xref: /linux/mm/shmem.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
67 
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
70 
71 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73 
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
76 
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
79 
80 struct shmem_xattr {
81 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
82 	char *name;		/* xattr name */
83 	size_t size;
84 	char value[0];
85 };
86 
87 /*
88  * shmem_fallocate and shmem_writepage communicate via inode->i_private
89  * (with i_mutex making sure that it has only one user at a time):
90  * we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93 	pgoff_t start;		/* start of range currently being fallocated */
94 	pgoff_t next;		/* the next page offset to be fallocated */
95 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
96 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
97 };
98 
99 /* Flag allocation requirements to shmem_getpage */
100 enum sgp_type {
101 	SGP_READ,	/* don't exceed i_size, don't allocate page */
102 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
103 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
104 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
105 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
106 };
107 
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111 	return totalram_pages / 2;
112 }
113 
114 static unsigned long shmem_default_max_inodes(void)
115 {
116 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119 
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 				struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125 
126 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 	struct page **pagep, enum sgp_type sgp, int *fault_type)
128 {
129 	return shmem_getpage_gfp(inode, index, pagep, sgp,
130 			mapping_gfp_mask(inode->i_mapping), fault_type);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_NORESERVE) ?
147 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (!(flags & VM_NORESERVE))
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_NORESERVE) ?
165 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (flags & VM_NORESERVE)
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static const struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static const struct file_operations shmem_file_operations;
177 static const struct inode_operations shmem_inode_operations;
178 static const struct inode_operations shmem_dir_inode_operations;
179 static const struct inode_operations shmem_special_inode_operations;
180 static const struct vm_operations_struct shmem_vm_ops;
181 
182 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
183 	.ra_pages	= 0,	/* No readahead */
184 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_MUTEX(shmem_swaplist_mutex);
189 
190 static int shmem_reserve_inode(struct super_block *sb)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 	if (sbinfo->max_inodes) {
194 		spin_lock(&sbinfo->stat_lock);
195 		if (!sbinfo->free_inodes) {
196 			spin_unlock(&sbinfo->stat_lock);
197 			return -ENOSPC;
198 		}
199 		sbinfo->free_inodes--;
200 		spin_unlock(&sbinfo->stat_lock);
201 	}
202 	return 0;
203 }
204 
205 static void shmem_free_inode(struct super_block *sb)
206 {
207 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 	if (sbinfo->max_inodes) {
209 		spin_lock(&sbinfo->stat_lock);
210 		sbinfo->free_inodes++;
211 		spin_unlock(&sbinfo->stat_lock);
212 	}
213 }
214 
215 /**
216  * shmem_recalc_inode - recalculate the block usage of an inode
217  * @inode: inode to recalc
218  *
219  * We have to calculate the free blocks since the mm can drop
220  * undirtied hole pages behind our back.
221  *
222  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
223  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224  *
225  * It has to be called with the spinlock held.
226  */
227 static void shmem_recalc_inode(struct inode *inode)
228 {
229 	struct shmem_inode_info *info = SHMEM_I(inode);
230 	long freed;
231 
232 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 	if (freed > 0) {
234 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 		if (sbinfo->max_blocks)
236 			percpu_counter_add(&sbinfo->used_blocks, -freed);
237 		info->alloced -= freed;
238 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
239 		shmem_unacct_blocks(info->flags, freed);
240 	}
241 }
242 
243 /*
244  * Replace item expected in radix tree by a new item, while holding tree lock.
245  */
246 static int shmem_radix_tree_replace(struct address_space *mapping,
247 			pgoff_t index, void *expected, void *replacement)
248 {
249 	void **pslot;
250 	void *item = NULL;
251 
252 	VM_BUG_ON(!expected);
253 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 	if (pslot)
255 		item = radix_tree_deref_slot_protected(pslot,
256 							&mapping->tree_lock);
257 	if (item != expected)
258 		return -ENOENT;
259 	if (replacement)
260 		radix_tree_replace_slot(pslot, replacement);
261 	else
262 		radix_tree_delete(&mapping->page_tree, index);
263 	return 0;
264 }
265 
266 /*
267  * Like add_to_page_cache_locked, but error if expected item has gone.
268  */
269 static int shmem_add_to_page_cache(struct page *page,
270 				   struct address_space *mapping,
271 				   pgoff_t index, gfp_t gfp, void *expected)
272 {
273 	int error = 0;
274 
275 	VM_BUG_ON(!PageLocked(page));
276 	VM_BUG_ON(!PageSwapBacked(page));
277 
278 	if (!expected)
279 		error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 	if (!error) {
281 		page_cache_get(page);
282 		page->mapping = mapping;
283 		page->index = index;
284 
285 		spin_lock_irq(&mapping->tree_lock);
286 		if (!expected)
287 			error = radix_tree_insert(&mapping->page_tree,
288 							index, page);
289 		else
290 			error = shmem_radix_tree_replace(mapping, index,
291 							expected, page);
292 		if (!error) {
293 			mapping->nrpages++;
294 			__inc_zone_page_state(page, NR_FILE_PAGES);
295 			__inc_zone_page_state(page, NR_SHMEM);
296 			spin_unlock_irq(&mapping->tree_lock);
297 		} else {
298 			page->mapping = NULL;
299 			spin_unlock_irq(&mapping->tree_lock);
300 			page_cache_release(page);
301 		}
302 		if (!expected)
303 			radix_tree_preload_end();
304 	}
305 	if (error)
306 		mem_cgroup_uncharge_cache_page(page);
307 	return error;
308 }
309 
310 /*
311  * Like delete_from_page_cache, but substitutes swap for page.
312  */
313 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314 {
315 	struct address_space *mapping = page->mapping;
316 	int error;
317 
318 	spin_lock_irq(&mapping->tree_lock);
319 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 	page->mapping = NULL;
321 	mapping->nrpages--;
322 	__dec_zone_page_state(page, NR_FILE_PAGES);
323 	__dec_zone_page_state(page, NR_SHMEM);
324 	spin_unlock_irq(&mapping->tree_lock);
325 	page_cache_release(page);
326 	BUG_ON(error);
327 }
328 
329 /*
330  * Like find_get_pages, but collecting swap entries as well as pages.
331  */
332 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 					pgoff_t start, unsigned int nr_pages,
334 					struct page **pages, pgoff_t *indices)
335 {
336 	unsigned int i;
337 	unsigned int ret;
338 	unsigned int nr_found;
339 
340 	rcu_read_lock();
341 restart:
342 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 				(void ***)pages, indices, start, nr_pages);
344 	ret = 0;
345 	for (i = 0; i < nr_found; i++) {
346 		struct page *page;
347 repeat:
348 		page = radix_tree_deref_slot((void **)pages[i]);
349 		if (unlikely(!page))
350 			continue;
351 		if (radix_tree_exception(page)) {
352 			if (radix_tree_deref_retry(page))
353 				goto restart;
354 			/*
355 			 * Otherwise, we must be storing a swap entry
356 			 * here as an exceptional entry: so return it
357 			 * without attempting to raise page count.
358 			 */
359 			goto export;
360 		}
361 		if (!page_cache_get_speculative(page))
362 			goto repeat;
363 
364 		/* Has the page moved? */
365 		if (unlikely(page != *((void **)pages[i]))) {
366 			page_cache_release(page);
367 			goto repeat;
368 		}
369 export:
370 		indices[ret] = indices[i];
371 		pages[ret] = page;
372 		ret++;
373 	}
374 	if (unlikely(!ret && nr_found))
375 		goto restart;
376 	rcu_read_unlock();
377 	return ret;
378 }
379 
380 /*
381  * Remove swap entry from radix tree, free the swap and its page cache.
382  */
383 static int shmem_free_swap(struct address_space *mapping,
384 			   pgoff_t index, void *radswap)
385 {
386 	int error;
387 
388 	spin_lock_irq(&mapping->tree_lock);
389 	error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 	spin_unlock_irq(&mapping->tree_lock);
391 	if (!error)
392 		free_swap_and_cache(radix_to_swp_entry(radswap));
393 	return error;
394 }
395 
396 /*
397  * Pagevec may contain swap entries, so shuffle up pages before releasing.
398  */
399 static void shmem_deswap_pagevec(struct pagevec *pvec)
400 {
401 	int i, j;
402 
403 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 		struct page *page = pvec->pages[i];
405 		if (!radix_tree_exceptional_entry(page))
406 			pvec->pages[j++] = page;
407 	}
408 	pvec->nr = j;
409 }
410 
411 /*
412  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413  */
414 void shmem_unlock_mapping(struct address_space *mapping)
415 {
416 	struct pagevec pvec;
417 	pgoff_t indices[PAGEVEC_SIZE];
418 	pgoff_t index = 0;
419 
420 	pagevec_init(&pvec, 0);
421 	/*
422 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 	 */
424 	while (!mapping_unevictable(mapping)) {
425 		/*
426 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 		 */
429 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 					PAGEVEC_SIZE, pvec.pages, indices);
431 		if (!pvec.nr)
432 			break;
433 		index = indices[pvec.nr - 1] + 1;
434 		shmem_deswap_pagevec(&pvec);
435 		check_move_unevictable_pages(pvec.pages, pvec.nr);
436 		pagevec_release(&pvec);
437 		cond_resched();
438 	}
439 }
440 
441 /*
442  * Remove range of pages and swap entries from radix tree, and free them.
443  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
444  */
445 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 								 bool unfalloc)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 	struct shmem_inode_info *info = SHMEM_I(inode);
450 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
451 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
454 	struct pagevec pvec;
455 	pgoff_t indices[PAGEVEC_SIZE];
456 	long nr_swaps_freed = 0;
457 	pgoff_t index;
458 	int i;
459 
460 	if (lend == -1)
461 		end = -1;	/* unsigned, so actually very big */
462 
463 	pagevec_init(&pvec, 0);
464 	index = start;
465 	while (index < end) {
466 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
467 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
468 							pvec.pages, indices);
469 		if (!pvec.nr)
470 			break;
471 		mem_cgroup_uncharge_start();
472 		for (i = 0; i < pagevec_count(&pvec); i++) {
473 			struct page *page = pvec.pages[i];
474 
475 			index = indices[i];
476 			if (index >= end)
477 				break;
478 
479 			if (radix_tree_exceptional_entry(page)) {
480 				if (unfalloc)
481 					continue;
482 				nr_swaps_freed += !shmem_free_swap(mapping,
483 								index, page);
484 				continue;
485 			}
486 
487 			if (!trylock_page(page))
488 				continue;
489 			if (!unfalloc || !PageUptodate(page)) {
490 				if (page->mapping == mapping) {
491 					VM_BUG_ON(PageWriteback(page));
492 					truncate_inode_page(mapping, page);
493 				}
494 			}
495 			unlock_page(page);
496 		}
497 		shmem_deswap_pagevec(&pvec);
498 		pagevec_release(&pvec);
499 		mem_cgroup_uncharge_end();
500 		cond_resched();
501 		index++;
502 	}
503 
504 	if (partial_start) {
505 		struct page *page = NULL;
506 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 		if (page) {
508 			unsigned int top = PAGE_CACHE_SIZE;
509 			if (start > end) {
510 				top = partial_end;
511 				partial_end = 0;
512 			}
513 			zero_user_segment(page, partial_start, top);
514 			set_page_dirty(page);
515 			unlock_page(page);
516 			page_cache_release(page);
517 		}
518 	}
519 	if (partial_end) {
520 		struct page *page = NULL;
521 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 		if (page) {
523 			zero_user_segment(page, 0, partial_end);
524 			set_page_dirty(page);
525 			unlock_page(page);
526 			page_cache_release(page);
527 		}
528 	}
529 	if (start >= end)
530 		return;
531 
532 	index = start;
533 	for ( ; ; ) {
534 		cond_resched();
535 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
536 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
537 							pvec.pages, indices);
538 		if (!pvec.nr) {
539 			if (index == start || unfalloc)
540 				break;
541 			index = start;
542 			continue;
543 		}
544 		if ((index == start || unfalloc) && indices[0] >= end) {
545 			shmem_deswap_pagevec(&pvec);
546 			pagevec_release(&pvec);
547 			break;
548 		}
549 		mem_cgroup_uncharge_start();
550 		for (i = 0; i < pagevec_count(&pvec); i++) {
551 			struct page *page = pvec.pages[i];
552 
553 			index = indices[i];
554 			if (index >= end)
555 				break;
556 
557 			if (radix_tree_exceptional_entry(page)) {
558 				if (unfalloc)
559 					continue;
560 				nr_swaps_freed += !shmem_free_swap(mapping,
561 								index, page);
562 				continue;
563 			}
564 
565 			lock_page(page);
566 			if (!unfalloc || !PageUptodate(page)) {
567 				if (page->mapping == mapping) {
568 					VM_BUG_ON(PageWriteback(page));
569 					truncate_inode_page(mapping, page);
570 				}
571 			}
572 			unlock_page(page);
573 		}
574 		shmem_deswap_pagevec(&pvec);
575 		pagevec_release(&pvec);
576 		mem_cgroup_uncharge_end();
577 		index++;
578 	}
579 
580 	spin_lock(&info->lock);
581 	info->swapped -= nr_swaps_freed;
582 	shmem_recalc_inode(inode);
583 	spin_unlock(&info->lock);
584 }
585 
586 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587 {
588 	shmem_undo_range(inode, lstart, lend, false);
589 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
590 }
591 EXPORT_SYMBOL_GPL(shmem_truncate_range);
592 
593 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
594 {
595 	struct inode *inode = dentry->d_inode;
596 	int error;
597 
598 	error = inode_change_ok(inode, attr);
599 	if (error)
600 		return error;
601 
602 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 		loff_t oldsize = inode->i_size;
604 		loff_t newsize = attr->ia_size;
605 
606 		if (newsize != oldsize) {
607 			i_size_write(inode, newsize);
608 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 		}
610 		if (newsize < oldsize) {
611 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 			shmem_truncate_range(inode, newsize, (loff_t)-1);
614 			/* unmap again to remove racily COWed private pages */
615 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 		}
617 	}
618 
619 	setattr_copy(inode, attr);
620 #ifdef CONFIG_TMPFS_POSIX_ACL
621 	if (attr->ia_valid & ATTR_MODE)
622 		error = generic_acl_chmod(inode);
623 #endif
624 	return error;
625 }
626 
627 static void shmem_evict_inode(struct inode *inode)
628 {
629 	struct shmem_inode_info *info = SHMEM_I(inode);
630 	struct shmem_xattr *xattr, *nxattr;
631 
632 	if (inode->i_mapping->a_ops == &shmem_aops) {
633 		shmem_unacct_size(info->flags, inode->i_size);
634 		inode->i_size = 0;
635 		shmem_truncate_range(inode, 0, (loff_t)-1);
636 		if (!list_empty(&info->swaplist)) {
637 			mutex_lock(&shmem_swaplist_mutex);
638 			list_del_init(&info->swaplist);
639 			mutex_unlock(&shmem_swaplist_mutex);
640 		}
641 	} else
642 		kfree(info->symlink);
643 
644 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 		kfree(xattr->name);
646 		kfree(xattr);
647 	}
648 	BUG_ON(inode->i_blocks);
649 	shmem_free_inode(inode->i_sb);
650 	clear_inode(inode);
651 }
652 
653 /*
654  * If swap found in inode, free it and move page from swapcache to filecache.
655  */
656 static int shmem_unuse_inode(struct shmem_inode_info *info,
657 			     swp_entry_t swap, struct page **pagep)
658 {
659 	struct address_space *mapping = info->vfs_inode.i_mapping;
660 	void *radswap;
661 	pgoff_t index;
662 	gfp_t gfp;
663 	int error = 0;
664 
665 	radswap = swp_to_radix_entry(swap);
666 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
667 	if (index == -1)
668 		return 0;
669 
670 	/*
671 	 * Move _head_ to start search for next from here.
672 	 * But be careful: shmem_evict_inode checks list_empty without taking
673 	 * mutex, and there's an instant in list_move_tail when info->swaplist
674 	 * would appear empty, if it were the only one on shmem_swaplist.
675 	 */
676 	if (shmem_swaplist.next != &info->swaplist)
677 		list_move_tail(&shmem_swaplist, &info->swaplist);
678 
679 	gfp = mapping_gfp_mask(mapping);
680 	if (shmem_should_replace_page(*pagep, gfp)) {
681 		mutex_unlock(&shmem_swaplist_mutex);
682 		error = shmem_replace_page(pagep, gfp, info, index);
683 		mutex_lock(&shmem_swaplist_mutex);
684 		/*
685 		 * We needed to drop mutex to make that restrictive page
686 		 * allocation, but the inode might have been freed while we
687 		 * dropped it: although a racing shmem_evict_inode() cannot
688 		 * complete without emptying the radix_tree, our page lock
689 		 * on this swapcache page is not enough to prevent that -
690 		 * free_swap_and_cache() of our swap entry will only
691 		 * trylock_page(), removing swap from radix_tree whatever.
692 		 *
693 		 * We must not proceed to shmem_add_to_page_cache() if the
694 		 * inode has been freed, but of course we cannot rely on
695 		 * inode or mapping or info to check that.  However, we can
696 		 * safely check if our swap entry is still in use (and here
697 		 * it can't have got reused for another page): if it's still
698 		 * in use, then the inode cannot have been freed yet, and we
699 		 * can safely proceed (if it's no longer in use, that tells
700 		 * nothing about the inode, but we don't need to unuse swap).
701 		 */
702 		if (!page_swapcount(*pagep))
703 			error = -ENOENT;
704 	}
705 
706 	/*
707 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
709 	 * beneath us (pagelock doesn't help until the page is in pagecache).
710 	 */
711 	if (!error)
712 		error = shmem_add_to_page_cache(*pagep, mapping, index,
713 						GFP_NOWAIT, radswap);
714 	if (error != -ENOMEM) {
715 		/*
716 		 * Truncation and eviction use free_swap_and_cache(), which
717 		 * only does trylock page: if we raced, best clean up here.
718 		 */
719 		delete_from_swap_cache(*pagep);
720 		set_page_dirty(*pagep);
721 		if (!error) {
722 			spin_lock(&info->lock);
723 			info->swapped--;
724 			spin_unlock(&info->lock);
725 			swap_free(swap);
726 		}
727 		error = 1;	/* not an error, but entry was found */
728 	}
729 	return error;
730 }
731 
732 /*
733  * Search through swapped inodes to find and replace swap by page.
734  */
735 int shmem_unuse(swp_entry_t swap, struct page *page)
736 {
737 	struct list_head *this, *next;
738 	struct shmem_inode_info *info;
739 	int found = 0;
740 	int error = 0;
741 
742 	/*
743 	 * There's a faint possibility that swap page was replaced before
744 	 * caller locked it: caller will come back later with the right page.
745 	 */
746 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
747 		goto out;
748 
749 	/*
750 	 * Charge page using GFP_KERNEL while we can wait, before taking
751 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
752 	 * Charged back to the user (not to caller) when swap account is used.
753 	 */
754 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
755 	if (error)
756 		goto out;
757 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
758 
759 	mutex_lock(&shmem_swaplist_mutex);
760 	list_for_each_safe(this, next, &shmem_swaplist) {
761 		info = list_entry(this, struct shmem_inode_info, swaplist);
762 		if (info->swapped)
763 			found = shmem_unuse_inode(info, swap, &page);
764 		else
765 			list_del_init(&info->swaplist);
766 		cond_resched();
767 		if (found)
768 			break;
769 	}
770 	mutex_unlock(&shmem_swaplist_mutex);
771 
772 	if (found < 0)
773 		error = found;
774 out:
775 	unlock_page(page);
776 	page_cache_release(page);
777 	return error;
778 }
779 
780 /*
781  * Move the page from the page cache to the swap cache.
782  */
783 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
784 {
785 	struct shmem_inode_info *info;
786 	struct address_space *mapping;
787 	struct inode *inode;
788 	swp_entry_t swap;
789 	pgoff_t index;
790 
791 	BUG_ON(!PageLocked(page));
792 	mapping = page->mapping;
793 	index = page->index;
794 	inode = mapping->host;
795 	info = SHMEM_I(inode);
796 	if (info->flags & VM_LOCKED)
797 		goto redirty;
798 	if (!total_swap_pages)
799 		goto redirty;
800 
801 	/*
802 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
803 	 * sync from ever calling shmem_writepage; but a stacking filesystem
804 	 * might use ->writepage of its underlying filesystem, in which case
805 	 * tmpfs should write out to swap only in response to memory pressure,
806 	 * and not for the writeback threads or sync.
807 	 */
808 	if (!wbc->for_reclaim) {
809 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
810 		goto redirty;
811 	}
812 
813 	/*
814 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815 	 * value into swapfile.c, the only way we can correctly account for a
816 	 * fallocated page arriving here is now to initialize it and write it.
817 	 *
818 	 * That's okay for a page already fallocated earlier, but if we have
819 	 * not yet completed the fallocation, then (a) we want to keep track
820 	 * of this page in case we have to undo it, and (b) it may not be a
821 	 * good idea to continue anyway, once we're pushing into swap.  So
822 	 * reactivate the page, and let shmem_fallocate() quit when too many.
823 	 */
824 	if (!PageUptodate(page)) {
825 		if (inode->i_private) {
826 			struct shmem_falloc *shmem_falloc;
827 			spin_lock(&inode->i_lock);
828 			shmem_falloc = inode->i_private;
829 			if (shmem_falloc &&
830 			    index >= shmem_falloc->start &&
831 			    index < shmem_falloc->next)
832 				shmem_falloc->nr_unswapped++;
833 			else
834 				shmem_falloc = NULL;
835 			spin_unlock(&inode->i_lock);
836 			if (shmem_falloc)
837 				goto redirty;
838 		}
839 		clear_highpage(page);
840 		flush_dcache_page(page);
841 		SetPageUptodate(page);
842 	}
843 
844 	swap = get_swap_page();
845 	if (!swap.val)
846 		goto redirty;
847 
848 	/*
849 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
850 	 * if it's not already there.  Do it now before the page is
851 	 * moved to swap cache, when its pagelock no longer protects
852 	 * the inode from eviction.  But don't unlock the mutex until
853 	 * we've incremented swapped, because shmem_unuse_inode() will
854 	 * prune a !swapped inode from the swaplist under this mutex.
855 	 */
856 	mutex_lock(&shmem_swaplist_mutex);
857 	if (list_empty(&info->swaplist))
858 		list_add_tail(&info->swaplist, &shmem_swaplist);
859 
860 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
861 		swap_shmem_alloc(swap);
862 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
863 
864 		spin_lock(&info->lock);
865 		info->swapped++;
866 		shmem_recalc_inode(inode);
867 		spin_unlock(&info->lock);
868 
869 		mutex_unlock(&shmem_swaplist_mutex);
870 		BUG_ON(page_mapped(page));
871 		swap_writepage(page, wbc);
872 		return 0;
873 	}
874 
875 	mutex_unlock(&shmem_swaplist_mutex);
876 	swapcache_free(swap, NULL);
877 redirty:
878 	set_page_dirty(page);
879 	if (wbc->for_reclaim)
880 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
881 	unlock_page(page);
882 	return 0;
883 }
884 
885 #ifdef CONFIG_NUMA
886 #ifdef CONFIG_TMPFS
887 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
888 {
889 	char buffer[64];
890 
891 	if (!mpol || mpol->mode == MPOL_DEFAULT)
892 		return;		/* show nothing */
893 
894 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
895 
896 	seq_printf(seq, ",mpol=%s", buffer);
897 }
898 
899 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
900 {
901 	struct mempolicy *mpol = NULL;
902 	if (sbinfo->mpol) {
903 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
904 		mpol = sbinfo->mpol;
905 		mpol_get(mpol);
906 		spin_unlock(&sbinfo->stat_lock);
907 	}
908 	return mpol;
909 }
910 #endif /* CONFIG_TMPFS */
911 
912 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
913 			struct shmem_inode_info *info, pgoff_t index)
914 {
915 	struct mempolicy mpol, *spol;
916 	struct vm_area_struct pvma;
917 
918 	spol = mpol_cond_copy(&mpol,
919 			mpol_shared_policy_lookup(&info->policy, index));
920 
921 	/* Create a pseudo vma that just contains the policy */
922 	pvma.vm_start = 0;
923 	pvma.vm_pgoff = index;
924 	pvma.vm_ops = NULL;
925 	pvma.vm_policy = spol;
926 	return swapin_readahead(swap, gfp, &pvma, 0);
927 }
928 
929 static struct page *shmem_alloc_page(gfp_t gfp,
930 			struct shmem_inode_info *info, pgoff_t index)
931 {
932 	struct vm_area_struct pvma;
933 
934 	/* Create a pseudo vma that just contains the policy */
935 	pvma.vm_start = 0;
936 	pvma.vm_pgoff = index;
937 	pvma.vm_ops = NULL;
938 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
939 
940 	/*
941 	 * alloc_page_vma() will drop the shared policy reference
942 	 */
943 	return alloc_page_vma(gfp, &pvma, 0);
944 }
945 #else /* !CONFIG_NUMA */
946 #ifdef CONFIG_TMPFS
947 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
948 {
949 }
950 #endif /* CONFIG_TMPFS */
951 
952 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 			struct shmem_inode_info *info, pgoff_t index)
954 {
955 	return swapin_readahead(swap, gfp, NULL, 0);
956 }
957 
958 static inline struct page *shmem_alloc_page(gfp_t gfp,
959 			struct shmem_inode_info *info, pgoff_t index)
960 {
961 	return alloc_page(gfp);
962 }
963 #endif /* CONFIG_NUMA */
964 
965 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967 {
968 	return NULL;
969 }
970 #endif
971 
972 /*
973  * When a page is moved from swapcache to shmem filecache (either by the
974  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975  * shmem_unuse_inode()), it may have been read in earlier from swap, in
976  * ignorance of the mapping it belongs to.  If that mapping has special
977  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978  * we may need to copy to a suitable page before moving to filecache.
979  *
980  * In a future release, this may well be extended to respect cpuset and
981  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982  * but for now it is a simple matter of zone.
983  */
984 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985 {
986 	return page_zonenum(page) > gfp_zone(gfp);
987 }
988 
989 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 				struct shmem_inode_info *info, pgoff_t index)
991 {
992 	struct page *oldpage, *newpage;
993 	struct address_space *swap_mapping;
994 	pgoff_t swap_index;
995 	int error;
996 
997 	oldpage = *pagep;
998 	swap_index = page_private(oldpage);
999 	swap_mapping = page_mapping(oldpage);
1000 
1001 	/*
1002 	 * We have arrived here because our zones are constrained, so don't
1003 	 * limit chance of success by further cpuset and node constraints.
1004 	 */
1005 	gfp &= ~GFP_CONSTRAINT_MASK;
1006 	newpage = shmem_alloc_page(gfp, info, index);
1007 	if (!newpage)
1008 		return -ENOMEM;
1009 
1010 	page_cache_get(newpage);
1011 	copy_highpage(newpage, oldpage);
1012 	flush_dcache_page(newpage);
1013 
1014 	__set_page_locked(newpage);
1015 	SetPageUptodate(newpage);
1016 	SetPageSwapBacked(newpage);
1017 	set_page_private(newpage, swap_index);
1018 	SetPageSwapCache(newpage);
1019 
1020 	/*
1021 	 * Our caller will very soon move newpage out of swapcache, but it's
1022 	 * a nice clean interface for us to replace oldpage by newpage there.
1023 	 */
1024 	spin_lock_irq(&swap_mapping->tree_lock);
1025 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 								   newpage);
1027 	if (!error) {
1028 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 	}
1031 	spin_unlock_irq(&swap_mapping->tree_lock);
1032 
1033 	if (unlikely(error)) {
1034 		/*
1035 		 * Is this possible?  I think not, now that our callers check
1036 		 * both PageSwapCache and page_private after getting page lock;
1037 		 * but be defensive.  Reverse old to newpage for clear and free.
1038 		 */
1039 		oldpage = newpage;
1040 	} else {
1041 		mem_cgroup_replace_page_cache(oldpage, newpage);
1042 		lru_cache_add_anon(newpage);
1043 		*pagep = newpage;
1044 	}
1045 
1046 	ClearPageSwapCache(oldpage);
1047 	set_page_private(oldpage, 0);
1048 
1049 	unlock_page(oldpage);
1050 	page_cache_release(oldpage);
1051 	page_cache_release(oldpage);
1052 	return error;
1053 }
1054 
1055 /*
1056  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1057  *
1058  * If we allocate a new one we do not mark it dirty. That's up to the
1059  * vm. If we swap it in we mark it dirty since we also free the swap
1060  * entry since a page cannot live in both the swap and page cache
1061  */
1062 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1063 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1064 {
1065 	struct address_space *mapping = inode->i_mapping;
1066 	struct shmem_inode_info *info;
1067 	struct shmem_sb_info *sbinfo;
1068 	struct page *page;
1069 	swp_entry_t swap;
1070 	int error;
1071 	int once = 0;
1072 	int alloced = 0;
1073 
1074 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1075 		return -EFBIG;
1076 repeat:
1077 	swap.val = 0;
1078 	page = find_lock_page(mapping, index);
1079 	if (radix_tree_exceptional_entry(page)) {
1080 		swap = radix_to_swp_entry(page);
1081 		page = NULL;
1082 	}
1083 
1084 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1085 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 		error = -EINVAL;
1087 		goto failed;
1088 	}
1089 
1090 	/* fallocated page? */
1091 	if (page && !PageUptodate(page)) {
1092 		if (sgp != SGP_READ)
1093 			goto clear;
1094 		unlock_page(page);
1095 		page_cache_release(page);
1096 		page = NULL;
1097 	}
1098 	if (page || (sgp == SGP_READ && !swap.val)) {
1099 		*pagep = page;
1100 		return 0;
1101 	}
1102 
1103 	/*
1104 	 * Fast cache lookup did not find it:
1105 	 * bring it back from swap or allocate.
1106 	 */
1107 	info = SHMEM_I(inode);
1108 	sbinfo = SHMEM_SB(inode->i_sb);
1109 
1110 	if (swap.val) {
1111 		/* Look it up and read it in.. */
1112 		page = lookup_swap_cache(swap);
1113 		if (!page) {
1114 			/* here we actually do the io */
1115 			if (fault_type)
1116 				*fault_type |= VM_FAULT_MAJOR;
1117 			page = shmem_swapin(swap, gfp, info, index);
1118 			if (!page) {
1119 				error = -ENOMEM;
1120 				goto failed;
1121 			}
1122 		}
1123 
1124 		/* We have to do this with page locked to prevent races */
1125 		lock_page(page);
1126 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 		    page->mapping) {
1128 			error = -EEXIST;	/* try again */
1129 			goto failed;
1130 		}
1131 		if (!PageUptodate(page)) {
1132 			error = -EIO;
1133 			goto failed;
1134 		}
1135 		wait_on_page_writeback(page);
1136 
1137 		if (shmem_should_replace_page(page, gfp)) {
1138 			error = shmem_replace_page(&page, gfp, info, index);
1139 			if (error)
1140 				goto failed;
1141 		}
1142 
1143 		error = mem_cgroup_cache_charge(page, current->mm,
1144 						gfp & GFP_RECLAIM_MASK);
1145 		if (!error)
1146 			error = shmem_add_to_page_cache(page, mapping, index,
1147 						gfp, swp_to_radix_entry(swap));
1148 		if (error)
1149 			goto failed;
1150 
1151 		spin_lock(&info->lock);
1152 		info->swapped--;
1153 		shmem_recalc_inode(inode);
1154 		spin_unlock(&info->lock);
1155 
1156 		delete_from_swap_cache(page);
1157 		set_page_dirty(page);
1158 		swap_free(swap);
1159 
1160 	} else {
1161 		if (shmem_acct_block(info->flags)) {
1162 			error = -ENOSPC;
1163 			goto failed;
1164 		}
1165 		if (sbinfo->max_blocks) {
1166 			if (percpu_counter_compare(&sbinfo->used_blocks,
1167 						sbinfo->max_blocks) >= 0) {
1168 				error = -ENOSPC;
1169 				goto unacct;
1170 			}
1171 			percpu_counter_inc(&sbinfo->used_blocks);
1172 		}
1173 
1174 		page = shmem_alloc_page(gfp, info, index);
1175 		if (!page) {
1176 			error = -ENOMEM;
1177 			goto decused;
1178 		}
1179 
1180 		SetPageSwapBacked(page);
1181 		__set_page_locked(page);
1182 		error = mem_cgroup_cache_charge(page, current->mm,
1183 						gfp & GFP_RECLAIM_MASK);
1184 		if (!error)
1185 			error = shmem_add_to_page_cache(page, mapping, index,
1186 						gfp, NULL);
1187 		if (error)
1188 			goto decused;
1189 		lru_cache_add_anon(page);
1190 
1191 		spin_lock(&info->lock);
1192 		info->alloced++;
1193 		inode->i_blocks += BLOCKS_PER_PAGE;
1194 		shmem_recalc_inode(inode);
1195 		spin_unlock(&info->lock);
1196 		alloced = true;
1197 
1198 		/*
1199 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1200 		 */
1201 		if (sgp == SGP_FALLOC)
1202 			sgp = SGP_WRITE;
1203 clear:
1204 		/*
1205 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1206 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1207 		 * it now, lest undo on failure cancel our earlier guarantee.
1208 		 */
1209 		if (sgp != SGP_WRITE) {
1210 			clear_highpage(page);
1211 			flush_dcache_page(page);
1212 			SetPageUptodate(page);
1213 		}
1214 		if (sgp == SGP_DIRTY)
1215 			set_page_dirty(page);
1216 	}
1217 
1218 	/* Perhaps the file has been truncated since we checked */
1219 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1220 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1221 		error = -EINVAL;
1222 		if (alloced)
1223 			goto trunc;
1224 		else
1225 			goto failed;
1226 	}
1227 	*pagep = page;
1228 	return 0;
1229 
1230 	/*
1231 	 * Error recovery.
1232 	 */
1233 trunc:
1234 	info = SHMEM_I(inode);
1235 	ClearPageDirty(page);
1236 	delete_from_page_cache(page);
1237 	spin_lock(&info->lock);
1238 	info->alloced--;
1239 	inode->i_blocks -= BLOCKS_PER_PAGE;
1240 	spin_unlock(&info->lock);
1241 decused:
1242 	sbinfo = SHMEM_SB(inode->i_sb);
1243 	if (sbinfo->max_blocks)
1244 		percpu_counter_add(&sbinfo->used_blocks, -1);
1245 unacct:
1246 	shmem_unacct_blocks(info->flags, 1);
1247 failed:
1248 	if (swap.val && error != -EINVAL) {
1249 		struct page *test = find_get_page(mapping, index);
1250 		if (test && !radix_tree_exceptional_entry(test))
1251 			page_cache_release(test);
1252 		/* Have another try if the entry has changed */
1253 		if (test != swp_to_radix_entry(swap))
1254 			error = -EEXIST;
1255 	}
1256 	if (page) {
1257 		unlock_page(page);
1258 		page_cache_release(page);
1259 	}
1260 	if (error == -ENOSPC && !once++) {
1261 		info = SHMEM_I(inode);
1262 		spin_lock(&info->lock);
1263 		shmem_recalc_inode(inode);
1264 		spin_unlock(&info->lock);
1265 		goto repeat;
1266 	}
1267 	if (error == -EEXIST)
1268 		goto repeat;
1269 	return error;
1270 }
1271 
1272 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1273 {
1274 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1275 	int error;
1276 	int ret = VM_FAULT_LOCKED;
1277 
1278 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1279 	if (error)
1280 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1281 
1282 	if (ret & VM_FAULT_MAJOR) {
1283 		count_vm_event(PGMAJFAULT);
1284 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1285 	}
1286 	return ret;
1287 }
1288 
1289 #ifdef CONFIG_NUMA
1290 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1291 {
1292 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1294 }
1295 
1296 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1297 					  unsigned long addr)
1298 {
1299 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1300 	pgoff_t index;
1301 
1302 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1303 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1304 }
1305 #endif
1306 
1307 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1308 {
1309 	struct inode *inode = file->f_path.dentry->d_inode;
1310 	struct shmem_inode_info *info = SHMEM_I(inode);
1311 	int retval = -ENOMEM;
1312 
1313 	spin_lock(&info->lock);
1314 	if (lock && !(info->flags & VM_LOCKED)) {
1315 		if (!user_shm_lock(inode->i_size, user))
1316 			goto out_nomem;
1317 		info->flags |= VM_LOCKED;
1318 		mapping_set_unevictable(file->f_mapping);
1319 	}
1320 	if (!lock && (info->flags & VM_LOCKED) && user) {
1321 		user_shm_unlock(inode->i_size, user);
1322 		info->flags &= ~VM_LOCKED;
1323 		mapping_clear_unevictable(file->f_mapping);
1324 	}
1325 	retval = 0;
1326 
1327 out_nomem:
1328 	spin_unlock(&info->lock);
1329 	return retval;
1330 }
1331 
1332 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1333 {
1334 	file_accessed(file);
1335 	vma->vm_ops = &shmem_vm_ops;
1336 	vma->vm_flags |= VM_CAN_NONLINEAR;
1337 	return 0;
1338 }
1339 
1340 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1341 				     umode_t mode, dev_t dev, unsigned long flags)
1342 {
1343 	struct inode *inode;
1344 	struct shmem_inode_info *info;
1345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346 
1347 	if (shmem_reserve_inode(sb))
1348 		return NULL;
1349 
1350 	inode = new_inode(sb);
1351 	if (inode) {
1352 		inode->i_ino = get_next_ino();
1353 		inode_init_owner(inode, dir, mode);
1354 		inode->i_blocks = 0;
1355 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1356 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1357 		inode->i_generation = get_seconds();
1358 		info = SHMEM_I(inode);
1359 		memset(info, 0, (char *)inode - (char *)info);
1360 		spin_lock_init(&info->lock);
1361 		info->flags = flags & VM_NORESERVE;
1362 		INIT_LIST_HEAD(&info->swaplist);
1363 		INIT_LIST_HEAD(&info->xattr_list);
1364 		cache_no_acl(inode);
1365 
1366 		switch (mode & S_IFMT) {
1367 		default:
1368 			inode->i_op = &shmem_special_inode_operations;
1369 			init_special_inode(inode, mode, dev);
1370 			break;
1371 		case S_IFREG:
1372 			inode->i_mapping->a_ops = &shmem_aops;
1373 			inode->i_op = &shmem_inode_operations;
1374 			inode->i_fop = &shmem_file_operations;
1375 			mpol_shared_policy_init(&info->policy,
1376 						 shmem_get_sbmpol(sbinfo));
1377 			break;
1378 		case S_IFDIR:
1379 			inc_nlink(inode);
1380 			/* Some things misbehave if size == 0 on a directory */
1381 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1382 			inode->i_op = &shmem_dir_inode_operations;
1383 			inode->i_fop = &simple_dir_operations;
1384 			break;
1385 		case S_IFLNK:
1386 			/*
1387 			 * Must not load anything in the rbtree,
1388 			 * mpol_free_shared_policy will not be called.
1389 			 */
1390 			mpol_shared_policy_init(&info->policy, NULL);
1391 			break;
1392 		}
1393 	} else
1394 		shmem_free_inode(sb);
1395 	return inode;
1396 }
1397 
1398 #ifdef CONFIG_TMPFS
1399 static const struct inode_operations shmem_symlink_inode_operations;
1400 static const struct inode_operations shmem_short_symlink_operations;
1401 
1402 #ifdef CONFIG_TMPFS_XATTR
1403 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1404 #else
1405 #define shmem_initxattrs NULL
1406 #endif
1407 
1408 static int
1409 shmem_write_begin(struct file *file, struct address_space *mapping,
1410 			loff_t pos, unsigned len, unsigned flags,
1411 			struct page **pagep, void **fsdata)
1412 {
1413 	struct inode *inode = mapping->host;
1414 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1415 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1416 }
1417 
1418 static int
1419 shmem_write_end(struct file *file, struct address_space *mapping,
1420 			loff_t pos, unsigned len, unsigned copied,
1421 			struct page *page, void *fsdata)
1422 {
1423 	struct inode *inode = mapping->host;
1424 
1425 	if (pos + copied > inode->i_size)
1426 		i_size_write(inode, pos + copied);
1427 
1428 	if (!PageUptodate(page)) {
1429 		if (copied < PAGE_CACHE_SIZE) {
1430 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1431 			zero_user_segments(page, 0, from,
1432 					from + copied, PAGE_CACHE_SIZE);
1433 		}
1434 		SetPageUptodate(page);
1435 	}
1436 	set_page_dirty(page);
1437 	unlock_page(page);
1438 	page_cache_release(page);
1439 
1440 	return copied;
1441 }
1442 
1443 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1444 {
1445 	struct inode *inode = filp->f_path.dentry->d_inode;
1446 	struct address_space *mapping = inode->i_mapping;
1447 	pgoff_t index;
1448 	unsigned long offset;
1449 	enum sgp_type sgp = SGP_READ;
1450 
1451 	/*
1452 	 * Might this read be for a stacking filesystem?  Then when reading
1453 	 * holes of a sparse file, we actually need to allocate those pages,
1454 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1455 	 */
1456 	if (segment_eq(get_fs(), KERNEL_DS))
1457 		sgp = SGP_DIRTY;
1458 
1459 	index = *ppos >> PAGE_CACHE_SHIFT;
1460 	offset = *ppos & ~PAGE_CACHE_MASK;
1461 
1462 	for (;;) {
1463 		struct page *page = NULL;
1464 		pgoff_t end_index;
1465 		unsigned long nr, ret;
1466 		loff_t i_size = i_size_read(inode);
1467 
1468 		end_index = i_size >> PAGE_CACHE_SHIFT;
1469 		if (index > end_index)
1470 			break;
1471 		if (index == end_index) {
1472 			nr = i_size & ~PAGE_CACHE_MASK;
1473 			if (nr <= offset)
1474 				break;
1475 		}
1476 
1477 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1478 		if (desc->error) {
1479 			if (desc->error == -EINVAL)
1480 				desc->error = 0;
1481 			break;
1482 		}
1483 		if (page)
1484 			unlock_page(page);
1485 
1486 		/*
1487 		 * We must evaluate after, since reads (unlike writes)
1488 		 * are called without i_mutex protection against truncate
1489 		 */
1490 		nr = PAGE_CACHE_SIZE;
1491 		i_size = i_size_read(inode);
1492 		end_index = i_size >> PAGE_CACHE_SHIFT;
1493 		if (index == end_index) {
1494 			nr = i_size & ~PAGE_CACHE_MASK;
1495 			if (nr <= offset) {
1496 				if (page)
1497 					page_cache_release(page);
1498 				break;
1499 			}
1500 		}
1501 		nr -= offset;
1502 
1503 		if (page) {
1504 			/*
1505 			 * If users can be writing to this page using arbitrary
1506 			 * virtual addresses, take care about potential aliasing
1507 			 * before reading the page on the kernel side.
1508 			 */
1509 			if (mapping_writably_mapped(mapping))
1510 				flush_dcache_page(page);
1511 			/*
1512 			 * Mark the page accessed if we read the beginning.
1513 			 */
1514 			if (!offset)
1515 				mark_page_accessed(page);
1516 		} else {
1517 			page = ZERO_PAGE(0);
1518 			page_cache_get(page);
1519 		}
1520 
1521 		/*
1522 		 * Ok, we have the page, and it's up-to-date, so
1523 		 * now we can copy it to user space...
1524 		 *
1525 		 * The actor routine returns how many bytes were actually used..
1526 		 * NOTE! This may not be the same as how much of a user buffer
1527 		 * we filled up (we may be padding etc), so we can only update
1528 		 * "pos" here (the actor routine has to update the user buffer
1529 		 * pointers and the remaining count).
1530 		 */
1531 		ret = actor(desc, page, offset, nr);
1532 		offset += ret;
1533 		index += offset >> PAGE_CACHE_SHIFT;
1534 		offset &= ~PAGE_CACHE_MASK;
1535 
1536 		page_cache_release(page);
1537 		if (ret != nr || !desc->count)
1538 			break;
1539 
1540 		cond_resched();
1541 	}
1542 
1543 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1544 	file_accessed(filp);
1545 }
1546 
1547 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1548 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1549 {
1550 	struct file *filp = iocb->ki_filp;
1551 	ssize_t retval;
1552 	unsigned long seg;
1553 	size_t count;
1554 	loff_t *ppos = &iocb->ki_pos;
1555 
1556 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1557 	if (retval)
1558 		return retval;
1559 
1560 	for (seg = 0; seg < nr_segs; seg++) {
1561 		read_descriptor_t desc;
1562 
1563 		desc.written = 0;
1564 		desc.arg.buf = iov[seg].iov_base;
1565 		desc.count = iov[seg].iov_len;
1566 		if (desc.count == 0)
1567 			continue;
1568 		desc.error = 0;
1569 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1570 		retval += desc.written;
1571 		if (desc.error) {
1572 			retval = retval ?: desc.error;
1573 			break;
1574 		}
1575 		if (desc.count > 0)
1576 			break;
1577 	}
1578 	return retval;
1579 }
1580 
1581 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 				struct pipe_inode_info *pipe, size_t len,
1583 				unsigned int flags)
1584 {
1585 	struct address_space *mapping = in->f_mapping;
1586 	struct inode *inode = mapping->host;
1587 	unsigned int loff, nr_pages, req_pages;
1588 	struct page *pages[PIPE_DEF_BUFFERS];
1589 	struct partial_page partial[PIPE_DEF_BUFFERS];
1590 	struct page *page;
1591 	pgoff_t index, end_index;
1592 	loff_t isize, left;
1593 	int error, page_nr;
1594 	struct splice_pipe_desc spd = {
1595 		.pages = pages,
1596 		.partial = partial,
1597 		.nr_pages_max = PIPE_DEF_BUFFERS,
1598 		.flags = flags,
1599 		.ops = &page_cache_pipe_buf_ops,
1600 		.spd_release = spd_release_page,
1601 	};
1602 
1603 	isize = i_size_read(inode);
1604 	if (unlikely(*ppos >= isize))
1605 		return 0;
1606 
1607 	left = isize - *ppos;
1608 	if (unlikely(left < len))
1609 		len = left;
1610 
1611 	if (splice_grow_spd(pipe, &spd))
1612 		return -ENOMEM;
1613 
1614 	index = *ppos >> PAGE_CACHE_SHIFT;
1615 	loff = *ppos & ~PAGE_CACHE_MASK;
1616 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617 	nr_pages = min(req_pages, pipe->buffers);
1618 
1619 	spd.nr_pages = find_get_pages_contig(mapping, index,
1620 						nr_pages, spd.pages);
1621 	index += spd.nr_pages;
1622 	error = 0;
1623 
1624 	while (spd.nr_pages < nr_pages) {
1625 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626 		if (error)
1627 			break;
1628 		unlock_page(page);
1629 		spd.pages[spd.nr_pages++] = page;
1630 		index++;
1631 	}
1632 
1633 	index = *ppos >> PAGE_CACHE_SHIFT;
1634 	nr_pages = spd.nr_pages;
1635 	spd.nr_pages = 0;
1636 
1637 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638 		unsigned int this_len;
1639 
1640 		if (!len)
1641 			break;
1642 
1643 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644 		page = spd.pages[page_nr];
1645 
1646 		if (!PageUptodate(page) || page->mapping != mapping) {
1647 			error = shmem_getpage(inode, index, &page,
1648 							SGP_CACHE, NULL);
1649 			if (error)
1650 				break;
1651 			unlock_page(page);
1652 			page_cache_release(spd.pages[page_nr]);
1653 			spd.pages[page_nr] = page;
1654 		}
1655 
1656 		isize = i_size_read(inode);
1657 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658 		if (unlikely(!isize || index > end_index))
1659 			break;
1660 
1661 		if (end_index == index) {
1662 			unsigned int plen;
1663 
1664 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665 			if (plen <= loff)
1666 				break;
1667 
1668 			this_len = min(this_len, plen - loff);
1669 			len = this_len;
1670 		}
1671 
1672 		spd.partial[page_nr].offset = loff;
1673 		spd.partial[page_nr].len = this_len;
1674 		len -= this_len;
1675 		loff = 0;
1676 		spd.nr_pages++;
1677 		index++;
1678 	}
1679 
1680 	while (page_nr < nr_pages)
1681 		page_cache_release(spd.pages[page_nr++]);
1682 
1683 	if (spd.nr_pages)
1684 		error = splice_to_pipe(pipe, &spd);
1685 
1686 	splice_shrink_spd(&spd);
1687 
1688 	if (error > 0) {
1689 		*ppos += error;
1690 		file_accessed(in);
1691 	}
1692 	return error;
1693 }
1694 
1695 /*
1696  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1697  */
1698 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1699 				    pgoff_t index, pgoff_t end, int origin)
1700 {
1701 	struct page *page;
1702 	struct pagevec pvec;
1703 	pgoff_t indices[PAGEVEC_SIZE];
1704 	bool done = false;
1705 	int i;
1706 
1707 	pagevec_init(&pvec, 0);
1708 	pvec.nr = 1;		/* start small: we may be there already */
1709 	while (!done) {
1710 		pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1711 					pvec.nr, pvec.pages, indices);
1712 		if (!pvec.nr) {
1713 			if (origin == SEEK_DATA)
1714 				index = end;
1715 			break;
1716 		}
1717 		for (i = 0; i < pvec.nr; i++, index++) {
1718 			if (index < indices[i]) {
1719 				if (origin == SEEK_HOLE) {
1720 					done = true;
1721 					break;
1722 				}
1723 				index = indices[i];
1724 			}
1725 			page = pvec.pages[i];
1726 			if (page && !radix_tree_exceptional_entry(page)) {
1727 				if (!PageUptodate(page))
1728 					page = NULL;
1729 			}
1730 			if (index >= end ||
1731 			    (page && origin == SEEK_DATA) ||
1732 			    (!page && origin == SEEK_HOLE)) {
1733 				done = true;
1734 				break;
1735 			}
1736 		}
1737 		shmem_deswap_pagevec(&pvec);
1738 		pagevec_release(&pvec);
1739 		pvec.nr = PAGEVEC_SIZE;
1740 		cond_resched();
1741 	}
1742 	return index;
1743 }
1744 
1745 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int origin)
1746 {
1747 	struct address_space *mapping;
1748 	struct inode *inode;
1749 	pgoff_t start, end;
1750 	loff_t new_offset;
1751 
1752 	if (origin != SEEK_DATA && origin != SEEK_HOLE)
1753 		return generic_file_llseek_size(file, offset, origin,
1754 							MAX_LFS_FILESIZE);
1755 	mapping = file->f_mapping;
1756 	inode = mapping->host;
1757 	mutex_lock(&inode->i_mutex);
1758 	/* We're holding i_mutex so we can access i_size directly */
1759 
1760 	if (offset < 0)
1761 		offset = -EINVAL;
1762 	else if (offset >= inode->i_size)
1763 		offset = -ENXIO;
1764 	else {
1765 		start = offset >> PAGE_CACHE_SHIFT;
1766 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1767 		new_offset = shmem_seek_hole_data(mapping, start, end, origin);
1768 		new_offset <<= PAGE_CACHE_SHIFT;
1769 		if (new_offset > offset) {
1770 			if (new_offset < inode->i_size)
1771 				offset = new_offset;
1772 			else if (origin == SEEK_DATA)
1773 				offset = -ENXIO;
1774 			else
1775 				offset = inode->i_size;
1776 		}
1777 	}
1778 
1779 	if (offset >= 0 && offset != file->f_pos) {
1780 		file->f_pos = offset;
1781 		file->f_version = 0;
1782 	}
1783 	mutex_unlock(&inode->i_mutex);
1784 	return offset;
1785 }
1786 
1787 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1788 							 loff_t len)
1789 {
1790 	struct inode *inode = file->f_path.dentry->d_inode;
1791 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1792 	struct shmem_falloc shmem_falloc;
1793 	pgoff_t start, index, end;
1794 	int error;
1795 
1796 	mutex_lock(&inode->i_mutex);
1797 
1798 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1799 		struct address_space *mapping = file->f_mapping;
1800 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
1801 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1802 
1803 		if ((u64)unmap_end > (u64)unmap_start)
1804 			unmap_mapping_range(mapping, unmap_start,
1805 					    1 + unmap_end - unmap_start, 0);
1806 		shmem_truncate_range(inode, offset, offset + len - 1);
1807 		/* No need to unmap again: hole-punching leaves COWed pages */
1808 		error = 0;
1809 		goto out;
1810 	}
1811 
1812 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1813 	error = inode_newsize_ok(inode, offset + len);
1814 	if (error)
1815 		goto out;
1816 
1817 	start = offset >> PAGE_CACHE_SHIFT;
1818 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1819 	/* Try to avoid a swapstorm if len is impossible to satisfy */
1820 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1821 		error = -ENOSPC;
1822 		goto out;
1823 	}
1824 
1825 	shmem_falloc.start = start;
1826 	shmem_falloc.next  = start;
1827 	shmem_falloc.nr_falloced = 0;
1828 	shmem_falloc.nr_unswapped = 0;
1829 	spin_lock(&inode->i_lock);
1830 	inode->i_private = &shmem_falloc;
1831 	spin_unlock(&inode->i_lock);
1832 
1833 	for (index = start; index < end; index++) {
1834 		struct page *page;
1835 
1836 		/*
1837 		 * Good, the fallocate(2) manpage permits EINTR: we may have
1838 		 * been interrupted because we are using up too much memory.
1839 		 */
1840 		if (signal_pending(current))
1841 			error = -EINTR;
1842 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1843 			error = -ENOMEM;
1844 		else
1845 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1846 									NULL);
1847 		if (error) {
1848 			/* Remove the !PageUptodate pages we added */
1849 			shmem_undo_range(inode,
1850 				(loff_t)start << PAGE_CACHE_SHIFT,
1851 				(loff_t)index << PAGE_CACHE_SHIFT, true);
1852 			goto undone;
1853 		}
1854 
1855 		/*
1856 		 * Inform shmem_writepage() how far we have reached.
1857 		 * No need for lock or barrier: we have the page lock.
1858 		 */
1859 		shmem_falloc.next++;
1860 		if (!PageUptodate(page))
1861 			shmem_falloc.nr_falloced++;
1862 
1863 		/*
1864 		 * If !PageUptodate, leave it that way so that freeable pages
1865 		 * can be recognized if we need to rollback on error later.
1866 		 * But set_page_dirty so that memory pressure will swap rather
1867 		 * than free the pages we are allocating (and SGP_CACHE pages
1868 		 * might still be clean: we now need to mark those dirty too).
1869 		 */
1870 		set_page_dirty(page);
1871 		unlock_page(page);
1872 		page_cache_release(page);
1873 		cond_resched();
1874 	}
1875 
1876 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1877 		i_size_write(inode, offset + len);
1878 	inode->i_ctime = CURRENT_TIME;
1879 undone:
1880 	spin_lock(&inode->i_lock);
1881 	inode->i_private = NULL;
1882 	spin_unlock(&inode->i_lock);
1883 out:
1884 	mutex_unlock(&inode->i_mutex);
1885 	return error;
1886 }
1887 
1888 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1889 {
1890 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1891 
1892 	buf->f_type = TMPFS_MAGIC;
1893 	buf->f_bsize = PAGE_CACHE_SIZE;
1894 	buf->f_namelen = NAME_MAX;
1895 	if (sbinfo->max_blocks) {
1896 		buf->f_blocks = sbinfo->max_blocks;
1897 		buf->f_bavail =
1898 		buf->f_bfree  = sbinfo->max_blocks -
1899 				percpu_counter_sum(&sbinfo->used_blocks);
1900 	}
1901 	if (sbinfo->max_inodes) {
1902 		buf->f_files = sbinfo->max_inodes;
1903 		buf->f_ffree = sbinfo->free_inodes;
1904 	}
1905 	/* else leave those fields 0 like simple_statfs */
1906 	return 0;
1907 }
1908 
1909 /*
1910  * File creation. Allocate an inode, and we're done..
1911  */
1912 static int
1913 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1914 {
1915 	struct inode *inode;
1916 	int error = -ENOSPC;
1917 
1918 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1919 	if (inode) {
1920 		error = security_inode_init_security(inode, dir,
1921 						     &dentry->d_name,
1922 						     shmem_initxattrs, NULL);
1923 		if (error) {
1924 			if (error != -EOPNOTSUPP) {
1925 				iput(inode);
1926 				return error;
1927 			}
1928 		}
1929 #ifdef CONFIG_TMPFS_POSIX_ACL
1930 		error = generic_acl_init(inode, dir);
1931 		if (error) {
1932 			iput(inode);
1933 			return error;
1934 		}
1935 #else
1936 		error = 0;
1937 #endif
1938 		dir->i_size += BOGO_DIRENT_SIZE;
1939 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1940 		d_instantiate(dentry, inode);
1941 		dget(dentry); /* Extra count - pin the dentry in core */
1942 	}
1943 	return error;
1944 }
1945 
1946 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1947 {
1948 	int error;
1949 
1950 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1951 		return error;
1952 	inc_nlink(dir);
1953 	return 0;
1954 }
1955 
1956 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1957 		struct nameidata *nd)
1958 {
1959 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1960 }
1961 
1962 /*
1963  * Link a file..
1964  */
1965 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1966 {
1967 	struct inode *inode = old_dentry->d_inode;
1968 	int ret;
1969 
1970 	/*
1971 	 * No ordinary (disk based) filesystem counts links as inodes;
1972 	 * but each new link needs a new dentry, pinning lowmem, and
1973 	 * tmpfs dentries cannot be pruned until they are unlinked.
1974 	 */
1975 	ret = shmem_reserve_inode(inode->i_sb);
1976 	if (ret)
1977 		goto out;
1978 
1979 	dir->i_size += BOGO_DIRENT_SIZE;
1980 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1981 	inc_nlink(inode);
1982 	ihold(inode);	/* New dentry reference */
1983 	dget(dentry);		/* Extra pinning count for the created dentry */
1984 	d_instantiate(dentry, inode);
1985 out:
1986 	return ret;
1987 }
1988 
1989 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1990 {
1991 	struct inode *inode = dentry->d_inode;
1992 
1993 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1994 		shmem_free_inode(inode->i_sb);
1995 
1996 	dir->i_size -= BOGO_DIRENT_SIZE;
1997 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1998 	drop_nlink(inode);
1999 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2000 	return 0;
2001 }
2002 
2003 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2004 {
2005 	if (!simple_empty(dentry))
2006 		return -ENOTEMPTY;
2007 
2008 	drop_nlink(dentry->d_inode);
2009 	drop_nlink(dir);
2010 	return shmem_unlink(dir, dentry);
2011 }
2012 
2013 /*
2014  * The VFS layer already does all the dentry stuff for rename,
2015  * we just have to decrement the usage count for the target if
2016  * it exists so that the VFS layer correctly free's it when it
2017  * gets overwritten.
2018  */
2019 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2020 {
2021 	struct inode *inode = old_dentry->d_inode;
2022 	int they_are_dirs = S_ISDIR(inode->i_mode);
2023 
2024 	if (!simple_empty(new_dentry))
2025 		return -ENOTEMPTY;
2026 
2027 	if (new_dentry->d_inode) {
2028 		(void) shmem_unlink(new_dir, new_dentry);
2029 		if (they_are_dirs)
2030 			drop_nlink(old_dir);
2031 	} else if (they_are_dirs) {
2032 		drop_nlink(old_dir);
2033 		inc_nlink(new_dir);
2034 	}
2035 
2036 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2037 	new_dir->i_size += BOGO_DIRENT_SIZE;
2038 	old_dir->i_ctime = old_dir->i_mtime =
2039 	new_dir->i_ctime = new_dir->i_mtime =
2040 	inode->i_ctime = CURRENT_TIME;
2041 	return 0;
2042 }
2043 
2044 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2045 {
2046 	int error;
2047 	int len;
2048 	struct inode *inode;
2049 	struct page *page;
2050 	char *kaddr;
2051 	struct shmem_inode_info *info;
2052 
2053 	len = strlen(symname) + 1;
2054 	if (len > PAGE_CACHE_SIZE)
2055 		return -ENAMETOOLONG;
2056 
2057 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2058 	if (!inode)
2059 		return -ENOSPC;
2060 
2061 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2062 					     shmem_initxattrs, NULL);
2063 	if (error) {
2064 		if (error != -EOPNOTSUPP) {
2065 			iput(inode);
2066 			return error;
2067 		}
2068 		error = 0;
2069 	}
2070 
2071 	info = SHMEM_I(inode);
2072 	inode->i_size = len-1;
2073 	if (len <= SHORT_SYMLINK_LEN) {
2074 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2075 		if (!info->symlink) {
2076 			iput(inode);
2077 			return -ENOMEM;
2078 		}
2079 		inode->i_op = &shmem_short_symlink_operations;
2080 	} else {
2081 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2082 		if (error) {
2083 			iput(inode);
2084 			return error;
2085 		}
2086 		inode->i_mapping->a_ops = &shmem_aops;
2087 		inode->i_op = &shmem_symlink_inode_operations;
2088 		kaddr = kmap_atomic(page);
2089 		memcpy(kaddr, symname, len);
2090 		kunmap_atomic(kaddr);
2091 		SetPageUptodate(page);
2092 		set_page_dirty(page);
2093 		unlock_page(page);
2094 		page_cache_release(page);
2095 	}
2096 	dir->i_size += BOGO_DIRENT_SIZE;
2097 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2098 	d_instantiate(dentry, inode);
2099 	dget(dentry);
2100 	return 0;
2101 }
2102 
2103 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2104 {
2105 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2106 	return NULL;
2107 }
2108 
2109 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2110 {
2111 	struct page *page = NULL;
2112 	int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2113 	nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2114 	if (page)
2115 		unlock_page(page);
2116 	return page;
2117 }
2118 
2119 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2120 {
2121 	if (!IS_ERR(nd_get_link(nd))) {
2122 		struct page *page = cookie;
2123 		kunmap(page);
2124 		mark_page_accessed(page);
2125 		page_cache_release(page);
2126 	}
2127 }
2128 
2129 #ifdef CONFIG_TMPFS_XATTR
2130 /*
2131  * Superblocks without xattr inode operations may get some security.* xattr
2132  * support from the LSM "for free". As soon as we have any other xattrs
2133  * like ACLs, we also need to implement the security.* handlers at
2134  * filesystem level, though.
2135  */
2136 
2137 /*
2138  * Allocate new xattr and copy in the value; but leave the name to callers.
2139  */
2140 static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2141 {
2142 	struct shmem_xattr *new_xattr;
2143 	size_t len;
2144 
2145 	/* wrap around? */
2146 	len = sizeof(*new_xattr) + size;
2147 	if (len <= sizeof(*new_xattr))
2148 		return NULL;
2149 
2150 	new_xattr = kmalloc(len, GFP_KERNEL);
2151 	if (!new_xattr)
2152 		return NULL;
2153 
2154 	new_xattr->size = size;
2155 	memcpy(new_xattr->value, value, size);
2156 	return new_xattr;
2157 }
2158 
2159 /*
2160  * Callback for security_inode_init_security() for acquiring xattrs.
2161  */
2162 static int shmem_initxattrs(struct inode *inode,
2163 			    const struct xattr *xattr_array,
2164 			    void *fs_info)
2165 {
2166 	struct shmem_inode_info *info = SHMEM_I(inode);
2167 	const struct xattr *xattr;
2168 	struct shmem_xattr *new_xattr;
2169 	size_t len;
2170 
2171 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2172 		new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2173 		if (!new_xattr)
2174 			return -ENOMEM;
2175 
2176 		len = strlen(xattr->name) + 1;
2177 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2178 					  GFP_KERNEL);
2179 		if (!new_xattr->name) {
2180 			kfree(new_xattr);
2181 			return -ENOMEM;
2182 		}
2183 
2184 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2185 		       XATTR_SECURITY_PREFIX_LEN);
2186 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2187 		       xattr->name, len);
2188 
2189 		spin_lock(&info->lock);
2190 		list_add(&new_xattr->list, &info->xattr_list);
2191 		spin_unlock(&info->lock);
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2198 			   void *buffer, size_t size)
2199 {
2200 	struct shmem_inode_info *info;
2201 	struct shmem_xattr *xattr;
2202 	int ret = -ENODATA;
2203 
2204 	info = SHMEM_I(dentry->d_inode);
2205 
2206 	spin_lock(&info->lock);
2207 	list_for_each_entry(xattr, &info->xattr_list, list) {
2208 		if (strcmp(name, xattr->name))
2209 			continue;
2210 
2211 		ret = xattr->size;
2212 		if (buffer) {
2213 			if (size < xattr->size)
2214 				ret = -ERANGE;
2215 			else
2216 				memcpy(buffer, xattr->value, xattr->size);
2217 		}
2218 		break;
2219 	}
2220 	spin_unlock(&info->lock);
2221 	return ret;
2222 }
2223 
2224 static int shmem_xattr_set(struct inode *inode, const char *name,
2225 			   const void *value, size_t size, int flags)
2226 {
2227 	struct shmem_inode_info *info = SHMEM_I(inode);
2228 	struct shmem_xattr *xattr;
2229 	struct shmem_xattr *new_xattr = NULL;
2230 	int err = 0;
2231 
2232 	/* value == NULL means remove */
2233 	if (value) {
2234 		new_xattr = shmem_xattr_alloc(value, size);
2235 		if (!new_xattr)
2236 			return -ENOMEM;
2237 
2238 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2239 		if (!new_xattr->name) {
2240 			kfree(new_xattr);
2241 			return -ENOMEM;
2242 		}
2243 	}
2244 
2245 	spin_lock(&info->lock);
2246 	list_for_each_entry(xattr, &info->xattr_list, list) {
2247 		if (!strcmp(name, xattr->name)) {
2248 			if (flags & XATTR_CREATE) {
2249 				xattr = new_xattr;
2250 				err = -EEXIST;
2251 			} else if (new_xattr) {
2252 				list_replace(&xattr->list, &new_xattr->list);
2253 			} else {
2254 				list_del(&xattr->list);
2255 			}
2256 			goto out;
2257 		}
2258 	}
2259 	if (flags & XATTR_REPLACE) {
2260 		xattr = new_xattr;
2261 		err = -ENODATA;
2262 	} else {
2263 		list_add(&new_xattr->list, &info->xattr_list);
2264 		xattr = NULL;
2265 	}
2266 out:
2267 	spin_unlock(&info->lock);
2268 	if (xattr)
2269 		kfree(xattr->name);
2270 	kfree(xattr);
2271 	return err;
2272 }
2273 
2274 static const struct xattr_handler *shmem_xattr_handlers[] = {
2275 #ifdef CONFIG_TMPFS_POSIX_ACL
2276 	&generic_acl_access_handler,
2277 	&generic_acl_default_handler,
2278 #endif
2279 	NULL
2280 };
2281 
2282 static int shmem_xattr_validate(const char *name)
2283 {
2284 	struct { const char *prefix; size_t len; } arr[] = {
2285 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2286 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2287 	};
2288 	int i;
2289 
2290 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2291 		size_t preflen = arr[i].len;
2292 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2293 			if (!name[preflen])
2294 				return -EINVAL;
2295 			return 0;
2296 		}
2297 	}
2298 	return -EOPNOTSUPP;
2299 }
2300 
2301 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2302 			      void *buffer, size_t size)
2303 {
2304 	int err;
2305 
2306 	/*
2307 	 * If this is a request for a synthetic attribute in the system.*
2308 	 * namespace use the generic infrastructure to resolve a handler
2309 	 * for it via sb->s_xattr.
2310 	 */
2311 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2312 		return generic_getxattr(dentry, name, buffer, size);
2313 
2314 	err = shmem_xattr_validate(name);
2315 	if (err)
2316 		return err;
2317 
2318 	return shmem_xattr_get(dentry, name, buffer, size);
2319 }
2320 
2321 static int shmem_setxattr(struct dentry *dentry, const char *name,
2322 			  const void *value, size_t size, int flags)
2323 {
2324 	int err;
2325 
2326 	/*
2327 	 * If this is a request for a synthetic attribute in the system.*
2328 	 * namespace use the generic infrastructure to resolve a handler
2329 	 * for it via sb->s_xattr.
2330 	 */
2331 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2332 		return generic_setxattr(dentry, name, value, size, flags);
2333 
2334 	err = shmem_xattr_validate(name);
2335 	if (err)
2336 		return err;
2337 
2338 	if (size == 0)
2339 		value = "";  /* empty EA, do not remove */
2340 
2341 	return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
2342 
2343 }
2344 
2345 static int shmem_removexattr(struct dentry *dentry, const char *name)
2346 {
2347 	int err;
2348 
2349 	/*
2350 	 * If this is a request for a synthetic attribute in the system.*
2351 	 * namespace use the generic infrastructure to resolve a handler
2352 	 * for it via sb->s_xattr.
2353 	 */
2354 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2355 		return generic_removexattr(dentry, name);
2356 
2357 	err = shmem_xattr_validate(name);
2358 	if (err)
2359 		return err;
2360 
2361 	return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
2362 }
2363 
2364 static bool xattr_is_trusted(const char *name)
2365 {
2366 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2367 }
2368 
2369 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2370 {
2371 	bool trusted = capable(CAP_SYS_ADMIN);
2372 	struct shmem_xattr *xattr;
2373 	struct shmem_inode_info *info;
2374 	size_t used = 0;
2375 
2376 	info = SHMEM_I(dentry->d_inode);
2377 
2378 	spin_lock(&info->lock);
2379 	list_for_each_entry(xattr, &info->xattr_list, list) {
2380 		size_t len;
2381 
2382 		/* skip "trusted." attributes for unprivileged callers */
2383 		if (!trusted && xattr_is_trusted(xattr->name))
2384 			continue;
2385 
2386 		len = strlen(xattr->name) + 1;
2387 		used += len;
2388 		if (buffer) {
2389 			if (size < used) {
2390 				used = -ERANGE;
2391 				break;
2392 			}
2393 			memcpy(buffer, xattr->name, len);
2394 			buffer += len;
2395 		}
2396 	}
2397 	spin_unlock(&info->lock);
2398 
2399 	return used;
2400 }
2401 #endif /* CONFIG_TMPFS_XATTR */
2402 
2403 static const struct inode_operations shmem_short_symlink_operations = {
2404 	.readlink	= generic_readlink,
2405 	.follow_link	= shmem_follow_short_symlink,
2406 #ifdef CONFIG_TMPFS_XATTR
2407 	.setxattr	= shmem_setxattr,
2408 	.getxattr	= shmem_getxattr,
2409 	.listxattr	= shmem_listxattr,
2410 	.removexattr	= shmem_removexattr,
2411 #endif
2412 };
2413 
2414 static const struct inode_operations shmem_symlink_inode_operations = {
2415 	.readlink	= generic_readlink,
2416 	.follow_link	= shmem_follow_link,
2417 	.put_link	= shmem_put_link,
2418 #ifdef CONFIG_TMPFS_XATTR
2419 	.setxattr	= shmem_setxattr,
2420 	.getxattr	= shmem_getxattr,
2421 	.listxattr	= shmem_listxattr,
2422 	.removexattr	= shmem_removexattr,
2423 #endif
2424 };
2425 
2426 static struct dentry *shmem_get_parent(struct dentry *child)
2427 {
2428 	return ERR_PTR(-ESTALE);
2429 }
2430 
2431 static int shmem_match(struct inode *ino, void *vfh)
2432 {
2433 	__u32 *fh = vfh;
2434 	__u64 inum = fh[2];
2435 	inum = (inum << 32) | fh[1];
2436 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2437 }
2438 
2439 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2440 		struct fid *fid, int fh_len, int fh_type)
2441 {
2442 	struct inode *inode;
2443 	struct dentry *dentry = NULL;
2444 	u64 inum = fid->raw[2];
2445 	inum = (inum << 32) | fid->raw[1];
2446 
2447 	if (fh_len < 3)
2448 		return NULL;
2449 
2450 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2451 			shmem_match, fid->raw);
2452 	if (inode) {
2453 		dentry = d_find_alias(inode);
2454 		iput(inode);
2455 	}
2456 
2457 	return dentry;
2458 }
2459 
2460 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2461 				struct inode *parent)
2462 {
2463 	if (*len < 3) {
2464 		*len = 3;
2465 		return 255;
2466 	}
2467 
2468 	if (inode_unhashed(inode)) {
2469 		/* Unfortunately insert_inode_hash is not idempotent,
2470 		 * so as we hash inodes here rather than at creation
2471 		 * time, we need a lock to ensure we only try
2472 		 * to do it once
2473 		 */
2474 		static DEFINE_SPINLOCK(lock);
2475 		spin_lock(&lock);
2476 		if (inode_unhashed(inode))
2477 			__insert_inode_hash(inode,
2478 					    inode->i_ino + inode->i_generation);
2479 		spin_unlock(&lock);
2480 	}
2481 
2482 	fh[0] = inode->i_generation;
2483 	fh[1] = inode->i_ino;
2484 	fh[2] = ((__u64)inode->i_ino) >> 32;
2485 
2486 	*len = 3;
2487 	return 1;
2488 }
2489 
2490 static const struct export_operations shmem_export_ops = {
2491 	.get_parent     = shmem_get_parent,
2492 	.encode_fh      = shmem_encode_fh,
2493 	.fh_to_dentry	= shmem_fh_to_dentry,
2494 };
2495 
2496 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2497 			       bool remount)
2498 {
2499 	char *this_char, *value, *rest;
2500 	uid_t uid;
2501 	gid_t gid;
2502 
2503 	while (options != NULL) {
2504 		this_char = options;
2505 		for (;;) {
2506 			/*
2507 			 * NUL-terminate this option: unfortunately,
2508 			 * mount options form a comma-separated list,
2509 			 * but mpol's nodelist may also contain commas.
2510 			 */
2511 			options = strchr(options, ',');
2512 			if (options == NULL)
2513 				break;
2514 			options++;
2515 			if (!isdigit(*options)) {
2516 				options[-1] = '\0';
2517 				break;
2518 			}
2519 		}
2520 		if (!*this_char)
2521 			continue;
2522 		if ((value = strchr(this_char,'=')) != NULL) {
2523 			*value++ = 0;
2524 		} else {
2525 			printk(KERN_ERR
2526 			    "tmpfs: No value for mount option '%s'\n",
2527 			    this_char);
2528 			return 1;
2529 		}
2530 
2531 		if (!strcmp(this_char,"size")) {
2532 			unsigned long long size;
2533 			size = memparse(value,&rest);
2534 			if (*rest == '%') {
2535 				size <<= PAGE_SHIFT;
2536 				size *= totalram_pages;
2537 				do_div(size, 100);
2538 				rest++;
2539 			}
2540 			if (*rest)
2541 				goto bad_val;
2542 			sbinfo->max_blocks =
2543 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2544 		} else if (!strcmp(this_char,"nr_blocks")) {
2545 			sbinfo->max_blocks = memparse(value, &rest);
2546 			if (*rest)
2547 				goto bad_val;
2548 		} else if (!strcmp(this_char,"nr_inodes")) {
2549 			sbinfo->max_inodes = memparse(value, &rest);
2550 			if (*rest)
2551 				goto bad_val;
2552 		} else if (!strcmp(this_char,"mode")) {
2553 			if (remount)
2554 				continue;
2555 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2556 			if (*rest)
2557 				goto bad_val;
2558 		} else if (!strcmp(this_char,"uid")) {
2559 			if (remount)
2560 				continue;
2561 			uid = simple_strtoul(value, &rest, 0);
2562 			if (*rest)
2563 				goto bad_val;
2564 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2565 			if (!uid_valid(sbinfo->uid))
2566 				goto bad_val;
2567 		} else if (!strcmp(this_char,"gid")) {
2568 			if (remount)
2569 				continue;
2570 			gid = simple_strtoul(value, &rest, 0);
2571 			if (*rest)
2572 				goto bad_val;
2573 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2574 			if (!gid_valid(sbinfo->gid))
2575 				goto bad_val;
2576 		} else if (!strcmp(this_char,"mpol")) {
2577 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2578 				goto bad_val;
2579 		} else {
2580 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2581 			       this_char);
2582 			return 1;
2583 		}
2584 	}
2585 	return 0;
2586 
2587 bad_val:
2588 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2589 	       value, this_char);
2590 	return 1;
2591 
2592 }
2593 
2594 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2595 {
2596 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2597 	struct shmem_sb_info config = *sbinfo;
2598 	unsigned long inodes;
2599 	int error = -EINVAL;
2600 
2601 	if (shmem_parse_options(data, &config, true))
2602 		return error;
2603 
2604 	spin_lock(&sbinfo->stat_lock);
2605 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2606 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2607 		goto out;
2608 	if (config.max_inodes < inodes)
2609 		goto out;
2610 	/*
2611 	 * Those tests disallow limited->unlimited while any are in use;
2612 	 * but we must separately disallow unlimited->limited, because
2613 	 * in that case we have no record of how much is already in use.
2614 	 */
2615 	if (config.max_blocks && !sbinfo->max_blocks)
2616 		goto out;
2617 	if (config.max_inodes && !sbinfo->max_inodes)
2618 		goto out;
2619 
2620 	error = 0;
2621 	sbinfo->max_blocks  = config.max_blocks;
2622 	sbinfo->max_inodes  = config.max_inodes;
2623 	sbinfo->free_inodes = config.max_inodes - inodes;
2624 
2625 	mpol_put(sbinfo->mpol);
2626 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2627 out:
2628 	spin_unlock(&sbinfo->stat_lock);
2629 	return error;
2630 }
2631 
2632 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2633 {
2634 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2635 
2636 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2637 		seq_printf(seq, ",size=%luk",
2638 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2639 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2640 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2641 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2642 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2643 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2644 		seq_printf(seq, ",uid=%u",
2645 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2646 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2647 		seq_printf(seq, ",gid=%u",
2648 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2649 	shmem_show_mpol(seq, sbinfo->mpol);
2650 	return 0;
2651 }
2652 #endif /* CONFIG_TMPFS */
2653 
2654 static void shmem_put_super(struct super_block *sb)
2655 {
2656 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2657 
2658 	percpu_counter_destroy(&sbinfo->used_blocks);
2659 	kfree(sbinfo);
2660 	sb->s_fs_info = NULL;
2661 }
2662 
2663 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2664 {
2665 	struct inode *inode;
2666 	struct shmem_sb_info *sbinfo;
2667 	int err = -ENOMEM;
2668 
2669 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2670 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2671 				L1_CACHE_BYTES), GFP_KERNEL);
2672 	if (!sbinfo)
2673 		return -ENOMEM;
2674 
2675 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2676 	sbinfo->uid = current_fsuid();
2677 	sbinfo->gid = current_fsgid();
2678 	sb->s_fs_info = sbinfo;
2679 
2680 #ifdef CONFIG_TMPFS
2681 	/*
2682 	 * Per default we only allow half of the physical ram per
2683 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2684 	 * but the internal instance is left unlimited.
2685 	 */
2686 	if (!(sb->s_flags & MS_NOUSER)) {
2687 		sbinfo->max_blocks = shmem_default_max_blocks();
2688 		sbinfo->max_inodes = shmem_default_max_inodes();
2689 		if (shmem_parse_options(data, sbinfo, false)) {
2690 			err = -EINVAL;
2691 			goto failed;
2692 		}
2693 	}
2694 	sb->s_export_op = &shmem_export_ops;
2695 	sb->s_flags |= MS_NOSEC;
2696 #else
2697 	sb->s_flags |= MS_NOUSER;
2698 #endif
2699 
2700 	spin_lock_init(&sbinfo->stat_lock);
2701 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2702 		goto failed;
2703 	sbinfo->free_inodes = sbinfo->max_inodes;
2704 
2705 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2706 	sb->s_blocksize = PAGE_CACHE_SIZE;
2707 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2708 	sb->s_magic = TMPFS_MAGIC;
2709 	sb->s_op = &shmem_ops;
2710 	sb->s_time_gran = 1;
2711 #ifdef CONFIG_TMPFS_XATTR
2712 	sb->s_xattr = shmem_xattr_handlers;
2713 #endif
2714 #ifdef CONFIG_TMPFS_POSIX_ACL
2715 	sb->s_flags |= MS_POSIXACL;
2716 #endif
2717 
2718 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2719 	if (!inode)
2720 		goto failed;
2721 	inode->i_uid = sbinfo->uid;
2722 	inode->i_gid = sbinfo->gid;
2723 	sb->s_root = d_make_root(inode);
2724 	if (!sb->s_root)
2725 		goto failed;
2726 	return 0;
2727 
2728 failed:
2729 	shmem_put_super(sb);
2730 	return err;
2731 }
2732 
2733 static struct kmem_cache *shmem_inode_cachep;
2734 
2735 static struct inode *shmem_alloc_inode(struct super_block *sb)
2736 {
2737 	struct shmem_inode_info *info;
2738 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2739 	if (!info)
2740 		return NULL;
2741 	return &info->vfs_inode;
2742 }
2743 
2744 static void shmem_destroy_callback(struct rcu_head *head)
2745 {
2746 	struct inode *inode = container_of(head, struct inode, i_rcu);
2747 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2748 }
2749 
2750 static void shmem_destroy_inode(struct inode *inode)
2751 {
2752 	if (S_ISREG(inode->i_mode))
2753 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2754 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
2755 }
2756 
2757 static void shmem_init_inode(void *foo)
2758 {
2759 	struct shmem_inode_info *info = foo;
2760 	inode_init_once(&info->vfs_inode);
2761 }
2762 
2763 static int shmem_init_inodecache(void)
2764 {
2765 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2766 				sizeof(struct shmem_inode_info),
2767 				0, SLAB_PANIC, shmem_init_inode);
2768 	return 0;
2769 }
2770 
2771 static void shmem_destroy_inodecache(void)
2772 {
2773 	kmem_cache_destroy(shmem_inode_cachep);
2774 }
2775 
2776 static const struct address_space_operations shmem_aops = {
2777 	.writepage	= shmem_writepage,
2778 	.set_page_dirty	= __set_page_dirty_no_writeback,
2779 #ifdef CONFIG_TMPFS
2780 	.write_begin	= shmem_write_begin,
2781 	.write_end	= shmem_write_end,
2782 #endif
2783 	.migratepage	= migrate_page,
2784 	.error_remove_page = generic_error_remove_page,
2785 };
2786 
2787 static const struct file_operations shmem_file_operations = {
2788 	.mmap		= shmem_mmap,
2789 #ifdef CONFIG_TMPFS
2790 	.llseek		= shmem_file_llseek,
2791 	.read		= do_sync_read,
2792 	.write		= do_sync_write,
2793 	.aio_read	= shmem_file_aio_read,
2794 	.aio_write	= generic_file_aio_write,
2795 	.fsync		= noop_fsync,
2796 	.splice_read	= shmem_file_splice_read,
2797 	.splice_write	= generic_file_splice_write,
2798 	.fallocate	= shmem_fallocate,
2799 #endif
2800 };
2801 
2802 static const struct inode_operations shmem_inode_operations = {
2803 	.setattr	= shmem_setattr,
2804 #ifdef CONFIG_TMPFS_XATTR
2805 	.setxattr	= shmem_setxattr,
2806 	.getxattr	= shmem_getxattr,
2807 	.listxattr	= shmem_listxattr,
2808 	.removexattr	= shmem_removexattr,
2809 #endif
2810 };
2811 
2812 static const struct inode_operations shmem_dir_inode_operations = {
2813 #ifdef CONFIG_TMPFS
2814 	.create		= shmem_create,
2815 	.lookup		= simple_lookup,
2816 	.link		= shmem_link,
2817 	.unlink		= shmem_unlink,
2818 	.symlink	= shmem_symlink,
2819 	.mkdir		= shmem_mkdir,
2820 	.rmdir		= shmem_rmdir,
2821 	.mknod		= shmem_mknod,
2822 	.rename		= shmem_rename,
2823 #endif
2824 #ifdef CONFIG_TMPFS_XATTR
2825 	.setxattr	= shmem_setxattr,
2826 	.getxattr	= shmem_getxattr,
2827 	.listxattr	= shmem_listxattr,
2828 	.removexattr	= shmem_removexattr,
2829 #endif
2830 #ifdef CONFIG_TMPFS_POSIX_ACL
2831 	.setattr	= shmem_setattr,
2832 #endif
2833 };
2834 
2835 static const struct inode_operations shmem_special_inode_operations = {
2836 #ifdef CONFIG_TMPFS_XATTR
2837 	.setxattr	= shmem_setxattr,
2838 	.getxattr	= shmem_getxattr,
2839 	.listxattr	= shmem_listxattr,
2840 	.removexattr	= shmem_removexattr,
2841 #endif
2842 #ifdef CONFIG_TMPFS_POSIX_ACL
2843 	.setattr	= shmem_setattr,
2844 #endif
2845 };
2846 
2847 static const struct super_operations shmem_ops = {
2848 	.alloc_inode	= shmem_alloc_inode,
2849 	.destroy_inode	= shmem_destroy_inode,
2850 #ifdef CONFIG_TMPFS
2851 	.statfs		= shmem_statfs,
2852 	.remount_fs	= shmem_remount_fs,
2853 	.show_options	= shmem_show_options,
2854 #endif
2855 	.evict_inode	= shmem_evict_inode,
2856 	.drop_inode	= generic_delete_inode,
2857 	.put_super	= shmem_put_super,
2858 };
2859 
2860 static const struct vm_operations_struct shmem_vm_ops = {
2861 	.fault		= shmem_fault,
2862 #ifdef CONFIG_NUMA
2863 	.set_policy     = shmem_set_policy,
2864 	.get_policy     = shmem_get_policy,
2865 #endif
2866 };
2867 
2868 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2869 	int flags, const char *dev_name, void *data)
2870 {
2871 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2872 }
2873 
2874 static struct file_system_type shmem_fs_type = {
2875 	.owner		= THIS_MODULE,
2876 	.name		= "tmpfs",
2877 	.mount		= shmem_mount,
2878 	.kill_sb	= kill_litter_super,
2879 };
2880 
2881 int __init shmem_init(void)
2882 {
2883 	int error;
2884 
2885 	error = bdi_init(&shmem_backing_dev_info);
2886 	if (error)
2887 		goto out4;
2888 
2889 	error = shmem_init_inodecache();
2890 	if (error)
2891 		goto out3;
2892 
2893 	error = register_filesystem(&shmem_fs_type);
2894 	if (error) {
2895 		printk(KERN_ERR "Could not register tmpfs\n");
2896 		goto out2;
2897 	}
2898 
2899 	shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2900 				 shmem_fs_type.name, NULL);
2901 	if (IS_ERR(shm_mnt)) {
2902 		error = PTR_ERR(shm_mnt);
2903 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2904 		goto out1;
2905 	}
2906 	return 0;
2907 
2908 out1:
2909 	unregister_filesystem(&shmem_fs_type);
2910 out2:
2911 	shmem_destroy_inodecache();
2912 out3:
2913 	bdi_destroy(&shmem_backing_dev_info);
2914 out4:
2915 	shm_mnt = ERR_PTR(error);
2916 	return error;
2917 }
2918 
2919 #else /* !CONFIG_SHMEM */
2920 
2921 /*
2922  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2923  *
2924  * This is intended for small system where the benefits of the full
2925  * shmem code (swap-backed and resource-limited) are outweighed by
2926  * their complexity. On systems without swap this code should be
2927  * effectively equivalent, but much lighter weight.
2928  */
2929 
2930 #include <linux/ramfs.h>
2931 
2932 static struct file_system_type shmem_fs_type = {
2933 	.name		= "tmpfs",
2934 	.mount		= ramfs_mount,
2935 	.kill_sb	= kill_litter_super,
2936 };
2937 
2938 int __init shmem_init(void)
2939 {
2940 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2941 
2942 	shm_mnt = kern_mount(&shmem_fs_type);
2943 	BUG_ON(IS_ERR(shm_mnt));
2944 
2945 	return 0;
2946 }
2947 
2948 int shmem_unuse(swp_entry_t swap, struct page *page)
2949 {
2950 	return 0;
2951 }
2952 
2953 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2954 {
2955 	return 0;
2956 }
2957 
2958 void shmem_unlock_mapping(struct address_space *mapping)
2959 {
2960 }
2961 
2962 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2963 {
2964 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2965 }
2966 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2967 
2968 #define shmem_vm_ops				generic_file_vm_ops
2969 #define shmem_file_operations			ramfs_file_operations
2970 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2971 #define shmem_acct_size(flags, size)		0
2972 #define shmem_unacct_size(flags, size)		do {} while (0)
2973 
2974 #endif /* CONFIG_SHMEM */
2975 
2976 /* common code */
2977 
2978 /**
2979  * shmem_file_setup - get an unlinked file living in tmpfs
2980  * @name: name for dentry (to be seen in /proc/<pid>/maps
2981  * @size: size to be set for the file
2982  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2983  */
2984 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2985 {
2986 	int error;
2987 	struct file *file;
2988 	struct inode *inode;
2989 	struct path path;
2990 	struct dentry *root;
2991 	struct qstr this;
2992 
2993 	if (IS_ERR(shm_mnt))
2994 		return (void *)shm_mnt;
2995 
2996 	if (size < 0 || size > MAX_LFS_FILESIZE)
2997 		return ERR_PTR(-EINVAL);
2998 
2999 	if (shmem_acct_size(flags, size))
3000 		return ERR_PTR(-ENOMEM);
3001 
3002 	error = -ENOMEM;
3003 	this.name = name;
3004 	this.len = strlen(name);
3005 	this.hash = 0; /* will go */
3006 	root = shm_mnt->mnt_root;
3007 	path.dentry = d_alloc(root, &this);
3008 	if (!path.dentry)
3009 		goto put_memory;
3010 	path.mnt = mntget(shm_mnt);
3011 
3012 	error = -ENOSPC;
3013 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3014 	if (!inode)
3015 		goto put_dentry;
3016 
3017 	d_instantiate(path.dentry, inode);
3018 	inode->i_size = size;
3019 	clear_nlink(inode);	/* It is unlinked */
3020 #ifndef CONFIG_MMU
3021 	error = ramfs_nommu_expand_for_mapping(inode, size);
3022 	if (error)
3023 		goto put_dentry;
3024 #endif
3025 
3026 	error = -ENFILE;
3027 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3028 		  &shmem_file_operations);
3029 	if (!file)
3030 		goto put_dentry;
3031 
3032 	return file;
3033 
3034 put_dentry:
3035 	path_put(&path);
3036 put_memory:
3037 	shmem_unacct_size(flags, size);
3038 	return ERR_PTR(error);
3039 }
3040 EXPORT_SYMBOL_GPL(shmem_file_setup);
3041 
3042 /**
3043  * shmem_zero_setup - setup a shared anonymous mapping
3044  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3045  */
3046 int shmem_zero_setup(struct vm_area_struct *vma)
3047 {
3048 	struct file *file;
3049 	loff_t size = vma->vm_end - vma->vm_start;
3050 
3051 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3052 	if (IS_ERR(file))
3053 		return PTR_ERR(file);
3054 
3055 	if (vma->vm_file)
3056 		fput(vma->vm_file);
3057 	vma->vm_file = file;
3058 	vma->vm_ops = &shmem_vm_ops;
3059 	vma->vm_flags |= VM_CAN_NONLINEAR;
3060 	return 0;
3061 }
3062 
3063 /**
3064  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3065  * @mapping:	the page's address_space
3066  * @index:	the page index
3067  * @gfp:	the page allocator flags to use if allocating
3068  *
3069  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3070  * with any new page allocations done using the specified allocation flags.
3071  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3072  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3073  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3074  *
3075  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3076  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3077  */
3078 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3079 					 pgoff_t index, gfp_t gfp)
3080 {
3081 #ifdef CONFIG_SHMEM
3082 	struct inode *inode = mapping->host;
3083 	struct page *page;
3084 	int error;
3085 
3086 	BUG_ON(mapping->a_ops != &shmem_aops);
3087 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3088 	if (error)
3089 		page = ERR_PTR(error);
3090 	else
3091 		unlock_page(page);
3092 	return page;
3093 #else
3094 	/*
3095 	 * The tiny !SHMEM case uses ramfs without swap
3096 	 */
3097 	return read_cache_page_gfp(mapping, index, gfp);
3098 #endif
3099 }
3100 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3101