1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include <linux/unicode.h> 44 #include "swap.h" 45 46 static struct vfsmount *shm_mnt __ro_after_init; 47 48 #ifdef CONFIG_SHMEM 49 /* 50 * This virtual memory filesystem is heavily based on the ramfs. It 51 * extends ramfs by the ability to use swap and honor resource limits 52 * which makes it a completely usable filesystem. 53 */ 54 55 #include <linux/xattr.h> 56 #include <linux/exportfs.h> 57 #include <linux/posix_acl.h> 58 #include <linux/posix_acl_xattr.h> 59 #include <linux/mman.h> 60 #include <linux/string.h> 61 #include <linux/slab.h> 62 #include <linux/backing-dev.h> 63 #include <linux/writeback.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 #include <linux/quotaops.h> 83 #include <linux/rcupdate_wait.h> 84 85 #include <linux/uaccess.h> 86 87 #include "internal.h" 88 89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 91 92 /* Pretend that each entry is of this size in directory's i_size */ 93 #define BOGO_DIRENT_SIZE 20 94 95 /* Pretend that one inode + its dentry occupy this much memory */ 96 #define BOGO_INODE_SIZE 1024 97 98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 99 #define SHORT_SYMLINK_LEN 128 100 101 /* 102 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 103 * inode->i_private (with i_rwsem making sure that it has only one user at 104 * a time): we would prefer not to enlarge the shmem inode just for that. 105 */ 106 struct shmem_falloc { 107 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 108 pgoff_t start; /* start of range currently being fallocated */ 109 pgoff_t next; /* the next page offset to be fallocated */ 110 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 111 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 112 }; 113 114 struct shmem_options { 115 unsigned long long blocks; 116 unsigned long long inodes; 117 struct mempolicy *mpol; 118 kuid_t uid; 119 kgid_t gid; 120 umode_t mode; 121 bool full_inums; 122 int huge; 123 int seen; 124 bool noswap; 125 unsigned short quota_types; 126 struct shmem_quota_limits qlimits; 127 #if IS_ENABLED(CONFIG_UNICODE) 128 struct unicode_map *encoding; 129 bool strict_encoding; 130 #endif 131 #define SHMEM_SEEN_BLOCKS 1 132 #define SHMEM_SEEN_INODES 2 133 #define SHMEM_SEEN_HUGE 4 134 #define SHMEM_SEEN_INUMS 8 135 #define SHMEM_SEEN_NOSWAP 16 136 #define SHMEM_SEEN_QUOTA 32 137 }; 138 139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 140 static unsigned long huge_shmem_orders_always __read_mostly; 141 static unsigned long huge_shmem_orders_madvise __read_mostly; 142 static unsigned long huge_shmem_orders_inherit __read_mostly; 143 static unsigned long huge_shmem_orders_within_size __read_mostly; 144 static bool shmem_orders_configured __initdata; 145 #endif 146 147 #ifdef CONFIG_TMPFS 148 static unsigned long shmem_default_max_blocks(void) 149 { 150 return totalram_pages() / 2; 151 } 152 153 static unsigned long shmem_default_max_inodes(void) 154 { 155 unsigned long nr_pages = totalram_pages(); 156 157 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 158 ULONG_MAX / BOGO_INODE_SIZE); 159 } 160 #endif 161 162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 163 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 164 struct vm_area_struct *vma, vm_fault_t *fault_type); 165 166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 167 { 168 return sb->s_fs_info; 169 } 170 171 /* 172 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 173 * for shared memory and for shared anonymous (/dev/zero) mappings 174 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 175 * consistent with the pre-accounting of private mappings ... 176 */ 177 static inline int shmem_acct_size(unsigned long flags, loff_t size) 178 { 179 return (flags & VM_NORESERVE) ? 180 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 181 } 182 183 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 184 { 185 if (!(flags & VM_NORESERVE)) 186 vm_unacct_memory(VM_ACCT(size)); 187 } 188 189 static inline int shmem_reacct_size(unsigned long flags, 190 loff_t oldsize, loff_t newsize) 191 { 192 if (!(flags & VM_NORESERVE)) { 193 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 194 return security_vm_enough_memory_mm(current->mm, 195 VM_ACCT(newsize) - VM_ACCT(oldsize)); 196 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 197 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 198 } 199 return 0; 200 } 201 202 /* 203 * ... whereas tmpfs objects are accounted incrementally as 204 * pages are allocated, in order to allow large sparse files. 205 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM, 206 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 207 */ 208 static inline int shmem_acct_blocks(unsigned long flags, long pages) 209 { 210 if (!(flags & VM_NORESERVE)) 211 return 0; 212 213 return security_vm_enough_memory_mm(current->mm, 214 pages * VM_ACCT(PAGE_SIZE)); 215 } 216 217 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 218 { 219 if (flags & VM_NORESERVE) 220 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 221 } 222 223 static int shmem_inode_acct_blocks(struct inode *inode, long pages) 224 { 225 struct shmem_inode_info *info = SHMEM_I(inode); 226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 227 int err = -ENOSPC; 228 229 if (shmem_acct_blocks(info->flags, pages)) 230 return err; 231 232 might_sleep(); /* when quotas */ 233 if (sbinfo->max_blocks) { 234 if (!percpu_counter_limited_add(&sbinfo->used_blocks, 235 sbinfo->max_blocks, pages)) 236 goto unacct; 237 238 err = dquot_alloc_block_nodirty(inode, pages); 239 if (err) { 240 percpu_counter_sub(&sbinfo->used_blocks, pages); 241 goto unacct; 242 } 243 } else { 244 err = dquot_alloc_block_nodirty(inode, pages); 245 if (err) 246 goto unacct; 247 } 248 249 return 0; 250 251 unacct: 252 shmem_unacct_blocks(info->flags, pages); 253 return err; 254 } 255 256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 257 { 258 struct shmem_inode_info *info = SHMEM_I(inode); 259 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 260 261 might_sleep(); /* when quotas */ 262 dquot_free_block_nodirty(inode, pages); 263 264 if (sbinfo->max_blocks) 265 percpu_counter_sub(&sbinfo->used_blocks, pages); 266 shmem_unacct_blocks(info->flags, pages); 267 } 268 269 static const struct super_operations shmem_ops; 270 static const struct address_space_operations shmem_aops; 271 static const struct file_operations shmem_file_operations; 272 static const struct inode_operations shmem_inode_operations; 273 static const struct inode_operations shmem_dir_inode_operations; 274 static const struct inode_operations shmem_special_inode_operations; 275 static const struct vm_operations_struct shmem_vm_ops; 276 static const struct vm_operations_struct shmem_anon_vm_ops; 277 static struct file_system_type shmem_fs_type; 278 279 bool shmem_mapping(struct address_space *mapping) 280 { 281 return mapping->a_ops == &shmem_aops; 282 } 283 EXPORT_SYMBOL_GPL(shmem_mapping); 284 285 bool vma_is_anon_shmem(struct vm_area_struct *vma) 286 { 287 return vma->vm_ops == &shmem_anon_vm_ops; 288 } 289 290 bool vma_is_shmem(struct vm_area_struct *vma) 291 { 292 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 293 } 294 295 static LIST_HEAD(shmem_swaplist); 296 static DEFINE_MUTEX(shmem_swaplist_mutex); 297 298 #ifdef CONFIG_TMPFS_QUOTA 299 300 static int shmem_enable_quotas(struct super_block *sb, 301 unsigned short quota_types) 302 { 303 int type, err = 0; 304 305 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 306 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 307 if (!(quota_types & (1 << type))) 308 continue; 309 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 310 DQUOT_USAGE_ENABLED | 311 DQUOT_LIMITS_ENABLED); 312 if (err) 313 goto out_err; 314 } 315 return 0; 316 317 out_err: 318 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 319 type, err); 320 for (type--; type >= 0; type--) 321 dquot_quota_off(sb, type); 322 return err; 323 } 324 325 static void shmem_disable_quotas(struct super_block *sb) 326 { 327 int type; 328 329 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 330 dquot_quota_off(sb, type); 331 } 332 333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode) 334 { 335 return SHMEM_I(inode)->i_dquot; 336 } 337 #endif /* CONFIG_TMPFS_QUOTA */ 338 339 /* 340 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 341 * produces a novel ino for the newly allocated inode. 342 * 343 * It may also be called when making a hard link to permit the space needed by 344 * each dentry. However, in that case, no new inode number is needed since that 345 * internally draws from another pool of inode numbers (currently global 346 * get_next_ino()). This case is indicated by passing NULL as inop. 347 */ 348 #define SHMEM_INO_BATCH 1024 349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 350 { 351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 352 ino_t ino; 353 354 if (!(sb->s_flags & SB_KERNMOUNT)) { 355 raw_spin_lock(&sbinfo->stat_lock); 356 if (sbinfo->max_inodes) { 357 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 358 raw_spin_unlock(&sbinfo->stat_lock); 359 return -ENOSPC; 360 } 361 sbinfo->free_ispace -= BOGO_INODE_SIZE; 362 } 363 if (inop) { 364 ino = sbinfo->next_ino++; 365 if (unlikely(is_zero_ino(ino))) 366 ino = sbinfo->next_ino++; 367 if (unlikely(!sbinfo->full_inums && 368 ino > UINT_MAX)) { 369 /* 370 * Emulate get_next_ino uint wraparound for 371 * compatibility 372 */ 373 if (IS_ENABLED(CONFIG_64BIT)) 374 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 375 __func__, MINOR(sb->s_dev)); 376 sbinfo->next_ino = 1; 377 ino = sbinfo->next_ino++; 378 } 379 *inop = ino; 380 } 381 raw_spin_unlock(&sbinfo->stat_lock); 382 } else if (inop) { 383 /* 384 * __shmem_file_setup, one of our callers, is lock-free: it 385 * doesn't hold stat_lock in shmem_reserve_inode since 386 * max_inodes is always 0, and is called from potentially 387 * unknown contexts. As such, use a per-cpu batched allocator 388 * which doesn't require the per-sb stat_lock unless we are at 389 * the batch boundary. 390 * 391 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 392 * shmem mounts are not exposed to userspace, so we don't need 393 * to worry about things like glibc compatibility. 394 */ 395 ino_t *next_ino; 396 397 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 398 ino = *next_ino; 399 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 ino = sbinfo->next_ino; 402 sbinfo->next_ino += SHMEM_INO_BATCH; 403 raw_spin_unlock(&sbinfo->stat_lock); 404 if (unlikely(is_zero_ino(ino))) 405 ino++; 406 } 407 *inop = ino; 408 *next_ino = ++ino; 409 put_cpu(); 410 } 411 412 return 0; 413 } 414 415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 416 { 417 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 418 if (sbinfo->max_inodes) { 419 raw_spin_lock(&sbinfo->stat_lock); 420 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 421 raw_spin_unlock(&sbinfo->stat_lock); 422 } 423 } 424 425 /** 426 * shmem_recalc_inode - recalculate the block usage of an inode 427 * @inode: inode to recalc 428 * @alloced: the change in number of pages allocated to inode 429 * @swapped: the change in number of pages swapped from inode 430 * 431 * We have to calculate the free blocks since the mm can drop 432 * undirtied hole pages behind our back. 433 * 434 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 435 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 436 */ 437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 438 { 439 struct shmem_inode_info *info = SHMEM_I(inode); 440 long freed; 441 442 spin_lock(&info->lock); 443 info->alloced += alloced; 444 info->swapped += swapped; 445 freed = info->alloced - info->swapped - 446 READ_ONCE(inode->i_mapping->nrpages); 447 /* 448 * Special case: whereas normally shmem_recalc_inode() is called 449 * after i_mapping->nrpages has already been adjusted (up or down), 450 * shmem_writepage() has to raise swapped before nrpages is lowered - 451 * to stop a racing shmem_recalc_inode() from thinking that a page has 452 * been freed. Compensate here, to avoid the need for a followup call. 453 */ 454 if (swapped > 0) 455 freed += swapped; 456 if (freed > 0) 457 info->alloced -= freed; 458 spin_unlock(&info->lock); 459 460 /* The quota case may block */ 461 if (freed > 0) 462 shmem_inode_unacct_blocks(inode, freed); 463 } 464 465 bool shmem_charge(struct inode *inode, long pages) 466 { 467 struct address_space *mapping = inode->i_mapping; 468 469 if (shmem_inode_acct_blocks(inode, pages)) 470 return false; 471 472 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 473 xa_lock_irq(&mapping->i_pages); 474 mapping->nrpages += pages; 475 xa_unlock_irq(&mapping->i_pages); 476 477 shmem_recalc_inode(inode, pages, 0); 478 return true; 479 } 480 481 void shmem_uncharge(struct inode *inode, long pages) 482 { 483 /* pages argument is currently unused: keep it to help debugging */ 484 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 485 486 shmem_recalc_inode(inode, 0, 0); 487 } 488 489 /* 490 * Replace item expected in xarray by a new item, while holding xa_lock. 491 */ 492 static int shmem_replace_entry(struct address_space *mapping, 493 pgoff_t index, void *expected, void *replacement) 494 { 495 XA_STATE(xas, &mapping->i_pages, index); 496 void *item; 497 498 VM_BUG_ON(!expected); 499 VM_BUG_ON(!replacement); 500 item = xas_load(&xas); 501 if (item != expected) 502 return -ENOENT; 503 xas_store(&xas, replacement); 504 return 0; 505 } 506 507 /* 508 * Sometimes, before we decide whether to proceed or to fail, we must check 509 * that an entry was not already brought back from swap by a racing thread. 510 * 511 * Checking folio is not enough: by the time a swapcache folio is locked, it 512 * might be reused, and again be swapcache, using the same swap as before. 513 */ 514 static bool shmem_confirm_swap(struct address_space *mapping, 515 pgoff_t index, swp_entry_t swap) 516 { 517 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 518 } 519 520 /* 521 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 522 * 523 * SHMEM_HUGE_NEVER: 524 * disables huge pages for the mount; 525 * SHMEM_HUGE_ALWAYS: 526 * enables huge pages for the mount; 527 * SHMEM_HUGE_WITHIN_SIZE: 528 * only allocate huge pages if the page will be fully within i_size, 529 * also respect fadvise()/madvise() hints; 530 * SHMEM_HUGE_ADVISE: 531 * only allocate huge pages if requested with fadvise()/madvise(); 532 */ 533 534 #define SHMEM_HUGE_NEVER 0 535 #define SHMEM_HUGE_ALWAYS 1 536 #define SHMEM_HUGE_WITHIN_SIZE 2 537 #define SHMEM_HUGE_ADVISE 3 538 539 /* 540 * Special values. 541 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 542 * 543 * SHMEM_HUGE_DENY: 544 * disables huge on shm_mnt and all mounts, for emergency use; 545 * SHMEM_HUGE_FORCE: 546 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 547 * 548 */ 549 #define SHMEM_HUGE_DENY (-1) 550 #define SHMEM_HUGE_FORCE (-2) 551 552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 553 /* ifdef here to avoid bloating shmem.o when not necessary */ 554 555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 556 557 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 558 loff_t write_end, bool shmem_huge_force, 559 unsigned long vm_flags) 560 { 561 loff_t i_size; 562 563 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER) 564 return false; 565 if (!S_ISREG(inode->i_mode)) 566 return false; 567 if (shmem_huge == SHMEM_HUGE_DENY) 568 return false; 569 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 570 return true; 571 572 switch (SHMEM_SB(inode->i_sb)->huge) { 573 case SHMEM_HUGE_ALWAYS: 574 return true; 575 case SHMEM_HUGE_WITHIN_SIZE: 576 index = round_up(index + 1, HPAGE_PMD_NR); 577 i_size = max(write_end, i_size_read(inode)); 578 i_size = round_up(i_size, PAGE_SIZE); 579 if (i_size >> PAGE_SHIFT >= index) 580 return true; 581 fallthrough; 582 case SHMEM_HUGE_ADVISE: 583 if (vm_flags & VM_HUGEPAGE) 584 return true; 585 fallthrough; 586 default: 587 return false; 588 } 589 } 590 591 static int shmem_parse_huge(const char *str) 592 { 593 int huge; 594 595 if (!str) 596 return -EINVAL; 597 598 if (!strcmp(str, "never")) 599 huge = SHMEM_HUGE_NEVER; 600 else if (!strcmp(str, "always")) 601 huge = SHMEM_HUGE_ALWAYS; 602 else if (!strcmp(str, "within_size")) 603 huge = SHMEM_HUGE_WITHIN_SIZE; 604 else if (!strcmp(str, "advise")) 605 huge = SHMEM_HUGE_ADVISE; 606 else if (!strcmp(str, "deny")) 607 huge = SHMEM_HUGE_DENY; 608 else if (!strcmp(str, "force")) 609 huge = SHMEM_HUGE_FORCE; 610 else 611 return -EINVAL; 612 613 if (!has_transparent_hugepage() && 614 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 615 return -EINVAL; 616 617 /* Do not override huge allocation policy with non-PMD sized mTHP */ 618 if (huge == SHMEM_HUGE_FORCE && 619 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER)) 620 return -EINVAL; 621 622 return huge; 623 } 624 625 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 626 static const char *shmem_format_huge(int huge) 627 { 628 switch (huge) { 629 case SHMEM_HUGE_NEVER: 630 return "never"; 631 case SHMEM_HUGE_ALWAYS: 632 return "always"; 633 case SHMEM_HUGE_WITHIN_SIZE: 634 return "within_size"; 635 case SHMEM_HUGE_ADVISE: 636 return "advise"; 637 case SHMEM_HUGE_DENY: 638 return "deny"; 639 case SHMEM_HUGE_FORCE: 640 return "force"; 641 default: 642 VM_BUG_ON(1); 643 return "bad_val"; 644 } 645 } 646 #endif 647 648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 649 struct shrink_control *sc, unsigned long nr_to_free) 650 { 651 LIST_HEAD(list), *pos, *next; 652 struct inode *inode; 653 struct shmem_inode_info *info; 654 struct folio *folio; 655 unsigned long batch = sc ? sc->nr_to_scan : 128; 656 unsigned long split = 0, freed = 0; 657 658 if (list_empty(&sbinfo->shrinklist)) 659 return SHRINK_STOP; 660 661 spin_lock(&sbinfo->shrinklist_lock); 662 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 663 info = list_entry(pos, struct shmem_inode_info, shrinklist); 664 665 /* pin the inode */ 666 inode = igrab(&info->vfs_inode); 667 668 /* inode is about to be evicted */ 669 if (!inode) { 670 list_del_init(&info->shrinklist); 671 goto next; 672 } 673 674 list_move(&info->shrinklist, &list); 675 next: 676 sbinfo->shrinklist_len--; 677 if (!--batch) 678 break; 679 } 680 spin_unlock(&sbinfo->shrinklist_lock); 681 682 list_for_each_safe(pos, next, &list) { 683 pgoff_t next, end; 684 loff_t i_size; 685 int ret; 686 687 info = list_entry(pos, struct shmem_inode_info, shrinklist); 688 inode = &info->vfs_inode; 689 690 if (nr_to_free && freed >= nr_to_free) 691 goto move_back; 692 693 i_size = i_size_read(inode); 694 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE); 695 if (!folio || xa_is_value(folio)) 696 goto drop; 697 698 /* No large folio at the end of the file: nothing to split */ 699 if (!folio_test_large(folio)) { 700 folio_put(folio); 701 goto drop; 702 } 703 704 /* Check if there is anything to gain from splitting */ 705 next = folio_next_index(folio); 706 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE)); 707 if (end <= folio->index || end >= next) { 708 folio_put(folio); 709 goto drop; 710 } 711 712 /* 713 * Move the inode on the list back to shrinklist if we failed 714 * to lock the page at this time. 715 * 716 * Waiting for the lock may lead to deadlock in the 717 * reclaim path. 718 */ 719 if (!folio_trylock(folio)) { 720 folio_put(folio); 721 goto move_back; 722 } 723 724 ret = split_folio(folio); 725 folio_unlock(folio); 726 folio_put(folio); 727 728 /* If split failed move the inode on the list back to shrinklist */ 729 if (ret) 730 goto move_back; 731 732 freed += next - end; 733 split++; 734 drop: 735 list_del_init(&info->shrinklist); 736 goto put; 737 move_back: 738 /* 739 * Make sure the inode is either on the global list or deleted 740 * from any local list before iput() since it could be deleted 741 * in another thread once we put the inode (then the local list 742 * is corrupted). 743 */ 744 spin_lock(&sbinfo->shrinklist_lock); 745 list_move(&info->shrinklist, &sbinfo->shrinklist); 746 sbinfo->shrinklist_len++; 747 spin_unlock(&sbinfo->shrinklist_lock); 748 put: 749 iput(inode); 750 } 751 752 return split; 753 } 754 755 static long shmem_unused_huge_scan(struct super_block *sb, 756 struct shrink_control *sc) 757 { 758 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 759 760 if (!READ_ONCE(sbinfo->shrinklist_len)) 761 return SHRINK_STOP; 762 763 return shmem_unused_huge_shrink(sbinfo, sc, 0); 764 } 765 766 static long shmem_unused_huge_count(struct super_block *sb, 767 struct shrink_control *sc) 768 { 769 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 770 return READ_ONCE(sbinfo->shrinklist_len); 771 } 772 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 773 774 #define shmem_huge SHMEM_HUGE_DENY 775 776 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 777 struct shrink_control *sc, unsigned long nr_to_free) 778 { 779 return 0; 780 } 781 782 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index, 783 loff_t write_end, bool shmem_huge_force, 784 unsigned long vm_flags) 785 { 786 return false; 787 } 788 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 789 790 static void shmem_update_stats(struct folio *folio, int nr_pages) 791 { 792 if (folio_test_pmd_mappable(folio)) 793 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages); 794 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages); 795 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages); 796 } 797 798 /* 799 * Somewhat like filemap_add_folio, but error if expected item has gone. 800 */ 801 static int shmem_add_to_page_cache(struct folio *folio, 802 struct address_space *mapping, 803 pgoff_t index, void *expected, gfp_t gfp) 804 { 805 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 806 long nr = folio_nr_pages(folio); 807 808 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 809 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 810 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 811 812 folio_ref_add(folio, nr); 813 folio->mapping = mapping; 814 folio->index = index; 815 816 gfp &= GFP_RECLAIM_MASK; 817 folio_throttle_swaprate(folio, gfp); 818 819 do { 820 xas_lock_irq(&xas); 821 if (expected != xas_find_conflict(&xas)) { 822 xas_set_err(&xas, -EEXIST); 823 goto unlock; 824 } 825 if (expected && xas_find_conflict(&xas)) { 826 xas_set_err(&xas, -EEXIST); 827 goto unlock; 828 } 829 xas_store(&xas, folio); 830 if (xas_error(&xas)) 831 goto unlock; 832 shmem_update_stats(folio, nr); 833 mapping->nrpages += nr; 834 unlock: 835 xas_unlock_irq(&xas); 836 } while (xas_nomem(&xas, gfp)); 837 838 if (xas_error(&xas)) { 839 folio->mapping = NULL; 840 folio_ref_sub(folio, nr); 841 return xas_error(&xas); 842 } 843 844 return 0; 845 } 846 847 /* 848 * Somewhat like filemap_remove_folio, but substitutes swap for @folio. 849 */ 850 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 851 { 852 struct address_space *mapping = folio->mapping; 853 long nr = folio_nr_pages(folio); 854 int error; 855 856 xa_lock_irq(&mapping->i_pages); 857 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 858 folio->mapping = NULL; 859 mapping->nrpages -= nr; 860 shmem_update_stats(folio, -nr); 861 xa_unlock_irq(&mapping->i_pages); 862 folio_put_refs(folio, nr); 863 BUG_ON(error); 864 } 865 866 /* 867 * Remove swap entry from page cache, free the swap and its page cache. Returns 868 * the number of pages being freed. 0 means entry not found in XArray (0 pages 869 * being freed). 870 */ 871 static long shmem_free_swap(struct address_space *mapping, 872 pgoff_t index, void *radswap) 873 { 874 int order = xa_get_order(&mapping->i_pages, index); 875 void *old; 876 877 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 878 if (old != radswap) 879 return 0; 880 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order); 881 882 return 1 << order; 883 } 884 885 /* 886 * Determine (in bytes) how many of the shmem object's pages mapped by the 887 * given offsets are swapped out. 888 * 889 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 890 * as long as the inode doesn't go away and racy results are not a problem. 891 */ 892 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 893 pgoff_t start, pgoff_t end) 894 { 895 XA_STATE(xas, &mapping->i_pages, start); 896 struct page *page; 897 unsigned long swapped = 0; 898 unsigned long max = end - 1; 899 900 rcu_read_lock(); 901 xas_for_each(&xas, page, max) { 902 if (xas_retry(&xas, page)) 903 continue; 904 if (xa_is_value(page)) 905 swapped += 1 << xas_get_order(&xas); 906 if (xas.xa_index == max) 907 break; 908 if (need_resched()) { 909 xas_pause(&xas); 910 cond_resched_rcu(); 911 } 912 } 913 rcu_read_unlock(); 914 915 return swapped << PAGE_SHIFT; 916 } 917 918 /* 919 * Determine (in bytes) how many of the shmem object's pages mapped by the 920 * given vma is swapped out. 921 * 922 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 923 * as long as the inode doesn't go away and racy results are not a problem. 924 */ 925 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 926 { 927 struct inode *inode = file_inode(vma->vm_file); 928 struct shmem_inode_info *info = SHMEM_I(inode); 929 struct address_space *mapping = inode->i_mapping; 930 unsigned long swapped; 931 932 /* Be careful as we don't hold info->lock */ 933 swapped = READ_ONCE(info->swapped); 934 935 /* 936 * The easier cases are when the shmem object has nothing in swap, or 937 * the vma maps it whole. Then we can simply use the stats that we 938 * already track. 939 */ 940 if (!swapped) 941 return 0; 942 943 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 944 return swapped << PAGE_SHIFT; 945 946 /* Here comes the more involved part */ 947 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 948 vma->vm_pgoff + vma_pages(vma)); 949 } 950 951 /* 952 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 953 */ 954 void shmem_unlock_mapping(struct address_space *mapping) 955 { 956 struct folio_batch fbatch; 957 pgoff_t index = 0; 958 959 folio_batch_init(&fbatch); 960 /* 961 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 962 */ 963 while (!mapping_unevictable(mapping) && 964 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 965 check_move_unevictable_folios(&fbatch); 966 folio_batch_release(&fbatch); 967 cond_resched(); 968 } 969 } 970 971 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 972 { 973 struct folio *folio; 974 975 /* 976 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 977 * beyond i_size, and reports fallocated folios as holes. 978 */ 979 folio = filemap_get_entry(inode->i_mapping, index); 980 if (!folio) 981 return folio; 982 if (!xa_is_value(folio)) { 983 folio_lock(folio); 984 if (folio->mapping == inode->i_mapping) 985 return folio; 986 /* The folio has been swapped out */ 987 folio_unlock(folio); 988 folio_put(folio); 989 } 990 /* 991 * But read a folio back from swap if any of it is within i_size 992 * (although in some cases this is just a waste of time). 993 */ 994 folio = NULL; 995 shmem_get_folio(inode, index, 0, &folio, SGP_READ); 996 return folio; 997 } 998 999 /* 1000 * Remove range of pages and swap entries from page cache, and free them. 1001 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 1002 */ 1003 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 1004 bool unfalloc) 1005 { 1006 struct address_space *mapping = inode->i_mapping; 1007 struct shmem_inode_info *info = SHMEM_I(inode); 1008 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 1009 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 1010 struct folio_batch fbatch; 1011 pgoff_t indices[PAGEVEC_SIZE]; 1012 struct folio *folio; 1013 bool same_folio; 1014 long nr_swaps_freed = 0; 1015 pgoff_t index; 1016 int i; 1017 1018 if (lend == -1) 1019 end = -1; /* unsigned, so actually very big */ 1020 1021 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1022 info->fallocend = start; 1023 1024 folio_batch_init(&fbatch); 1025 index = start; 1026 while (index < end && find_lock_entries(mapping, &index, end - 1, 1027 &fbatch, indices)) { 1028 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1029 folio = fbatch.folios[i]; 1030 1031 if (xa_is_value(folio)) { 1032 if (unfalloc) 1033 continue; 1034 nr_swaps_freed += shmem_free_swap(mapping, 1035 indices[i], folio); 1036 continue; 1037 } 1038 1039 if (!unfalloc || !folio_test_uptodate(folio)) 1040 truncate_inode_folio(mapping, folio); 1041 folio_unlock(folio); 1042 } 1043 folio_batch_remove_exceptionals(&fbatch); 1044 folio_batch_release(&fbatch); 1045 cond_resched(); 1046 } 1047 1048 /* 1049 * When undoing a failed fallocate, we want none of the partial folio 1050 * zeroing and splitting below, but shall want to truncate the whole 1051 * folio when !uptodate indicates that it was added by this fallocate, 1052 * even when [lstart, lend] covers only a part of the folio. 1053 */ 1054 if (unfalloc) 1055 goto whole_folios; 1056 1057 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1058 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1059 if (folio) { 1060 same_folio = lend < folio_pos(folio) + folio_size(folio); 1061 folio_mark_dirty(folio); 1062 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1063 start = folio_next_index(folio); 1064 if (same_folio) 1065 end = folio->index; 1066 } 1067 folio_unlock(folio); 1068 folio_put(folio); 1069 folio = NULL; 1070 } 1071 1072 if (!same_folio) 1073 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1074 if (folio) { 1075 folio_mark_dirty(folio); 1076 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1077 end = folio->index; 1078 folio_unlock(folio); 1079 folio_put(folio); 1080 } 1081 1082 whole_folios: 1083 1084 index = start; 1085 while (index < end) { 1086 cond_resched(); 1087 1088 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1089 indices)) { 1090 /* If all gone or hole-punch or unfalloc, we're done */ 1091 if (index == start || end != -1) 1092 break; 1093 /* But if truncating, restart to make sure all gone */ 1094 index = start; 1095 continue; 1096 } 1097 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1098 folio = fbatch.folios[i]; 1099 1100 if (xa_is_value(folio)) { 1101 long swaps_freed; 1102 1103 if (unfalloc) 1104 continue; 1105 swaps_freed = shmem_free_swap(mapping, indices[i], folio); 1106 if (!swaps_freed) { 1107 /* Swap was replaced by page: retry */ 1108 index = indices[i]; 1109 break; 1110 } 1111 nr_swaps_freed += swaps_freed; 1112 continue; 1113 } 1114 1115 folio_lock(folio); 1116 1117 if (!unfalloc || !folio_test_uptodate(folio)) { 1118 if (folio_mapping(folio) != mapping) { 1119 /* Page was replaced by swap: retry */ 1120 folio_unlock(folio); 1121 index = indices[i]; 1122 break; 1123 } 1124 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1125 folio); 1126 1127 if (!folio_test_large(folio)) { 1128 truncate_inode_folio(mapping, folio); 1129 } else if (truncate_inode_partial_folio(folio, lstart, lend)) { 1130 /* 1131 * If we split a page, reset the loop so 1132 * that we pick up the new sub pages. 1133 * Otherwise the THP was entirely 1134 * dropped or the target range was 1135 * zeroed, so just continue the loop as 1136 * is. 1137 */ 1138 if (!folio_test_large(folio)) { 1139 folio_unlock(folio); 1140 index = start; 1141 break; 1142 } 1143 } 1144 } 1145 folio_unlock(folio); 1146 } 1147 folio_batch_remove_exceptionals(&fbatch); 1148 folio_batch_release(&fbatch); 1149 } 1150 1151 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1152 } 1153 1154 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1155 { 1156 shmem_undo_range(inode, lstart, lend, false); 1157 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1158 inode_inc_iversion(inode); 1159 } 1160 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1161 1162 static int shmem_getattr(struct mnt_idmap *idmap, 1163 const struct path *path, struct kstat *stat, 1164 u32 request_mask, unsigned int query_flags) 1165 { 1166 struct inode *inode = path->dentry->d_inode; 1167 struct shmem_inode_info *info = SHMEM_I(inode); 1168 1169 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1170 shmem_recalc_inode(inode, 0, 0); 1171 1172 if (info->fsflags & FS_APPEND_FL) 1173 stat->attributes |= STATX_ATTR_APPEND; 1174 if (info->fsflags & FS_IMMUTABLE_FL) 1175 stat->attributes |= STATX_ATTR_IMMUTABLE; 1176 if (info->fsflags & FS_NODUMP_FL) 1177 stat->attributes |= STATX_ATTR_NODUMP; 1178 stat->attributes_mask |= (STATX_ATTR_APPEND | 1179 STATX_ATTR_IMMUTABLE | 1180 STATX_ATTR_NODUMP); 1181 generic_fillattr(idmap, request_mask, inode, stat); 1182 1183 if (shmem_huge_global_enabled(inode, 0, 0, false, 0)) 1184 stat->blksize = HPAGE_PMD_SIZE; 1185 1186 if (request_mask & STATX_BTIME) { 1187 stat->result_mask |= STATX_BTIME; 1188 stat->btime.tv_sec = info->i_crtime.tv_sec; 1189 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1190 } 1191 1192 return 0; 1193 } 1194 1195 static int shmem_setattr(struct mnt_idmap *idmap, 1196 struct dentry *dentry, struct iattr *attr) 1197 { 1198 struct inode *inode = d_inode(dentry); 1199 struct shmem_inode_info *info = SHMEM_I(inode); 1200 int error; 1201 bool update_mtime = false; 1202 bool update_ctime = true; 1203 1204 error = setattr_prepare(idmap, dentry, attr); 1205 if (error) 1206 return error; 1207 1208 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1209 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1210 return -EPERM; 1211 } 1212 } 1213 1214 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1215 loff_t oldsize = inode->i_size; 1216 loff_t newsize = attr->ia_size; 1217 1218 /* protected by i_rwsem */ 1219 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1220 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1221 return -EPERM; 1222 1223 if (newsize != oldsize) { 1224 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1225 oldsize, newsize); 1226 if (error) 1227 return error; 1228 i_size_write(inode, newsize); 1229 update_mtime = true; 1230 } else { 1231 update_ctime = false; 1232 } 1233 if (newsize <= oldsize) { 1234 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1235 if (oldsize > holebegin) 1236 unmap_mapping_range(inode->i_mapping, 1237 holebegin, 0, 1); 1238 if (info->alloced) 1239 shmem_truncate_range(inode, 1240 newsize, (loff_t)-1); 1241 /* unmap again to remove racily COWed private pages */ 1242 if (oldsize > holebegin) 1243 unmap_mapping_range(inode->i_mapping, 1244 holebegin, 0, 1); 1245 } 1246 } 1247 1248 if (is_quota_modification(idmap, inode, attr)) { 1249 error = dquot_initialize(inode); 1250 if (error) 1251 return error; 1252 } 1253 1254 /* Transfer quota accounting */ 1255 if (i_uid_needs_update(idmap, attr, inode) || 1256 i_gid_needs_update(idmap, attr, inode)) { 1257 error = dquot_transfer(idmap, inode, attr); 1258 if (error) 1259 return error; 1260 } 1261 1262 setattr_copy(idmap, inode, attr); 1263 if (attr->ia_valid & ATTR_MODE) 1264 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1265 if (!error && update_ctime) { 1266 inode_set_ctime_current(inode); 1267 if (update_mtime) 1268 inode_set_mtime_to_ts(inode, inode_get_ctime(inode)); 1269 inode_inc_iversion(inode); 1270 } 1271 return error; 1272 } 1273 1274 static void shmem_evict_inode(struct inode *inode) 1275 { 1276 struct shmem_inode_info *info = SHMEM_I(inode); 1277 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1278 size_t freed = 0; 1279 1280 if (shmem_mapping(inode->i_mapping)) { 1281 shmem_unacct_size(info->flags, inode->i_size); 1282 inode->i_size = 0; 1283 mapping_set_exiting(inode->i_mapping); 1284 shmem_truncate_range(inode, 0, (loff_t)-1); 1285 if (!list_empty(&info->shrinklist)) { 1286 spin_lock(&sbinfo->shrinklist_lock); 1287 if (!list_empty(&info->shrinklist)) { 1288 list_del_init(&info->shrinklist); 1289 sbinfo->shrinklist_len--; 1290 } 1291 spin_unlock(&sbinfo->shrinklist_lock); 1292 } 1293 while (!list_empty(&info->swaplist)) { 1294 /* Wait while shmem_unuse() is scanning this inode... */ 1295 wait_var_event(&info->stop_eviction, 1296 !atomic_read(&info->stop_eviction)); 1297 mutex_lock(&shmem_swaplist_mutex); 1298 /* ...but beware of the race if we peeked too early */ 1299 if (!atomic_read(&info->stop_eviction)) 1300 list_del_init(&info->swaplist); 1301 mutex_unlock(&shmem_swaplist_mutex); 1302 } 1303 } 1304 1305 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1306 shmem_free_inode(inode->i_sb, freed); 1307 WARN_ON(inode->i_blocks); 1308 clear_inode(inode); 1309 #ifdef CONFIG_TMPFS_QUOTA 1310 dquot_free_inode(inode); 1311 dquot_drop(inode); 1312 #endif 1313 } 1314 1315 static int shmem_find_swap_entries(struct address_space *mapping, 1316 pgoff_t start, struct folio_batch *fbatch, 1317 pgoff_t *indices, unsigned int type) 1318 { 1319 XA_STATE(xas, &mapping->i_pages, start); 1320 struct folio *folio; 1321 swp_entry_t entry; 1322 1323 rcu_read_lock(); 1324 xas_for_each(&xas, folio, ULONG_MAX) { 1325 if (xas_retry(&xas, folio)) 1326 continue; 1327 1328 if (!xa_is_value(folio)) 1329 continue; 1330 1331 entry = radix_to_swp_entry(folio); 1332 /* 1333 * swapin error entries can be found in the mapping. But they're 1334 * deliberately ignored here as we've done everything we can do. 1335 */ 1336 if (swp_type(entry) != type) 1337 continue; 1338 1339 indices[folio_batch_count(fbatch)] = xas.xa_index; 1340 if (!folio_batch_add(fbatch, folio)) 1341 break; 1342 1343 if (need_resched()) { 1344 xas_pause(&xas); 1345 cond_resched_rcu(); 1346 } 1347 } 1348 rcu_read_unlock(); 1349 1350 return xas.xa_index; 1351 } 1352 1353 /* 1354 * Move the swapped pages for an inode to page cache. Returns the count 1355 * of pages swapped in, or the error in case of failure. 1356 */ 1357 static int shmem_unuse_swap_entries(struct inode *inode, 1358 struct folio_batch *fbatch, pgoff_t *indices) 1359 { 1360 int i = 0; 1361 int ret = 0; 1362 int error = 0; 1363 struct address_space *mapping = inode->i_mapping; 1364 1365 for (i = 0; i < folio_batch_count(fbatch); i++) { 1366 struct folio *folio = fbatch->folios[i]; 1367 1368 if (!xa_is_value(folio)) 1369 continue; 1370 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE, 1371 mapping_gfp_mask(mapping), NULL, NULL); 1372 if (error == 0) { 1373 folio_unlock(folio); 1374 folio_put(folio); 1375 ret++; 1376 } 1377 if (error == -ENOMEM) 1378 break; 1379 error = 0; 1380 } 1381 return error ? error : ret; 1382 } 1383 1384 /* 1385 * If swap found in inode, free it and move page from swapcache to filecache. 1386 */ 1387 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1388 { 1389 struct address_space *mapping = inode->i_mapping; 1390 pgoff_t start = 0; 1391 struct folio_batch fbatch; 1392 pgoff_t indices[PAGEVEC_SIZE]; 1393 int ret = 0; 1394 1395 do { 1396 folio_batch_init(&fbatch); 1397 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1398 if (folio_batch_count(&fbatch) == 0) { 1399 ret = 0; 1400 break; 1401 } 1402 1403 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1404 if (ret < 0) 1405 break; 1406 1407 start = indices[folio_batch_count(&fbatch) - 1]; 1408 } while (true); 1409 1410 return ret; 1411 } 1412 1413 /* 1414 * Read all the shared memory data that resides in the swap 1415 * device 'type' back into memory, so the swap device can be 1416 * unused. 1417 */ 1418 int shmem_unuse(unsigned int type) 1419 { 1420 struct shmem_inode_info *info, *next; 1421 int error = 0; 1422 1423 if (list_empty(&shmem_swaplist)) 1424 return 0; 1425 1426 mutex_lock(&shmem_swaplist_mutex); 1427 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1428 if (!info->swapped) { 1429 list_del_init(&info->swaplist); 1430 continue; 1431 } 1432 /* 1433 * Drop the swaplist mutex while searching the inode for swap; 1434 * but before doing so, make sure shmem_evict_inode() will not 1435 * remove placeholder inode from swaplist, nor let it be freed 1436 * (igrab() would protect from unlink, but not from unmount). 1437 */ 1438 atomic_inc(&info->stop_eviction); 1439 mutex_unlock(&shmem_swaplist_mutex); 1440 1441 error = shmem_unuse_inode(&info->vfs_inode, type); 1442 cond_resched(); 1443 1444 mutex_lock(&shmem_swaplist_mutex); 1445 next = list_next_entry(info, swaplist); 1446 if (!info->swapped) 1447 list_del_init(&info->swaplist); 1448 if (atomic_dec_and_test(&info->stop_eviction)) 1449 wake_up_var(&info->stop_eviction); 1450 if (error) 1451 break; 1452 } 1453 mutex_unlock(&shmem_swaplist_mutex); 1454 1455 return error; 1456 } 1457 1458 /* 1459 * Move the page from the page cache to the swap cache. 1460 */ 1461 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1462 { 1463 struct folio *folio = page_folio(page); 1464 struct address_space *mapping = folio->mapping; 1465 struct inode *inode = mapping->host; 1466 struct shmem_inode_info *info = SHMEM_I(inode); 1467 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1468 swp_entry_t swap; 1469 pgoff_t index; 1470 int nr_pages; 1471 bool split = false; 1472 1473 /* 1474 * Our capabilities prevent regular writeback or sync from ever calling 1475 * shmem_writepage; but a stacking filesystem might use ->writepage of 1476 * its underlying filesystem, in which case tmpfs should write out to 1477 * swap only in response to memory pressure, and not for the writeback 1478 * threads or sync. 1479 */ 1480 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1481 goto redirty; 1482 1483 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1484 goto redirty; 1485 1486 if (!total_swap_pages) 1487 goto redirty; 1488 1489 /* 1490 * If CONFIG_THP_SWAP is not enabled, the large folio should be 1491 * split when swapping. 1492 * 1493 * And shrinkage of pages beyond i_size does not split swap, so 1494 * swapout of a large folio crossing i_size needs to split too 1495 * (unless fallocate has been used to preallocate beyond EOF). 1496 */ 1497 if (folio_test_large(folio)) { 1498 index = shmem_fallocend(inode, 1499 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 1500 if ((index > folio->index && index < folio_next_index(folio)) || 1501 !IS_ENABLED(CONFIG_THP_SWAP)) 1502 split = true; 1503 } 1504 1505 if (split) { 1506 try_split: 1507 /* Ensure the subpages are still dirty */ 1508 folio_test_set_dirty(folio); 1509 if (split_huge_page_to_list_to_order(page, wbc->list, 0)) 1510 goto redirty; 1511 folio = page_folio(page); 1512 folio_clear_dirty(folio); 1513 } 1514 1515 index = folio->index; 1516 nr_pages = folio_nr_pages(folio); 1517 1518 /* 1519 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1520 * value into swapfile.c, the only way we can correctly account for a 1521 * fallocated folio arriving here is now to initialize it and write it. 1522 * 1523 * That's okay for a folio already fallocated earlier, but if we have 1524 * not yet completed the fallocation, then (a) we want to keep track 1525 * of this folio in case we have to undo it, and (b) it may not be a 1526 * good idea to continue anyway, once we're pushing into swap. So 1527 * reactivate the folio, and let shmem_fallocate() quit when too many. 1528 */ 1529 if (!folio_test_uptodate(folio)) { 1530 if (inode->i_private) { 1531 struct shmem_falloc *shmem_falloc; 1532 spin_lock(&inode->i_lock); 1533 shmem_falloc = inode->i_private; 1534 if (shmem_falloc && 1535 !shmem_falloc->waitq && 1536 index >= shmem_falloc->start && 1537 index < shmem_falloc->next) 1538 shmem_falloc->nr_unswapped += nr_pages; 1539 else 1540 shmem_falloc = NULL; 1541 spin_unlock(&inode->i_lock); 1542 if (shmem_falloc) 1543 goto redirty; 1544 } 1545 folio_zero_range(folio, 0, folio_size(folio)); 1546 flush_dcache_folio(folio); 1547 folio_mark_uptodate(folio); 1548 } 1549 1550 swap = folio_alloc_swap(folio); 1551 if (!swap.val) { 1552 if (nr_pages > 1) 1553 goto try_split; 1554 1555 goto redirty; 1556 } 1557 1558 /* 1559 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1560 * if it's not already there. Do it now before the folio is 1561 * moved to swap cache, when its pagelock no longer protects 1562 * the inode from eviction. But don't unlock the mutex until 1563 * we've incremented swapped, because shmem_unuse_inode() will 1564 * prune a !swapped inode from the swaplist under this mutex. 1565 */ 1566 mutex_lock(&shmem_swaplist_mutex); 1567 if (list_empty(&info->swaplist)) 1568 list_add(&info->swaplist, &shmem_swaplist); 1569 1570 if (add_to_swap_cache(folio, swap, 1571 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1572 NULL) == 0) { 1573 shmem_recalc_inode(inode, 0, nr_pages); 1574 swap_shmem_alloc(swap, nr_pages); 1575 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1576 1577 mutex_unlock(&shmem_swaplist_mutex); 1578 BUG_ON(folio_mapped(folio)); 1579 return swap_writepage(&folio->page, wbc); 1580 } 1581 1582 mutex_unlock(&shmem_swaplist_mutex); 1583 put_swap_folio(folio, swap); 1584 redirty: 1585 folio_mark_dirty(folio); 1586 if (wbc->for_reclaim) 1587 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1588 folio_unlock(folio); 1589 return 0; 1590 } 1591 1592 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1593 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1594 { 1595 char buffer[64]; 1596 1597 if (!mpol || mpol->mode == MPOL_DEFAULT) 1598 return; /* show nothing */ 1599 1600 mpol_to_str(buffer, sizeof(buffer), mpol); 1601 1602 seq_printf(seq, ",mpol=%s", buffer); 1603 } 1604 1605 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1606 { 1607 struct mempolicy *mpol = NULL; 1608 if (sbinfo->mpol) { 1609 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1610 mpol = sbinfo->mpol; 1611 mpol_get(mpol); 1612 raw_spin_unlock(&sbinfo->stat_lock); 1613 } 1614 return mpol; 1615 } 1616 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1617 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1618 { 1619 } 1620 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1621 { 1622 return NULL; 1623 } 1624 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1625 1626 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 1627 pgoff_t index, unsigned int order, pgoff_t *ilx); 1628 1629 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp, 1630 struct shmem_inode_info *info, pgoff_t index) 1631 { 1632 struct mempolicy *mpol; 1633 pgoff_t ilx; 1634 struct folio *folio; 1635 1636 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx); 1637 folio = swap_cluster_readahead(swap, gfp, mpol, ilx); 1638 mpol_cond_put(mpol); 1639 1640 return folio; 1641 } 1642 1643 /* 1644 * Make sure huge_gfp is always more limited than limit_gfp. 1645 * Some of the flags set permissions, while others set limitations. 1646 */ 1647 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1648 { 1649 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1650 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1651 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1652 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1653 1654 /* Allow allocations only from the originally specified zones. */ 1655 result |= zoneflags; 1656 1657 /* 1658 * Minimize the result gfp by taking the union with the deny flags, 1659 * and the intersection of the allow flags. 1660 */ 1661 result |= (limit_gfp & denyflags); 1662 result |= (huge_gfp & limit_gfp) & allowflags; 1663 1664 return result; 1665 } 1666 1667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1668 bool shmem_hpage_pmd_enabled(void) 1669 { 1670 if (shmem_huge == SHMEM_HUGE_DENY) 1671 return false; 1672 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always)) 1673 return true; 1674 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise)) 1675 return true; 1676 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size)) 1677 return true; 1678 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) && 1679 shmem_huge != SHMEM_HUGE_NEVER) 1680 return true; 1681 1682 return false; 1683 } 1684 1685 unsigned long shmem_allowable_huge_orders(struct inode *inode, 1686 struct vm_area_struct *vma, pgoff_t index, 1687 loff_t write_end, bool shmem_huge_force) 1688 { 1689 unsigned long mask = READ_ONCE(huge_shmem_orders_always); 1690 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size); 1691 unsigned long vm_flags = vma ? vma->vm_flags : 0; 1692 pgoff_t aligned_index; 1693 bool global_huge; 1694 loff_t i_size; 1695 int order; 1696 1697 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags))) 1698 return 0; 1699 1700 global_huge = shmem_huge_global_enabled(inode, index, write_end, 1701 shmem_huge_force, vm_flags); 1702 if (!vma || !vma_is_anon_shmem(vma)) { 1703 /* 1704 * For tmpfs, we now only support PMD sized THP if huge page 1705 * is enabled, otherwise fallback to order 0. 1706 */ 1707 return global_huge ? BIT(HPAGE_PMD_ORDER) : 0; 1708 } 1709 1710 /* 1711 * Following the 'deny' semantics of the top level, force the huge 1712 * option off from all mounts. 1713 */ 1714 if (shmem_huge == SHMEM_HUGE_DENY) 1715 return 0; 1716 1717 /* 1718 * Only allow inherit orders if the top-level value is 'force', which 1719 * means non-PMD sized THP can not override 'huge' mount option now. 1720 */ 1721 if (shmem_huge == SHMEM_HUGE_FORCE) 1722 return READ_ONCE(huge_shmem_orders_inherit); 1723 1724 /* Allow mTHP that will be fully within i_size. */ 1725 order = highest_order(within_size_orders); 1726 while (within_size_orders) { 1727 aligned_index = round_up(index + 1, 1 << order); 1728 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1729 if (i_size >> PAGE_SHIFT >= aligned_index) { 1730 mask |= within_size_orders; 1731 break; 1732 } 1733 1734 order = next_order(&within_size_orders, order); 1735 } 1736 1737 if (vm_flags & VM_HUGEPAGE) 1738 mask |= READ_ONCE(huge_shmem_orders_madvise); 1739 1740 if (global_huge) 1741 mask |= READ_ONCE(huge_shmem_orders_inherit); 1742 1743 return THP_ORDERS_ALL_FILE_DEFAULT & mask; 1744 } 1745 1746 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1747 struct address_space *mapping, pgoff_t index, 1748 unsigned long orders) 1749 { 1750 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 1751 pgoff_t aligned_index; 1752 unsigned long pages; 1753 int order; 1754 1755 if (vma) { 1756 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 1757 if (!orders) 1758 return 0; 1759 } 1760 1761 /* Find the highest order that can add into the page cache */ 1762 order = highest_order(orders); 1763 while (orders) { 1764 pages = 1UL << order; 1765 aligned_index = round_down(index, pages); 1766 /* 1767 * Check for conflict before waiting on a huge allocation. 1768 * Conflict might be that a huge page has just been allocated 1769 * and added to page cache by a racing thread, or that there 1770 * is already at least one small page in the huge extent. 1771 * Be careful to retry when appropriate, but not forever! 1772 * Elsewhere -EEXIST would be the right code, but not here. 1773 */ 1774 if (!xa_find(&mapping->i_pages, &aligned_index, 1775 aligned_index + pages - 1, XA_PRESENT)) 1776 break; 1777 order = next_order(&orders, order); 1778 } 1779 1780 return orders; 1781 } 1782 #else 1783 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf, 1784 struct address_space *mapping, pgoff_t index, 1785 unsigned long orders) 1786 { 1787 return 0; 1788 } 1789 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1790 1791 static struct folio *shmem_alloc_folio(gfp_t gfp, int order, 1792 struct shmem_inode_info *info, pgoff_t index) 1793 { 1794 struct mempolicy *mpol; 1795 pgoff_t ilx; 1796 struct folio *folio; 1797 1798 mpol = shmem_get_pgoff_policy(info, index, order, &ilx); 1799 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id()); 1800 mpol_cond_put(mpol); 1801 1802 return folio; 1803 } 1804 1805 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf, 1806 gfp_t gfp, struct inode *inode, pgoff_t index, 1807 struct mm_struct *fault_mm, unsigned long orders) 1808 { 1809 struct address_space *mapping = inode->i_mapping; 1810 struct shmem_inode_info *info = SHMEM_I(inode); 1811 unsigned long suitable_orders = 0; 1812 struct folio *folio = NULL; 1813 long pages; 1814 int error, order; 1815 1816 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1817 orders = 0; 1818 1819 if (orders > 0) { 1820 suitable_orders = shmem_suitable_orders(inode, vmf, 1821 mapping, index, orders); 1822 1823 order = highest_order(suitable_orders); 1824 while (suitable_orders) { 1825 pages = 1UL << order; 1826 index = round_down(index, pages); 1827 folio = shmem_alloc_folio(gfp, order, info, index); 1828 if (folio) 1829 goto allocated; 1830 1831 if (pages == HPAGE_PMD_NR) 1832 count_vm_event(THP_FILE_FALLBACK); 1833 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK); 1834 order = next_order(&suitable_orders, order); 1835 } 1836 } else { 1837 pages = 1; 1838 folio = shmem_alloc_folio(gfp, 0, info, index); 1839 } 1840 if (!folio) 1841 return ERR_PTR(-ENOMEM); 1842 1843 allocated: 1844 __folio_set_locked(folio); 1845 __folio_set_swapbacked(folio); 1846 1847 gfp &= GFP_RECLAIM_MASK; 1848 error = mem_cgroup_charge(folio, fault_mm, gfp); 1849 if (error) { 1850 if (xa_find(&mapping->i_pages, &index, 1851 index + pages - 1, XA_PRESENT)) { 1852 error = -EEXIST; 1853 } else if (pages > 1) { 1854 if (pages == HPAGE_PMD_NR) { 1855 count_vm_event(THP_FILE_FALLBACK); 1856 count_vm_event(THP_FILE_FALLBACK_CHARGE); 1857 } 1858 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK); 1859 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE); 1860 } 1861 goto unlock; 1862 } 1863 1864 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp); 1865 if (error) 1866 goto unlock; 1867 1868 error = shmem_inode_acct_blocks(inode, pages); 1869 if (error) { 1870 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1871 long freed; 1872 /* 1873 * Try to reclaim some space by splitting a few 1874 * large folios beyond i_size on the filesystem. 1875 */ 1876 shmem_unused_huge_shrink(sbinfo, NULL, pages); 1877 /* 1878 * And do a shmem_recalc_inode() to account for freed pages: 1879 * except our folio is there in cache, so not quite balanced. 1880 */ 1881 spin_lock(&info->lock); 1882 freed = pages + info->alloced - info->swapped - 1883 READ_ONCE(mapping->nrpages); 1884 if (freed > 0) 1885 info->alloced -= freed; 1886 spin_unlock(&info->lock); 1887 if (freed > 0) 1888 shmem_inode_unacct_blocks(inode, freed); 1889 error = shmem_inode_acct_blocks(inode, pages); 1890 if (error) { 1891 filemap_remove_folio(folio); 1892 goto unlock; 1893 } 1894 } 1895 1896 shmem_recalc_inode(inode, pages, 0); 1897 folio_add_lru(folio); 1898 return folio; 1899 1900 unlock: 1901 folio_unlock(folio); 1902 folio_put(folio); 1903 return ERR_PTR(error); 1904 } 1905 1906 /* 1907 * When a page is moved from swapcache to shmem filecache (either by the 1908 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1909 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1910 * ignorance of the mapping it belongs to. If that mapping has special 1911 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1912 * we may need to copy to a suitable page before moving to filecache. 1913 * 1914 * In a future release, this may well be extended to respect cpuset and 1915 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1916 * but for now it is a simple matter of zone. 1917 */ 1918 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1919 { 1920 return folio_zonenum(folio) > gfp_zone(gfp); 1921 } 1922 1923 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1924 struct shmem_inode_info *info, pgoff_t index, 1925 struct vm_area_struct *vma) 1926 { 1927 struct folio *new, *old = *foliop; 1928 swp_entry_t entry = old->swap; 1929 struct address_space *swap_mapping = swap_address_space(entry); 1930 pgoff_t swap_index = swap_cache_index(entry); 1931 XA_STATE(xas, &swap_mapping->i_pages, swap_index); 1932 int nr_pages = folio_nr_pages(old); 1933 int error = 0, i; 1934 1935 /* 1936 * We have arrived here because our zones are constrained, so don't 1937 * limit chance of success by further cpuset and node constraints. 1938 */ 1939 gfp &= ~GFP_CONSTRAINT_MASK; 1940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1941 if (nr_pages > 1) { 1942 gfp_t huge_gfp = vma_thp_gfp_mask(vma); 1943 1944 gfp = limit_gfp_mask(huge_gfp, gfp); 1945 } 1946 #endif 1947 1948 new = shmem_alloc_folio(gfp, folio_order(old), info, index); 1949 if (!new) 1950 return -ENOMEM; 1951 1952 folio_ref_add(new, nr_pages); 1953 folio_copy(new, old); 1954 flush_dcache_folio(new); 1955 1956 __folio_set_locked(new); 1957 __folio_set_swapbacked(new); 1958 folio_mark_uptodate(new); 1959 new->swap = entry; 1960 folio_set_swapcache(new); 1961 1962 /* Swap cache still stores N entries instead of a high-order entry */ 1963 xa_lock_irq(&swap_mapping->i_pages); 1964 for (i = 0; i < nr_pages; i++) { 1965 void *item = xas_load(&xas); 1966 1967 if (item != old) { 1968 error = -ENOENT; 1969 break; 1970 } 1971 1972 xas_store(&xas, new); 1973 xas_next(&xas); 1974 } 1975 if (!error) { 1976 mem_cgroup_replace_folio(old, new); 1977 shmem_update_stats(new, nr_pages); 1978 shmem_update_stats(old, -nr_pages); 1979 } 1980 xa_unlock_irq(&swap_mapping->i_pages); 1981 1982 if (unlikely(error)) { 1983 /* 1984 * Is this possible? I think not, now that our callers 1985 * check both the swapcache flag and folio->private 1986 * after getting the folio lock; but be defensive. 1987 * Reverse old to newpage for clear and free. 1988 */ 1989 old = new; 1990 } else { 1991 folio_add_lru(new); 1992 *foliop = new; 1993 } 1994 1995 folio_clear_swapcache(old); 1996 old->private = NULL; 1997 1998 folio_unlock(old); 1999 /* 2000 * The old folio are removed from swap cache, drop the 'nr_pages' 2001 * reference, as well as one temporary reference getting from swap 2002 * cache. 2003 */ 2004 folio_put_refs(old, nr_pages + 1); 2005 return error; 2006 } 2007 2008 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 2009 struct folio *folio, swp_entry_t swap) 2010 { 2011 struct address_space *mapping = inode->i_mapping; 2012 swp_entry_t swapin_error; 2013 void *old; 2014 int nr_pages; 2015 2016 swapin_error = make_poisoned_swp_entry(); 2017 old = xa_cmpxchg_irq(&mapping->i_pages, index, 2018 swp_to_radix_entry(swap), 2019 swp_to_radix_entry(swapin_error), 0); 2020 if (old != swp_to_radix_entry(swap)) 2021 return; 2022 2023 nr_pages = folio_nr_pages(folio); 2024 folio_wait_writeback(folio); 2025 delete_from_swap_cache(folio); 2026 /* 2027 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 2028 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 2029 * in shmem_evict_inode(). 2030 */ 2031 shmem_recalc_inode(inode, -nr_pages, -nr_pages); 2032 swap_free_nr(swap, nr_pages); 2033 } 2034 2035 static int shmem_split_large_entry(struct inode *inode, pgoff_t index, 2036 swp_entry_t swap, gfp_t gfp) 2037 { 2038 struct address_space *mapping = inode->i_mapping; 2039 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0); 2040 void *alloced_shadow = NULL; 2041 int alloced_order = 0, i; 2042 2043 /* Convert user data gfp flags to xarray node gfp flags */ 2044 gfp &= GFP_RECLAIM_MASK; 2045 2046 for (;;) { 2047 int order = -1, split_order = 0; 2048 void *old = NULL; 2049 2050 xas_lock_irq(&xas); 2051 old = xas_load(&xas); 2052 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) { 2053 xas_set_err(&xas, -EEXIST); 2054 goto unlock; 2055 } 2056 2057 order = xas_get_order(&xas); 2058 2059 /* Swap entry may have changed before we re-acquire the lock */ 2060 if (alloced_order && 2061 (old != alloced_shadow || order != alloced_order)) { 2062 xas_destroy(&xas); 2063 alloced_order = 0; 2064 } 2065 2066 /* Try to split large swap entry in pagecache */ 2067 if (order > 0) { 2068 if (!alloced_order) { 2069 split_order = order; 2070 goto unlock; 2071 } 2072 xas_split(&xas, old, order); 2073 2074 /* 2075 * Re-set the swap entry after splitting, and the swap 2076 * offset of the original large entry must be continuous. 2077 */ 2078 for (i = 0; i < 1 << order; i++) { 2079 pgoff_t aligned_index = round_down(index, 1 << order); 2080 swp_entry_t tmp; 2081 2082 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i); 2083 __xa_store(&mapping->i_pages, aligned_index + i, 2084 swp_to_radix_entry(tmp), 0); 2085 } 2086 } 2087 2088 unlock: 2089 xas_unlock_irq(&xas); 2090 2091 /* split needed, alloc here and retry. */ 2092 if (split_order) { 2093 xas_split_alloc(&xas, old, split_order, gfp); 2094 if (xas_error(&xas)) 2095 goto error; 2096 alloced_shadow = old; 2097 alloced_order = split_order; 2098 xas_reset(&xas); 2099 continue; 2100 } 2101 2102 if (!xas_nomem(&xas, gfp)) 2103 break; 2104 } 2105 2106 error: 2107 if (xas_error(&xas)) 2108 return xas_error(&xas); 2109 2110 return alloced_order; 2111 } 2112 2113 /* 2114 * Swap in the folio pointed to by *foliop. 2115 * Caller has to make sure that *foliop contains a valid swapped folio. 2116 * Returns 0 and the folio in foliop if success. On failure, returns the 2117 * error code and NULL in *foliop. 2118 */ 2119 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 2120 struct folio **foliop, enum sgp_type sgp, 2121 gfp_t gfp, struct vm_area_struct *vma, 2122 vm_fault_t *fault_type) 2123 { 2124 struct address_space *mapping = inode->i_mapping; 2125 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL; 2126 struct shmem_inode_info *info = SHMEM_I(inode); 2127 struct swap_info_struct *si; 2128 struct folio *folio = NULL; 2129 swp_entry_t swap; 2130 int error, nr_pages; 2131 2132 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 2133 swap = radix_to_swp_entry(*foliop); 2134 *foliop = NULL; 2135 2136 if (is_poisoned_swp_entry(swap)) 2137 return -EIO; 2138 2139 si = get_swap_device(swap); 2140 if (!si) { 2141 if (!shmem_confirm_swap(mapping, index, swap)) 2142 return -EEXIST; 2143 else 2144 return -EINVAL; 2145 } 2146 2147 /* Look it up and read it in.. */ 2148 folio = swap_cache_get_folio(swap, NULL, 0); 2149 if (!folio) { 2150 int split_order; 2151 2152 /* Or update major stats only when swapin succeeds?? */ 2153 if (fault_type) { 2154 *fault_type |= VM_FAULT_MAJOR; 2155 count_vm_event(PGMAJFAULT); 2156 count_memcg_event_mm(fault_mm, PGMAJFAULT); 2157 } 2158 2159 /* 2160 * Now swap device can only swap in order 0 folio, then we 2161 * should split the large swap entry stored in the pagecache 2162 * if necessary. 2163 */ 2164 split_order = shmem_split_large_entry(inode, index, swap, gfp); 2165 if (split_order < 0) { 2166 error = split_order; 2167 goto failed; 2168 } 2169 2170 /* 2171 * If the large swap entry has already been split, it is 2172 * necessary to recalculate the new swap entry based on 2173 * the old order alignment. 2174 */ 2175 if (split_order > 0) { 2176 pgoff_t offset = index - round_down(index, 1 << split_order); 2177 2178 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset); 2179 } 2180 2181 /* Here we actually start the io */ 2182 folio = shmem_swapin_cluster(swap, gfp, info, index); 2183 if (!folio) { 2184 error = -ENOMEM; 2185 goto failed; 2186 } 2187 } 2188 2189 /* We have to do this with folio locked to prevent races */ 2190 folio_lock(folio); 2191 if (!folio_test_swapcache(folio) || 2192 folio->swap.val != swap.val || 2193 !shmem_confirm_swap(mapping, index, swap)) { 2194 error = -EEXIST; 2195 goto unlock; 2196 } 2197 if (!folio_test_uptodate(folio)) { 2198 error = -EIO; 2199 goto failed; 2200 } 2201 folio_wait_writeback(folio); 2202 nr_pages = folio_nr_pages(folio); 2203 2204 /* 2205 * Some architectures may have to restore extra metadata to the 2206 * folio after reading from swap. 2207 */ 2208 arch_swap_restore(folio_swap(swap, folio), folio); 2209 2210 if (shmem_should_replace_folio(folio, gfp)) { 2211 error = shmem_replace_folio(&folio, gfp, info, index, vma); 2212 if (error) 2213 goto failed; 2214 } 2215 2216 error = shmem_add_to_page_cache(folio, mapping, 2217 round_down(index, nr_pages), 2218 swp_to_radix_entry(swap), gfp); 2219 if (error) 2220 goto failed; 2221 2222 shmem_recalc_inode(inode, 0, -nr_pages); 2223 2224 if (sgp == SGP_WRITE) 2225 folio_mark_accessed(folio); 2226 2227 delete_from_swap_cache(folio); 2228 folio_mark_dirty(folio); 2229 swap_free_nr(swap, nr_pages); 2230 put_swap_device(si); 2231 2232 *foliop = folio; 2233 return 0; 2234 failed: 2235 if (!shmem_confirm_swap(mapping, index, swap)) 2236 error = -EEXIST; 2237 if (error == -EIO) 2238 shmem_set_folio_swapin_error(inode, index, folio, swap); 2239 unlock: 2240 if (folio) { 2241 folio_unlock(folio); 2242 folio_put(folio); 2243 } 2244 put_swap_device(si); 2245 2246 return error; 2247 } 2248 2249 /* 2250 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 2251 * 2252 * If we allocate a new one we do not mark it dirty. That's up to the 2253 * vm. If we swap it in we mark it dirty since we also free the swap 2254 * entry since a page cannot live in both the swap and page cache. 2255 * 2256 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL. 2257 */ 2258 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 2259 loff_t write_end, struct folio **foliop, enum sgp_type sgp, 2260 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type) 2261 { 2262 struct vm_area_struct *vma = vmf ? vmf->vma : NULL; 2263 struct mm_struct *fault_mm; 2264 struct folio *folio; 2265 int error; 2266 bool alloced; 2267 unsigned long orders = 0; 2268 2269 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping))) 2270 return -EINVAL; 2271 2272 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 2273 return -EFBIG; 2274 repeat: 2275 if (sgp <= SGP_CACHE && 2276 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) 2277 return -EINVAL; 2278 2279 alloced = false; 2280 fault_mm = vma ? vma->vm_mm : NULL; 2281 2282 folio = filemap_get_entry(inode->i_mapping, index); 2283 if (folio && vma && userfaultfd_minor(vma)) { 2284 if (!xa_is_value(folio)) 2285 folio_put(folio); 2286 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 2287 return 0; 2288 } 2289 2290 if (xa_is_value(folio)) { 2291 error = shmem_swapin_folio(inode, index, &folio, 2292 sgp, gfp, vma, fault_type); 2293 if (error == -EEXIST) 2294 goto repeat; 2295 2296 *foliop = folio; 2297 return error; 2298 } 2299 2300 if (folio) { 2301 folio_lock(folio); 2302 2303 /* Has the folio been truncated or swapped out? */ 2304 if (unlikely(folio->mapping != inode->i_mapping)) { 2305 folio_unlock(folio); 2306 folio_put(folio); 2307 goto repeat; 2308 } 2309 if (sgp == SGP_WRITE) 2310 folio_mark_accessed(folio); 2311 if (folio_test_uptodate(folio)) 2312 goto out; 2313 /* fallocated folio */ 2314 if (sgp != SGP_READ) 2315 goto clear; 2316 folio_unlock(folio); 2317 folio_put(folio); 2318 } 2319 2320 /* 2321 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 2322 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 2323 */ 2324 *foliop = NULL; 2325 if (sgp == SGP_READ) 2326 return 0; 2327 if (sgp == SGP_NOALLOC) 2328 return -ENOENT; 2329 2330 /* 2331 * Fast cache lookup and swap lookup did not find it: allocate. 2332 */ 2333 2334 if (vma && userfaultfd_missing(vma)) { 2335 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2336 return 0; 2337 } 2338 2339 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */ 2340 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false); 2341 if (orders > 0) { 2342 gfp_t huge_gfp; 2343 2344 huge_gfp = vma_thp_gfp_mask(vma); 2345 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2346 folio = shmem_alloc_and_add_folio(vmf, huge_gfp, 2347 inode, index, fault_mm, orders); 2348 if (!IS_ERR(folio)) { 2349 if (folio_test_pmd_mappable(folio)) 2350 count_vm_event(THP_FILE_ALLOC); 2351 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC); 2352 goto alloced; 2353 } 2354 if (PTR_ERR(folio) == -EEXIST) 2355 goto repeat; 2356 } 2357 2358 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0); 2359 if (IS_ERR(folio)) { 2360 error = PTR_ERR(folio); 2361 if (error == -EEXIST) 2362 goto repeat; 2363 folio = NULL; 2364 goto unlock; 2365 } 2366 2367 alloced: 2368 alloced = true; 2369 if (folio_test_large(folio) && 2370 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2371 folio_next_index(folio)) { 2372 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2373 struct shmem_inode_info *info = SHMEM_I(inode); 2374 /* 2375 * Part of the large folio is beyond i_size: subject 2376 * to shrink under memory pressure. 2377 */ 2378 spin_lock(&sbinfo->shrinklist_lock); 2379 /* 2380 * _careful to defend against unlocked access to 2381 * ->shrink_list in shmem_unused_huge_shrink() 2382 */ 2383 if (list_empty_careful(&info->shrinklist)) { 2384 list_add_tail(&info->shrinklist, 2385 &sbinfo->shrinklist); 2386 sbinfo->shrinklist_len++; 2387 } 2388 spin_unlock(&sbinfo->shrinklist_lock); 2389 } 2390 2391 if (sgp == SGP_WRITE) 2392 folio_set_referenced(folio); 2393 /* 2394 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2395 */ 2396 if (sgp == SGP_FALLOC) 2397 sgp = SGP_WRITE; 2398 clear: 2399 /* 2400 * Let SGP_WRITE caller clear ends if write does not fill folio; 2401 * but SGP_FALLOC on a folio fallocated earlier must initialize 2402 * it now, lest undo on failure cancel our earlier guarantee. 2403 */ 2404 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2405 long i, n = folio_nr_pages(folio); 2406 2407 for (i = 0; i < n; i++) 2408 clear_highpage(folio_page(folio, i)); 2409 flush_dcache_folio(folio); 2410 folio_mark_uptodate(folio); 2411 } 2412 2413 /* Perhaps the file has been truncated since we checked */ 2414 if (sgp <= SGP_CACHE && 2415 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2416 error = -EINVAL; 2417 goto unlock; 2418 } 2419 out: 2420 *foliop = folio; 2421 return 0; 2422 2423 /* 2424 * Error recovery. 2425 */ 2426 unlock: 2427 if (alloced) 2428 filemap_remove_folio(folio); 2429 shmem_recalc_inode(inode, 0, 0); 2430 if (folio) { 2431 folio_unlock(folio); 2432 folio_put(folio); 2433 } 2434 return error; 2435 } 2436 2437 /** 2438 * shmem_get_folio - find, and lock a shmem folio. 2439 * @inode: inode to search 2440 * @index: the page index. 2441 * @write_end: end of a write, could extend inode size 2442 * @foliop: pointer to the folio if found 2443 * @sgp: SGP_* flags to control behavior 2444 * 2445 * Looks up the page cache entry at @inode & @index. If a folio is 2446 * present, it is returned locked with an increased refcount. 2447 * 2448 * If the caller modifies data in the folio, it must call folio_mark_dirty() 2449 * before unlocking the folio to ensure that the folio is not reclaimed. 2450 * There is no need to reserve space before calling folio_mark_dirty(). 2451 * 2452 * When no folio is found, the behavior depends on @sgp: 2453 * - for SGP_READ, *@foliop is %NULL and 0 is returned 2454 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned 2455 * - for all other flags a new folio is allocated, inserted into the 2456 * page cache and returned locked in @foliop. 2457 * 2458 * Context: May sleep. 2459 * Return: 0 if successful, else a negative error code. 2460 */ 2461 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end, 2462 struct folio **foliop, enum sgp_type sgp) 2463 { 2464 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp, 2465 mapping_gfp_mask(inode->i_mapping), NULL, NULL); 2466 } 2467 EXPORT_SYMBOL_GPL(shmem_get_folio); 2468 2469 /* 2470 * This is like autoremove_wake_function, but it removes the wait queue 2471 * entry unconditionally - even if something else had already woken the 2472 * target. 2473 */ 2474 static int synchronous_wake_function(wait_queue_entry_t *wait, 2475 unsigned int mode, int sync, void *key) 2476 { 2477 int ret = default_wake_function(wait, mode, sync, key); 2478 list_del_init(&wait->entry); 2479 return ret; 2480 } 2481 2482 /* 2483 * Trinity finds that probing a hole which tmpfs is punching can 2484 * prevent the hole-punch from ever completing: which in turn 2485 * locks writers out with its hold on i_rwsem. So refrain from 2486 * faulting pages into the hole while it's being punched. Although 2487 * shmem_undo_range() does remove the additions, it may be unable to 2488 * keep up, as each new page needs its own unmap_mapping_range() call, 2489 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2490 * 2491 * It does not matter if we sometimes reach this check just before the 2492 * hole-punch begins, so that one fault then races with the punch: 2493 * we just need to make racing faults a rare case. 2494 * 2495 * The implementation below would be much simpler if we just used a 2496 * standard mutex or completion: but we cannot take i_rwsem in fault, 2497 * and bloating every shmem inode for this unlikely case would be sad. 2498 */ 2499 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode) 2500 { 2501 struct shmem_falloc *shmem_falloc; 2502 struct file *fpin = NULL; 2503 vm_fault_t ret = 0; 2504 2505 spin_lock(&inode->i_lock); 2506 shmem_falloc = inode->i_private; 2507 if (shmem_falloc && 2508 shmem_falloc->waitq && 2509 vmf->pgoff >= shmem_falloc->start && 2510 vmf->pgoff < shmem_falloc->next) { 2511 wait_queue_head_t *shmem_falloc_waitq; 2512 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2513 2514 ret = VM_FAULT_NOPAGE; 2515 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2516 shmem_falloc_waitq = shmem_falloc->waitq; 2517 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2518 TASK_UNINTERRUPTIBLE); 2519 spin_unlock(&inode->i_lock); 2520 schedule(); 2521 2522 /* 2523 * shmem_falloc_waitq points into the shmem_fallocate() 2524 * stack of the hole-punching task: shmem_falloc_waitq 2525 * is usually invalid by the time we reach here, but 2526 * finish_wait() does not dereference it in that case; 2527 * though i_lock needed lest racing with wake_up_all(). 2528 */ 2529 spin_lock(&inode->i_lock); 2530 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2531 } 2532 spin_unlock(&inode->i_lock); 2533 if (fpin) { 2534 fput(fpin); 2535 ret = VM_FAULT_RETRY; 2536 } 2537 return ret; 2538 } 2539 2540 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2541 { 2542 struct inode *inode = file_inode(vmf->vma->vm_file); 2543 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2544 struct folio *folio = NULL; 2545 vm_fault_t ret = 0; 2546 int err; 2547 2548 /* 2549 * Trinity finds that probing a hole which tmpfs is punching can 2550 * prevent the hole-punch from ever completing: noted in i_private. 2551 */ 2552 if (unlikely(inode->i_private)) { 2553 ret = shmem_falloc_wait(vmf, inode); 2554 if (ret) 2555 return ret; 2556 } 2557 2558 WARN_ON_ONCE(vmf->page != NULL); 2559 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE, 2560 gfp, vmf, &ret); 2561 if (err) 2562 return vmf_error(err); 2563 if (folio) { 2564 vmf->page = folio_file_page(folio, vmf->pgoff); 2565 ret |= VM_FAULT_LOCKED; 2566 } 2567 return ret; 2568 } 2569 2570 unsigned long shmem_get_unmapped_area(struct file *file, 2571 unsigned long uaddr, unsigned long len, 2572 unsigned long pgoff, unsigned long flags) 2573 { 2574 unsigned long addr; 2575 unsigned long offset; 2576 unsigned long inflated_len; 2577 unsigned long inflated_addr; 2578 unsigned long inflated_offset; 2579 unsigned long hpage_size; 2580 2581 if (len > TASK_SIZE) 2582 return -ENOMEM; 2583 2584 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff, 2585 flags); 2586 2587 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2588 return addr; 2589 if (IS_ERR_VALUE(addr)) 2590 return addr; 2591 if (addr & ~PAGE_MASK) 2592 return addr; 2593 if (addr > TASK_SIZE - len) 2594 return addr; 2595 2596 if (shmem_huge == SHMEM_HUGE_DENY) 2597 return addr; 2598 if (flags & MAP_FIXED) 2599 return addr; 2600 /* 2601 * Our priority is to support MAP_SHARED mapped hugely; 2602 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2603 * But if caller specified an address hint and we allocated area there 2604 * successfully, respect that as before. 2605 */ 2606 if (uaddr == addr) 2607 return addr; 2608 2609 hpage_size = HPAGE_PMD_SIZE; 2610 if (shmem_huge != SHMEM_HUGE_FORCE) { 2611 struct super_block *sb; 2612 unsigned long __maybe_unused hpage_orders; 2613 int order = 0; 2614 2615 if (file) { 2616 VM_BUG_ON(file->f_op != &shmem_file_operations); 2617 sb = file_inode(file)->i_sb; 2618 } else { 2619 /* 2620 * Called directly from mm/mmap.c, or drivers/char/mem.c 2621 * for "/dev/zero", to create a shared anonymous object. 2622 */ 2623 if (IS_ERR(shm_mnt)) 2624 return addr; 2625 sb = shm_mnt->mnt_sb; 2626 2627 /* 2628 * Find the highest mTHP order used for anonymous shmem to 2629 * provide a suitable alignment address. 2630 */ 2631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2632 hpage_orders = READ_ONCE(huge_shmem_orders_always); 2633 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size); 2634 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise); 2635 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER) 2636 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit); 2637 2638 if (hpage_orders > 0) { 2639 order = highest_order(hpage_orders); 2640 hpage_size = PAGE_SIZE << order; 2641 } 2642 #endif 2643 } 2644 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order) 2645 return addr; 2646 } 2647 2648 if (len < hpage_size) 2649 return addr; 2650 2651 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1); 2652 if (offset && offset + len < 2 * hpage_size) 2653 return addr; 2654 if ((addr & (hpage_size - 1)) == offset) 2655 return addr; 2656 2657 inflated_len = len + hpage_size - PAGE_SIZE; 2658 if (inflated_len > TASK_SIZE) 2659 return addr; 2660 if (inflated_len < len) 2661 return addr; 2662 2663 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr, 2664 inflated_len, 0, flags); 2665 if (IS_ERR_VALUE(inflated_addr)) 2666 return addr; 2667 if (inflated_addr & ~PAGE_MASK) 2668 return addr; 2669 2670 inflated_offset = inflated_addr & (hpage_size - 1); 2671 inflated_addr += offset - inflated_offset; 2672 if (inflated_offset > offset) 2673 inflated_addr += hpage_size; 2674 2675 if (inflated_addr > TASK_SIZE - len) 2676 return addr; 2677 return inflated_addr; 2678 } 2679 2680 #ifdef CONFIG_NUMA 2681 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2682 { 2683 struct inode *inode = file_inode(vma->vm_file); 2684 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2685 } 2686 2687 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2688 unsigned long addr, pgoff_t *ilx) 2689 { 2690 struct inode *inode = file_inode(vma->vm_file); 2691 pgoff_t index; 2692 2693 /* 2694 * Bias interleave by inode number to distribute better across nodes; 2695 * but this interface is independent of which page order is used, so 2696 * supplies only that bias, letting caller apply the offset (adjusted 2697 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()). 2698 */ 2699 *ilx = inode->i_ino; 2700 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2701 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2702 } 2703 2704 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2705 pgoff_t index, unsigned int order, pgoff_t *ilx) 2706 { 2707 struct mempolicy *mpol; 2708 2709 /* Bias interleave by inode number to distribute better across nodes */ 2710 *ilx = info->vfs_inode.i_ino + (index >> order); 2711 2712 mpol = mpol_shared_policy_lookup(&info->policy, index); 2713 return mpol ? mpol : get_task_policy(current); 2714 } 2715 #else 2716 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info, 2717 pgoff_t index, unsigned int order, pgoff_t *ilx) 2718 { 2719 *ilx = 0; 2720 return NULL; 2721 } 2722 #endif /* CONFIG_NUMA */ 2723 2724 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2725 { 2726 struct inode *inode = file_inode(file); 2727 struct shmem_inode_info *info = SHMEM_I(inode); 2728 int retval = -ENOMEM; 2729 2730 /* 2731 * What serializes the accesses to info->flags? 2732 * ipc_lock_object() when called from shmctl_do_lock(), 2733 * no serialization needed when called from shm_destroy(). 2734 */ 2735 if (lock && !(info->flags & VM_LOCKED)) { 2736 if (!user_shm_lock(inode->i_size, ucounts)) 2737 goto out_nomem; 2738 info->flags |= VM_LOCKED; 2739 mapping_set_unevictable(file->f_mapping); 2740 } 2741 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2742 user_shm_unlock(inode->i_size, ucounts); 2743 info->flags &= ~VM_LOCKED; 2744 mapping_clear_unevictable(file->f_mapping); 2745 } 2746 retval = 0; 2747 2748 out_nomem: 2749 return retval; 2750 } 2751 2752 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2753 { 2754 struct inode *inode = file_inode(file); 2755 struct shmem_inode_info *info = SHMEM_I(inode); 2756 int ret; 2757 2758 ret = seal_check_write(info->seals, vma); 2759 if (ret) 2760 return ret; 2761 2762 file_accessed(file); 2763 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2764 if (inode->i_nlink) 2765 vma->vm_ops = &shmem_vm_ops; 2766 else 2767 vma->vm_ops = &shmem_anon_vm_ops; 2768 return 0; 2769 } 2770 2771 static int shmem_file_open(struct inode *inode, struct file *file) 2772 { 2773 file->f_mode |= FMODE_CAN_ODIRECT; 2774 return generic_file_open(inode, file); 2775 } 2776 2777 #ifdef CONFIG_TMPFS_XATTR 2778 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2779 2780 #if IS_ENABLED(CONFIG_UNICODE) 2781 /* 2782 * shmem_inode_casefold_flags - Deal with casefold file attribute flag 2783 * 2784 * The casefold file attribute needs some special checks. I can just be added to 2785 * an empty dir, and can't be removed from a non-empty dir. 2786 */ 2787 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2788 struct dentry *dentry, unsigned int *i_flags) 2789 { 2790 unsigned int old = inode->i_flags; 2791 struct super_block *sb = inode->i_sb; 2792 2793 if (fsflags & FS_CASEFOLD_FL) { 2794 if (!(old & S_CASEFOLD)) { 2795 if (!sb->s_encoding) 2796 return -EOPNOTSUPP; 2797 2798 if (!S_ISDIR(inode->i_mode)) 2799 return -ENOTDIR; 2800 2801 if (dentry && !simple_empty(dentry)) 2802 return -ENOTEMPTY; 2803 } 2804 2805 *i_flags = *i_flags | S_CASEFOLD; 2806 } else if (old & S_CASEFOLD) { 2807 if (dentry && !simple_empty(dentry)) 2808 return -ENOTEMPTY; 2809 } 2810 2811 return 0; 2812 } 2813 #else 2814 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags, 2815 struct dentry *dentry, unsigned int *i_flags) 2816 { 2817 if (fsflags & FS_CASEFOLD_FL) 2818 return -EOPNOTSUPP; 2819 2820 return 0; 2821 } 2822 #endif 2823 2824 /* 2825 * chattr's fsflags are unrelated to extended attributes, 2826 * but tmpfs has chosen to enable them under the same config option. 2827 */ 2828 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2829 { 2830 unsigned int i_flags = 0; 2831 int ret; 2832 2833 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags); 2834 if (ret) 2835 return ret; 2836 2837 if (fsflags & FS_NOATIME_FL) 2838 i_flags |= S_NOATIME; 2839 if (fsflags & FS_APPEND_FL) 2840 i_flags |= S_APPEND; 2841 if (fsflags & FS_IMMUTABLE_FL) 2842 i_flags |= S_IMMUTABLE; 2843 /* 2844 * But FS_NODUMP_FL does not require any action in i_flags. 2845 */ 2846 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD); 2847 2848 return 0; 2849 } 2850 #else 2851 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry) 2852 { 2853 } 2854 #define shmem_initxattrs NULL 2855 #endif 2856 2857 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2858 { 2859 return &SHMEM_I(inode)->dir_offsets; 2860 } 2861 2862 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2863 struct super_block *sb, 2864 struct inode *dir, umode_t mode, 2865 dev_t dev, unsigned long flags) 2866 { 2867 struct inode *inode; 2868 struct shmem_inode_info *info; 2869 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2870 ino_t ino; 2871 int err; 2872 2873 err = shmem_reserve_inode(sb, &ino); 2874 if (err) 2875 return ERR_PTR(err); 2876 2877 inode = new_inode(sb); 2878 if (!inode) { 2879 shmem_free_inode(sb, 0); 2880 return ERR_PTR(-ENOSPC); 2881 } 2882 2883 inode->i_ino = ino; 2884 inode_init_owner(idmap, inode, dir, mode); 2885 inode->i_blocks = 0; 2886 simple_inode_init_ts(inode); 2887 inode->i_generation = get_random_u32(); 2888 info = SHMEM_I(inode); 2889 memset(info, 0, (char *)inode - (char *)info); 2890 spin_lock_init(&info->lock); 2891 atomic_set(&info->stop_eviction, 0); 2892 info->seals = F_SEAL_SEAL; 2893 info->flags = flags & VM_NORESERVE; 2894 info->i_crtime = inode_get_mtime(inode); 2895 info->fsflags = (dir == NULL) ? 0 : 2896 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2897 if (info->fsflags) 2898 shmem_set_inode_flags(inode, info->fsflags, NULL); 2899 INIT_LIST_HEAD(&info->shrinklist); 2900 INIT_LIST_HEAD(&info->swaplist); 2901 simple_xattrs_init(&info->xattrs); 2902 cache_no_acl(inode); 2903 if (sbinfo->noswap) 2904 mapping_set_unevictable(inode->i_mapping); 2905 2906 /* Don't consider 'deny' for emergencies and 'force' for testing */ 2907 if (sbinfo->huge) 2908 mapping_set_large_folios(inode->i_mapping); 2909 2910 switch (mode & S_IFMT) { 2911 default: 2912 inode->i_op = &shmem_special_inode_operations; 2913 init_special_inode(inode, mode, dev); 2914 break; 2915 case S_IFREG: 2916 inode->i_mapping->a_ops = &shmem_aops; 2917 inode->i_op = &shmem_inode_operations; 2918 inode->i_fop = &shmem_file_operations; 2919 mpol_shared_policy_init(&info->policy, 2920 shmem_get_sbmpol(sbinfo)); 2921 break; 2922 case S_IFDIR: 2923 inc_nlink(inode); 2924 /* Some things misbehave if size == 0 on a directory */ 2925 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2926 inode->i_op = &shmem_dir_inode_operations; 2927 inode->i_fop = &simple_offset_dir_operations; 2928 simple_offset_init(shmem_get_offset_ctx(inode)); 2929 break; 2930 case S_IFLNK: 2931 /* 2932 * Must not load anything in the rbtree, 2933 * mpol_free_shared_policy will not be called. 2934 */ 2935 mpol_shared_policy_init(&info->policy, NULL); 2936 break; 2937 } 2938 2939 lockdep_annotate_inode_mutex_key(inode); 2940 return inode; 2941 } 2942 2943 #ifdef CONFIG_TMPFS_QUOTA 2944 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2945 struct super_block *sb, struct inode *dir, 2946 umode_t mode, dev_t dev, unsigned long flags) 2947 { 2948 int err; 2949 struct inode *inode; 2950 2951 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2952 if (IS_ERR(inode)) 2953 return inode; 2954 2955 err = dquot_initialize(inode); 2956 if (err) 2957 goto errout; 2958 2959 err = dquot_alloc_inode(inode); 2960 if (err) { 2961 dquot_drop(inode); 2962 goto errout; 2963 } 2964 return inode; 2965 2966 errout: 2967 inode->i_flags |= S_NOQUOTA; 2968 iput(inode); 2969 return ERR_PTR(err); 2970 } 2971 #else 2972 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2973 struct super_block *sb, struct inode *dir, 2974 umode_t mode, dev_t dev, unsigned long flags) 2975 { 2976 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2977 } 2978 #endif /* CONFIG_TMPFS_QUOTA */ 2979 2980 #ifdef CONFIG_USERFAULTFD 2981 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2982 struct vm_area_struct *dst_vma, 2983 unsigned long dst_addr, 2984 unsigned long src_addr, 2985 uffd_flags_t flags, 2986 struct folio **foliop) 2987 { 2988 struct inode *inode = file_inode(dst_vma->vm_file); 2989 struct shmem_inode_info *info = SHMEM_I(inode); 2990 struct address_space *mapping = inode->i_mapping; 2991 gfp_t gfp = mapping_gfp_mask(mapping); 2992 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2993 void *page_kaddr; 2994 struct folio *folio; 2995 int ret; 2996 pgoff_t max_off; 2997 2998 if (shmem_inode_acct_blocks(inode, 1)) { 2999 /* 3000 * We may have got a page, returned -ENOENT triggering a retry, 3001 * and now we find ourselves with -ENOMEM. Release the page, to 3002 * avoid a BUG_ON in our caller. 3003 */ 3004 if (unlikely(*foliop)) { 3005 folio_put(*foliop); 3006 *foliop = NULL; 3007 } 3008 return -ENOMEM; 3009 } 3010 3011 if (!*foliop) { 3012 ret = -ENOMEM; 3013 folio = shmem_alloc_folio(gfp, 0, info, pgoff); 3014 if (!folio) 3015 goto out_unacct_blocks; 3016 3017 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 3018 page_kaddr = kmap_local_folio(folio, 0); 3019 /* 3020 * The read mmap_lock is held here. Despite the 3021 * mmap_lock being read recursive a deadlock is still 3022 * possible if a writer has taken a lock. For example: 3023 * 3024 * process A thread 1 takes read lock on own mmap_lock 3025 * process A thread 2 calls mmap, blocks taking write lock 3026 * process B thread 1 takes page fault, read lock on own mmap lock 3027 * process B thread 2 calls mmap, blocks taking write lock 3028 * process A thread 1 blocks taking read lock on process B 3029 * process B thread 1 blocks taking read lock on process A 3030 * 3031 * Disable page faults to prevent potential deadlock 3032 * and retry the copy outside the mmap_lock. 3033 */ 3034 pagefault_disable(); 3035 ret = copy_from_user(page_kaddr, 3036 (const void __user *)src_addr, 3037 PAGE_SIZE); 3038 pagefault_enable(); 3039 kunmap_local(page_kaddr); 3040 3041 /* fallback to copy_from_user outside mmap_lock */ 3042 if (unlikely(ret)) { 3043 *foliop = folio; 3044 ret = -ENOENT; 3045 /* don't free the page */ 3046 goto out_unacct_blocks; 3047 } 3048 3049 flush_dcache_folio(folio); 3050 } else { /* ZEROPAGE */ 3051 clear_user_highpage(&folio->page, dst_addr); 3052 } 3053 } else { 3054 folio = *foliop; 3055 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 3056 *foliop = NULL; 3057 } 3058 3059 VM_BUG_ON(folio_test_locked(folio)); 3060 VM_BUG_ON(folio_test_swapbacked(folio)); 3061 __folio_set_locked(folio); 3062 __folio_set_swapbacked(folio); 3063 __folio_mark_uptodate(folio); 3064 3065 ret = -EFAULT; 3066 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3067 if (unlikely(pgoff >= max_off)) 3068 goto out_release; 3069 3070 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp); 3071 if (ret) 3072 goto out_release; 3073 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp); 3074 if (ret) 3075 goto out_release; 3076 3077 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 3078 &folio->page, true, flags); 3079 if (ret) 3080 goto out_delete_from_cache; 3081 3082 shmem_recalc_inode(inode, 1, 0); 3083 folio_unlock(folio); 3084 return 0; 3085 out_delete_from_cache: 3086 filemap_remove_folio(folio); 3087 out_release: 3088 folio_unlock(folio); 3089 folio_put(folio); 3090 out_unacct_blocks: 3091 shmem_inode_unacct_blocks(inode, 1); 3092 return ret; 3093 } 3094 #endif /* CONFIG_USERFAULTFD */ 3095 3096 #ifdef CONFIG_TMPFS 3097 static const struct inode_operations shmem_symlink_inode_operations; 3098 static const struct inode_operations shmem_short_symlink_operations; 3099 3100 static int 3101 shmem_write_begin(struct file *file, struct address_space *mapping, 3102 loff_t pos, unsigned len, 3103 struct folio **foliop, void **fsdata) 3104 { 3105 struct inode *inode = mapping->host; 3106 struct shmem_inode_info *info = SHMEM_I(inode); 3107 pgoff_t index = pos >> PAGE_SHIFT; 3108 struct folio *folio; 3109 int ret = 0; 3110 3111 /* i_rwsem is held by caller */ 3112 if (unlikely(info->seals & (F_SEAL_GROW | 3113 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 3114 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 3115 return -EPERM; 3116 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 3117 return -EPERM; 3118 } 3119 3120 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE); 3121 if (ret) 3122 return ret; 3123 3124 if (folio_test_hwpoison(folio) || 3125 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) { 3126 folio_unlock(folio); 3127 folio_put(folio); 3128 return -EIO; 3129 } 3130 3131 *foliop = folio; 3132 return 0; 3133 } 3134 3135 static int 3136 shmem_write_end(struct file *file, struct address_space *mapping, 3137 loff_t pos, unsigned len, unsigned copied, 3138 struct folio *folio, void *fsdata) 3139 { 3140 struct inode *inode = mapping->host; 3141 3142 if (pos + copied > inode->i_size) 3143 i_size_write(inode, pos + copied); 3144 3145 if (!folio_test_uptodate(folio)) { 3146 if (copied < folio_size(folio)) { 3147 size_t from = offset_in_folio(folio, pos); 3148 folio_zero_segments(folio, 0, from, 3149 from + copied, folio_size(folio)); 3150 } 3151 folio_mark_uptodate(folio); 3152 } 3153 folio_mark_dirty(folio); 3154 folio_unlock(folio); 3155 folio_put(folio); 3156 3157 return copied; 3158 } 3159 3160 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 3161 { 3162 struct file *file = iocb->ki_filp; 3163 struct inode *inode = file_inode(file); 3164 struct address_space *mapping = inode->i_mapping; 3165 pgoff_t index; 3166 unsigned long offset; 3167 int error = 0; 3168 ssize_t retval = 0; 3169 3170 for (;;) { 3171 struct folio *folio = NULL; 3172 struct page *page = NULL; 3173 unsigned long nr, ret; 3174 loff_t end_offset, i_size = i_size_read(inode); 3175 bool fallback_page_copy = false; 3176 size_t fsize; 3177 3178 if (unlikely(iocb->ki_pos >= i_size)) 3179 break; 3180 3181 index = iocb->ki_pos >> PAGE_SHIFT; 3182 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3183 if (error) { 3184 if (error == -EINVAL) 3185 error = 0; 3186 break; 3187 } 3188 if (folio) { 3189 folio_unlock(folio); 3190 3191 page = folio_file_page(folio, index); 3192 if (PageHWPoison(page)) { 3193 folio_put(folio); 3194 error = -EIO; 3195 break; 3196 } 3197 3198 if (folio_test_large(folio) && 3199 folio_test_has_hwpoisoned(folio)) 3200 fallback_page_copy = true; 3201 } 3202 3203 /* 3204 * We must evaluate after, since reads (unlike writes) 3205 * are called without i_rwsem protection against truncate 3206 */ 3207 i_size = i_size_read(inode); 3208 if (unlikely(iocb->ki_pos >= i_size)) { 3209 if (folio) 3210 folio_put(folio); 3211 break; 3212 } 3213 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count); 3214 if (folio && likely(!fallback_page_copy)) 3215 fsize = folio_size(folio); 3216 else 3217 fsize = PAGE_SIZE; 3218 offset = iocb->ki_pos & (fsize - 1); 3219 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset); 3220 3221 if (folio) { 3222 /* 3223 * If users can be writing to this page using arbitrary 3224 * virtual addresses, take care about potential aliasing 3225 * before reading the page on the kernel side. 3226 */ 3227 if (mapping_writably_mapped(mapping)) { 3228 if (likely(!fallback_page_copy)) 3229 flush_dcache_folio(folio); 3230 else 3231 flush_dcache_page(page); 3232 } 3233 3234 /* 3235 * Mark the folio accessed if we read the beginning. 3236 */ 3237 if (!offset) 3238 folio_mark_accessed(folio); 3239 /* 3240 * Ok, we have the page, and it's up-to-date, so 3241 * now we can copy it to user space... 3242 */ 3243 if (likely(!fallback_page_copy)) 3244 ret = copy_folio_to_iter(folio, offset, nr, to); 3245 else 3246 ret = copy_page_to_iter(page, offset, nr, to); 3247 folio_put(folio); 3248 } else if (user_backed_iter(to)) { 3249 /* 3250 * Copy to user tends to be so well optimized, but 3251 * clear_user() not so much, that it is noticeably 3252 * faster to copy the zero page instead of clearing. 3253 */ 3254 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 3255 } else { 3256 /* 3257 * But submitting the same page twice in a row to 3258 * splice() - or others? - can result in confusion: 3259 * so don't attempt that optimization on pipes etc. 3260 */ 3261 ret = iov_iter_zero(nr, to); 3262 } 3263 3264 retval += ret; 3265 iocb->ki_pos += ret; 3266 3267 if (!iov_iter_count(to)) 3268 break; 3269 if (ret < nr) { 3270 error = -EFAULT; 3271 break; 3272 } 3273 cond_resched(); 3274 } 3275 3276 file_accessed(file); 3277 return retval ? retval : error; 3278 } 3279 3280 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3281 { 3282 struct file *file = iocb->ki_filp; 3283 struct inode *inode = file->f_mapping->host; 3284 ssize_t ret; 3285 3286 inode_lock(inode); 3287 ret = generic_write_checks(iocb, from); 3288 if (ret <= 0) 3289 goto unlock; 3290 ret = file_remove_privs(file); 3291 if (ret) 3292 goto unlock; 3293 ret = file_update_time(file); 3294 if (ret) 3295 goto unlock; 3296 ret = generic_perform_write(iocb, from); 3297 unlock: 3298 inode_unlock(inode); 3299 return ret; 3300 } 3301 3302 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 3303 struct pipe_buffer *buf) 3304 { 3305 return true; 3306 } 3307 3308 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 3309 struct pipe_buffer *buf) 3310 { 3311 } 3312 3313 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 3314 struct pipe_buffer *buf) 3315 { 3316 return false; 3317 } 3318 3319 static const struct pipe_buf_operations zero_pipe_buf_ops = { 3320 .release = zero_pipe_buf_release, 3321 .try_steal = zero_pipe_buf_try_steal, 3322 .get = zero_pipe_buf_get, 3323 }; 3324 3325 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 3326 loff_t fpos, size_t size) 3327 { 3328 size_t offset = fpos & ~PAGE_MASK; 3329 3330 size = min_t(size_t, size, PAGE_SIZE - offset); 3331 3332 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 3333 struct pipe_buffer *buf = pipe_head_buf(pipe); 3334 3335 *buf = (struct pipe_buffer) { 3336 .ops = &zero_pipe_buf_ops, 3337 .page = ZERO_PAGE(0), 3338 .offset = offset, 3339 .len = size, 3340 }; 3341 pipe->head++; 3342 } 3343 3344 return size; 3345 } 3346 3347 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 3348 struct pipe_inode_info *pipe, 3349 size_t len, unsigned int flags) 3350 { 3351 struct inode *inode = file_inode(in); 3352 struct address_space *mapping = inode->i_mapping; 3353 struct folio *folio = NULL; 3354 size_t total_spliced = 0, used, npages, n, part; 3355 loff_t isize; 3356 int error = 0; 3357 3358 /* Work out how much data we can actually add into the pipe */ 3359 used = pipe_occupancy(pipe->head, pipe->tail); 3360 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3361 len = min_t(size_t, len, npages * PAGE_SIZE); 3362 3363 do { 3364 bool fallback_page_splice = false; 3365 struct page *page = NULL; 3366 pgoff_t index; 3367 size_t size; 3368 3369 if (*ppos >= i_size_read(inode)) 3370 break; 3371 3372 index = *ppos >> PAGE_SHIFT; 3373 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ); 3374 if (error) { 3375 if (error == -EINVAL) 3376 error = 0; 3377 break; 3378 } 3379 if (folio) { 3380 folio_unlock(folio); 3381 3382 page = folio_file_page(folio, index); 3383 if (PageHWPoison(page)) { 3384 error = -EIO; 3385 break; 3386 } 3387 3388 if (folio_test_large(folio) && 3389 folio_test_has_hwpoisoned(folio)) 3390 fallback_page_splice = true; 3391 } 3392 3393 /* 3394 * i_size must be checked after we know the pages are Uptodate. 3395 * 3396 * Checking i_size after the check allows us to calculate 3397 * the correct value for "nr", which means the zero-filled 3398 * part of the page is not copied back to userspace (unless 3399 * another truncate extends the file - this is desired though). 3400 */ 3401 isize = i_size_read(inode); 3402 if (unlikely(*ppos >= isize)) 3403 break; 3404 /* 3405 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned 3406 * pages. 3407 */ 3408 size = len; 3409 if (unlikely(fallback_page_splice)) { 3410 size_t offset = *ppos & ~PAGE_MASK; 3411 3412 size = umin(size, PAGE_SIZE - offset); 3413 } 3414 part = min_t(loff_t, isize - *ppos, size); 3415 3416 if (folio) { 3417 /* 3418 * If users can be writing to this page using arbitrary 3419 * virtual addresses, take care about potential aliasing 3420 * before reading the page on the kernel side. 3421 */ 3422 if (mapping_writably_mapped(mapping)) { 3423 if (likely(!fallback_page_splice)) 3424 flush_dcache_folio(folio); 3425 else 3426 flush_dcache_page(page); 3427 } 3428 folio_mark_accessed(folio); 3429 /* 3430 * Ok, we have the page, and it's up-to-date, so we can 3431 * now splice it into the pipe. 3432 */ 3433 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 3434 folio_put(folio); 3435 folio = NULL; 3436 } else { 3437 n = splice_zeropage_into_pipe(pipe, *ppos, part); 3438 } 3439 3440 if (!n) 3441 break; 3442 len -= n; 3443 total_spliced += n; 3444 *ppos += n; 3445 in->f_ra.prev_pos = *ppos; 3446 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 3447 break; 3448 3449 cond_resched(); 3450 } while (len); 3451 3452 if (folio) 3453 folio_put(folio); 3454 3455 file_accessed(in); 3456 return total_spliced ? total_spliced : error; 3457 } 3458 3459 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3460 { 3461 struct address_space *mapping = file->f_mapping; 3462 struct inode *inode = mapping->host; 3463 3464 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3465 return generic_file_llseek_size(file, offset, whence, 3466 MAX_LFS_FILESIZE, i_size_read(inode)); 3467 if (offset < 0) 3468 return -ENXIO; 3469 3470 inode_lock(inode); 3471 /* We're holding i_rwsem so we can access i_size directly */ 3472 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3473 if (offset >= 0) 3474 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3475 inode_unlock(inode); 3476 return offset; 3477 } 3478 3479 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3480 loff_t len) 3481 { 3482 struct inode *inode = file_inode(file); 3483 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3484 struct shmem_inode_info *info = SHMEM_I(inode); 3485 struct shmem_falloc shmem_falloc; 3486 pgoff_t start, index, end, undo_fallocend; 3487 int error; 3488 3489 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3490 return -EOPNOTSUPP; 3491 3492 inode_lock(inode); 3493 3494 if (mode & FALLOC_FL_PUNCH_HOLE) { 3495 struct address_space *mapping = file->f_mapping; 3496 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3497 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3498 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3499 3500 /* protected by i_rwsem */ 3501 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3502 error = -EPERM; 3503 goto out; 3504 } 3505 3506 shmem_falloc.waitq = &shmem_falloc_waitq; 3507 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3508 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3509 spin_lock(&inode->i_lock); 3510 inode->i_private = &shmem_falloc; 3511 spin_unlock(&inode->i_lock); 3512 3513 if ((u64)unmap_end > (u64)unmap_start) 3514 unmap_mapping_range(mapping, unmap_start, 3515 1 + unmap_end - unmap_start, 0); 3516 shmem_truncate_range(inode, offset, offset + len - 1); 3517 /* No need to unmap again: hole-punching leaves COWed pages */ 3518 3519 spin_lock(&inode->i_lock); 3520 inode->i_private = NULL; 3521 wake_up_all(&shmem_falloc_waitq); 3522 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3523 spin_unlock(&inode->i_lock); 3524 error = 0; 3525 goto out; 3526 } 3527 3528 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3529 error = inode_newsize_ok(inode, offset + len); 3530 if (error) 3531 goto out; 3532 3533 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3534 error = -EPERM; 3535 goto out; 3536 } 3537 3538 start = offset >> PAGE_SHIFT; 3539 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3540 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3541 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3542 error = -ENOSPC; 3543 goto out; 3544 } 3545 3546 shmem_falloc.waitq = NULL; 3547 shmem_falloc.start = start; 3548 shmem_falloc.next = start; 3549 shmem_falloc.nr_falloced = 0; 3550 shmem_falloc.nr_unswapped = 0; 3551 spin_lock(&inode->i_lock); 3552 inode->i_private = &shmem_falloc; 3553 spin_unlock(&inode->i_lock); 3554 3555 /* 3556 * info->fallocend is only relevant when huge pages might be 3557 * involved: to prevent split_huge_page() freeing fallocated 3558 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3559 */ 3560 undo_fallocend = info->fallocend; 3561 if (info->fallocend < end) 3562 info->fallocend = end; 3563 3564 for (index = start; index < end; ) { 3565 struct folio *folio; 3566 3567 /* 3568 * Check for fatal signal so that we abort early in OOM 3569 * situations. We don't want to abort in case of non-fatal 3570 * signals as large fallocate can take noticeable time and 3571 * e.g. periodic timers may result in fallocate constantly 3572 * restarting. 3573 */ 3574 if (fatal_signal_pending(current)) 3575 error = -EINTR; 3576 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3577 error = -ENOMEM; 3578 else 3579 error = shmem_get_folio(inode, index, offset + len, 3580 &folio, SGP_FALLOC); 3581 if (error) { 3582 info->fallocend = undo_fallocend; 3583 /* Remove the !uptodate folios we added */ 3584 if (index > start) { 3585 shmem_undo_range(inode, 3586 (loff_t)start << PAGE_SHIFT, 3587 ((loff_t)index << PAGE_SHIFT) - 1, true); 3588 } 3589 goto undone; 3590 } 3591 3592 /* 3593 * Here is a more important optimization than it appears: 3594 * a second SGP_FALLOC on the same large folio will clear it, 3595 * making it uptodate and un-undoable if we fail later. 3596 */ 3597 index = folio_next_index(folio); 3598 /* Beware 32-bit wraparound */ 3599 if (!index) 3600 index--; 3601 3602 /* 3603 * Inform shmem_writepage() how far we have reached. 3604 * No need for lock or barrier: we have the page lock. 3605 */ 3606 if (!folio_test_uptodate(folio)) 3607 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3608 shmem_falloc.next = index; 3609 3610 /* 3611 * If !uptodate, leave it that way so that freeable folios 3612 * can be recognized if we need to rollback on error later. 3613 * But mark it dirty so that memory pressure will swap rather 3614 * than free the folios we are allocating (and SGP_CACHE folios 3615 * might still be clean: we now need to mark those dirty too). 3616 */ 3617 folio_mark_dirty(folio); 3618 folio_unlock(folio); 3619 folio_put(folio); 3620 cond_resched(); 3621 } 3622 3623 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3624 i_size_write(inode, offset + len); 3625 undone: 3626 spin_lock(&inode->i_lock); 3627 inode->i_private = NULL; 3628 spin_unlock(&inode->i_lock); 3629 out: 3630 if (!error) 3631 file_modified(file); 3632 inode_unlock(inode); 3633 return error; 3634 } 3635 3636 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3637 { 3638 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3639 3640 buf->f_type = TMPFS_MAGIC; 3641 buf->f_bsize = PAGE_SIZE; 3642 buf->f_namelen = NAME_MAX; 3643 if (sbinfo->max_blocks) { 3644 buf->f_blocks = sbinfo->max_blocks; 3645 buf->f_bavail = 3646 buf->f_bfree = sbinfo->max_blocks - 3647 percpu_counter_sum(&sbinfo->used_blocks); 3648 } 3649 if (sbinfo->max_inodes) { 3650 buf->f_files = sbinfo->max_inodes; 3651 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3652 } 3653 /* else leave those fields 0 like simple_statfs */ 3654 3655 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3656 3657 return 0; 3658 } 3659 3660 /* 3661 * File creation. Allocate an inode, and we're done.. 3662 */ 3663 static int 3664 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3665 struct dentry *dentry, umode_t mode, dev_t dev) 3666 { 3667 struct inode *inode; 3668 int error; 3669 3670 if (!generic_ci_validate_strict_name(dir, &dentry->d_name)) 3671 return -EINVAL; 3672 3673 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3674 if (IS_ERR(inode)) 3675 return PTR_ERR(inode); 3676 3677 error = simple_acl_create(dir, inode); 3678 if (error) 3679 goto out_iput; 3680 error = security_inode_init_security(inode, dir, &dentry->d_name, 3681 shmem_initxattrs, NULL); 3682 if (error && error != -EOPNOTSUPP) 3683 goto out_iput; 3684 3685 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3686 if (error) 3687 goto out_iput; 3688 3689 dir->i_size += BOGO_DIRENT_SIZE; 3690 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3691 inode_inc_iversion(dir); 3692 3693 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3694 d_add(dentry, inode); 3695 else 3696 d_instantiate(dentry, inode); 3697 3698 dget(dentry); /* Extra count - pin the dentry in core */ 3699 return error; 3700 3701 out_iput: 3702 iput(inode); 3703 return error; 3704 } 3705 3706 static int 3707 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3708 struct file *file, umode_t mode) 3709 { 3710 struct inode *inode; 3711 int error; 3712 3713 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3714 if (IS_ERR(inode)) { 3715 error = PTR_ERR(inode); 3716 goto err_out; 3717 } 3718 error = security_inode_init_security(inode, dir, NULL, 3719 shmem_initxattrs, NULL); 3720 if (error && error != -EOPNOTSUPP) 3721 goto out_iput; 3722 error = simple_acl_create(dir, inode); 3723 if (error) 3724 goto out_iput; 3725 d_tmpfile(file, inode); 3726 3727 err_out: 3728 return finish_open_simple(file, error); 3729 out_iput: 3730 iput(inode); 3731 return error; 3732 } 3733 3734 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3735 struct dentry *dentry, umode_t mode) 3736 { 3737 int error; 3738 3739 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3740 if (error) 3741 return error; 3742 inc_nlink(dir); 3743 return 0; 3744 } 3745 3746 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3747 struct dentry *dentry, umode_t mode, bool excl) 3748 { 3749 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3750 } 3751 3752 /* 3753 * Link a file.. 3754 */ 3755 static int shmem_link(struct dentry *old_dentry, struct inode *dir, 3756 struct dentry *dentry) 3757 { 3758 struct inode *inode = d_inode(old_dentry); 3759 int ret = 0; 3760 3761 /* 3762 * No ordinary (disk based) filesystem counts links as inodes; 3763 * but each new link needs a new dentry, pinning lowmem, and 3764 * tmpfs dentries cannot be pruned until they are unlinked. 3765 * But if an O_TMPFILE file is linked into the tmpfs, the 3766 * first link must skip that, to get the accounting right. 3767 */ 3768 if (inode->i_nlink) { 3769 ret = shmem_reserve_inode(inode->i_sb, NULL); 3770 if (ret) 3771 goto out; 3772 } 3773 3774 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3775 if (ret) { 3776 if (inode->i_nlink) 3777 shmem_free_inode(inode->i_sb, 0); 3778 goto out; 3779 } 3780 3781 dir->i_size += BOGO_DIRENT_SIZE; 3782 inode_set_mtime_to_ts(dir, 3783 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3784 inode_inc_iversion(dir); 3785 inc_nlink(inode); 3786 ihold(inode); /* New dentry reference */ 3787 dget(dentry); /* Extra pinning count for the created dentry */ 3788 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3789 d_add(dentry, inode); 3790 else 3791 d_instantiate(dentry, inode); 3792 out: 3793 return ret; 3794 } 3795 3796 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3797 { 3798 struct inode *inode = d_inode(dentry); 3799 3800 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3801 shmem_free_inode(inode->i_sb, 0); 3802 3803 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3804 3805 dir->i_size -= BOGO_DIRENT_SIZE; 3806 inode_set_mtime_to_ts(dir, 3807 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 3808 inode_inc_iversion(dir); 3809 drop_nlink(inode); 3810 dput(dentry); /* Undo the count from "create" - does all the work */ 3811 3812 /* 3813 * For now, VFS can't deal with case-insensitive negative dentries, so 3814 * we invalidate them 3815 */ 3816 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3817 d_invalidate(dentry); 3818 3819 return 0; 3820 } 3821 3822 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3823 { 3824 if (!simple_offset_empty(dentry)) 3825 return -ENOTEMPTY; 3826 3827 drop_nlink(d_inode(dentry)); 3828 drop_nlink(dir); 3829 return shmem_unlink(dir, dentry); 3830 } 3831 3832 static int shmem_whiteout(struct mnt_idmap *idmap, 3833 struct inode *old_dir, struct dentry *old_dentry) 3834 { 3835 struct dentry *whiteout; 3836 int error; 3837 3838 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3839 if (!whiteout) 3840 return -ENOMEM; 3841 3842 error = shmem_mknod(idmap, old_dir, whiteout, 3843 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3844 dput(whiteout); 3845 if (error) 3846 return error; 3847 3848 /* 3849 * Cheat and hash the whiteout while the old dentry is still in 3850 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3851 * 3852 * d_lookup() will consistently find one of them at this point, 3853 * not sure which one, but that isn't even important. 3854 */ 3855 d_rehash(whiteout); 3856 return 0; 3857 } 3858 3859 /* 3860 * The VFS layer already does all the dentry stuff for rename, 3861 * we just have to decrement the usage count for the target if 3862 * it exists so that the VFS layer correctly free's it when it 3863 * gets overwritten. 3864 */ 3865 static int shmem_rename2(struct mnt_idmap *idmap, 3866 struct inode *old_dir, struct dentry *old_dentry, 3867 struct inode *new_dir, struct dentry *new_dentry, 3868 unsigned int flags) 3869 { 3870 struct inode *inode = d_inode(old_dentry); 3871 int they_are_dirs = S_ISDIR(inode->i_mode); 3872 int error; 3873 3874 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3875 return -EINVAL; 3876 3877 if (flags & RENAME_EXCHANGE) 3878 return simple_offset_rename_exchange(old_dir, old_dentry, 3879 new_dir, new_dentry); 3880 3881 if (!simple_offset_empty(new_dentry)) 3882 return -ENOTEMPTY; 3883 3884 if (flags & RENAME_WHITEOUT) { 3885 error = shmem_whiteout(idmap, old_dir, old_dentry); 3886 if (error) 3887 return error; 3888 } 3889 3890 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry); 3891 if (error) 3892 return error; 3893 3894 if (d_really_is_positive(new_dentry)) { 3895 (void) shmem_unlink(new_dir, new_dentry); 3896 if (they_are_dirs) { 3897 drop_nlink(d_inode(new_dentry)); 3898 drop_nlink(old_dir); 3899 } 3900 } else if (they_are_dirs) { 3901 drop_nlink(old_dir); 3902 inc_nlink(new_dir); 3903 } 3904 3905 old_dir->i_size -= BOGO_DIRENT_SIZE; 3906 new_dir->i_size += BOGO_DIRENT_SIZE; 3907 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3908 inode_inc_iversion(old_dir); 3909 inode_inc_iversion(new_dir); 3910 return 0; 3911 } 3912 3913 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3914 struct dentry *dentry, const char *symname) 3915 { 3916 int error; 3917 int len; 3918 struct inode *inode; 3919 struct folio *folio; 3920 3921 len = strlen(symname) + 1; 3922 if (len > PAGE_SIZE) 3923 return -ENAMETOOLONG; 3924 3925 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3926 VM_NORESERVE); 3927 if (IS_ERR(inode)) 3928 return PTR_ERR(inode); 3929 3930 error = security_inode_init_security(inode, dir, &dentry->d_name, 3931 shmem_initxattrs, NULL); 3932 if (error && error != -EOPNOTSUPP) 3933 goto out_iput; 3934 3935 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3936 if (error) 3937 goto out_iput; 3938 3939 inode->i_size = len-1; 3940 if (len <= SHORT_SYMLINK_LEN) { 3941 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3942 if (!inode->i_link) { 3943 error = -ENOMEM; 3944 goto out_remove_offset; 3945 } 3946 inode->i_op = &shmem_short_symlink_operations; 3947 } else { 3948 inode_nohighmem(inode); 3949 inode->i_mapping->a_ops = &shmem_aops; 3950 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE); 3951 if (error) 3952 goto out_remove_offset; 3953 inode->i_op = &shmem_symlink_inode_operations; 3954 memcpy(folio_address(folio), symname, len); 3955 folio_mark_uptodate(folio); 3956 folio_mark_dirty(folio); 3957 folio_unlock(folio); 3958 folio_put(folio); 3959 } 3960 dir->i_size += BOGO_DIRENT_SIZE; 3961 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir)); 3962 inode_inc_iversion(dir); 3963 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir)) 3964 d_add(dentry, inode); 3965 else 3966 d_instantiate(dentry, inode); 3967 dget(dentry); 3968 return 0; 3969 3970 out_remove_offset: 3971 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3972 out_iput: 3973 iput(inode); 3974 return error; 3975 } 3976 3977 static void shmem_put_link(void *arg) 3978 { 3979 folio_mark_accessed(arg); 3980 folio_put(arg); 3981 } 3982 3983 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode, 3984 struct delayed_call *done) 3985 { 3986 struct folio *folio = NULL; 3987 int error; 3988 3989 if (!dentry) { 3990 folio = filemap_get_folio(inode->i_mapping, 0); 3991 if (IS_ERR(folio)) 3992 return ERR_PTR(-ECHILD); 3993 if (PageHWPoison(folio_page(folio, 0)) || 3994 !folio_test_uptodate(folio)) { 3995 folio_put(folio); 3996 return ERR_PTR(-ECHILD); 3997 } 3998 } else { 3999 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ); 4000 if (error) 4001 return ERR_PTR(error); 4002 if (!folio) 4003 return ERR_PTR(-ECHILD); 4004 if (PageHWPoison(folio_page(folio, 0))) { 4005 folio_unlock(folio); 4006 folio_put(folio); 4007 return ERR_PTR(-ECHILD); 4008 } 4009 folio_unlock(folio); 4010 } 4011 set_delayed_call(done, shmem_put_link, folio); 4012 return folio_address(folio); 4013 } 4014 4015 #ifdef CONFIG_TMPFS_XATTR 4016 4017 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 4018 { 4019 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4020 4021 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 4022 4023 return 0; 4024 } 4025 4026 static int shmem_fileattr_set(struct mnt_idmap *idmap, 4027 struct dentry *dentry, struct fileattr *fa) 4028 { 4029 struct inode *inode = d_inode(dentry); 4030 struct shmem_inode_info *info = SHMEM_I(inode); 4031 int ret, flags; 4032 4033 if (fileattr_has_fsx(fa)) 4034 return -EOPNOTSUPP; 4035 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 4036 return -EOPNOTSUPP; 4037 4038 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 4039 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 4040 4041 ret = shmem_set_inode_flags(inode, flags, dentry); 4042 4043 if (ret) 4044 return ret; 4045 4046 info->fsflags = flags; 4047 4048 inode_set_ctime_current(inode); 4049 inode_inc_iversion(inode); 4050 return 0; 4051 } 4052 4053 /* 4054 * Superblocks without xattr inode operations may get some security.* xattr 4055 * support from the LSM "for free". As soon as we have any other xattrs 4056 * like ACLs, we also need to implement the security.* handlers at 4057 * filesystem level, though. 4058 */ 4059 4060 /* 4061 * Callback for security_inode_init_security() for acquiring xattrs. 4062 */ 4063 static int shmem_initxattrs(struct inode *inode, 4064 const struct xattr *xattr_array, void *fs_info) 4065 { 4066 struct shmem_inode_info *info = SHMEM_I(inode); 4067 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4068 const struct xattr *xattr; 4069 struct simple_xattr *new_xattr; 4070 size_t ispace = 0; 4071 size_t len; 4072 4073 if (sbinfo->max_inodes) { 4074 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4075 ispace += simple_xattr_space(xattr->name, 4076 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 4077 } 4078 if (ispace) { 4079 raw_spin_lock(&sbinfo->stat_lock); 4080 if (sbinfo->free_ispace < ispace) 4081 ispace = 0; 4082 else 4083 sbinfo->free_ispace -= ispace; 4084 raw_spin_unlock(&sbinfo->stat_lock); 4085 if (!ispace) 4086 return -ENOSPC; 4087 } 4088 } 4089 4090 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 4091 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 4092 if (!new_xattr) 4093 break; 4094 4095 len = strlen(xattr->name) + 1; 4096 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 4097 GFP_KERNEL_ACCOUNT); 4098 if (!new_xattr->name) { 4099 kvfree(new_xattr); 4100 break; 4101 } 4102 4103 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 4104 XATTR_SECURITY_PREFIX_LEN); 4105 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 4106 xattr->name, len); 4107 4108 simple_xattr_add(&info->xattrs, new_xattr); 4109 } 4110 4111 if (xattr->name != NULL) { 4112 if (ispace) { 4113 raw_spin_lock(&sbinfo->stat_lock); 4114 sbinfo->free_ispace += ispace; 4115 raw_spin_unlock(&sbinfo->stat_lock); 4116 } 4117 simple_xattrs_free(&info->xattrs, NULL); 4118 return -ENOMEM; 4119 } 4120 4121 return 0; 4122 } 4123 4124 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 4125 struct dentry *unused, struct inode *inode, 4126 const char *name, void *buffer, size_t size) 4127 { 4128 struct shmem_inode_info *info = SHMEM_I(inode); 4129 4130 name = xattr_full_name(handler, name); 4131 return simple_xattr_get(&info->xattrs, name, buffer, size); 4132 } 4133 4134 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 4135 struct mnt_idmap *idmap, 4136 struct dentry *unused, struct inode *inode, 4137 const char *name, const void *value, 4138 size_t size, int flags) 4139 { 4140 struct shmem_inode_info *info = SHMEM_I(inode); 4141 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4142 struct simple_xattr *old_xattr; 4143 size_t ispace = 0; 4144 4145 name = xattr_full_name(handler, name); 4146 if (value && sbinfo->max_inodes) { 4147 ispace = simple_xattr_space(name, size); 4148 raw_spin_lock(&sbinfo->stat_lock); 4149 if (sbinfo->free_ispace < ispace) 4150 ispace = 0; 4151 else 4152 sbinfo->free_ispace -= ispace; 4153 raw_spin_unlock(&sbinfo->stat_lock); 4154 if (!ispace) 4155 return -ENOSPC; 4156 } 4157 4158 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 4159 if (!IS_ERR(old_xattr)) { 4160 ispace = 0; 4161 if (old_xattr && sbinfo->max_inodes) 4162 ispace = simple_xattr_space(old_xattr->name, 4163 old_xattr->size); 4164 simple_xattr_free(old_xattr); 4165 old_xattr = NULL; 4166 inode_set_ctime_current(inode); 4167 inode_inc_iversion(inode); 4168 } 4169 if (ispace) { 4170 raw_spin_lock(&sbinfo->stat_lock); 4171 sbinfo->free_ispace += ispace; 4172 raw_spin_unlock(&sbinfo->stat_lock); 4173 } 4174 return PTR_ERR(old_xattr); 4175 } 4176 4177 static const struct xattr_handler shmem_security_xattr_handler = { 4178 .prefix = XATTR_SECURITY_PREFIX, 4179 .get = shmem_xattr_handler_get, 4180 .set = shmem_xattr_handler_set, 4181 }; 4182 4183 static const struct xattr_handler shmem_trusted_xattr_handler = { 4184 .prefix = XATTR_TRUSTED_PREFIX, 4185 .get = shmem_xattr_handler_get, 4186 .set = shmem_xattr_handler_set, 4187 }; 4188 4189 static const struct xattr_handler shmem_user_xattr_handler = { 4190 .prefix = XATTR_USER_PREFIX, 4191 .get = shmem_xattr_handler_get, 4192 .set = shmem_xattr_handler_set, 4193 }; 4194 4195 static const struct xattr_handler * const shmem_xattr_handlers[] = { 4196 &shmem_security_xattr_handler, 4197 &shmem_trusted_xattr_handler, 4198 &shmem_user_xattr_handler, 4199 NULL 4200 }; 4201 4202 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 4203 { 4204 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 4205 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 4206 } 4207 #endif /* CONFIG_TMPFS_XATTR */ 4208 4209 static const struct inode_operations shmem_short_symlink_operations = { 4210 .getattr = shmem_getattr, 4211 .setattr = shmem_setattr, 4212 .get_link = simple_get_link, 4213 #ifdef CONFIG_TMPFS_XATTR 4214 .listxattr = shmem_listxattr, 4215 #endif 4216 }; 4217 4218 static const struct inode_operations shmem_symlink_inode_operations = { 4219 .getattr = shmem_getattr, 4220 .setattr = shmem_setattr, 4221 .get_link = shmem_get_link, 4222 #ifdef CONFIG_TMPFS_XATTR 4223 .listxattr = shmem_listxattr, 4224 #endif 4225 }; 4226 4227 static struct dentry *shmem_get_parent(struct dentry *child) 4228 { 4229 return ERR_PTR(-ESTALE); 4230 } 4231 4232 static int shmem_match(struct inode *ino, void *vfh) 4233 { 4234 __u32 *fh = vfh; 4235 __u64 inum = fh[2]; 4236 inum = (inum << 32) | fh[1]; 4237 return ino->i_ino == inum && fh[0] == ino->i_generation; 4238 } 4239 4240 /* Find any alias of inode, but prefer a hashed alias */ 4241 static struct dentry *shmem_find_alias(struct inode *inode) 4242 { 4243 struct dentry *alias = d_find_alias(inode); 4244 4245 return alias ?: d_find_any_alias(inode); 4246 } 4247 4248 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 4249 struct fid *fid, int fh_len, int fh_type) 4250 { 4251 struct inode *inode; 4252 struct dentry *dentry = NULL; 4253 u64 inum; 4254 4255 if (fh_len < 3) 4256 return NULL; 4257 4258 inum = fid->raw[2]; 4259 inum = (inum << 32) | fid->raw[1]; 4260 4261 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 4262 shmem_match, fid->raw); 4263 if (inode) { 4264 dentry = shmem_find_alias(inode); 4265 iput(inode); 4266 } 4267 4268 return dentry; 4269 } 4270 4271 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 4272 struct inode *parent) 4273 { 4274 if (*len < 3) { 4275 *len = 3; 4276 return FILEID_INVALID; 4277 } 4278 4279 if (inode_unhashed(inode)) { 4280 /* Unfortunately insert_inode_hash is not idempotent, 4281 * so as we hash inodes here rather than at creation 4282 * time, we need a lock to ensure we only try 4283 * to do it once 4284 */ 4285 static DEFINE_SPINLOCK(lock); 4286 spin_lock(&lock); 4287 if (inode_unhashed(inode)) 4288 __insert_inode_hash(inode, 4289 inode->i_ino + inode->i_generation); 4290 spin_unlock(&lock); 4291 } 4292 4293 fh[0] = inode->i_generation; 4294 fh[1] = inode->i_ino; 4295 fh[2] = ((__u64)inode->i_ino) >> 32; 4296 4297 *len = 3; 4298 return 1; 4299 } 4300 4301 static const struct export_operations shmem_export_ops = { 4302 .get_parent = shmem_get_parent, 4303 .encode_fh = shmem_encode_fh, 4304 .fh_to_dentry = shmem_fh_to_dentry, 4305 }; 4306 4307 enum shmem_param { 4308 Opt_gid, 4309 Opt_huge, 4310 Opt_mode, 4311 Opt_mpol, 4312 Opt_nr_blocks, 4313 Opt_nr_inodes, 4314 Opt_size, 4315 Opt_uid, 4316 Opt_inode32, 4317 Opt_inode64, 4318 Opt_noswap, 4319 Opt_quota, 4320 Opt_usrquota, 4321 Opt_grpquota, 4322 Opt_usrquota_block_hardlimit, 4323 Opt_usrquota_inode_hardlimit, 4324 Opt_grpquota_block_hardlimit, 4325 Opt_grpquota_inode_hardlimit, 4326 Opt_casefold_version, 4327 Opt_casefold, 4328 Opt_strict_encoding, 4329 }; 4330 4331 static const struct constant_table shmem_param_enums_huge[] = { 4332 {"never", SHMEM_HUGE_NEVER }, 4333 {"always", SHMEM_HUGE_ALWAYS }, 4334 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 4335 {"advise", SHMEM_HUGE_ADVISE }, 4336 {} 4337 }; 4338 4339 const struct fs_parameter_spec shmem_fs_parameters[] = { 4340 fsparam_gid ("gid", Opt_gid), 4341 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 4342 fsparam_u32oct("mode", Opt_mode), 4343 fsparam_string("mpol", Opt_mpol), 4344 fsparam_string("nr_blocks", Opt_nr_blocks), 4345 fsparam_string("nr_inodes", Opt_nr_inodes), 4346 fsparam_string("size", Opt_size), 4347 fsparam_uid ("uid", Opt_uid), 4348 fsparam_flag ("inode32", Opt_inode32), 4349 fsparam_flag ("inode64", Opt_inode64), 4350 fsparam_flag ("noswap", Opt_noswap), 4351 #ifdef CONFIG_TMPFS_QUOTA 4352 fsparam_flag ("quota", Opt_quota), 4353 fsparam_flag ("usrquota", Opt_usrquota), 4354 fsparam_flag ("grpquota", Opt_grpquota), 4355 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 4356 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 4357 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 4358 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 4359 #endif 4360 fsparam_string("casefold", Opt_casefold_version), 4361 fsparam_flag ("casefold", Opt_casefold), 4362 fsparam_flag ("strict_encoding", Opt_strict_encoding), 4363 {} 4364 }; 4365 4366 #if IS_ENABLED(CONFIG_UNICODE) 4367 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4368 bool latest_version) 4369 { 4370 struct shmem_options *ctx = fc->fs_private; 4371 unsigned int version = UTF8_LATEST; 4372 struct unicode_map *encoding; 4373 char *version_str = param->string + 5; 4374 4375 if (!latest_version) { 4376 if (strncmp(param->string, "utf8-", 5)) 4377 return invalfc(fc, "Only UTF-8 encodings are supported " 4378 "in the format: utf8-<version number>"); 4379 4380 version = utf8_parse_version(version_str); 4381 if (version < 0) 4382 return invalfc(fc, "Invalid UTF-8 version: %s", version_str); 4383 } 4384 4385 encoding = utf8_load(version); 4386 4387 if (IS_ERR(encoding)) { 4388 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n", 4389 unicode_major(version), unicode_minor(version), 4390 unicode_rev(version)); 4391 } 4392 4393 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n", 4394 unicode_major(version), unicode_minor(version), unicode_rev(version)); 4395 4396 ctx->encoding = encoding; 4397 4398 return 0; 4399 } 4400 #else 4401 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param, 4402 bool latest_version) 4403 { 4404 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4405 } 4406 #endif 4407 4408 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 4409 { 4410 struct shmem_options *ctx = fc->fs_private; 4411 struct fs_parse_result result; 4412 unsigned long long size; 4413 char *rest; 4414 int opt; 4415 kuid_t kuid; 4416 kgid_t kgid; 4417 4418 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 4419 if (opt < 0) 4420 return opt; 4421 4422 switch (opt) { 4423 case Opt_size: 4424 size = memparse(param->string, &rest); 4425 if (*rest == '%') { 4426 size <<= PAGE_SHIFT; 4427 size *= totalram_pages(); 4428 do_div(size, 100); 4429 rest++; 4430 } 4431 if (*rest) 4432 goto bad_value; 4433 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 4434 ctx->seen |= SHMEM_SEEN_BLOCKS; 4435 break; 4436 case Opt_nr_blocks: 4437 ctx->blocks = memparse(param->string, &rest); 4438 if (*rest || ctx->blocks > LONG_MAX) 4439 goto bad_value; 4440 ctx->seen |= SHMEM_SEEN_BLOCKS; 4441 break; 4442 case Opt_nr_inodes: 4443 ctx->inodes = memparse(param->string, &rest); 4444 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 4445 goto bad_value; 4446 ctx->seen |= SHMEM_SEEN_INODES; 4447 break; 4448 case Opt_mode: 4449 ctx->mode = result.uint_32 & 07777; 4450 break; 4451 case Opt_uid: 4452 kuid = result.uid; 4453 4454 /* 4455 * The requested uid must be representable in the 4456 * filesystem's idmapping. 4457 */ 4458 if (!kuid_has_mapping(fc->user_ns, kuid)) 4459 goto bad_value; 4460 4461 ctx->uid = kuid; 4462 break; 4463 case Opt_gid: 4464 kgid = result.gid; 4465 4466 /* 4467 * The requested gid must be representable in the 4468 * filesystem's idmapping. 4469 */ 4470 if (!kgid_has_mapping(fc->user_ns, kgid)) 4471 goto bad_value; 4472 4473 ctx->gid = kgid; 4474 break; 4475 case Opt_huge: 4476 ctx->huge = result.uint_32; 4477 if (ctx->huge != SHMEM_HUGE_NEVER && 4478 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4479 has_transparent_hugepage())) 4480 goto unsupported_parameter; 4481 ctx->seen |= SHMEM_SEEN_HUGE; 4482 break; 4483 case Opt_mpol: 4484 if (IS_ENABLED(CONFIG_NUMA)) { 4485 mpol_put(ctx->mpol); 4486 ctx->mpol = NULL; 4487 if (mpol_parse_str(param->string, &ctx->mpol)) 4488 goto bad_value; 4489 break; 4490 } 4491 goto unsupported_parameter; 4492 case Opt_inode32: 4493 ctx->full_inums = false; 4494 ctx->seen |= SHMEM_SEEN_INUMS; 4495 break; 4496 case Opt_inode64: 4497 if (sizeof(ino_t) < 8) { 4498 return invalfc(fc, 4499 "Cannot use inode64 with <64bit inums in kernel\n"); 4500 } 4501 ctx->full_inums = true; 4502 ctx->seen |= SHMEM_SEEN_INUMS; 4503 break; 4504 case Opt_noswap: 4505 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 4506 return invalfc(fc, 4507 "Turning off swap in unprivileged tmpfs mounts unsupported"); 4508 } 4509 ctx->noswap = true; 4510 ctx->seen |= SHMEM_SEEN_NOSWAP; 4511 break; 4512 case Opt_quota: 4513 if (fc->user_ns != &init_user_ns) 4514 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4515 ctx->seen |= SHMEM_SEEN_QUOTA; 4516 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 4517 break; 4518 case Opt_usrquota: 4519 if (fc->user_ns != &init_user_ns) 4520 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4521 ctx->seen |= SHMEM_SEEN_QUOTA; 4522 ctx->quota_types |= QTYPE_MASK_USR; 4523 break; 4524 case Opt_grpquota: 4525 if (fc->user_ns != &init_user_ns) 4526 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4527 ctx->seen |= SHMEM_SEEN_QUOTA; 4528 ctx->quota_types |= QTYPE_MASK_GRP; 4529 break; 4530 case Opt_usrquota_block_hardlimit: 4531 size = memparse(param->string, &rest); 4532 if (*rest || !size) 4533 goto bad_value; 4534 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4535 return invalfc(fc, 4536 "User quota block hardlimit too large."); 4537 ctx->qlimits.usrquota_bhardlimit = size; 4538 break; 4539 case Opt_grpquota_block_hardlimit: 4540 size = memparse(param->string, &rest); 4541 if (*rest || !size) 4542 goto bad_value; 4543 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4544 return invalfc(fc, 4545 "Group quota block hardlimit too large."); 4546 ctx->qlimits.grpquota_bhardlimit = size; 4547 break; 4548 case Opt_usrquota_inode_hardlimit: 4549 size = memparse(param->string, &rest); 4550 if (*rest || !size) 4551 goto bad_value; 4552 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4553 return invalfc(fc, 4554 "User quota inode hardlimit too large."); 4555 ctx->qlimits.usrquota_ihardlimit = size; 4556 break; 4557 case Opt_grpquota_inode_hardlimit: 4558 size = memparse(param->string, &rest); 4559 if (*rest || !size) 4560 goto bad_value; 4561 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4562 return invalfc(fc, 4563 "Group quota inode hardlimit too large."); 4564 ctx->qlimits.grpquota_ihardlimit = size; 4565 break; 4566 case Opt_casefold_version: 4567 return shmem_parse_opt_casefold(fc, param, false); 4568 case Opt_casefold: 4569 return shmem_parse_opt_casefold(fc, param, true); 4570 case Opt_strict_encoding: 4571 #if IS_ENABLED(CONFIG_UNICODE) 4572 ctx->strict_encoding = true; 4573 break; 4574 #else 4575 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n"); 4576 #endif 4577 } 4578 return 0; 4579 4580 unsupported_parameter: 4581 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4582 bad_value: 4583 return invalfc(fc, "Bad value for '%s'", param->key); 4584 } 4585 4586 static int shmem_parse_options(struct fs_context *fc, void *data) 4587 { 4588 char *options = data; 4589 4590 if (options) { 4591 int err = security_sb_eat_lsm_opts(options, &fc->security); 4592 if (err) 4593 return err; 4594 } 4595 4596 while (options != NULL) { 4597 char *this_char = options; 4598 for (;;) { 4599 /* 4600 * NUL-terminate this option: unfortunately, 4601 * mount options form a comma-separated list, 4602 * but mpol's nodelist may also contain commas. 4603 */ 4604 options = strchr(options, ','); 4605 if (options == NULL) 4606 break; 4607 options++; 4608 if (!isdigit(*options)) { 4609 options[-1] = '\0'; 4610 break; 4611 } 4612 } 4613 if (*this_char) { 4614 char *value = strchr(this_char, '='); 4615 size_t len = 0; 4616 int err; 4617 4618 if (value) { 4619 *value++ = '\0'; 4620 len = strlen(value); 4621 } 4622 err = vfs_parse_fs_string(fc, this_char, value, len); 4623 if (err < 0) 4624 return err; 4625 } 4626 } 4627 return 0; 4628 } 4629 4630 /* 4631 * Reconfigure a shmem filesystem. 4632 */ 4633 static int shmem_reconfigure(struct fs_context *fc) 4634 { 4635 struct shmem_options *ctx = fc->fs_private; 4636 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4637 unsigned long used_isp; 4638 struct mempolicy *mpol = NULL; 4639 const char *err; 4640 4641 raw_spin_lock(&sbinfo->stat_lock); 4642 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4643 4644 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4645 if (!sbinfo->max_blocks) { 4646 err = "Cannot retroactively limit size"; 4647 goto out; 4648 } 4649 if (percpu_counter_compare(&sbinfo->used_blocks, 4650 ctx->blocks) > 0) { 4651 err = "Too small a size for current use"; 4652 goto out; 4653 } 4654 } 4655 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4656 if (!sbinfo->max_inodes) { 4657 err = "Cannot retroactively limit inodes"; 4658 goto out; 4659 } 4660 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4661 err = "Too few inodes for current use"; 4662 goto out; 4663 } 4664 } 4665 4666 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4667 sbinfo->next_ino > UINT_MAX) { 4668 err = "Current inum too high to switch to 32-bit inums"; 4669 goto out; 4670 } 4671 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4672 err = "Cannot disable swap on remount"; 4673 goto out; 4674 } 4675 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4676 err = "Cannot enable swap on remount if it was disabled on first mount"; 4677 goto out; 4678 } 4679 4680 if (ctx->seen & SHMEM_SEEN_QUOTA && 4681 !sb_any_quota_loaded(fc->root->d_sb)) { 4682 err = "Cannot enable quota on remount"; 4683 goto out; 4684 } 4685 4686 #ifdef CONFIG_TMPFS_QUOTA 4687 #define CHANGED_LIMIT(name) \ 4688 (ctx->qlimits.name## hardlimit && \ 4689 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4690 4691 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4692 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4693 err = "Cannot change global quota limit on remount"; 4694 goto out; 4695 } 4696 #endif /* CONFIG_TMPFS_QUOTA */ 4697 4698 if (ctx->seen & SHMEM_SEEN_HUGE) 4699 sbinfo->huge = ctx->huge; 4700 if (ctx->seen & SHMEM_SEEN_INUMS) 4701 sbinfo->full_inums = ctx->full_inums; 4702 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4703 sbinfo->max_blocks = ctx->blocks; 4704 if (ctx->seen & SHMEM_SEEN_INODES) { 4705 sbinfo->max_inodes = ctx->inodes; 4706 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4707 } 4708 4709 /* 4710 * Preserve previous mempolicy unless mpol remount option was specified. 4711 */ 4712 if (ctx->mpol) { 4713 mpol = sbinfo->mpol; 4714 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4715 ctx->mpol = NULL; 4716 } 4717 4718 if (ctx->noswap) 4719 sbinfo->noswap = true; 4720 4721 raw_spin_unlock(&sbinfo->stat_lock); 4722 mpol_put(mpol); 4723 return 0; 4724 out: 4725 raw_spin_unlock(&sbinfo->stat_lock); 4726 return invalfc(fc, "%s", err); 4727 } 4728 4729 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4730 { 4731 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4732 struct mempolicy *mpol; 4733 4734 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4735 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4736 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4737 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4738 if (sbinfo->mode != (0777 | S_ISVTX)) 4739 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4740 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4741 seq_printf(seq, ",uid=%u", 4742 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4743 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4744 seq_printf(seq, ",gid=%u", 4745 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4746 4747 /* 4748 * Showing inode{64,32} might be useful even if it's the system default, 4749 * since then people don't have to resort to checking both here and 4750 * /proc/config.gz to confirm 64-bit inums were successfully applied 4751 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4752 * 4753 * We hide it when inode64 isn't the default and we are using 32-bit 4754 * inodes, since that probably just means the feature isn't even under 4755 * consideration. 4756 * 4757 * As such: 4758 * 4759 * +-----------------+-----------------+ 4760 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4761 * +------------------+-----------------+-----------------+ 4762 * | full_inums=true | show | show | 4763 * | full_inums=false | show | hide | 4764 * +------------------+-----------------+-----------------+ 4765 * 4766 */ 4767 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4768 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4770 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4771 if (sbinfo->huge) 4772 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4773 #endif 4774 mpol = shmem_get_sbmpol(sbinfo); 4775 shmem_show_mpol(seq, mpol); 4776 mpol_put(mpol); 4777 if (sbinfo->noswap) 4778 seq_printf(seq, ",noswap"); 4779 #ifdef CONFIG_TMPFS_QUOTA 4780 if (sb_has_quota_active(root->d_sb, USRQUOTA)) 4781 seq_printf(seq, ",usrquota"); 4782 if (sb_has_quota_active(root->d_sb, GRPQUOTA)) 4783 seq_printf(seq, ",grpquota"); 4784 if (sbinfo->qlimits.usrquota_bhardlimit) 4785 seq_printf(seq, ",usrquota_block_hardlimit=%lld", 4786 sbinfo->qlimits.usrquota_bhardlimit); 4787 if (sbinfo->qlimits.grpquota_bhardlimit) 4788 seq_printf(seq, ",grpquota_block_hardlimit=%lld", 4789 sbinfo->qlimits.grpquota_bhardlimit); 4790 if (sbinfo->qlimits.usrquota_ihardlimit) 4791 seq_printf(seq, ",usrquota_inode_hardlimit=%lld", 4792 sbinfo->qlimits.usrquota_ihardlimit); 4793 if (sbinfo->qlimits.grpquota_ihardlimit) 4794 seq_printf(seq, ",grpquota_inode_hardlimit=%lld", 4795 sbinfo->qlimits.grpquota_ihardlimit); 4796 #endif 4797 return 0; 4798 } 4799 4800 #endif /* CONFIG_TMPFS */ 4801 4802 static void shmem_put_super(struct super_block *sb) 4803 { 4804 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4805 4806 #if IS_ENABLED(CONFIG_UNICODE) 4807 if (sb->s_encoding) 4808 utf8_unload(sb->s_encoding); 4809 #endif 4810 4811 #ifdef CONFIG_TMPFS_QUOTA 4812 shmem_disable_quotas(sb); 4813 #endif 4814 free_percpu(sbinfo->ino_batch); 4815 percpu_counter_destroy(&sbinfo->used_blocks); 4816 mpol_put(sbinfo->mpol); 4817 kfree(sbinfo); 4818 sb->s_fs_info = NULL; 4819 } 4820 4821 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS) 4822 static const struct dentry_operations shmem_ci_dentry_ops = { 4823 .d_hash = generic_ci_d_hash, 4824 .d_compare = generic_ci_d_compare, 4825 .d_delete = always_delete_dentry, 4826 }; 4827 #endif 4828 4829 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4830 { 4831 struct shmem_options *ctx = fc->fs_private; 4832 struct inode *inode; 4833 struct shmem_sb_info *sbinfo; 4834 int error = -ENOMEM; 4835 4836 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4837 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4838 L1_CACHE_BYTES), GFP_KERNEL); 4839 if (!sbinfo) 4840 return error; 4841 4842 sb->s_fs_info = sbinfo; 4843 4844 #ifdef CONFIG_TMPFS 4845 /* 4846 * Per default we only allow half of the physical ram per 4847 * tmpfs instance, limiting inodes to one per page of lowmem; 4848 * but the internal instance is left unlimited. 4849 */ 4850 if (!(sb->s_flags & SB_KERNMOUNT)) { 4851 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4852 ctx->blocks = shmem_default_max_blocks(); 4853 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4854 ctx->inodes = shmem_default_max_inodes(); 4855 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4856 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4857 sbinfo->noswap = ctx->noswap; 4858 } else { 4859 sb->s_flags |= SB_NOUSER; 4860 } 4861 sb->s_export_op = &shmem_export_ops; 4862 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4863 4864 #if IS_ENABLED(CONFIG_UNICODE) 4865 if (!ctx->encoding && ctx->strict_encoding) { 4866 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n"); 4867 error = -EINVAL; 4868 goto failed; 4869 } 4870 4871 if (ctx->encoding) { 4872 sb->s_encoding = ctx->encoding; 4873 sb->s_d_op = &shmem_ci_dentry_ops; 4874 if (ctx->strict_encoding) 4875 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL; 4876 } 4877 #endif 4878 4879 #else 4880 sb->s_flags |= SB_NOUSER; 4881 #endif /* CONFIG_TMPFS */ 4882 sbinfo->max_blocks = ctx->blocks; 4883 sbinfo->max_inodes = ctx->inodes; 4884 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4885 if (sb->s_flags & SB_KERNMOUNT) { 4886 sbinfo->ino_batch = alloc_percpu(ino_t); 4887 if (!sbinfo->ino_batch) 4888 goto failed; 4889 } 4890 sbinfo->uid = ctx->uid; 4891 sbinfo->gid = ctx->gid; 4892 sbinfo->full_inums = ctx->full_inums; 4893 sbinfo->mode = ctx->mode; 4894 sbinfo->huge = ctx->huge; 4895 sbinfo->mpol = ctx->mpol; 4896 ctx->mpol = NULL; 4897 4898 raw_spin_lock_init(&sbinfo->stat_lock); 4899 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4900 goto failed; 4901 spin_lock_init(&sbinfo->shrinklist_lock); 4902 INIT_LIST_HEAD(&sbinfo->shrinklist); 4903 4904 sb->s_maxbytes = MAX_LFS_FILESIZE; 4905 sb->s_blocksize = PAGE_SIZE; 4906 sb->s_blocksize_bits = PAGE_SHIFT; 4907 sb->s_magic = TMPFS_MAGIC; 4908 sb->s_op = &shmem_ops; 4909 sb->s_time_gran = 1; 4910 #ifdef CONFIG_TMPFS_XATTR 4911 sb->s_xattr = shmem_xattr_handlers; 4912 #endif 4913 #ifdef CONFIG_TMPFS_POSIX_ACL 4914 sb->s_flags |= SB_POSIXACL; 4915 #endif 4916 uuid_t uuid; 4917 uuid_gen(&uuid); 4918 super_set_uuid(sb, uuid.b, sizeof(uuid)); 4919 4920 #ifdef CONFIG_TMPFS_QUOTA 4921 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4922 sb->dq_op = &shmem_quota_operations; 4923 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4924 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4925 4926 /* Copy the default limits from ctx into sbinfo */ 4927 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4928 sizeof(struct shmem_quota_limits)); 4929 4930 if (shmem_enable_quotas(sb, ctx->quota_types)) 4931 goto failed; 4932 } 4933 #endif /* CONFIG_TMPFS_QUOTA */ 4934 4935 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, 4936 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 4937 if (IS_ERR(inode)) { 4938 error = PTR_ERR(inode); 4939 goto failed; 4940 } 4941 inode->i_uid = sbinfo->uid; 4942 inode->i_gid = sbinfo->gid; 4943 sb->s_root = d_make_root(inode); 4944 if (!sb->s_root) 4945 goto failed; 4946 return 0; 4947 4948 failed: 4949 shmem_put_super(sb); 4950 return error; 4951 } 4952 4953 static int shmem_get_tree(struct fs_context *fc) 4954 { 4955 return get_tree_nodev(fc, shmem_fill_super); 4956 } 4957 4958 static void shmem_free_fc(struct fs_context *fc) 4959 { 4960 struct shmem_options *ctx = fc->fs_private; 4961 4962 if (ctx) { 4963 mpol_put(ctx->mpol); 4964 kfree(ctx); 4965 } 4966 } 4967 4968 static const struct fs_context_operations shmem_fs_context_ops = { 4969 .free = shmem_free_fc, 4970 .get_tree = shmem_get_tree, 4971 #ifdef CONFIG_TMPFS 4972 .parse_monolithic = shmem_parse_options, 4973 .parse_param = shmem_parse_one, 4974 .reconfigure = shmem_reconfigure, 4975 #endif 4976 }; 4977 4978 static struct kmem_cache *shmem_inode_cachep __ro_after_init; 4979 4980 static struct inode *shmem_alloc_inode(struct super_block *sb) 4981 { 4982 struct shmem_inode_info *info; 4983 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4984 if (!info) 4985 return NULL; 4986 return &info->vfs_inode; 4987 } 4988 4989 static void shmem_free_in_core_inode(struct inode *inode) 4990 { 4991 if (S_ISLNK(inode->i_mode)) 4992 kfree(inode->i_link); 4993 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4994 } 4995 4996 static void shmem_destroy_inode(struct inode *inode) 4997 { 4998 if (S_ISREG(inode->i_mode)) 4999 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 5000 if (S_ISDIR(inode->i_mode)) 5001 simple_offset_destroy(shmem_get_offset_ctx(inode)); 5002 } 5003 5004 static void shmem_init_inode(void *foo) 5005 { 5006 struct shmem_inode_info *info = foo; 5007 inode_init_once(&info->vfs_inode); 5008 } 5009 5010 static void __init shmem_init_inodecache(void) 5011 { 5012 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 5013 sizeof(struct shmem_inode_info), 5014 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 5015 } 5016 5017 static void __init shmem_destroy_inodecache(void) 5018 { 5019 kmem_cache_destroy(shmem_inode_cachep); 5020 } 5021 5022 /* Keep the page in page cache instead of truncating it */ 5023 static int shmem_error_remove_folio(struct address_space *mapping, 5024 struct folio *folio) 5025 { 5026 return 0; 5027 } 5028 5029 static const struct address_space_operations shmem_aops = { 5030 .writepage = shmem_writepage, 5031 .dirty_folio = noop_dirty_folio, 5032 #ifdef CONFIG_TMPFS 5033 .write_begin = shmem_write_begin, 5034 .write_end = shmem_write_end, 5035 #endif 5036 #ifdef CONFIG_MIGRATION 5037 .migrate_folio = migrate_folio, 5038 #endif 5039 .error_remove_folio = shmem_error_remove_folio, 5040 }; 5041 5042 static const struct file_operations shmem_file_operations = { 5043 .mmap = shmem_mmap, 5044 .open = shmem_file_open, 5045 .get_unmapped_area = shmem_get_unmapped_area, 5046 #ifdef CONFIG_TMPFS 5047 .llseek = shmem_file_llseek, 5048 .read_iter = shmem_file_read_iter, 5049 .write_iter = shmem_file_write_iter, 5050 .fsync = noop_fsync, 5051 .splice_read = shmem_file_splice_read, 5052 .splice_write = iter_file_splice_write, 5053 .fallocate = shmem_fallocate, 5054 #endif 5055 }; 5056 5057 static const struct inode_operations shmem_inode_operations = { 5058 .getattr = shmem_getattr, 5059 .setattr = shmem_setattr, 5060 #ifdef CONFIG_TMPFS_XATTR 5061 .listxattr = shmem_listxattr, 5062 .set_acl = simple_set_acl, 5063 .fileattr_get = shmem_fileattr_get, 5064 .fileattr_set = shmem_fileattr_set, 5065 #endif 5066 }; 5067 5068 static const struct inode_operations shmem_dir_inode_operations = { 5069 #ifdef CONFIG_TMPFS 5070 .getattr = shmem_getattr, 5071 .create = shmem_create, 5072 .lookup = simple_lookup, 5073 .link = shmem_link, 5074 .unlink = shmem_unlink, 5075 .symlink = shmem_symlink, 5076 .mkdir = shmem_mkdir, 5077 .rmdir = shmem_rmdir, 5078 .mknod = shmem_mknod, 5079 .rename = shmem_rename2, 5080 .tmpfile = shmem_tmpfile, 5081 .get_offset_ctx = shmem_get_offset_ctx, 5082 #endif 5083 #ifdef CONFIG_TMPFS_XATTR 5084 .listxattr = shmem_listxattr, 5085 .fileattr_get = shmem_fileattr_get, 5086 .fileattr_set = shmem_fileattr_set, 5087 #endif 5088 #ifdef CONFIG_TMPFS_POSIX_ACL 5089 .setattr = shmem_setattr, 5090 .set_acl = simple_set_acl, 5091 #endif 5092 }; 5093 5094 static const struct inode_operations shmem_special_inode_operations = { 5095 .getattr = shmem_getattr, 5096 #ifdef CONFIG_TMPFS_XATTR 5097 .listxattr = shmem_listxattr, 5098 #endif 5099 #ifdef CONFIG_TMPFS_POSIX_ACL 5100 .setattr = shmem_setattr, 5101 .set_acl = simple_set_acl, 5102 #endif 5103 }; 5104 5105 static const struct super_operations shmem_ops = { 5106 .alloc_inode = shmem_alloc_inode, 5107 .free_inode = shmem_free_in_core_inode, 5108 .destroy_inode = shmem_destroy_inode, 5109 #ifdef CONFIG_TMPFS 5110 .statfs = shmem_statfs, 5111 .show_options = shmem_show_options, 5112 #endif 5113 #ifdef CONFIG_TMPFS_QUOTA 5114 .get_dquots = shmem_get_dquots, 5115 #endif 5116 .evict_inode = shmem_evict_inode, 5117 .drop_inode = generic_delete_inode, 5118 .put_super = shmem_put_super, 5119 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5120 .nr_cached_objects = shmem_unused_huge_count, 5121 .free_cached_objects = shmem_unused_huge_scan, 5122 #endif 5123 }; 5124 5125 static const struct vm_operations_struct shmem_vm_ops = { 5126 .fault = shmem_fault, 5127 .map_pages = filemap_map_pages, 5128 #ifdef CONFIG_NUMA 5129 .set_policy = shmem_set_policy, 5130 .get_policy = shmem_get_policy, 5131 #endif 5132 }; 5133 5134 static const struct vm_operations_struct shmem_anon_vm_ops = { 5135 .fault = shmem_fault, 5136 .map_pages = filemap_map_pages, 5137 #ifdef CONFIG_NUMA 5138 .set_policy = shmem_set_policy, 5139 .get_policy = shmem_get_policy, 5140 #endif 5141 }; 5142 5143 int shmem_init_fs_context(struct fs_context *fc) 5144 { 5145 struct shmem_options *ctx; 5146 5147 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 5148 if (!ctx) 5149 return -ENOMEM; 5150 5151 ctx->mode = 0777 | S_ISVTX; 5152 ctx->uid = current_fsuid(); 5153 ctx->gid = current_fsgid(); 5154 5155 #if IS_ENABLED(CONFIG_UNICODE) 5156 ctx->encoding = NULL; 5157 #endif 5158 5159 fc->fs_private = ctx; 5160 fc->ops = &shmem_fs_context_ops; 5161 return 0; 5162 } 5163 5164 static struct file_system_type shmem_fs_type = { 5165 .owner = THIS_MODULE, 5166 .name = "tmpfs", 5167 .init_fs_context = shmem_init_fs_context, 5168 #ifdef CONFIG_TMPFS 5169 .parameters = shmem_fs_parameters, 5170 #endif 5171 .kill_sb = kill_litter_super, 5172 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 5173 }; 5174 5175 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5176 5177 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \ 5178 { \ 5179 .attr = { .name = __stringify(_name), .mode = _mode }, \ 5180 .show = _show, \ 5181 .store = _store, \ 5182 } 5183 5184 #define TMPFS_ATTR_W(_name, _store) \ 5185 static struct kobj_attribute tmpfs_attr_##_name = \ 5186 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store) 5187 5188 #define TMPFS_ATTR_RW(_name, _show, _store) \ 5189 static struct kobj_attribute tmpfs_attr_##_name = \ 5190 __INIT_KOBJ_ATTR(_name, 0644, _show, _store) 5191 5192 #define TMPFS_ATTR_RO(_name, _show) \ 5193 static struct kobj_attribute tmpfs_attr_##_name = \ 5194 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL) 5195 5196 #if IS_ENABLED(CONFIG_UNICODE) 5197 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a, 5198 char *buf) 5199 { 5200 return sysfs_emit(buf, "supported\n"); 5201 } 5202 TMPFS_ATTR_RO(casefold, casefold_show); 5203 #endif 5204 5205 static struct attribute *tmpfs_attributes[] = { 5206 #if IS_ENABLED(CONFIG_UNICODE) 5207 &tmpfs_attr_casefold.attr, 5208 #endif 5209 NULL 5210 }; 5211 5212 static const struct attribute_group tmpfs_attribute_group = { 5213 .attrs = tmpfs_attributes, 5214 .name = "features" 5215 }; 5216 5217 static struct kobject *tmpfs_kobj; 5218 5219 static int __init tmpfs_sysfs_init(void) 5220 { 5221 int ret; 5222 5223 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj); 5224 if (!tmpfs_kobj) 5225 return -ENOMEM; 5226 5227 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group); 5228 if (ret) 5229 kobject_put(tmpfs_kobj); 5230 5231 return ret; 5232 } 5233 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */ 5234 5235 void __init shmem_init(void) 5236 { 5237 int error; 5238 5239 shmem_init_inodecache(); 5240 5241 #ifdef CONFIG_TMPFS_QUOTA 5242 register_quota_format(&shmem_quota_format); 5243 #endif 5244 5245 error = register_filesystem(&shmem_fs_type); 5246 if (error) { 5247 pr_err("Could not register tmpfs\n"); 5248 goto out2; 5249 } 5250 5251 shm_mnt = kern_mount(&shmem_fs_type); 5252 if (IS_ERR(shm_mnt)) { 5253 error = PTR_ERR(shm_mnt); 5254 pr_err("Could not kern_mount tmpfs\n"); 5255 goto out1; 5256 } 5257 5258 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS) 5259 error = tmpfs_sysfs_init(); 5260 if (error) { 5261 pr_err("Could not init tmpfs sysfs\n"); 5262 goto out1; 5263 } 5264 #endif 5265 5266 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5267 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 5268 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5269 else 5270 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 5271 5272 /* 5273 * Default to setting PMD-sized THP to inherit the global setting and 5274 * disable all other multi-size THPs. 5275 */ 5276 if (!shmem_orders_configured) 5277 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER); 5278 #endif 5279 return; 5280 5281 out1: 5282 unregister_filesystem(&shmem_fs_type); 5283 out2: 5284 #ifdef CONFIG_TMPFS_QUOTA 5285 unregister_quota_format(&shmem_quota_format); 5286 #endif 5287 shmem_destroy_inodecache(); 5288 shm_mnt = ERR_PTR(error); 5289 } 5290 5291 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 5292 static ssize_t shmem_enabled_show(struct kobject *kobj, 5293 struct kobj_attribute *attr, char *buf) 5294 { 5295 static const int values[] = { 5296 SHMEM_HUGE_ALWAYS, 5297 SHMEM_HUGE_WITHIN_SIZE, 5298 SHMEM_HUGE_ADVISE, 5299 SHMEM_HUGE_NEVER, 5300 SHMEM_HUGE_DENY, 5301 SHMEM_HUGE_FORCE, 5302 }; 5303 int len = 0; 5304 int i; 5305 5306 for (i = 0; i < ARRAY_SIZE(values); i++) { 5307 len += sysfs_emit_at(buf, len, 5308 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 5309 i ? " " : "", shmem_format_huge(values[i])); 5310 } 5311 len += sysfs_emit_at(buf, len, "\n"); 5312 5313 return len; 5314 } 5315 5316 static ssize_t shmem_enabled_store(struct kobject *kobj, 5317 struct kobj_attribute *attr, const char *buf, size_t count) 5318 { 5319 char tmp[16]; 5320 int huge, err; 5321 5322 if (count + 1 > sizeof(tmp)) 5323 return -EINVAL; 5324 memcpy(tmp, buf, count); 5325 tmp[count] = '\0'; 5326 if (count && tmp[count - 1] == '\n') 5327 tmp[count - 1] = '\0'; 5328 5329 huge = shmem_parse_huge(tmp); 5330 if (huge == -EINVAL) 5331 return huge; 5332 5333 shmem_huge = huge; 5334 if (shmem_huge > SHMEM_HUGE_DENY) 5335 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 5336 5337 err = start_stop_khugepaged(); 5338 return err ? err : count; 5339 } 5340 5341 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 5342 static DEFINE_SPINLOCK(huge_shmem_orders_lock); 5343 5344 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj, 5345 struct kobj_attribute *attr, char *buf) 5346 { 5347 int order = to_thpsize(kobj)->order; 5348 const char *output; 5349 5350 if (test_bit(order, &huge_shmem_orders_always)) 5351 output = "[always] inherit within_size advise never"; 5352 else if (test_bit(order, &huge_shmem_orders_inherit)) 5353 output = "always [inherit] within_size advise never"; 5354 else if (test_bit(order, &huge_shmem_orders_within_size)) 5355 output = "always inherit [within_size] advise never"; 5356 else if (test_bit(order, &huge_shmem_orders_madvise)) 5357 output = "always inherit within_size [advise] never"; 5358 else 5359 output = "always inherit within_size advise [never]"; 5360 5361 return sysfs_emit(buf, "%s\n", output); 5362 } 5363 5364 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj, 5365 struct kobj_attribute *attr, 5366 const char *buf, size_t count) 5367 { 5368 int order = to_thpsize(kobj)->order; 5369 ssize_t ret = count; 5370 5371 if (sysfs_streq(buf, "always")) { 5372 spin_lock(&huge_shmem_orders_lock); 5373 clear_bit(order, &huge_shmem_orders_inherit); 5374 clear_bit(order, &huge_shmem_orders_madvise); 5375 clear_bit(order, &huge_shmem_orders_within_size); 5376 set_bit(order, &huge_shmem_orders_always); 5377 spin_unlock(&huge_shmem_orders_lock); 5378 } else if (sysfs_streq(buf, "inherit")) { 5379 /* Do not override huge allocation policy with non-PMD sized mTHP */ 5380 if (shmem_huge == SHMEM_HUGE_FORCE && 5381 order != HPAGE_PMD_ORDER) 5382 return -EINVAL; 5383 5384 spin_lock(&huge_shmem_orders_lock); 5385 clear_bit(order, &huge_shmem_orders_always); 5386 clear_bit(order, &huge_shmem_orders_madvise); 5387 clear_bit(order, &huge_shmem_orders_within_size); 5388 set_bit(order, &huge_shmem_orders_inherit); 5389 spin_unlock(&huge_shmem_orders_lock); 5390 } else if (sysfs_streq(buf, "within_size")) { 5391 spin_lock(&huge_shmem_orders_lock); 5392 clear_bit(order, &huge_shmem_orders_always); 5393 clear_bit(order, &huge_shmem_orders_inherit); 5394 clear_bit(order, &huge_shmem_orders_madvise); 5395 set_bit(order, &huge_shmem_orders_within_size); 5396 spin_unlock(&huge_shmem_orders_lock); 5397 } else if (sysfs_streq(buf, "advise")) { 5398 spin_lock(&huge_shmem_orders_lock); 5399 clear_bit(order, &huge_shmem_orders_always); 5400 clear_bit(order, &huge_shmem_orders_inherit); 5401 clear_bit(order, &huge_shmem_orders_within_size); 5402 set_bit(order, &huge_shmem_orders_madvise); 5403 spin_unlock(&huge_shmem_orders_lock); 5404 } else if (sysfs_streq(buf, "never")) { 5405 spin_lock(&huge_shmem_orders_lock); 5406 clear_bit(order, &huge_shmem_orders_always); 5407 clear_bit(order, &huge_shmem_orders_inherit); 5408 clear_bit(order, &huge_shmem_orders_within_size); 5409 clear_bit(order, &huge_shmem_orders_madvise); 5410 spin_unlock(&huge_shmem_orders_lock); 5411 } else { 5412 ret = -EINVAL; 5413 } 5414 5415 if (ret > 0) { 5416 int err = start_stop_khugepaged(); 5417 5418 if (err) 5419 ret = err; 5420 } 5421 return ret; 5422 } 5423 5424 struct kobj_attribute thpsize_shmem_enabled_attr = 5425 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store); 5426 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 5427 5428 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) 5429 5430 static int __init setup_transparent_hugepage_shmem(char *str) 5431 { 5432 int huge; 5433 5434 huge = shmem_parse_huge(str); 5435 if (huge == -EINVAL) { 5436 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n"); 5437 return huge; 5438 } 5439 5440 shmem_huge = huge; 5441 return 1; 5442 } 5443 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem); 5444 5445 static char str_dup[PAGE_SIZE] __initdata; 5446 static int __init setup_thp_shmem(char *str) 5447 { 5448 char *token, *range, *policy, *subtoken; 5449 unsigned long always, inherit, madvise, within_size; 5450 char *start_size, *end_size; 5451 int start, end, nr; 5452 char *p; 5453 5454 if (!str || strlen(str) + 1 > PAGE_SIZE) 5455 goto err; 5456 strscpy(str_dup, str); 5457 5458 always = huge_shmem_orders_always; 5459 inherit = huge_shmem_orders_inherit; 5460 madvise = huge_shmem_orders_madvise; 5461 within_size = huge_shmem_orders_within_size; 5462 p = str_dup; 5463 while ((token = strsep(&p, ";")) != NULL) { 5464 range = strsep(&token, ":"); 5465 policy = token; 5466 5467 if (!policy) 5468 goto err; 5469 5470 while ((subtoken = strsep(&range, ",")) != NULL) { 5471 if (strchr(subtoken, '-')) { 5472 start_size = strsep(&subtoken, "-"); 5473 end_size = subtoken; 5474 5475 start = get_order_from_str(start_size, 5476 THP_ORDERS_ALL_FILE_DEFAULT); 5477 end = get_order_from_str(end_size, 5478 THP_ORDERS_ALL_FILE_DEFAULT); 5479 } else { 5480 start_size = end_size = subtoken; 5481 start = end = get_order_from_str(subtoken, 5482 THP_ORDERS_ALL_FILE_DEFAULT); 5483 } 5484 5485 if (start == -EINVAL) { 5486 pr_err("invalid size %s in thp_shmem boot parameter\n", 5487 start_size); 5488 goto err; 5489 } 5490 5491 if (end == -EINVAL) { 5492 pr_err("invalid size %s in thp_shmem boot parameter\n", 5493 end_size); 5494 goto err; 5495 } 5496 5497 if (start < 0 || end < 0 || start > end) 5498 goto err; 5499 5500 nr = end - start + 1; 5501 if (!strcmp(policy, "always")) { 5502 bitmap_set(&always, start, nr); 5503 bitmap_clear(&inherit, start, nr); 5504 bitmap_clear(&madvise, start, nr); 5505 bitmap_clear(&within_size, start, nr); 5506 } else if (!strcmp(policy, "advise")) { 5507 bitmap_set(&madvise, start, nr); 5508 bitmap_clear(&inherit, start, nr); 5509 bitmap_clear(&always, start, nr); 5510 bitmap_clear(&within_size, start, nr); 5511 } else if (!strcmp(policy, "inherit")) { 5512 bitmap_set(&inherit, start, nr); 5513 bitmap_clear(&madvise, start, nr); 5514 bitmap_clear(&always, start, nr); 5515 bitmap_clear(&within_size, start, nr); 5516 } else if (!strcmp(policy, "within_size")) { 5517 bitmap_set(&within_size, start, nr); 5518 bitmap_clear(&inherit, start, nr); 5519 bitmap_clear(&madvise, start, nr); 5520 bitmap_clear(&always, start, nr); 5521 } else if (!strcmp(policy, "never")) { 5522 bitmap_clear(&inherit, start, nr); 5523 bitmap_clear(&madvise, start, nr); 5524 bitmap_clear(&always, start, nr); 5525 bitmap_clear(&within_size, start, nr); 5526 } else { 5527 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy); 5528 goto err; 5529 } 5530 } 5531 } 5532 5533 huge_shmem_orders_always = always; 5534 huge_shmem_orders_madvise = madvise; 5535 huge_shmem_orders_inherit = inherit; 5536 huge_shmem_orders_within_size = within_size; 5537 shmem_orders_configured = true; 5538 return 1; 5539 5540 err: 5541 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str); 5542 return 0; 5543 } 5544 __setup("thp_shmem=", setup_thp_shmem); 5545 5546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5547 5548 #else /* !CONFIG_SHMEM */ 5549 5550 /* 5551 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 5552 * 5553 * This is intended for small system where the benefits of the full 5554 * shmem code (swap-backed and resource-limited) are outweighed by 5555 * their complexity. On systems without swap this code should be 5556 * effectively equivalent, but much lighter weight. 5557 */ 5558 5559 static struct file_system_type shmem_fs_type = { 5560 .name = "tmpfs", 5561 .init_fs_context = ramfs_init_fs_context, 5562 .parameters = ramfs_fs_parameters, 5563 .kill_sb = ramfs_kill_sb, 5564 .fs_flags = FS_USERNS_MOUNT, 5565 }; 5566 5567 void __init shmem_init(void) 5568 { 5569 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 5570 5571 shm_mnt = kern_mount(&shmem_fs_type); 5572 BUG_ON(IS_ERR(shm_mnt)); 5573 } 5574 5575 int shmem_unuse(unsigned int type) 5576 { 5577 return 0; 5578 } 5579 5580 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 5581 { 5582 return 0; 5583 } 5584 5585 void shmem_unlock_mapping(struct address_space *mapping) 5586 { 5587 } 5588 5589 #ifdef CONFIG_MMU 5590 unsigned long shmem_get_unmapped_area(struct file *file, 5591 unsigned long addr, unsigned long len, 5592 unsigned long pgoff, unsigned long flags) 5593 { 5594 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags); 5595 } 5596 #endif 5597 5598 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 5599 { 5600 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 5601 } 5602 EXPORT_SYMBOL_GPL(shmem_truncate_range); 5603 5604 #define shmem_vm_ops generic_file_vm_ops 5605 #define shmem_anon_vm_ops generic_file_vm_ops 5606 #define shmem_file_operations ramfs_file_operations 5607 #define shmem_acct_size(flags, size) 0 5608 #define shmem_unacct_size(flags, size) do {} while (0) 5609 5610 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 5611 struct super_block *sb, struct inode *dir, 5612 umode_t mode, dev_t dev, unsigned long flags) 5613 { 5614 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 5615 return inode ? inode : ERR_PTR(-ENOSPC); 5616 } 5617 5618 #endif /* CONFIG_SHMEM */ 5619 5620 /* common code */ 5621 5622 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, 5623 loff_t size, unsigned long flags, unsigned int i_flags) 5624 { 5625 struct inode *inode; 5626 struct file *res; 5627 5628 if (IS_ERR(mnt)) 5629 return ERR_CAST(mnt); 5630 5631 if (size < 0 || size > MAX_LFS_FILESIZE) 5632 return ERR_PTR(-EINVAL); 5633 5634 if (shmem_acct_size(flags, size)) 5635 return ERR_PTR(-ENOMEM); 5636 5637 if (is_idmapped_mnt(mnt)) 5638 return ERR_PTR(-EINVAL); 5639 5640 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 5641 S_IFREG | S_IRWXUGO, 0, flags); 5642 if (IS_ERR(inode)) { 5643 shmem_unacct_size(flags, size); 5644 return ERR_CAST(inode); 5645 } 5646 inode->i_flags |= i_flags; 5647 inode->i_size = size; 5648 clear_nlink(inode); /* It is unlinked */ 5649 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 5650 if (!IS_ERR(res)) 5651 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 5652 &shmem_file_operations); 5653 if (IS_ERR(res)) 5654 iput(inode); 5655 return res; 5656 } 5657 5658 /** 5659 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 5660 * kernel internal. There will be NO LSM permission checks against the 5661 * underlying inode. So users of this interface must do LSM checks at a 5662 * higher layer. The users are the big_key and shm implementations. LSM 5663 * checks are provided at the key or shm level rather than the inode. 5664 * @name: name for dentry (to be seen in /proc/<pid>/maps 5665 * @size: size to be set for the file 5666 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5667 */ 5668 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 5669 { 5670 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 5671 } 5672 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup); 5673 5674 /** 5675 * shmem_file_setup - get an unlinked file living in tmpfs 5676 * @name: name for dentry (to be seen in /proc/<pid>/maps 5677 * @size: size to be set for the file 5678 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5679 */ 5680 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 5681 { 5682 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 5683 } 5684 EXPORT_SYMBOL_GPL(shmem_file_setup); 5685 5686 /** 5687 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 5688 * @mnt: the tmpfs mount where the file will be created 5689 * @name: name for dentry (to be seen in /proc/<pid>/maps 5690 * @size: size to be set for the file 5691 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 5692 */ 5693 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 5694 loff_t size, unsigned long flags) 5695 { 5696 return __shmem_file_setup(mnt, name, size, flags, 0); 5697 } 5698 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 5699 5700 /** 5701 * shmem_zero_setup - setup a shared anonymous mapping 5702 * @vma: the vma to be mmapped is prepared by do_mmap 5703 */ 5704 int shmem_zero_setup(struct vm_area_struct *vma) 5705 { 5706 struct file *file; 5707 loff_t size = vma->vm_end - vma->vm_start; 5708 5709 /* 5710 * Cloning a new file under mmap_lock leads to a lock ordering conflict 5711 * between XFS directory reading and selinux: since this file is only 5712 * accessible to the user through its mapping, use S_PRIVATE flag to 5713 * bypass file security, in the same way as shmem_kernel_file_setup(). 5714 */ 5715 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 5716 if (IS_ERR(file)) 5717 return PTR_ERR(file); 5718 5719 if (vma->vm_file) 5720 fput(vma->vm_file); 5721 vma->vm_file = file; 5722 vma->vm_ops = &shmem_anon_vm_ops; 5723 5724 return 0; 5725 } 5726 5727 /** 5728 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 5729 * @mapping: the folio's address_space 5730 * @index: the folio index 5731 * @gfp: the page allocator flags to use if allocating 5732 * 5733 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 5734 * with any new page allocations done using the specified allocation flags. 5735 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 5736 * suit tmpfs, since it may have pages in swapcache, and needs to find those 5737 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 5738 * 5739 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 5740 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 5741 */ 5742 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 5743 pgoff_t index, gfp_t gfp) 5744 { 5745 #ifdef CONFIG_SHMEM 5746 struct inode *inode = mapping->host; 5747 struct folio *folio; 5748 int error; 5749 5750 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE, 5751 gfp, NULL, NULL); 5752 if (error) 5753 return ERR_PTR(error); 5754 5755 folio_unlock(folio); 5756 return folio; 5757 #else 5758 /* 5759 * The tiny !SHMEM case uses ramfs without swap 5760 */ 5761 return mapping_read_folio_gfp(mapping, index, gfp); 5762 #endif 5763 } 5764 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 5765 5766 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 5767 pgoff_t index, gfp_t gfp) 5768 { 5769 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 5770 struct page *page; 5771 5772 if (IS_ERR(folio)) 5773 return &folio->page; 5774 5775 page = folio_file_page(folio, index); 5776 if (PageHWPoison(page)) { 5777 folio_put(folio); 5778 return ERR_PTR(-EIO); 5779 } 5780 5781 return page; 5782 } 5783 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 5784