xref: /linux/mm/shmem.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/splice.h>
57 #include <linux/security.h>
58 #include <linux/swapops.h>
59 #include <linux/mempolicy.h>
60 #include <linux/namei.h>
61 #include <linux/ctype.h>
62 #include <linux/migrate.h>
63 #include <linux/highmem.h>
64 #include <linux/seq_file.h>
65 #include <linux/magic.h>
66 
67 #include <asm/uaccess.h>
68 #include <asm/pgtable.h>
69 
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
72 
73 /* Pretend that each entry is of this size in directory's i_size */
74 #define BOGO_DIRENT_SIZE 20
75 
76 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
77 #define SHORT_SYMLINK_LEN 128
78 
79 struct shmem_xattr {
80 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
81 	char *name;		/* xattr name */
82 	size_t size;
83 	char value[0];
84 };
85 
86 /* Flag allocation requirements to shmem_getpage */
87 enum sgp_type {
88 	SGP_READ,	/* don't exceed i_size, don't allocate page */
89 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
90 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
91 	SGP_WRITE,	/* may exceed i_size, may allocate page */
92 };
93 
94 #ifdef CONFIG_TMPFS
95 static unsigned long shmem_default_max_blocks(void)
96 {
97 	return totalram_pages / 2;
98 }
99 
100 static unsigned long shmem_default_max_inodes(void)
101 {
102 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
103 }
104 #endif
105 
106 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
107 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
108 
109 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
110 	struct page **pagep, enum sgp_type sgp, int *fault_type)
111 {
112 	return shmem_getpage_gfp(inode, index, pagep, sgp,
113 			mapping_gfp_mask(inode->i_mapping), fault_type);
114 }
115 
116 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
117 {
118 	return sb->s_fs_info;
119 }
120 
121 /*
122  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
123  * for shared memory and for shared anonymous (/dev/zero) mappings
124  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
125  * consistent with the pre-accounting of private mappings ...
126  */
127 static inline int shmem_acct_size(unsigned long flags, loff_t size)
128 {
129 	return (flags & VM_NORESERVE) ?
130 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
131 }
132 
133 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
134 {
135 	if (!(flags & VM_NORESERVE))
136 		vm_unacct_memory(VM_ACCT(size));
137 }
138 
139 /*
140  * ... whereas tmpfs objects are accounted incrementally as
141  * pages are allocated, in order to allow huge sparse files.
142  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
143  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
144  */
145 static inline int shmem_acct_block(unsigned long flags)
146 {
147 	return (flags & VM_NORESERVE) ?
148 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
149 }
150 
151 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
152 {
153 	if (flags & VM_NORESERVE)
154 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
155 }
156 
157 static const struct super_operations shmem_ops;
158 static const struct address_space_operations shmem_aops;
159 static const struct file_operations shmem_file_operations;
160 static const struct inode_operations shmem_inode_operations;
161 static const struct inode_operations shmem_dir_inode_operations;
162 static const struct inode_operations shmem_special_inode_operations;
163 static const struct vm_operations_struct shmem_vm_ops;
164 
165 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
166 	.ra_pages	= 0,	/* No readahead */
167 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
168 };
169 
170 static LIST_HEAD(shmem_swaplist);
171 static DEFINE_MUTEX(shmem_swaplist_mutex);
172 
173 static int shmem_reserve_inode(struct super_block *sb)
174 {
175 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
176 	if (sbinfo->max_inodes) {
177 		spin_lock(&sbinfo->stat_lock);
178 		if (!sbinfo->free_inodes) {
179 			spin_unlock(&sbinfo->stat_lock);
180 			return -ENOSPC;
181 		}
182 		sbinfo->free_inodes--;
183 		spin_unlock(&sbinfo->stat_lock);
184 	}
185 	return 0;
186 }
187 
188 static void shmem_free_inode(struct super_block *sb)
189 {
190 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
191 	if (sbinfo->max_inodes) {
192 		spin_lock(&sbinfo->stat_lock);
193 		sbinfo->free_inodes++;
194 		spin_unlock(&sbinfo->stat_lock);
195 	}
196 }
197 
198 /**
199  * shmem_recalc_inode - recalculate the block usage of an inode
200  * @inode: inode to recalc
201  *
202  * We have to calculate the free blocks since the mm can drop
203  * undirtied hole pages behind our back.
204  *
205  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
206  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
207  *
208  * It has to be called with the spinlock held.
209  */
210 static void shmem_recalc_inode(struct inode *inode)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	long freed;
214 
215 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
216 	if (freed > 0) {
217 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
218 		if (sbinfo->max_blocks)
219 			percpu_counter_add(&sbinfo->used_blocks, -freed);
220 		info->alloced -= freed;
221 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
222 		shmem_unacct_blocks(info->flags, freed);
223 	}
224 }
225 
226 /*
227  * Replace item expected in radix tree by a new item, while holding tree lock.
228  */
229 static int shmem_radix_tree_replace(struct address_space *mapping,
230 			pgoff_t index, void *expected, void *replacement)
231 {
232 	void **pslot;
233 	void *item = NULL;
234 
235 	VM_BUG_ON(!expected);
236 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
237 	if (pslot)
238 		item = radix_tree_deref_slot_protected(pslot,
239 							&mapping->tree_lock);
240 	if (item != expected)
241 		return -ENOENT;
242 	if (replacement)
243 		radix_tree_replace_slot(pslot, replacement);
244 	else
245 		radix_tree_delete(&mapping->page_tree, index);
246 	return 0;
247 }
248 
249 /*
250  * Like add_to_page_cache_locked, but error if expected item has gone.
251  */
252 static int shmem_add_to_page_cache(struct page *page,
253 				   struct address_space *mapping,
254 				   pgoff_t index, gfp_t gfp, void *expected)
255 {
256 	int error = 0;
257 
258 	VM_BUG_ON(!PageLocked(page));
259 	VM_BUG_ON(!PageSwapBacked(page));
260 
261 	if (!expected)
262 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
263 	if (!error) {
264 		page_cache_get(page);
265 		page->mapping = mapping;
266 		page->index = index;
267 
268 		spin_lock_irq(&mapping->tree_lock);
269 		if (!expected)
270 			error = radix_tree_insert(&mapping->page_tree,
271 							index, page);
272 		else
273 			error = shmem_radix_tree_replace(mapping, index,
274 							expected, page);
275 		if (!error) {
276 			mapping->nrpages++;
277 			__inc_zone_page_state(page, NR_FILE_PAGES);
278 			__inc_zone_page_state(page, NR_SHMEM);
279 			spin_unlock_irq(&mapping->tree_lock);
280 		} else {
281 			page->mapping = NULL;
282 			spin_unlock_irq(&mapping->tree_lock);
283 			page_cache_release(page);
284 		}
285 		if (!expected)
286 			radix_tree_preload_end();
287 	}
288 	if (error)
289 		mem_cgroup_uncharge_cache_page(page);
290 	return error;
291 }
292 
293 /*
294  * Like delete_from_page_cache, but substitutes swap for page.
295  */
296 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
297 {
298 	struct address_space *mapping = page->mapping;
299 	int error;
300 
301 	spin_lock_irq(&mapping->tree_lock);
302 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
303 	page->mapping = NULL;
304 	mapping->nrpages--;
305 	__dec_zone_page_state(page, NR_FILE_PAGES);
306 	__dec_zone_page_state(page, NR_SHMEM);
307 	spin_unlock_irq(&mapping->tree_lock);
308 	page_cache_release(page);
309 	BUG_ON(error);
310 }
311 
312 /*
313  * Like find_get_pages, but collecting swap entries as well as pages.
314  */
315 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
316 					pgoff_t start, unsigned int nr_pages,
317 					struct page **pages, pgoff_t *indices)
318 {
319 	unsigned int i;
320 	unsigned int ret;
321 	unsigned int nr_found;
322 
323 	rcu_read_lock();
324 restart:
325 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
326 				(void ***)pages, indices, start, nr_pages);
327 	ret = 0;
328 	for (i = 0; i < nr_found; i++) {
329 		struct page *page;
330 repeat:
331 		page = radix_tree_deref_slot((void **)pages[i]);
332 		if (unlikely(!page))
333 			continue;
334 		if (radix_tree_exception(page)) {
335 			if (radix_tree_deref_retry(page))
336 				goto restart;
337 			/*
338 			 * Otherwise, we must be storing a swap entry
339 			 * here as an exceptional entry: so return it
340 			 * without attempting to raise page count.
341 			 */
342 			goto export;
343 		}
344 		if (!page_cache_get_speculative(page))
345 			goto repeat;
346 
347 		/* Has the page moved? */
348 		if (unlikely(page != *((void **)pages[i]))) {
349 			page_cache_release(page);
350 			goto repeat;
351 		}
352 export:
353 		indices[ret] = indices[i];
354 		pages[ret] = page;
355 		ret++;
356 	}
357 	if (unlikely(!ret && nr_found))
358 		goto restart;
359 	rcu_read_unlock();
360 	return ret;
361 }
362 
363 /*
364  * Remove swap entry from radix tree, free the swap and its page cache.
365  */
366 static int shmem_free_swap(struct address_space *mapping,
367 			   pgoff_t index, void *radswap)
368 {
369 	int error;
370 
371 	spin_lock_irq(&mapping->tree_lock);
372 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
373 	spin_unlock_irq(&mapping->tree_lock);
374 	if (!error)
375 		free_swap_and_cache(radix_to_swp_entry(radswap));
376 	return error;
377 }
378 
379 /*
380  * Pagevec may contain swap entries, so shuffle up pages before releasing.
381  */
382 static void shmem_pagevec_release(struct pagevec *pvec)
383 {
384 	int i, j;
385 
386 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
387 		struct page *page = pvec->pages[i];
388 		if (!radix_tree_exceptional_entry(page))
389 			pvec->pages[j++] = page;
390 	}
391 	pvec->nr = j;
392 	pagevec_release(pvec);
393 }
394 
395 /*
396  * Remove range of pages and swap entries from radix tree, and free them.
397  */
398 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
399 {
400 	struct address_space *mapping = inode->i_mapping;
401 	struct shmem_inode_info *info = SHMEM_I(inode);
402 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
403 	unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
404 	pgoff_t end = (lend >> PAGE_CACHE_SHIFT);
405 	struct pagevec pvec;
406 	pgoff_t indices[PAGEVEC_SIZE];
407 	long nr_swaps_freed = 0;
408 	pgoff_t index;
409 	int i;
410 
411 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
412 
413 	pagevec_init(&pvec, 0);
414 	index = start;
415 	while (index <= end) {
416 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
417 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
418 							pvec.pages, indices);
419 		if (!pvec.nr)
420 			break;
421 		mem_cgroup_uncharge_start();
422 		for (i = 0; i < pagevec_count(&pvec); i++) {
423 			struct page *page = pvec.pages[i];
424 
425 			index = indices[i];
426 			if (index > end)
427 				break;
428 
429 			if (radix_tree_exceptional_entry(page)) {
430 				nr_swaps_freed += !shmem_free_swap(mapping,
431 								index, page);
432 				continue;
433 			}
434 
435 			if (!trylock_page(page))
436 				continue;
437 			if (page->mapping == mapping) {
438 				VM_BUG_ON(PageWriteback(page));
439 				truncate_inode_page(mapping, page);
440 			}
441 			unlock_page(page);
442 		}
443 		shmem_pagevec_release(&pvec);
444 		mem_cgroup_uncharge_end();
445 		cond_resched();
446 		index++;
447 	}
448 
449 	if (partial) {
450 		struct page *page = NULL;
451 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
452 		if (page) {
453 			zero_user_segment(page, partial, PAGE_CACHE_SIZE);
454 			set_page_dirty(page);
455 			unlock_page(page);
456 			page_cache_release(page);
457 		}
458 	}
459 
460 	index = start;
461 	for ( ; ; ) {
462 		cond_resched();
463 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
464 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
465 							pvec.pages, indices);
466 		if (!pvec.nr) {
467 			if (index == start)
468 				break;
469 			index = start;
470 			continue;
471 		}
472 		if (index == start && indices[0] > end) {
473 			shmem_pagevec_release(&pvec);
474 			break;
475 		}
476 		mem_cgroup_uncharge_start();
477 		for (i = 0; i < pagevec_count(&pvec); i++) {
478 			struct page *page = pvec.pages[i];
479 
480 			index = indices[i];
481 			if (index > end)
482 				break;
483 
484 			if (radix_tree_exceptional_entry(page)) {
485 				nr_swaps_freed += !shmem_free_swap(mapping,
486 								index, page);
487 				continue;
488 			}
489 
490 			lock_page(page);
491 			if (page->mapping == mapping) {
492 				VM_BUG_ON(PageWriteback(page));
493 				truncate_inode_page(mapping, page);
494 			}
495 			unlock_page(page);
496 		}
497 		shmem_pagevec_release(&pvec);
498 		mem_cgroup_uncharge_end();
499 		index++;
500 	}
501 
502 	spin_lock(&info->lock);
503 	info->swapped -= nr_swaps_freed;
504 	shmem_recalc_inode(inode);
505 	spin_unlock(&info->lock);
506 
507 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
508 }
509 EXPORT_SYMBOL_GPL(shmem_truncate_range);
510 
511 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
512 {
513 	struct inode *inode = dentry->d_inode;
514 	int error;
515 
516 	error = inode_change_ok(inode, attr);
517 	if (error)
518 		return error;
519 
520 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
521 		loff_t oldsize = inode->i_size;
522 		loff_t newsize = attr->ia_size;
523 
524 		if (newsize != oldsize) {
525 			i_size_write(inode, newsize);
526 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
527 		}
528 		if (newsize < oldsize) {
529 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
530 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
531 			shmem_truncate_range(inode, newsize, (loff_t)-1);
532 			/* unmap again to remove racily COWed private pages */
533 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
534 		}
535 	}
536 
537 	setattr_copy(inode, attr);
538 #ifdef CONFIG_TMPFS_POSIX_ACL
539 	if (attr->ia_valid & ATTR_MODE)
540 		error = generic_acl_chmod(inode);
541 #endif
542 	return error;
543 }
544 
545 static void shmem_evict_inode(struct inode *inode)
546 {
547 	struct shmem_inode_info *info = SHMEM_I(inode);
548 	struct shmem_xattr *xattr, *nxattr;
549 
550 	if (inode->i_mapping->a_ops == &shmem_aops) {
551 		shmem_unacct_size(info->flags, inode->i_size);
552 		inode->i_size = 0;
553 		shmem_truncate_range(inode, 0, (loff_t)-1);
554 		if (!list_empty(&info->swaplist)) {
555 			mutex_lock(&shmem_swaplist_mutex);
556 			list_del_init(&info->swaplist);
557 			mutex_unlock(&shmem_swaplist_mutex);
558 		}
559 	} else
560 		kfree(info->symlink);
561 
562 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
563 		kfree(xattr->name);
564 		kfree(xattr);
565 	}
566 	BUG_ON(inode->i_blocks);
567 	shmem_free_inode(inode->i_sb);
568 	end_writeback(inode);
569 }
570 
571 /*
572  * If swap found in inode, free it and move page from swapcache to filecache.
573  */
574 static int shmem_unuse_inode(struct shmem_inode_info *info,
575 			     swp_entry_t swap, struct page *page)
576 {
577 	struct address_space *mapping = info->vfs_inode.i_mapping;
578 	void *radswap;
579 	pgoff_t index;
580 	int error;
581 
582 	radswap = swp_to_radix_entry(swap);
583 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
584 	if (index == -1)
585 		return 0;
586 
587 	/*
588 	 * Move _head_ to start search for next from here.
589 	 * But be careful: shmem_evict_inode checks list_empty without taking
590 	 * mutex, and there's an instant in list_move_tail when info->swaplist
591 	 * would appear empty, if it were the only one on shmem_swaplist.
592 	 */
593 	if (shmem_swaplist.next != &info->swaplist)
594 		list_move_tail(&shmem_swaplist, &info->swaplist);
595 
596 	/*
597 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
598 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
599 	 * beneath us (pagelock doesn't help until the page is in pagecache).
600 	 */
601 	error = shmem_add_to_page_cache(page, mapping, index,
602 						GFP_NOWAIT, radswap);
603 	/* which does mem_cgroup_uncharge_cache_page on error */
604 
605 	if (error != -ENOMEM) {
606 		/*
607 		 * Truncation and eviction use free_swap_and_cache(), which
608 		 * only does trylock page: if we raced, best clean up here.
609 		 */
610 		delete_from_swap_cache(page);
611 		set_page_dirty(page);
612 		if (!error) {
613 			spin_lock(&info->lock);
614 			info->swapped--;
615 			spin_unlock(&info->lock);
616 			swap_free(swap);
617 		}
618 		error = 1;	/* not an error, but entry was found */
619 	}
620 	return error;
621 }
622 
623 /*
624  * Search through swapped inodes to find and replace swap by page.
625  */
626 int shmem_unuse(swp_entry_t swap, struct page *page)
627 {
628 	struct list_head *this, *next;
629 	struct shmem_inode_info *info;
630 	int found = 0;
631 	int error;
632 
633 	/*
634 	 * Charge page using GFP_KERNEL while we can wait, before taking
635 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
636 	 * Charged back to the user (not to caller) when swap account is used.
637 	 */
638 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
639 	if (error)
640 		goto out;
641 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
642 
643 	mutex_lock(&shmem_swaplist_mutex);
644 	list_for_each_safe(this, next, &shmem_swaplist) {
645 		info = list_entry(this, struct shmem_inode_info, swaplist);
646 		if (info->swapped)
647 			found = shmem_unuse_inode(info, swap, page);
648 		else
649 			list_del_init(&info->swaplist);
650 		cond_resched();
651 		if (found)
652 			break;
653 	}
654 	mutex_unlock(&shmem_swaplist_mutex);
655 
656 	if (!found)
657 		mem_cgroup_uncharge_cache_page(page);
658 	if (found < 0)
659 		error = found;
660 out:
661 	unlock_page(page);
662 	page_cache_release(page);
663 	return error;
664 }
665 
666 /*
667  * Move the page from the page cache to the swap cache.
668  */
669 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
670 {
671 	struct shmem_inode_info *info;
672 	struct address_space *mapping;
673 	struct inode *inode;
674 	swp_entry_t swap;
675 	pgoff_t index;
676 
677 	BUG_ON(!PageLocked(page));
678 	mapping = page->mapping;
679 	index = page->index;
680 	inode = mapping->host;
681 	info = SHMEM_I(inode);
682 	if (info->flags & VM_LOCKED)
683 		goto redirty;
684 	if (!total_swap_pages)
685 		goto redirty;
686 
687 	/*
688 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
689 	 * sync from ever calling shmem_writepage; but a stacking filesystem
690 	 * might use ->writepage of its underlying filesystem, in which case
691 	 * tmpfs should write out to swap only in response to memory pressure,
692 	 * and not for the writeback threads or sync.
693 	 */
694 	if (!wbc->for_reclaim) {
695 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
696 		goto redirty;
697 	}
698 	swap = get_swap_page();
699 	if (!swap.val)
700 		goto redirty;
701 
702 	/*
703 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
704 	 * if it's not already there.  Do it now before the page is
705 	 * moved to swap cache, when its pagelock no longer protects
706 	 * the inode from eviction.  But don't unlock the mutex until
707 	 * we've incremented swapped, because shmem_unuse_inode() will
708 	 * prune a !swapped inode from the swaplist under this mutex.
709 	 */
710 	mutex_lock(&shmem_swaplist_mutex);
711 	if (list_empty(&info->swaplist))
712 		list_add_tail(&info->swaplist, &shmem_swaplist);
713 
714 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
715 		swap_shmem_alloc(swap);
716 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
717 
718 		spin_lock(&info->lock);
719 		info->swapped++;
720 		shmem_recalc_inode(inode);
721 		spin_unlock(&info->lock);
722 
723 		mutex_unlock(&shmem_swaplist_mutex);
724 		BUG_ON(page_mapped(page));
725 		swap_writepage(page, wbc);
726 		return 0;
727 	}
728 
729 	mutex_unlock(&shmem_swaplist_mutex);
730 	swapcache_free(swap, NULL);
731 redirty:
732 	set_page_dirty(page);
733 	if (wbc->for_reclaim)
734 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
735 	unlock_page(page);
736 	return 0;
737 }
738 
739 #ifdef CONFIG_NUMA
740 #ifdef CONFIG_TMPFS
741 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
742 {
743 	char buffer[64];
744 
745 	if (!mpol || mpol->mode == MPOL_DEFAULT)
746 		return;		/* show nothing */
747 
748 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
749 
750 	seq_printf(seq, ",mpol=%s", buffer);
751 }
752 
753 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
754 {
755 	struct mempolicy *mpol = NULL;
756 	if (sbinfo->mpol) {
757 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
758 		mpol = sbinfo->mpol;
759 		mpol_get(mpol);
760 		spin_unlock(&sbinfo->stat_lock);
761 	}
762 	return mpol;
763 }
764 #endif /* CONFIG_TMPFS */
765 
766 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
767 			struct shmem_inode_info *info, pgoff_t index)
768 {
769 	struct mempolicy mpol, *spol;
770 	struct vm_area_struct pvma;
771 
772 	spol = mpol_cond_copy(&mpol,
773 			mpol_shared_policy_lookup(&info->policy, index));
774 
775 	/* Create a pseudo vma that just contains the policy */
776 	pvma.vm_start = 0;
777 	pvma.vm_pgoff = index;
778 	pvma.vm_ops = NULL;
779 	pvma.vm_policy = spol;
780 	return swapin_readahead(swap, gfp, &pvma, 0);
781 }
782 
783 static struct page *shmem_alloc_page(gfp_t gfp,
784 			struct shmem_inode_info *info, pgoff_t index)
785 {
786 	struct vm_area_struct pvma;
787 
788 	/* Create a pseudo vma that just contains the policy */
789 	pvma.vm_start = 0;
790 	pvma.vm_pgoff = index;
791 	pvma.vm_ops = NULL;
792 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
793 
794 	/*
795 	 * alloc_page_vma() will drop the shared policy reference
796 	 */
797 	return alloc_page_vma(gfp, &pvma, 0);
798 }
799 #else /* !CONFIG_NUMA */
800 #ifdef CONFIG_TMPFS
801 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
802 {
803 }
804 #endif /* CONFIG_TMPFS */
805 
806 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
807 			struct shmem_inode_info *info, pgoff_t index)
808 {
809 	return swapin_readahead(swap, gfp, NULL, 0);
810 }
811 
812 static inline struct page *shmem_alloc_page(gfp_t gfp,
813 			struct shmem_inode_info *info, pgoff_t index)
814 {
815 	return alloc_page(gfp);
816 }
817 #endif /* CONFIG_NUMA */
818 
819 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
820 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
821 {
822 	return NULL;
823 }
824 #endif
825 
826 /*
827  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
828  *
829  * If we allocate a new one we do not mark it dirty. That's up to the
830  * vm. If we swap it in we mark it dirty since we also free the swap
831  * entry since a page cannot live in both the swap and page cache
832  */
833 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
834 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
835 {
836 	struct address_space *mapping = inode->i_mapping;
837 	struct shmem_inode_info *info;
838 	struct shmem_sb_info *sbinfo;
839 	struct page *page;
840 	swp_entry_t swap;
841 	int error;
842 	int once = 0;
843 
844 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
845 		return -EFBIG;
846 repeat:
847 	swap.val = 0;
848 	page = find_lock_page(mapping, index);
849 	if (radix_tree_exceptional_entry(page)) {
850 		swap = radix_to_swp_entry(page);
851 		page = NULL;
852 	}
853 
854 	if (sgp != SGP_WRITE &&
855 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
856 		error = -EINVAL;
857 		goto failed;
858 	}
859 
860 	if (page || (sgp == SGP_READ && !swap.val)) {
861 		/*
862 		 * Once we can get the page lock, it must be uptodate:
863 		 * if there were an error in reading back from swap,
864 		 * the page would not be inserted into the filecache.
865 		 */
866 		BUG_ON(page && !PageUptodate(page));
867 		*pagep = page;
868 		return 0;
869 	}
870 
871 	/*
872 	 * Fast cache lookup did not find it:
873 	 * bring it back from swap or allocate.
874 	 */
875 	info = SHMEM_I(inode);
876 	sbinfo = SHMEM_SB(inode->i_sb);
877 
878 	if (swap.val) {
879 		/* Look it up and read it in.. */
880 		page = lookup_swap_cache(swap);
881 		if (!page) {
882 			/* here we actually do the io */
883 			if (fault_type)
884 				*fault_type |= VM_FAULT_MAJOR;
885 			page = shmem_swapin(swap, gfp, info, index);
886 			if (!page) {
887 				error = -ENOMEM;
888 				goto failed;
889 			}
890 		}
891 
892 		/* We have to do this with page locked to prevent races */
893 		lock_page(page);
894 		if (!PageUptodate(page)) {
895 			error = -EIO;
896 			goto failed;
897 		}
898 		wait_on_page_writeback(page);
899 
900 		/* Someone may have already done it for us */
901 		if (page->mapping) {
902 			if (page->mapping == mapping &&
903 			    page->index == index)
904 				goto done;
905 			error = -EEXIST;
906 			goto failed;
907 		}
908 
909 		error = mem_cgroup_cache_charge(page, current->mm,
910 						gfp & GFP_RECLAIM_MASK);
911 		if (!error)
912 			error = shmem_add_to_page_cache(page, mapping, index,
913 						gfp, swp_to_radix_entry(swap));
914 		if (error)
915 			goto failed;
916 
917 		spin_lock(&info->lock);
918 		info->swapped--;
919 		shmem_recalc_inode(inode);
920 		spin_unlock(&info->lock);
921 
922 		delete_from_swap_cache(page);
923 		set_page_dirty(page);
924 		swap_free(swap);
925 
926 	} else {
927 		if (shmem_acct_block(info->flags)) {
928 			error = -ENOSPC;
929 			goto failed;
930 		}
931 		if (sbinfo->max_blocks) {
932 			if (percpu_counter_compare(&sbinfo->used_blocks,
933 						sbinfo->max_blocks) >= 0) {
934 				error = -ENOSPC;
935 				goto unacct;
936 			}
937 			percpu_counter_inc(&sbinfo->used_blocks);
938 		}
939 
940 		page = shmem_alloc_page(gfp, info, index);
941 		if (!page) {
942 			error = -ENOMEM;
943 			goto decused;
944 		}
945 
946 		SetPageSwapBacked(page);
947 		__set_page_locked(page);
948 		error = mem_cgroup_cache_charge(page, current->mm,
949 						gfp & GFP_RECLAIM_MASK);
950 		if (!error)
951 			error = shmem_add_to_page_cache(page, mapping, index,
952 						gfp, NULL);
953 		if (error)
954 			goto decused;
955 		lru_cache_add_anon(page);
956 
957 		spin_lock(&info->lock);
958 		info->alloced++;
959 		inode->i_blocks += BLOCKS_PER_PAGE;
960 		shmem_recalc_inode(inode);
961 		spin_unlock(&info->lock);
962 
963 		clear_highpage(page);
964 		flush_dcache_page(page);
965 		SetPageUptodate(page);
966 		if (sgp == SGP_DIRTY)
967 			set_page_dirty(page);
968 	}
969 done:
970 	/* Perhaps the file has been truncated since we checked */
971 	if (sgp != SGP_WRITE &&
972 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
973 		error = -EINVAL;
974 		goto trunc;
975 	}
976 	*pagep = page;
977 	return 0;
978 
979 	/*
980 	 * Error recovery.
981 	 */
982 trunc:
983 	ClearPageDirty(page);
984 	delete_from_page_cache(page);
985 	spin_lock(&info->lock);
986 	info->alloced--;
987 	inode->i_blocks -= BLOCKS_PER_PAGE;
988 	spin_unlock(&info->lock);
989 decused:
990 	if (sbinfo->max_blocks)
991 		percpu_counter_add(&sbinfo->used_blocks, -1);
992 unacct:
993 	shmem_unacct_blocks(info->flags, 1);
994 failed:
995 	if (swap.val && error != -EINVAL) {
996 		struct page *test = find_get_page(mapping, index);
997 		if (test && !radix_tree_exceptional_entry(test))
998 			page_cache_release(test);
999 		/* Have another try if the entry has changed */
1000 		if (test != swp_to_radix_entry(swap))
1001 			error = -EEXIST;
1002 	}
1003 	if (page) {
1004 		unlock_page(page);
1005 		page_cache_release(page);
1006 	}
1007 	if (error == -ENOSPC && !once++) {
1008 		info = SHMEM_I(inode);
1009 		spin_lock(&info->lock);
1010 		shmem_recalc_inode(inode);
1011 		spin_unlock(&info->lock);
1012 		goto repeat;
1013 	}
1014 	if (error == -EEXIST)
1015 		goto repeat;
1016 	return error;
1017 }
1018 
1019 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1020 {
1021 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1022 	int error;
1023 	int ret = VM_FAULT_LOCKED;
1024 
1025 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1026 	if (error)
1027 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1028 
1029 	if (ret & VM_FAULT_MAJOR) {
1030 		count_vm_event(PGMAJFAULT);
1031 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1032 	}
1033 	return ret;
1034 }
1035 
1036 #ifdef CONFIG_NUMA
1037 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1038 {
1039 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1040 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1041 }
1042 
1043 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1044 					  unsigned long addr)
1045 {
1046 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1047 	pgoff_t index;
1048 
1049 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1050 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1051 }
1052 #endif
1053 
1054 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1055 {
1056 	struct inode *inode = file->f_path.dentry->d_inode;
1057 	struct shmem_inode_info *info = SHMEM_I(inode);
1058 	int retval = -ENOMEM;
1059 
1060 	spin_lock(&info->lock);
1061 	if (lock && !(info->flags & VM_LOCKED)) {
1062 		if (!user_shm_lock(inode->i_size, user))
1063 			goto out_nomem;
1064 		info->flags |= VM_LOCKED;
1065 		mapping_set_unevictable(file->f_mapping);
1066 	}
1067 	if (!lock && (info->flags & VM_LOCKED) && user) {
1068 		user_shm_unlock(inode->i_size, user);
1069 		info->flags &= ~VM_LOCKED;
1070 		mapping_clear_unevictable(file->f_mapping);
1071 		scan_mapping_unevictable_pages(file->f_mapping);
1072 	}
1073 	retval = 0;
1074 
1075 out_nomem:
1076 	spin_unlock(&info->lock);
1077 	return retval;
1078 }
1079 
1080 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1081 {
1082 	file_accessed(file);
1083 	vma->vm_ops = &shmem_vm_ops;
1084 	vma->vm_flags |= VM_CAN_NONLINEAR;
1085 	return 0;
1086 }
1087 
1088 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1089 				     int mode, dev_t dev, unsigned long flags)
1090 {
1091 	struct inode *inode;
1092 	struct shmem_inode_info *info;
1093 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1094 
1095 	if (shmem_reserve_inode(sb))
1096 		return NULL;
1097 
1098 	inode = new_inode(sb);
1099 	if (inode) {
1100 		inode->i_ino = get_next_ino();
1101 		inode_init_owner(inode, dir, mode);
1102 		inode->i_blocks = 0;
1103 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1104 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1105 		inode->i_generation = get_seconds();
1106 		info = SHMEM_I(inode);
1107 		memset(info, 0, (char *)inode - (char *)info);
1108 		spin_lock_init(&info->lock);
1109 		info->flags = flags & VM_NORESERVE;
1110 		INIT_LIST_HEAD(&info->swaplist);
1111 		INIT_LIST_HEAD(&info->xattr_list);
1112 		cache_no_acl(inode);
1113 
1114 		switch (mode & S_IFMT) {
1115 		default:
1116 			inode->i_op = &shmem_special_inode_operations;
1117 			init_special_inode(inode, mode, dev);
1118 			break;
1119 		case S_IFREG:
1120 			inode->i_mapping->a_ops = &shmem_aops;
1121 			inode->i_op = &shmem_inode_operations;
1122 			inode->i_fop = &shmem_file_operations;
1123 			mpol_shared_policy_init(&info->policy,
1124 						 shmem_get_sbmpol(sbinfo));
1125 			break;
1126 		case S_IFDIR:
1127 			inc_nlink(inode);
1128 			/* Some things misbehave if size == 0 on a directory */
1129 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1130 			inode->i_op = &shmem_dir_inode_operations;
1131 			inode->i_fop = &simple_dir_operations;
1132 			break;
1133 		case S_IFLNK:
1134 			/*
1135 			 * Must not load anything in the rbtree,
1136 			 * mpol_free_shared_policy will not be called.
1137 			 */
1138 			mpol_shared_policy_init(&info->policy, NULL);
1139 			break;
1140 		}
1141 	} else
1142 		shmem_free_inode(sb);
1143 	return inode;
1144 }
1145 
1146 #ifdef CONFIG_TMPFS
1147 static const struct inode_operations shmem_symlink_inode_operations;
1148 static const struct inode_operations shmem_short_symlink_operations;
1149 
1150 static int
1151 shmem_write_begin(struct file *file, struct address_space *mapping,
1152 			loff_t pos, unsigned len, unsigned flags,
1153 			struct page **pagep, void **fsdata)
1154 {
1155 	struct inode *inode = mapping->host;
1156 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1157 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1158 }
1159 
1160 static int
1161 shmem_write_end(struct file *file, struct address_space *mapping,
1162 			loff_t pos, unsigned len, unsigned copied,
1163 			struct page *page, void *fsdata)
1164 {
1165 	struct inode *inode = mapping->host;
1166 
1167 	if (pos + copied > inode->i_size)
1168 		i_size_write(inode, pos + copied);
1169 
1170 	set_page_dirty(page);
1171 	unlock_page(page);
1172 	page_cache_release(page);
1173 
1174 	return copied;
1175 }
1176 
1177 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1178 {
1179 	struct inode *inode = filp->f_path.dentry->d_inode;
1180 	struct address_space *mapping = inode->i_mapping;
1181 	pgoff_t index;
1182 	unsigned long offset;
1183 	enum sgp_type sgp = SGP_READ;
1184 
1185 	/*
1186 	 * Might this read be for a stacking filesystem?  Then when reading
1187 	 * holes of a sparse file, we actually need to allocate those pages,
1188 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1189 	 */
1190 	if (segment_eq(get_fs(), KERNEL_DS))
1191 		sgp = SGP_DIRTY;
1192 
1193 	index = *ppos >> PAGE_CACHE_SHIFT;
1194 	offset = *ppos & ~PAGE_CACHE_MASK;
1195 
1196 	for (;;) {
1197 		struct page *page = NULL;
1198 		pgoff_t end_index;
1199 		unsigned long nr, ret;
1200 		loff_t i_size = i_size_read(inode);
1201 
1202 		end_index = i_size >> PAGE_CACHE_SHIFT;
1203 		if (index > end_index)
1204 			break;
1205 		if (index == end_index) {
1206 			nr = i_size & ~PAGE_CACHE_MASK;
1207 			if (nr <= offset)
1208 				break;
1209 		}
1210 
1211 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1212 		if (desc->error) {
1213 			if (desc->error == -EINVAL)
1214 				desc->error = 0;
1215 			break;
1216 		}
1217 		if (page)
1218 			unlock_page(page);
1219 
1220 		/*
1221 		 * We must evaluate after, since reads (unlike writes)
1222 		 * are called without i_mutex protection against truncate
1223 		 */
1224 		nr = PAGE_CACHE_SIZE;
1225 		i_size = i_size_read(inode);
1226 		end_index = i_size >> PAGE_CACHE_SHIFT;
1227 		if (index == end_index) {
1228 			nr = i_size & ~PAGE_CACHE_MASK;
1229 			if (nr <= offset) {
1230 				if (page)
1231 					page_cache_release(page);
1232 				break;
1233 			}
1234 		}
1235 		nr -= offset;
1236 
1237 		if (page) {
1238 			/*
1239 			 * If users can be writing to this page using arbitrary
1240 			 * virtual addresses, take care about potential aliasing
1241 			 * before reading the page on the kernel side.
1242 			 */
1243 			if (mapping_writably_mapped(mapping))
1244 				flush_dcache_page(page);
1245 			/*
1246 			 * Mark the page accessed if we read the beginning.
1247 			 */
1248 			if (!offset)
1249 				mark_page_accessed(page);
1250 		} else {
1251 			page = ZERO_PAGE(0);
1252 			page_cache_get(page);
1253 		}
1254 
1255 		/*
1256 		 * Ok, we have the page, and it's up-to-date, so
1257 		 * now we can copy it to user space...
1258 		 *
1259 		 * The actor routine returns how many bytes were actually used..
1260 		 * NOTE! This may not be the same as how much of a user buffer
1261 		 * we filled up (we may be padding etc), so we can only update
1262 		 * "pos" here (the actor routine has to update the user buffer
1263 		 * pointers and the remaining count).
1264 		 */
1265 		ret = actor(desc, page, offset, nr);
1266 		offset += ret;
1267 		index += offset >> PAGE_CACHE_SHIFT;
1268 		offset &= ~PAGE_CACHE_MASK;
1269 
1270 		page_cache_release(page);
1271 		if (ret != nr || !desc->count)
1272 			break;
1273 
1274 		cond_resched();
1275 	}
1276 
1277 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1278 	file_accessed(filp);
1279 }
1280 
1281 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1282 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1283 {
1284 	struct file *filp = iocb->ki_filp;
1285 	ssize_t retval;
1286 	unsigned long seg;
1287 	size_t count;
1288 	loff_t *ppos = &iocb->ki_pos;
1289 
1290 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1291 	if (retval)
1292 		return retval;
1293 
1294 	for (seg = 0; seg < nr_segs; seg++) {
1295 		read_descriptor_t desc;
1296 
1297 		desc.written = 0;
1298 		desc.arg.buf = iov[seg].iov_base;
1299 		desc.count = iov[seg].iov_len;
1300 		if (desc.count == 0)
1301 			continue;
1302 		desc.error = 0;
1303 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1304 		retval += desc.written;
1305 		if (desc.error) {
1306 			retval = retval ?: desc.error;
1307 			break;
1308 		}
1309 		if (desc.count > 0)
1310 			break;
1311 	}
1312 	return retval;
1313 }
1314 
1315 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1316 				struct pipe_inode_info *pipe, size_t len,
1317 				unsigned int flags)
1318 {
1319 	struct address_space *mapping = in->f_mapping;
1320 	struct inode *inode = mapping->host;
1321 	unsigned int loff, nr_pages, req_pages;
1322 	struct page *pages[PIPE_DEF_BUFFERS];
1323 	struct partial_page partial[PIPE_DEF_BUFFERS];
1324 	struct page *page;
1325 	pgoff_t index, end_index;
1326 	loff_t isize, left;
1327 	int error, page_nr;
1328 	struct splice_pipe_desc spd = {
1329 		.pages = pages,
1330 		.partial = partial,
1331 		.flags = flags,
1332 		.ops = &page_cache_pipe_buf_ops,
1333 		.spd_release = spd_release_page,
1334 	};
1335 
1336 	isize = i_size_read(inode);
1337 	if (unlikely(*ppos >= isize))
1338 		return 0;
1339 
1340 	left = isize - *ppos;
1341 	if (unlikely(left < len))
1342 		len = left;
1343 
1344 	if (splice_grow_spd(pipe, &spd))
1345 		return -ENOMEM;
1346 
1347 	index = *ppos >> PAGE_CACHE_SHIFT;
1348 	loff = *ppos & ~PAGE_CACHE_MASK;
1349 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1350 	nr_pages = min(req_pages, pipe->buffers);
1351 
1352 	spd.nr_pages = find_get_pages_contig(mapping, index,
1353 						nr_pages, spd.pages);
1354 	index += spd.nr_pages;
1355 	error = 0;
1356 
1357 	while (spd.nr_pages < nr_pages) {
1358 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1359 		if (error)
1360 			break;
1361 		unlock_page(page);
1362 		spd.pages[spd.nr_pages++] = page;
1363 		index++;
1364 	}
1365 
1366 	index = *ppos >> PAGE_CACHE_SHIFT;
1367 	nr_pages = spd.nr_pages;
1368 	spd.nr_pages = 0;
1369 
1370 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1371 		unsigned int this_len;
1372 
1373 		if (!len)
1374 			break;
1375 
1376 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1377 		page = spd.pages[page_nr];
1378 
1379 		if (!PageUptodate(page) || page->mapping != mapping) {
1380 			error = shmem_getpage(inode, index, &page,
1381 							SGP_CACHE, NULL);
1382 			if (error)
1383 				break;
1384 			unlock_page(page);
1385 			page_cache_release(spd.pages[page_nr]);
1386 			spd.pages[page_nr] = page;
1387 		}
1388 
1389 		isize = i_size_read(inode);
1390 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1391 		if (unlikely(!isize || index > end_index))
1392 			break;
1393 
1394 		if (end_index == index) {
1395 			unsigned int plen;
1396 
1397 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1398 			if (plen <= loff)
1399 				break;
1400 
1401 			this_len = min(this_len, plen - loff);
1402 			len = this_len;
1403 		}
1404 
1405 		spd.partial[page_nr].offset = loff;
1406 		spd.partial[page_nr].len = this_len;
1407 		len -= this_len;
1408 		loff = 0;
1409 		spd.nr_pages++;
1410 		index++;
1411 	}
1412 
1413 	while (page_nr < nr_pages)
1414 		page_cache_release(spd.pages[page_nr++]);
1415 
1416 	if (spd.nr_pages)
1417 		error = splice_to_pipe(pipe, &spd);
1418 
1419 	splice_shrink_spd(pipe, &spd);
1420 
1421 	if (error > 0) {
1422 		*ppos += error;
1423 		file_accessed(in);
1424 	}
1425 	return error;
1426 }
1427 
1428 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1429 {
1430 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1431 
1432 	buf->f_type = TMPFS_MAGIC;
1433 	buf->f_bsize = PAGE_CACHE_SIZE;
1434 	buf->f_namelen = NAME_MAX;
1435 	if (sbinfo->max_blocks) {
1436 		buf->f_blocks = sbinfo->max_blocks;
1437 		buf->f_bavail =
1438 		buf->f_bfree  = sbinfo->max_blocks -
1439 				percpu_counter_sum(&sbinfo->used_blocks);
1440 	}
1441 	if (sbinfo->max_inodes) {
1442 		buf->f_files = sbinfo->max_inodes;
1443 		buf->f_ffree = sbinfo->free_inodes;
1444 	}
1445 	/* else leave those fields 0 like simple_statfs */
1446 	return 0;
1447 }
1448 
1449 /*
1450  * File creation. Allocate an inode, and we're done..
1451  */
1452 static int
1453 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1454 {
1455 	struct inode *inode;
1456 	int error = -ENOSPC;
1457 
1458 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1459 	if (inode) {
1460 		error = security_inode_init_security(inode, dir,
1461 						     &dentry->d_name, NULL,
1462 						     NULL, NULL);
1463 		if (error) {
1464 			if (error != -EOPNOTSUPP) {
1465 				iput(inode);
1466 				return error;
1467 			}
1468 		}
1469 #ifdef CONFIG_TMPFS_POSIX_ACL
1470 		error = generic_acl_init(inode, dir);
1471 		if (error) {
1472 			iput(inode);
1473 			return error;
1474 		}
1475 #else
1476 		error = 0;
1477 #endif
1478 		dir->i_size += BOGO_DIRENT_SIZE;
1479 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1480 		d_instantiate(dentry, inode);
1481 		dget(dentry); /* Extra count - pin the dentry in core */
1482 	}
1483 	return error;
1484 }
1485 
1486 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1487 {
1488 	int error;
1489 
1490 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1491 		return error;
1492 	inc_nlink(dir);
1493 	return 0;
1494 }
1495 
1496 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1497 		struct nameidata *nd)
1498 {
1499 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1500 }
1501 
1502 /*
1503  * Link a file..
1504  */
1505 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1506 {
1507 	struct inode *inode = old_dentry->d_inode;
1508 	int ret;
1509 
1510 	/*
1511 	 * No ordinary (disk based) filesystem counts links as inodes;
1512 	 * but each new link needs a new dentry, pinning lowmem, and
1513 	 * tmpfs dentries cannot be pruned until they are unlinked.
1514 	 */
1515 	ret = shmem_reserve_inode(inode->i_sb);
1516 	if (ret)
1517 		goto out;
1518 
1519 	dir->i_size += BOGO_DIRENT_SIZE;
1520 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1521 	inc_nlink(inode);
1522 	ihold(inode);	/* New dentry reference */
1523 	dget(dentry);		/* Extra pinning count for the created dentry */
1524 	d_instantiate(dentry, inode);
1525 out:
1526 	return ret;
1527 }
1528 
1529 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1530 {
1531 	struct inode *inode = dentry->d_inode;
1532 
1533 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1534 		shmem_free_inode(inode->i_sb);
1535 
1536 	dir->i_size -= BOGO_DIRENT_SIZE;
1537 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1538 	drop_nlink(inode);
1539 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1540 	return 0;
1541 }
1542 
1543 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1544 {
1545 	if (!simple_empty(dentry))
1546 		return -ENOTEMPTY;
1547 
1548 	drop_nlink(dentry->d_inode);
1549 	drop_nlink(dir);
1550 	return shmem_unlink(dir, dentry);
1551 }
1552 
1553 /*
1554  * The VFS layer already does all the dentry stuff for rename,
1555  * we just have to decrement the usage count for the target if
1556  * it exists so that the VFS layer correctly free's it when it
1557  * gets overwritten.
1558  */
1559 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1560 {
1561 	struct inode *inode = old_dentry->d_inode;
1562 	int they_are_dirs = S_ISDIR(inode->i_mode);
1563 
1564 	if (!simple_empty(new_dentry))
1565 		return -ENOTEMPTY;
1566 
1567 	if (new_dentry->d_inode) {
1568 		(void) shmem_unlink(new_dir, new_dentry);
1569 		if (they_are_dirs)
1570 			drop_nlink(old_dir);
1571 	} else if (they_are_dirs) {
1572 		drop_nlink(old_dir);
1573 		inc_nlink(new_dir);
1574 	}
1575 
1576 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1577 	new_dir->i_size += BOGO_DIRENT_SIZE;
1578 	old_dir->i_ctime = old_dir->i_mtime =
1579 	new_dir->i_ctime = new_dir->i_mtime =
1580 	inode->i_ctime = CURRENT_TIME;
1581 	return 0;
1582 }
1583 
1584 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1585 {
1586 	int error;
1587 	int len;
1588 	struct inode *inode;
1589 	struct page *page;
1590 	char *kaddr;
1591 	struct shmem_inode_info *info;
1592 
1593 	len = strlen(symname) + 1;
1594 	if (len > PAGE_CACHE_SIZE)
1595 		return -ENAMETOOLONG;
1596 
1597 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1598 	if (!inode)
1599 		return -ENOSPC;
1600 
1601 	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
1602 					     NULL, NULL);
1603 	if (error) {
1604 		if (error != -EOPNOTSUPP) {
1605 			iput(inode);
1606 			return error;
1607 		}
1608 		error = 0;
1609 	}
1610 
1611 	info = SHMEM_I(inode);
1612 	inode->i_size = len-1;
1613 	if (len <= SHORT_SYMLINK_LEN) {
1614 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
1615 		if (!info->symlink) {
1616 			iput(inode);
1617 			return -ENOMEM;
1618 		}
1619 		inode->i_op = &shmem_short_symlink_operations;
1620 	} else {
1621 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1622 		if (error) {
1623 			iput(inode);
1624 			return error;
1625 		}
1626 		inode->i_mapping->a_ops = &shmem_aops;
1627 		inode->i_op = &shmem_symlink_inode_operations;
1628 		kaddr = kmap_atomic(page, KM_USER0);
1629 		memcpy(kaddr, symname, len);
1630 		kunmap_atomic(kaddr, KM_USER0);
1631 		set_page_dirty(page);
1632 		unlock_page(page);
1633 		page_cache_release(page);
1634 	}
1635 	dir->i_size += BOGO_DIRENT_SIZE;
1636 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1637 	d_instantiate(dentry, inode);
1638 	dget(dentry);
1639 	return 0;
1640 }
1641 
1642 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1643 {
1644 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
1645 	return NULL;
1646 }
1647 
1648 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1649 {
1650 	struct page *page = NULL;
1651 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1652 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
1653 	if (page)
1654 		unlock_page(page);
1655 	return page;
1656 }
1657 
1658 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1659 {
1660 	if (!IS_ERR(nd_get_link(nd))) {
1661 		struct page *page = cookie;
1662 		kunmap(page);
1663 		mark_page_accessed(page);
1664 		page_cache_release(page);
1665 	}
1666 }
1667 
1668 #ifdef CONFIG_TMPFS_XATTR
1669 /*
1670  * Superblocks without xattr inode operations may get some security.* xattr
1671  * support from the LSM "for free". As soon as we have any other xattrs
1672  * like ACLs, we also need to implement the security.* handlers at
1673  * filesystem level, though.
1674  */
1675 
1676 static int shmem_xattr_get(struct dentry *dentry, const char *name,
1677 			   void *buffer, size_t size)
1678 {
1679 	struct shmem_inode_info *info;
1680 	struct shmem_xattr *xattr;
1681 	int ret = -ENODATA;
1682 
1683 	info = SHMEM_I(dentry->d_inode);
1684 
1685 	spin_lock(&info->lock);
1686 	list_for_each_entry(xattr, &info->xattr_list, list) {
1687 		if (strcmp(name, xattr->name))
1688 			continue;
1689 
1690 		ret = xattr->size;
1691 		if (buffer) {
1692 			if (size < xattr->size)
1693 				ret = -ERANGE;
1694 			else
1695 				memcpy(buffer, xattr->value, xattr->size);
1696 		}
1697 		break;
1698 	}
1699 	spin_unlock(&info->lock);
1700 	return ret;
1701 }
1702 
1703 static int shmem_xattr_set(struct dentry *dentry, const char *name,
1704 			   const void *value, size_t size, int flags)
1705 {
1706 	struct inode *inode = dentry->d_inode;
1707 	struct shmem_inode_info *info = SHMEM_I(inode);
1708 	struct shmem_xattr *xattr;
1709 	struct shmem_xattr *new_xattr = NULL;
1710 	size_t len;
1711 	int err = 0;
1712 
1713 	/* value == NULL means remove */
1714 	if (value) {
1715 		/* wrap around? */
1716 		len = sizeof(*new_xattr) + size;
1717 		if (len <= sizeof(*new_xattr))
1718 			return -ENOMEM;
1719 
1720 		new_xattr = kmalloc(len, GFP_KERNEL);
1721 		if (!new_xattr)
1722 			return -ENOMEM;
1723 
1724 		new_xattr->name = kstrdup(name, GFP_KERNEL);
1725 		if (!new_xattr->name) {
1726 			kfree(new_xattr);
1727 			return -ENOMEM;
1728 		}
1729 
1730 		new_xattr->size = size;
1731 		memcpy(new_xattr->value, value, size);
1732 	}
1733 
1734 	spin_lock(&info->lock);
1735 	list_for_each_entry(xattr, &info->xattr_list, list) {
1736 		if (!strcmp(name, xattr->name)) {
1737 			if (flags & XATTR_CREATE) {
1738 				xattr = new_xattr;
1739 				err = -EEXIST;
1740 			} else if (new_xattr) {
1741 				list_replace(&xattr->list, &new_xattr->list);
1742 			} else {
1743 				list_del(&xattr->list);
1744 			}
1745 			goto out;
1746 		}
1747 	}
1748 	if (flags & XATTR_REPLACE) {
1749 		xattr = new_xattr;
1750 		err = -ENODATA;
1751 	} else {
1752 		list_add(&new_xattr->list, &info->xattr_list);
1753 		xattr = NULL;
1754 	}
1755 out:
1756 	spin_unlock(&info->lock);
1757 	if (xattr)
1758 		kfree(xattr->name);
1759 	kfree(xattr);
1760 	return err;
1761 }
1762 
1763 static const struct xattr_handler *shmem_xattr_handlers[] = {
1764 #ifdef CONFIG_TMPFS_POSIX_ACL
1765 	&generic_acl_access_handler,
1766 	&generic_acl_default_handler,
1767 #endif
1768 	NULL
1769 };
1770 
1771 static int shmem_xattr_validate(const char *name)
1772 {
1773 	struct { const char *prefix; size_t len; } arr[] = {
1774 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
1775 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
1776 	};
1777 	int i;
1778 
1779 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1780 		size_t preflen = arr[i].len;
1781 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
1782 			if (!name[preflen])
1783 				return -EINVAL;
1784 			return 0;
1785 		}
1786 	}
1787 	return -EOPNOTSUPP;
1788 }
1789 
1790 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
1791 			      void *buffer, size_t size)
1792 {
1793 	int err;
1794 
1795 	/*
1796 	 * If this is a request for a synthetic attribute in the system.*
1797 	 * namespace use the generic infrastructure to resolve a handler
1798 	 * for it via sb->s_xattr.
1799 	 */
1800 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1801 		return generic_getxattr(dentry, name, buffer, size);
1802 
1803 	err = shmem_xattr_validate(name);
1804 	if (err)
1805 		return err;
1806 
1807 	return shmem_xattr_get(dentry, name, buffer, size);
1808 }
1809 
1810 static int shmem_setxattr(struct dentry *dentry, const char *name,
1811 			  const void *value, size_t size, int flags)
1812 {
1813 	int err;
1814 
1815 	/*
1816 	 * If this is a request for a synthetic attribute in the system.*
1817 	 * namespace use the generic infrastructure to resolve a handler
1818 	 * for it via sb->s_xattr.
1819 	 */
1820 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1821 		return generic_setxattr(dentry, name, value, size, flags);
1822 
1823 	err = shmem_xattr_validate(name);
1824 	if (err)
1825 		return err;
1826 
1827 	if (size == 0)
1828 		value = "";  /* empty EA, do not remove */
1829 
1830 	return shmem_xattr_set(dentry, name, value, size, flags);
1831 
1832 }
1833 
1834 static int shmem_removexattr(struct dentry *dentry, const char *name)
1835 {
1836 	int err;
1837 
1838 	/*
1839 	 * If this is a request for a synthetic attribute in the system.*
1840 	 * namespace use the generic infrastructure to resolve a handler
1841 	 * for it via sb->s_xattr.
1842 	 */
1843 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
1844 		return generic_removexattr(dentry, name);
1845 
1846 	err = shmem_xattr_validate(name);
1847 	if (err)
1848 		return err;
1849 
1850 	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
1851 }
1852 
1853 static bool xattr_is_trusted(const char *name)
1854 {
1855 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
1856 }
1857 
1858 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
1859 {
1860 	bool trusted = capable(CAP_SYS_ADMIN);
1861 	struct shmem_xattr *xattr;
1862 	struct shmem_inode_info *info;
1863 	size_t used = 0;
1864 
1865 	info = SHMEM_I(dentry->d_inode);
1866 
1867 	spin_lock(&info->lock);
1868 	list_for_each_entry(xattr, &info->xattr_list, list) {
1869 		size_t len;
1870 
1871 		/* skip "trusted." attributes for unprivileged callers */
1872 		if (!trusted && xattr_is_trusted(xattr->name))
1873 			continue;
1874 
1875 		len = strlen(xattr->name) + 1;
1876 		used += len;
1877 		if (buffer) {
1878 			if (size < used) {
1879 				used = -ERANGE;
1880 				break;
1881 			}
1882 			memcpy(buffer, xattr->name, len);
1883 			buffer += len;
1884 		}
1885 	}
1886 	spin_unlock(&info->lock);
1887 
1888 	return used;
1889 }
1890 #endif /* CONFIG_TMPFS_XATTR */
1891 
1892 static const struct inode_operations shmem_short_symlink_operations = {
1893 	.readlink	= generic_readlink,
1894 	.follow_link	= shmem_follow_short_symlink,
1895 #ifdef CONFIG_TMPFS_XATTR
1896 	.setxattr	= shmem_setxattr,
1897 	.getxattr	= shmem_getxattr,
1898 	.listxattr	= shmem_listxattr,
1899 	.removexattr	= shmem_removexattr,
1900 #endif
1901 };
1902 
1903 static const struct inode_operations shmem_symlink_inode_operations = {
1904 	.readlink	= generic_readlink,
1905 	.follow_link	= shmem_follow_link,
1906 	.put_link	= shmem_put_link,
1907 #ifdef CONFIG_TMPFS_XATTR
1908 	.setxattr	= shmem_setxattr,
1909 	.getxattr	= shmem_getxattr,
1910 	.listxattr	= shmem_listxattr,
1911 	.removexattr	= shmem_removexattr,
1912 #endif
1913 };
1914 
1915 static struct dentry *shmem_get_parent(struct dentry *child)
1916 {
1917 	return ERR_PTR(-ESTALE);
1918 }
1919 
1920 static int shmem_match(struct inode *ino, void *vfh)
1921 {
1922 	__u32 *fh = vfh;
1923 	__u64 inum = fh[2];
1924 	inum = (inum << 32) | fh[1];
1925 	return ino->i_ino == inum && fh[0] == ino->i_generation;
1926 }
1927 
1928 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
1929 		struct fid *fid, int fh_len, int fh_type)
1930 {
1931 	struct inode *inode;
1932 	struct dentry *dentry = NULL;
1933 	u64 inum = fid->raw[2];
1934 	inum = (inum << 32) | fid->raw[1];
1935 
1936 	if (fh_len < 3)
1937 		return NULL;
1938 
1939 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
1940 			shmem_match, fid->raw);
1941 	if (inode) {
1942 		dentry = d_find_alias(inode);
1943 		iput(inode);
1944 	}
1945 
1946 	return dentry;
1947 }
1948 
1949 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
1950 				int connectable)
1951 {
1952 	struct inode *inode = dentry->d_inode;
1953 
1954 	if (*len < 3) {
1955 		*len = 3;
1956 		return 255;
1957 	}
1958 
1959 	if (inode_unhashed(inode)) {
1960 		/* Unfortunately insert_inode_hash is not idempotent,
1961 		 * so as we hash inodes here rather than at creation
1962 		 * time, we need a lock to ensure we only try
1963 		 * to do it once
1964 		 */
1965 		static DEFINE_SPINLOCK(lock);
1966 		spin_lock(&lock);
1967 		if (inode_unhashed(inode))
1968 			__insert_inode_hash(inode,
1969 					    inode->i_ino + inode->i_generation);
1970 		spin_unlock(&lock);
1971 	}
1972 
1973 	fh[0] = inode->i_generation;
1974 	fh[1] = inode->i_ino;
1975 	fh[2] = ((__u64)inode->i_ino) >> 32;
1976 
1977 	*len = 3;
1978 	return 1;
1979 }
1980 
1981 static const struct export_operations shmem_export_ops = {
1982 	.get_parent     = shmem_get_parent,
1983 	.encode_fh      = shmem_encode_fh,
1984 	.fh_to_dentry	= shmem_fh_to_dentry,
1985 };
1986 
1987 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
1988 			       bool remount)
1989 {
1990 	char *this_char, *value, *rest;
1991 
1992 	while (options != NULL) {
1993 		this_char = options;
1994 		for (;;) {
1995 			/*
1996 			 * NUL-terminate this option: unfortunately,
1997 			 * mount options form a comma-separated list,
1998 			 * but mpol's nodelist may also contain commas.
1999 			 */
2000 			options = strchr(options, ',');
2001 			if (options == NULL)
2002 				break;
2003 			options++;
2004 			if (!isdigit(*options)) {
2005 				options[-1] = '\0';
2006 				break;
2007 			}
2008 		}
2009 		if (!*this_char)
2010 			continue;
2011 		if ((value = strchr(this_char,'=')) != NULL) {
2012 			*value++ = 0;
2013 		} else {
2014 			printk(KERN_ERR
2015 			    "tmpfs: No value for mount option '%s'\n",
2016 			    this_char);
2017 			return 1;
2018 		}
2019 
2020 		if (!strcmp(this_char,"size")) {
2021 			unsigned long long size;
2022 			size = memparse(value,&rest);
2023 			if (*rest == '%') {
2024 				size <<= PAGE_SHIFT;
2025 				size *= totalram_pages;
2026 				do_div(size, 100);
2027 				rest++;
2028 			}
2029 			if (*rest)
2030 				goto bad_val;
2031 			sbinfo->max_blocks =
2032 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2033 		} else if (!strcmp(this_char,"nr_blocks")) {
2034 			sbinfo->max_blocks = memparse(value, &rest);
2035 			if (*rest)
2036 				goto bad_val;
2037 		} else if (!strcmp(this_char,"nr_inodes")) {
2038 			sbinfo->max_inodes = memparse(value, &rest);
2039 			if (*rest)
2040 				goto bad_val;
2041 		} else if (!strcmp(this_char,"mode")) {
2042 			if (remount)
2043 				continue;
2044 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2045 			if (*rest)
2046 				goto bad_val;
2047 		} else if (!strcmp(this_char,"uid")) {
2048 			if (remount)
2049 				continue;
2050 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2051 			if (*rest)
2052 				goto bad_val;
2053 		} else if (!strcmp(this_char,"gid")) {
2054 			if (remount)
2055 				continue;
2056 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2057 			if (*rest)
2058 				goto bad_val;
2059 		} else if (!strcmp(this_char,"mpol")) {
2060 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2061 				goto bad_val;
2062 		} else {
2063 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2064 			       this_char);
2065 			return 1;
2066 		}
2067 	}
2068 	return 0;
2069 
2070 bad_val:
2071 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2072 	       value, this_char);
2073 	return 1;
2074 
2075 }
2076 
2077 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2078 {
2079 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2080 	struct shmem_sb_info config = *sbinfo;
2081 	unsigned long inodes;
2082 	int error = -EINVAL;
2083 
2084 	if (shmem_parse_options(data, &config, true))
2085 		return error;
2086 
2087 	spin_lock(&sbinfo->stat_lock);
2088 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2089 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2090 		goto out;
2091 	if (config.max_inodes < inodes)
2092 		goto out;
2093 	/*
2094 	 * Those tests disallow limited->unlimited while any are in use;
2095 	 * but we must separately disallow unlimited->limited, because
2096 	 * in that case we have no record of how much is already in use.
2097 	 */
2098 	if (config.max_blocks && !sbinfo->max_blocks)
2099 		goto out;
2100 	if (config.max_inodes && !sbinfo->max_inodes)
2101 		goto out;
2102 
2103 	error = 0;
2104 	sbinfo->max_blocks  = config.max_blocks;
2105 	sbinfo->max_inodes  = config.max_inodes;
2106 	sbinfo->free_inodes = config.max_inodes - inodes;
2107 
2108 	mpol_put(sbinfo->mpol);
2109 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2110 out:
2111 	spin_unlock(&sbinfo->stat_lock);
2112 	return error;
2113 }
2114 
2115 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2116 {
2117 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2118 
2119 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2120 		seq_printf(seq, ",size=%luk",
2121 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2122 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2123 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2124 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2125 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2126 	if (sbinfo->uid != 0)
2127 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2128 	if (sbinfo->gid != 0)
2129 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2130 	shmem_show_mpol(seq, sbinfo->mpol);
2131 	return 0;
2132 }
2133 #endif /* CONFIG_TMPFS */
2134 
2135 static void shmem_put_super(struct super_block *sb)
2136 {
2137 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138 
2139 	percpu_counter_destroy(&sbinfo->used_blocks);
2140 	kfree(sbinfo);
2141 	sb->s_fs_info = NULL;
2142 }
2143 
2144 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2145 {
2146 	struct inode *inode;
2147 	struct dentry *root;
2148 	struct shmem_sb_info *sbinfo;
2149 	int err = -ENOMEM;
2150 
2151 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2152 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2153 				L1_CACHE_BYTES), GFP_KERNEL);
2154 	if (!sbinfo)
2155 		return -ENOMEM;
2156 
2157 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2158 	sbinfo->uid = current_fsuid();
2159 	sbinfo->gid = current_fsgid();
2160 	sb->s_fs_info = sbinfo;
2161 
2162 #ifdef CONFIG_TMPFS
2163 	/*
2164 	 * Per default we only allow half of the physical ram per
2165 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2166 	 * but the internal instance is left unlimited.
2167 	 */
2168 	if (!(sb->s_flags & MS_NOUSER)) {
2169 		sbinfo->max_blocks = shmem_default_max_blocks();
2170 		sbinfo->max_inodes = shmem_default_max_inodes();
2171 		if (shmem_parse_options(data, sbinfo, false)) {
2172 			err = -EINVAL;
2173 			goto failed;
2174 		}
2175 	}
2176 	sb->s_export_op = &shmem_export_ops;
2177 #else
2178 	sb->s_flags |= MS_NOUSER;
2179 #endif
2180 
2181 	spin_lock_init(&sbinfo->stat_lock);
2182 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2183 		goto failed;
2184 	sbinfo->free_inodes = sbinfo->max_inodes;
2185 
2186 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2187 	sb->s_blocksize = PAGE_CACHE_SIZE;
2188 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2189 	sb->s_magic = TMPFS_MAGIC;
2190 	sb->s_op = &shmem_ops;
2191 	sb->s_time_gran = 1;
2192 #ifdef CONFIG_TMPFS_XATTR
2193 	sb->s_xattr = shmem_xattr_handlers;
2194 #endif
2195 #ifdef CONFIG_TMPFS_POSIX_ACL
2196 	sb->s_flags |= MS_POSIXACL;
2197 #endif
2198 
2199 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2200 	if (!inode)
2201 		goto failed;
2202 	inode->i_uid = sbinfo->uid;
2203 	inode->i_gid = sbinfo->gid;
2204 	root = d_alloc_root(inode);
2205 	if (!root)
2206 		goto failed_iput;
2207 	sb->s_root = root;
2208 	return 0;
2209 
2210 failed_iput:
2211 	iput(inode);
2212 failed:
2213 	shmem_put_super(sb);
2214 	return err;
2215 }
2216 
2217 static struct kmem_cache *shmem_inode_cachep;
2218 
2219 static struct inode *shmem_alloc_inode(struct super_block *sb)
2220 {
2221 	struct shmem_inode_info *info;
2222 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2223 	if (!info)
2224 		return NULL;
2225 	return &info->vfs_inode;
2226 }
2227 
2228 static void shmem_destroy_callback(struct rcu_head *head)
2229 {
2230 	struct inode *inode = container_of(head, struct inode, i_rcu);
2231 	INIT_LIST_HEAD(&inode->i_dentry);
2232 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2233 }
2234 
2235 static void shmem_destroy_inode(struct inode *inode)
2236 {
2237 	if ((inode->i_mode & S_IFMT) == S_IFREG)
2238 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2239 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2240 }
2241 
2242 static void shmem_init_inode(void *foo)
2243 {
2244 	struct shmem_inode_info *info = foo;
2245 	inode_init_once(&info->vfs_inode);
2246 }
2247 
2248 static int shmem_init_inodecache(void)
2249 {
2250 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2251 				sizeof(struct shmem_inode_info),
2252 				0, SLAB_PANIC, shmem_init_inode);
2253 	return 0;
2254 }
2255 
2256 static void shmem_destroy_inodecache(void)
2257 {
2258 	kmem_cache_destroy(shmem_inode_cachep);
2259 }
2260 
2261 static const struct address_space_operations shmem_aops = {
2262 	.writepage	= shmem_writepage,
2263 	.set_page_dirty	= __set_page_dirty_no_writeback,
2264 #ifdef CONFIG_TMPFS
2265 	.write_begin	= shmem_write_begin,
2266 	.write_end	= shmem_write_end,
2267 #endif
2268 	.migratepage	= migrate_page,
2269 	.error_remove_page = generic_error_remove_page,
2270 };
2271 
2272 static const struct file_operations shmem_file_operations = {
2273 	.mmap		= shmem_mmap,
2274 #ifdef CONFIG_TMPFS
2275 	.llseek		= generic_file_llseek,
2276 	.read		= do_sync_read,
2277 	.write		= do_sync_write,
2278 	.aio_read	= shmem_file_aio_read,
2279 	.aio_write	= generic_file_aio_write,
2280 	.fsync		= noop_fsync,
2281 	.splice_read	= shmem_file_splice_read,
2282 	.splice_write	= generic_file_splice_write,
2283 #endif
2284 };
2285 
2286 static const struct inode_operations shmem_inode_operations = {
2287 	.setattr	= shmem_setattr,
2288 	.truncate_range	= shmem_truncate_range,
2289 #ifdef CONFIG_TMPFS_XATTR
2290 	.setxattr	= shmem_setxattr,
2291 	.getxattr	= shmem_getxattr,
2292 	.listxattr	= shmem_listxattr,
2293 	.removexattr	= shmem_removexattr,
2294 #endif
2295 };
2296 
2297 static const struct inode_operations shmem_dir_inode_operations = {
2298 #ifdef CONFIG_TMPFS
2299 	.create		= shmem_create,
2300 	.lookup		= simple_lookup,
2301 	.link		= shmem_link,
2302 	.unlink		= shmem_unlink,
2303 	.symlink	= shmem_symlink,
2304 	.mkdir		= shmem_mkdir,
2305 	.rmdir		= shmem_rmdir,
2306 	.mknod		= shmem_mknod,
2307 	.rename		= shmem_rename,
2308 #endif
2309 #ifdef CONFIG_TMPFS_XATTR
2310 	.setxattr	= shmem_setxattr,
2311 	.getxattr	= shmem_getxattr,
2312 	.listxattr	= shmem_listxattr,
2313 	.removexattr	= shmem_removexattr,
2314 #endif
2315 #ifdef CONFIG_TMPFS_POSIX_ACL
2316 	.setattr	= shmem_setattr,
2317 #endif
2318 };
2319 
2320 static const struct inode_operations shmem_special_inode_operations = {
2321 #ifdef CONFIG_TMPFS_XATTR
2322 	.setxattr	= shmem_setxattr,
2323 	.getxattr	= shmem_getxattr,
2324 	.listxattr	= shmem_listxattr,
2325 	.removexattr	= shmem_removexattr,
2326 #endif
2327 #ifdef CONFIG_TMPFS_POSIX_ACL
2328 	.setattr	= shmem_setattr,
2329 #endif
2330 };
2331 
2332 static const struct super_operations shmem_ops = {
2333 	.alloc_inode	= shmem_alloc_inode,
2334 	.destroy_inode	= shmem_destroy_inode,
2335 #ifdef CONFIG_TMPFS
2336 	.statfs		= shmem_statfs,
2337 	.remount_fs	= shmem_remount_fs,
2338 	.show_options	= shmem_show_options,
2339 #endif
2340 	.evict_inode	= shmem_evict_inode,
2341 	.drop_inode	= generic_delete_inode,
2342 	.put_super	= shmem_put_super,
2343 };
2344 
2345 static const struct vm_operations_struct shmem_vm_ops = {
2346 	.fault		= shmem_fault,
2347 #ifdef CONFIG_NUMA
2348 	.set_policy     = shmem_set_policy,
2349 	.get_policy     = shmem_get_policy,
2350 #endif
2351 };
2352 
2353 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2354 	int flags, const char *dev_name, void *data)
2355 {
2356 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2357 }
2358 
2359 static struct file_system_type shmem_fs_type = {
2360 	.owner		= THIS_MODULE,
2361 	.name		= "tmpfs",
2362 	.mount		= shmem_mount,
2363 	.kill_sb	= kill_litter_super,
2364 };
2365 
2366 int __init shmem_init(void)
2367 {
2368 	int error;
2369 
2370 	error = bdi_init(&shmem_backing_dev_info);
2371 	if (error)
2372 		goto out4;
2373 
2374 	error = shmem_init_inodecache();
2375 	if (error)
2376 		goto out3;
2377 
2378 	error = register_filesystem(&shmem_fs_type);
2379 	if (error) {
2380 		printk(KERN_ERR "Could not register tmpfs\n");
2381 		goto out2;
2382 	}
2383 
2384 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2385 				 shmem_fs_type.name, NULL);
2386 	if (IS_ERR(shm_mnt)) {
2387 		error = PTR_ERR(shm_mnt);
2388 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2389 		goto out1;
2390 	}
2391 	return 0;
2392 
2393 out1:
2394 	unregister_filesystem(&shmem_fs_type);
2395 out2:
2396 	shmem_destroy_inodecache();
2397 out3:
2398 	bdi_destroy(&shmem_backing_dev_info);
2399 out4:
2400 	shm_mnt = ERR_PTR(error);
2401 	return error;
2402 }
2403 
2404 #else /* !CONFIG_SHMEM */
2405 
2406 /*
2407  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2408  *
2409  * This is intended for small system where the benefits of the full
2410  * shmem code (swap-backed and resource-limited) are outweighed by
2411  * their complexity. On systems without swap this code should be
2412  * effectively equivalent, but much lighter weight.
2413  */
2414 
2415 #include <linux/ramfs.h>
2416 
2417 static struct file_system_type shmem_fs_type = {
2418 	.name		= "tmpfs",
2419 	.mount		= ramfs_mount,
2420 	.kill_sb	= kill_litter_super,
2421 };
2422 
2423 int __init shmem_init(void)
2424 {
2425 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2426 
2427 	shm_mnt = kern_mount(&shmem_fs_type);
2428 	BUG_ON(IS_ERR(shm_mnt));
2429 
2430 	return 0;
2431 }
2432 
2433 int shmem_unuse(swp_entry_t swap, struct page *page)
2434 {
2435 	return 0;
2436 }
2437 
2438 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2439 {
2440 	return 0;
2441 }
2442 
2443 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2444 {
2445 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2446 }
2447 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2448 
2449 #define shmem_vm_ops				generic_file_vm_ops
2450 #define shmem_file_operations			ramfs_file_operations
2451 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2452 #define shmem_acct_size(flags, size)		0
2453 #define shmem_unacct_size(flags, size)		do {} while (0)
2454 
2455 #endif /* CONFIG_SHMEM */
2456 
2457 /* common code */
2458 
2459 /**
2460  * shmem_file_setup - get an unlinked file living in tmpfs
2461  * @name: name for dentry (to be seen in /proc/<pid>/maps
2462  * @size: size to be set for the file
2463  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2464  */
2465 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2466 {
2467 	int error;
2468 	struct file *file;
2469 	struct inode *inode;
2470 	struct path path;
2471 	struct dentry *root;
2472 	struct qstr this;
2473 
2474 	if (IS_ERR(shm_mnt))
2475 		return (void *)shm_mnt;
2476 
2477 	if (size < 0 || size > MAX_LFS_FILESIZE)
2478 		return ERR_PTR(-EINVAL);
2479 
2480 	if (shmem_acct_size(flags, size))
2481 		return ERR_PTR(-ENOMEM);
2482 
2483 	error = -ENOMEM;
2484 	this.name = name;
2485 	this.len = strlen(name);
2486 	this.hash = 0; /* will go */
2487 	root = shm_mnt->mnt_root;
2488 	path.dentry = d_alloc(root, &this);
2489 	if (!path.dentry)
2490 		goto put_memory;
2491 	path.mnt = mntget(shm_mnt);
2492 
2493 	error = -ENOSPC;
2494 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2495 	if (!inode)
2496 		goto put_dentry;
2497 
2498 	d_instantiate(path.dentry, inode);
2499 	inode->i_size = size;
2500 	inode->i_nlink = 0;	/* It is unlinked */
2501 #ifndef CONFIG_MMU
2502 	error = ramfs_nommu_expand_for_mapping(inode, size);
2503 	if (error)
2504 		goto put_dentry;
2505 #endif
2506 
2507 	error = -ENFILE;
2508 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2509 		  &shmem_file_operations);
2510 	if (!file)
2511 		goto put_dentry;
2512 
2513 	return file;
2514 
2515 put_dentry:
2516 	path_put(&path);
2517 put_memory:
2518 	shmem_unacct_size(flags, size);
2519 	return ERR_PTR(error);
2520 }
2521 EXPORT_SYMBOL_GPL(shmem_file_setup);
2522 
2523 /**
2524  * shmem_zero_setup - setup a shared anonymous mapping
2525  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2526  */
2527 int shmem_zero_setup(struct vm_area_struct *vma)
2528 {
2529 	struct file *file;
2530 	loff_t size = vma->vm_end - vma->vm_start;
2531 
2532 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2533 	if (IS_ERR(file))
2534 		return PTR_ERR(file);
2535 
2536 	if (vma->vm_file)
2537 		fput(vma->vm_file);
2538 	vma->vm_file = file;
2539 	vma->vm_ops = &shmem_vm_ops;
2540 	vma->vm_flags |= VM_CAN_NONLINEAR;
2541 	return 0;
2542 }
2543 
2544 /**
2545  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2546  * @mapping:	the page's address_space
2547  * @index:	the page index
2548  * @gfp:	the page allocator flags to use if allocating
2549  *
2550  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2551  * with any new page allocations done using the specified allocation flags.
2552  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2553  * suit tmpfs, since it may have pages in swapcache, and needs to find those
2554  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2555  *
2556  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2557  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
2558  */
2559 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2560 					 pgoff_t index, gfp_t gfp)
2561 {
2562 #ifdef CONFIG_SHMEM
2563 	struct inode *inode = mapping->host;
2564 	struct page *page;
2565 	int error;
2566 
2567 	BUG_ON(mapping->a_ops != &shmem_aops);
2568 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2569 	if (error)
2570 		page = ERR_PTR(error);
2571 	else
2572 		unlock_page(page);
2573 	return page;
2574 #else
2575 	/*
2576 	 * The tiny !SHMEM case uses ramfs without swap
2577 	 */
2578 	return read_cache_page_gfp(mapping, index, gfp);
2579 #endif
2580 }
2581 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
2582