1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/file.h> 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/swap.h> 33 34 static struct vfsmount *shm_mnt; 35 36 #ifdef CONFIG_SHMEM 37 /* 38 * This virtual memory filesystem is heavily based on the ramfs. It 39 * extends ramfs by the ability to use swap and honor resource limits 40 * which makes it a completely usable filesystem. 41 */ 42 43 #include <linux/xattr.h> 44 #include <linux/exportfs.h> 45 #include <linux/posix_acl.h> 46 #include <linux/generic_acl.h> 47 #include <linux/mman.h> 48 #include <linux/string.h> 49 #include <linux/slab.h> 50 #include <linux/backing-dev.h> 51 #include <linux/shmem_fs.h> 52 #include <linux/writeback.h> 53 #include <linux/blkdev.h> 54 #include <linux/pagevec.h> 55 #include <linux/percpu_counter.h> 56 #include <linux/falloc.h> 57 #include <linux/splice.h> 58 #include <linux/security.h> 59 #include <linux/swapops.h> 60 #include <linux/mempolicy.h> 61 #include <linux/namei.h> 62 #include <linux/ctype.h> 63 #include <linux/migrate.h> 64 #include <linux/highmem.h> 65 #include <linux/seq_file.h> 66 #include <linux/magic.h> 67 68 #include <asm/uaccess.h> 69 #include <asm/pgtable.h> 70 71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512) 72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT) 73 74 /* Pretend that each entry is of this size in directory's i_size */ 75 #define BOGO_DIRENT_SIZE 20 76 77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 78 #define SHORT_SYMLINK_LEN 128 79 80 struct shmem_xattr { 81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */ 82 char *name; /* xattr name */ 83 size_t size; 84 char value[0]; 85 }; 86 87 /* 88 * shmem_fallocate and shmem_writepage communicate via inode->i_private 89 * (with i_mutex making sure that it has only one user at a time): 90 * we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 pgoff_t start; /* start of range currently being fallocated */ 94 pgoff_t next; /* the next page offset to be fallocated */ 95 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 97 }; 98 99 /* Flag allocation requirements to shmem_getpage */ 100 enum sgp_type { 101 SGP_READ, /* don't exceed i_size, don't allocate page */ 102 SGP_CACHE, /* don't exceed i_size, may allocate page */ 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 106 }; 107 108 #ifdef CONFIG_TMPFS 109 static unsigned long shmem_default_max_blocks(void) 110 { 111 return totalram_pages / 2; 112 } 113 114 static unsigned long shmem_default_max_inodes(void) 115 { 116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 117 } 118 #endif 119 120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 121 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 122 struct shmem_inode_info *info, pgoff_t index); 123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 125 126 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 127 struct page **pagep, enum sgp_type sgp, int *fault_type) 128 { 129 return shmem_getpage_gfp(inode, index, pagep, sgp, 130 mapping_gfp_mask(inode->i_mapping), fault_type); 131 } 132 133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 134 { 135 return sb->s_fs_info; 136 } 137 138 /* 139 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 140 * for shared memory and for shared anonymous (/dev/zero) mappings 141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 142 * consistent with the pre-accounting of private mappings ... 143 */ 144 static inline int shmem_acct_size(unsigned long flags, loff_t size) 145 { 146 return (flags & VM_NORESERVE) ? 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 148 } 149 150 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 151 { 152 if (!(flags & VM_NORESERVE)) 153 vm_unacct_memory(VM_ACCT(size)); 154 } 155 156 /* 157 * ... whereas tmpfs objects are accounted incrementally as 158 * pages are allocated, in order to allow huge sparse files. 159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 161 */ 162 static inline int shmem_acct_block(unsigned long flags) 163 { 164 return (flags & VM_NORESERVE) ? 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0; 166 } 167 168 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 169 { 170 if (flags & VM_NORESERVE) 171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE)); 172 } 173 174 static const struct super_operations shmem_ops; 175 static const struct address_space_operations shmem_aops; 176 static const struct file_operations shmem_file_operations; 177 static const struct inode_operations shmem_inode_operations; 178 static const struct inode_operations shmem_dir_inode_operations; 179 static const struct inode_operations shmem_special_inode_operations; 180 static const struct vm_operations_struct shmem_vm_ops; 181 182 static struct backing_dev_info shmem_backing_dev_info __read_mostly = { 183 .ra_pages = 0, /* No readahead */ 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED, 185 }; 186 187 static LIST_HEAD(shmem_swaplist); 188 static DEFINE_MUTEX(shmem_swaplist_mutex); 189 190 static int shmem_reserve_inode(struct super_block *sb) 191 { 192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 193 if (sbinfo->max_inodes) { 194 spin_lock(&sbinfo->stat_lock); 195 if (!sbinfo->free_inodes) { 196 spin_unlock(&sbinfo->stat_lock); 197 return -ENOSPC; 198 } 199 sbinfo->free_inodes--; 200 spin_unlock(&sbinfo->stat_lock); 201 } 202 return 0; 203 } 204 205 static void shmem_free_inode(struct super_block *sb) 206 { 207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 208 if (sbinfo->max_inodes) { 209 spin_lock(&sbinfo->stat_lock); 210 sbinfo->free_inodes++; 211 spin_unlock(&sbinfo->stat_lock); 212 } 213 } 214 215 /** 216 * shmem_recalc_inode - recalculate the block usage of an inode 217 * @inode: inode to recalc 218 * 219 * We have to calculate the free blocks since the mm can drop 220 * undirtied hole pages behind our back. 221 * 222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 224 * 225 * It has to be called with the spinlock held. 226 */ 227 static void shmem_recalc_inode(struct inode *inode) 228 { 229 struct shmem_inode_info *info = SHMEM_I(inode); 230 long freed; 231 232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 233 if (freed > 0) { 234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 235 if (sbinfo->max_blocks) 236 percpu_counter_add(&sbinfo->used_blocks, -freed); 237 info->alloced -= freed; 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 239 shmem_unacct_blocks(info->flags, freed); 240 } 241 } 242 243 /* 244 * Replace item expected in radix tree by a new item, while holding tree lock. 245 */ 246 static int shmem_radix_tree_replace(struct address_space *mapping, 247 pgoff_t index, void *expected, void *replacement) 248 { 249 void **pslot; 250 void *item = NULL; 251 252 VM_BUG_ON(!expected); 253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 254 if (pslot) 255 item = radix_tree_deref_slot_protected(pslot, 256 &mapping->tree_lock); 257 if (item != expected) 258 return -ENOENT; 259 if (replacement) 260 radix_tree_replace_slot(pslot, replacement); 261 else 262 radix_tree_delete(&mapping->page_tree, index); 263 return 0; 264 } 265 266 /* 267 * Like add_to_page_cache_locked, but error if expected item has gone. 268 */ 269 static int shmem_add_to_page_cache(struct page *page, 270 struct address_space *mapping, 271 pgoff_t index, gfp_t gfp, void *expected) 272 { 273 int error = 0; 274 275 VM_BUG_ON(!PageLocked(page)); 276 VM_BUG_ON(!PageSwapBacked(page)); 277 278 if (!expected) 279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); 280 if (!error) { 281 page_cache_get(page); 282 page->mapping = mapping; 283 page->index = index; 284 285 spin_lock_irq(&mapping->tree_lock); 286 if (!expected) 287 error = radix_tree_insert(&mapping->page_tree, 288 index, page); 289 else 290 error = shmem_radix_tree_replace(mapping, index, 291 expected, page); 292 if (!error) { 293 mapping->nrpages++; 294 __inc_zone_page_state(page, NR_FILE_PAGES); 295 __inc_zone_page_state(page, NR_SHMEM); 296 spin_unlock_irq(&mapping->tree_lock); 297 } else { 298 page->mapping = NULL; 299 spin_unlock_irq(&mapping->tree_lock); 300 page_cache_release(page); 301 } 302 if (!expected) 303 radix_tree_preload_end(); 304 } 305 if (error) 306 mem_cgroup_uncharge_cache_page(page); 307 return error; 308 } 309 310 /* 311 * Like delete_from_page_cache, but substitutes swap for page. 312 */ 313 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 314 { 315 struct address_space *mapping = page->mapping; 316 int error; 317 318 spin_lock_irq(&mapping->tree_lock); 319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 320 page->mapping = NULL; 321 mapping->nrpages--; 322 __dec_zone_page_state(page, NR_FILE_PAGES); 323 __dec_zone_page_state(page, NR_SHMEM); 324 spin_unlock_irq(&mapping->tree_lock); 325 page_cache_release(page); 326 BUG_ON(error); 327 } 328 329 /* 330 * Like find_get_pages, but collecting swap entries as well as pages. 331 */ 332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping, 333 pgoff_t start, unsigned int nr_pages, 334 struct page **pages, pgoff_t *indices) 335 { 336 unsigned int i; 337 unsigned int ret; 338 unsigned int nr_found; 339 340 rcu_read_lock(); 341 restart: 342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 343 (void ***)pages, indices, start, nr_pages); 344 ret = 0; 345 for (i = 0; i < nr_found; i++) { 346 struct page *page; 347 repeat: 348 page = radix_tree_deref_slot((void **)pages[i]); 349 if (unlikely(!page)) 350 continue; 351 if (radix_tree_exception(page)) { 352 if (radix_tree_deref_retry(page)) 353 goto restart; 354 /* 355 * Otherwise, we must be storing a swap entry 356 * here as an exceptional entry: so return it 357 * without attempting to raise page count. 358 */ 359 goto export; 360 } 361 if (!page_cache_get_speculative(page)) 362 goto repeat; 363 364 /* Has the page moved? */ 365 if (unlikely(page != *((void **)pages[i]))) { 366 page_cache_release(page); 367 goto repeat; 368 } 369 export: 370 indices[ret] = indices[i]; 371 pages[ret] = page; 372 ret++; 373 } 374 if (unlikely(!ret && nr_found)) 375 goto restart; 376 rcu_read_unlock(); 377 return ret; 378 } 379 380 /* 381 * Remove swap entry from radix tree, free the swap and its page cache. 382 */ 383 static int shmem_free_swap(struct address_space *mapping, 384 pgoff_t index, void *radswap) 385 { 386 int error; 387 388 spin_lock_irq(&mapping->tree_lock); 389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL); 390 spin_unlock_irq(&mapping->tree_lock); 391 if (!error) 392 free_swap_and_cache(radix_to_swp_entry(radswap)); 393 return error; 394 } 395 396 /* 397 * Pagevec may contain swap entries, so shuffle up pages before releasing. 398 */ 399 static void shmem_deswap_pagevec(struct pagevec *pvec) 400 { 401 int i, j; 402 403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) { 404 struct page *page = pvec->pages[i]; 405 if (!radix_tree_exceptional_entry(page)) 406 pvec->pages[j++] = page; 407 } 408 pvec->nr = j; 409 } 410 411 /* 412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 413 */ 414 void shmem_unlock_mapping(struct address_space *mapping) 415 { 416 struct pagevec pvec; 417 pgoff_t indices[PAGEVEC_SIZE]; 418 pgoff_t index = 0; 419 420 pagevec_init(&pvec, 0); 421 /* 422 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 423 */ 424 while (!mapping_unevictable(mapping)) { 425 /* 426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 428 */ 429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 430 PAGEVEC_SIZE, pvec.pages, indices); 431 if (!pvec.nr) 432 break; 433 index = indices[pvec.nr - 1] + 1; 434 shmem_deswap_pagevec(&pvec); 435 check_move_unevictable_pages(pvec.pages, pvec.nr); 436 pagevec_release(&pvec); 437 cond_resched(); 438 } 439 } 440 441 /* 442 * Remove range of pages and swap entries from radix tree, and free them. 443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 444 */ 445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 446 bool unfalloc) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 struct shmem_inode_info *info = SHMEM_I(inode); 450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT; 452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1); 453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 454 struct pagevec pvec; 455 pgoff_t indices[PAGEVEC_SIZE]; 456 long nr_swaps_freed = 0; 457 pgoff_t index; 458 int i; 459 460 if (lend == -1) 461 end = -1; /* unsigned, so actually very big */ 462 463 pagevec_init(&pvec, 0); 464 index = start; 465 while (index < end) { 466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 467 min(end - index, (pgoff_t)PAGEVEC_SIZE), 468 pvec.pages, indices); 469 if (!pvec.nr) 470 break; 471 mem_cgroup_uncharge_start(); 472 for (i = 0; i < pagevec_count(&pvec); i++) { 473 struct page *page = pvec.pages[i]; 474 475 index = indices[i]; 476 if (index >= end) 477 break; 478 479 if (radix_tree_exceptional_entry(page)) { 480 if (unfalloc) 481 continue; 482 nr_swaps_freed += !shmem_free_swap(mapping, 483 index, page); 484 continue; 485 } 486 487 if (!trylock_page(page)) 488 continue; 489 if (!unfalloc || !PageUptodate(page)) { 490 if (page->mapping == mapping) { 491 VM_BUG_ON(PageWriteback(page)); 492 truncate_inode_page(mapping, page); 493 } 494 } 495 unlock_page(page); 496 } 497 shmem_deswap_pagevec(&pvec); 498 pagevec_release(&pvec); 499 mem_cgroup_uncharge_end(); 500 cond_resched(); 501 index++; 502 } 503 504 if (partial_start) { 505 struct page *page = NULL; 506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 507 if (page) { 508 unsigned int top = PAGE_CACHE_SIZE; 509 if (start > end) { 510 top = partial_end; 511 partial_end = 0; 512 } 513 zero_user_segment(page, partial_start, top); 514 set_page_dirty(page); 515 unlock_page(page); 516 page_cache_release(page); 517 } 518 } 519 if (partial_end) { 520 struct page *page = NULL; 521 shmem_getpage(inode, end, &page, SGP_READ, NULL); 522 if (page) { 523 zero_user_segment(page, 0, partial_end); 524 set_page_dirty(page); 525 unlock_page(page); 526 page_cache_release(page); 527 } 528 } 529 if (start >= end) 530 return; 531 532 index = start; 533 for ( ; ; ) { 534 cond_resched(); 535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 536 min(end - index, (pgoff_t)PAGEVEC_SIZE), 537 pvec.pages, indices); 538 if (!pvec.nr) { 539 if (index == start || unfalloc) 540 break; 541 index = start; 542 continue; 543 } 544 if ((index == start || unfalloc) && indices[0] >= end) { 545 shmem_deswap_pagevec(&pvec); 546 pagevec_release(&pvec); 547 break; 548 } 549 mem_cgroup_uncharge_start(); 550 for (i = 0; i < pagevec_count(&pvec); i++) { 551 struct page *page = pvec.pages[i]; 552 553 index = indices[i]; 554 if (index >= end) 555 break; 556 557 if (radix_tree_exceptional_entry(page)) { 558 if (unfalloc) 559 continue; 560 nr_swaps_freed += !shmem_free_swap(mapping, 561 index, page); 562 continue; 563 } 564 565 lock_page(page); 566 if (!unfalloc || !PageUptodate(page)) { 567 if (page->mapping == mapping) { 568 VM_BUG_ON(PageWriteback(page)); 569 truncate_inode_page(mapping, page); 570 } 571 } 572 unlock_page(page); 573 } 574 shmem_deswap_pagevec(&pvec); 575 pagevec_release(&pvec); 576 mem_cgroup_uncharge_end(); 577 index++; 578 } 579 580 spin_lock(&info->lock); 581 info->swapped -= nr_swaps_freed; 582 shmem_recalc_inode(inode); 583 spin_unlock(&info->lock); 584 } 585 586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 587 { 588 shmem_undo_range(inode, lstart, lend, false); 589 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 590 } 591 EXPORT_SYMBOL_GPL(shmem_truncate_range); 592 593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 594 { 595 struct inode *inode = dentry->d_inode; 596 int error; 597 598 error = inode_change_ok(inode, attr); 599 if (error) 600 return error; 601 602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 603 loff_t oldsize = inode->i_size; 604 loff_t newsize = attr->ia_size; 605 606 if (newsize != oldsize) { 607 i_size_write(inode, newsize); 608 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 609 } 610 if (newsize < oldsize) { 611 loff_t holebegin = round_up(newsize, PAGE_SIZE); 612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 613 shmem_truncate_range(inode, newsize, (loff_t)-1); 614 /* unmap again to remove racily COWed private pages */ 615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1); 616 } 617 } 618 619 setattr_copy(inode, attr); 620 #ifdef CONFIG_TMPFS_POSIX_ACL 621 if (attr->ia_valid & ATTR_MODE) 622 error = generic_acl_chmod(inode); 623 #endif 624 return error; 625 } 626 627 static void shmem_evict_inode(struct inode *inode) 628 { 629 struct shmem_inode_info *info = SHMEM_I(inode); 630 struct shmem_xattr *xattr, *nxattr; 631 632 if (inode->i_mapping->a_ops == &shmem_aops) { 633 shmem_unacct_size(info->flags, inode->i_size); 634 inode->i_size = 0; 635 shmem_truncate_range(inode, 0, (loff_t)-1); 636 if (!list_empty(&info->swaplist)) { 637 mutex_lock(&shmem_swaplist_mutex); 638 list_del_init(&info->swaplist); 639 mutex_unlock(&shmem_swaplist_mutex); 640 } 641 } else 642 kfree(info->symlink); 643 644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) { 645 kfree(xattr->name); 646 kfree(xattr); 647 } 648 BUG_ON(inode->i_blocks); 649 shmem_free_inode(inode->i_sb); 650 clear_inode(inode); 651 } 652 653 /* 654 * If swap found in inode, free it and move page from swapcache to filecache. 655 */ 656 static int shmem_unuse_inode(struct shmem_inode_info *info, 657 swp_entry_t swap, struct page **pagep) 658 { 659 struct address_space *mapping = info->vfs_inode.i_mapping; 660 void *radswap; 661 pgoff_t index; 662 gfp_t gfp; 663 int error = 0; 664 665 radswap = swp_to_radix_entry(swap); 666 index = radix_tree_locate_item(&mapping->page_tree, radswap); 667 if (index == -1) 668 return 0; 669 670 /* 671 * Move _head_ to start search for next from here. 672 * But be careful: shmem_evict_inode checks list_empty without taking 673 * mutex, and there's an instant in list_move_tail when info->swaplist 674 * would appear empty, if it were the only one on shmem_swaplist. 675 */ 676 if (shmem_swaplist.next != &info->swaplist) 677 list_move_tail(&shmem_swaplist, &info->swaplist); 678 679 gfp = mapping_gfp_mask(mapping); 680 if (shmem_should_replace_page(*pagep, gfp)) { 681 mutex_unlock(&shmem_swaplist_mutex); 682 error = shmem_replace_page(pagep, gfp, info, index); 683 mutex_lock(&shmem_swaplist_mutex); 684 /* 685 * We needed to drop mutex to make that restrictive page 686 * allocation, but the inode might have been freed while we 687 * dropped it: although a racing shmem_evict_inode() cannot 688 * complete without emptying the radix_tree, our page lock 689 * on this swapcache page is not enough to prevent that - 690 * free_swap_and_cache() of our swap entry will only 691 * trylock_page(), removing swap from radix_tree whatever. 692 * 693 * We must not proceed to shmem_add_to_page_cache() if the 694 * inode has been freed, but of course we cannot rely on 695 * inode or mapping or info to check that. However, we can 696 * safely check if our swap entry is still in use (and here 697 * it can't have got reused for another page): if it's still 698 * in use, then the inode cannot have been freed yet, and we 699 * can safely proceed (if it's no longer in use, that tells 700 * nothing about the inode, but we don't need to unuse swap). 701 */ 702 if (!page_swapcount(*pagep)) 703 error = -ENOENT; 704 } 705 706 /* 707 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 708 * but also to hold up shmem_evict_inode(): so inode cannot be freed 709 * beneath us (pagelock doesn't help until the page is in pagecache). 710 */ 711 if (!error) 712 error = shmem_add_to_page_cache(*pagep, mapping, index, 713 GFP_NOWAIT, radswap); 714 if (error != -ENOMEM) { 715 /* 716 * Truncation and eviction use free_swap_and_cache(), which 717 * only does trylock page: if we raced, best clean up here. 718 */ 719 delete_from_swap_cache(*pagep); 720 set_page_dirty(*pagep); 721 if (!error) { 722 spin_lock(&info->lock); 723 info->swapped--; 724 spin_unlock(&info->lock); 725 swap_free(swap); 726 } 727 error = 1; /* not an error, but entry was found */ 728 } 729 return error; 730 } 731 732 /* 733 * Search through swapped inodes to find and replace swap by page. 734 */ 735 int shmem_unuse(swp_entry_t swap, struct page *page) 736 { 737 struct list_head *this, *next; 738 struct shmem_inode_info *info; 739 int found = 0; 740 int error = 0; 741 742 /* 743 * There's a faint possibility that swap page was replaced before 744 * caller locked it: caller will come back later with the right page. 745 */ 746 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 747 goto out; 748 749 /* 750 * Charge page using GFP_KERNEL while we can wait, before taking 751 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 752 * Charged back to the user (not to caller) when swap account is used. 753 */ 754 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL); 755 if (error) 756 goto out; 757 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 758 759 mutex_lock(&shmem_swaplist_mutex); 760 list_for_each_safe(this, next, &shmem_swaplist) { 761 info = list_entry(this, struct shmem_inode_info, swaplist); 762 if (info->swapped) 763 found = shmem_unuse_inode(info, swap, &page); 764 else 765 list_del_init(&info->swaplist); 766 cond_resched(); 767 if (found) 768 break; 769 } 770 mutex_unlock(&shmem_swaplist_mutex); 771 772 if (found < 0) 773 error = found; 774 out: 775 unlock_page(page); 776 page_cache_release(page); 777 return error; 778 } 779 780 /* 781 * Move the page from the page cache to the swap cache. 782 */ 783 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 784 { 785 struct shmem_inode_info *info; 786 struct address_space *mapping; 787 struct inode *inode; 788 swp_entry_t swap; 789 pgoff_t index; 790 791 BUG_ON(!PageLocked(page)); 792 mapping = page->mapping; 793 index = page->index; 794 inode = mapping->host; 795 info = SHMEM_I(inode); 796 if (info->flags & VM_LOCKED) 797 goto redirty; 798 if (!total_swap_pages) 799 goto redirty; 800 801 /* 802 * shmem_backing_dev_info's capabilities prevent regular writeback or 803 * sync from ever calling shmem_writepage; but a stacking filesystem 804 * might use ->writepage of its underlying filesystem, in which case 805 * tmpfs should write out to swap only in response to memory pressure, 806 * and not for the writeback threads or sync. 807 */ 808 if (!wbc->for_reclaim) { 809 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 810 goto redirty; 811 } 812 813 /* 814 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 815 * value into swapfile.c, the only way we can correctly account for a 816 * fallocated page arriving here is now to initialize it and write it. 817 * 818 * That's okay for a page already fallocated earlier, but if we have 819 * not yet completed the fallocation, then (a) we want to keep track 820 * of this page in case we have to undo it, and (b) it may not be a 821 * good idea to continue anyway, once we're pushing into swap. So 822 * reactivate the page, and let shmem_fallocate() quit when too many. 823 */ 824 if (!PageUptodate(page)) { 825 if (inode->i_private) { 826 struct shmem_falloc *shmem_falloc; 827 spin_lock(&inode->i_lock); 828 shmem_falloc = inode->i_private; 829 if (shmem_falloc && 830 index >= shmem_falloc->start && 831 index < shmem_falloc->next) 832 shmem_falloc->nr_unswapped++; 833 else 834 shmem_falloc = NULL; 835 spin_unlock(&inode->i_lock); 836 if (shmem_falloc) 837 goto redirty; 838 } 839 clear_highpage(page); 840 flush_dcache_page(page); 841 SetPageUptodate(page); 842 } 843 844 swap = get_swap_page(); 845 if (!swap.val) 846 goto redirty; 847 848 /* 849 * Add inode to shmem_unuse()'s list of swapped-out inodes, 850 * if it's not already there. Do it now before the page is 851 * moved to swap cache, when its pagelock no longer protects 852 * the inode from eviction. But don't unlock the mutex until 853 * we've incremented swapped, because shmem_unuse_inode() will 854 * prune a !swapped inode from the swaplist under this mutex. 855 */ 856 mutex_lock(&shmem_swaplist_mutex); 857 if (list_empty(&info->swaplist)) 858 list_add_tail(&info->swaplist, &shmem_swaplist); 859 860 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 861 swap_shmem_alloc(swap); 862 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 863 864 spin_lock(&info->lock); 865 info->swapped++; 866 shmem_recalc_inode(inode); 867 spin_unlock(&info->lock); 868 869 mutex_unlock(&shmem_swaplist_mutex); 870 BUG_ON(page_mapped(page)); 871 swap_writepage(page, wbc); 872 return 0; 873 } 874 875 mutex_unlock(&shmem_swaplist_mutex); 876 swapcache_free(swap, NULL); 877 redirty: 878 set_page_dirty(page); 879 if (wbc->for_reclaim) 880 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 881 unlock_page(page); 882 return 0; 883 } 884 885 #ifdef CONFIG_NUMA 886 #ifdef CONFIG_TMPFS 887 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 888 { 889 char buffer[64]; 890 891 if (!mpol || mpol->mode == MPOL_DEFAULT) 892 return; /* show nothing */ 893 894 mpol_to_str(buffer, sizeof(buffer), mpol, 1); 895 896 seq_printf(seq, ",mpol=%s", buffer); 897 } 898 899 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 900 { 901 struct mempolicy *mpol = NULL; 902 if (sbinfo->mpol) { 903 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 904 mpol = sbinfo->mpol; 905 mpol_get(mpol); 906 spin_unlock(&sbinfo->stat_lock); 907 } 908 return mpol; 909 } 910 #endif /* CONFIG_TMPFS */ 911 912 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 913 struct shmem_inode_info *info, pgoff_t index) 914 { 915 struct mempolicy mpol, *spol; 916 struct vm_area_struct pvma; 917 918 spol = mpol_cond_copy(&mpol, 919 mpol_shared_policy_lookup(&info->policy, index)); 920 921 /* Create a pseudo vma that just contains the policy */ 922 pvma.vm_start = 0; 923 pvma.vm_pgoff = index; 924 pvma.vm_ops = NULL; 925 pvma.vm_policy = spol; 926 return swapin_readahead(swap, gfp, &pvma, 0); 927 } 928 929 static struct page *shmem_alloc_page(gfp_t gfp, 930 struct shmem_inode_info *info, pgoff_t index) 931 { 932 struct vm_area_struct pvma; 933 934 /* Create a pseudo vma that just contains the policy */ 935 pvma.vm_start = 0; 936 pvma.vm_pgoff = index; 937 pvma.vm_ops = NULL; 938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 939 940 /* 941 * alloc_page_vma() will drop the shared policy reference 942 */ 943 return alloc_page_vma(gfp, &pvma, 0); 944 } 945 #else /* !CONFIG_NUMA */ 946 #ifdef CONFIG_TMPFS 947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 948 { 949 } 950 #endif /* CONFIG_TMPFS */ 951 952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 953 struct shmem_inode_info *info, pgoff_t index) 954 { 955 return swapin_readahead(swap, gfp, NULL, 0); 956 } 957 958 static inline struct page *shmem_alloc_page(gfp_t gfp, 959 struct shmem_inode_info *info, pgoff_t index) 960 { 961 return alloc_page(gfp); 962 } 963 #endif /* CONFIG_NUMA */ 964 965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 967 { 968 return NULL; 969 } 970 #endif 971 972 /* 973 * When a page is moved from swapcache to shmem filecache (either by the 974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 975 * shmem_unuse_inode()), it may have been read in earlier from swap, in 976 * ignorance of the mapping it belongs to. If that mapping has special 977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 978 * we may need to copy to a suitable page before moving to filecache. 979 * 980 * In a future release, this may well be extended to respect cpuset and 981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 982 * but for now it is a simple matter of zone. 983 */ 984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 985 { 986 return page_zonenum(page) > gfp_zone(gfp); 987 } 988 989 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 990 struct shmem_inode_info *info, pgoff_t index) 991 { 992 struct page *oldpage, *newpage; 993 struct address_space *swap_mapping; 994 pgoff_t swap_index; 995 int error; 996 997 oldpage = *pagep; 998 swap_index = page_private(oldpage); 999 swap_mapping = page_mapping(oldpage); 1000 1001 /* 1002 * We have arrived here because our zones are constrained, so don't 1003 * limit chance of success by further cpuset and node constraints. 1004 */ 1005 gfp &= ~GFP_CONSTRAINT_MASK; 1006 newpage = shmem_alloc_page(gfp, info, index); 1007 if (!newpage) 1008 return -ENOMEM; 1009 1010 page_cache_get(newpage); 1011 copy_highpage(newpage, oldpage); 1012 flush_dcache_page(newpage); 1013 1014 __set_page_locked(newpage); 1015 SetPageUptodate(newpage); 1016 SetPageSwapBacked(newpage); 1017 set_page_private(newpage, swap_index); 1018 SetPageSwapCache(newpage); 1019 1020 /* 1021 * Our caller will very soon move newpage out of swapcache, but it's 1022 * a nice clean interface for us to replace oldpage by newpage there. 1023 */ 1024 spin_lock_irq(&swap_mapping->tree_lock); 1025 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1026 newpage); 1027 if (!error) { 1028 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1029 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1030 } 1031 spin_unlock_irq(&swap_mapping->tree_lock); 1032 1033 if (unlikely(error)) { 1034 /* 1035 * Is this possible? I think not, now that our callers check 1036 * both PageSwapCache and page_private after getting page lock; 1037 * but be defensive. Reverse old to newpage for clear and free. 1038 */ 1039 oldpage = newpage; 1040 } else { 1041 mem_cgroup_replace_page_cache(oldpage, newpage); 1042 lru_cache_add_anon(newpage); 1043 *pagep = newpage; 1044 } 1045 1046 ClearPageSwapCache(oldpage); 1047 set_page_private(oldpage, 0); 1048 1049 unlock_page(oldpage); 1050 page_cache_release(oldpage); 1051 page_cache_release(oldpage); 1052 return error; 1053 } 1054 1055 /* 1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1057 * 1058 * If we allocate a new one we do not mark it dirty. That's up to the 1059 * vm. If we swap it in we mark it dirty since we also free the swap 1060 * entry since a page cannot live in both the swap and page cache 1061 */ 1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1063 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1064 { 1065 struct address_space *mapping = inode->i_mapping; 1066 struct shmem_inode_info *info; 1067 struct shmem_sb_info *sbinfo; 1068 struct page *page; 1069 swp_entry_t swap; 1070 int error; 1071 int once = 0; 1072 int alloced = 0; 1073 1074 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT)) 1075 return -EFBIG; 1076 repeat: 1077 swap.val = 0; 1078 page = find_lock_page(mapping, index); 1079 if (radix_tree_exceptional_entry(page)) { 1080 swap = radix_to_swp_entry(page); 1081 page = NULL; 1082 } 1083 1084 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1085 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1086 error = -EINVAL; 1087 goto failed; 1088 } 1089 1090 /* fallocated page? */ 1091 if (page && !PageUptodate(page)) { 1092 if (sgp != SGP_READ) 1093 goto clear; 1094 unlock_page(page); 1095 page_cache_release(page); 1096 page = NULL; 1097 } 1098 if (page || (sgp == SGP_READ && !swap.val)) { 1099 *pagep = page; 1100 return 0; 1101 } 1102 1103 /* 1104 * Fast cache lookup did not find it: 1105 * bring it back from swap or allocate. 1106 */ 1107 info = SHMEM_I(inode); 1108 sbinfo = SHMEM_SB(inode->i_sb); 1109 1110 if (swap.val) { 1111 /* Look it up and read it in.. */ 1112 page = lookup_swap_cache(swap); 1113 if (!page) { 1114 /* here we actually do the io */ 1115 if (fault_type) 1116 *fault_type |= VM_FAULT_MAJOR; 1117 page = shmem_swapin(swap, gfp, info, index); 1118 if (!page) { 1119 error = -ENOMEM; 1120 goto failed; 1121 } 1122 } 1123 1124 /* We have to do this with page locked to prevent races */ 1125 lock_page(page); 1126 if (!PageSwapCache(page) || page_private(page) != swap.val || 1127 page->mapping) { 1128 error = -EEXIST; /* try again */ 1129 goto failed; 1130 } 1131 if (!PageUptodate(page)) { 1132 error = -EIO; 1133 goto failed; 1134 } 1135 wait_on_page_writeback(page); 1136 1137 if (shmem_should_replace_page(page, gfp)) { 1138 error = shmem_replace_page(&page, gfp, info, index); 1139 if (error) 1140 goto failed; 1141 } 1142 1143 error = mem_cgroup_cache_charge(page, current->mm, 1144 gfp & GFP_RECLAIM_MASK); 1145 if (!error) 1146 error = shmem_add_to_page_cache(page, mapping, index, 1147 gfp, swp_to_radix_entry(swap)); 1148 if (error) 1149 goto failed; 1150 1151 spin_lock(&info->lock); 1152 info->swapped--; 1153 shmem_recalc_inode(inode); 1154 spin_unlock(&info->lock); 1155 1156 delete_from_swap_cache(page); 1157 set_page_dirty(page); 1158 swap_free(swap); 1159 1160 } else { 1161 if (shmem_acct_block(info->flags)) { 1162 error = -ENOSPC; 1163 goto failed; 1164 } 1165 if (sbinfo->max_blocks) { 1166 if (percpu_counter_compare(&sbinfo->used_blocks, 1167 sbinfo->max_blocks) >= 0) { 1168 error = -ENOSPC; 1169 goto unacct; 1170 } 1171 percpu_counter_inc(&sbinfo->used_blocks); 1172 } 1173 1174 page = shmem_alloc_page(gfp, info, index); 1175 if (!page) { 1176 error = -ENOMEM; 1177 goto decused; 1178 } 1179 1180 SetPageSwapBacked(page); 1181 __set_page_locked(page); 1182 error = mem_cgroup_cache_charge(page, current->mm, 1183 gfp & GFP_RECLAIM_MASK); 1184 if (!error) 1185 error = shmem_add_to_page_cache(page, mapping, index, 1186 gfp, NULL); 1187 if (error) 1188 goto decused; 1189 lru_cache_add_anon(page); 1190 1191 spin_lock(&info->lock); 1192 info->alloced++; 1193 inode->i_blocks += BLOCKS_PER_PAGE; 1194 shmem_recalc_inode(inode); 1195 spin_unlock(&info->lock); 1196 alloced = true; 1197 1198 /* 1199 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1200 */ 1201 if (sgp == SGP_FALLOC) 1202 sgp = SGP_WRITE; 1203 clear: 1204 /* 1205 * Let SGP_WRITE caller clear ends if write does not fill page; 1206 * but SGP_FALLOC on a page fallocated earlier must initialize 1207 * it now, lest undo on failure cancel our earlier guarantee. 1208 */ 1209 if (sgp != SGP_WRITE) { 1210 clear_highpage(page); 1211 flush_dcache_page(page); 1212 SetPageUptodate(page); 1213 } 1214 if (sgp == SGP_DIRTY) 1215 set_page_dirty(page); 1216 } 1217 1218 /* Perhaps the file has been truncated since we checked */ 1219 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1220 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) { 1221 error = -EINVAL; 1222 if (alloced) 1223 goto trunc; 1224 else 1225 goto failed; 1226 } 1227 *pagep = page; 1228 return 0; 1229 1230 /* 1231 * Error recovery. 1232 */ 1233 trunc: 1234 info = SHMEM_I(inode); 1235 ClearPageDirty(page); 1236 delete_from_page_cache(page); 1237 spin_lock(&info->lock); 1238 info->alloced--; 1239 inode->i_blocks -= BLOCKS_PER_PAGE; 1240 spin_unlock(&info->lock); 1241 decused: 1242 sbinfo = SHMEM_SB(inode->i_sb); 1243 if (sbinfo->max_blocks) 1244 percpu_counter_add(&sbinfo->used_blocks, -1); 1245 unacct: 1246 shmem_unacct_blocks(info->flags, 1); 1247 failed: 1248 if (swap.val && error != -EINVAL) { 1249 struct page *test = find_get_page(mapping, index); 1250 if (test && !radix_tree_exceptional_entry(test)) 1251 page_cache_release(test); 1252 /* Have another try if the entry has changed */ 1253 if (test != swp_to_radix_entry(swap)) 1254 error = -EEXIST; 1255 } 1256 if (page) { 1257 unlock_page(page); 1258 page_cache_release(page); 1259 } 1260 if (error == -ENOSPC && !once++) { 1261 info = SHMEM_I(inode); 1262 spin_lock(&info->lock); 1263 shmem_recalc_inode(inode); 1264 spin_unlock(&info->lock); 1265 goto repeat; 1266 } 1267 if (error == -EEXIST) 1268 goto repeat; 1269 return error; 1270 } 1271 1272 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1273 { 1274 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1275 int error; 1276 int ret = VM_FAULT_LOCKED; 1277 1278 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1279 if (error) 1280 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1281 1282 if (ret & VM_FAULT_MAJOR) { 1283 count_vm_event(PGMAJFAULT); 1284 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1285 } 1286 return ret; 1287 } 1288 1289 #ifdef CONFIG_NUMA 1290 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1291 { 1292 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1293 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1294 } 1295 1296 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1297 unsigned long addr) 1298 { 1299 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 1300 pgoff_t index; 1301 1302 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1303 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1304 } 1305 #endif 1306 1307 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1308 { 1309 struct inode *inode = file->f_path.dentry->d_inode; 1310 struct shmem_inode_info *info = SHMEM_I(inode); 1311 int retval = -ENOMEM; 1312 1313 spin_lock(&info->lock); 1314 if (lock && !(info->flags & VM_LOCKED)) { 1315 if (!user_shm_lock(inode->i_size, user)) 1316 goto out_nomem; 1317 info->flags |= VM_LOCKED; 1318 mapping_set_unevictable(file->f_mapping); 1319 } 1320 if (!lock && (info->flags & VM_LOCKED) && user) { 1321 user_shm_unlock(inode->i_size, user); 1322 info->flags &= ~VM_LOCKED; 1323 mapping_clear_unevictable(file->f_mapping); 1324 } 1325 retval = 0; 1326 1327 out_nomem: 1328 spin_unlock(&info->lock); 1329 return retval; 1330 } 1331 1332 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1333 { 1334 file_accessed(file); 1335 vma->vm_ops = &shmem_vm_ops; 1336 vma->vm_flags |= VM_CAN_NONLINEAR; 1337 return 0; 1338 } 1339 1340 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1341 umode_t mode, dev_t dev, unsigned long flags) 1342 { 1343 struct inode *inode; 1344 struct shmem_inode_info *info; 1345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1346 1347 if (shmem_reserve_inode(sb)) 1348 return NULL; 1349 1350 inode = new_inode(sb); 1351 if (inode) { 1352 inode->i_ino = get_next_ino(); 1353 inode_init_owner(inode, dir, mode); 1354 inode->i_blocks = 0; 1355 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; 1356 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1357 inode->i_generation = get_seconds(); 1358 info = SHMEM_I(inode); 1359 memset(info, 0, (char *)inode - (char *)info); 1360 spin_lock_init(&info->lock); 1361 info->flags = flags & VM_NORESERVE; 1362 INIT_LIST_HEAD(&info->swaplist); 1363 INIT_LIST_HEAD(&info->xattr_list); 1364 cache_no_acl(inode); 1365 1366 switch (mode & S_IFMT) { 1367 default: 1368 inode->i_op = &shmem_special_inode_operations; 1369 init_special_inode(inode, mode, dev); 1370 break; 1371 case S_IFREG: 1372 inode->i_mapping->a_ops = &shmem_aops; 1373 inode->i_op = &shmem_inode_operations; 1374 inode->i_fop = &shmem_file_operations; 1375 mpol_shared_policy_init(&info->policy, 1376 shmem_get_sbmpol(sbinfo)); 1377 break; 1378 case S_IFDIR: 1379 inc_nlink(inode); 1380 /* Some things misbehave if size == 0 on a directory */ 1381 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1382 inode->i_op = &shmem_dir_inode_operations; 1383 inode->i_fop = &simple_dir_operations; 1384 break; 1385 case S_IFLNK: 1386 /* 1387 * Must not load anything in the rbtree, 1388 * mpol_free_shared_policy will not be called. 1389 */ 1390 mpol_shared_policy_init(&info->policy, NULL); 1391 break; 1392 } 1393 } else 1394 shmem_free_inode(sb); 1395 return inode; 1396 } 1397 1398 #ifdef CONFIG_TMPFS 1399 static const struct inode_operations shmem_symlink_inode_operations; 1400 static const struct inode_operations shmem_short_symlink_operations; 1401 1402 #ifdef CONFIG_TMPFS_XATTR 1403 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1404 #else 1405 #define shmem_initxattrs NULL 1406 #endif 1407 1408 static int 1409 shmem_write_begin(struct file *file, struct address_space *mapping, 1410 loff_t pos, unsigned len, unsigned flags, 1411 struct page **pagep, void **fsdata) 1412 { 1413 struct inode *inode = mapping->host; 1414 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1415 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1416 } 1417 1418 static int 1419 shmem_write_end(struct file *file, struct address_space *mapping, 1420 loff_t pos, unsigned len, unsigned copied, 1421 struct page *page, void *fsdata) 1422 { 1423 struct inode *inode = mapping->host; 1424 1425 if (pos + copied > inode->i_size) 1426 i_size_write(inode, pos + copied); 1427 1428 if (!PageUptodate(page)) { 1429 if (copied < PAGE_CACHE_SIZE) { 1430 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 1431 zero_user_segments(page, 0, from, 1432 from + copied, PAGE_CACHE_SIZE); 1433 } 1434 SetPageUptodate(page); 1435 } 1436 set_page_dirty(page); 1437 unlock_page(page); 1438 page_cache_release(page); 1439 1440 return copied; 1441 } 1442 1443 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor) 1444 { 1445 struct inode *inode = filp->f_path.dentry->d_inode; 1446 struct address_space *mapping = inode->i_mapping; 1447 pgoff_t index; 1448 unsigned long offset; 1449 enum sgp_type sgp = SGP_READ; 1450 1451 /* 1452 * Might this read be for a stacking filesystem? Then when reading 1453 * holes of a sparse file, we actually need to allocate those pages, 1454 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1455 */ 1456 if (segment_eq(get_fs(), KERNEL_DS)) 1457 sgp = SGP_DIRTY; 1458 1459 index = *ppos >> PAGE_CACHE_SHIFT; 1460 offset = *ppos & ~PAGE_CACHE_MASK; 1461 1462 for (;;) { 1463 struct page *page = NULL; 1464 pgoff_t end_index; 1465 unsigned long nr, ret; 1466 loff_t i_size = i_size_read(inode); 1467 1468 end_index = i_size >> PAGE_CACHE_SHIFT; 1469 if (index > end_index) 1470 break; 1471 if (index == end_index) { 1472 nr = i_size & ~PAGE_CACHE_MASK; 1473 if (nr <= offset) 1474 break; 1475 } 1476 1477 desc->error = shmem_getpage(inode, index, &page, sgp, NULL); 1478 if (desc->error) { 1479 if (desc->error == -EINVAL) 1480 desc->error = 0; 1481 break; 1482 } 1483 if (page) 1484 unlock_page(page); 1485 1486 /* 1487 * We must evaluate after, since reads (unlike writes) 1488 * are called without i_mutex protection against truncate 1489 */ 1490 nr = PAGE_CACHE_SIZE; 1491 i_size = i_size_read(inode); 1492 end_index = i_size >> PAGE_CACHE_SHIFT; 1493 if (index == end_index) { 1494 nr = i_size & ~PAGE_CACHE_MASK; 1495 if (nr <= offset) { 1496 if (page) 1497 page_cache_release(page); 1498 break; 1499 } 1500 } 1501 nr -= offset; 1502 1503 if (page) { 1504 /* 1505 * If users can be writing to this page using arbitrary 1506 * virtual addresses, take care about potential aliasing 1507 * before reading the page on the kernel side. 1508 */ 1509 if (mapping_writably_mapped(mapping)) 1510 flush_dcache_page(page); 1511 /* 1512 * Mark the page accessed if we read the beginning. 1513 */ 1514 if (!offset) 1515 mark_page_accessed(page); 1516 } else { 1517 page = ZERO_PAGE(0); 1518 page_cache_get(page); 1519 } 1520 1521 /* 1522 * Ok, we have the page, and it's up-to-date, so 1523 * now we can copy it to user space... 1524 * 1525 * The actor routine returns how many bytes were actually used.. 1526 * NOTE! This may not be the same as how much of a user buffer 1527 * we filled up (we may be padding etc), so we can only update 1528 * "pos" here (the actor routine has to update the user buffer 1529 * pointers and the remaining count). 1530 */ 1531 ret = actor(desc, page, offset, nr); 1532 offset += ret; 1533 index += offset >> PAGE_CACHE_SHIFT; 1534 offset &= ~PAGE_CACHE_MASK; 1535 1536 page_cache_release(page); 1537 if (ret != nr || !desc->count) 1538 break; 1539 1540 cond_resched(); 1541 } 1542 1543 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1544 file_accessed(filp); 1545 } 1546 1547 static ssize_t shmem_file_aio_read(struct kiocb *iocb, 1548 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 1549 { 1550 struct file *filp = iocb->ki_filp; 1551 ssize_t retval; 1552 unsigned long seg; 1553 size_t count; 1554 loff_t *ppos = &iocb->ki_pos; 1555 1556 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1557 if (retval) 1558 return retval; 1559 1560 for (seg = 0; seg < nr_segs; seg++) { 1561 read_descriptor_t desc; 1562 1563 desc.written = 0; 1564 desc.arg.buf = iov[seg].iov_base; 1565 desc.count = iov[seg].iov_len; 1566 if (desc.count == 0) 1567 continue; 1568 desc.error = 0; 1569 do_shmem_file_read(filp, ppos, &desc, file_read_actor); 1570 retval += desc.written; 1571 if (desc.error) { 1572 retval = retval ?: desc.error; 1573 break; 1574 } 1575 if (desc.count > 0) 1576 break; 1577 } 1578 return retval; 1579 } 1580 1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1582 struct pipe_inode_info *pipe, size_t len, 1583 unsigned int flags) 1584 { 1585 struct address_space *mapping = in->f_mapping; 1586 struct inode *inode = mapping->host; 1587 unsigned int loff, nr_pages, req_pages; 1588 struct page *pages[PIPE_DEF_BUFFERS]; 1589 struct partial_page partial[PIPE_DEF_BUFFERS]; 1590 struct page *page; 1591 pgoff_t index, end_index; 1592 loff_t isize, left; 1593 int error, page_nr; 1594 struct splice_pipe_desc spd = { 1595 .pages = pages, 1596 .partial = partial, 1597 .nr_pages_max = PIPE_DEF_BUFFERS, 1598 .flags = flags, 1599 .ops = &page_cache_pipe_buf_ops, 1600 .spd_release = spd_release_page, 1601 }; 1602 1603 isize = i_size_read(inode); 1604 if (unlikely(*ppos >= isize)) 1605 return 0; 1606 1607 left = isize - *ppos; 1608 if (unlikely(left < len)) 1609 len = left; 1610 1611 if (splice_grow_spd(pipe, &spd)) 1612 return -ENOMEM; 1613 1614 index = *ppos >> PAGE_CACHE_SHIFT; 1615 loff = *ppos & ~PAGE_CACHE_MASK; 1616 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1617 nr_pages = min(req_pages, pipe->buffers); 1618 1619 spd.nr_pages = find_get_pages_contig(mapping, index, 1620 nr_pages, spd.pages); 1621 index += spd.nr_pages; 1622 error = 0; 1623 1624 while (spd.nr_pages < nr_pages) { 1625 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1626 if (error) 1627 break; 1628 unlock_page(page); 1629 spd.pages[spd.nr_pages++] = page; 1630 index++; 1631 } 1632 1633 index = *ppos >> PAGE_CACHE_SHIFT; 1634 nr_pages = spd.nr_pages; 1635 spd.nr_pages = 0; 1636 1637 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1638 unsigned int this_len; 1639 1640 if (!len) 1641 break; 1642 1643 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 1644 page = spd.pages[page_nr]; 1645 1646 if (!PageUptodate(page) || page->mapping != mapping) { 1647 error = shmem_getpage(inode, index, &page, 1648 SGP_CACHE, NULL); 1649 if (error) 1650 break; 1651 unlock_page(page); 1652 page_cache_release(spd.pages[page_nr]); 1653 spd.pages[page_nr] = page; 1654 } 1655 1656 isize = i_size_read(inode); 1657 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1658 if (unlikely(!isize || index > end_index)) 1659 break; 1660 1661 if (end_index == index) { 1662 unsigned int plen; 1663 1664 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1665 if (plen <= loff) 1666 break; 1667 1668 this_len = min(this_len, plen - loff); 1669 len = this_len; 1670 } 1671 1672 spd.partial[page_nr].offset = loff; 1673 spd.partial[page_nr].len = this_len; 1674 len -= this_len; 1675 loff = 0; 1676 spd.nr_pages++; 1677 index++; 1678 } 1679 1680 while (page_nr < nr_pages) 1681 page_cache_release(spd.pages[page_nr++]); 1682 1683 if (spd.nr_pages) 1684 error = splice_to_pipe(pipe, &spd); 1685 1686 splice_shrink_spd(&spd); 1687 1688 if (error > 0) { 1689 *ppos += error; 1690 file_accessed(in); 1691 } 1692 return error; 1693 } 1694 1695 /* 1696 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1697 */ 1698 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1699 pgoff_t index, pgoff_t end, int origin) 1700 { 1701 struct page *page; 1702 struct pagevec pvec; 1703 pgoff_t indices[PAGEVEC_SIZE]; 1704 bool done = false; 1705 int i; 1706 1707 pagevec_init(&pvec, 0); 1708 pvec.nr = 1; /* start small: we may be there already */ 1709 while (!done) { 1710 pvec.nr = shmem_find_get_pages_and_swap(mapping, index, 1711 pvec.nr, pvec.pages, indices); 1712 if (!pvec.nr) { 1713 if (origin == SEEK_DATA) 1714 index = end; 1715 break; 1716 } 1717 for (i = 0; i < pvec.nr; i++, index++) { 1718 if (index < indices[i]) { 1719 if (origin == SEEK_HOLE) { 1720 done = true; 1721 break; 1722 } 1723 index = indices[i]; 1724 } 1725 page = pvec.pages[i]; 1726 if (page && !radix_tree_exceptional_entry(page)) { 1727 if (!PageUptodate(page)) 1728 page = NULL; 1729 } 1730 if (index >= end || 1731 (page && origin == SEEK_DATA) || 1732 (!page && origin == SEEK_HOLE)) { 1733 done = true; 1734 break; 1735 } 1736 } 1737 shmem_deswap_pagevec(&pvec); 1738 pagevec_release(&pvec); 1739 pvec.nr = PAGEVEC_SIZE; 1740 cond_resched(); 1741 } 1742 return index; 1743 } 1744 1745 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin) 1746 { 1747 struct address_space *mapping; 1748 struct inode *inode; 1749 pgoff_t start, end; 1750 loff_t new_offset; 1751 1752 if (origin != SEEK_DATA && origin != SEEK_HOLE) 1753 return generic_file_llseek_size(file, offset, origin, 1754 MAX_LFS_FILESIZE); 1755 mapping = file->f_mapping; 1756 inode = mapping->host; 1757 mutex_lock(&inode->i_mutex); 1758 /* We're holding i_mutex so we can access i_size directly */ 1759 1760 if (offset < 0) 1761 offset = -EINVAL; 1762 else if (offset >= inode->i_size) 1763 offset = -ENXIO; 1764 else { 1765 start = offset >> PAGE_CACHE_SHIFT; 1766 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1767 new_offset = shmem_seek_hole_data(mapping, start, end, origin); 1768 new_offset <<= PAGE_CACHE_SHIFT; 1769 if (new_offset > offset) { 1770 if (new_offset < inode->i_size) 1771 offset = new_offset; 1772 else if (origin == SEEK_DATA) 1773 offset = -ENXIO; 1774 else 1775 offset = inode->i_size; 1776 } 1777 } 1778 1779 if (offset >= 0 && offset != file->f_pos) { 1780 file->f_pos = offset; 1781 file->f_version = 0; 1782 } 1783 mutex_unlock(&inode->i_mutex); 1784 return offset; 1785 } 1786 1787 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 1788 loff_t len) 1789 { 1790 struct inode *inode = file->f_path.dentry->d_inode; 1791 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1792 struct shmem_falloc shmem_falloc; 1793 pgoff_t start, index, end; 1794 int error; 1795 1796 mutex_lock(&inode->i_mutex); 1797 1798 if (mode & FALLOC_FL_PUNCH_HOLE) { 1799 struct address_space *mapping = file->f_mapping; 1800 loff_t unmap_start = round_up(offset, PAGE_SIZE); 1801 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 1802 1803 if ((u64)unmap_end > (u64)unmap_start) 1804 unmap_mapping_range(mapping, unmap_start, 1805 1 + unmap_end - unmap_start, 0); 1806 shmem_truncate_range(inode, offset, offset + len - 1); 1807 /* No need to unmap again: hole-punching leaves COWed pages */ 1808 error = 0; 1809 goto out; 1810 } 1811 1812 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 1813 error = inode_newsize_ok(inode, offset + len); 1814 if (error) 1815 goto out; 1816 1817 start = offset >> PAGE_CACHE_SHIFT; 1818 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1819 /* Try to avoid a swapstorm if len is impossible to satisfy */ 1820 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 1821 error = -ENOSPC; 1822 goto out; 1823 } 1824 1825 shmem_falloc.start = start; 1826 shmem_falloc.next = start; 1827 shmem_falloc.nr_falloced = 0; 1828 shmem_falloc.nr_unswapped = 0; 1829 spin_lock(&inode->i_lock); 1830 inode->i_private = &shmem_falloc; 1831 spin_unlock(&inode->i_lock); 1832 1833 for (index = start; index < end; index++) { 1834 struct page *page; 1835 1836 /* 1837 * Good, the fallocate(2) manpage permits EINTR: we may have 1838 * been interrupted because we are using up too much memory. 1839 */ 1840 if (signal_pending(current)) 1841 error = -EINTR; 1842 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 1843 error = -ENOMEM; 1844 else 1845 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 1846 NULL); 1847 if (error) { 1848 /* Remove the !PageUptodate pages we added */ 1849 shmem_undo_range(inode, 1850 (loff_t)start << PAGE_CACHE_SHIFT, 1851 (loff_t)index << PAGE_CACHE_SHIFT, true); 1852 goto undone; 1853 } 1854 1855 /* 1856 * Inform shmem_writepage() how far we have reached. 1857 * No need for lock or barrier: we have the page lock. 1858 */ 1859 shmem_falloc.next++; 1860 if (!PageUptodate(page)) 1861 shmem_falloc.nr_falloced++; 1862 1863 /* 1864 * If !PageUptodate, leave it that way so that freeable pages 1865 * can be recognized if we need to rollback on error later. 1866 * But set_page_dirty so that memory pressure will swap rather 1867 * than free the pages we are allocating (and SGP_CACHE pages 1868 * might still be clean: we now need to mark those dirty too). 1869 */ 1870 set_page_dirty(page); 1871 unlock_page(page); 1872 page_cache_release(page); 1873 cond_resched(); 1874 } 1875 1876 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 1877 i_size_write(inode, offset + len); 1878 inode->i_ctime = CURRENT_TIME; 1879 undone: 1880 spin_lock(&inode->i_lock); 1881 inode->i_private = NULL; 1882 spin_unlock(&inode->i_lock); 1883 out: 1884 mutex_unlock(&inode->i_mutex); 1885 return error; 1886 } 1887 1888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 1889 { 1890 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 1891 1892 buf->f_type = TMPFS_MAGIC; 1893 buf->f_bsize = PAGE_CACHE_SIZE; 1894 buf->f_namelen = NAME_MAX; 1895 if (sbinfo->max_blocks) { 1896 buf->f_blocks = sbinfo->max_blocks; 1897 buf->f_bavail = 1898 buf->f_bfree = sbinfo->max_blocks - 1899 percpu_counter_sum(&sbinfo->used_blocks); 1900 } 1901 if (sbinfo->max_inodes) { 1902 buf->f_files = sbinfo->max_inodes; 1903 buf->f_ffree = sbinfo->free_inodes; 1904 } 1905 /* else leave those fields 0 like simple_statfs */ 1906 return 0; 1907 } 1908 1909 /* 1910 * File creation. Allocate an inode, and we're done.. 1911 */ 1912 static int 1913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1914 { 1915 struct inode *inode; 1916 int error = -ENOSPC; 1917 1918 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 1919 if (inode) { 1920 error = security_inode_init_security(inode, dir, 1921 &dentry->d_name, 1922 shmem_initxattrs, NULL); 1923 if (error) { 1924 if (error != -EOPNOTSUPP) { 1925 iput(inode); 1926 return error; 1927 } 1928 } 1929 #ifdef CONFIG_TMPFS_POSIX_ACL 1930 error = generic_acl_init(inode, dir); 1931 if (error) { 1932 iput(inode); 1933 return error; 1934 } 1935 #else 1936 error = 0; 1937 #endif 1938 dir->i_size += BOGO_DIRENT_SIZE; 1939 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1940 d_instantiate(dentry, inode); 1941 dget(dentry); /* Extra count - pin the dentry in core */ 1942 } 1943 return error; 1944 } 1945 1946 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1947 { 1948 int error; 1949 1950 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 1951 return error; 1952 inc_nlink(dir); 1953 return 0; 1954 } 1955 1956 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 1957 struct nameidata *nd) 1958 { 1959 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 1960 } 1961 1962 /* 1963 * Link a file.. 1964 */ 1965 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1966 { 1967 struct inode *inode = old_dentry->d_inode; 1968 int ret; 1969 1970 /* 1971 * No ordinary (disk based) filesystem counts links as inodes; 1972 * but each new link needs a new dentry, pinning lowmem, and 1973 * tmpfs dentries cannot be pruned until they are unlinked. 1974 */ 1975 ret = shmem_reserve_inode(inode->i_sb); 1976 if (ret) 1977 goto out; 1978 1979 dir->i_size += BOGO_DIRENT_SIZE; 1980 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1981 inc_nlink(inode); 1982 ihold(inode); /* New dentry reference */ 1983 dget(dentry); /* Extra pinning count for the created dentry */ 1984 d_instantiate(dentry, inode); 1985 out: 1986 return ret; 1987 } 1988 1989 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 1990 { 1991 struct inode *inode = dentry->d_inode; 1992 1993 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 1994 shmem_free_inode(inode->i_sb); 1995 1996 dir->i_size -= BOGO_DIRENT_SIZE; 1997 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 1998 drop_nlink(inode); 1999 dput(dentry); /* Undo the count from "create" - this does all the work */ 2000 return 0; 2001 } 2002 2003 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2004 { 2005 if (!simple_empty(dentry)) 2006 return -ENOTEMPTY; 2007 2008 drop_nlink(dentry->d_inode); 2009 drop_nlink(dir); 2010 return shmem_unlink(dir, dentry); 2011 } 2012 2013 /* 2014 * The VFS layer already does all the dentry stuff for rename, 2015 * we just have to decrement the usage count for the target if 2016 * it exists so that the VFS layer correctly free's it when it 2017 * gets overwritten. 2018 */ 2019 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2020 { 2021 struct inode *inode = old_dentry->d_inode; 2022 int they_are_dirs = S_ISDIR(inode->i_mode); 2023 2024 if (!simple_empty(new_dentry)) 2025 return -ENOTEMPTY; 2026 2027 if (new_dentry->d_inode) { 2028 (void) shmem_unlink(new_dir, new_dentry); 2029 if (they_are_dirs) 2030 drop_nlink(old_dir); 2031 } else if (they_are_dirs) { 2032 drop_nlink(old_dir); 2033 inc_nlink(new_dir); 2034 } 2035 2036 old_dir->i_size -= BOGO_DIRENT_SIZE; 2037 new_dir->i_size += BOGO_DIRENT_SIZE; 2038 old_dir->i_ctime = old_dir->i_mtime = 2039 new_dir->i_ctime = new_dir->i_mtime = 2040 inode->i_ctime = CURRENT_TIME; 2041 return 0; 2042 } 2043 2044 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2045 { 2046 int error; 2047 int len; 2048 struct inode *inode; 2049 struct page *page; 2050 char *kaddr; 2051 struct shmem_inode_info *info; 2052 2053 len = strlen(symname) + 1; 2054 if (len > PAGE_CACHE_SIZE) 2055 return -ENAMETOOLONG; 2056 2057 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2058 if (!inode) 2059 return -ENOSPC; 2060 2061 error = security_inode_init_security(inode, dir, &dentry->d_name, 2062 shmem_initxattrs, NULL); 2063 if (error) { 2064 if (error != -EOPNOTSUPP) { 2065 iput(inode); 2066 return error; 2067 } 2068 error = 0; 2069 } 2070 2071 info = SHMEM_I(inode); 2072 inode->i_size = len-1; 2073 if (len <= SHORT_SYMLINK_LEN) { 2074 info->symlink = kmemdup(symname, len, GFP_KERNEL); 2075 if (!info->symlink) { 2076 iput(inode); 2077 return -ENOMEM; 2078 } 2079 inode->i_op = &shmem_short_symlink_operations; 2080 } else { 2081 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2082 if (error) { 2083 iput(inode); 2084 return error; 2085 } 2086 inode->i_mapping->a_ops = &shmem_aops; 2087 inode->i_op = &shmem_symlink_inode_operations; 2088 kaddr = kmap_atomic(page); 2089 memcpy(kaddr, symname, len); 2090 kunmap_atomic(kaddr); 2091 SetPageUptodate(page); 2092 set_page_dirty(page); 2093 unlock_page(page); 2094 page_cache_release(page); 2095 } 2096 dir->i_size += BOGO_DIRENT_SIZE; 2097 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2098 d_instantiate(dentry, inode); 2099 dget(dentry); 2100 return 0; 2101 } 2102 2103 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd) 2104 { 2105 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink); 2106 return NULL; 2107 } 2108 2109 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd) 2110 { 2111 struct page *page = NULL; 2112 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL); 2113 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page)); 2114 if (page) 2115 unlock_page(page); 2116 return page; 2117 } 2118 2119 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 2120 { 2121 if (!IS_ERR(nd_get_link(nd))) { 2122 struct page *page = cookie; 2123 kunmap(page); 2124 mark_page_accessed(page); 2125 page_cache_release(page); 2126 } 2127 } 2128 2129 #ifdef CONFIG_TMPFS_XATTR 2130 /* 2131 * Superblocks without xattr inode operations may get some security.* xattr 2132 * support from the LSM "for free". As soon as we have any other xattrs 2133 * like ACLs, we also need to implement the security.* handlers at 2134 * filesystem level, though. 2135 */ 2136 2137 /* 2138 * Allocate new xattr and copy in the value; but leave the name to callers. 2139 */ 2140 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size) 2141 { 2142 struct shmem_xattr *new_xattr; 2143 size_t len; 2144 2145 /* wrap around? */ 2146 len = sizeof(*new_xattr) + size; 2147 if (len <= sizeof(*new_xattr)) 2148 return NULL; 2149 2150 new_xattr = kmalloc(len, GFP_KERNEL); 2151 if (!new_xattr) 2152 return NULL; 2153 2154 new_xattr->size = size; 2155 memcpy(new_xattr->value, value, size); 2156 return new_xattr; 2157 } 2158 2159 /* 2160 * Callback for security_inode_init_security() for acquiring xattrs. 2161 */ 2162 static int shmem_initxattrs(struct inode *inode, 2163 const struct xattr *xattr_array, 2164 void *fs_info) 2165 { 2166 struct shmem_inode_info *info = SHMEM_I(inode); 2167 const struct xattr *xattr; 2168 struct shmem_xattr *new_xattr; 2169 size_t len; 2170 2171 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2172 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len); 2173 if (!new_xattr) 2174 return -ENOMEM; 2175 2176 len = strlen(xattr->name) + 1; 2177 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2178 GFP_KERNEL); 2179 if (!new_xattr->name) { 2180 kfree(new_xattr); 2181 return -ENOMEM; 2182 } 2183 2184 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2185 XATTR_SECURITY_PREFIX_LEN); 2186 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2187 xattr->name, len); 2188 2189 spin_lock(&info->lock); 2190 list_add(&new_xattr->list, &info->xattr_list); 2191 spin_unlock(&info->lock); 2192 } 2193 2194 return 0; 2195 } 2196 2197 static int shmem_xattr_get(struct dentry *dentry, const char *name, 2198 void *buffer, size_t size) 2199 { 2200 struct shmem_inode_info *info; 2201 struct shmem_xattr *xattr; 2202 int ret = -ENODATA; 2203 2204 info = SHMEM_I(dentry->d_inode); 2205 2206 spin_lock(&info->lock); 2207 list_for_each_entry(xattr, &info->xattr_list, list) { 2208 if (strcmp(name, xattr->name)) 2209 continue; 2210 2211 ret = xattr->size; 2212 if (buffer) { 2213 if (size < xattr->size) 2214 ret = -ERANGE; 2215 else 2216 memcpy(buffer, xattr->value, xattr->size); 2217 } 2218 break; 2219 } 2220 spin_unlock(&info->lock); 2221 return ret; 2222 } 2223 2224 static int shmem_xattr_set(struct inode *inode, const char *name, 2225 const void *value, size_t size, int flags) 2226 { 2227 struct shmem_inode_info *info = SHMEM_I(inode); 2228 struct shmem_xattr *xattr; 2229 struct shmem_xattr *new_xattr = NULL; 2230 int err = 0; 2231 2232 /* value == NULL means remove */ 2233 if (value) { 2234 new_xattr = shmem_xattr_alloc(value, size); 2235 if (!new_xattr) 2236 return -ENOMEM; 2237 2238 new_xattr->name = kstrdup(name, GFP_KERNEL); 2239 if (!new_xattr->name) { 2240 kfree(new_xattr); 2241 return -ENOMEM; 2242 } 2243 } 2244 2245 spin_lock(&info->lock); 2246 list_for_each_entry(xattr, &info->xattr_list, list) { 2247 if (!strcmp(name, xattr->name)) { 2248 if (flags & XATTR_CREATE) { 2249 xattr = new_xattr; 2250 err = -EEXIST; 2251 } else if (new_xattr) { 2252 list_replace(&xattr->list, &new_xattr->list); 2253 } else { 2254 list_del(&xattr->list); 2255 } 2256 goto out; 2257 } 2258 } 2259 if (flags & XATTR_REPLACE) { 2260 xattr = new_xattr; 2261 err = -ENODATA; 2262 } else { 2263 list_add(&new_xattr->list, &info->xattr_list); 2264 xattr = NULL; 2265 } 2266 out: 2267 spin_unlock(&info->lock); 2268 if (xattr) 2269 kfree(xattr->name); 2270 kfree(xattr); 2271 return err; 2272 } 2273 2274 static const struct xattr_handler *shmem_xattr_handlers[] = { 2275 #ifdef CONFIG_TMPFS_POSIX_ACL 2276 &generic_acl_access_handler, 2277 &generic_acl_default_handler, 2278 #endif 2279 NULL 2280 }; 2281 2282 static int shmem_xattr_validate(const char *name) 2283 { 2284 struct { const char *prefix; size_t len; } arr[] = { 2285 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN }, 2286 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN } 2287 }; 2288 int i; 2289 2290 for (i = 0; i < ARRAY_SIZE(arr); i++) { 2291 size_t preflen = arr[i].len; 2292 if (strncmp(name, arr[i].prefix, preflen) == 0) { 2293 if (!name[preflen]) 2294 return -EINVAL; 2295 return 0; 2296 } 2297 } 2298 return -EOPNOTSUPP; 2299 } 2300 2301 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name, 2302 void *buffer, size_t size) 2303 { 2304 int err; 2305 2306 /* 2307 * If this is a request for a synthetic attribute in the system.* 2308 * namespace use the generic infrastructure to resolve a handler 2309 * for it via sb->s_xattr. 2310 */ 2311 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2312 return generic_getxattr(dentry, name, buffer, size); 2313 2314 err = shmem_xattr_validate(name); 2315 if (err) 2316 return err; 2317 2318 return shmem_xattr_get(dentry, name, buffer, size); 2319 } 2320 2321 static int shmem_setxattr(struct dentry *dentry, const char *name, 2322 const void *value, size_t size, int flags) 2323 { 2324 int err; 2325 2326 /* 2327 * If this is a request for a synthetic attribute in the system.* 2328 * namespace use the generic infrastructure to resolve a handler 2329 * for it via sb->s_xattr. 2330 */ 2331 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2332 return generic_setxattr(dentry, name, value, size, flags); 2333 2334 err = shmem_xattr_validate(name); 2335 if (err) 2336 return err; 2337 2338 if (size == 0) 2339 value = ""; /* empty EA, do not remove */ 2340 2341 return shmem_xattr_set(dentry->d_inode, name, value, size, flags); 2342 2343 } 2344 2345 static int shmem_removexattr(struct dentry *dentry, const char *name) 2346 { 2347 int err; 2348 2349 /* 2350 * If this is a request for a synthetic attribute in the system.* 2351 * namespace use the generic infrastructure to resolve a handler 2352 * for it via sb->s_xattr. 2353 */ 2354 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN)) 2355 return generic_removexattr(dentry, name); 2356 2357 err = shmem_xattr_validate(name); 2358 if (err) 2359 return err; 2360 2361 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE); 2362 } 2363 2364 static bool xattr_is_trusted(const char *name) 2365 { 2366 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN); 2367 } 2368 2369 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2370 { 2371 bool trusted = capable(CAP_SYS_ADMIN); 2372 struct shmem_xattr *xattr; 2373 struct shmem_inode_info *info; 2374 size_t used = 0; 2375 2376 info = SHMEM_I(dentry->d_inode); 2377 2378 spin_lock(&info->lock); 2379 list_for_each_entry(xattr, &info->xattr_list, list) { 2380 size_t len; 2381 2382 /* skip "trusted." attributes for unprivileged callers */ 2383 if (!trusted && xattr_is_trusted(xattr->name)) 2384 continue; 2385 2386 len = strlen(xattr->name) + 1; 2387 used += len; 2388 if (buffer) { 2389 if (size < used) { 2390 used = -ERANGE; 2391 break; 2392 } 2393 memcpy(buffer, xattr->name, len); 2394 buffer += len; 2395 } 2396 } 2397 spin_unlock(&info->lock); 2398 2399 return used; 2400 } 2401 #endif /* CONFIG_TMPFS_XATTR */ 2402 2403 static const struct inode_operations shmem_short_symlink_operations = { 2404 .readlink = generic_readlink, 2405 .follow_link = shmem_follow_short_symlink, 2406 #ifdef CONFIG_TMPFS_XATTR 2407 .setxattr = shmem_setxattr, 2408 .getxattr = shmem_getxattr, 2409 .listxattr = shmem_listxattr, 2410 .removexattr = shmem_removexattr, 2411 #endif 2412 }; 2413 2414 static const struct inode_operations shmem_symlink_inode_operations = { 2415 .readlink = generic_readlink, 2416 .follow_link = shmem_follow_link, 2417 .put_link = shmem_put_link, 2418 #ifdef CONFIG_TMPFS_XATTR 2419 .setxattr = shmem_setxattr, 2420 .getxattr = shmem_getxattr, 2421 .listxattr = shmem_listxattr, 2422 .removexattr = shmem_removexattr, 2423 #endif 2424 }; 2425 2426 static struct dentry *shmem_get_parent(struct dentry *child) 2427 { 2428 return ERR_PTR(-ESTALE); 2429 } 2430 2431 static int shmem_match(struct inode *ino, void *vfh) 2432 { 2433 __u32 *fh = vfh; 2434 __u64 inum = fh[2]; 2435 inum = (inum << 32) | fh[1]; 2436 return ino->i_ino == inum && fh[0] == ino->i_generation; 2437 } 2438 2439 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2440 struct fid *fid, int fh_len, int fh_type) 2441 { 2442 struct inode *inode; 2443 struct dentry *dentry = NULL; 2444 u64 inum = fid->raw[2]; 2445 inum = (inum << 32) | fid->raw[1]; 2446 2447 if (fh_len < 3) 2448 return NULL; 2449 2450 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2451 shmem_match, fid->raw); 2452 if (inode) { 2453 dentry = d_find_alias(inode); 2454 iput(inode); 2455 } 2456 2457 return dentry; 2458 } 2459 2460 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2461 struct inode *parent) 2462 { 2463 if (*len < 3) { 2464 *len = 3; 2465 return 255; 2466 } 2467 2468 if (inode_unhashed(inode)) { 2469 /* Unfortunately insert_inode_hash is not idempotent, 2470 * so as we hash inodes here rather than at creation 2471 * time, we need a lock to ensure we only try 2472 * to do it once 2473 */ 2474 static DEFINE_SPINLOCK(lock); 2475 spin_lock(&lock); 2476 if (inode_unhashed(inode)) 2477 __insert_inode_hash(inode, 2478 inode->i_ino + inode->i_generation); 2479 spin_unlock(&lock); 2480 } 2481 2482 fh[0] = inode->i_generation; 2483 fh[1] = inode->i_ino; 2484 fh[2] = ((__u64)inode->i_ino) >> 32; 2485 2486 *len = 3; 2487 return 1; 2488 } 2489 2490 static const struct export_operations shmem_export_ops = { 2491 .get_parent = shmem_get_parent, 2492 .encode_fh = shmem_encode_fh, 2493 .fh_to_dentry = shmem_fh_to_dentry, 2494 }; 2495 2496 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2497 bool remount) 2498 { 2499 char *this_char, *value, *rest; 2500 uid_t uid; 2501 gid_t gid; 2502 2503 while (options != NULL) { 2504 this_char = options; 2505 for (;;) { 2506 /* 2507 * NUL-terminate this option: unfortunately, 2508 * mount options form a comma-separated list, 2509 * but mpol's nodelist may also contain commas. 2510 */ 2511 options = strchr(options, ','); 2512 if (options == NULL) 2513 break; 2514 options++; 2515 if (!isdigit(*options)) { 2516 options[-1] = '\0'; 2517 break; 2518 } 2519 } 2520 if (!*this_char) 2521 continue; 2522 if ((value = strchr(this_char,'=')) != NULL) { 2523 *value++ = 0; 2524 } else { 2525 printk(KERN_ERR 2526 "tmpfs: No value for mount option '%s'\n", 2527 this_char); 2528 return 1; 2529 } 2530 2531 if (!strcmp(this_char,"size")) { 2532 unsigned long long size; 2533 size = memparse(value,&rest); 2534 if (*rest == '%') { 2535 size <<= PAGE_SHIFT; 2536 size *= totalram_pages; 2537 do_div(size, 100); 2538 rest++; 2539 } 2540 if (*rest) 2541 goto bad_val; 2542 sbinfo->max_blocks = 2543 DIV_ROUND_UP(size, PAGE_CACHE_SIZE); 2544 } else if (!strcmp(this_char,"nr_blocks")) { 2545 sbinfo->max_blocks = memparse(value, &rest); 2546 if (*rest) 2547 goto bad_val; 2548 } else if (!strcmp(this_char,"nr_inodes")) { 2549 sbinfo->max_inodes = memparse(value, &rest); 2550 if (*rest) 2551 goto bad_val; 2552 } else if (!strcmp(this_char,"mode")) { 2553 if (remount) 2554 continue; 2555 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2556 if (*rest) 2557 goto bad_val; 2558 } else if (!strcmp(this_char,"uid")) { 2559 if (remount) 2560 continue; 2561 uid = simple_strtoul(value, &rest, 0); 2562 if (*rest) 2563 goto bad_val; 2564 sbinfo->uid = make_kuid(current_user_ns(), uid); 2565 if (!uid_valid(sbinfo->uid)) 2566 goto bad_val; 2567 } else if (!strcmp(this_char,"gid")) { 2568 if (remount) 2569 continue; 2570 gid = simple_strtoul(value, &rest, 0); 2571 if (*rest) 2572 goto bad_val; 2573 sbinfo->gid = make_kgid(current_user_ns(), gid); 2574 if (!gid_valid(sbinfo->gid)) 2575 goto bad_val; 2576 } else if (!strcmp(this_char,"mpol")) { 2577 if (mpol_parse_str(value, &sbinfo->mpol, 1)) 2578 goto bad_val; 2579 } else { 2580 printk(KERN_ERR "tmpfs: Bad mount option %s\n", 2581 this_char); 2582 return 1; 2583 } 2584 } 2585 return 0; 2586 2587 bad_val: 2588 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n", 2589 value, this_char); 2590 return 1; 2591 2592 } 2593 2594 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2595 { 2596 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2597 struct shmem_sb_info config = *sbinfo; 2598 unsigned long inodes; 2599 int error = -EINVAL; 2600 2601 if (shmem_parse_options(data, &config, true)) 2602 return error; 2603 2604 spin_lock(&sbinfo->stat_lock); 2605 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2606 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2607 goto out; 2608 if (config.max_inodes < inodes) 2609 goto out; 2610 /* 2611 * Those tests disallow limited->unlimited while any are in use; 2612 * but we must separately disallow unlimited->limited, because 2613 * in that case we have no record of how much is already in use. 2614 */ 2615 if (config.max_blocks && !sbinfo->max_blocks) 2616 goto out; 2617 if (config.max_inodes && !sbinfo->max_inodes) 2618 goto out; 2619 2620 error = 0; 2621 sbinfo->max_blocks = config.max_blocks; 2622 sbinfo->max_inodes = config.max_inodes; 2623 sbinfo->free_inodes = config.max_inodes - inodes; 2624 2625 mpol_put(sbinfo->mpol); 2626 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2627 out: 2628 spin_unlock(&sbinfo->stat_lock); 2629 return error; 2630 } 2631 2632 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2633 { 2634 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2635 2636 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2637 seq_printf(seq, ",size=%luk", 2638 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10)); 2639 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2640 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2641 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2642 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2643 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2644 seq_printf(seq, ",uid=%u", 2645 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2646 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2647 seq_printf(seq, ",gid=%u", 2648 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2649 shmem_show_mpol(seq, sbinfo->mpol); 2650 return 0; 2651 } 2652 #endif /* CONFIG_TMPFS */ 2653 2654 static void shmem_put_super(struct super_block *sb) 2655 { 2656 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2657 2658 percpu_counter_destroy(&sbinfo->used_blocks); 2659 kfree(sbinfo); 2660 sb->s_fs_info = NULL; 2661 } 2662 2663 int shmem_fill_super(struct super_block *sb, void *data, int silent) 2664 { 2665 struct inode *inode; 2666 struct shmem_sb_info *sbinfo; 2667 int err = -ENOMEM; 2668 2669 /* Round up to L1_CACHE_BYTES to resist false sharing */ 2670 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 2671 L1_CACHE_BYTES), GFP_KERNEL); 2672 if (!sbinfo) 2673 return -ENOMEM; 2674 2675 sbinfo->mode = S_IRWXUGO | S_ISVTX; 2676 sbinfo->uid = current_fsuid(); 2677 sbinfo->gid = current_fsgid(); 2678 sb->s_fs_info = sbinfo; 2679 2680 #ifdef CONFIG_TMPFS 2681 /* 2682 * Per default we only allow half of the physical ram per 2683 * tmpfs instance, limiting inodes to one per page of lowmem; 2684 * but the internal instance is left unlimited. 2685 */ 2686 if (!(sb->s_flags & MS_NOUSER)) { 2687 sbinfo->max_blocks = shmem_default_max_blocks(); 2688 sbinfo->max_inodes = shmem_default_max_inodes(); 2689 if (shmem_parse_options(data, sbinfo, false)) { 2690 err = -EINVAL; 2691 goto failed; 2692 } 2693 } 2694 sb->s_export_op = &shmem_export_ops; 2695 sb->s_flags |= MS_NOSEC; 2696 #else 2697 sb->s_flags |= MS_NOUSER; 2698 #endif 2699 2700 spin_lock_init(&sbinfo->stat_lock); 2701 if (percpu_counter_init(&sbinfo->used_blocks, 0)) 2702 goto failed; 2703 sbinfo->free_inodes = sbinfo->max_inodes; 2704 2705 sb->s_maxbytes = MAX_LFS_FILESIZE; 2706 sb->s_blocksize = PAGE_CACHE_SIZE; 2707 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 2708 sb->s_magic = TMPFS_MAGIC; 2709 sb->s_op = &shmem_ops; 2710 sb->s_time_gran = 1; 2711 #ifdef CONFIG_TMPFS_XATTR 2712 sb->s_xattr = shmem_xattr_handlers; 2713 #endif 2714 #ifdef CONFIG_TMPFS_POSIX_ACL 2715 sb->s_flags |= MS_POSIXACL; 2716 #endif 2717 2718 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 2719 if (!inode) 2720 goto failed; 2721 inode->i_uid = sbinfo->uid; 2722 inode->i_gid = sbinfo->gid; 2723 sb->s_root = d_make_root(inode); 2724 if (!sb->s_root) 2725 goto failed; 2726 return 0; 2727 2728 failed: 2729 shmem_put_super(sb); 2730 return err; 2731 } 2732 2733 static struct kmem_cache *shmem_inode_cachep; 2734 2735 static struct inode *shmem_alloc_inode(struct super_block *sb) 2736 { 2737 struct shmem_inode_info *info; 2738 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 2739 if (!info) 2740 return NULL; 2741 return &info->vfs_inode; 2742 } 2743 2744 static void shmem_destroy_callback(struct rcu_head *head) 2745 { 2746 struct inode *inode = container_of(head, struct inode, i_rcu); 2747 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 2748 } 2749 2750 static void shmem_destroy_inode(struct inode *inode) 2751 { 2752 if (S_ISREG(inode->i_mode)) 2753 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 2754 call_rcu(&inode->i_rcu, shmem_destroy_callback); 2755 } 2756 2757 static void shmem_init_inode(void *foo) 2758 { 2759 struct shmem_inode_info *info = foo; 2760 inode_init_once(&info->vfs_inode); 2761 } 2762 2763 static int shmem_init_inodecache(void) 2764 { 2765 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 2766 sizeof(struct shmem_inode_info), 2767 0, SLAB_PANIC, shmem_init_inode); 2768 return 0; 2769 } 2770 2771 static void shmem_destroy_inodecache(void) 2772 { 2773 kmem_cache_destroy(shmem_inode_cachep); 2774 } 2775 2776 static const struct address_space_operations shmem_aops = { 2777 .writepage = shmem_writepage, 2778 .set_page_dirty = __set_page_dirty_no_writeback, 2779 #ifdef CONFIG_TMPFS 2780 .write_begin = shmem_write_begin, 2781 .write_end = shmem_write_end, 2782 #endif 2783 .migratepage = migrate_page, 2784 .error_remove_page = generic_error_remove_page, 2785 }; 2786 2787 static const struct file_operations shmem_file_operations = { 2788 .mmap = shmem_mmap, 2789 #ifdef CONFIG_TMPFS 2790 .llseek = shmem_file_llseek, 2791 .read = do_sync_read, 2792 .write = do_sync_write, 2793 .aio_read = shmem_file_aio_read, 2794 .aio_write = generic_file_aio_write, 2795 .fsync = noop_fsync, 2796 .splice_read = shmem_file_splice_read, 2797 .splice_write = generic_file_splice_write, 2798 .fallocate = shmem_fallocate, 2799 #endif 2800 }; 2801 2802 static const struct inode_operations shmem_inode_operations = { 2803 .setattr = shmem_setattr, 2804 #ifdef CONFIG_TMPFS_XATTR 2805 .setxattr = shmem_setxattr, 2806 .getxattr = shmem_getxattr, 2807 .listxattr = shmem_listxattr, 2808 .removexattr = shmem_removexattr, 2809 #endif 2810 }; 2811 2812 static const struct inode_operations shmem_dir_inode_operations = { 2813 #ifdef CONFIG_TMPFS 2814 .create = shmem_create, 2815 .lookup = simple_lookup, 2816 .link = shmem_link, 2817 .unlink = shmem_unlink, 2818 .symlink = shmem_symlink, 2819 .mkdir = shmem_mkdir, 2820 .rmdir = shmem_rmdir, 2821 .mknod = shmem_mknod, 2822 .rename = shmem_rename, 2823 #endif 2824 #ifdef CONFIG_TMPFS_XATTR 2825 .setxattr = shmem_setxattr, 2826 .getxattr = shmem_getxattr, 2827 .listxattr = shmem_listxattr, 2828 .removexattr = shmem_removexattr, 2829 #endif 2830 #ifdef CONFIG_TMPFS_POSIX_ACL 2831 .setattr = shmem_setattr, 2832 #endif 2833 }; 2834 2835 static const struct inode_operations shmem_special_inode_operations = { 2836 #ifdef CONFIG_TMPFS_XATTR 2837 .setxattr = shmem_setxattr, 2838 .getxattr = shmem_getxattr, 2839 .listxattr = shmem_listxattr, 2840 .removexattr = shmem_removexattr, 2841 #endif 2842 #ifdef CONFIG_TMPFS_POSIX_ACL 2843 .setattr = shmem_setattr, 2844 #endif 2845 }; 2846 2847 static const struct super_operations shmem_ops = { 2848 .alloc_inode = shmem_alloc_inode, 2849 .destroy_inode = shmem_destroy_inode, 2850 #ifdef CONFIG_TMPFS 2851 .statfs = shmem_statfs, 2852 .remount_fs = shmem_remount_fs, 2853 .show_options = shmem_show_options, 2854 #endif 2855 .evict_inode = shmem_evict_inode, 2856 .drop_inode = generic_delete_inode, 2857 .put_super = shmem_put_super, 2858 }; 2859 2860 static const struct vm_operations_struct shmem_vm_ops = { 2861 .fault = shmem_fault, 2862 #ifdef CONFIG_NUMA 2863 .set_policy = shmem_set_policy, 2864 .get_policy = shmem_get_policy, 2865 #endif 2866 }; 2867 2868 static struct dentry *shmem_mount(struct file_system_type *fs_type, 2869 int flags, const char *dev_name, void *data) 2870 { 2871 return mount_nodev(fs_type, flags, data, shmem_fill_super); 2872 } 2873 2874 static struct file_system_type shmem_fs_type = { 2875 .owner = THIS_MODULE, 2876 .name = "tmpfs", 2877 .mount = shmem_mount, 2878 .kill_sb = kill_litter_super, 2879 }; 2880 2881 int __init shmem_init(void) 2882 { 2883 int error; 2884 2885 error = bdi_init(&shmem_backing_dev_info); 2886 if (error) 2887 goto out4; 2888 2889 error = shmem_init_inodecache(); 2890 if (error) 2891 goto out3; 2892 2893 error = register_filesystem(&shmem_fs_type); 2894 if (error) { 2895 printk(KERN_ERR "Could not register tmpfs\n"); 2896 goto out2; 2897 } 2898 2899 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, 2900 shmem_fs_type.name, NULL); 2901 if (IS_ERR(shm_mnt)) { 2902 error = PTR_ERR(shm_mnt); 2903 printk(KERN_ERR "Could not kern_mount tmpfs\n"); 2904 goto out1; 2905 } 2906 return 0; 2907 2908 out1: 2909 unregister_filesystem(&shmem_fs_type); 2910 out2: 2911 shmem_destroy_inodecache(); 2912 out3: 2913 bdi_destroy(&shmem_backing_dev_info); 2914 out4: 2915 shm_mnt = ERR_PTR(error); 2916 return error; 2917 } 2918 2919 #else /* !CONFIG_SHMEM */ 2920 2921 /* 2922 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 2923 * 2924 * This is intended for small system where the benefits of the full 2925 * shmem code (swap-backed and resource-limited) are outweighed by 2926 * their complexity. On systems without swap this code should be 2927 * effectively equivalent, but much lighter weight. 2928 */ 2929 2930 #include <linux/ramfs.h> 2931 2932 static struct file_system_type shmem_fs_type = { 2933 .name = "tmpfs", 2934 .mount = ramfs_mount, 2935 .kill_sb = kill_litter_super, 2936 }; 2937 2938 int __init shmem_init(void) 2939 { 2940 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 2941 2942 shm_mnt = kern_mount(&shmem_fs_type); 2943 BUG_ON(IS_ERR(shm_mnt)); 2944 2945 return 0; 2946 } 2947 2948 int shmem_unuse(swp_entry_t swap, struct page *page) 2949 { 2950 return 0; 2951 } 2952 2953 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2954 { 2955 return 0; 2956 } 2957 2958 void shmem_unlock_mapping(struct address_space *mapping) 2959 { 2960 } 2961 2962 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 2963 { 2964 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 2965 } 2966 EXPORT_SYMBOL_GPL(shmem_truncate_range); 2967 2968 #define shmem_vm_ops generic_file_vm_ops 2969 #define shmem_file_operations ramfs_file_operations 2970 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 2971 #define shmem_acct_size(flags, size) 0 2972 #define shmem_unacct_size(flags, size) do {} while (0) 2973 2974 #endif /* CONFIG_SHMEM */ 2975 2976 /* common code */ 2977 2978 /** 2979 * shmem_file_setup - get an unlinked file living in tmpfs 2980 * @name: name for dentry (to be seen in /proc/<pid>/maps 2981 * @size: size to be set for the file 2982 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 2983 */ 2984 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 2985 { 2986 int error; 2987 struct file *file; 2988 struct inode *inode; 2989 struct path path; 2990 struct dentry *root; 2991 struct qstr this; 2992 2993 if (IS_ERR(shm_mnt)) 2994 return (void *)shm_mnt; 2995 2996 if (size < 0 || size > MAX_LFS_FILESIZE) 2997 return ERR_PTR(-EINVAL); 2998 2999 if (shmem_acct_size(flags, size)) 3000 return ERR_PTR(-ENOMEM); 3001 3002 error = -ENOMEM; 3003 this.name = name; 3004 this.len = strlen(name); 3005 this.hash = 0; /* will go */ 3006 root = shm_mnt->mnt_root; 3007 path.dentry = d_alloc(root, &this); 3008 if (!path.dentry) 3009 goto put_memory; 3010 path.mnt = mntget(shm_mnt); 3011 3012 error = -ENOSPC; 3013 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3014 if (!inode) 3015 goto put_dentry; 3016 3017 d_instantiate(path.dentry, inode); 3018 inode->i_size = size; 3019 clear_nlink(inode); /* It is unlinked */ 3020 #ifndef CONFIG_MMU 3021 error = ramfs_nommu_expand_for_mapping(inode, size); 3022 if (error) 3023 goto put_dentry; 3024 #endif 3025 3026 error = -ENFILE; 3027 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3028 &shmem_file_operations); 3029 if (!file) 3030 goto put_dentry; 3031 3032 return file; 3033 3034 put_dentry: 3035 path_put(&path); 3036 put_memory: 3037 shmem_unacct_size(flags, size); 3038 return ERR_PTR(error); 3039 } 3040 EXPORT_SYMBOL_GPL(shmem_file_setup); 3041 3042 /** 3043 * shmem_zero_setup - setup a shared anonymous mapping 3044 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3045 */ 3046 int shmem_zero_setup(struct vm_area_struct *vma) 3047 { 3048 struct file *file; 3049 loff_t size = vma->vm_end - vma->vm_start; 3050 3051 file = shmem_file_setup("dev/zero", size, vma->vm_flags); 3052 if (IS_ERR(file)) 3053 return PTR_ERR(file); 3054 3055 if (vma->vm_file) 3056 fput(vma->vm_file); 3057 vma->vm_file = file; 3058 vma->vm_ops = &shmem_vm_ops; 3059 vma->vm_flags |= VM_CAN_NONLINEAR; 3060 return 0; 3061 } 3062 3063 /** 3064 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3065 * @mapping: the page's address_space 3066 * @index: the page index 3067 * @gfp: the page allocator flags to use if allocating 3068 * 3069 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3070 * with any new page allocations done using the specified allocation flags. 3071 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3072 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3073 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3074 * 3075 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3076 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3077 */ 3078 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3079 pgoff_t index, gfp_t gfp) 3080 { 3081 #ifdef CONFIG_SHMEM 3082 struct inode *inode = mapping->host; 3083 struct page *page; 3084 int error; 3085 3086 BUG_ON(mapping->a_ops != &shmem_aops); 3087 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3088 if (error) 3089 page = ERR_PTR(error); 3090 else 3091 unlock_page(page); 3092 return page; 3093 #else 3094 /* 3095 * The tiny !SHMEM case uses ramfs without swap 3096 */ 3097 return read_cache_page_gfp(mapping, index, gfp); 3098 #endif 3099 } 3100 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3101