&
935 			    page->index == index)
936 				goto done;
937 			error = -EEXIST;
938 			goto failed;
939 		}
940 
941 		error = mem_cgroup_cache_charge(page, current->mm,
942 						gfp & GFP_RECLAIM_MASK);
943 		if (!error)
944 			error = shmem_add_to_page_cache(page, mapping, index,
945 						gfp, swp_to_radix_entry(swap));
946 		if (error)
947 			goto failed;
948 
949 		spin_lock(&info->lock);
950 		info->swapped--;
951 		shmem_recalc_inode(inode);
952 		spin_unlock(&info->lock);
953 
954 		delete_from_swap_cache(page);
955 		set_page_dirty(page);
956 		swap_free(swap);
957 
958 	} else {
959 		if (shmem_acct_block(info->flags)) {
960 			error = -ENOSPC;
961 			goto failed;
962 		}
963 		if (sbinfo->max_blocks) {
964 			if (percpu_counter_compare(&sbinfo->used_blocks,
965 						sbinfo->max_blocks) >= 0) {
966 				error = -ENOSPC;
967 				goto unacct;
968 			}
969 			percpu_counter_inc(&sbinfo->used_blocks);
970 		}
971 
972 		page = shmem_alloc_page(gfp, info, index);
973 		if (!page) {
974 			error = -ENOMEM;
975 			goto decused;
976 		}
977 
978 		SetPageSwapBacked(page);
979 		__set_page_locked(page);
980 		error = mem_cgroup_cache_charge(page, current->mm,
981 						gfp & GFP_RECLAIM_MASK);
982 		if (!error)
983 			error = shmem_add_to_page_cache(page, mapping, index,
984 						gfp, NULL);
985 		if (error)
986 			goto decused;
987 		lru_cache_add_anon(page);
988 
989 		spin_lock(&info->lock);
990 		info->alloced++;
991 		inode->i_blocks += BLOCKS_PER_PAGE;
992 		shmem_recalc_inode(inode);
993 		spin_unlock(&info->lock);
994 
995 		clear_highpage(page);
996 		flush_dcache_page(page);
997 		SetPageUptodate(page);
998 		if (sgp == SGP_DIRTY)
999 			set_page_dirty(page);
1000 	}
1001 done:
1002 	/* Perhaps the file has been truncated since we checked */
1003 	if (sgp != SGP_WRITE &&
1004 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1005 		error = -EINVAL;
1006 		goto trunc;
1007 	}
1008 	*pagep = page;
1009 	return 0;
1010 
1011 	/*
1012 	 * Error recovery.
1013 	 */
1014 trunc:
1015 	ClearPageDirty(page);
1016 	delete_from_page_cache(page);
1017 	spin_lock(&info->lock);
1018 	info->alloced--;
1019 	inode->i_blocks -= BLOCKS_PER_PAGE;
1020 	spin_unlock(&info->lock);
1021 decused:
1022 	if (sbinfo->max_blocks)
1023 		percpu_counter_add(&sbinfo->used_blocks, -1);
1024 unacct:
1025 	shmem_unacct_blocks(info->flags, 1);
1026 failed:
1027 	if (swap.val && error != -EINVAL) {
1028 		struct page *test = find_get_page(mapping, index);
1029 		if (test && !radix_tree_exceptional_entry(test))
1030 			page_cache_release(test);
1031 		/* Have another try if the entry has changed */
1032 		if (test != swp_to_radix_entry(swap))
1033 			error = -EEXIST;
1034 	}
1035 	if (page) {
1036 		unlock_page(page);
1037 		page_cache_release(page);
1038 	}
1039 	if (error == -ENOSPC && !once++) {
1040 		info = SHMEM_I(inode);
1041 		spin_lock(&info->lock);
1042 		shmem_recalc_inode(inode);
1043 		spin_unlock(&info->lock);
1044 		goto repeat;
1045 	}
1046 	if (error == -EEXIST)
1047 		goto repeat;
1048 	return error;
1049 }
1050 
1051 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1052 {
1053 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1054 	int error;
1055 	int ret = VM_FAULT_LOCKED;
1056 
1057 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1058 	if (error)
1059 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1060 
1061 	if (ret & VM_FAULT_MAJOR) {
1062 		count_vm_event(PGMAJFAULT);
1063 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1064 	}
1065 	return ret;
1066 }
1067 
1068 #ifdef CONFIG_NUMA
1069 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1070 {
1071 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1072 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1073 }
1074 
1075 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1076 					  unsigned long addr)
1077 {
1078 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1079 	pgoff_t index;
1080 
1081 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1082 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1083 }
1084 #endif
1085 
1086 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1087 {
1088 	struct inode *inode = file->f_path.dentry->d_inode;
1089 	struct shmem_inode_info *info = SHMEM_I(inode);
1090 	int retval = -ENOMEM;
1091 
1092 	spin_lock(&info->lock);
1093 	if (lock && !(info->flags & VM_LOCKED)) {
1094 		if (!user_shm_lock(inode->i_size, user))
1095 			goto out_nomem;
1096 		info->flags |= VM_LOCKED;
1097 		mapping_set_unevictable(file->f_mapping);
1098 	}
1099 	if (!lock && (info->flags & VM_LOCKED) && user) {
1100 		user_shm_unlock(inode->i_size, user);
1101 		info->flags &= ~VM_LOCKED;
1102 		mapping_clear_unevictable(file->f_mapping);
1103 	}
1104 	retval = 0;
1105 
1106 out_nomem:
1107 	spin_unlock(&info->lock);
1108 	return retval;
1109 }
1110 
1111 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1112 {
1113 	file_accessed(file);
1114 	vma->vm_ops = &shmem_vm_ops;
1115 	vma->vm_flags |= VM_CAN_NONLINEAR;
1116 	return 0;
1117 }
1118 
1119 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1120 				     umode_t mode, dev_t dev, unsigned long flags)
1121 {
1122 	struct inode *inode;
1123 	struct shmem_inode_info *info;
1124 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1125 
1126 	if (shmem_reserve_inode(sb))
1127 		return NULL;
1128 
1129 	inode = new_inode(sb);
1130 	if (inode) {
1131 		inode->i_ino = get_next_ino();
1132 		inode_init_owner(inode, dir, mode);
1133 		inode->i_blocks = 0;
1134 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1135 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1136 		inode->i_generation = get_seconds();
1137 		info = SHMEM_I(inode);
1138 		memset(info, 0, (char *)inode - (char *)info);
1139 		spin_lock_init(&info->lock);
1140 		info->flags = flags & VM_NORESERVE;
1141 		INIT_LIST_HEAD(&info->swaplist);
1142 		INIT_LIST_HEAD(&info->xattr_list);
1143 		cache_no_acl(inode);
1144 
1145 		switch (mode & S_IFMT) {
1146 		default:
1147 			inode->i_op = &shmem_special_inode_operations;
1148 			init_special_inode(inode, mode, dev);
1149 			break;
1150 		case S_IFREG:
1151 			inode->i_mapping->a_ops = &shmem_aops;
1152 			inode->i_op = &shmem_inode_operations;
1153 			inode->i_fop = &shmem_file_operations;
1154 			mpol_shared_policy_init(&info->policy,
1155 						 shmem_get_sbmpol(sbinfo));
1156 			break;
1157 		case S_IFDIR:
1158 			inc_nlink(inode);
1159 			/* Some things misbehave if size == 0 on a directory */
1160 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1161 			inode->i_op = &shmem_dir_inode_operations;
1162 			inode->i_fop = &simple_dir_operations;
1163 			break;
1164 		case S_IFLNK:
1165 			/*
1166 			 * Must not load anything in the rbtree,
1167 			 * mpol_free_shared_policy will not be called.
1168 			 */
1169 			mpol_shared_policy_init(&info->policy, NULL);
1170 			break;
1171 		}
1172 	} else
1173 		shmem_free_inode(sb);
1174 	return inode;
1175 }
1176 
1177 #ifdef CONFIG_TMPFS
1178 static const struct inode_operations shmem_symlink_inode_operations;
1179 static const struct inode_operations shmem_short_symlink_operations;
1180 
1181 #ifdef CONFIG_TMPFS_XATTR
1182 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1183 #else
1184 #define shmem_initxattrs NULL
1185 #endif
1186 
1187 static int
1188 shmem_write_begin(struct file *file, struct address_space *mapping,
1189 			loff_t pos, unsigned len, unsigned flags,
1190 			struct page **pagep, void **fsdata)
1191 {
1192 	struct inode *inode = mapping->host;
1193 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1194 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1195 }
1196 
1197 static int
1198 shmem_write_end(struct file *file, struct address_space *mapping,
1199 			loff_t pos, unsigned len, unsigned copied,
1200 			struct page *page, void *fsdata)
1201 {
1202 	struct inode *inode = mapping->host;
1203 
1204 	if (pos + copied > inode->i_size)
1205 		i_size_write(inode, pos + copied);
1206 
1207 	set_page_dirty(page);
1208 	unlock_page(page);
1209 	page_cache_release(page);
1210 
1211 	return copied;
1212 }
1213 
1214 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1215 {
1216 	struct inode *inode = filp->f_path.dentry->d_inode;
1217 	struct address_space *mapping = inode->i_mapping;
1218 	pgoff_t index;
1219 	unsigned long offset;
1220 	enum sgp_type sgp = SGP_READ;
1221 
1222 	/*
1223 	 * Might this read be for a stacking filesystem?  Then when reading
1224 	 * holes of a sparse file, we actually need to allocate those pages,
1225 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1226 	 */
1227 	if (segment_eq(get_fs(), KERNEL_DS))
1228 		sgp = SGP_DIRTY;
1229 
1230 	index = *ppos >> PAGE_CACHE_SHIFT;
1231 	offset = *ppos & ~PAGE_CACHE_MASK;
1232 
1233 	for (;;) {
1234 		struct page *page = NULL;
1235 		pgoff_t end_index;
1236 		unsigned long nr, ret;
1237 		loff_t i_size = i_size_read(inode);
1238 
1239 		end_index = i_size >> PAGE_CACHE_SHIFT;
1240 		if (index > end_index)
1241 			break;
1242 		if (index == end_index) {
1243 			nr = i_size & ~PAGE_CACHE_MASK;
1244 			if (nr <= offset)
1245 				break;
1246 		}
1247 
1248 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1249 		if (desc->error) {
1250 			if (desc->error == -EINVAL)
1251 				desc->error = 0;
1252 			break;
1253 		}
1254 		if (page)
1255 			unlock_page(page);
1256 
1257 		/*
1258 		 * We must evaluate after, since reads (unlike writes)
1259 		 * are called without i_mutex protection against truncate
1260 		 */
1261 		nr = PAGE_CACHE_SIZE;
1262 		i_size = i_size_read(inode);
1263 		end_index = i_size >> PAGE_CACHE_SHIFT;
1264 		if (index == end_index) {
1265 			nr = i_size & ~PAGE_CACHE_MASK;
1266 			if (nr <= offset) {
1267 				if (page)
1268 					page_cache_release(page);
1269 				break;
1270 			}
1271 		}
1272 		nr -= offset;
1273 
1274 		if (page) {
1275 			/*
1276 			 * If users can be writing to this page using arbitrary
1277 			 * virtual addresses, take care about potential aliasing
1278 			 * before reading the page on the kernel side.
1279 			 */
1280 			if (mapping_writably_mapped(mapping))
1281 				flush_dcache_page(page);
1282 			/*
1283 			 * Mark the page accessed if we read the beginning.
1284 			 */
1285 			if (!offset)
1286 				mark_page_accessed(page);
1287 		} else {
1288 			page = ZERO_PAGE(0);
1289 			page_cache_get(page);
1290 		}
1291 
1292 		/*
1293 		 * Ok, we have the page, and it's up-to-date, so
1294 		 * now we can copy it to user space...
1295 		 *
1296 		 * The actor routine returns how many bytes were actually used..
1297 		 * NOTE! This may not be the same as how much of a user buffer
1298 		 * we filled up (we may be padding etc), so we can only update
1299 		 * "pos" here (the actor routine has to update the user buffer
1300 		 * pointers and the remaining count).
1301 		 */
1302 		ret = actor(desc, page, offset, nr);
1303 		offset += ret;
1304 		index += offset >> PAGE_CACHE_SHIFT;
1305 		offset &= ~PAGE_CACHE_MASK;
1306 
1307 		page_cache_release(page);
1308 		if (ret != nr || !desc->count)
1309 			break;
1310 
1311 		cond_resched();
1312 	}
1313 
1314 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1315 	file_accessed(filp);
1316 }
1317 
1318 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1319 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1320 {
1321 	struct file *filp = iocb->ki_filp;
1322 	ssize_t retval;
1323 	unsigned long seg;
1324 	size_t count;
1325 	loff_t *ppos = &iocb->ki_pos;
1326 
1327 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1328 	if (retval)
1329 		return retval;
1330 
1331 	for (seg = 0; seg < nr_segs; seg++) {
1332 		read_descriptor_t desc;
1333 
1334 		desc.written = 0;
1335 		desc.arg.buf = iov[seg].iov_base;
1336 		desc.count = iov[seg].iov_len;
1337 		if (desc.count == 0)
1338 			continue;
1339 		desc.error = 0;
1340 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1341 		retval += desc.written;
1342 		if (desc.error) {
1343 			retval = retval ?: desc.error;
1344 			break;
1345 		}
1346 		if (desc.count > 0)
1347 			break;
1348 	}
1349 	return retval;
1350 }
1351 
1352 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1353 				struct pipe_inode_info *pipe, size_t len,
1354 				unsigned int flags)
1355 {
1356 	struct address_space *mapping = in->f_mapping;
1357 	struct inode *inode = mapping->host;
1358 	unsigned int loff, nr_pages, req_pages;
1359 	struct page *pages[PIPE_DEF_BUFFERS];
1360 	struct partial_page partial[PIPE_DEF_BUFFERS];
1361 	struct page *page;
1362 	pgoff_t index, end_index;
1363 	loff_t isize, left;
1364 	int error, page_nr;
1365 	struct splice_pipe_desc spd = {
1366 		.pages = pages,
1367 		.partial = partial,
1368 		.flags = flags,
1369 		.ops = &page_cache_pipe_buf_ops,
1370 		.spd_release = spd_release_page,
1371 	};
1372 
1373 	isize = i_size_read(inode);
1374 	if (unlikely(*ppos >= isize))
1375 		return 0;
1376 
1377 	left = isize - *ppos;
1378 	if (unlikely(left < len))
1379 		len = left;
1380 
1381 	if (splice_grow_spd(pipe, &spd))
1382 		return -ENOMEM;
1383 
1384 	index = *ppos >> PAGE_CACHE_SHIFT;
1385 	loff = *ppos & ~PAGE_CACHE_MASK;
1386 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1387 	nr_pages = min(req_pages, pipe->buffers);
1388 
1389 	spd.nr_pages = find_get_pages_contig(mapping, index,
1390 						nr_pages, spd.pages);
1391 	index += spd.nr_pages;
1392 	error = 0;
1393 
1394 	while (spd.nr_pages < nr_pages) {
1395 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1396 		if (error)
1397 			break;
1398 		unlock_page(page);
1399 		spd.pages[spd.nr_pages++] = page;
1400 		index++;
1401 	}
1402 
1403 	index = *ppos >> PAGE_CACHE_SHIFT;
1404 	nr_pages = spd.nr_pages;
1405 	spd.nr_pages = 0;
1406 
1407 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1408 		unsigned int this_len;
1409 
1410 		if (!len)
1411 			break;
1412 
1413 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1414 		page = spd.pages[page_nr];
1415 
1416 		if (!PageUptodate(page) || page->mapping != mapping) {
1417 			error = shmem_getpage(inode, index, &page,
1418 							SGP_CACHE, NULL);
1419 			if (error)
1420 				break;
1421 			unlock_page(page);
1422 			page_cache_release(spd.pages[page_nr]);
1423 			spd.pages[page_nr] = page;
1424 		}
1425 
1426 		isize = i_size_read(inode);
1427 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1428 		if (unlikely(!isize || index > end_index))
1429 			break;
1430 
1431 		if (end_index == index) {
1432 			unsigned int plen;
1433 
1434 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1435 			if (plen <= loff)
1436 				break;
1437 
1438 			this_len = min(this_len, plen - loff);
1439 			len = this_len;
1440 		}
1441 
1442 		spd.partial[page_nr].offset = loff;
1443 		spd.partial[page_nr].len = this_len;
1444 		len -= this_len;
1445 		loff = 0;
1446 		spd.nr_pages++;
1447 		index++;
1448 	}
1449 
1450 	while (page_nr < nr_pages)
1451 		page_cache_release(spd.pages[page_nr++]);
1452 
1453 	if (spd.nr_pages)
1454 		error = splice_to_pipe(pipe, &spd);
1455 
1456 	splice_shrink_spd(pipe, &spd);
1457 
1458 	if (error > 0) {
1459 		*ppos += error;
1460 		file_accessed(in);
1461 	}
1462 	return error;
1463 }
1464 
1465 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1466 {
1467 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1468 
1469 	buf->f_type = TMPFS_MAGIC;
1470 	buf->f_bsize = PAGE_CACHE_SIZE;
1471 	buf->f_namelen = NAME_MAX;
1472 	if (sbinfo->max_blocks) {
1473 		buf->f_blocks = sbinfo->max_blocks;
1474 		buf->f_bavail =
1475 		buf->f_bfree  = sbinfo->max_blocks -
1476 				percpu_counter_sum(&sbinfo->used_blocks);
1477 	}
1478 	if (sbinfo->max_inodes) {
1479 		buf->f_files = sbinfo->max_inodes;
1480 		buf->f_ffree = sbinfo->free_inodes;
1481 	}
1482 	/* else leave those fields 0 like simple_statfs */
1483 	return 0;
1484 }
1485 
1486 /*
1487  * File creation. Allocate an inode, and we're done..
1488  */
1489 static int
1490 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1491 {
1492 	struct inode *inode;
1493 	int error = -ENOSPC;
1494 
1495 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1496 	if (inode) {
1497 		error = security_inode_init_security(inode, dir,
1498 						     &dentry->d_name,
1499 						     shmem_initxattrs, NULL);
1500 		if (error) {
1501 			if (error != -EOPNOTSUPP) {
1502 				iput(inode);
1503 				return error;
1504 			}
1505 		}
1506 #ifdef CONFIG_TMPFS_POSIX_ACL
1507 		error = generic_acl_init(inode, dir);
1508 		if (error) {
1509 			iput(inode);
1510 			return error;
1511 		}
1512 #else
1513 		error = 0;
1514 #endif
1515 		dir->i_size += BOGO_DIRENT_SIZE;
1516 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1517 		d_instantiate(dentry, inode);
1518 		dget(dentry); /* Extra count - pin the dentry in core */
1519 	}
1520 	return error;
1521 }
1522 
1523 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1524 {
1525 	int error;
1526 
1527 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1528 		return error;
1529 	inc_nlink(dir);
1530 	return 0;
1531 }
1532 
1533 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1534 		struct nameidata *nd)
1535 {
1536 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1537 }
1538 
1539 /*
1540  * Link a file..
1541  */
1542 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1543 {
1544 	struct inode *inode = old_dentry->d_inode;
1545 	int ret;
1546 
1547 	/*
1548 	 * No ordinary (disk based) filesystem counts links as inodes;
1549 	 * but each new link needs a new dentry, pinning lowmem, and
1550 	 * tmpfs dentries cannot be pruned until they are unlinked.
1551 	 */
1552 	ret = shmem_reserve_inode(inode->i_sb);
1553 	if (ret)
1554 		goto out;
1555 
1556 	dir->i_size += BOGO_DIRENT_SIZE;
1557 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1558 	inc_nlink(inode);
1559 	ihold(inode);	/* New dentry reference */
1560 	dget(dentry);		/* Extra pinning count for the created dentry */
1561 	d_instantiate(dentry, inode);
1562 out:
1563 	return ret;
1564 }
1565 
1566 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1567 {
1568 	struct inode *inode = dentry->d_inode;
1569 
1570 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1571 		shmem_free_inode(inode->i_sb);
1572 
1573 	dir->i_size -= BOGO_DIRENT_SIZE;
1574 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1575 	drop_nlink(inode);
1576 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1577 	return 0;
1578 }
1579 
1580 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1581 {
1582 	if (!simple_empty(dentry))
1583 		return -ENOTEMPTY;
1584 
1585 	drop_nlink(dentry->d_inode);
1586 	drop_nlink(dir);
1587 	return shmem_unlink(dir, dentry);
1588 }
1589 
1590 /*
1591  * The VFS layer already does all the dentry stuff for rename,
1592  * we just have to decrement the usage count for the target if
1593  * it exists so that the VFS layer correctly free's it when it
1594  * gets overwritten.
1595  */
1596 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1597 {
1598 	struct inode *inode = old_dentry->d_inode;
1599 	int they_are_dirs = S_ISDIR(inode->i_mode);
1600 
1601 	if (!simple_empty(new_dentry))
1602 		return -ENOTEMPTY;
1603 
1604 	if (new_dentry->d_inode) {
1605 		(void) shmem_unlink(new_dir, new_dentry);
1606 		if (they_are_dirs)
1607 			drop_nlink(old_dir);
1608 	} else if (they_are_dirs) {
1609 		drop_nlink(old_dir);
1610 		inc_nlink(new_dir);
1611 	}
1612 
1613 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1614 	new_dir->i_size += BOGO_DIRENT_SIZE;
1615 	old_dir->i_ctime = old_dir->i_mtime =
1616 	new_dir->i_ctime = new_dir->i_mtime =
1617 	inode->i_ctime = CURRENT_TIME;
1618 	return 0;
1619 }
1620 
1621 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1622 {
1623 	int error;
1624 	int len;
1625 	struct inode *inode;
1626 	struct page *page;
1627 	char *kaddr;
1628 	struct shmem_inode_info *info;
1629 
1630 	len = strlen(symname) + 1;
1631 	if (len > PAGE_CACHE_SIZE)
1632 		return -ENAMETOOLONG;
1633 
1634 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1635 	if (!inode)
1636 		return -ENOSPC;
1637 
1638 	error = security_inode_init_security(inode, dir, &dentry->d_name,
1639 					     shmem_initxattrs, NULL);
1640 	if (error) {
1641 		if (error != -EOPNOTSUPP) {
1642 			iput(inode);
1643 			return error;
1644 		}
1645 		error = 0;
1646 	}
1647 
1648 	info = SHMEM_I(inode);
1649 	inode->i_size = len-1;
1650 	if (len <= SHORT_SYMLINK_LEN) {
1651 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1652 		if (!info->symlink) {
1653 			iput(inode);
1654 			return -ENOMEM;
1655 		}
1656 		inode->i_op = &shmem_short_symlink_operations;
1657 	} else {
1658 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1659 		if (error) {
1660 			iput(inode);
1661 			return error;
1662 		}
1663 		inode->i_mapping->a_ops = &shmem_aops;
1664 		inode->i_op = &shmem_symlink_inode_operations;
1665 		kaddr = kmap_atomic(page);
1666 		memcpy(kaddr, symname, len);
1667 		kunmap_atomic(kaddr);
1668 		set_page_dirty(page);
1669 		unlock_page(page);
1670 		page_cache_release(page);
1671 	}
1672 	dir->i_size += BOGO_DIRENT_SIZE;
1673 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1674 	d_instantiate(dentry, inode);
1675 	dget(dentry);
1676 	return 0;
1677 }
1678 
1679 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1680 {
1681 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1682 	return NULL;
1683 }
1684 
1685 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1686 {
1687 	struct page *page = NULL;
1688 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1689 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1690 	if (page)
1691 		unlock_page(page);
1692 	return page;
1693 }
1694 
1695 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1696 {
1697 	if (!IS_ERR(nd_get_link(nd))) {
1698 		struct page *page = cookie;
1699 		kunmap(page);
1700 		mark_page_accessed(page);
1701 		page_cache_release(page);
1702 	}
1703 }
1704 
1705 #ifdef CONFIG_TMPFS_XATTR
1706 /*
1707  * Superblocks without xattr inode operations may get some security.* xattr
1708  * support from the LSM "for free". As soon as we have any other xattrs
1709  * like ACLs, we also need to implement the security.* handlers at
1710  * filesystem level, though.
1711  */
1712 
1713 /*
1714  * Allocate new xattr and copy in the value; but leave the name to callers.
1715  */
1716 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
1717 {
1718 	struct shmem_xattr *new_xattr;
1719 	size_t len;
1720 
1721 	/* wrap around? */
1722 	len = sizeof(*new_xattr) + size;
1723 	if (len <= sizeof(*new_xattr))
1724 		return NULL;
1725 
1726 	new_xattr = kmalloc(len, GFP_KERNEL);
1727 	if (!new_xattr)
1728 		return NULL;
1729 
1730 	new_xattr->size = size;
1731 	memcpy(new_xattr->value, value, size);
1732 	return new_xattr;
1733 }
1734 
1735 /*
1736  * Callback for security_inode_init_security() for acquiring xattrs.
1737  */
1738 static int shmem_initxattrs(struct inode *inode,
1739 			    const struct xattr *xattr_array,
1740 			    void *fs_info)
1741 {
1742 	struct shmem_inode_info *info = SHMEM_I(inode);
1743 	const struct xattr *xattr;
1744 	struct shmem_xattr *new_xattr;
1745 	size_t len;
1746 
1747 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
1748 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
1749 		if (!new_xattr)
1750 			return -ENOMEM;
1751 
1752 		len = strlen(xattr->name) + 1;
1753 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
1754 					  GFP_KERNEL);
1755 		if (!new_xattr->name) {
1756 			kfree(new_xattr);
1757 			return -ENOMEM;
1758 		}
1759 
1760 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
1761 		       XATTR_SECURITY_PREFIX_LEN);
1762 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
1763 		       xattr->name, len);
1764 
1765 		spin_lock(&info->lock);
1766 		list_add(&new_xattr->list, &info->xattr_list);
1767 		spin_unlock(&info->lock);
1768 	}
1769 
1770 	return 0;
1771 }
1772 
1773 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1774 			   void *buffer, size_t size)
1775 {
1776 	struct shmem_inode_info *info;
1777 	struct shmem_xattr *xattr;
1778 	int ret = -ENODATA;
1779 
1780 	info = SHMEM_I(dentry->d_inode);
1781 
1782 	spin_lock(&info->lock);
1783 	list_for_each_entry(xattr, &info->xattr_list, list) {
1784 		if (strcmp(name, xattr->name))
1785 			continue;
1786 
1787 		ret = xattr->size;
1788 		if (buffer) {
1789 			if (size < xattr->size)
1790 				ret = -ERANGE;
1791 			else
1792 				memcpy(buffer, xattr->value, xattr->size);
1793 		}
1794 		break;
1795 	}
1796 	spin_unlock(&info->lock);
1797 	return ret;
1798 }
1799 
1800 static int shmem_xattr_set(struct inode *inode, const char *name,
1801 			   const void *value, size_t size, int flags)
1802 {
1803 	struct shmem_inode_info *info = SHMEM_I(inode);
1804 	struct shmem_xattr *xattr;
1805 	struct shmem_xattr *new_xattr = NULL;
1806 	int err = 0;
1807 
1808 	/* value == NULL means remove */
1809 	if (value) {
1810 		new_xattr = shmem_xattr_alloc(value, size);
1811 		if (!new_xattr)
1812 			return -ENOMEM;
1813 
1814 		new_xattr->name = kstrdup(name, GFP_KERNEL);
1815 		if (!new_xattr->name) {
1816 			kfree(new_xattr);
1817 			return -ENOMEM;
1818 		}
1819 	}
1820 
1821 	spin_lock(&info->lock);
1822 	list_for_each_entry(xattr, &info->xattr_list, list) {
1823 		if (!strcmp(name, xattr->name)) {
1824 			if (flags & XATTR_CREATE) {
1825 				xattr = new_xattr;
1826 				err = -EEXIST;
1827 			} else if (new_xattr) {
1828 				list_replace(&xattr->list, &new_xattr->list);
1829 			} else {
1830 				list_del(&xattr->list);
1831 			}
1832 			goto out;
1833 		}
1834 	}
1835 	if (flags & XATTR_REPLACE) {
1836 		xattr = new_xattr;
1837 		err = -ENODATA;
1838 	} else {
1839 		list_add(&new_xattr->list, &info->xattr_list);
1840 		xattr = NULL;
1841 	}
1842 out:
1843 	spin_unlock(&info->lock);
1844 	if (xattr)
1845 		kfree(xattr->name);
1846 	kfree(xattr);
1847 	return err;
1848 }
1849 
1850 static const struct xattr_handler *shmem_xattr_handlers[] = {
1851 #ifdef CONFIG_TMPFS_POSIX_ACL
1852 	&generic_acl_access_handler,
1853 	&generic_acl_default_handler,
1854 #endif
1855 	NULL
1856 };
1857 
1858 static int shmem_xattr_validate(const char *name)
1859 {
1860 	struct { const char *prefix; size_t len; } arr[] = {
1861 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1862 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1863 	};
1864 	int i;
1865 
1866 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1867 		size_t preflen = arr[i].len;
1868 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1869 			if (!name[preflen])
1870 				return -EINVAL;
1871 			return 0;
1872 		}
1873 	}
1874 	return -EOPNOTSUPP;
1875 }
1876 
1877 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1878 			      void *buffer, size_t size)
1879 {
1880 	int err;
1881 
1882 	/*
1883 	 * If this is a request for a synthetic attribute in the system.*
1884 	 * namespace use the generic infrastructure to resolve a handler
1885 	 * for it via sb->s_xattr.
1886 	 */
1887 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1888 		return generic_getxattr(dentry, name, buffer, size);
1889 
1890 	err = shmem_xattr_validate(name);
1891 	if (err)
1892 		return err;
1893 
1894 	return shmem_xattr_get(dentry, name, buffer, size);
1895 }
1896 
1897 static int shmem_setxattr(struct dentry *dentry, const char *name,
1898 			  const void *value, size_t size, int flags)
1899 {
1900 	int err;
1901 
1902 	/*
1903 	 * If this is a request for a synthetic attribute in the system.*
1904 	 * namespace use the generic infrastructure to resolve a handler
1905 	 * for it via sb->s_xattr.
1906 	 */
1907 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1908 		return generic_setxattr(dentry, name, value, size, flags);
1909 
1910 	err = shmem_xattr_validate(name);
1911 	if (err)
1912 		return err;
1913 
1914 	if (size == 0)
1915 		value = "";  /* empty EA, do not remove */
1916 
1917 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
1918 
1919 }
1920 
1921 static int shmem_removexattr(struct dentry *dentry, const char *name)
1922 {
1923 	int err;
1924 
1925 	/*
1926 	 * If this is a request for a synthetic attribute in the system.*
1927 	 * namespace use the generic infrastructure to resolve a handler
1928 	 * for it via sb->s_xattr.
1929 	 */
1930 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1931 		return generic_removexattr(dentry, name);
1932 
1933 	err = shmem_xattr_validate(name);
1934 	if (err)
1935 		return err;
1936 
1937 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
1938 }
1939 
1940 static bool xattr_is_trusted(const char *name)
1941 {
1942 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1943 }
1944 
1945 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1946 {
1947 	bool trusted = capable(CAP_SYS_ADMIN);
1948 	struct shmem_xattr *xattr;
1949 	struct shmem_inode_info *info;
1950 	size_t used = 0;
1951 
1952 	info = SHMEM_I(dentry->d_inode);
1953 
1954 	spin_lock(&info->lock);
1955 	list_for_each_entry(xattr, &info->xattr_list, list) {
1956 		size_t len;
1957 
1958 		/* skip "trusted." attributes for unprivileged callers */
1959 		if (!trusted && xattr_is_trusted(xattr->name))
1960 			continue;
1961 
1962 		len = strlen(xattr->name) + 1;
1963 		used += len;
1964 		if (buffer) {
1965 			if (size < used) {
1966 				used = -ERANGE;
1967 				break;
1968 			}
1969 			memcpy(buffer, xattr->name, len);
1970 			buffer += len;
1971 		}
1972 	}
1973 	spin_unlock(&info->lock);
1974 
1975 	return used;
1976 }
1977 #endif /* CONFIG_TMPFS_XATTR */
1978 
1979 static const struct inode_operations shmem_short_symlink_operations = {
1980 	.readlink	= generic_readlink,
1981 	.follow_link	= shmem_follow_short_symlink,
1982 #ifdef CONFIG_TMPFS_XATTR
1983 	.setxattr	= shmem_setxattr,
1984 	.getxattr	= shmem_getxattr,
1985 	.listxattr	= shmem_listxattr,
1986 	.removexattr	= shmem_removexattr,
1987 #endif
1988 };
1989 
1990 static const struct inode_operations shmem_symlink_inode_operations = {
1991 	.readlink	= generic_readlink,
1992 	.follow_link	= shmem_follow_link,
1993 	.put_link	= shmem_put_link,
1994 #ifdef CONFIG_TMPFS_XATTR
1995 	.setxattr	= shmem_setxattr,
1996 	.getxattr	= shmem_getxattr,
1997 	.listxattr	= shmem_listxattr,
1998 	.removexattr	= shmem_removexattr,
1999 #endif
2000 };
2001 
2002 static struct dentry *shmem_get_parent(struct dentry *child)
2003 {
2004 	return ERR_PTR(-ESTALE);
2005 }
2006 
2007 static int shmem_match(struct inode *ino, void *vfh)
2008 {
2009 	__u32 *fh = vfh;
2010 	__u64 inum = fh[2];
2011 	inum = (inum << 32) | fh[1];
2012 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2013 }
2014 
2015 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2016 		struct fid *fid, int fh_len, int fh_type)
2017 {
2018 	struct inode *inode;
2019 	struct dentry *dentry = NULL;
2020 	u64 inum = fid->raw[2];
2021 	inum = (inum << 32) | fid->raw[1];
2022 
2023 	if (fh_len < 3)
2024 		return NULL;
2025 
2026 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2027 			shmem_match, fid->raw);
2028 	if (inode) {
2029 		dentry = d_find_alias(inode);
2030 		iput(inode);
2031 	}
2032 
2033 	return dentry;
2034 }
2035 
2036 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2037 				int connectable)
2038 {
2039 	struct inode *inode = dentry->d_inode;
2040 
2041 	if (*len < 3) {
2042 		*len = 3;
2043 		return 255;
2044 	}
2045 
2046 	if (inode_unhashed(inode)) {
2047 		/* Unfortunately insert_inode_hash is not idempotent,
2048 		 * so as we hash inodes here rather than at creation
2049 		 * time, we need a lock to ensure we only try
2050 		 * to do it once
2051 		 */
2052 		static DEFINE_SPINLOCK(lock);
2053 		spin_lock(&lock);
2054 		if (inode_unhashed(inode))
2055 			__insert_inode_hash(inode,
2056 					    inode->i_ino + inode->i_generation);
2057 		spin_unlock(&lock);
2058 	}
2059 
2060 	fh[0] = inode->i_generation;
2061 	fh[1] = inode->i_ino;
2062 	fh[2] = ((__u64)inode->i_ino) >> 32;
2063 
2064 	*len = 3;
2065 	return 1;
2066 }
2067 
2068 static const struct export_operations shmem_export_ops = {
2069 	.get_parent     = shmem_get_parent,
2070 	.encode_fh      = shmem_encode_fh,
2071 	.fh_to_dentry	= shmem_fh_to_dentry,
2072 };
2073 
2074 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2075 			       bool remount)
2076 {
2077 	char *this_char, *value, *rest;
2078 
2079 	while (options != NULL) {
2080 		this_char = options;
2081 		for (;;) {
2082 			/*
2083 			 * NUL-terminate this option: unfortunately,
2084 			 * mount options form a comma-separated list,
2085 			 * but mpol's nodelist may also contain commas.
2086 			 */
2087 			options = strchr(options, ',');
2088 			if (options == NULL)
2089 				break;
2090 			options++;
2091 			if (!isdigit(*options)) {
2092 				options[-1] = '\0';
2093 				break;
2094 			}
2095 		}
2096 		if (!*this_char)
2097 			continue;
2098 		if ((value = strchr(this_char,'=')) != NULL) {
2099 			*value++ = 0;
2100 		} else {
2101 			printk(KERN_ERR
2102 			    "tmpfs: No value for mount option '%s'\n",
2103 			    this_char);
2104 			return 1;
2105 		}
2106 
2107 		if (!strcmp(this_char,"size")) {
2108 			unsigned long long size;
2109 			size = memparse(value,&rest);
2110 			if (*rest == '%') {
2111 				size <<= PAGE_SHIFT;
2112 				size *= totalram_pages;
2113 				do_div(size, 100);
2114 				rest++;
2115 			}
2116 			if (*rest)
2117 				goto bad_val;
2118 			sbinfo->max_blocks =
2119 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2120 		} else if (!strcmp(this_char,"nr_blocks")) {
2121 			sbinfo->max_blocks = memparse(value, &rest);
2122 			if (*rest)
2123 				goto bad_val;
2124 		} else if (!strcmp(this_char,"nr_inodes")) {
2125 			sbinfo->max_inodes = memparse(value, &rest);
2126 			if (*rest)
2127 				goto bad_val;
2128 		} else if (!strcmp(this_char,"mode")) {
2129 			if (remount)
2130 				continue;
2131 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2132 			if (*rest)
2133 				goto bad_val;
2134 		} else if (!strcmp(this_char,"uid")) {
2135 			if (remount)
2136 				continue;
2137 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2138 			if (*rest)
2139 				goto bad_val;
2140 		} else if (!strcmp(this_char,"gid")) {
2141 			if (remount)
2142 				continue;
2143 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2144 			if (*rest)
2145 				goto bad_val;
2146 		} else if (!strcmp(this_char,"mpol")) {
2147 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2148 				goto bad_val;
2149 		} else {
2150 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2151 			       this_char);
2152 			return 1;
2153 		}
2154 	}
2155 	return 0;
2156 
2157 bad_val:
2158 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2159 	       value, this_char);
2160 	return 1;
2161 
2162 }
2163 
2164 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2165 {
2166 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2167 	struct shmem_sb_info config = *sbinfo;
2168 	unsigned long inodes;
2169 	int error = -EINVAL;
2170 
2171 	if (shmem_parse_options(data, &config, true))
2172 		return error;
2173 
2174 	spin_lock(&sbinfo->stat_lock);
2175 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2176 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2177 		goto out;
2178 	if (config.max_inodes < inodes)
2179 		goto out;
2180 	/*
2181 	 * Those tests disallow limited->unlimited while any are in use;
2182 	 * but we must separately disallow unlimited->limited, because
2183 	 * in that case we have no record of how much is already in use.
2184 	 */
2185 	if (config.max_blocks && !sbinfo->max_blocks)
2186 		goto out;
2187 	if (config.max_inodes && !sbinfo->max_inodes)
2188 		goto out;
2189 
2190 	error = 0;
2191 	sbinfo->max_blocks  = config.max_blocks;
2192 	sbinfo->max_inodes  = config.max_inodes;
2193 	sbinfo->free_inodes = config.max_inodes - inodes;
2194 
2195 	mpol_put(sbinfo->mpol);
2196 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2197 out:
2198 	spin_unlock(&sbinfo->stat_lock);
2199 	return error;
2200 }
2201 
2202 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2203 {
2204 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2205 
2206 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2207 		seq_printf(seq, ",size=%luk",
2208 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2209 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2210 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2211 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2212 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2213 	if (sbinfo->uid != 0)
2214 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2215 	if (sbinfo->gid != 0)
2216 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2217 	shmem_show_mpol(seq, sbinfo->mpol);
2218 	return 0;
2219 }
2220 #endif /* CONFIG_TMPFS */
2221 
2222 static void shmem_put_super(struct super_block *sb)
2223 {
2224 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2225 
2226 	percpu_counter_destroy(&sbinfo->used_blocks);
2227 	kfree(sbinfo);
2228 	sb->s_fs_info = NULL;
2229 }
2230 
2231 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2232 {
2233 	struct inode *inode;
2234 	struct shmem_sb_info *sbinfo;
2235 	int err = -ENOMEM;
2236 
2237 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2238 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2239 				L1_CACHE_BYTES), GFP_KERNEL);
2240 	if (!sbinfo)
2241 		return -ENOMEM;
2242 
2243 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2244 	sbinfo->uid = current_fsuid();
2245 	sbinfo->gid = current_fsgid();
2246 	sb->s_fs_info = sbinfo;
2247 
2248 #ifdef CONFIG_TMPFS
2249 	/*
2250 	 * Per default we only allow half of the physical ram per
2251 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2252 	 * but the internal instance is left unlimited.
2253 	 */
2254 	if (!(sb->s_flags & MS_NOUSER)) {
2255 		sbinfo->max_blocks = shmem_default_max_blocks();
2256 		sbinfo->max_inodes = shmem_default_max_inodes();
2257 		if (shmem_parse_options(data, sbinfo, false)) {
2258 			err = -EINVAL;
2259 			goto failed;
2260 		}
2261 	}
2262 	sb->s_export_op = &shmem_export_ops;
2263 #else
2264 	sb->s_flags |= MS_NOUSER;
2265 #endif
2266 
2267 	spin_lock_init(&sbinfo->stat_lock);
2268 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2269 		goto failed;
2270 	sbinfo->free_inodes = sbinfo->max_inodes;
2271 
2272 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2273 	sb->s_blocksize = PAGE_CACHE_SIZE;
2274 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2275 	sb->s_magic = TMPFS_MAGIC;
2276 	sb->s_op = &shmem_ops;
2277 	sb->s_time_gran = 1;
2278 #ifdef CONFIG_TMPFS_XATTR
2279 	sb->s_xattr = shmem_xattr_handlers;
2280 #endif
2281 #ifdef CONFIG_TMPFS_POSIX_ACL
2282 	sb->s_flags |= MS_POSIXACL;
2283 #endif
2284 
2285 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2286 	if (!inode)
2287 		goto failed;
2288 	inode->i_uid = sbinfo->uid;
2289 	inode->i_gid = sbinfo->gid;
2290 	sb->s_root = d_make_root(inode);
2291 	if (!sb->s_root)
2292 		goto failed;
2293 	return 0;
2294 
2295 failed:
2296 	shmem_put_super(sb);
2297 	return err;
2298 }
2299 
2300 static struct kmem_cache *shmem_inode_cachep;
2301 
2302 static struct inode *shmem_alloc_inode(struct super_block *sb)
2303 {
2304 	struct shmem_inode_info *info;
2305 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2306 	if (!info)
2307 		return NULL;
2308 	return &info->vfs_inode;
2309 }
2310 
2311 static void shmem_destroy_callback(struct rcu_head *head)
2312 {
2313 	struct inode *inode = container_of(head, struct inode, i_rcu);
2314 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2315 }
2316 
2317 static void shmem_destroy_inode(struct inode *inode)
2318 {
2319 	if (S_ISREG(inode->i_mode))
2320 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2321 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2322 }
2323 
2324 static void shmem_init_inode(void *foo)
2325 {
2326 	struct shmem_inode_info *info = foo;
2327 	inode_init_once(&info->vfs_inode);
2328 }
2329 
2330 static int shmem_init_inodecache(void)
2331 {
2332 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2333 				sizeof(struct shmem_inode_info),
2334 				0, SLAB_PANIC, shmem_init_inode);
2335 	return 0;
2336 }
2337 
2338 static void shmem_destroy_inodecache(void)
2339 {
2340 	kmem_cache_destroy(shmem_inode_cachep);
2341 }
2342 
2343 static const struct address_space_operations shmem_aops = {
2344 	.writepage	= shmem_writepage,
2345 	.set_page_dirty	= __set_page_dirty_no_writeback,
2346 #ifdef CONFIG_TMPFS
2347 	.write_begin	= shmem_write_begin,
2348 	.write_end	= shmem_write_end,
2349 #endif
2350 	.migratepage	= migrate_page,
2351 	.error_remove_page = generic_error_remove_page,
2352 };
2353 
2354 static const struct file_operations shmem_file_operations = {
2355 	.mmap		= shmem_mmap,
2356 #ifdef CONFIG_TMPFS
2357 	.llseek		= generic_file_llseek,
2358 	.read		= do_sync_read,
2359 	.write		= do_sync_write,
2360 	.aio_read	= shmem_file_aio_read,
2361 	.aio_write	= generic_file_aio_write,
2362 	.fsync		= noop_fsync,
2363 	.splice_read	= shmem_file_splice_read,
2364 	.splice_write	= generic_file_splice_write,
2365 #endif
2366 };
2367 
2368 static const struct inode_operations shmem_inode_operations = {
2369 	.setattr	= shmem_setattr,
2370 	.truncate_range	= shmem_truncate_range,
2371 #ifdef CONFIG_TMPFS_XATTR
2372 	.setxattr	= shmem_setxattr,
2373 	.getxattr	= shmem_getxattr,
2374 	.listxattr	= shmem_listxattr,
2375 	.removexattr	= shmem_removexattr,
2376 #endif
2377 };
2378 
2379 static const struct inode_operations shmem_dir_inode_operations = {
2380 #ifdef CONFIG_TMPFS
2381 	.create		= shmem_create,
2382 	.lookup		= simple_lookup,
2383 	.link		= shmem_link,
2384 	.unlink		= shmem_unlink,
2385 	.symlink	= shmem_symlink,
2386 	.mkdir		= shmem_mkdir,
2387 	.rmdir		= shmem_rmdir,
2388 	.mknod		= shmem_mknod,
2389 	.rename		= shmem_rename,
2390 #endif
2391 #ifdef CONFIG_TMPFS_XATTR
2392 	.setxattr	= shmem_setxattr,
2393 	.getxattr	= shmem_getxattr,
2394 	.listxattr	= shmem_listxattr,
2395 	.removexattr	= shmem_removexattr,
2396 #endif
2397 #ifdef CONFIG_TMPFS_POSIX_ACL
2398 	.setattr	= shmem_setattr,
2399 #endif
2400 };
2401 
2402 static const struct inode_operations shmem_special_inode_operations = {
2403 #ifdef CONFIG_TMPFS_XATTR
2404 	.setxattr	= shmem_setxattr,
2405 	.getxattr	= shmem_getxattr,
2406 	.listxattr	= shmem_listxattr,
2407 	.removexattr	= shmem_removexattr,
2408 #endif
2409 #ifdef CONFIG_TMPFS_POSIX_ACL
2410 	.setattr	= shmem_setattr,
2411 #endif
2412 };
2413 
2414 static const struct super_operations shmem_ops = {
2415 	.alloc_inode	= shmem_alloc_inode,
2416 	.destroy_inode	= shmem_destroy_inode,
2417 #ifdef CONFIG_TMPFS
2418 	.statfs		= shmem_statfs,
2419 	.remount_fs	= shmem_remount_fs,
2420 	.show_options	= shmem_show_options,
2421 #endif
2422 	.evict_inode	= shmem_evict_inode,
2423 	.drop_inode	= generic_delete_inode,
2424 	.put_super	= shmem_put_super,
2425 };
2426 
2427 static const struct vm_operations_struct shmem_vm_ops = {
2428 	.fault		= shmem_fault,
2429 #ifdef CONFIG_NUMA
2430 	.set_policy     = shmem_set_policy,
2431 	.get_policy     = shmem_get_policy,
2432 #endif
2433 };
2434 
2435 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2436 	int flags, const char *dev_name, void *data)
2437 {
2438 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2439 }
2440 
2441 static struct file_system_type shmem_fs_type = {
2442 	.owner		= THIS_MODULE,
2443 	.name		= "tmpfs",
2444 	.mount		= shmem_mount,
2445 	.kill_sb	= kill_litter_super,
2446 };
2447 
2448 int __init shmem_init(void)
2449 {
2450 	int error;
2451 
2452 	error = bdi_init(&shmem_backing_dev_info);
2453 	if (error)
2454 		goto out4;
2455 
2456 	error = shmem_init_inodecache();
2457 	if (error)
2458 		goto out3;
2459 
2460 	error = register_filesystem(&shmem_fs_type);
2461 	if (error) {
2462 		printk(KERN_ERR "Could not register tmpfs\n");
2463 		goto out2;
2464 	}
2465 
2466 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2467 				 shmem_fs_type.name, NULL);
2468 	if (IS_ERR(shm_mnt)) {
2469 		error = PTR_ERR(shm_mnt);
2470 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2471 		goto out1;
2472 	}
2473 	return 0;
2474 
2475 out1:
2476 	unregister_filesystem(&shmem_fs_type);
2477 out2:
2478 	shmem_destroy_inodecache();
2479 out3:
2480 	bdi_destroy(&shmem_backing_dev_info);
2481 out4:
2482 	shm_mnt = ERR_PTR(error);
2483 	return error;
2484 }
2485 
2486 #else /* !CONFIG_SHMEM */
2487 
2488 /*
2489  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2490  *
2491  * This is intended for small system where the benefits of the full
2492  * shmem code (swap-backed and resource-limited) are outweighed by
2493  * their complexity. On systems without swap this code should be
2494  * effectively equivalent, but much lighter weight.
2495  */
2496 
2497 #include <linux/ramfs.h>
2498 
2499 static struct file_system_type shmem_fs_type = {
2500 	.name		= "tmpfs",
2501 	.mount		= ramfs_mount,
2502 	.kill_sb	= kill_litter_super,
2503 };
2504 
2505 int __init shmem_init(void)
2506 {
2507 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2508 
2509 	shm_mnt = kern_mount(&shmem_fs_type);
2510 	BUG_ON(IS_ERR(shm_mnt));
2511 
2512 	return 0;
2513 }
2514 
2515 int shmem_unuse(swp_entry_t swap, struct page *page)
2516 {
2517 	return 0;
2518 }
2519 
2520 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2521 {
2522 	return 0;
2523 }
2524 
2525 void shmem_unlock_mapping(struct address_space *mapping)
2526 {
2527 }
2528 
2529 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2530 {
2531 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2532 }
2533 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2534 
2535 #define shmem_vm_ops				generic_file_vm_ops
2536 #define shmem_file_operations			ramfs_file_operations
2537 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2538 #define shmem_acct_size(flags, size)		0
2539 #define shmem_unacct_size(flags, size)		do {} while (0)
2540 
2541 #endif /* CONFIG_SHMEM */
2542 
2543 /* common code */
2544 
2545 /**
2546  * shmem_file_setup - get an unlinked file living in tmpfs
2547  * @name: name for dentry (to be seen in /proc/<pid>/maps
2548  * @size: size to be set for the file
2549  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2550  */
2551 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2552 {
2553 	int error;
2554 	struct file *file;
2555 	struct inode *inode;
2556 	struct path path;
2557 	struct dentry *root;
2558 	struct qstr this;
2559 
2560 	if (IS_ERR(shm_mnt))
2561 		return (void *)shm_mnt;
2562 
2563 	if (size < 0 || size > MAX_LFS_FILESIZE)
2564 		return ERR_PTR(-EINVAL);
2565 
2566 	if (shmem_acct_size(flags, size))
2567 		return ERR_PTR(-ENOMEM);
2568 
2569 	error = -ENOMEM;
2570 	this.name = name;
2571 	this.len = strlen(name);
2572 	this.hash = 0; /* will go */
2573 	root = shm_mnt->mnt_root;
2574 	path.dentry = d_alloc(root, &this);
2575 	if (!path.dentry)
2576 		goto put_memory;
2577 	path.mnt = mntget(shm_mnt);
2578 
2579 	error = -ENOSPC;
2580 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2581 	if (!inode)
2582 		goto put_dentry;
2583 
2584 	d_instantiate(path.dentry, inode);
2585 	inode->i_size = size;
2586 	clear_nlink(inode);	/* It is unlinked */
2587 #ifndef CONFIG_MMU
2588 	error = ramfs_nommu_expand_for_mapping(inode, size);
2589 	if (error)
2590 		goto put_dentry;
2591 #endif
2592 
2593 	error = -ENFILE;
2594 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2595 		  &shmem_file_operations);
2596 	if (!file)
2597 		goto put_dentry;
2598 
2599 	return file;
2600 
2601 put_dentry:
2602 	path_put(&path);
2603 put_memory:
2604 	shmem_unacct_size(flags, size);
2605 	return ERR_PTR(error);
2606 }
2607 EXPORT_SYMBOL_GPL(shmem_file_setup);
2608 
2609 /**
2610  * shmem_zero_setup - setup a shared anonymous mapping
2611  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2612  */
2613 int shmem_zero_setup(struct vm_area_struct *vma)
2614 {
2615 	struct file *file;
2616 	loff_t size = vma->vm_end - vma->vm_start;
2617 
2618 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2619 	if (IS_ERR(file))
2620 		return PTR_ERR(file);
2621 
2622 	if (vma->vm_file)
2623 		fput(vma->vm_file);
2624 	vma->vm_file = file;
2625 	vma->vm_ops = &shmem_vm_ops;
2626 	vma->vm_flags |= VM_CAN_NONLINEAR;
2627 	return 0;
2628 }
2629 
2630 /**
2631  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2632  * @mapping:	the page's address_space
2633  * @index:	the page index
2634  * @gfp:	the page allocator flags to use if allocating
2635  *
2636  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2637  * with any new page allocations done using the specified allocation flags.
2638  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2639  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2640  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2641  *
2642  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2643  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2644  */
2645 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2646 					 pgoff_t index, gfp_t gfp)
2647 {
2648 #ifdef CONFIG_SHMEM
2649 	struct inode *inode = mapping->host;
2650 	struct page *page;
2651 	int error;
2652 
2653 	BUG_ON(mapping->a_ops != &shmem_aops);
2654 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2655 	if (error)
2656 		page = ERR_PTR(error);
2657 	else
2658 		unlock_page(page);
2659 	return page;
2660 #else
2661 	/*
2662 	 * The tiny !SHMEM case uses ramfs without swap
2663 	 */
2664 	return read_cache_page_gfp(mapping, index, gfp);
2665 #endif
2666 }
2667 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2668