1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Pretend that one inode + its dentry occupy this much memory */ 95 #define BOGO_INODE_SIZE 1024 96 97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 98 #define SHORT_SYMLINK_LEN 128 99 100 /* 101 * shmem_fallocate communicates with shmem_fault or shmem_writeout via 102 * inode->i_private (with i_rwsem making sure that it has only one user at 103 * a time): we would prefer not to enlarge the shmem inode just for that. 104 */ 105 struct shmem_falloc { 106 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 107 pgoff_t start; /* start of range currently being fallocated */ 108 pgoff_t next; /* the next page offset to be fallocated */ 109 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 110 pgoff_t nr_unswapped; /* how often writeout refused to swap out */ 111 }; 112 113 struct shmem_options { 114 unsigned long long blocks; 115 unsigned long long inodes; 116 struct mempolicy *mpol; 117 kuid_t uid; 118 kgid_t gid; 119 umode_t mode; 120 bool full_inums; 121 int huge; 122 int seen; 123 bool noswap; 124 unsigned short quota_types; 125 struct shmem_quota_limits qlimits; 126 #if IS_ENABLED(CONFIG_UNICODE) 127 struct unicode_map *encoding; 128 bool strict_encoding; 129 #endif 130 #define SHMEM_SEEN_BLOCKS 1 131 #define SHMEM_SEEN_INODES 2 132 #define SHMEM_SEEN_HUGE 4 133 #define SHMEM_SEEN_INUMS 8 134 #define SHMEM_SEEN_NOSWAP 16 135 #define SHMEM_SEEN_QUOTA 32 136 }; 137 138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 139 static unsigned long huge_shmem_orders_always __read_mostly; 140 static unsigned long huge_shmem_orders_madvise __read_mostly; 141 static unsigned long huge_shmem_orders_inherit __read_mostly; 142 static unsigned long huge_shmem_orders_within_size __read_mostly; 143 static bool shmem_orders_configured __initdata; 144 #endif 145 146 #ifdef CONFIG_TMPFS 147 static unsigned long shmem_default_max_blocks(void) 148 { 149 return totalram_pages() / 2; 150 } 151 152 static unsigned long shmem_default_max_inodes(void) 153 { 154 unsigned long nr_pages = totalram_pages(); 155 156 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 157 ULONG_MAX / BOGO_INODE_SIZE); 158 } 159 #endif 160 161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 162 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 163 struct vm_area_struct *vma, vm_fault_t *fault_type); 164 165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 166 { 167 return sb->s_fs_info; 168 } 169 170 /* 171 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 172 * for shared memory and for shared anonymous (/dev/zero) mappings 173 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 174 * consistent with the pre-accounting of private mappings ... 175 */ 176 static inline int shmem_acct_size(unsigned long flags, loff_t size) 177 { 178 return (flags & VM_NORESERVE) ? 179 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 180 } 181 182 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 183 { 184 if (!(flags & VM_NORESERVE)) 185 vm_unacct_memory(VM_ACCT(size)); 186 } 187 188 static inline int shmem_reacct_size(unsigned long flags, 189 loff_t oldsize, loff_t newsize) 190 { 191 if (!(flags & VM_NORESERVE)) { 192 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 193 return security_vm_enough_memory_mm(current->mm, 194 VM_ACCT(newsize) - VM_ACCT(oldsize)); 195 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 196 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 197 } 198 return 0; 199 } 200 201 /* 202 * ... whereas tmpfs objects are accounted incrementally as 203 * pages are allocated, in order to allow large sparse files. 204 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 205 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 206 */ 207 static inline int shmem_acct_blocks(unsigned long flags, long pages) 208 { 209 if (!(flags & VM_NORESERVE)) 210 return 0; 211 212 return security_vm_enough_memory_mm(current->mm, 213 pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 217 { 218 if (flags & VM_NORESERVE) 219 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 220 } 221 222 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 int err = -ENOSPC; 227 228 if (shmem_acct_blocks(info->flags, pages)) 229 return err; 230 231 might_sleep(); /* when quotas */ 232 if (sbinfo->max_blocks) { 233 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 234 sbinfo->max_blocks, pages)) 235 goto unacct; 236 237 err = dquot_alloc_block_nodirty(inode, pages); 238 if (err) { 239 percpu_counter_sub(&sbinfo->used_blocks, pages); 240 goto unacct; 241 } 242 } else { 243 err = dquot_alloc_block_nodirty(inode, pages); 244 if (err) 245 goto unacct; 246 } 247 248 return 0; 249 250 unacct: 251 shmem_unacct_blocks(info->flags, pages); 252 return err; 253 } 254 255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 256 { 257 struct shmem_inode_info *info = SHMEM_I(inode); 258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 259 260 might_sleep(); /* when quotas */ 261 dquot_free_block_nodirty(inode, pages); 262 263 if (sbinfo->max_blocks) 264 percpu_counter_sub(&sbinfo->used_blocks, pages); 265 shmem_unacct_blocks(info->flags, pages); 266 } 267 268 static const struct super_operations shmem_ops; 269 static const struct address_space_operations shmem_aops; 270 static const struct file_operations shmem_file_operations; 271 static const struct inode_operations shmem_inode_operations; 272 static const struct inode_operations shmem_dir_inode_operations; 273 static const struct inode_operations shmem_special_inode_operations; 274 static const struct vm_operations_struct shmem_vm_ops; 275 static const struct vm_operations_struct shmem_anon_vm_ops; 276 static struct file_system_type shmem_fs_type; 277 278 bool shmem_mapping(struct address_space *mapping) 279 { 280 return mapping->a_ops == &shmem_aops; 281 } 282 EXPORT_SYMBOL_GPL(shmem_mapping); 283 284 bool vma_is_anon_shmem(struct vm_area_struct *vma) 285 { 286 return vma->vm_ops == &shmem_anon_vm_ops; 287 } 288 289 bool vma_is_shmem(struct vm_area_struct *vma) 290 { 291 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 292 } 293 294 static LIST_HEAD(shmem_swaplist); 295 static DEFINE_SPINLOCK(shmem_swaplist_lock); 296 297 #ifdef CONFIG_TMPFS_QUOTA 298 299 static int shmem_enable_quotas(struct super_block *sb, 300 unsigned short quota_types) 301 { 302 int type, err = 0; 303 304 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 305 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 306 if (!(quota_types & (1 << type))) 307 continue; 308 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 309 DQUOT_USAGE_ENABLED | 310 DQUOT_LIMITS_ENABLED); 311 if (err) 312 goto out_err; 313 } 314 return 0; 315 316 out_err: 317 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 318 type, err); 319 for (type--; type >= 0; type--) 320 dquot_quota_off(sb, type); 321 return err; 322 } 323 324 static void shmem_disable_quotas(struct super_block *sb) 325 { 326 int type; 327 328 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 329 dquot_quota_off(sb, type); 330 } 331 332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 333 { 334 return SHMEM_I(inode)->i_dquot; 335 } 336 #endif /* CONFIG_TMPFS_QUOTA */ 337 338 /* 339 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 340 * produces a novel ino for the newly allocated inode. 341 * 342 * It may also be called when making a hard link to permit the space needed by 343 * each dentry. However, in that case, no new inode number is needed since that 344 * internally draws from another pool of inode numbers (currently global 345 * get_next_ino()). This case is indicated by passing NULL as inop. 346 */ 347 #define SHMEM_INO_BATCH 1024 348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 349 { 350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 351 ino_t ino; 352 353 if (!(sb->s_flags & SB_KERNMOUNT)) { 354 raw_spin_lock(&sbinfo->stat_lock); 355 if (sbinfo->max_inodes) { 356 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 357 raw_spin_unlock(&sbinfo->stat_lock); 358 return -ENOSPC; 359 } 360 sbinfo->free_ispace -= BOGO_INODE_SIZE; 361 } 362 if (inop) { 363 ino = sbinfo->next_ino++; 364 if (unlikely(is_zero_ino(ino))) 365 ino = sbinfo->next_ino++; 366 if (unlikely(!sbinfo->full_inums && 367 ino > UINT_MAX)) { 368 /* 369 * Emulate get_next_ino uint wraparound for 370 * compatibility 371 */ 372 if (IS_ENABLED(CONFIG_64BIT)) 373 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 374 __func__, MINOR(sb->s_dev)); 375 sbinfo->next_ino = 1; 376 ino = sbinfo->next_ino++; 377 } 378 *inop = ino; 379 } 380 raw_spin_unlock(&sbinfo->stat_lock); 381 } else if (inop) { 382 /* 383 * __shmem_file_setup, one of our callers, is lock-free: it 384 * doesn't hold stat_lock in shmem_reserve_inode since 385 * max_inodes is always 0, and is called from potentially 386 * unknown contexts. As such, use a per-cpu batched allocator 387 * which doesn't require the per-sb stat_lock unless we are at 388 * the batch boundary. 389 * 390 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 391 * shmem mounts are not exposed to userspace, so we don't need 392 * to worry about things like glibc compatibility. 393 */ 394 ino_t *next_ino; 395 396 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 397 ino = *next_ino; 398 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 399 raw_spin_lock(&sbinfo->stat_lock); 400 ino = sbinfo->next_ino; 401 sbinfo->next_ino += SHMEM_INO_BATCH; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 if (unlikely(is_zero_ino(ino))) 404 ino++; 405 } 406 *inop = ino; 407 *next_ino = ++ino; 408 put_cpu(); 409 } 410 411 return 0; 412 } 413 414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 415 { 416 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 417 if (sbinfo->max_inodes) { 418 raw_spin_lock(&sbinfo->stat_lock); 419 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 420 raw_spin_unlock(&sbinfo->stat_lock); 421 } 422 } 423 424 /** 425 * shmem_recalc_inode - recalculate the block usage of an inode 426 * @inode: inode to recalc 427 * @alloced: the change in number of pages allocated to inode 428 * @swapped: the change in number of pages swapped from inode 429 * 430 * We have to calculate the free blocks since the mm can drop 431 * undirtied hole pages behind our back. 432 * 433 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 434 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 435 * 436 * Return: true if swapped was incremented from 0, for shmem_writeout(). 437 */ 438 static bool shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 439 { 440 struct shmem_inode_info *info = SHMEM_I(inode); 441 bool first_swapped = false; 442 long freed; 443 444 spin_lock(&info->lock); 445 info->alloced += alloced; 446 info->swapped += swapped; 447 freed = info->alloced - info->swapped - 448 READ_ONCE(inode->i_mapping->nrpages); 449 /* 450 * Special case: whereas normally shmem_recalc_inode() is called 451 * after i_mapping->nrpages has already been adjusted (up or down), 452 * shmem_writeout() has to raise swapped before nrpages is lowered - 453 * to stop a racing shmem_recalc_inode() from thinking that a page has 454 * been freed. Compensate here, to avoid the need for a followup call. 455 */ 456 if (swapped > 0) { 457 if (info->swapped == swapped) 458 first_swapped = true; 459 freed += swapped; 460 } 461 if (freed > 0) 462 info->alloced -= freed; 463 spin_unlock(&info->lock); 464 465 /* The quota case may block */ 466 if (freed > 0) 467 shmem_inode_unacct_blocks(inode, freed); 468 return first_swapped; 469 } 470 471 bool shmem_charge(struct inode *inode, long pages) 472 { 473 struct address_space *mapping = inode->i_mapping; 474 475 if (shmem_inode_acct_blocks(inode, pages)) 476 return false; 477 478 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 479 xa_lock_irq(&mapping->i_pages); 480 mapping->nrpages += pages; 481 xa_unlock_irq(&mapping->i_pages); 482 483 shmem_recalc_inode(inode, pages, 0); 484 return true; 485 } 486 487 void shmem_uncharge(struct inode *inode, long pages) 488 { 489 /* pages argument is currently unused: keep it to help debugging */ 490 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 491 492 shmem_recalc_inode(inode, 0, 0); 493 } 494 495 /* 496 * Replace item expected in xarray by a new item, while holding xa_lock. 497 */ 498 static int shmem_replace_entry(struct address_space *mapping, 499 pgoff_t index, void *expected, void *replacement) 500 { 501 XA_STATE(xas, &mapping->i_pages, index); 502 void *item; 503 504 VM_BUG_ON(!expected); 505 VM_BUG_ON(!replacement); 506 item = xas_load(&xas); 507 if (item != expected) 508 return -ENOENT; 509 xas_store(&xas, replacement); 510 return 0; 511 } 512 513 /* 514 * Sometimes, before we decide whether to proceed or to fail, we must check 515 * that an entry was not already brought back or split by a racing thread. 516 * 517 * Checking folio is not enough: by the time a swapcache folio is locked, it 518 * might be reused, and again be swapcache, using the same swap as before. 519 * Returns the swap entry's order if it still presents, else returns -1. 520 */ 521 static int shmem_confirm_swap(struct address_space *mapping, pgoff_t index, 522 swp_entry_t swap) 523 { 524 XA_STATE(xas, &mapping->i_pages, index); 525 int ret = -1; 526 void *entry; 527 528 rcu_read_lock(); 529 do { 530 entry = xas_load(&xas); 531 if (entry == swp_to_radix_entry(swap)) 532 ret = xas_get_order(&xas); 533 } while (xas_retry(&xas, entry)); 534 rcu_read_unlock(); 535 return ret; 536 } 537 538 /* 539 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 540 * 541 * SHMEM_HUGE_NEVER: 542 * disables huge pages for the mount; 543 * SHMEM_HUGE_ALWAYS: 544 * enables huge pages for the mount; 545 * SHMEM_HUGE_WITHIN_SIZE: 546 * only allocate huge pages if the page will be fully within i_size, 547 * also respect madvise() hints; 548 * SHMEM_HUGE_ADVISE: 549 * only allocate huge pages if requested with madvise(); 550 */ 551 552 #define SHMEM_HUGE_NEVER 0 553 #define SHMEM_HUGE_ALWAYS 1 554 #define SHMEM_HUGE_WITHIN_SIZE 2 555 #define SHMEM_HUGE_ADVISE 3 556 557 /* 558 * Special values. 559 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 560 * 561 * SHMEM_HUGE_DENY: 562 * disables huge on shm_mnt and all mounts, for emergency use; 563 * SHMEM_HUGE_FORCE: 564 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 565 * 566 */ 567 #define SHMEM_HUGE_DENY (-1) 568 #define SHMEM_HUGE_FORCE (-2) 569 570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 571 /* ifdef here to avoid bloating shmem.o when not necessary */ 572 573 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 574 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER; 575 576 /** 577 * shmem_mapping_size_orders - Get allowable folio orders for the given file size. 578 * @mapping: Target address_space. 579 * @index: The page index. 580 * @write_end: end of a write, could extend inode size. 581 * 582 * This returns huge orders for folios (when supported) based on the file size 583 * which the mapping currently allows at the given index. The index is relevant 584 * due to alignment considerations the mapping might have. The returned order 585 * may be less than the size passed. 586 * 587 * Return: The orders. 588 */ 589 static inline unsigned int 590 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end) 591 { 592 unsigned int order; 593 size_t size; 594 595 if (!mapping_large_folio_support(mapping) || !write_end) 596 return 0; 597 598 /* Calculate the write size based on the write_end */ 599 size = write_end - (index << PAGE_SHIFT); 600 order = filemap_get_order(size); 601 if (!order) 602 return 0; 603 604 /* If we're not aligned, allocate a smaller folio */ 605 if (index & ((1UL << order) - 1)) 606 order = __ffs(index); 607 608 order = min_t(size_t, order, MAX_PAGECACHE_ORDER); 609 return order > 0 ? BIT(order + 1) - 1 : 0; 610 } 611 612 static unsigned int shmem_get_orders_within_size(struct inode *inode, 613 unsigned long within_size_orders, pgoff_t index, 614 loff_t write_end) 615 { 616 pgoff_t aligned_index; 617 unsigned long order; 618 loff_t i_size; 619 620 order = highest_order(within_size_orders); 621 while (within_size_orders) { 622 aligned_index = round_up(index + 1, 1 << order); 623 i_size = max(write_end, i_size_read(inode)); 624 i_size = round_up(i_size, PAGE_SIZE); 625 if (i_size >> PAGE_SHIFT >= aligned_index) 626 return within_size_orders; 627 628 order = next_order(&within_size_orders, order); 629 } 630 631 return 0; 632 } 633 634 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 635 loff_t write_end, bool shmem_huge_force, 636 struct vm_area_struct *vma, 637 vm_flags_t vm_flags) 638 { 639 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ? 640 0 : BIT(HPAGE_PMD_ORDER); 641 unsigned long within_size_orders; 642 643 if (!S_ISREG(inode->i_mode)) 644 return 0; 645 if (shmem_huge == SHMEM_HUGE_DENY) 646 return 0; 647 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 648 return maybe_pmd_order; 649 650 /* 651 * The huge order allocation for anon shmem is controlled through 652 * the mTHP interface, so we still use PMD-sized huge order to 653 * check whether global control is enabled. 654 * 655 * For tmpfs mmap()'s huge order, we still use PMD-sized order to 656 * allocate huge pages due to lack of a write size hint. 657 * 658 * Otherwise, tmpfs will allow getting a highest order hint based on 659 * the size of write and fallocate paths, then will try each allowable 660 * huge orders. 661 */ 662 switch (SHMEM_SB(inode->i_sb)->huge) { 663 case SHMEM_HUGE_ALWAYS: 664 if (vma) 665 return maybe_pmd_order; 666 667 return shmem_mapping_size_orders(inode->i_mapping, index, write_end); 668 case SHMEM_HUGE_WITHIN_SIZE: 669 if (vma) 670 within_size_orders = maybe_pmd_order; 671 else 672 within_size_orders = shmem_mapping_size_orders(inode->i_mapping, 673 index, write_end); 674 675 within_size_orders = shmem_get_orders_within_size(inode, within_size_orders, 676 index, write_end); 677 if (within_size_orders > 0) 678 return within_size_orders; 679 680 fallthrough; 681 case SHMEM_HUGE_ADVISE: 682 if (vm_flags & VM_HUGEPAGE) 683 return maybe_pmd_order; 684 fallthrough; 685 default: 686 return 0; 687 } 688 } 689 690 static int shmem_parse_huge(const char *str) 691 { 692 int huge; 693 694 if (!str) 695 return -EINVAL; 696 697 if (!strcmp(str, "never")) 698 huge = SHMEM_HUGE_NEVER; 699 else if (!strcmp(str, "always")) 700 huge = SHMEM_HUGE_ALWAYS; 701 else if (!strcmp(str, "within_size")) 702 huge = SHMEM_HUGE_WITHIN_SIZE; 703 else if (!strcmp(str, "advise")) 704 huge = SHMEM_HUGE_ADVISE; 705 else if (!strcmp(str, "deny")) 706 huge = SHMEM_HUGE_DENY; 707 else if (!strcmp(str, "force")) 708 huge = SHMEM_HUGE_FORCE; 709 else 710 return -EINVAL; 711 712 if (!has_transparent_hugepage() && 713 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 714 return -EINVAL; 715 716 /* Do not override huge allocation policy with non-PMD sized mTHP */ 717 if (huge == SHMEM_HUGE_FORCE && 718 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 719 return -EINVAL; 720 721 return huge; 722 } 723 724 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 725 static const char *shmem_format_huge(int huge) 726 { 727 switch (huge) { 728 case SHMEM_HUGE_NEVER: 729 return "never"; 730 case SHMEM_HUGE_ALWAYS: 731 return "always"; 732 case SHMEM_HUGE_WITHIN_SIZE: 733 return "within_size"; 734 case SHMEM_HUGE_ADVISE: 735 return "advise"; 736 case SHMEM_HUGE_DENY: 737 return "deny"; 738 case SHMEM_HUGE_FORCE: 739 return "force"; 740 default: 741 VM_BUG_ON(1); 742 return "bad_val"; 743 } 744 } 745 #endif 746 747 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 748 struct shrink_control *sc, unsigned long nr_to_free) 749 { 750 LIST_HEAD(list), *pos, *next; 751 struct inode *inode; 752 struct shmem_inode_info *info; 753 struct folio *folio; 754 unsigned long batch = sc ? sc->nr_to_scan : 128; 755 unsigned long split = 0, freed = 0; 756 757 if (list_empty(&sbinfo->shrinklist)) 758 return SHRINK_STOP; 759 760 spin_lock(&sbinfo->shrinklist_lock); 761 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 762 info = list_entry(pos, struct shmem_inode_info, shrinklist); 763 764 /* pin the inode */ 765 inode = igrab(&info->vfs_inode); 766 767 /* inode is about to be evicted */ 768 if (!inode) { 769 list_del_init(&info->shrinklist); 770 goto next; 771 } 772 773 list_move(&info->shrinklist, &list); 774 next: 775 sbinfo->shrinklist_len--; 776 if (!--batch) 777 break; 778 } 779 spin_unlock(&sbinfo->shrinklist_lock); 780 781 list_for_each_safe(pos, next, &list) { 782 pgoff_t next, end; 783 loff_t i_size; 784 int ret; 785 786 info = list_entry(pos, struct shmem_inode_info, shrinklist); 787 inode = &info->vfs_inode; 788 789 if (nr_to_free && freed >= nr_to_free) 790 goto move_back; 791 792 i_size = i_size_read(inode); 793 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 794 if (!folio || xa_is_value(folio)) 795 goto drop; 796 797 /* No large folio at the end of the file: nothing to split */ 798 if (!folio_test_large(folio)) { 799 folio_put(folio); 800 goto drop; 801 } 802 803 /* Check if there is anything to gain from splitting */ 804 next = folio_next_index(folio); 805 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 806 if (end <= folio->index || end >= next) { 807 folio_put(folio); 808 goto drop; 809 } 810 811 /* 812 * Move the inode on the list back to shrinklist if we failed 813 * to lock the page at this time. 814 * 815 * Waiting for the lock may lead to deadlock in the 816 * reclaim path. 817 */ 818 if (!folio_trylock(folio)) { 819 folio_put(folio); 820 goto move_back; 821 } 822 823 ret = split_folio(folio); 824 folio_unlock(folio); 825 folio_put(folio); 826 827 /* If split failed move the inode on the list back to shrinklist */ 828 if (ret) 829 goto move_back; 830 831 freed += next - end; 832 split++; 833 drop: 834 list_del_init(&info->shrinklist); 835 goto put; 836 move_back: 837 /* 838 * Make sure the inode is either on the global list or deleted 839 * from any local list before iput() since it could be deleted 840 * in another thread once we put the inode (then the local list 841 * is corrupted). 842 */ 843 spin_lock(&sbinfo->shrinklist_lock); 844 list_move(&info->shrinklist, &sbinfo->shrinklist); 845 sbinfo->shrinklist_len++; 846 spin_unlock(&sbinfo->shrinklist_lock); 847 put: 848 iput(inode); 849 } 850 851 return split; 852 } 853 854 static long shmem_unused_huge_scan(struct super_block *sb, 855 struct shrink_control *sc) 856 { 857 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 858 859 if (!READ_ONCE(sbinfo->shrinklist_len)) 860 return SHRINK_STOP; 861 862 return shmem_unused_huge_shrink(sbinfo, sc, 0); 863 } 864 865 static long shmem_unused_huge_count(struct super_block *sb, 866 struct shrink_control *sc) 867 { 868 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 869 return READ_ONCE(sbinfo->shrinklist_len); 870 } 871 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 872 873 #define shmem_huge SHMEM_HUGE_DENY 874 875 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 876 struct shrink_control *sc, unsigned long nr_to_free) 877 { 878 return 0; 879 } 880 881 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 882 loff_t write_end, bool shmem_huge_force, 883 struct vm_area_struct *vma, 884 vm_flags_t vm_flags) 885 { 886 return 0; 887 } 888 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 889 890 static void shmem_update_stats(struct folio *folio, int nr_pages) 891 { 892 if (folio_test_pmd_mappable(folio)) 893 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 894 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 895 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 896 } 897 898 /* 899 * Somewhat like filemap_add_folio, but error if expected item has gone. 900 */ 901 static int shmem_add_to_page_cache(struct folio *folio, 902 struct address_space *mapping, 903 pgoff_t index, void *expected, gfp_t gfp) 904 { 905 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 906 unsigned long nr = folio_nr_pages(folio); 907 swp_entry_t iter, swap; 908 void *entry; 909 910 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 911 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 912 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 913 914 folio_ref_add(folio, nr); 915 folio->mapping = mapping; 916 folio->index = index; 917 918 gfp &= GFP_RECLAIM_MASK; 919 folio_throttle_swaprate(folio, gfp); 920 swap = radix_to_swp_entry(expected); 921 922 do { 923 iter = swap; 924 xas_lock_irq(&xas); 925 xas_for_each_conflict(&xas, entry) { 926 /* 927 * The range must either be empty, or filled with 928 * expected swap entries. Shmem swap entries are never 929 * partially freed without split of both entry and 930 * folio, so there shouldn't be any holes. 931 */ 932 if (!expected || entry != swp_to_radix_entry(iter)) { 933 xas_set_err(&xas, -EEXIST); 934 goto unlock; 935 } 936 iter.val += 1 << xas_get_order(&xas); 937 } 938 if (expected && iter.val - nr != swap.val) { 939 xas_set_err(&xas, -EEXIST); 940 goto unlock; 941 } 942 xas_store(&xas, folio); 943 if (xas_error(&xas)) 944 goto unlock; 945 shmem_update_stats(folio, nr); 946 mapping->nrpages += nr; 947 unlock: 948 xas_unlock_irq(&xas); 949 } while (xas_nomem(&xas, gfp)); 950 951 if (xas_error(&xas)) { 952 folio->mapping = NULL; 953 folio_ref_sub(folio, nr); 954 return xas_error(&xas); 955 } 956 957 return 0; 958 } 959 960 /* 961 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 962 */ 963 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 964 { 965 struct address_space *mapping = folio->mapping; 966 long nr = folio_nr_pages(folio); 967 int error; 968 969 xa_lock_irq(&mapping->i_pages); 970 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 971 folio->mapping = NULL; 972 mapping->nrpages -= nr; 973 shmem_update_stats(folio, -nr); 974 xa_unlock_irq(&mapping->i_pages); 975 folio_put_refs(folio, nr); 976 BUG_ON(error); 977 } 978 979 /* 980 * Remove swap entry from page cache, free the swap and its page cache. Returns 981 * the number of pages being freed. 0 means entry not found in XArray (0 pages 982 * being freed). 983 */ 984 static long shmem_free_swap(struct address_space *mapping, 985 pgoff_t index, void *radswap) 986 { 987 int order = xa_get_order(&mapping->i_pages, index); 988 void *old; 989 990 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 991 if (old != radswap) 992 return 0; 993 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 994 995 return 1 << order; 996 } 997 998 /* 999 * Determine (in bytes) how many of the shmem object's pages mapped by the 1000 * given offsets are swapped out. 1001 * 1002 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1003 * as long as the inode doesn't go away and racy results are not a problem. 1004 */ 1005 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 1006 pgoff_t start, pgoff_t end) 1007 { 1008 XA_STATE(xas, &mapping->i_pages, start); 1009 struct page *page; 1010 unsigned long swapped = 0; 1011 unsigned long max = end - 1; 1012 1013 rcu_read_lock(); 1014 xas_for_each(&xas, page, max) { 1015 if (xas_retry(&xas, page)) 1016 continue; 1017 if (xa_is_value(page)) 1018 swapped += 1 << xas_get_order(&xas); 1019 if (xas.xa_index == max) 1020 break; 1021 if (need_resched()) { 1022 xas_pause(&xas); 1023 cond_resched_rcu(); 1024 } 1025 } 1026 rcu_read_unlock(); 1027 1028 return swapped << PAGE_SHIFT; 1029 } 1030 1031 /* 1032 * Determine (in bytes) how many of the shmem object's pages mapped by the 1033 * given vma is swapped out. 1034 * 1035 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 1036 * as long as the inode doesn't go away and racy results are not a problem. 1037 */ 1038 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 1039 { 1040 struct inode *inode = file_inode(vma->vm_file); 1041 struct shmem_inode_info *info = SHMEM_I(inode); 1042 struct address_space *mapping = inode->i_mapping; 1043 unsigned long swapped; 1044 1045 /* Be careful as we don't hold info->lock */ 1046 swapped = READ_ONCE(info->swapped); 1047 1048 /* 1049 * The easier cases are when the shmem object has nothing in swap, or 1050 * the vma maps it whole. Then we can simply use the stats that we 1051 * already track. 1052 */ 1053 if (!swapped) 1054 return 0; 1055 1056 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 1057 return swapped << PAGE_SHIFT; 1058 1059 /* Here comes the more involved part */ 1060 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 1061 vma->vm_pgoff + vma_pages(vma)); 1062 } 1063 1064 /* 1065 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 1066 */ 1067 void shmem_unlock_mapping(struct address_space *mapping) 1068 { 1069 struct folio_batch fbatch; 1070 pgoff_t index = 0; 1071 1072 folio_batch_init(&fbatch); 1073 /* 1074 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 1075 */ 1076 while (!mapping_unevictable(mapping) && 1077 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 1078 check_move_unevictable_folios(&fbatch); 1079 folio_batch_release(&fbatch); 1080 cond_resched(); 1081 } 1082 } 1083 1084 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 1085 { 1086 struct folio *folio; 1087 1088 /* 1089 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 1090 * beyond i_size, and reports fallocated folios as holes. 1091 */ 1092 folio = filemap_get_entry(inode->i_mapping, index); 1093 if (!folio) 1094 return folio; 1095 if (!xa_is_value(folio)) { 1096 folio_lock(folio); 1097 if (folio->mapping == inode->i_mapping) 1098 return folio; 1099 /* The folio has been swapped out */ 1100 folio_unlock(folio); 1101 folio_put(folio); 1102 } 1103 /* 1104 * But read a folio back from swap if any of it is within i_size 1105 * (although in some cases this is just a waste of time). 1106 */ 1107 folio = NULL; 1108 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 1109 return folio; 1110 } 1111 1112 /* 1113 * Remove range of pages and swap entries from page cache, and free them. 1114 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1115 */ 1116 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1117 bool unfalloc) 1118 { 1119 struct address_space *mapping = inode->i_mapping; 1120 struct shmem_inode_info *info = SHMEM_I(inode); 1121 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1122 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1123 struct folio_batch fbatch; 1124 pgoff_t indices[PAGEVEC_SIZE]; 1125 struct folio *folio; 1126 bool same_folio; 1127 long nr_swaps_freed = 0; 1128 pgoff_t index; 1129 int i; 1130 1131 if (lend == -1) 1132 end = -1; /* unsigned, so actually very big */ 1133 1134 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1135 info->fallocend = start; 1136 1137 folio_batch_init(&fbatch); 1138 index = start; 1139 while (index < end && find_lock_entries(mapping, &index, end - 1, 1140 &fbatch, indices)) { 1141 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1142 folio = fbatch.folios[i]; 1143 1144 if (xa_is_value(folio)) { 1145 if (unfalloc) 1146 continue; 1147 nr_swaps_freed += shmem_free_swap(mapping, 1148 indices[i], folio); 1149 continue; 1150 } 1151 1152 if (!unfalloc || !folio_test_uptodate(folio)) 1153 truncate_inode_folio(mapping, folio); 1154 folio_unlock(folio); 1155 } 1156 folio_batch_remove_exceptionals(&fbatch); 1157 folio_batch_release(&fbatch); 1158 cond_resched(); 1159 } 1160 1161 /* 1162 * When undoing a failed fallocate, we want none of the partial folio 1163 * zeroing and splitting below, but shall want to truncate the whole 1164 * folio when !uptodate indicates that it was added by this fallocate, 1165 * even when [lstart, lend] covers only a part of the folio. 1166 */ 1167 if (unfalloc) 1168 goto whole_folios; 1169 1170 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1171 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1172 if (folio) { 1173 same_folio = lend < folio_pos(folio) + folio_size(folio); 1174 folio_mark_dirty(folio); 1175 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1176 start = folio_next_index(folio); 1177 if (same_folio) 1178 end = folio->index; 1179 } 1180 folio_unlock(folio); 1181 folio_put(folio); 1182 folio = NULL; 1183 } 1184 1185 if (!same_folio) 1186 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1187 if (folio) { 1188 folio_mark_dirty(folio); 1189 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1190 end = folio->index; 1191 folio_unlock(folio); 1192 folio_put(folio); 1193 } 1194 1195 whole_folios: 1196 1197 index = start; 1198 while (index < end) { 1199 cond_resched(); 1200 1201 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1202 indices)) { 1203 /* If all gone or hole-punch or unfalloc, we're done */ 1204 if (index == start || end != -1) 1205 break; 1206 /* But if truncating, restart to make sure all gone */ 1207 index = start; 1208 continue; 1209 } 1210 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1211 folio = fbatch.folios[i]; 1212 1213 if (xa_is_value(folio)) { 1214 long swaps_freed; 1215 1216 if (unfalloc) 1217 continue; 1218 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1219 if (!swaps_freed) { 1220 /* Swap was replaced by page: retry */ 1221 index = indices[i]; 1222 break; 1223 } 1224 nr_swaps_freed += swaps_freed; 1225 continue; 1226 } 1227 1228 folio_lock(folio); 1229 1230 if (!unfalloc || !folio_test_uptodate(folio)) { 1231 if (folio_mapping(folio) != mapping) { 1232 /* Page was replaced by swap: retry */ 1233 folio_unlock(folio); 1234 index = indices[i]; 1235 break; 1236 } 1237 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1238 folio); 1239 1240 if (!folio_test_large(folio)) { 1241 truncate_inode_folio(mapping, folio); 1242 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1243 /* 1244 * If we split a page, reset the loop so 1245 * that we pick up the new sub pages. 1246 * Otherwise the THP was entirely 1247 * dropped or the target range was 1248 * zeroed, so just continue the loop as 1249 * is. 1250 */ 1251 if (!folio_test_large(folio)) { 1252 folio_unlock(folio); 1253 index = start; 1254 break; 1255 } 1256 } 1257 } 1258 folio_unlock(folio); 1259 } 1260 folio_batch_remove_exceptionals(&fbatch); 1261 folio_batch_release(&fbatch); 1262 } 1263 1264 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1265 } 1266 1267 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1268 { 1269 shmem_undo_range(inode, lstart, lend, false); 1270 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1271 inode_inc_iversion(inode); 1272 } 1273 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1274 1275 static int shmem_getattr(struct mnt_idmap *idmap, 1276 const struct path *path, struct kstat *stat, 1277 u32 request_mask, unsigned int query_flags) 1278 { 1279 struct inode *inode = path->dentry->d_inode; 1280 struct shmem_inode_info *info = SHMEM_I(inode); 1281 1282 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1283 shmem_recalc_inode(inode, 0, 0); 1284 1285 if (info->fsflags & FS_APPEND_FL) 1286 stat->attributes |= STATX_ATTR_APPEND; 1287 if (info->fsflags & FS_IMMUTABLE_FL) 1288 stat->attributes |= STATX_ATTR_IMMUTABLE; 1289 if (info->fsflags & FS_NODUMP_FL) 1290 stat->attributes |= STATX_ATTR_NODUMP; 1291 stat->attributes_mask |= (STATX_ATTR_APPEND | 1292 STATX_ATTR_IMMUTABLE | 1293 STATX_ATTR_NODUMP); 1294 generic_fillattr(idmap, request_mask, inode, stat); 1295 1296 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0)) 1297 stat->blksize = HPAGE_PMD_SIZE; 1298 1299 if (request_mask & STATX_BTIME) { 1300 stat->result_mask |= STATX_BTIME; 1301 stat->btime.tv_sec = info->i_crtime.tv_sec; 1302 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1303 } 1304 1305 return 0; 1306 } 1307 1308 static int shmem_setattr(struct mnt_idmap *idmap, 1309 struct dentry *dentry, struct iattr *attr) 1310 { 1311 struct inode *inode = d_inode(dentry); 1312 struct shmem_inode_info *info = SHMEM_I(inode); 1313 int error; 1314 bool update_mtime = false; 1315 bool update_ctime = true; 1316 1317 error = setattr_prepare(idmap, dentry, attr); 1318 if (error) 1319 return error; 1320 1321 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1322 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1323 return -EPERM; 1324 } 1325 } 1326 1327 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1328 loff_t oldsize = inode->i_size; 1329 loff_t newsize = attr->ia_size; 1330 1331 /* protected by i_rwsem */ 1332 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1333 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1334 return -EPERM; 1335 1336 if (newsize != oldsize) { 1337 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1338 oldsize, newsize); 1339 if (error) 1340 return error; 1341 i_size_write(inode, newsize); 1342 update_mtime = true; 1343 } else { 1344 update_ctime = false; 1345 } 1346 if (newsize <= oldsize) { 1347 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1348 if (oldsize > holebegin) 1349 unmap_mapping_range(inode->i_mapping, 1350 holebegin, 0, 1); 1351 if (info->alloced) 1352 shmem_truncate_range(inode, 1353 newsize, (loff_t)-1); 1354 /* unmap again to remove racily COWed private pages */ 1355 if (oldsize > holebegin) 1356 unmap_mapping_range(inode->i_mapping, 1357 holebegin, 0, 1); 1358 } 1359 } 1360 1361 if (is_quota_modification(idmap, inode, attr)) { 1362 error = dquot_initialize(inode); 1363 if (error) 1364 return error; 1365 } 1366 1367 /* Transfer quota accounting */ 1368 if (i_uid_needs_update(idmap, attr, inode) || 1369 i_gid_needs_update(idmap, attr, inode)) { 1370 error = dquot_transfer(idmap, inode, attr); 1371 if (error) 1372 return error; 1373 } 1374 1375 setattr_copy(idmap, inode, attr); 1376 if (attr->ia_valid & ATTR_MODE) 1377 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1378 if (!error && update_ctime) { 1379 inode_set_ctime_current(inode); 1380 if (update_mtime) 1381 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1382 inode_inc_iversion(inode); 1383 } 1384 return error; 1385 } 1386 1387 static void shmem_evict_inode(struct inode *inode) 1388 { 1389 struct shmem_inode_info *info = SHMEM_I(inode); 1390 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1391 size_t freed = 0; 1392 1393 if (shmem_mapping(inode->i_mapping)) { 1394 shmem_unacct_size(info->flags, inode->i_size); 1395 inode->i_size = 0; 1396 mapping_set_exiting(inode->i_mapping); 1397 shmem_truncate_range(inode, 0, (loff_t)-1); 1398 if (!list_empty(&info->shrinklist)) { 1399 spin_lock(&sbinfo->shrinklist_lock); 1400 if (!list_empty(&info->shrinklist)) { 1401 list_del_init(&info->shrinklist); 1402 sbinfo->shrinklist_len--; 1403 } 1404 spin_unlock(&sbinfo->shrinklist_lock); 1405 } 1406 while (!list_empty(&info->swaplist)) { 1407 /* Wait while shmem_unuse() is scanning this inode... */ 1408 wait_var_event(&info->stop_eviction, 1409 !atomic_read(&info->stop_eviction)); 1410 spin_lock(&shmem_swaplist_lock); 1411 /* ...but beware of the race if we peeked too early */ 1412 if (!atomic_read(&info->stop_eviction)) 1413 list_del_init(&info->swaplist); 1414 spin_unlock(&shmem_swaplist_lock); 1415 } 1416 } 1417 1418 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1419 shmem_free_inode(inode->i_sb, freed); 1420 WARN_ON(inode->i_blocks); 1421 clear_inode(inode); 1422 #ifdef CONFIG_TMPFS_QUOTA 1423 dquot_free_inode(inode); 1424 dquot_drop(inode); 1425 #endif 1426 } 1427 1428 static unsigned int shmem_find_swap_entries(struct address_space *mapping, 1429 pgoff_t start, struct folio_batch *fbatch, 1430 pgoff_t *indices, unsigned int type) 1431 { 1432 XA_STATE(xas, &mapping->i_pages, start); 1433 struct folio *folio; 1434 swp_entry_t entry; 1435 1436 rcu_read_lock(); 1437 xas_for_each(&xas, folio, ULONG_MAX) { 1438 if (xas_retry(&xas, folio)) 1439 continue; 1440 1441 if (!xa_is_value(folio)) 1442 continue; 1443 1444 entry = radix_to_swp_entry(folio); 1445 /* 1446 * swapin error entries can be found in the mapping. But they're 1447 * deliberately ignored here as we've done everything we can do. 1448 */ 1449 if (swp_type(entry) != type) 1450 continue; 1451 1452 indices[folio_batch_count(fbatch)] = xas.xa_index; 1453 if (!folio_batch_add(fbatch, folio)) 1454 break; 1455 1456 if (need_resched()) { 1457 xas_pause(&xas); 1458 cond_resched_rcu(); 1459 } 1460 } 1461 rcu_read_unlock(); 1462 1463 return folio_batch_count(fbatch); 1464 } 1465 1466 /* 1467 * Move the swapped pages for an inode to page cache. Returns the count 1468 * of pages swapped in, or the error in case of failure. 1469 */ 1470 static int shmem_unuse_swap_entries(struct inode *inode, 1471 struct folio_batch *fbatch, pgoff_t *indices) 1472 { 1473 int i = 0; 1474 int ret = 0; 1475 int error = 0; 1476 struct address_space *mapping = inode->i_mapping; 1477 1478 for (i = 0; i < folio_batch_count(fbatch); i++) { 1479 struct folio *folio = fbatch->folios[i]; 1480 1481 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1482 mapping_gfp_mask(mapping), NULL, NULL); 1483 if (error == 0) { 1484 folio_unlock(folio); 1485 folio_put(folio); 1486 ret++; 1487 } 1488 if (error == -ENOMEM) 1489 break; 1490 error = 0; 1491 } 1492 return error ? error : ret; 1493 } 1494 1495 /* 1496 * If swap found in inode, free it and move page from swapcache to filecache. 1497 */ 1498 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1499 { 1500 struct address_space *mapping = inode->i_mapping; 1501 pgoff_t start = 0; 1502 struct folio_batch fbatch; 1503 pgoff_t indices[PAGEVEC_SIZE]; 1504 int ret = 0; 1505 1506 do { 1507 folio_batch_init(&fbatch); 1508 if (!shmem_find_swap_entries(mapping, start, &fbatch, 1509 indices, type)) { 1510 ret = 0; 1511 break; 1512 } 1513 1514 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1515 if (ret < 0) 1516 break; 1517 1518 start = indices[folio_batch_count(&fbatch) - 1]; 1519 } while (true); 1520 1521 return ret; 1522 } 1523 1524 /* 1525 * Read all the shared memory data that resides in the swap 1526 * device 'type' back into memory, so the swap device can be 1527 * unused. 1528 */ 1529 int shmem_unuse(unsigned int type) 1530 { 1531 struct shmem_inode_info *info, *next; 1532 int error = 0; 1533 1534 if (list_empty(&shmem_swaplist)) 1535 return 0; 1536 1537 spin_lock(&shmem_swaplist_lock); 1538 start_over: 1539 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1540 if (!info->swapped) { 1541 list_del_init(&info->swaplist); 1542 continue; 1543 } 1544 /* 1545 * Drop the swaplist mutex while searching the inode for swap; 1546 * but before doing so, make sure shmem_evict_inode() will not 1547 * remove placeholder inode from swaplist, nor let it be freed 1548 * (igrab() would protect from unlink, but not from unmount). 1549 */ 1550 atomic_inc(&info->stop_eviction); 1551 spin_unlock(&shmem_swaplist_lock); 1552 1553 error = shmem_unuse_inode(&info->vfs_inode, type); 1554 cond_resched(); 1555 1556 spin_lock(&shmem_swaplist_lock); 1557 if (atomic_dec_and_test(&info->stop_eviction)) 1558 wake_up_var(&info->stop_eviction); 1559 if (error) 1560 break; 1561 if (list_empty(&info->swaplist)) 1562 goto start_over; 1563 next = list_next_entry(info, swaplist); 1564 if (!info->swapped) 1565 list_del_init(&info->swaplist); 1566 } 1567 spin_unlock(&shmem_swaplist_lock); 1568 1569 return error; 1570 } 1571 1572 /** 1573 * shmem_writeout - Write the folio to swap 1574 * @folio: The folio to write 1575 * @plug: swap plug 1576 * @folio_list: list to put back folios on split 1577 * 1578 * Move the folio from the page cache to the swap cache. 1579 */ 1580 int shmem_writeout(struct folio *folio, struct swap_iocb **plug, 1581 struct list_head *folio_list) 1582 { 1583 struct address_space *mapping = folio->mapping; 1584 struct inode *inode = mapping->host; 1585 struct shmem_inode_info *info = SHMEM_I(inode); 1586 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1587 pgoff_t index; 1588 int nr_pages; 1589 bool split = false; 1590 1591 if ((info->flags & VM_LOCKED) || sbinfo->noswap) 1592 goto redirty; 1593 1594 if (!total_swap_pages) 1595 goto redirty; 1596 1597 /* 1598 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1599 * split when swapping. 1600 * 1601 * And shrinkage of pages beyond i_size does not split swap, so 1602 * swapout of a large folio crossing i_size needs to split too 1603 * (unless fallocate has been used to preallocate beyond EOF). 1604 */ 1605 if (folio_test_large(folio)) { 1606 index = shmem_fallocend(inode, 1607 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1608 if ((index > folio->index && index < folio_next_index(folio)) || 1609 !IS_ENABLED(CONFIG_THP_SWAP)) 1610 split = true; 1611 } 1612 1613 if (split) { 1614 try_split: 1615 /* Ensure the subpages are still dirty */ 1616 folio_test_set_dirty(folio); 1617 if (split_folio_to_list(folio, folio_list)) 1618 goto redirty; 1619 folio_clear_dirty(folio); 1620 } 1621 1622 index = folio->index; 1623 nr_pages = folio_nr_pages(folio); 1624 1625 /* 1626 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1627 * value into swapfile.c, the only way we can correctly account for a 1628 * fallocated folio arriving here is now to initialize it and write it. 1629 * 1630 * That's okay for a folio already fallocated earlier, but if we have 1631 * not yet completed the fallocation, then (a) we want to keep track 1632 * of this folio in case we have to undo it, and (b) it may not be a 1633 * good idea to continue anyway, once we're pushing into swap. So 1634 * reactivate the folio, and let shmem_fallocate() quit when too many. 1635 */ 1636 if (!folio_test_uptodate(folio)) { 1637 if (inode->i_private) { 1638 struct shmem_falloc *shmem_falloc; 1639 spin_lock(&inode->i_lock); 1640 shmem_falloc = inode->i_private; 1641 if (shmem_falloc && 1642 !shmem_falloc->waitq && 1643 index >= shmem_falloc->start && 1644 index < shmem_falloc->next) 1645 shmem_falloc->nr_unswapped += nr_pages; 1646 else 1647 shmem_falloc = NULL; 1648 spin_unlock(&inode->i_lock); 1649 if (shmem_falloc) 1650 goto redirty; 1651 } 1652 folio_zero_range(folio, 0, folio_size(folio)); 1653 flush_dcache_folio(folio); 1654 folio_mark_uptodate(folio); 1655 } 1656 1657 if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) { 1658 bool first_swapped = shmem_recalc_inode(inode, 0, nr_pages); 1659 int error; 1660 1661 /* 1662 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1663 * if it's not already there. Do it now before the folio is 1664 * removed from page cache, when its pagelock no longer 1665 * protects the inode from eviction. And do it now, after 1666 * we've incremented swapped, because shmem_unuse() will 1667 * prune a !swapped inode from the swaplist. 1668 */ 1669 if (first_swapped) { 1670 spin_lock(&shmem_swaplist_lock); 1671 if (list_empty(&info->swaplist)) 1672 list_add(&info->swaplist, &shmem_swaplist); 1673 spin_unlock(&shmem_swaplist_lock); 1674 } 1675 1676 swap_shmem_alloc(folio->swap, nr_pages); 1677 shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap)); 1678 1679 BUG_ON(folio_mapped(folio)); 1680 error = swap_writeout(folio, plug); 1681 if (error != AOP_WRITEPAGE_ACTIVATE) { 1682 /* folio has been unlocked */ 1683 return error; 1684 } 1685 1686 /* 1687 * The intention here is to avoid holding on to the swap when 1688 * zswap was unable to compress and unable to writeback; but 1689 * it will be appropriate if other reactivate cases are added. 1690 */ 1691 error = shmem_add_to_page_cache(folio, mapping, index, 1692 swp_to_radix_entry(folio->swap), 1693 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN); 1694 /* Swap entry might be erased by racing shmem_free_swap() */ 1695 if (!error) { 1696 shmem_recalc_inode(inode, 0, -nr_pages); 1697 swap_free_nr(folio->swap, nr_pages); 1698 } 1699 1700 /* 1701 * The delete_from_swap_cache() below could be left for 1702 * shrink_folio_list()'s folio_free_swap() to dispose of; 1703 * but I'm a little nervous about letting this folio out of 1704 * shmem_writeout() in a hybrid half-tmpfs-half-swap state 1705 * e.g. folio_mapping(folio) might give an unexpected answer. 1706 */ 1707 delete_from_swap_cache(folio); 1708 goto redirty; 1709 } 1710 if (nr_pages > 1) 1711 goto try_split; 1712 redirty: 1713 folio_mark_dirty(folio); 1714 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1715 } 1716 EXPORT_SYMBOL_GPL(shmem_writeout); 1717 1718 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1719 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1720 { 1721 char buffer[64]; 1722 1723 if (!mpol || mpol->mode == MPOL_DEFAULT) 1724 return; /* show nothing */ 1725 1726 mpol_to_str(buffer, sizeof(buffer), mpol); 1727 1728 seq_printf(seq, ",mpol=%s", buffer); 1729 } 1730 1731 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1732 { 1733 struct mempolicy *mpol = NULL; 1734 if (sbinfo->mpol) { 1735 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1736 mpol = sbinfo->mpol; 1737 mpol_get(mpol); 1738 raw_spin_unlock(&sbinfo->stat_lock); 1739 } 1740 return mpol; 1741 } 1742 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1743 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1744 { 1745 } 1746 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1747 { 1748 return NULL; 1749 } 1750 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1751 1752 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1753 pgoff_t index, unsigned int order, pgoff_t *ilx); 1754 1755 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1756 struct shmem_inode_info *info, pgoff_t index) 1757 { 1758 struct mempolicy *mpol; 1759 pgoff_t ilx; 1760 struct folio *folio; 1761 1762 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1763 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1764 mpol_cond_put(mpol); 1765 1766 return folio; 1767 } 1768 1769 /* 1770 * Make sure huge_gfp is always more limited than limit_gfp. 1771 * Some of the flags set permissions, while others set limitations. 1772 */ 1773 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1774 { 1775 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1776 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1777 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1778 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1779 1780 /* Allow allocations only from the originally specified zones. */ 1781 result |= zoneflags; 1782 1783 /* 1784 * Minimize the result gfp by taking the union with the deny flags, 1785 * and the intersection of the allow flags. 1786 */ 1787 result |= (limit_gfp & denyflags); 1788 result |= (huge_gfp & limit_gfp) & allowflags; 1789 1790 return result; 1791 } 1792 1793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1794 bool shmem_hpage_pmd_enabled(void) 1795 { 1796 if (shmem_huge == SHMEM_HUGE_DENY) 1797 return false; 1798 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1799 return true; 1800 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1801 return true; 1802 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1803 return true; 1804 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1805 shmem_huge != SHMEM_HUGE_NEVER) 1806 return true; 1807 1808 return false; 1809 } 1810 1811 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1812 struct vm_area_struct *vma, pgoff_t index, 1813 loff_t write_end, bool shmem_huge_force) 1814 { 1815 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1816 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1817 vm_flags_t vm_flags = vma ? vma->vm_flags : 0; 1818 unsigned int global_orders; 1819 1820 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1821 return 0; 1822 1823 global_orders = shmem_huge_global_enabled(inode, index, write_end, 1824 shmem_huge_force, vma, vm_flags); 1825 /* Tmpfs huge pages allocation */ 1826 if (!vma || !vma_is_anon_shmem(vma)) 1827 return global_orders; 1828 1829 /* 1830 * Following the 'deny' semantics of the top level, force the huge 1831 * option off from all mounts. 1832 */ 1833 if (shmem_huge == SHMEM_HUGE_DENY) 1834 return 0; 1835 1836 /* 1837 * Only allow inherit orders if the top-level value is 'force', which 1838 * means non-PMD sized THP can not override 'huge' mount option now. 1839 */ 1840 if (shmem_huge == SHMEM_HUGE_FORCE) 1841 return READ_ONCE(huge_shmem_orders_inherit); 1842 1843 /* Allow mTHP that will be fully within i_size. */ 1844 mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0); 1845 1846 if (vm_flags & VM_HUGEPAGE) 1847 mask |= READ_ONCE(huge_shmem_orders_madvise); 1848 1849 if (global_orders > 0) 1850 mask |= READ_ONCE(huge_shmem_orders_inherit); 1851 1852 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1853 } 1854 1855 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1856 struct address_space *mapping, pgoff_t index, 1857 unsigned long orders) 1858 { 1859 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1860 pgoff_t aligned_index; 1861 unsigned long pages; 1862 int order; 1863 1864 if (vma) { 1865 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1866 if (!orders) 1867 return 0; 1868 } 1869 1870 /* Find the highest order that can add into the page cache */ 1871 order = highest_order(orders); 1872 while (orders) { 1873 pages = 1UL << order; 1874 aligned_index = round_down(index, pages); 1875 /* 1876 * Check for conflict before waiting on a huge allocation. 1877 * Conflict might be that a huge page has just been allocated 1878 * and added to page cache by a racing thread, or that there 1879 * is already at least one small page in the huge extent. 1880 * Be careful to retry when appropriate, but not forever! 1881 * Elsewhere -EEXIST would be the right code, but not here. 1882 */ 1883 if (!xa_find(&mapping->i_pages, &aligned_index, 1884 aligned_index + pages - 1, XA_PRESENT)) 1885 break; 1886 order = next_order(&orders, order); 1887 } 1888 1889 return orders; 1890 } 1891 #else 1892 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1893 struct address_space *mapping, pgoff_t index, 1894 unsigned long orders) 1895 { 1896 return 0; 1897 } 1898 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1899 1900 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1901 struct shmem_inode_info *info, pgoff_t index) 1902 { 1903 struct mempolicy *mpol; 1904 pgoff_t ilx; 1905 struct folio *folio; 1906 1907 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1908 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1909 mpol_cond_put(mpol); 1910 1911 return folio; 1912 } 1913 1914 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1915 gfp_t gfp, struct inode *inode, pgoff_t index, 1916 struct mm_struct *fault_mm, unsigned long orders) 1917 { 1918 struct address_space *mapping = inode->i_mapping; 1919 struct shmem_inode_info *info = SHMEM_I(inode); 1920 unsigned long suitable_orders = 0; 1921 struct folio *folio = NULL; 1922 long pages; 1923 int error, order; 1924 1925 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1926 orders = 0; 1927 1928 if (orders > 0) { 1929 suitable_orders = shmem_suitable_orders(inode, vmf, 1930 mapping, index, orders); 1931 1932 order = highest_order(suitable_orders); 1933 while (suitable_orders) { 1934 pages = 1UL << order; 1935 index = round_down(index, pages); 1936 folio = shmem_alloc_folio(gfp, order, info, index); 1937 if (folio) 1938 goto allocated; 1939 1940 if (pages == HPAGE_PMD_NR) 1941 count_vm_event(THP_FILE_FALLBACK); 1942 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1943 order = next_order(&suitable_orders, order); 1944 } 1945 } else { 1946 pages = 1; 1947 folio = shmem_alloc_folio(gfp, 0, info, index); 1948 } 1949 if (!folio) 1950 return ERR_PTR(-ENOMEM); 1951 1952 allocated: 1953 __folio_set_locked(folio); 1954 __folio_set_swapbacked(folio); 1955 1956 gfp &= GFP_RECLAIM_MASK; 1957 error = mem_cgroup_charge(folio, fault_mm, gfp); 1958 if (error) { 1959 if (xa_find(&mapping->i_pages, &index, 1960 index + pages - 1, XA_PRESENT)) { 1961 error = -EEXIST; 1962 } else if (pages > 1) { 1963 if (pages == HPAGE_PMD_NR) { 1964 count_vm_event(THP_FILE_FALLBACK); 1965 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1966 } 1967 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1968 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1969 } 1970 goto unlock; 1971 } 1972 1973 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1974 if (error) 1975 goto unlock; 1976 1977 error = shmem_inode_acct_blocks(inode, pages); 1978 if (error) { 1979 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1980 long freed; 1981 /* 1982 * Try to reclaim some space by splitting a few 1983 * large folios beyond i_size on the filesystem. 1984 */ 1985 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1986 /* 1987 * And do a shmem_recalc_inode() to account for freed pages: 1988 * except our folio is there in cache, so not quite balanced. 1989 */ 1990 spin_lock(&info->lock); 1991 freed = pages + info->alloced - info->swapped - 1992 READ_ONCE(mapping->nrpages); 1993 if (freed > 0) 1994 info->alloced -= freed; 1995 spin_unlock(&info->lock); 1996 if (freed > 0) 1997 shmem_inode_unacct_blocks(inode, freed); 1998 error = shmem_inode_acct_blocks(inode, pages); 1999 if (error) { 2000 filemap_remove_folio(folio); 2001 goto unlock; 2002 } 2003 } 2004 2005 shmem_recalc_inode(inode, pages, 0); 2006 folio_add_lru(folio); 2007 return folio; 2008 2009 unlock: 2010 folio_unlock(folio); 2011 folio_put(folio); 2012 return ERR_PTR(error); 2013 } 2014 2015 static struct folio *shmem_swap_alloc_folio(struct inode *inode, 2016 struct vm_area_struct *vma, pgoff_t index, 2017 swp_entry_t entry, int order, gfp_t gfp) 2018 { 2019 struct shmem_inode_info *info = SHMEM_I(inode); 2020 int nr_pages = 1 << order; 2021 struct folio *new; 2022 gfp_t alloc_gfp; 2023 void *shadow; 2024 2025 /* 2026 * We have arrived here because our zones are constrained, so don't 2027 * limit chance of success with further cpuset and node constraints. 2028 */ 2029 gfp &= ~GFP_CONSTRAINT_MASK; 2030 alloc_gfp = gfp; 2031 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 2032 if (WARN_ON_ONCE(order)) 2033 return ERR_PTR(-EINVAL); 2034 } else if (order) { 2035 /* 2036 * If uffd is active for the vma, we need per-page fault 2037 * fidelity to maintain the uffd semantics, then fallback 2038 * to swapin order-0 folio, as well as for zswap case. 2039 * Any existing sub folio in the swap cache also blocks 2040 * mTHP swapin. 2041 */ 2042 if ((vma && unlikely(userfaultfd_armed(vma))) || 2043 !zswap_never_enabled() || 2044 non_swapcache_batch(entry, nr_pages) != nr_pages) 2045 goto fallback; 2046 2047 alloc_gfp = limit_gfp_mask(vma_thp_gfp_mask(vma), gfp); 2048 } 2049 retry: 2050 new = shmem_alloc_folio(alloc_gfp, order, info, index); 2051 if (!new) { 2052 new = ERR_PTR(-ENOMEM); 2053 goto fallback; 2054 } 2055 2056 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL, 2057 alloc_gfp, entry)) { 2058 folio_put(new); 2059 new = ERR_PTR(-ENOMEM); 2060 goto fallback; 2061 } 2062 2063 /* 2064 * Prevent parallel swapin from proceeding with the swap cache flag. 2065 * 2066 * Of course there is another possible concurrent scenario as well, 2067 * that is to say, the swap cache flag of a large folio has already 2068 * been set by swapcache_prepare(), while another thread may have 2069 * already split the large swap entry stored in the shmem mapping. 2070 * In this case, shmem_add_to_page_cache() will help identify the 2071 * concurrent swapin and return -EEXIST. 2072 */ 2073 if (swapcache_prepare(entry, nr_pages)) { 2074 folio_put(new); 2075 new = ERR_PTR(-EEXIST); 2076 /* Try smaller folio to avoid cache conflict */ 2077 goto fallback; 2078 } 2079 2080 __folio_set_locked(new); 2081 __folio_set_swapbacked(new); 2082 new->swap = entry; 2083 2084 memcg1_swapin(entry, nr_pages); 2085 shadow = get_shadow_from_swap_cache(entry); 2086 if (shadow) 2087 workingset_refault(new, shadow); 2088 folio_add_lru(new); 2089 swap_read_folio(new, NULL); 2090 return new; 2091 fallback: 2092 /* Order 0 swapin failed, nothing to fallback to, abort */ 2093 if (!order) 2094 return new; 2095 entry.val += index - round_down(index, nr_pages); 2096 alloc_gfp = gfp; 2097 nr_pages = 1; 2098 order = 0; 2099 goto retry; 2100 } 2101 2102 /* 2103 * When a page is moved from swapcache to shmem filecache (either by the 2104 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 2105 * shmem_unuse_inode()), it may have been read in earlier from swap, in 2106 * ignorance of the mapping it belongs to. If that mapping has special 2107 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 2108 * we may need to copy to a suitable page before moving to filecache. 2109 * 2110 * In a future release, this may well be extended to respect cpuset and 2111 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 2112 * but for now it is a simple matter of zone. 2113 */ 2114 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 2115 { 2116 return folio_zonenum(folio) > gfp_zone(gfp); 2117 } 2118 2119 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 2120 struct shmem_inode_info *info, pgoff_t index, 2121 struct vm_area_struct *vma) 2122 { 2123 struct folio *new, *old = *foliop; 2124 swp_entry_t entry = old->swap; 2125 struct address_space *swap_mapping = swap_address_space(entry); 2126 pgoff_t swap_index = swap_cache_index(entry); 2127 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 2128 int nr_pages = folio_nr_pages(old); 2129 int error = 0, i; 2130 2131 /* 2132 * We have arrived here because our zones are constrained, so don't 2133 * limit chance of success by further cpuset and node constraints. 2134 */ 2135 gfp &= ~GFP_CONSTRAINT_MASK; 2136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2137 if (nr_pages > 1) { 2138 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 2139 2140 gfp = limit_gfp_mask(huge_gfp, gfp); 2141 } 2142 #endif 2143 2144 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 2145 if (!new) 2146 return -ENOMEM; 2147 2148 folio_ref_add(new, nr_pages); 2149 folio_copy(new, old); 2150 flush_dcache_folio(new); 2151 2152 __folio_set_locked(new); 2153 __folio_set_swapbacked(new); 2154 folio_mark_uptodate(new); 2155 new->swap = entry; 2156 folio_set_swapcache(new); 2157 2158 /* Swap cache still stores N entries instead of a high-order entry */ 2159 xa_lock_irq(&swap_mapping->i_pages); 2160 for (i = 0; i < nr_pages; i++) { 2161 void *item = xas_load(&xas); 2162 2163 if (item != old) { 2164 error = -ENOENT; 2165 break; 2166 } 2167 2168 xas_store(&xas, new); 2169 xas_next(&xas); 2170 } 2171 if (!error) { 2172 mem_cgroup_replace_folio(old, new); 2173 shmem_update_stats(new, nr_pages); 2174 shmem_update_stats(old, -nr_pages); 2175 } 2176 xa_unlock_irq(&swap_mapping->i_pages); 2177 2178 if (unlikely(error)) { 2179 /* 2180 * Is this possible? I think not, now that our callers 2181 * check both the swapcache flag and folio->private 2182 * after getting the folio lock; but be defensive. 2183 * Reverse old to newpage for clear and free. 2184 */ 2185 old = new; 2186 } else { 2187 folio_add_lru(new); 2188 *foliop = new; 2189 } 2190 2191 folio_clear_swapcache(old); 2192 old->private = NULL; 2193 2194 folio_unlock(old); 2195 /* 2196 * The old folio are removed from swap cache, drop the 'nr_pages' 2197 * reference, as well as one temporary reference getting from swap 2198 * cache. 2199 */ 2200 folio_put_refs(old, nr_pages + 1); 2201 return error; 2202 } 2203 2204 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2205 struct folio *folio, swp_entry_t swap, 2206 bool skip_swapcache) 2207 { 2208 struct address_space *mapping = inode->i_mapping; 2209 swp_entry_t swapin_error; 2210 void *old; 2211 int nr_pages; 2212 2213 swapin_error = make_poisoned_swp_entry(); 2214 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2215 swp_to_radix_entry(swap), 2216 swp_to_radix_entry(swapin_error), 0); 2217 if (old != swp_to_radix_entry(swap)) 2218 return; 2219 2220 nr_pages = folio_nr_pages(folio); 2221 folio_wait_writeback(folio); 2222 if (!skip_swapcache) 2223 delete_from_swap_cache(folio); 2224 /* 2225 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2226 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2227 * in shmem_evict_inode(). 2228 */ 2229 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2230 swap_free_nr(swap, nr_pages); 2231 } 2232 2233 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2234 swp_entry_t swap, gfp_t gfp) 2235 { 2236 struct address_space *mapping = inode->i_mapping; 2237 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2238 int split_order = 0, entry_order; 2239 int i; 2240 2241 /* Convert user data gfp flags to xarray node gfp flags */ 2242 gfp &= GFP_RECLAIM_MASK; 2243 2244 for (;;) { 2245 void *old = NULL; 2246 int cur_order; 2247 pgoff_t swap_index; 2248 2249 xas_lock_irq(&xas); 2250 old = xas_load(&xas); 2251 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2252 xas_set_err(&xas, -EEXIST); 2253 goto unlock; 2254 } 2255 2256 entry_order = xas_get_order(&xas); 2257 2258 if (!entry_order) 2259 goto unlock; 2260 2261 /* Try to split large swap entry in pagecache */ 2262 cur_order = entry_order; 2263 swap_index = round_down(index, 1 << entry_order); 2264 2265 split_order = xas_try_split_min_order(cur_order); 2266 2267 while (cur_order > 0) { 2268 pgoff_t aligned_index = 2269 round_down(index, 1 << cur_order); 2270 pgoff_t swap_offset = aligned_index - swap_index; 2271 2272 xas_set_order(&xas, index, split_order); 2273 xas_try_split(&xas, old, cur_order); 2274 if (xas_error(&xas)) 2275 goto unlock; 2276 2277 /* 2278 * Re-set the swap entry after splitting, and the swap 2279 * offset of the original large entry must be continuous. 2280 */ 2281 for (i = 0; i < 1 << cur_order; 2282 i += (1 << split_order)) { 2283 swp_entry_t tmp; 2284 2285 tmp = swp_entry(swp_type(swap), 2286 swp_offset(swap) + swap_offset + 2287 i); 2288 __xa_store(&mapping->i_pages, aligned_index + i, 2289 swp_to_radix_entry(tmp), 0); 2290 } 2291 cur_order = split_order; 2292 split_order = xas_try_split_min_order(split_order); 2293 } 2294 2295 unlock: 2296 xas_unlock_irq(&xas); 2297 2298 if (!xas_nomem(&xas, gfp)) 2299 break; 2300 } 2301 2302 if (xas_error(&xas)) 2303 return xas_error(&xas); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * Swap in the folio pointed to by *foliop. 2310 * Caller has to make sure that *foliop contains a valid swapped folio. 2311 * Returns 0 and the folio in foliop if success. On failure, returns the 2312 * error code and NULL in *foliop. 2313 */ 2314 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2315 struct folio **foliop, enum sgp_type sgp, 2316 gfp_t gfp, struct vm_area_struct *vma, 2317 vm_fault_t *fault_type) 2318 { 2319 struct address_space *mapping = inode->i_mapping; 2320 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2321 struct shmem_inode_info *info = SHMEM_I(inode); 2322 swp_entry_t swap, index_entry; 2323 struct swap_info_struct *si; 2324 struct folio *folio = NULL; 2325 bool skip_swapcache = false; 2326 int error, nr_pages, order; 2327 pgoff_t offset; 2328 2329 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2330 index_entry = radix_to_swp_entry(*foliop); 2331 swap = index_entry; 2332 *foliop = NULL; 2333 2334 if (is_poisoned_swp_entry(index_entry)) 2335 return -EIO; 2336 2337 si = get_swap_device(index_entry); 2338 order = shmem_confirm_swap(mapping, index, index_entry); 2339 if (unlikely(!si)) { 2340 if (order < 0) 2341 return -EEXIST; 2342 else 2343 return -EINVAL; 2344 } 2345 if (unlikely(order < 0)) { 2346 put_swap_device(si); 2347 return -EEXIST; 2348 } 2349 2350 /* index may point to the middle of a large entry, get the sub entry */ 2351 if (order) { 2352 offset = index - round_down(index, 1 << order); 2353 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2354 } 2355 2356 /* Look it up and read it in.. */ 2357 folio = swap_cache_get_folio(swap, NULL, 0); 2358 if (!folio) { 2359 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) { 2360 /* Direct swapin skipping swap cache & readahead */ 2361 folio = shmem_swap_alloc_folio(inode, vma, index, 2362 index_entry, order, gfp); 2363 if (IS_ERR(folio)) { 2364 error = PTR_ERR(folio); 2365 folio = NULL; 2366 goto failed; 2367 } 2368 skip_swapcache = true; 2369 } else { 2370 /* Cached swapin only supports order 0 folio */ 2371 folio = shmem_swapin_cluster(swap, gfp, info, index); 2372 if (!folio) { 2373 error = -ENOMEM; 2374 goto failed; 2375 } 2376 } 2377 if (fault_type) { 2378 *fault_type |= VM_FAULT_MAJOR; 2379 count_vm_event(PGMAJFAULT); 2380 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2381 } 2382 } 2383 2384 if (order > folio_order(folio)) { 2385 /* 2386 * Swapin may get smaller folios due to various reasons: 2387 * It may fallback to order 0 due to memory pressure or race, 2388 * swap readahead may swap in order 0 folios into swapcache 2389 * asynchronously, while the shmem mapping can still stores 2390 * large swap entries. In such cases, we should split the 2391 * large swap entry to prevent possible data corruption. 2392 */ 2393 error = shmem_split_large_entry(inode, index, index_entry, gfp); 2394 if (error) 2395 goto failed_nolock; 2396 } 2397 2398 /* 2399 * If the folio is large, round down swap and index by folio size. 2400 * No matter what race occurs, the swap layer ensures we either get 2401 * a valid folio that has its swap entry aligned by size, or a 2402 * temporarily invalid one which we'll abort very soon and retry. 2403 * 2404 * shmem_add_to_page_cache ensures the whole range contains expected 2405 * entries and prevents any corruption, so any race split is fine 2406 * too, it will succeed as long as the entries are still there. 2407 */ 2408 nr_pages = folio_nr_pages(folio); 2409 if (nr_pages > 1) { 2410 swap.val = round_down(swap.val, nr_pages); 2411 index = round_down(index, nr_pages); 2412 } 2413 2414 /* 2415 * We have to do this with the folio locked to prevent races. 2416 * The shmem_confirm_swap below only checks if the first swap 2417 * entry matches the folio, that's enough to ensure the folio 2418 * is not used outside of shmem, as shmem swap entries 2419 * and swap cache folios are never partially freed. 2420 */ 2421 folio_lock(folio); 2422 if ((!skip_swapcache && !folio_test_swapcache(folio)) || 2423 shmem_confirm_swap(mapping, index, swap) < 0 || 2424 folio->swap.val != swap.val) { 2425 error = -EEXIST; 2426 goto unlock; 2427 } 2428 if (!folio_test_uptodate(folio)) { 2429 error = -EIO; 2430 goto failed; 2431 } 2432 folio_wait_writeback(folio); 2433 nr_pages = folio_nr_pages(folio); 2434 2435 /* 2436 * Some architectures may have to restore extra metadata to the 2437 * folio after reading from swap. 2438 */ 2439 arch_swap_restore(folio_swap(swap, folio), folio); 2440 2441 if (shmem_should_replace_folio(folio, gfp)) { 2442 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2443 if (error) 2444 goto failed; 2445 } 2446 2447 error = shmem_add_to_page_cache(folio, mapping, index, 2448 swp_to_radix_entry(swap), gfp); 2449 if (error) 2450 goto failed; 2451 2452 shmem_recalc_inode(inode, 0, -nr_pages); 2453 2454 if (sgp == SGP_WRITE) 2455 folio_mark_accessed(folio); 2456 2457 if (skip_swapcache) { 2458 folio->swap.val = 0; 2459 swapcache_clear(si, swap, nr_pages); 2460 } else { 2461 delete_from_swap_cache(folio); 2462 } 2463 folio_mark_dirty(folio); 2464 swap_free_nr(swap, nr_pages); 2465 put_swap_device(si); 2466 2467 *foliop = folio; 2468 return 0; 2469 failed: 2470 if (shmem_confirm_swap(mapping, index, swap) < 0) 2471 error = -EEXIST; 2472 if (error == -EIO) 2473 shmem_set_folio_swapin_error(inode, index, folio, swap, 2474 skip_swapcache); 2475 unlock: 2476 if (folio) 2477 folio_unlock(folio); 2478 failed_nolock: 2479 if (skip_swapcache) 2480 swapcache_clear(si, folio->swap, folio_nr_pages(folio)); 2481 if (folio) 2482 folio_put(folio); 2483 put_swap_device(si); 2484 2485 return error; 2486 } 2487 2488 /* 2489 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2490 * 2491 * If we allocate a new one we do not mark it dirty. That's up to the 2492 * vm. If we swap it in we mark it dirty since we also free the swap 2493 * entry since a page cannot live in both the swap and page cache. 2494 * 2495 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2496 */ 2497 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2498 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2499 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2500 { 2501 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2502 struct mm_struct *fault_mm; 2503 struct folio *folio; 2504 int error; 2505 bool alloced; 2506 unsigned long orders = 0; 2507 2508 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2509 return -EINVAL; 2510 2511 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2512 return -EFBIG; 2513 repeat: 2514 if (sgp <= SGP_CACHE && 2515 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2516 return -EINVAL; 2517 2518 alloced = false; 2519 fault_mm = vma ? vma->vm_mm : NULL; 2520 2521 folio = filemap_get_entry(inode->i_mapping, index); 2522 if (folio && vma && userfaultfd_minor(vma)) { 2523 if (!xa_is_value(folio)) 2524 folio_put(folio); 2525 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2526 return 0; 2527 } 2528 2529 if (xa_is_value(folio)) { 2530 error = shmem_swapin_folio(inode, index, &folio, 2531 sgp, gfp, vma, fault_type); 2532 if (error == -EEXIST) 2533 goto repeat; 2534 2535 *foliop = folio; 2536 return error; 2537 } 2538 2539 if (folio) { 2540 folio_lock(folio); 2541 2542 /* Has the folio been truncated or swapped out? */ 2543 if (unlikely(folio->mapping != inode->i_mapping)) { 2544 folio_unlock(folio); 2545 folio_put(folio); 2546 goto repeat; 2547 } 2548 if (sgp == SGP_WRITE) 2549 folio_mark_accessed(folio); 2550 if (folio_test_uptodate(folio)) 2551 goto out; 2552 /* fallocated folio */ 2553 if (sgp != SGP_READ) 2554 goto clear; 2555 folio_unlock(folio); 2556 folio_put(folio); 2557 } 2558 2559 /* 2560 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2561 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2562 */ 2563 *foliop = NULL; 2564 if (sgp == SGP_READ) 2565 return 0; 2566 if (sgp == SGP_NOALLOC) 2567 return -ENOENT; 2568 2569 /* 2570 * Fast cache lookup and swap lookup did not find it: allocate. 2571 */ 2572 2573 if (vma && userfaultfd_missing(vma)) { 2574 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2575 return 0; 2576 } 2577 2578 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2579 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2580 if (orders > 0) { 2581 gfp_t huge_gfp; 2582 2583 huge_gfp = vma_thp_gfp_mask(vma); 2584 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2585 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2586 inode, index, fault_mm, orders); 2587 if (!IS_ERR(folio)) { 2588 if (folio_test_pmd_mappable(folio)) 2589 count_vm_event(THP_FILE_ALLOC); 2590 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2591 goto alloced; 2592 } 2593 if (PTR_ERR(folio) == -EEXIST) 2594 goto repeat; 2595 } 2596 2597 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2598 if (IS_ERR(folio)) { 2599 error = PTR_ERR(folio); 2600 if (error == -EEXIST) 2601 goto repeat; 2602 folio = NULL; 2603 goto unlock; 2604 } 2605 2606 alloced: 2607 alloced = true; 2608 if (folio_test_large(folio) && 2609 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2610 folio_next_index(folio)) { 2611 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2612 struct shmem_inode_info *info = SHMEM_I(inode); 2613 /* 2614 * Part of the large folio is beyond i_size: subject 2615 * to shrink under memory pressure. 2616 */ 2617 spin_lock(&sbinfo->shrinklist_lock); 2618 /* 2619 * _careful to defend against unlocked access to 2620 * ->shrink_list in shmem_unused_huge_shrink() 2621 */ 2622 if (list_empty_careful(&info->shrinklist)) { 2623 list_add_tail(&info->shrinklist, 2624 &sbinfo->shrinklist); 2625 sbinfo->shrinklist_len++; 2626 } 2627 spin_unlock(&sbinfo->shrinklist_lock); 2628 } 2629 2630 if (sgp == SGP_WRITE) 2631 folio_set_referenced(folio); 2632 /* 2633 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2634 */ 2635 if (sgp == SGP_FALLOC) 2636 sgp = SGP_WRITE; 2637 clear: 2638 /* 2639 * Let SGP_WRITE caller clear ends if write does not fill folio; 2640 * but SGP_FALLOC on a folio fallocated earlier must initialize 2641 * it now, lest undo on failure cancel our earlier guarantee. 2642 */ 2643 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2644 long i, n = folio_nr_pages(folio); 2645 2646 for (i = 0; i < n; i++) 2647 clear_highpage(folio_page(folio, i)); 2648 flush_dcache_folio(folio); 2649 folio_mark_uptodate(folio); 2650 } 2651 2652 /* Perhaps the file has been truncated since we checked */ 2653 if (sgp <= SGP_CACHE && 2654 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2655 error = -EINVAL; 2656 goto unlock; 2657 } 2658 out: 2659 *foliop = folio; 2660 return 0; 2661 2662 /* 2663 * Error recovery. 2664 */ 2665 unlock: 2666 if (alloced) 2667 filemap_remove_folio(folio); 2668 shmem_recalc_inode(inode, 0, 0); 2669 if (folio) { 2670 folio_unlock(folio); 2671 folio_put(folio); 2672 } 2673 return error; 2674 } 2675 2676 /** 2677 * shmem_get_folio - find, and lock a shmem folio. 2678 * @inode: inode to search 2679 * @index: the page index. 2680 * @write_end: end of a write, could extend inode size 2681 * @foliop: pointer to the folio if found 2682 * @sgp: SGP_* flags to control behavior 2683 * 2684 * Looks up the page cache entry at @inode & @index. If a folio is 2685 * present, it is returned locked with an increased refcount. 2686 * 2687 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2688 * before unlocking the folio to ensure that the folio is not reclaimed. 2689 * There is no need to reserve space before calling folio_mark_dirty(). 2690 * 2691 * When no folio is found, the behavior depends on @sgp: 2692 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2693 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2694 * - for all other flags a new folio is allocated, inserted into the 2695 * page cache and returned locked in @foliop. 2696 * 2697 * Context: May sleep. 2698 * Return: 0 if successful, else a negative error code. 2699 */ 2700 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2701 struct folio **foliop, enum sgp_type sgp) 2702 { 2703 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2704 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2705 } 2706 EXPORT_SYMBOL_GPL(shmem_get_folio); 2707 2708 /* 2709 * This is like autoremove_wake_function, but it removes the wait queue 2710 * entry unconditionally - even if something else had already woken the 2711 * target. 2712 */ 2713 static int synchronous_wake_function(wait_queue_entry_t *wait, 2714 unsigned int mode, int sync, void *key) 2715 { 2716 int ret = default_wake_function(wait, mode, sync, key); 2717 list_del_init(&wait->entry); 2718 return ret; 2719 } 2720 2721 /* 2722 * Trinity finds that probing a hole which tmpfs is punching can 2723 * prevent the hole-punch from ever completing: which in turn 2724 * locks writers out with its hold on i_rwsem. So refrain from 2725 * faulting pages into the hole while it's being punched. Although 2726 * shmem_undo_range() does remove the additions, it may be unable to 2727 * keep up, as each new page needs its own unmap_mapping_range() call, 2728 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2729 * 2730 * It does not matter if we sometimes reach this check just before the 2731 * hole-punch begins, so that one fault then races with the punch: 2732 * we just need to make racing faults a rare case. 2733 * 2734 * The implementation below would be much simpler if we just used a 2735 * standard mutex or completion: but we cannot take i_rwsem in fault, 2736 * and bloating every shmem inode for this unlikely case would be sad. 2737 */ 2738 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2739 { 2740 struct shmem_falloc *shmem_falloc; 2741 struct file *fpin = NULL; 2742 vm_fault_t ret = 0; 2743 2744 spin_lock(&inode->i_lock); 2745 shmem_falloc = inode->i_private; 2746 if (shmem_falloc && 2747 shmem_falloc->waitq && 2748 vmf->pgoff >= shmem_falloc->start && 2749 vmf->pgoff < shmem_falloc->next) { 2750 wait_queue_head_t *shmem_falloc_waitq; 2751 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2752 2753 ret = VM_FAULT_NOPAGE; 2754 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2755 shmem_falloc_waitq = shmem_falloc->waitq; 2756 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2757 TASK_UNINTERRUPTIBLE); 2758 spin_unlock(&inode->i_lock); 2759 schedule(); 2760 2761 /* 2762 * shmem_falloc_waitq points into the shmem_fallocate() 2763 * stack of the hole-punching task: shmem_falloc_waitq 2764 * is usually invalid by the time we reach here, but 2765 * finish_wait() does not dereference it in that case; 2766 * though i_lock needed lest racing with wake_up_all(). 2767 */ 2768 spin_lock(&inode->i_lock); 2769 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2770 } 2771 spin_unlock(&inode->i_lock); 2772 if (fpin) { 2773 fput(fpin); 2774 ret = VM_FAULT_RETRY; 2775 } 2776 return ret; 2777 } 2778 2779 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2780 { 2781 struct inode *inode = file_inode(vmf->vma->vm_file); 2782 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2783 struct folio *folio = NULL; 2784 vm_fault_t ret = 0; 2785 int err; 2786 2787 /* 2788 * Trinity finds that probing a hole which tmpfs is punching can 2789 * prevent the hole-punch from ever completing: noted in i_private. 2790 */ 2791 if (unlikely(inode->i_private)) { 2792 ret = shmem_falloc_wait(vmf, inode); 2793 if (ret) 2794 return ret; 2795 } 2796 2797 WARN_ON_ONCE(vmf->page != NULL); 2798 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2799 gfp, vmf, &ret); 2800 if (err) 2801 return vmf_error(err); 2802 if (folio) { 2803 vmf->page = folio_file_page(folio, vmf->pgoff); 2804 ret |= VM_FAULT_LOCKED; 2805 } 2806 return ret; 2807 } 2808 2809 unsigned long shmem_get_unmapped_area(struct file *file, 2810 unsigned long uaddr, unsigned long len, 2811 unsigned long pgoff, unsigned long flags) 2812 { 2813 unsigned long addr; 2814 unsigned long offset; 2815 unsigned long inflated_len; 2816 unsigned long inflated_addr; 2817 unsigned long inflated_offset; 2818 unsigned long hpage_size; 2819 2820 if (len > TASK_SIZE) 2821 return -ENOMEM; 2822 2823 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2824 flags); 2825 2826 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2827 return addr; 2828 if (IS_ERR_VALUE(addr)) 2829 return addr; 2830 if (addr & ~PAGE_MASK) 2831 return addr; 2832 if (addr > TASK_SIZE - len) 2833 return addr; 2834 2835 if (shmem_huge == SHMEM_HUGE_DENY) 2836 return addr; 2837 if (flags & MAP_FIXED) 2838 return addr; 2839 /* 2840 * Our priority is to support MAP_SHARED mapped hugely; 2841 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2842 * But if caller specified an address hint and we allocated area there 2843 * successfully, respect that as before. 2844 */ 2845 if (uaddr == addr) 2846 return addr; 2847 2848 hpage_size = HPAGE_PMD_SIZE; 2849 if (shmem_huge != SHMEM_HUGE_FORCE) { 2850 struct super_block *sb; 2851 unsigned long __maybe_unused hpage_orders; 2852 int order = 0; 2853 2854 if (file) { 2855 VM_BUG_ON(file->f_op != &shmem_file_operations); 2856 sb = file_inode(file)->i_sb; 2857 } else { 2858 /* 2859 * Called directly from mm/mmap.c, or drivers/char/mem.c 2860 * for "/dev/zero", to create a shared anonymous object. 2861 */ 2862 if (IS_ERR(shm_mnt)) 2863 return addr; 2864 sb = shm_mnt->mnt_sb; 2865 2866 /* 2867 * Find the highest mTHP order used for anonymous shmem to 2868 * provide a suitable alignment address. 2869 */ 2870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2871 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2872 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2873 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2874 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2875 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2876 2877 if (hpage_orders > 0) { 2878 order = highest_order(hpage_orders); 2879 hpage_size = PAGE_SIZE << order; 2880 } 2881 #endif 2882 } 2883 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2884 return addr; 2885 } 2886 2887 if (len < hpage_size) 2888 return addr; 2889 2890 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2891 if (offset && offset + len < 2 * hpage_size) 2892 return addr; 2893 if ((addr & (hpage_size - 1)) == offset) 2894 return addr; 2895 2896 inflated_len = len + hpage_size - PAGE_SIZE; 2897 if (inflated_len > TASK_SIZE) 2898 return addr; 2899 if (inflated_len < len) 2900 return addr; 2901 2902 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2903 inflated_len, 0, flags); 2904 if (IS_ERR_VALUE(inflated_addr)) 2905 return addr; 2906 if (inflated_addr & ~PAGE_MASK) 2907 return addr; 2908 2909 inflated_offset = inflated_addr & (hpage_size - 1); 2910 inflated_addr += offset - inflated_offset; 2911 if (inflated_offset > offset) 2912 inflated_addr += hpage_size; 2913 2914 if (inflated_addr > TASK_SIZE - len) 2915 return addr; 2916 return inflated_addr; 2917 } 2918 2919 #ifdef CONFIG_NUMA 2920 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2921 { 2922 struct inode *inode = file_inode(vma->vm_file); 2923 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2924 } 2925 2926 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2927 unsigned long addr, pgoff_t *ilx) 2928 { 2929 struct inode *inode = file_inode(vma->vm_file); 2930 pgoff_t index; 2931 2932 /* 2933 * Bias interleave by inode number to distribute better across nodes; 2934 * but this interface is independent of which page order is used, so 2935 * supplies only that bias, letting caller apply the offset (adjusted 2936 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2937 */ 2938 *ilx = inode->i_ino; 2939 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2940 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2941 } 2942 2943 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2944 pgoff_t index, unsigned int order, pgoff_t *ilx) 2945 { 2946 struct mempolicy *mpol; 2947 2948 /* Bias interleave by inode number to distribute better across nodes */ 2949 *ilx = info->vfs_inode.i_ino + (index >> order); 2950 2951 mpol = mpol_shared_policy_lookup(&info->policy, index); 2952 return mpol ? mpol : get_task_policy(current); 2953 } 2954 #else 2955 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2956 pgoff_t index, unsigned int order, pgoff_t *ilx) 2957 { 2958 *ilx = 0; 2959 return NULL; 2960 } 2961 #endif /* CONFIG_NUMA */ 2962 2963 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2964 { 2965 struct inode *inode = file_inode(file); 2966 struct shmem_inode_info *info = SHMEM_I(inode); 2967 int retval = -ENOMEM; 2968 2969 /* 2970 * What serializes the accesses to info->flags? 2971 * ipc_lock_object() when called from shmctl_do_lock(), 2972 * no serialization needed when called from shm_destroy(). 2973 */ 2974 if (lock && !(info->flags & VM_LOCKED)) { 2975 if (!user_shm_lock(inode->i_size, ucounts)) 2976 goto out_nomem; 2977 info->flags |= VM_LOCKED; 2978 mapping_set_unevictable(file->f_mapping); 2979 } 2980 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2981 user_shm_unlock(inode->i_size, ucounts); 2982 info->flags &= ~VM_LOCKED; 2983 mapping_clear_unevictable(file->f_mapping); 2984 } 2985 retval = 0; 2986 2987 out_nomem: 2988 return retval; 2989 } 2990 2991 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2992 { 2993 struct inode *inode = file_inode(file); 2994 2995 file_accessed(file); 2996 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2997 if (inode->i_nlink) 2998 vma->vm_ops = &shmem_vm_ops; 2999 else 3000 vma->vm_ops = &shmem_anon_vm_ops; 3001 return 0; 3002 } 3003 3004 static int shmem_file_open(struct inode *inode, struct file *file) 3005 { 3006 file->f_mode |= FMODE_CAN_ODIRECT; 3007 return generic_file_open(inode, file); 3008 } 3009 3010 #ifdef CONFIG_TMPFS_XATTR 3011 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 3012 3013 #if IS_ENABLED(CONFIG_UNICODE) 3014 /* 3015 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 3016 * 3017 * The casefold file attribute needs some special checks. I can just be added to 3018 * an empty dir, and can't be removed from a non-empty dir. 3019 */ 3020 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3021 struct dentry *dentry, unsigned int *i_flags) 3022 { 3023 unsigned int old = inode->i_flags; 3024 struct super_block *sb = inode->i_sb; 3025 3026 if (fsflags & FS_CASEFOLD_FL) { 3027 if (!(old & S_CASEFOLD)) { 3028 if (!sb->s_encoding) 3029 return -EOPNOTSUPP; 3030 3031 if (!S_ISDIR(inode->i_mode)) 3032 return -ENOTDIR; 3033 3034 if (dentry && !simple_empty(dentry)) 3035 return -ENOTEMPTY; 3036 } 3037 3038 *i_flags = *i_flags | S_CASEFOLD; 3039 } else if (old & S_CASEFOLD) { 3040 if (dentry && !simple_empty(dentry)) 3041 return -ENOTEMPTY; 3042 } 3043 3044 return 0; 3045 } 3046 #else 3047 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 3048 struct dentry *dentry, unsigned int *i_flags) 3049 { 3050 if (fsflags & FS_CASEFOLD_FL) 3051 return -EOPNOTSUPP; 3052 3053 return 0; 3054 } 3055 #endif 3056 3057 /* 3058 * chattr's fsflags are unrelated to extended attributes, 3059 * but tmpfs has chosen to enable them under the same config option. 3060 */ 3061 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3062 { 3063 unsigned int i_flags = 0; 3064 int ret; 3065 3066 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 3067 if (ret) 3068 return ret; 3069 3070 if (fsflags & FS_NOATIME_FL) 3071 i_flags |= S_NOATIME; 3072 if (fsflags & FS_APPEND_FL) 3073 i_flags |= S_APPEND; 3074 if (fsflags & FS_IMMUTABLE_FL) 3075 i_flags |= S_IMMUTABLE; 3076 /* 3077 * But FS_NODUMP_FL does not require any action in i_flags. 3078 */ 3079 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 3080 3081 return 0; 3082 } 3083 #else 3084 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 3085 { 3086 } 3087 #define shmem_initxattrs NULL 3088 #endif 3089 3090 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 3091 { 3092 return &SHMEM_I(inode)->dir_offsets; 3093 } 3094 3095 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 3096 struct super_block *sb, 3097 struct inode *dir, umode_t mode, 3098 dev_t dev, unsigned long flags) 3099 { 3100 struct inode *inode; 3101 struct shmem_inode_info *info; 3102 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3103 ino_t ino; 3104 int err; 3105 3106 err = shmem_reserve_inode(sb, &ino); 3107 if (err) 3108 return ERR_PTR(err); 3109 3110 inode = new_inode(sb); 3111 if (!inode) { 3112 shmem_free_inode(sb, 0); 3113 return ERR_PTR(-ENOSPC); 3114 } 3115 3116 inode->i_ino = ino; 3117 inode_init_owner(idmap, inode, dir, mode); 3118 inode->i_blocks = 0; 3119 simple_inode_init_ts(inode); 3120 inode->i_generation = get_random_u32(); 3121 info = SHMEM_I(inode); 3122 memset(info, 0, (char *)inode - (char *)info); 3123 spin_lock_init(&info->lock); 3124 atomic_set(&info->stop_eviction, 0); 3125 info->seals = F_SEAL_SEAL; 3126 info->flags = flags & VM_NORESERVE; 3127 info->i_crtime = inode_get_mtime(inode); 3128 info->fsflags = (dir == NULL) ? 0 : 3129 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 3130 if (info->fsflags) 3131 shmem_set_inode_flags(inode, info->fsflags, NULL); 3132 INIT_LIST_HEAD(&info->shrinklist); 3133 INIT_LIST_HEAD(&info->swaplist); 3134 simple_xattrs_init(&info->xattrs); 3135 cache_no_acl(inode); 3136 if (sbinfo->noswap) 3137 mapping_set_unevictable(inode->i_mapping); 3138 3139 /* Don't consider 'deny' for emergencies and 'force' for testing */ 3140 if (sbinfo->huge) 3141 mapping_set_large_folios(inode->i_mapping); 3142 3143 switch (mode & S_IFMT) { 3144 default: 3145 inode->i_op = &shmem_special_inode_operations; 3146 init_special_inode(inode, mode, dev); 3147 break; 3148 case S_IFREG: 3149 inode->i_mapping->a_ops = &shmem_aops; 3150 inode->i_op = &shmem_inode_operations; 3151 inode->i_fop = &shmem_file_operations; 3152 mpol_shared_policy_init(&info->policy, 3153 shmem_get_sbmpol(sbinfo)); 3154 break; 3155 case S_IFDIR: 3156 inc_nlink(inode); 3157 /* Some things misbehave if size == 0 on a directory */ 3158 inode->i_size = 2 * BOGO_DIRENT_SIZE; 3159 inode->i_op = &shmem_dir_inode_operations; 3160 inode->i_fop = &simple_offset_dir_operations; 3161 simple_offset_init(shmem_get_offset_ctx(inode)); 3162 break; 3163 case S_IFLNK: 3164 /* 3165 * Must not load anything in the rbtree, 3166 * mpol_free_shared_policy will not be called. 3167 */ 3168 mpol_shared_policy_init(&info->policy, NULL); 3169 break; 3170 } 3171 3172 lockdep_annotate_inode_mutex_key(inode); 3173 return inode; 3174 } 3175 3176 #ifdef CONFIG_TMPFS_QUOTA 3177 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3178 struct super_block *sb, struct inode *dir, 3179 umode_t mode, dev_t dev, unsigned long flags) 3180 { 3181 int err; 3182 struct inode *inode; 3183 3184 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3185 if (IS_ERR(inode)) 3186 return inode; 3187 3188 err = dquot_initialize(inode); 3189 if (err) 3190 goto errout; 3191 3192 err = dquot_alloc_inode(inode); 3193 if (err) { 3194 dquot_drop(inode); 3195 goto errout; 3196 } 3197 return inode; 3198 3199 errout: 3200 inode->i_flags |= S_NOQUOTA; 3201 iput(inode); 3202 return ERR_PTR(err); 3203 } 3204 #else 3205 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 3206 struct super_block *sb, struct inode *dir, 3207 umode_t mode, dev_t dev, unsigned long flags) 3208 { 3209 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 3210 } 3211 #endif /* CONFIG_TMPFS_QUOTA */ 3212 3213 #ifdef CONFIG_USERFAULTFD 3214 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 3215 struct vm_area_struct *dst_vma, 3216 unsigned long dst_addr, 3217 unsigned long src_addr, 3218 uffd_flags_t flags, 3219 struct folio **foliop) 3220 { 3221 struct inode *inode = file_inode(dst_vma->vm_file); 3222 struct shmem_inode_info *info = SHMEM_I(inode); 3223 struct address_space *mapping = inode->i_mapping; 3224 gfp_t gfp = mapping_gfp_mask(mapping); 3225 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 3226 void *page_kaddr; 3227 struct folio *folio; 3228 int ret; 3229 pgoff_t max_off; 3230 3231 if (shmem_inode_acct_blocks(inode, 1)) { 3232 /* 3233 * We may have got a page, returned -ENOENT triggering a retry, 3234 * and now we find ourselves with -ENOMEM. Release the page, to 3235 * avoid a BUG_ON in our caller. 3236 */ 3237 if (unlikely(*foliop)) { 3238 folio_put(*foliop); 3239 *foliop = NULL; 3240 } 3241 return -ENOMEM; 3242 } 3243 3244 if (!*foliop) { 3245 ret = -ENOMEM; 3246 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3247 if (!folio) 3248 goto out_unacct_blocks; 3249 3250 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3251 page_kaddr = kmap_local_folio(folio, 0); 3252 /* 3253 * The read mmap_lock is held here. Despite the 3254 * mmap_lock being read recursive a deadlock is still 3255 * possible if a writer has taken a lock. For example: 3256 * 3257 * process A thread 1 takes read lock on own mmap_lock 3258 * process A thread 2 calls mmap, blocks taking write lock 3259 * process B thread 1 takes page fault, read lock on own mmap lock 3260 * process B thread 2 calls mmap, blocks taking write lock 3261 * process A thread 1 blocks taking read lock on process B 3262 * process B thread 1 blocks taking read lock on process A 3263 * 3264 * Disable page faults to prevent potential deadlock 3265 * and retry the copy outside the mmap_lock. 3266 */ 3267 pagefault_disable(); 3268 ret = copy_from_user(page_kaddr, 3269 (const void __user *)src_addr, 3270 PAGE_SIZE); 3271 pagefault_enable(); 3272 kunmap_local(page_kaddr); 3273 3274 /* fallback to copy_from_user outside mmap_lock */ 3275 if (unlikely(ret)) { 3276 *foliop = folio; 3277 ret = -ENOENT; 3278 /* don't free the page */ 3279 goto out_unacct_blocks; 3280 } 3281 3282 flush_dcache_folio(folio); 3283 } else { /* ZEROPAGE */ 3284 clear_user_highpage(&folio->page, dst_addr); 3285 } 3286 } else { 3287 folio = *foliop; 3288 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3289 *foliop = NULL; 3290 } 3291 3292 VM_BUG_ON(folio_test_locked(folio)); 3293 VM_BUG_ON(folio_test_swapbacked(folio)); 3294 __folio_set_locked(folio); 3295 __folio_set_swapbacked(folio); 3296 __folio_mark_uptodate(folio); 3297 3298 ret = -EFAULT; 3299 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3300 if (unlikely(pgoff >= max_off)) 3301 goto out_release; 3302 3303 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3304 if (ret) 3305 goto out_release; 3306 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3307 if (ret) 3308 goto out_release; 3309 3310 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3311 &folio->page, true, flags); 3312 if (ret) 3313 goto out_delete_from_cache; 3314 3315 shmem_recalc_inode(inode, 1, 0); 3316 folio_unlock(folio); 3317 return 0; 3318 out_delete_from_cache: 3319 filemap_remove_folio(folio); 3320 out_release: 3321 folio_unlock(folio); 3322 folio_put(folio); 3323 out_unacct_blocks: 3324 shmem_inode_unacct_blocks(inode, 1); 3325 return ret; 3326 } 3327 #endif /* CONFIG_USERFAULTFD */ 3328 3329 #ifdef CONFIG_TMPFS 3330 static const struct inode_operations shmem_symlink_inode_operations; 3331 static const struct inode_operations shmem_short_symlink_operations; 3332 3333 static int 3334 shmem_write_begin(const struct kiocb *iocb, struct address_space *mapping, 3335 loff_t pos, unsigned len, 3336 struct folio **foliop, void **fsdata) 3337 { 3338 struct inode *inode = mapping->host; 3339 struct shmem_inode_info *info = SHMEM_I(inode); 3340 pgoff_t index = pos >> PAGE_SHIFT; 3341 struct folio *folio; 3342 int ret = 0; 3343 3344 /* i_rwsem is held by caller */ 3345 if (unlikely(info->seals & (F_SEAL_GROW | 3346 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3347 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3348 return -EPERM; 3349 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3350 return -EPERM; 3351 } 3352 3353 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3354 if (ret) 3355 return ret; 3356 3357 if (folio_contain_hwpoisoned_page(folio)) { 3358 folio_unlock(folio); 3359 folio_put(folio); 3360 return -EIO; 3361 } 3362 3363 *foliop = folio; 3364 return 0; 3365 } 3366 3367 static int 3368 shmem_write_end(const struct kiocb *iocb, struct address_space *mapping, 3369 loff_t pos, unsigned len, unsigned copied, 3370 struct folio *folio, void *fsdata) 3371 { 3372 struct inode *inode = mapping->host; 3373 3374 if (pos + copied > inode->i_size) 3375 i_size_write(inode, pos + copied); 3376 3377 if (!folio_test_uptodate(folio)) { 3378 if (copied < folio_size(folio)) { 3379 size_t from = offset_in_folio(folio, pos); 3380 folio_zero_segments(folio, 0, from, 3381 from + copied, folio_size(folio)); 3382 } 3383 folio_mark_uptodate(folio); 3384 } 3385 folio_mark_dirty(folio); 3386 folio_unlock(folio); 3387 folio_put(folio); 3388 3389 return copied; 3390 } 3391 3392 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3393 { 3394 struct file *file = iocb->ki_filp; 3395 struct inode *inode = file_inode(file); 3396 struct address_space *mapping = inode->i_mapping; 3397 pgoff_t index; 3398 unsigned long offset; 3399 int error = 0; 3400 ssize_t retval = 0; 3401 3402 for (;;) { 3403 struct folio *folio = NULL; 3404 struct page *page = NULL; 3405 unsigned long nr, ret; 3406 loff_t end_offset, i_size = i_size_read(inode); 3407 bool fallback_page_copy = false; 3408 size_t fsize; 3409 3410 if (unlikely(iocb->ki_pos >= i_size)) 3411 break; 3412 3413 index = iocb->ki_pos >> PAGE_SHIFT; 3414 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3415 if (error) { 3416 if (error == -EINVAL) 3417 error = 0; 3418 break; 3419 } 3420 if (folio) { 3421 folio_unlock(folio); 3422 3423 page = folio_file_page(folio, index); 3424 if (PageHWPoison(page)) { 3425 folio_put(folio); 3426 error = -EIO; 3427 break; 3428 } 3429 3430 if (folio_test_large(folio) && 3431 folio_test_has_hwpoisoned(folio)) 3432 fallback_page_copy = true; 3433 } 3434 3435 /* 3436 * We must evaluate after, since reads (unlike writes) 3437 * are called without i_rwsem protection against truncate 3438 */ 3439 i_size = i_size_read(inode); 3440 if (unlikely(iocb->ki_pos >= i_size)) { 3441 if (folio) 3442 folio_put(folio); 3443 break; 3444 } 3445 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3446 if (folio && likely(!fallback_page_copy)) 3447 fsize = folio_size(folio); 3448 else 3449 fsize = PAGE_SIZE; 3450 offset = iocb->ki_pos & (fsize - 1); 3451 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3452 3453 if (folio) { 3454 /* 3455 * If users can be writing to this page using arbitrary 3456 * virtual addresses, take care about potential aliasing 3457 * before reading the page on the kernel side. 3458 */ 3459 if (mapping_writably_mapped(mapping)) { 3460 if (likely(!fallback_page_copy)) 3461 flush_dcache_folio(folio); 3462 else 3463 flush_dcache_page(page); 3464 } 3465 3466 /* 3467 * Mark the folio accessed if we read the beginning. 3468 */ 3469 if (!offset) 3470 folio_mark_accessed(folio); 3471 /* 3472 * Ok, we have the page, and it's up-to-date, so 3473 * now we can copy it to user space... 3474 */ 3475 if (likely(!fallback_page_copy)) 3476 ret = copy_folio_to_iter(folio, offset, nr, to); 3477 else 3478 ret = copy_page_to_iter(page, offset, nr, to); 3479 folio_put(folio); 3480 } else if (user_backed_iter(to)) { 3481 /* 3482 * Copy to user tends to be so well optimized, but 3483 * clear_user() not so much, that it is noticeably 3484 * faster to copy the zero page instead of clearing. 3485 */ 3486 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3487 } else { 3488 /* 3489 * But submitting the same page twice in a row to 3490 * splice() - or others? - can result in confusion: 3491 * so don't attempt that optimization on pipes etc. 3492 */ 3493 ret = iov_iter_zero(nr, to); 3494 } 3495 3496 retval += ret; 3497 iocb->ki_pos += ret; 3498 3499 if (!iov_iter_count(to)) 3500 break; 3501 if (ret < nr) { 3502 error = -EFAULT; 3503 break; 3504 } 3505 cond_resched(); 3506 } 3507 3508 file_accessed(file); 3509 return retval ? retval : error; 3510 } 3511 3512 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3513 { 3514 struct file *file = iocb->ki_filp; 3515 struct inode *inode = file->f_mapping->host; 3516 ssize_t ret; 3517 3518 inode_lock(inode); 3519 ret = generic_write_checks(iocb, from); 3520 if (ret <= 0) 3521 goto unlock; 3522 ret = file_remove_privs(file); 3523 if (ret) 3524 goto unlock; 3525 ret = file_update_time(file); 3526 if (ret) 3527 goto unlock; 3528 ret = generic_perform_write(iocb, from); 3529 unlock: 3530 inode_unlock(inode); 3531 return ret; 3532 } 3533 3534 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3535 struct pipe_buffer *buf) 3536 { 3537 return true; 3538 } 3539 3540 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3541 struct pipe_buffer *buf) 3542 { 3543 } 3544 3545 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3546 struct pipe_buffer *buf) 3547 { 3548 return false; 3549 } 3550 3551 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3552 .release = zero_pipe_buf_release, 3553 .try_steal = zero_pipe_buf_try_steal, 3554 .get = zero_pipe_buf_get, 3555 }; 3556 3557 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3558 loff_t fpos, size_t size) 3559 { 3560 size_t offset = fpos & ~PAGE_MASK; 3561 3562 size = min_t(size_t, size, PAGE_SIZE - offset); 3563 3564 if (!pipe_is_full(pipe)) { 3565 struct pipe_buffer *buf = pipe_head_buf(pipe); 3566 3567 *buf = (struct pipe_buffer) { 3568 .ops = &zero_pipe_buf_ops, 3569 .page = ZERO_PAGE(0), 3570 .offset = offset, 3571 .len = size, 3572 }; 3573 pipe->head++; 3574 } 3575 3576 return size; 3577 } 3578 3579 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3580 struct pipe_inode_info *pipe, 3581 size_t len, unsigned int flags) 3582 { 3583 struct inode *inode = file_inode(in); 3584 struct address_space *mapping = inode->i_mapping; 3585 struct folio *folio = NULL; 3586 size_t total_spliced = 0, used, npages, n, part; 3587 loff_t isize; 3588 int error = 0; 3589 3590 /* Work out how much data we can actually add into the pipe */ 3591 used = pipe_buf_usage(pipe); 3592 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3593 len = min_t(size_t, len, npages * PAGE_SIZE); 3594 3595 do { 3596 bool fallback_page_splice = false; 3597 struct page *page = NULL; 3598 pgoff_t index; 3599 size_t size; 3600 3601 if (*ppos >= i_size_read(inode)) 3602 break; 3603 3604 index = *ppos >> PAGE_SHIFT; 3605 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3606 if (error) { 3607 if (error == -EINVAL) 3608 error = 0; 3609 break; 3610 } 3611 if (folio) { 3612 folio_unlock(folio); 3613 3614 page = folio_file_page(folio, index); 3615 if (PageHWPoison(page)) { 3616 error = -EIO; 3617 break; 3618 } 3619 3620 if (folio_test_large(folio) && 3621 folio_test_has_hwpoisoned(folio)) 3622 fallback_page_splice = true; 3623 } 3624 3625 /* 3626 * i_size must be checked after we know the pages are Uptodate. 3627 * 3628 * Checking i_size after the check allows us to calculate 3629 * the correct value for "nr", which means the zero-filled 3630 * part of the page is not copied back to userspace (unless 3631 * another truncate extends the file - this is desired though). 3632 */ 3633 isize = i_size_read(inode); 3634 if (unlikely(*ppos >= isize)) 3635 break; 3636 /* 3637 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3638 * pages. 3639 */ 3640 size = len; 3641 if (unlikely(fallback_page_splice)) { 3642 size_t offset = *ppos & ~PAGE_MASK; 3643 3644 size = umin(size, PAGE_SIZE - offset); 3645 } 3646 part = min_t(loff_t, isize - *ppos, size); 3647 3648 if (folio) { 3649 /* 3650 * If users can be writing to this page using arbitrary 3651 * virtual addresses, take care about potential aliasing 3652 * before reading the page on the kernel side. 3653 */ 3654 if (mapping_writably_mapped(mapping)) { 3655 if (likely(!fallback_page_splice)) 3656 flush_dcache_folio(folio); 3657 else 3658 flush_dcache_page(page); 3659 } 3660 folio_mark_accessed(folio); 3661 /* 3662 * Ok, we have the page, and it's up-to-date, so we can 3663 * now splice it into the pipe. 3664 */ 3665 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3666 folio_put(folio); 3667 folio = NULL; 3668 } else { 3669 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3670 } 3671 3672 if (!n) 3673 break; 3674 len -= n; 3675 total_spliced += n; 3676 *ppos += n; 3677 in->f_ra.prev_pos = *ppos; 3678 if (pipe_is_full(pipe)) 3679 break; 3680 3681 cond_resched(); 3682 } while (len); 3683 3684 if (folio) 3685 folio_put(folio); 3686 3687 file_accessed(in); 3688 return total_spliced ? total_spliced : error; 3689 } 3690 3691 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3692 { 3693 struct address_space *mapping = file->f_mapping; 3694 struct inode *inode = mapping->host; 3695 3696 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3697 return generic_file_llseek_size(file, offset, whence, 3698 MAX_LFS_FILESIZE, i_size_read(inode)); 3699 if (offset < 0) 3700 return -ENXIO; 3701 3702 inode_lock(inode); 3703 /* We're holding i_rwsem so we can access i_size directly */ 3704 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3705 if (offset >= 0) 3706 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3707 inode_unlock(inode); 3708 return offset; 3709 } 3710 3711 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3712 loff_t len) 3713 { 3714 struct inode *inode = file_inode(file); 3715 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3716 struct shmem_inode_info *info = SHMEM_I(inode); 3717 struct shmem_falloc shmem_falloc; 3718 pgoff_t start, index, end, undo_fallocend; 3719 int error; 3720 3721 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3722 return -EOPNOTSUPP; 3723 3724 inode_lock(inode); 3725 3726 if (mode & FALLOC_FL_PUNCH_HOLE) { 3727 struct address_space *mapping = file->f_mapping; 3728 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3729 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3730 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3731 3732 /* protected by i_rwsem */ 3733 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3734 error = -EPERM; 3735 goto out; 3736 } 3737 3738 shmem_falloc.waitq = &shmem_falloc_waitq; 3739 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3740 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3741 spin_lock(&inode->i_lock); 3742 inode->i_private = &shmem_falloc; 3743 spin_unlock(&inode->i_lock); 3744 3745 if ((u64)unmap_end > (u64)unmap_start) 3746 unmap_mapping_range(mapping, unmap_start, 3747 1 + unmap_end - unmap_start, 0); 3748 shmem_truncate_range(inode, offset, offset + len - 1); 3749 /* No need to unmap again: hole-punching leaves COWed pages */ 3750 3751 spin_lock(&inode->i_lock); 3752 inode->i_private = NULL; 3753 wake_up_all(&shmem_falloc_waitq); 3754 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3755 spin_unlock(&inode->i_lock); 3756 error = 0; 3757 goto out; 3758 } 3759 3760 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3761 error = inode_newsize_ok(inode, offset + len); 3762 if (error) 3763 goto out; 3764 3765 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3766 error = -EPERM; 3767 goto out; 3768 } 3769 3770 start = offset >> PAGE_SHIFT; 3771 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3772 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3773 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3774 error = -ENOSPC; 3775 goto out; 3776 } 3777 3778 shmem_falloc.waitq = NULL; 3779 shmem_falloc.start = start; 3780 shmem_falloc.next = start; 3781 shmem_falloc.nr_falloced = 0; 3782 shmem_falloc.nr_unswapped = 0; 3783 spin_lock(&inode->i_lock); 3784 inode->i_private = &shmem_falloc; 3785 spin_unlock(&inode->i_lock); 3786 3787 /* 3788 * info->fallocend is only relevant when huge pages might be 3789 * involved: to prevent split_huge_page() freeing fallocated 3790 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3791 */ 3792 undo_fallocend = info->fallocend; 3793 if (info->fallocend < end) 3794 info->fallocend = end; 3795 3796 for (index = start; index < end; ) { 3797 struct folio *folio; 3798 3799 /* 3800 * Check for fatal signal so that we abort early in OOM 3801 * situations. We don't want to abort in case of non-fatal 3802 * signals as large fallocate can take noticeable time and 3803 * e.g. periodic timers may result in fallocate constantly 3804 * restarting. 3805 */ 3806 if (fatal_signal_pending(current)) 3807 error = -EINTR; 3808 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3809 error = -ENOMEM; 3810 else 3811 error = shmem_get_folio(inode, index, offset + len, 3812 &folio, SGP_FALLOC); 3813 if (error) { 3814 info->fallocend = undo_fallocend; 3815 /* Remove the !uptodate folios we added */ 3816 if (index > start) { 3817 shmem_undo_range(inode, 3818 (loff_t)start << PAGE_SHIFT, 3819 ((loff_t)index << PAGE_SHIFT) - 1, true); 3820 } 3821 goto undone; 3822 } 3823 3824 /* 3825 * Here is a more important optimization than it appears: 3826 * a second SGP_FALLOC on the same large folio will clear it, 3827 * making it uptodate and un-undoable if we fail later. 3828 */ 3829 index = folio_next_index(folio); 3830 /* Beware 32-bit wraparound */ 3831 if (!index) 3832 index--; 3833 3834 /* 3835 * Inform shmem_writeout() how far we have reached. 3836 * No need for lock or barrier: we have the page lock. 3837 */ 3838 if (!folio_test_uptodate(folio)) 3839 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3840 shmem_falloc.next = index; 3841 3842 /* 3843 * If !uptodate, leave it that way so that freeable folios 3844 * can be recognized if we need to rollback on error later. 3845 * But mark it dirty so that memory pressure will swap rather 3846 * than free the folios we are allocating (and SGP_CACHE folios 3847 * might still be clean: we now need to mark those dirty too). 3848 */ 3849 folio_mark_dirty(folio); 3850 folio_unlock(folio); 3851 folio_put(folio); 3852 cond_resched(); 3853 } 3854 3855 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3856 i_size_write(inode, offset + len); 3857 undone: 3858 spin_lock(&inode->i_lock); 3859 inode->i_private = NULL; 3860 spin_unlock(&inode->i_lock); 3861 out: 3862 if (!error) 3863 file_modified(file); 3864 inode_unlock(inode); 3865 return error; 3866 } 3867 3868 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3869 { 3870 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3871 3872 buf->f_type = TMPFS_MAGIC; 3873 buf->f_bsize = PAGE_SIZE; 3874 buf->f_namelen = NAME_MAX; 3875 if (sbinfo->max_blocks) { 3876 buf->f_blocks = sbinfo->max_blocks; 3877 buf->f_bavail = 3878 buf->f_bfree = sbinfo->max_blocks - 3879 percpu_counter_sum(&sbinfo->used_blocks); 3880 } 3881 if (sbinfo->max_inodes) { 3882 buf->f_files = sbinfo->max_inodes; 3883 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3884 } 3885 /* else leave those fields 0 like simple_statfs */ 3886 3887 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3888 3889 return 0; 3890 } 3891 3892 /* 3893 * File creation. Allocate an inode, and we're done.. 3894 */ 3895 static int 3896 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3897 struct dentry *dentry, umode_t mode, dev_t dev) 3898 { 3899 struct inode *inode; 3900 int error; 3901 3902 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3903 return -EINVAL; 3904 3905 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3906 if (IS_ERR(inode)) 3907 return PTR_ERR(inode); 3908 3909 error = simple_acl_create(dir, inode); 3910 if (error) 3911 goto out_iput; 3912 error = security_inode_init_security(inode, dir, &dentry->d_name, 3913 shmem_initxattrs, NULL); 3914 if (error && error != -EOPNOTSUPP) 3915 goto out_iput; 3916 3917 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3918 if (error) 3919 goto out_iput; 3920 3921 dir->i_size += BOGO_DIRENT_SIZE; 3922 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3923 inode_inc_iversion(dir); 3924 3925 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3926 d_add(dentry, inode); 3927 else 3928 d_instantiate(dentry, inode); 3929 3930 dget(dentry); /* Extra count - pin the dentry in core */ 3931 return error; 3932 3933 out_iput: 3934 iput(inode); 3935 return error; 3936 } 3937 3938 static int 3939 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3940 struct file *file, umode_t mode) 3941 { 3942 struct inode *inode; 3943 int error; 3944 3945 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3946 if (IS_ERR(inode)) { 3947 error = PTR_ERR(inode); 3948 goto err_out; 3949 } 3950 error = security_inode_init_security(inode, dir, NULL, 3951 shmem_initxattrs, NULL); 3952 if (error && error != -EOPNOTSUPP) 3953 goto out_iput; 3954 error = simple_acl_create(dir, inode); 3955 if (error) 3956 goto out_iput; 3957 d_tmpfile(file, inode); 3958 3959 err_out: 3960 return finish_open_simple(file, error); 3961 out_iput: 3962 iput(inode); 3963 return error; 3964 } 3965 3966 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3967 struct dentry *dentry, umode_t mode) 3968 { 3969 int error; 3970 3971 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3972 if (error) 3973 return ERR_PTR(error); 3974 inc_nlink(dir); 3975 return NULL; 3976 } 3977 3978 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3979 struct dentry *dentry, umode_t mode, bool excl) 3980 { 3981 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3982 } 3983 3984 /* 3985 * Link a file.. 3986 */ 3987 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3988 struct dentry *dentry) 3989 { 3990 struct inode *inode = d_inode(old_dentry); 3991 int ret = 0; 3992 3993 /* 3994 * No ordinary (disk based) filesystem counts links as inodes; 3995 * but each new link needs a new dentry, pinning lowmem, and 3996 * tmpfs dentries cannot be pruned until they are unlinked. 3997 * But if an O_TMPFILE file is linked into the tmpfs, the 3998 * first link must skip that, to get the accounting right. 3999 */ 4000 if (inode->i_nlink) { 4001 ret = shmem_reserve_inode(inode->i_sb, NULL); 4002 if (ret) 4003 goto out; 4004 } 4005 4006 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4007 if (ret) { 4008 if (inode->i_nlink) 4009 shmem_free_inode(inode->i_sb, 0); 4010 goto out; 4011 } 4012 4013 dir->i_size += BOGO_DIRENT_SIZE; 4014 inode_set_mtime_to_ts(dir, 4015 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 4016 inode_inc_iversion(dir); 4017 inc_nlink(inode); 4018 ihold(inode); /* New dentry reference */ 4019 dget(dentry); /* Extra pinning count for the created dentry */ 4020 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4021 d_add(dentry, inode); 4022 else 4023 d_instantiate(dentry, inode); 4024 out: 4025 return ret; 4026 } 4027 4028 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 4029 { 4030 struct inode *inode = d_inode(dentry); 4031 4032 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 4033 shmem_free_inode(inode->i_sb, 0); 4034 4035 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4036 4037 dir->i_size -= BOGO_DIRENT_SIZE; 4038 inode_set_mtime_to_ts(dir, 4039 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 4040 inode_inc_iversion(dir); 4041 drop_nlink(inode); 4042 dput(dentry); /* Undo the count from "create" - does all the work */ 4043 4044 /* 4045 * For now, VFS can't deal with case-insensitive negative dentries, so 4046 * we invalidate them 4047 */ 4048 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4049 d_invalidate(dentry); 4050 4051 return 0; 4052 } 4053 4054 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 4055 { 4056 if (!simple_empty(dentry)) 4057 return -ENOTEMPTY; 4058 4059 drop_nlink(d_inode(dentry)); 4060 drop_nlink(dir); 4061 return shmem_unlink(dir, dentry); 4062 } 4063 4064 static int shmem_whiteout(struct mnt_idmap *idmap, 4065 struct inode *old_dir, struct dentry *old_dentry) 4066 { 4067 struct dentry *whiteout; 4068 int error; 4069 4070 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 4071 if (!whiteout) 4072 return -ENOMEM; 4073 4074 error = shmem_mknod(idmap, old_dir, whiteout, 4075 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4076 dput(whiteout); 4077 if (error) 4078 return error; 4079 4080 /* 4081 * Cheat and hash the whiteout while the old dentry is still in 4082 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 4083 * 4084 * d_lookup() will consistently find one of them at this point, 4085 * not sure which one, but that isn't even important. 4086 */ 4087 d_rehash(whiteout); 4088 return 0; 4089 } 4090 4091 /* 4092 * The VFS layer already does all the dentry stuff for rename, 4093 * we just have to decrement the usage count for the target if 4094 * it exists so that the VFS layer correctly free's it when it 4095 * gets overwritten. 4096 */ 4097 static int shmem_rename2(struct mnt_idmap *idmap, 4098 struct inode *old_dir, struct dentry *old_dentry, 4099 struct inode *new_dir, struct dentry *new_dentry, 4100 unsigned int flags) 4101 { 4102 struct inode *inode = d_inode(old_dentry); 4103 int they_are_dirs = S_ISDIR(inode->i_mode); 4104 int error; 4105 4106 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4107 return -EINVAL; 4108 4109 if (flags & RENAME_EXCHANGE) 4110 return simple_offset_rename_exchange(old_dir, old_dentry, 4111 new_dir, new_dentry); 4112 4113 if (!simple_empty(new_dentry)) 4114 return -ENOTEMPTY; 4115 4116 if (flags & RENAME_WHITEOUT) { 4117 error = shmem_whiteout(idmap, old_dir, old_dentry); 4118 if (error) 4119 return error; 4120 } 4121 4122 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 4123 if (error) 4124 return error; 4125 4126 if (d_really_is_positive(new_dentry)) { 4127 (void) shmem_unlink(new_dir, new_dentry); 4128 if (they_are_dirs) { 4129 drop_nlink(d_inode(new_dentry)); 4130 drop_nlink(old_dir); 4131 } 4132 } else if (they_are_dirs) { 4133 drop_nlink(old_dir); 4134 inc_nlink(new_dir); 4135 } 4136 4137 old_dir->i_size -= BOGO_DIRENT_SIZE; 4138 new_dir->i_size += BOGO_DIRENT_SIZE; 4139 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 4140 inode_inc_iversion(old_dir); 4141 inode_inc_iversion(new_dir); 4142 return 0; 4143 } 4144 4145 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 4146 struct dentry *dentry, const char *symname) 4147 { 4148 int error; 4149 int len; 4150 struct inode *inode; 4151 struct folio *folio; 4152 char *link; 4153 4154 len = strlen(symname) + 1; 4155 if (len > PAGE_SIZE) 4156 return -ENAMETOOLONG; 4157 4158 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 4159 VM_NORESERVE); 4160 if (IS_ERR(inode)) 4161 return PTR_ERR(inode); 4162 4163 error = security_inode_init_security(inode, dir, &dentry->d_name, 4164 shmem_initxattrs, NULL); 4165 if (error && error != -EOPNOTSUPP) 4166 goto out_iput; 4167 4168 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 4169 if (error) 4170 goto out_iput; 4171 4172 inode->i_size = len-1; 4173 if (len <= SHORT_SYMLINK_LEN) { 4174 link = kmemdup(symname, len, GFP_KERNEL); 4175 if (!link) { 4176 error = -ENOMEM; 4177 goto out_remove_offset; 4178 } 4179 inode->i_op = &shmem_short_symlink_operations; 4180 inode_set_cached_link(inode, link, len - 1); 4181 } else { 4182 inode_nohighmem(inode); 4183 inode->i_mapping->a_ops = &shmem_aops; 4184 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 4185 if (error) 4186 goto out_remove_offset; 4187 inode->i_op = &shmem_symlink_inode_operations; 4188 memcpy(folio_address(folio), symname, len); 4189 folio_mark_uptodate(folio); 4190 folio_mark_dirty(folio); 4191 folio_unlock(folio); 4192 folio_put(folio); 4193 } 4194 dir->i_size += BOGO_DIRENT_SIZE; 4195 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 4196 inode_inc_iversion(dir); 4197 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 4198 d_add(dentry, inode); 4199 else 4200 d_instantiate(dentry, inode); 4201 dget(dentry); 4202 return 0; 4203 4204 out_remove_offset: 4205 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 4206 out_iput: 4207 iput(inode); 4208 return error; 4209 } 4210 4211 static void shmem_put_link(void *arg) 4212 { 4213 folio_mark_accessed(arg); 4214 folio_put(arg); 4215 } 4216 4217 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 4218 struct delayed_call *done) 4219 { 4220 struct folio *folio = NULL; 4221 int error; 4222 4223 if (!dentry) { 4224 folio = filemap_get_folio(inode->i_mapping, 0); 4225 if (IS_ERR(folio)) 4226 return ERR_PTR(-ECHILD); 4227 if (PageHWPoison(folio_page(folio, 0)) || 4228 !folio_test_uptodate(folio)) { 4229 folio_put(folio); 4230 return ERR_PTR(-ECHILD); 4231 } 4232 } else { 4233 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4234 if (error) 4235 return ERR_PTR(error); 4236 if (!folio) 4237 return ERR_PTR(-ECHILD); 4238 if (PageHWPoison(folio_page(folio, 0))) { 4239 folio_unlock(folio); 4240 folio_put(folio); 4241 return ERR_PTR(-ECHILD); 4242 } 4243 folio_unlock(folio); 4244 } 4245 set_delayed_call(done, shmem_put_link, folio); 4246 return folio_address(folio); 4247 } 4248 4249 #ifdef CONFIG_TMPFS_XATTR 4250 4251 static int shmem_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 4252 { 4253 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4254 4255 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4256 4257 return 0; 4258 } 4259 4260 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4261 struct dentry *dentry, struct file_kattr *fa) 4262 { 4263 struct inode *inode = d_inode(dentry); 4264 struct shmem_inode_info *info = SHMEM_I(inode); 4265 int ret, flags; 4266 4267 if (fileattr_has_fsx(fa)) 4268 return -EOPNOTSUPP; 4269 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4270 return -EOPNOTSUPP; 4271 4272 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4273 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4274 4275 ret = shmem_set_inode_flags(inode, flags, dentry); 4276 4277 if (ret) 4278 return ret; 4279 4280 info->fsflags = flags; 4281 4282 inode_set_ctime_current(inode); 4283 inode_inc_iversion(inode); 4284 return 0; 4285 } 4286 4287 /* 4288 * Superblocks without xattr inode operations may get some security.* xattr 4289 * support from the LSM "for free". As soon as we have any other xattrs 4290 * like ACLs, we also need to implement the security.* handlers at 4291 * filesystem level, though. 4292 */ 4293 4294 /* 4295 * Callback for security_inode_init_security() for acquiring xattrs. 4296 */ 4297 static int shmem_initxattrs(struct inode *inode, 4298 const struct xattr *xattr_array, void *fs_info) 4299 { 4300 struct shmem_inode_info *info = SHMEM_I(inode); 4301 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4302 const struct xattr *xattr; 4303 struct simple_xattr *new_xattr; 4304 size_t ispace = 0; 4305 size_t len; 4306 4307 if (sbinfo->max_inodes) { 4308 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4309 ispace += simple_xattr_space(xattr->name, 4310 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4311 } 4312 if (ispace) { 4313 raw_spin_lock(&sbinfo->stat_lock); 4314 if (sbinfo->free_ispace < ispace) 4315 ispace = 0; 4316 else 4317 sbinfo->free_ispace -= ispace; 4318 raw_spin_unlock(&sbinfo->stat_lock); 4319 if (!ispace) 4320 return -ENOSPC; 4321 } 4322 } 4323 4324 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4325 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4326 if (!new_xattr) 4327 break; 4328 4329 len = strlen(xattr->name) + 1; 4330 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4331 GFP_KERNEL_ACCOUNT); 4332 if (!new_xattr->name) { 4333 kvfree(new_xattr); 4334 break; 4335 } 4336 4337 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4338 XATTR_SECURITY_PREFIX_LEN); 4339 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4340 xattr->name, len); 4341 4342 simple_xattr_add(&info->xattrs, new_xattr); 4343 } 4344 4345 if (xattr->name != NULL) { 4346 if (ispace) { 4347 raw_spin_lock(&sbinfo->stat_lock); 4348 sbinfo->free_ispace += ispace; 4349 raw_spin_unlock(&sbinfo->stat_lock); 4350 } 4351 simple_xattrs_free(&info->xattrs, NULL); 4352 return -ENOMEM; 4353 } 4354 4355 return 0; 4356 } 4357 4358 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4359 struct dentry *unused, struct inode *inode, 4360 const char *name, void *buffer, size_t size) 4361 { 4362 struct shmem_inode_info *info = SHMEM_I(inode); 4363 4364 name = xattr_full_name(handler, name); 4365 return simple_xattr_get(&info->xattrs, name, buffer, size); 4366 } 4367 4368 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4369 struct mnt_idmap *idmap, 4370 struct dentry *unused, struct inode *inode, 4371 const char *name, const void *value, 4372 size_t size, int flags) 4373 { 4374 struct shmem_inode_info *info = SHMEM_I(inode); 4375 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4376 struct simple_xattr *old_xattr; 4377 size_t ispace = 0; 4378 4379 name = xattr_full_name(handler, name); 4380 if (value && sbinfo->max_inodes) { 4381 ispace = simple_xattr_space(name, size); 4382 raw_spin_lock(&sbinfo->stat_lock); 4383 if (sbinfo->free_ispace < ispace) 4384 ispace = 0; 4385 else 4386 sbinfo->free_ispace -= ispace; 4387 raw_spin_unlock(&sbinfo->stat_lock); 4388 if (!ispace) 4389 return -ENOSPC; 4390 } 4391 4392 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4393 if (!IS_ERR(old_xattr)) { 4394 ispace = 0; 4395 if (old_xattr && sbinfo->max_inodes) 4396 ispace = simple_xattr_space(old_xattr->name, 4397 old_xattr->size); 4398 simple_xattr_free(old_xattr); 4399 old_xattr = NULL; 4400 inode_set_ctime_current(inode); 4401 inode_inc_iversion(inode); 4402 } 4403 if (ispace) { 4404 raw_spin_lock(&sbinfo->stat_lock); 4405 sbinfo->free_ispace += ispace; 4406 raw_spin_unlock(&sbinfo->stat_lock); 4407 } 4408 return PTR_ERR(old_xattr); 4409 } 4410 4411 static const struct xattr_handler shmem_security_xattr_handler = { 4412 .prefix = XATTR_SECURITY_PREFIX, 4413 .get = shmem_xattr_handler_get, 4414 .set = shmem_xattr_handler_set, 4415 }; 4416 4417 static const struct xattr_handler shmem_trusted_xattr_handler = { 4418 .prefix = XATTR_TRUSTED_PREFIX, 4419 .get = shmem_xattr_handler_get, 4420 .set = shmem_xattr_handler_set, 4421 }; 4422 4423 static const struct xattr_handler shmem_user_xattr_handler = { 4424 .prefix = XATTR_USER_PREFIX, 4425 .get = shmem_xattr_handler_get, 4426 .set = shmem_xattr_handler_set, 4427 }; 4428 4429 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4430 &shmem_security_xattr_handler, 4431 &shmem_trusted_xattr_handler, 4432 &shmem_user_xattr_handler, 4433 NULL 4434 }; 4435 4436 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4437 { 4438 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4439 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4440 } 4441 #endif /* CONFIG_TMPFS_XATTR */ 4442 4443 static const struct inode_operations shmem_short_symlink_operations = { 4444 .getattr = shmem_getattr, 4445 .setattr = shmem_setattr, 4446 .get_link = simple_get_link, 4447 #ifdef CONFIG_TMPFS_XATTR 4448 .listxattr = shmem_listxattr, 4449 #endif 4450 }; 4451 4452 static const struct inode_operations shmem_symlink_inode_operations = { 4453 .getattr = shmem_getattr, 4454 .setattr = shmem_setattr, 4455 .get_link = shmem_get_link, 4456 #ifdef CONFIG_TMPFS_XATTR 4457 .listxattr = shmem_listxattr, 4458 #endif 4459 }; 4460 4461 static struct dentry *shmem_get_parent(struct dentry *child) 4462 { 4463 return ERR_PTR(-ESTALE); 4464 } 4465 4466 static int shmem_match(struct inode *ino, void *vfh) 4467 { 4468 __u32 *fh = vfh; 4469 __u64 inum = fh[2]; 4470 inum = (inum << 32) | fh[1]; 4471 return ino->i_ino == inum && fh[0] == ino->i_generation; 4472 } 4473 4474 /* Find any alias of inode, but prefer a hashed alias */ 4475 static struct dentry *shmem_find_alias(struct inode *inode) 4476 { 4477 struct dentry *alias = d_find_alias(inode); 4478 4479 return alias ?: d_find_any_alias(inode); 4480 } 4481 4482 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4483 struct fid *fid, int fh_len, int fh_type) 4484 { 4485 struct inode *inode; 4486 struct dentry *dentry = NULL; 4487 u64 inum; 4488 4489 if (fh_len < 3) 4490 return NULL; 4491 4492 inum = fid->raw[2]; 4493 inum = (inum << 32) | fid->raw[1]; 4494 4495 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4496 shmem_match, fid->raw); 4497 if (inode) { 4498 dentry = shmem_find_alias(inode); 4499 iput(inode); 4500 } 4501 4502 return dentry; 4503 } 4504 4505 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4506 struct inode *parent) 4507 { 4508 if (*len < 3) { 4509 *len = 3; 4510 return FILEID_INVALID; 4511 } 4512 4513 if (inode_unhashed(inode)) { 4514 /* Unfortunately insert_inode_hash is not idempotent, 4515 * so as we hash inodes here rather than at creation 4516 * time, we need a lock to ensure we only try 4517 * to do it once 4518 */ 4519 static DEFINE_SPINLOCK(lock); 4520 spin_lock(&lock); 4521 if (inode_unhashed(inode)) 4522 __insert_inode_hash(inode, 4523 inode->i_ino + inode->i_generation); 4524 spin_unlock(&lock); 4525 } 4526 4527 fh[0] = inode->i_generation; 4528 fh[1] = inode->i_ino; 4529 fh[2] = ((__u64)inode->i_ino) >> 32; 4530 4531 *len = 3; 4532 return 1; 4533 } 4534 4535 static const struct export_operations shmem_export_ops = { 4536 .get_parent = shmem_get_parent, 4537 .encode_fh = shmem_encode_fh, 4538 .fh_to_dentry = shmem_fh_to_dentry, 4539 }; 4540 4541 enum shmem_param { 4542 Opt_gid, 4543 Opt_huge, 4544 Opt_mode, 4545 Opt_mpol, 4546 Opt_nr_blocks, 4547 Opt_nr_inodes, 4548 Opt_size, 4549 Opt_uid, 4550 Opt_inode32, 4551 Opt_inode64, 4552 Opt_noswap, 4553 Opt_quota, 4554 Opt_usrquota, 4555 Opt_grpquota, 4556 Opt_usrquota_block_hardlimit, 4557 Opt_usrquota_inode_hardlimit, 4558 Opt_grpquota_block_hardlimit, 4559 Opt_grpquota_inode_hardlimit, 4560 Opt_casefold_version, 4561 Opt_casefold, 4562 Opt_strict_encoding, 4563 }; 4564 4565 static const struct constant_table shmem_param_enums_huge[] = { 4566 {"never", SHMEM_HUGE_NEVER }, 4567 {"always", SHMEM_HUGE_ALWAYS }, 4568 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4569 {"advise", SHMEM_HUGE_ADVISE }, 4570 {} 4571 }; 4572 4573 const struct fs_parameter_spec shmem_fs_parameters[] = { 4574 fsparam_gid ("gid", Opt_gid), 4575 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4576 fsparam_u32oct("mode", Opt_mode), 4577 fsparam_string("mpol", Opt_mpol), 4578 fsparam_string("nr_blocks", Opt_nr_blocks), 4579 fsparam_string("nr_inodes", Opt_nr_inodes), 4580 fsparam_string("size", Opt_size), 4581 fsparam_uid ("uid", Opt_uid), 4582 fsparam_flag ("inode32", Opt_inode32), 4583 fsparam_flag ("inode64", Opt_inode64), 4584 fsparam_flag ("noswap", Opt_noswap), 4585 #ifdef CONFIG_TMPFS_QUOTA 4586 fsparam_flag ("quota", Opt_quota), 4587 fsparam_flag ("usrquota", Opt_usrquota), 4588 fsparam_flag ("grpquota", Opt_grpquota), 4589 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4590 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4591 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4592 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4593 #endif 4594 fsparam_string("casefold", Opt_casefold_version), 4595 fsparam_flag ("casefold", Opt_casefold), 4596 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4597 {} 4598 }; 4599 4600 #if IS_ENABLED(CONFIG_UNICODE) 4601 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4602 bool latest_version) 4603 { 4604 struct shmem_options *ctx = fc->fs_private; 4605 int version = UTF8_LATEST; 4606 struct unicode_map *encoding; 4607 char *version_str = param->string + 5; 4608 4609 if (!latest_version) { 4610 if (strncmp(param->string, "utf8-", 5)) 4611 return invalfc(fc, "Only UTF-8 encodings are supported " 4612 "in the format: utf8-<version number>"); 4613 4614 version = utf8_parse_version(version_str); 4615 if (version < 0) 4616 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4617 } 4618 4619 encoding = utf8_load(version); 4620 4621 if (IS_ERR(encoding)) { 4622 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4623 unicode_major(version), unicode_minor(version), 4624 unicode_rev(version)); 4625 } 4626 4627 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4628 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4629 4630 ctx->encoding = encoding; 4631 4632 return 0; 4633 } 4634 #else 4635 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4636 bool latest_version) 4637 { 4638 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4639 } 4640 #endif 4641 4642 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4643 { 4644 struct shmem_options *ctx = fc->fs_private; 4645 struct fs_parse_result result; 4646 unsigned long long size; 4647 char *rest; 4648 int opt; 4649 kuid_t kuid; 4650 kgid_t kgid; 4651 4652 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4653 if (opt < 0) 4654 return opt; 4655 4656 switch (opt) { 4657 case Opt_size: 4658 size = memparse(param->string, &rest); 4659 if (*rest == '%') { 4660 size <<= PAGE_SHIFT; 4661 size *= totalram_pages(); 4662 do_div(size, 100); 4663 rest++; 4664 } 4665 if (*rest) 4666 goto bad_value; 4667 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4668 ctx->seen |= SHMEM_SEEN_BLOCKS; 4669 break; 4670 case Opt_nr_blocks: 4671 ctx->blocks = memparse(param->string, &rest); 4672 if (*rest || ctx->blocks > LONG_MAX) 4673 goto bad_value; 4674 ctx->seen |= SHMEM_SEEN_BLOCKS; 4675 break; 4676 case Opt_nr_inodes: 4677 ctx->inodes = memparse(param->string, &rest); 4678 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4679 goto bad_value; 4680 ctx->seen |= SHMEM_SEEN_INODES; 4681 break; 4682 case Opt_mode: 4683 ctx->mode = result.uint_32 & 07777; 4684 break; 4685 case Opt_uid: 4686 kuid = result.uid; 4687 4688 /* 4689 * The requested uid must be representable in the 4690 * filesystem's idmapping. 4691 */ 4692 if (!kuid_has_mapping(fc->user_ns, kuid)) 4693 goto bad_value; 4694 4695 ctx->uid = kuid; 4696 break; 4697 case Opt_gid: 4698 kgid = result.gid; 4699 4700 /* 4701 * The requested gid must be representable in the 4702 * filesystem's idmapping. 4703 */ 4704 if (!kgid_has_mapping(fc->user_ns, kgid)) 4705 goto bad_value; 4706 4707 ctx->gid = kgid; 4708 break; 4709 case Opt_huge: 4710 ctx->huge = result.uint_32; 4711 if (ctx->huge != SHMEM_HUGE_NEVER && 4712 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4713 has_transparent_hugepage())) 4714 goto unsupported_parameter; 4715 ctx->seen |= SHMEM_SEEN_HUGE; 4716 break; 4717 case Opt_mpol: 4718 if (IS_ENABLED(CONFIG_NUMA)) { 4719 mpol_put(ctx->mpol); 4720 ctx->mpol = NULL; 4721 if (mpol_parse_str(param->string, &ctx->mpol)) 4722 goto bad_value; 4723 break; 4724 } 4725 goto unsupported_parameter; 4726 case Opt_inode32: 4727 ctx->full_inums = false; 4728 ctx->seen |= SHMEM_SEEN_INUMS; 4729 break; 4730 case Opt_inode64: 4731 if (sizeof(ino_t) < 8) { 4732 return invalfc(fc, 4733 "Cannot use inode64 with <64bit inums in kernel\n"); 4734 } 4735 ctx->full_inums = true; 4736 ctx->seen |= SHMEM_SEEN_INUMS; 4737 break; 4738 case Opt_noswap: 4739 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4740 return invalfc(fc, 4741 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4742 } 4743 ctx->noswap = true; 4744 ctx->seen |= SHMEM_SEEN_NOSWAP; 4745 break; 4746 case Opt_quota: 4747 if (fc->user_ns != &init_user_ns) 4748 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4749 ctx->seen |= SHMEM_SEEN_QUOTA; 4750 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4751 break; 4752 case Opt_usrquota: 4753 if (fc->user_ns != &init_user_ns) 4754 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4755 ctx->seen |= SHMEM_SEEN_QUOTA; 4756 ctx->quota_types |= QTYPE_MASK_USR; 4757 break; 4758 case Opt_grpquota: 4759 if (fc->user_ns != &init_user_ns) 4760 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4761 ctx->seen |= SHMEM_SEEN_QUOTA; 4762 ctx->quota_types |= QTYPE_MASK_GRP; 4763 break; 4764 case Opt_usrquota_block_hardlimit: 4765 size = memparse(param->string, &rest); 4766 if (*rest || !size) 4767 goto bad_value; 4768 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4769 return invalfc(fc, 4770 "User quota block hardlimit too large."); 4771 ctx->qlimits.usrquota_bhardlimit = size; 4772 break; 4773 case Opt_grpquota_block_hardlimit: 4774 size = memparse(param->string, &rest); 4775 if (*rest || !size) 4776 goto bad_value; 4777 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4778 return invalfc(fc, 4779 "Group quota block hardlimit too large."); 4780 ctx->qlimits.grpquota_bhardlimit = size; 4781 break; 4782 case Opt_usrquota_inode_hardlimit: 4783 size = memparse(param->string, &rest); 4784 if (*rest || !size) 4785 goto bad_value; 4786 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4787 return invalfc(fc, 4788 "User quota inode hardlimit too large."); 4789 ctx->qlimits.usrquota_ihardlimit = size; 4790 break; 4791 case Opt_grpquota_inode_hardlimit: 4792 size = memparse(param->string, &rest); 4793 if (*rest || !size) 4794 goto bad_value; 4795 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4796 return invalfc(fc, 4797 "Group quota inode hardlimit too large."); 4798 ctx->qlimits.grpquota_ihardlimit = size; 4799 break; 4800 case Opt_casefold_version: 4801 return shmem_parse_opt_casefold(fc, param, false); 4802 case Opt_casefold: 4803 return shmem_parse_opt_casefold(fc, param, true); 4804 case Opt_strict_encoding: 4805 #if IS_ENABLED(CONFIG_UNICODE) 4806 ctx->strict_encoding = true; 4807 break; 4808 #else 4809 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4810 #endif 4811 } 4812 return 0; 4813 4814 unsupported_parameter: 4815 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4816 bad_value: 4817 return invalfc(fc, "Bad value for '%s'", param->key); 4818 } 4819 4820 static char *shmem_next_opt(char **s) 4821 { 4822 char *sbegin = *s; 4823 char *p; 4824 4825 if (sbegin == NULL) 4826 return NULL; 4827 4828 /* 4829 * NUL-terminate this option: unfortunately, 4830 * mount options form a comma-separated list, 4831 * but mpol's nodelist may also contain commas. 4832 */ 4833 for (;;) { 4834 p = strchr(*s, ','); 4835 if (p == NULL) 4836 break; 4837 *s = p + 1; 4838 if (!isdigit(*(p+1))) { 4839 *p = '\0'; 4840 return sbegin; 4841 } 4842 } 4843 4844 *s = NULL; 4845 return sbegin; 4846 } 4847 4848 static int shmem_parse_monolithic(struct fs_context *fc, void *data) 4849 { 4850 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt); 4851 } 4852 4853 /* 4854 * Reconfigure a shmem filesystem. 4855 */ 4856 static int shmem_reconfigure(struct fs_context *fc) 4857 { 4858 struct shmem_options *ctx = fc->fs_private; 4859 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4860 unsigned long used_isp; 4861 struct mempolicy *mpol = NULL; 4862 const char *err; 4863 4864 raw_spin_lock(&sbinfo->stat_lock); 4865 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4866 4867 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4868 if (!sbinfo->max_blocks) { 4869 err = "Cannot retroactively limit size"; 4870 goto out; 4871 } 4872 if (percpu_counter_compare(&sbinfo->used_blocks, 4873 ctx->blocks) > 0) { 4874 err = "Too small a size for current use"; 4875 goto out; 4876 } 4877 } 4878 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4879 if (!sbinfo->max_inodes) { 4880 err = "Cannot retroactively limit inodes"; 4881 goto out; 4882 } 4883 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4884 err = "Too few inodes for current use"; 4885 goto out; 4886 } 4887 } 4888 4889 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4890 sbinfo->next_ino > UINT_MAX) { 4891 err = "Current inum too high to switch to 32-bit inums"; 4892 goto out; 4893 } 4894 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4895 err = "Cannot disable swap on remount"; 4896 goto out; 4897 } 4898 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4899 err = "Cannot enable swap on remount if it was disabled on first mount"; 4900 goto out; 4901 } 4902 4903 if (ctx->seen & SHMEM_SEEN_QUOTA && 4904 !sb_any_quota_loaded(fc->root->d_sb)) { 4905 err = "Cannot enable quota on remount"; 4906 goto out; 4907 } 4908 4909 #ifdef CONFIG_TMPFS_QUOTA 4910 #define CHANGED_LIMIT(name) \ 4911 (ctx->qlimits.name## hardlimit && \ 4912 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4913 4914 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4915 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4916 err = "Cannot change global quota limit on remount"; 4917 goto out; 4918 } 4919 #endif /* CONFIG_TMPFS_QUOTA */ 4920 4921 if (ctx->seen & SHMEM_SEEN_HUGE) 4922 sbinfo->huge = ctx->huge; 4923 if (ctx->seen & SHMEM_SEEN_INUMS) 4924 sbinfo->full_inums = ctx->full_inums; 4925 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4926 sbinfo->max_blocks = ctx->blocks; 4927 if (ctx->seen & SHMEM_SEEN_INODES) { 4928 sbinfo->max_inodes = ctx->inodes; 4929 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4930 } 4931 4932 /* 4933 * Preserve previous mempolicy unless mpol remount option was specified. 4934 */ 4935 if (ctx->mpol) { 4936 mpol = sbinfo->mpol; 4937 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4938 ctx->mpol = NULL; 4939 } 4940 4941 if (ctx->noswap) 4942 sbinfo->noswap = true; 4943 4944 raw_spin_unlock(&sbinfo->stat_lock); 4945 mpol_put(mpol); 4946 return 0; 4947 out: 4948 raw_spin_unlock(&sbinfo->stat_lock); 4949 return invalfc(fc, "%s", err); 4950 } 4951 4952 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4953 { 4954 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4955 struct mempolicy *mpol; 4956 4957 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4958 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4959 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4960 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4961 if (sbinfo->mode != (0777 | S_ISVTX)) 4962 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4963 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4964 seq_printf(seq, ",uid=%u", 4965 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4966 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4967 seq_printf(seq, ",gid=%u", 4968 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4969 4970 /* 4971 * Showing inode{64,32} might be useful even if it's the system default, 4972 * since then people don't have to resort to checking both here and 4973 * /proc/config.gz to confirm 64-bit inums were successfully applied 4974 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4975 * 4976 * We hide it when inode64 isn't the default and we are using 32-bit 4977 * inodes, since that probably just means the feature isn't even under 4978 * consideration. 4979 * 4980 * As such: 4981 * 4982 * +-----------------+-----------------+ 4983 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4984 * +------------------+-----------------+-----------------+ 4985 * | full_inums=true | show | show | 4986 * | full_inums=false | show | hide | 4987 * +------------------+-----------------+-----------------+ 4988 * 4989 */ 4990 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4991 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4993 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4994 if (sbinfo->huge) 4995 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4996 #endif 4997 mpol = shmem_get_sbmpol(sbinfo); 4998 shmem_show_mpol(seq, mpol); 4999 mpol_put(mpol); 5000 if (sbinfo->noswap) 5001 seq_printf(seq, ",noswap"); 5002 #ifdef CONFIG_TMPFS_QUOTA 5003 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 5004 seq_printf(seq, ",usrquota"); 5005 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 5006 seq_printf(seq, ",grpquota"); 5007 if (sbinfo->qlimits.usrquota_bhardlimit) 5008 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 5009 sbinfo->qlimits.usrquota_bhardlimit); 5010 if (sbinfo->qlimits.grpquota_bhardlimit) 5011 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 5012 sbinfo->qlimits.grpquota_bhardlimit); 5013 if (sbinfo->qlimits.usrquota_ihardlimit) 5014 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 5015 sbinfo->qlimits.usrquota_ihardlimit); 5016 if (sbinfo->qlimits.grpquota_ihardlimit) 5017 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 5018 sbinfo->qlimits.grpquota_ihardlimit); 5019 #endif 5020 return 0; 5021 } 5022 5023 #endif /* CONFIG_TMPFS */ 5024 5025 static void shmem_put_super(struct super_block *sb) 5026 { 5027 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 5028 5029 #if IS_ENABLED(CONFIG_UNICODE) 5030 if (sb->s_encoding) 5031 utf8_unload(sb->s_encoding); 5032 #endif 5033 5034 #ifdef CONFIG_TMPFS_QUOTA 5035 shmem_disable_quotas(sb); 5036 #endif 5037 free_percpu(sbinfo->ino_batch); 5038 percpu_counter_destroy(&sbinfo->used_blocks); 5039 mpol_put(sbinfo->mpol); 5040 kfree(sbinfo); 5041 sb->s_fs_info = NULL; 5042 } 5043 5044 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 5045 static const struct dentry_operations shmem_ci_dentry_ops = { 5046 .d_hash = generic_ci_d_hash, 5047 .d_compare = generic_ci_d_compare, 5048 }; 5049 #endif 5050 5051 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 5052 { 5053 struct shmem_options *ctx = fc->fs_private; 5054 struct inode *inode; 5055 struct shmem_sb_info *sbinfo; 5056 int error = -ENOMEM; 5057 5058 /* Round up to L1_CACHE_BYTES to resist false sharing */ 5059 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 5060 L1_CACHE_BYTES), GFP_KERNEL); 5061 if (!sbinfo) 5062 return error; 5063 5064 sb->s_fs_info = sbinfo; 5065 5066 #ifdef CONFIG_TMPFS 5067 /* 5068 * Per default we only allow half of the physical ram per 5069 * tmpfs instance, limiting inodes to one per page of lowmem; 5070 * but the internal instance is left unlimited. 5071 */ 5072 if (!(sb->s_flags & SB_KERNMOUNT)) { 5073 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 5074 ctx->blocks = shmem_default_max_blocks(); 5075 if (!(ctx->seen & SHMEM_SEEN_INODES)) 5076 ctx->inodes = shmem_default_max_inodes(); 5077 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 5078 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 5079 sbinfo->noswap = ctx->noswap; 5080 } else { 5081 sb->s_flags |= SB_NOUSER; 5082 } 5083 sb->s_export_op = &shmem_export_ops; 5084 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 5085 5086 #if IS_ENABLED(CONFIG_UNICODE) 5087 if (!ctx->encoding && ctx->strict_encoding) { 5088 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 5089 error = -EINVAL; 5090 goto failed; 5091 } 5092 5093 if (ctx->encoding) { 5094 sb->s_encoding = ctx->encoding; 5095 set_default_d_op(sb, &shmem_ci_dentry_ops); 5096 if (ctx->strict_encoding) 5097 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 5098 } 5099 #endif 5100 5101 #else 5102 sb->s_flags |= SB_NOUSER; 5103 #endif /* CONFIG_TMPFS */ 5104 sb->s_d_flags |= DCACHE_DONTCACHE; 5105 sbinfo->max_blocks = ctx->blocks; 5106 sbinfo->max_inodes = ctx->inodes; 5107 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 5108 if (sb->s_flags & SB_KERNMOUNT) { 5109 sbinfo->ino_batch = alloc_percpu(ino_t); 5110 if (!sbinfo->ino_batch) 5111 goto failed; 5112 } 5113 sbinfo->uid = ctx->uid; 5114 sbinfo->gid = ctx->gid; 5115 sbinfo->full_inums = ctx->full_inums; 5116 sbinfo->mode = ctx->mode; 5117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5118 if (ctx->seen & SHMEM_SEEN_HUGE) 5119 sbinfo->huge = ctx->huge; 5120 else 5121 sbinfo->huge = tmpfs_huge; 5122 #endif 5123 sbinfo->mpol = ctx->mpol; 5124 ctx->mpol = NULL; 5125 5126 raw_spin_lock_init(&sbinfo->stat_lock); 5127 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 5128 goto failed; 5129 spin_lock_init(&sbinfo->shrinklist_lock); 5130 INIT_LIST_HEAD(&sbinfo->shrinklist); 5131 5132 sb->s_maxbytes = MAX_LFS_FILESIZE; 5133 sb->s_blocksize = PAGE_SIZE; 5134 sb->s_blocksize_bits = PAGE_SHIFT; 5135 sb->s_magic = TMPFS_MAGIC; 5136 sb->s_op = &shmem_ops; 5137 sb->s_time_gran = 1; 5138 #ifdef CONFIG_TMPFS_XATTR 5139 sb->s_xattr = shmem_xattr_handlers; 5140 #endif 5141 #ifdef CONFIG_TMPFS_POSIX_ACL 5142 sb->s_flags |= SB_POSIXACL; 5143 #endif 5144 uuid_t uuid; 5145 uuid_gen(&uuid); 5146 super_set_uuid(sb, uuid.b, sizeof(uuid)); 5147 5148 #ifdef CONFIG_TMPFS_QUOTA 5149 if (ctx->seen & SHMEM_SEEN_QUOTA) { 5150 sb->dq_op = &shmem_quota_operations; 5151 sb->s_qcop = &dquot_quotactl_sysfile_ops; 5152 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 5153 5154 /* Copy the default limits from ctx into sbinfo */ 5155 memcpy(&sbinfo->qlimits, &ctx->qlimits, 5156 sizeof(struct shmem_quota_limits)); 5157 5158 if (shmem_enable_quotas(sb, ctx->quota_types)) 5159 goto failed; 5160 } 5161 #endif /* CONFIG_TMPFS_QUOTA */ 5162 5163 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 5164 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 5165 if (IS_ERR(inode)) { 5166 error = PTR_ERR(inode); 5167 goto failed; 5168 } 5169 inode->i_uid = sbinfo->uid; 5170 inode->i_gid = sbinfo->gid; 5171 sb->s_root = d_make_root(inode); 5172 if (!sb->s_root) 5173 goto failed; 5174 return 0; 5175 5176 failed: 5177 shmem_put_super(sb); 5178 return error; 5179 } 5180 5181 static int shmem_get_tree(struct fs_context *fc) 5182 { 5183 return get_tree_nodev(fc, shmem_fill_super); 5184 } 5185 5186 static void shmem_free_fc(struct fs_context *fc) 5187 { 5188 struct shmem_options *ctx = fc->fs_private; 5189 5190 if (ctx) { 5191 mpol_put(ctx->mpol); 5192 kfree(ctx); 5193 } 5194 } 5195 5196 static const struct fs_context_operations shmem_fs_context_ops = { 5197 .free = shmem_free_fc, 5198 .get_tree = shmem_get_tree, 5199 #ifdef CONFIG_TMPFS 5200 .parse_monolithic = shmem_parse_monolithic, 5201 .parse_param = shmem_parse_one, 5202 .reconfigure = shmem_reconfigure, 5203 #endif 5204 }; 5205 5206 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 5207 5208 static struct inode *shmem_alloc_inode(struct super_block *sb) 5209 { 5210 struct shmem_inode_info *info; 5211 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 5212 if (!info) 5213 return NULL; 5214 return &info->vfs_inode; 5215 } 5216 5217 static void shmem_free_in_core_inode(struct inode *inode) 5218 { 5219 if (S_ISLNK(inode->i_mode)) 5220 kfree(inode->i_link); 5221 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 5222 } 5223 5224 static void shmem_destroy_inode(struct inode *inode) 5225 { 5226 if (S_ISREG(inode->i_mode)) 5227 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5228 if (S_ISDIR(inode->i_mode)) 5229 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5230 } 5231 5232 static void shmem_init_inode(void *foo) 5233 { 5234 struct shmem_inode_info *info = foo; 5235 inode_init_once(&info->vfs_inode); 5236 } 5237 5238 static void __init shmem_init_inodecache(void) 5239 { 5240 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5241 sizeof(struct shmem_inode_info), 5242 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5243 } 5244 5245 static void __init shmem_destroy_inodecache(void) 5246 { 5247 kmem_cache_destroy(shmem_inode_cachep); 5248 } 5249 5250 /* Keep the page in page cache instead of truncating it */ 5251 static int shmem_error_remove_folio(struct address_space *mapping, 5252 struct folio *folio) 5253 { 5254 return 0; 5255 } 5256 5257 static const struct address_space_operations shmem_aops = { 5258 .dirty_folio = noop_dirty_folio, 5259 #ifdef CONFIG_TMPFS 5260 .write_begin = shmem_write_begin, 5261 .write_end = shmem_write_end, 5262 #endif 5263 #ifdef CONFIG_MIGRATION 5264 .migrate_folio = migrate_folio, 5265 #endif 5266 .error_remove_folio = shmem_error_remove_folio, 5267 }; 5268 5269 static const struct file_operations shmem_file_operations = { 5270 .mmap = shmem_mmap, 5271 .open = shmem_file_open, 5272 .get_unmapped_area = shmem_get_unmapped_area, 5273 #ifdef CONFIG_TMPFS 5274 .llseek = shmem_file_llseek, 5275 .read_iter = shmem_file_read_iter, 5276 .write_iter = shmem_file_write_iter, 5277 .fsync = noop_fsync, 5278 .splice_read = shmem_file_splice_read, 5279 .splice_write = iter_file_splice_write, 5280 .fallocate = shmem_fallocate, 5281 #endif 5282 }; 5283 5284 static const struct inode_operations shmem_inode_operations = { 5285 .getattr = shmem_getattr, 5286 .setattr = shmem_setattr, 5287 #ifdef CONFIG_TMPFS_XATTR 5288 .listxattr = shmem_listxattr, 5289 .set_acl = simple_set_acl, 5290 .fileattr_get = shmem_fileattr_get, 5291 .fileattr_set = shmem_fileattr_set, 5292 #endif 5293 }; 5294 5295 static const struct inode_operations shmem_dir_inode_operations = { 5296 #ifdef CONFIG_TMPFS 5297 .getattr = shmem_getattr, 5298 .create = shmem_create, 5299 .lookup = simple_lookup, 5300 .link = shmem_link, 5301 .unlink = shmem_unlink, 5302 .symlink = shmem_symlink, 5303 .mkdir = shmem_mkdir, 5304 .rmdir = shmem_rmdir, 5305 .mknod = shmem_mknod, 5306 .rename = shmem_rename2, 5307 .tmpfile = shmem_tmpfile, 5308 .get_offset_ctx = shmem_get_offset_ctx, 5309 #endif 5310 #ifdef CONFIG_TMPFS_XATTR 5311 .listxattr = shmem_listxattr, 5312 .fileattr_get = shmem_fileattr_get, 5313 .fileattr_set = shmem_fileattr_set, 5314 #endif 5315 #ifdef CONFIG_TMPFS_POSIX_ACL 5316 .setattr = shmem_setattr, 5317 .set_acl = simple_set_acl, 5318 #endif 5319 }; 5320 5321 static const struct inode_operations shmem_special_inode_operations = { 5322 .getattr = shmem_getattr, 5323 #ifdef CONFIG_TMPFS_XATTR 5324 .listxattr = shmem_listxattr, 5325 #endif 5326 #ifdef CONFIG_TMPFS_POSIX_ACL 5327 .setattr = shmem_setattr, 5328 .set_acl = simple_set_acl, 5329 #endif 5330 }; 5331 5332 static const struct super_operations shmem_ops = { 5333 .alloc_inode = shmem_alloc_inode, 5334 .free_inode = shmem_free_in_core_inode, 5335 .destroy_inode = shmem_destroy_inode, 5336 #ifdef CONFIG_TMPFS 5337 .statfs = shmem_statfs, 5338 .show_options = shmem_show_options, 5339 #endif 5340 #ifdef CONFIG_TMPFS_QUOTA 5341 .get_dquots = shmem_get_dquots, 5342 #endif 5343 .evict_inode = shmem_evict_inode, 5344 .drop_inode = generic_delete_inode, 5345 .put_super = shmem_put_super, 5346 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5347 .nr_cached_objects = shmem_unused_huge_count, 5348 .free_cached_objects = shmem_unused_huge_scan, 5349 #endif 5350 }; 5351 5352 static const struct vm_operations_struct shmem_vm_ops = { 5353 .fault = shmem_fault, 5354 .map_pages = filemap_map_pages, 5355 #ifdef CONFIG_NUMA 5356 .set_policy = shmem_set_policy, 5357 .get_policy = shmem_get_policy, 5358 #endif 5359 }; 5360 5361 static const struct vm_operations_struct shmem_anon_vm_ops = { 5362 .fault = shmem_fault, 5363 .map_pages = filemap_map_pages, 5364 #ifdef CONFIG_NUMA 5365 .set_policy = shmem_set_policy, 5366 .get_policy = shmem_get_policy, 5367 #endif 5368 }; 5369 5370 int shmem_init_fs_context(struct fs_context *fc) 5371 { 5372 struct shmem_options *ctx; 5373 5374 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5375 if (!ctx) 5376 return -ENOMEM; 5377 5378 ctx->mode = 0777 | S_ISVTX; 5379 ctx->uid = current_fsuid(); 5380 ctx->gid = current_fsgid(); 5381 5382 #if IS_ENABLED(CONFIG_UNICODE) 5383 ctx->encoding = NULL; 5384 #endif 5385 5386 fc->fs_private = ctx; 5387 fc->ops = &shmem_fs_context_ops; 5388 return 0; 5389 } 5390 5391 static struct file_system_type shmem_fs_type = { 5392 .owner = THIS_MODULE, 5393 .name = "tmpfs", 5394 .init_fs_context = shmem_init_fs_context, 5395 #ifdef CONFIG_TMPFS 5396 .parameters = shmem_fs_parameters, 5397 #endif 5398 .kill_sb = kill_litter_super, 5399 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5400 }; 5401 5402 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5403 5404 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5405 { \ 5406 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5407 .show = _show, \ 5408 .store = _store, \ 5409 } 5410 5411 #define TMPFS_ATTR_W(_name, _store) \ 5412 static struct kobj_attribute tmpfs_attr_##_name = \ 5413 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5414 5415 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5416 static struct kobj_attribute tmpfs_attr_##_name = \ 5417 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5418 5419 #define TMPFS_ATTR_RO(_name, _show) \ 5420 static struct kobj_attribute tmpfs_attr_##_name = \ 5421 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5422 5423 #if IS_ENABLED(CONFIG_UNICODE) 5424 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5425 char *buf) 5426 { 5427 return sysfs_emit(buf, "supported\n"); 5428 } 5429 TMPFS_ATTR_RO(casefold, casefold_show); 5430 #endif 5431 5432 static struct attribute *tmpfs_attributes[] = { 5433 #if IS_ENABLED(CONFIG_UNICODE) 5434 &tmpfs_attr_casefold.attr, 5435 #endif 5436 NULL 5437 }; 5438 5439 static const struct attribute_group tmpfs_attribute_group = { 5440 .attrs = tmpfs_attributes, 5441 .name = "features" 5442 }; 5443 5444 static struct kobject *tmpfs_kobj; 5445 5446 static int __init tmpfs_sysfs_init(void) 5447 { 5448 int ret; 5449 5450 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5451 if (!tmpfs_kobj) 5452 return -ENOMEM; 5453 5454 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5455 if (ret) 5456 kobject_put(tmpfs_kobj); 5457 5458 return ret; 5459 } 5460 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5461 5462 void __init shmem_init(void) 5463 { 5464 int error; 5465 5466 shmem_init_inodecache(); 5467 5468 #ifdef CONFIG_TMPFS_QUOTA 5469 register_quota_format(&shmem_quota_format); 5470 #endif 5471 5472 error = register_filesystem(&shmem_fs_type); 5473 if (error) { 5474 pr_err("Could not register tmpfs\n"); 5475 goto out2; 5476 } 5477 5478 shm_mnt = kern_mount(&shmem_fs_type); 5479 if (IS_ERR(shm_mnt)) { 5480 error = PTR_ERR(shm_mnt); 5481 pr_err("Could not kern_mount tmpfs\n"); 5482 goto out1; 5483 } 5484 5485 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5486 error = tmpfs_sysfs_init(); 5487 if (error) { 5488 pr_err("Could not init tmpfs sysfs\n"); 5489 goto out1; 5490 } 5491 #endif 5492 5493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5494 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5495 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5496 else 5497 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5498 5499 /* 5500 * Default to setting PMD-sized THP to inherit the global setting and 5501 * disable all other multi-size THPs. 5502 */ 5503 if (!shmem_orders_configured) 5504 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5505 #endif 5506 return; 5507 5508 out1: 5509 unregister_filesystem(&shmem_fs_type); 5510 out2: 5511 #ifdef CONFIG_TMPFS_QUOTA 5512 unregister_quota_format(&shmem_quota_format); 5513 #endif 5514 shmem_destroy_inodecache(); 5515 shm_mnt = ERR_PTR(error); 5516 } 5517 5518 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5519 static ssize_t shmem_enabled_show(struct kobject *kobj, 5520 struct kobj_attribute *attr, char *buf) 5521 { 5522 static const int values[] = { 5523 SHMEM_HUGE_ALWAYS, 5524 SHMEM_HUGE_WITHIN_SIZE, 5525 SHMEM_HUGE_ADVISE, 5526 SHMEM_HUGE_NEVER, 5527 SHMEM_HUGE_DENY, 5528 SHMEM_HUGE_FORCE, 5529 }; 5530 int len = 0; 5531 int i; 5532 5533 for (i = 0; i < ARRAY_SIZE(values); i++) { 5534 len += sysfs_emit_at(buf, len, 5535 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5536 i ? " " : "", shmem_format_huge(values[i])); 5537 } 5538 len += sysfs_emit_at(buf, len, "\n"); 5539 5540 return len; 5541 } 5542 5543 static ssize_t shmem_enabled_store(struct kobject *kobj, 5544 struct kobj_attribute *attr, const char *buf, size_t count) 5545 { 5546 char tmp[16]; 5547 int huge, err; 5548 5549 if (count + 1 > sizeof(tmp)) 5550 return -EINVAL; 5551 memcpy(tmp, buf, count); 5552 tmp[count] = '\0'; 5553 if (count && tmp[count - 1] == '\n') 5554 tmp[count - 1] = '\0'; 5555 5556 huge = shmem_parse_huge(tmp); 5557 if (huge == -EINVAL) 5558 return huge; 5559 5560 shmem_huge = huge; 5561 if (shmem_huge > SHMEM_HUGE_DENY) 5562 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5563 5564 err = start_stop_khugepaged(); 5565 return err ? err : count; 5566 } 5567 5568 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5569 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5570 5571 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5572 struct kobj_attribute *attr, char *buf) 5573 { 5574 int order = to_thpsize(kobj)->order; 5575 const char *output; 5576 5577 if (test_bit(order, &huge_shmem_orders_always)) 5578 output = "[always] inherit within_size advise never"; 5579 else if (test_bit(order, &huge_shmem_orders_inherit)) 5580 output = "always [inherit] within_size advise never"; 5581 else if (test_bit(order, &huge_shmem_orders_within_size)) 5582 output = "always inherit [within_size] advise never"; 5583 else if (test_bit(order, &huge_shmem_orders_madvise)) 5584 output = "always inherit within_size [advise] never"; 5585 else 5586 output = "always inherit within_size advise [never]"; 5587 5588 return sysfs_emit(buf, "%s\n", output); 5589 } 5590 5591 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5592 struct kobj_attribute *attr, 5593 const char *buf, size_t count) 5594 { 5595 int order = to_thpsize(kobj)->order; 5596 ssize_t ret = count; 5597 5598 if (sysfs_streq(buf, "always")) { 5599 spin_lock(&huge_shmem_orders_lock); 5600 clear_bit(order, &huge_shmem_orders_inherit); 5601 clear_bit(order, &huge_shmem_orders_madvise); 5602 clear_bit(order, &huge_shmem_orders_within_size); 5603 set_bit(order, &huge_shmem_orders_always); 5604 spin_unlock(&huge_shmem_orders_lock); 5605 } else if (sysfs_streq(buf, "inherit")) { 5606 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5607 if (shmem_huge == SHMEM_HUGE_FORCE && 5608 order != HPAGE_PMD_ORDER) 5609 return -EINVAL; 5610 5611 spin_lock(&huge_shmem_orders_lock); 5612 clear_bit(order, &huge_shmem_orders_always); 5613 clear_bit(order, &huge_shmem_orders_madvise); 5614 clear_bit(order, &huge_shmem_orders_within_size); 5615 set_bit(order, &huge_shmem_orders_inherit); 5616 spin_unlock(&huge_shmem_orders_lock); 5617 } else if (sysfs_streq(buf, "within_size")) { 5618 spin_lock(&huge_shmem_orders_lock); 5619 clear_bit(order, &huge_shmem_orders_always); 5620 clear_bit(order, &huge_shmem_orders_inherit); 5621 clear_bit(order, &huge_shmem_orders_madvise); 5622 set_bit(order, &huge_shmem_orders_within_size); 5623 spin_unlock(&huge_shmem_orders_lock); 5624 } else if (sysfs_streq(buf, "advise")) { 5625 spin_lock(&huge_shmem_orders_lock); 5626 clear_bit(order, &huge_shmem_orders_always); 5627 clear_bit(order, &huge_shmem_orders_inherit); 5628 clear_bit(order, &huge_shmem_orders_within_size); 5629 set_bit(order, &huge_shmem_orders_madvise); 5630 spin_unlock(&huge_shmem_orders_lock); 5631 } else if (sysfs_streq(buf, "never")) { 5632 spin_lock(&huge_shmem_orders_lock); 5633 clear_bit(order, &huge_shmem_orders_always); 5634 clear_bit(order, &huge_shmem_orders_inherit); 5635 clear_bit(order, &huge_shmem_orders_within_size); 5636 clear_bit(order, &huge_shmem_orders_madvise); 5637 spin_unlock(&huge_shmem_orders_lock); 5638 } else { 5639 ret = -EINVAL; 5640 } 5641 5642 if (ret > 0) { 5643 int err = start_stop_khugepaged(); 5644 5645 if (err) 5646 ret = err; 5647 } 5648 return ret; 5649 } 5650 5651 struct kobj_attribute thpsize_shmem_enabled_attr = 5652 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5654 5655 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5656 5657 static int __init setup_transparent_hugepage_shmem(char *str) 5658 { 5659 int huge; 5660 5661 huge = shmem_parse_huge(str); 5662 if (huge == -EINVAL) { 5663 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5664 return huge; 5665 } 5666 5667 shmem_huge = huge; 5668 return 1; 5669 } 5670 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5671 5672 static int __init setup_transparent_hugepage_tmpfs(char *str) 5673 { 5674 int huge; 5675 5676 huge = shmem_parse_huge(str); 5677 if (huge < 0) { 5678 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n"); 5679 return huge; 5680 } 5681 5682 tmpfs_huge = huge; 5683 return 1; 5684 } 5685 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs); 5686 5687 static char str_dup[PAGE_SIZE] __initdata; 5688 static int __init setup_thp_shmem(char *str) 5689 { 5690 char *token, *range, *policy, *subtoken; 5691 unsigned long always, inherit, madvise, within_size; 5692 char *start_size, *end_size; 5693 int start, end, nr; 5694 char *p; 5695 5696 if (!str || strlen(str) + 1 > PAGE_SIZE) 5697 goto err; 5698 strscpy(str_dup, str); 5699 5700 always = huge_shmem_orders_always; 5701 inherit = huge_shmem_orders_inherit; 5702 madvise = huge_shmem_orders_madvise; 5703 within_size = huge_shmem_orders_within_size; 5704 p = str_dup; 5705 while ((token = strsep(&p, ";")) != NULL) { 5706 range = strsep(&token, ":"); 5707 policy = token; 5708 5709 if (!policy) 5710 goto err; 5711 5712 while ((subtoken = strsep(&range, ",")) != NULL) { 5713 if (strchr(subtoken, '-')) { 5714 start_size = strsep(&subtoken, "-"); 5715 end_size = subtoken; 5716 5717 start = get_order_from_str(start_size, 5718 THP_ORDERS_ALL_FILE_DEFAULT); 5719 end = get_order_from_str(end_size, 5720 THP_ORDERS_ALL_FILE_DEFAULT); 5721 } else { 5722 start_size = end_size = subtoken; 5723 start = end = get_order_from_str(subtoken, 5724 THP_ORDERS_ALL_FILE_DEFAULT); 5725 } 5726 5727 if (start < 0) { 5728 pr_err("invalid size %s in thp_shmem boot parameter\n", 5729 start_size); 5730 goto err; 5731 } 5732 5733 if (end < 0) { 5734 pr_err("invalid size %s in thp_shmem boot parameter\n", 5735 end_size); 5736 goto err; 5737 } 5738 5739 if (start > end) 5740 goto err; 5741 5742 nr = end - start + 1; 5743 if (!strcmp(policy, "always")) { 5744 bitmap_set(&always, start, nr); 5745 bitmap_clear(&inherit, start, nr); 5746 bitmap_clear(&madvise, start, nr); 5747 bitmap_clear(&within_size, start, nr); 5748 } else if (!strcmp(policy, "advise")) { 5749 bitmap_set(&madvise, start, nr); 5750 bitmap_clear(&inherit, start, nr); 5751 bitmap_clear(&always, start, nr); 5752 bitmap_clear(&within_size, start, nr); 5753 } else if (!strcmp(policy, "inherit")) { 5754 bitmap_set(&inherit, start, nr); 5755 bitmap_clear(&madvise, start, nr); 5756 bitmap_clear(&always, start, nr); 5757 bitmap_clear(&within_size, start, nr); 5758 } else if (!strcmp(policy, "within_size")) { 5759 bitmap_set(&within_size, start, nr); 5760 bitmap_clear(&inherit, start, nr); 5761 bitmap_clear(&madvise, start, nr); 5762 bitmap_clear(&always, start, nr); 5763 } else if (!strcmp(policy, "never")) { 5764 bitmap_clear(&inherit, start, nr); 5765 bitmap_clear(&madvise, start, nr); 5766 bitmap_clear(&always, start, nr); 5767 bitmap_clear(&within_size, start, nr); 5768 } else { 5769 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5770 goto err; 5771 } 5772 } 5773 } 5774 5775 huge_shmem_orders_always = always; 5776 huge_shmem_orders_madvise = madvise; 5777 huge_shmem_orders_inherit = inherit; 5778 huge_shmem_orders_within_size = within_size; 5779 shmem_orders_configured = true; 5780 return 1; 5781 5782 err: 5783 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5784 return 0; 5785 } 5786 __setup("thp_shmem=", setup_thp_shmem); 5787 5788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5789 5790 #else /* !CONFIG_SHMEM */ 5791 5792 /* 5793 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5794 * 5795 * This is intended for small system where the benefits of the full 5796 * shmem code (swap-backed and resource-limited) are outweighed by 5797 * their complexity. On systems without swap this code should be 5798 * effectively equivalent, but much lighter weight. 5799 */ 5800 5801 static struct file_system_type shmem_fs_type = { 5802 .name = "tmpfs", 5803 .init_fs_context = ramfs_init_fs_context, 5804 .parameters = ramfs_fs_parameters, 5805 .kill_sb = ramfs_kill_sb, 5806 .fs_flags = FS_USERNS_MOUNT, 5807 }; 5808 5809 void __init shmem_init(void) 5810 { 5811 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5812 5813 shm_mnt = kern_mount(&shmem_fs_type); 5814 BUG_ON(IS_ERR(shm_mnt)); 5815 } 5816 5817 int shmem_unuse(unsigned int type) 5818 { 5819 return 0; 5820 } 5821 5822 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5823 { 5824 return 0; 5825 } 5826 5827 void shmem_unlock_mapping(struct address_space *mapping) 5828 { 5829 } 5830 5831 #ifdef CONFIG_MMU 5832 unsigned long shmem_get_unmapped_area(struct file *file, 5833 unsigned long addr, unsigned long len, 5834 unsigned long pgoff, unsigned long flags) 5835 { 5836 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5837 } 5838 #endif 5839 5840 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5841 { 5842 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5843 } 5844 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5845 5846 #define shmem_vm_ops generic_file_vm_ops 5847 #define shmem_anon_vm_ops generic_file_vm_ops 5848 #define shmem_file_operations ramfs_file_operations 5849 #define shmem_acct_size(flags, size) 0 5850 #define shmem_unacct_size(flags, size) do {} while (0) 5851 5852 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5853 struct super_block *sb, struct inode *dir, 5854 umode_t mode, dev_t dev, unsigned long flags) 5855 { 5856 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5857 return inode ? inode : ERR_PTR(-ENOSPC); 5858 } 5859 5860 #endif /* CONFIG_SHMEM */ 5861 5862 /* common code */ 5863 5864 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5865 loff_t size, unsigned long flags, unsigned int i_flags) 5866 { 5867 struct inode *inode; 5868 struct file *res; 5869 5870 if (IS_ERR(mnt)) 5871 return ERR_CAST(mnt); 5872 5873 if (size < 0 || size > MAX_LFS_FILESIZE) 5874 return ERR_PTR(-EINVAL); 5875 5876 if (is_idmapped_mnt(mnt)) 5877 return ERR_PTR(-EINVAL); 5878 5879 if (shmem_acct_size(flags, size)) 5880 return ERR_PTR(-ENOMEM); 5881 5882 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5883 S_IFREG | S_IRWXUGO, 0, flags); 5884 if (IS_ERR(inode)) { 5885 shmem_unacct_size(flags, size); 5886 return ERR_CAST(inode); 5887 } 5888 inode->i_flags |= i_flags; 5889 inode->i_size = size; 5890 clear_nlink(inode); /* It is unlinked */ 5891 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5892 if (!IS_ERR(res)) 5893 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5894 &shmem_file_operations); 5895 if (IS_ERR(res)) 5896 iput(inode); 5897 return res; 5898 } 5899 5900 /** 5901 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5902 * kernel internal. There will be NO LSM permission checks against the 5903 * underlying inode. So users of this interface must do LSM checks at a 5904 * higher layer. The users are the big_key and shm implementations. LSM 5905 * checks are provided at the key or shm level rather than the inode. 5906 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5907 * @size: size to be set for the file 5908 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5909 */ 5910 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5911 { 5912 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5913 } 5914 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5915 5916 /** 5917 * shmem_file_setup - get an unlinked file living in tmpfs 5918 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5919 * @size: size to be set for the file 5920 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5921 */ 5922 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5923 { 5924 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5925 } 5926 EXPORT_SYMBOL_GPL(shmem_file_setup); 5927 5928 /** 5929 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5930 * @mnt: the tmpfs mount where the file will be created 5931 * @name: name for dentry (to be seen in /proc/<pid>/maps) 5932 * @size: size to be set for the file 5933 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5934 */ 5935 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5936 loff_t size, unsigned long flags) 5937 { 5938 return __shmem_file_setup(mnt, name, size, flags, 0); 5939 } 5940 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5941 5942 /** 5943 * shmem_zero_setup - setup a shared anonymous mapping 5944 * @vma: the vma to be mmapped is prepared by do_mmap 5945 */ 5946 int shmem_zero_setup(struct vm_area_struct *vma) 5947 { 5948 struct file *file; 5949 loff_t size = vma->vm_end - vma->vm_start; 5950 5951 /* 5952 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5953 * between XFS directory reading and selinux: since this file is only 5954 * accessible to the user through its mapping, use S_PRIVATE flag to 5955 * bypass file security, in the same way as shmem_kernel_file_setup(). 5956 */ 5957 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5958 if (IS_ERR(file)) 5959 return PTR_ERR(file); 5960 5961 if (vma->vm_file) 5962 fput(vma->vm_file); 5963 vma->vm_file = file; 5964 vma->vm_ops = &shmem_anon_vm_ops; 5965 5966 return 0; 5967 } 5968 5969 /** 5970 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5971 * @mapping: the folio's address_space 5972 * @index: the folio index 5973 * @gfp: the page allocator flags to use if allocating 5974 * 5975 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5976 * with any new page allocations done using the specified allocation flags. 5977 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5978 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5979 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5980 * 5981 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5982 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5983 */ 5984 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5985 pgoff_t index, gfp_t gfp) 5986 { 5987 #ifdef CONFIG_SHMEM 5988 struct inode *inode = mapping->host; 5989 struct folio *folio; 5990 int error; 5991 5992 error = shmem_get_folio_gfp(inode, index, i_size_read(inode), 5993 &folio, SGP_CACHE, gfp, NULL, NULL); 5994 if (error) 5995 return ERR_PTR(error); 5996 5997 folio_unlock(folio); 5998 return folio; 5999 #else 6000 /* 6001 * The tiny !SHMEM case uses ramfs without swap 6002 */ 6003 return mapping_read_folio_gfp(mapping, index, gfp); 6004 #endif 6005 } 6006 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 6007 6008 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 6009 pgoff_t index, gfp_t gfp) 6010 { 6011 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 6012 struct page *page; 6013 6014 if (IS_ERR(folio)) 6015 return &folio->page; 6016 6017 page = folio_file_page(folio, index); 6018 if (PageHWPoison(page)) { 6019 folio_put(folio); 6020 return ERR_PTR(-EIO); 6021 } 6022 6023 return page; 6024 } 6025 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 6026