xref: /linux/mm/shmem.c (revision 15ecd83dc06277385ad71dc7ea26911d9a79acaf)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45 
46 static struct vfsmount *shm_mnt __ro_after_init;
47 
48 #ifdef CONFIG_SHMEM
49 /*
50  * This virtual memory filesystem is heavily based on the ramfs. It
51  * extends ramfs by the ability to use swap and honor resource limits
52  * which makes it a completely usable filesystem.
53  */
54 
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84 
85 #include <linux/uaccess.h>
86 
87 #include "internal.h"
88 
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writeout via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writeout refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #if IS_ENABLED(CONFIG_UNICODE)
127 	struct unicode_map *encoding;
128 	bool strict_encoding;
129 #endif
130 #define SHMEM_SEEN_BLOCKS 1
131 #define SHMEM_SEEN_INODES 2
132 #define SHMEM_SEEN_HUGE 4
133 #define SHMEM_SEEN_INUMS 8
134 #define SHMEM_SEEN_NOSWAP 16
135 #define SHMEM_SEEN_QUOTA 32
136 };
137 
138 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
139 static unsigned long huge_shmem_orders_always __read_mostly;
140 static unsigned long huge_shmem_orders_madvise __read_mostly;
141 static unsigned long huge_shmem_orders_inherit __read_mostly;
142 static unsigned long huge_shmem_orders_within_size __read_mostly;
143 static bool shmem_orders_configured __initdata;
144 #endif
145 
146 #ifdef CONFIG_TMPFS
147 static unsigned long shmem_default_max_blocks(void)
148 {
149 	return totalram_pages() / 2;
150 }
151 
152 static unsigned long shmem_default_max_inodes(void)
153 {
154 	unsigned long nr_pages = totalram_pages();
155 
156 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
157 			ULONG_MAX / BOGO_INODE_SIZE);
158 }
159 #endif
160 
161 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
162 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
163 			struct vm_area_struct *vma, vm_fault_t *fault_type);
164 
165 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
166 {
167 	return sb->s_fs_info;
168 }
169 
170 /*
171  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
172  * for shared memory and for shared anonymous (/dev/zero) mappings
173  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
174  * consistent with the pre-accounting of private mappings ...
175  */
176 static inline int shmem_acct_size(unsigned long flags, loff_t size)
177 {
178 	return (flags & VM_NORESERVE) ?
179 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
180 }
181 
182 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
183 {
184 	if (!(flags & VM_NORESERVE))
185 		vm_unacct_memory(VM_ACCT(size));
186 }
187 
188 static inline int shmem_reacct_size(unsigned long flags,
189 		loff_t oldsize, loff_t newsize)
190 {
191 	if (!(flags & VM_NORESERVE)) {
192 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
193 			return security_vm_enough_memory_mm(current->mm,
194 					VM_ACCT(newsize) - VM_ACCT(oldsize));
195 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
196 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
197 	}
198 	return 0;
199 }
200 
201 /*
202  * ... whereas tmpfs objects are accounted incrementally as
203  * pages are allocated, in order to allow large sparse files.
204  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
205  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
206  */
207 static inline int shmem_acct_blocks(unsigned long flags, long pages)
208 {
209 	if (!(flags & VM_NORESERVE))
210 		return 0;
211 
212 	return security_vm_enough_memory_mm(current->mm,
213 			pages * VM_ACCT(PAGE_SIZE));
214 }
215 
216 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
217 {
218 	if (flags & VM_NORESERVE)
219 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
220 }
221 
222 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
223 {
224 	struct shmem_inode_info *info = SHMEM_I(inode);
225 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
226 	int err = -ENOSPC;
227 
228 	if (shmem_acct_blocks(info->flags, pages))
229 		return err;
230 
231 	might_sleep();	/* when quotas */
232 	if (sbinfo->max_blocks) {
233 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
234 						sbinfo->max_blocks, pages))
235 			goto unacct;
236 
237 		err = dquot_alloc_block_nodirty(inode, pages);
238 		if (err) {
239 			percpu_counter_sub(&sbinfo->used_blocks, pages);
240 			goto unacct;
241 		}
242 	} else {
243 		err = dquot_alloc_block_nodirty(inode, pages);
244 		if (err)
245 			goto unacct;
246 	}
247 
248 	return 0;
249 
250 unacct:
251 	shmem_unacct_blocks(info->flags, pages);
252 	return err;
253 }
254 
255 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
256 {
257 	struct shmem_inode_info *info = SHMEM_I(inode);
258 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
259 
260 	might_sleep();	/* when quotas */
261 	dquot_free_block_nodirty(inode, pages);
262 
263 	if (sbinfo->max_blocks)
264 		percpu_counter_sub(&sbinfo->used_blocks, pages);
265 	shmem_unacct_blocks(info->flags, pages);
266 }
267 
268 static const struct super_operations shmem_ops;
269 static const struct address_space_operations shmem_aops;
270 static const struct file_operations shmem_file_operations;
271 static const struct inode_operations shmem_inode_operations;
272 static const struct inode_operations shmem_dir_inode_operations;
273 static const struct inode_operations shmem_special_inode_operations;
274 static const struct vm_operations_struct shmem_vm_ops;
275 static const struct vm_operations_struct shmem_anon_vm_ops;
276 static struct file_system_type shmem_fs_type;
277 
278 bool shmem_mapping(struct address_space *mapping)
279 {
280 	return mapping->a_ops == &shmem_aops;
281 }
282 EXPORT_SYMBOL_GPL(shmem_mapping);
283 
284 bool vma_is_anon_shmem(struct vm_area_struct *vma)
285 {
286 	return vma->vm_ops == &shmem_anon_vm_ops;
287 }
288 
289 bool vma_is_shmem(struct vm_area_struct *vma)
290 {
291 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
292 }
293 
294 static LIST_HEAD(shmem_swaplist);
295 static DEFINE_MUTEX(shmem_swaplist_mutex);
296 
297 #ifdef CONFIG_TMPFS_QUOTA
298 
299 static int shmem_enable_quotas(struct super_block *sb,
300 			       unsigned short quota_types)
301 {
302 	int type, err = 0;
303 
304 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
305 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
306 		if (!(quota_types & (1 << type)))
307 			continue;
308 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
309 					  DQUOT_USAGE_ENABLED |
310 					  DQUOT_LIMITS_ENABLED);
311 		if (err)
312 			goto out_err;
313 	}
314 	return 0;
315 
316 out_err:
317 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
318 		type, err);
319 	for (type--; type >= 0; type--)
320 		dquot_quota_off(sb, type);
321 	return err;
322 }
323 
324 static void shmem_disable_quotas(struct super_block *sb)
325 {
326 	int type;
327 
328 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
329 		dquot_quota_off(sb, type);
330 }
331 
332 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
333 {
334 	return SHMEM_I(inode)->i_dquot;
335 }
336 #endif /* CONFIG_TMPFS_QUOTA */
337 
338 /*
339  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
340  * produces a novel ino for the newly allocated inode.
341  *
342  * It may also be called when making a hard link to permit the space needed by
343  * each dentry. However, in that case, no new inode number is needed since that
344  * internally draws from another pool of inode numbers (currently global
345  * get_next_ino()). This case is indicated by passing NULL as inop.
346  */
347 #define SHMEM_INO_BATCH 1024
348 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
349 {
350 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
351 	ino_t ino;
352 
353 	if (!(sb->s_flags & SB_KERNMOUNT)) {
354 		raw_spin_lock(&sbinfo->stat_lock);
355 		if (sbinfo->max_inodes) {
356 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
357 				raw_spin_unlock(&sbinfo->stat_lock);
358 				return -ENOSPC;
359 			}
360 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
361 		}
362 		if (inop) {
363 			ino = sbinfo->next_ino++;
364 			if (unlikely(is_zero_ino(ino)))
365 				ino = sbinfo->next_ino++;
366 			if (unlikely(!sbinfo->full_inums &&
367 				     ino > UINT_MAX)) {
368 				/*
369 				 * Emulate get_next_ino uint wraparound for
370 				 * compatibility
371 				 */
372 				if (IS_ENABLED(CONFIG_64BIT))
373 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
374 						__func__, MINOR(sb->s_dev));
375 				sbinfo->next_ino = 1;
376 				ino = sbinfo->next_ino++;
377 			}
378 			*inop = ino;
379 		}
380 		raw_spin_unlock(&sbinfo->stat_lock);
381 	} else if (inop) {
382 		/*
383 		 * __shmem_file_setup, one of our callers, is lock-free: it
384 		 * doesn't hold stat_lock in shmem_reserve_inode since
385 		 * max_inodes is always 0, and is called from potentially
386 		 * unknown contexts. As such, use a per-cpu batched allocator
387 		 * which doesn't require the per-sb stat_lock unless we are at
388 		 * the batch boundary.
389 		 *
390 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
391 		 * shmem mounts are not exposed to userspace, so we don't need
392 		 * to worry about things like glibc compatibility.
393 		 */
394 		ino_t *next_ino;
395 
396 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
397 		ino = *next_ino;
398 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
399 			raw_spin_lock(&sbinfo->stat_lock);
400 			ino = sbinfo->next_ino;
401 			sbinfo->next_ino += SHMEM_INO_BATCH;
402 			raw_spin_unlock(&sbinfo->stat_lock);
403 			if (unlikely(is_zero_ino(ino)))
404 				ino++;
405 		}
406 		*inop = ino;
407 		*next_ino = ++ino;
408 		put_cpu();
409 	}
410 
411 	return 0;
412 }
413 
414 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
415 {
416 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
417 	if (sbinfo->max_inodes) {
418 		raw_spin_lock(&sbinfo->stat_lock);
419 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
420 		raw_spin_unlock(&sbinfo->stat_lock);
421 	}
422 }
423 
424 /**
425  * shmem_recalc_inode - recalculate the block usage of an inode
426  * @inode: inode to recalc
427  * @alloced: the change in number of pages allocated to inode
428  * @swapped: the change in number of pages swapped from inode
429  *
430  * We have to calculate the free blocks since the mm can drop
431  * undirtied hole pages behind our back.
432  *
433  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
434  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
435  */
436 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
437 {
438 	struct shmem_inode_info *info = SHMEM_I(inode);
439 	long freed;
440 
441 	spin_lock(&info->lock);
442 	info->alloced += alloced;
443 	info->swapped += swapped;
444 	freed = info->alloced - info->swapped -
445 		READ_ONCE(inode->i_mapping->nrpages);
446 	/*
447 	 * Special case: whereas normally shmem_recalc_inode() is called
448 	 * after i_mapping->nrpages has already been adjusted (up or down),
449 	 * shmem_writeout() has to raise swapped before nrpages is lowered -
450 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
451 	 * been freed.  Compensate here, to avoid the need for a followup call.
452 	 */
453 	if (swapped > 0)
454 		freed += swapped;
455 	if (freed > 0)
456 		info->alloced -= freed;
457 	spin_unlock(&info->lock);
458 
459 	/* The quota case may block */
460 	if (freed > 0)
461 		shmem_inode_unacct_blocks(inode, freed);
462 }
463 
464 bool shmem_charge(struct inode *inode, long pages)
465 {
466 	struct address_space *mapping = inode->i_mapping;
467 
468 	if (shmem_inode_acct_blocks(inode, pages))
469 		return false;
470 
471 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
472 	xa_lock_irq(&mapping->i_pages);
473 	mapping->nrpages += pages;
474 	xa_unlock_irq(&mapping->i_pages);
475 
476 	shmem_recalc_inode(inode, pages, 0);
477 	return true;
478 }
479 
480 void shmem_uncharge(struct inode *inode, long pages)
481 {
482 	/* pages argument is currently unused: keep it to help debugging */
483 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
484 
485 	shmem_recalc_inode(inode, 0, 0);
486 }
487 
488 /*
489  * Replace item expected in xarray by a new item, while holding xa_lock.
490  */
491 static int shmem_replace_entry(struct address_space *mapping,
492 			pgoff_t index, void *expected, void *replacement)
493 {
494 	XA_STATE(xas, &mapping->i_pages, index);
495 	void *item;
496 
497 	VM_BUG_ON(!expected);
498 	VM_BUG_ON(!replacement);
499 	item = xas_load(&xas);
500 	if (item != expected)
501 		return -ENOENT;
502 	xas_store(&xas, replacement);
503 	return 0;
504 }
505 
506 /*
507  * Sometimes, before we decide whether to proceed or to fail, we must check
508  * that an entry was not already brought back from swap by a racing thread.
509  *
510  * Checking folio is not enough: by the time a swapcache folio is locked, it
511  * might be reused, and again be swapcache, using the same swap as before.
512  */
513 static bool shmem_confirm_swap(struct address_space *mapping,
514 			       pgoff_t index, swp_entry_t swap)
515 {
516 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
517 }
518 
519 /*
520  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
521  *
522  * SHMEM_HUGE_NEVER:
523  *	disables huge pages for the mount;
524  * SHMEM_HUGE_ALWAYS:
525  *	enables huge pages for the mount;
526  * SHMEM_HUGE_WITHIN_SIZE:
527  *	only allocate huge pages if the page will be fully within i_size,
528  *	also respect madvise() hints;
529  * SHMEM_HUGE_ADVISE:
530  *	only allocate huge pages if requested with madvise();
531  */
532 
533 #define SHMEM_HUGE_NEVER	0
534 #define SHMEM_HUGE_ALWAYS	1
535 #define SHMEM_HUGE_WITHIN_SIZE	2
536 #define SHMEM_HUGE_ADVISE	3
537 
538 /*
539  * Special values.
540  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
541  *
542  * SHMEM_HUGE_DENY:
543  *	disables huge on shm_mnt and all mounts, for emergency use;
544  * SHMEM_HUGE_FORCE:
545  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
546  *
547  */
548 #define SHMEM_HUGE_DENY		(-1)
549 #define SHMEM_HUGE_FORCE	(-2)
550 
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 /* ifdef here to avoid bloating shmem.o when not necessary */
553 
554 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
555 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
556 
557 /**
558  * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
559  * @mapping: Target address_space.
560  * @index: The page index.
561  * @write_end: end of a write, could extend inode size.
562  *
563  * This returns huge orders for folios (when supported) based on the file size
564  * which the mapping currently allows at the given index. The index is relevant
565  * due to alignment considerations the mapping might have. The returned order
566  * may be less than the size passed.
567  *
568  * Return: The orders.
569  */
570 static inline unsigned int
571 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
572 {
573 	unsigned int order;
574 	size_t size;
575 
576 	if (!mapping_large_folio_support(mapping) || !write_end)
577 		return 0;
578 
579 	/* Calculate the write size based on the write_end */
580 	size = write_end - (index << PAGE_SHIFT);
581 	order = filemap_get_order(size);
582 	if (!order)
583 		return 0;
584 
585 	/* If we're not aligned, allocate a smaller folio */
586 	if (index & ((1UL << order) - 1))
587 		order = __ffs(index);
588 
589 	order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
590 	return order > 0 ? BIT(order + 1) - 1 : 0;
591 }
592 
593 static unsigned int shmem_get_orders_within_size(struct inode *inode,
594 		unsigned long within_size_orders, pgoff_t index,
595 		loff_t write_end)
596 {
597 	pgoff_t aligned_index;
598 	unsigned long order;
599 	loff_t i_size;
600 
601 	order = highest_order(within_size_orders);
602 	while (within_size_orders) {
603 		aligned_index = round_up(index + 1, 1 << order);
604 		i_size = max(write_end, i_size_read(inode));
605 		i_size = round_up(i_size, PAGE_SIZE);
606 		if (i_size >> PAGE_SHIFT >= aligned_index)
607 			return within_size_orders;
608 
609 		order = next_order(&within_size_orders, order);
610 	}
611 
612 	return 0;
613 }
614 
615 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
616 					      loff_t write_end, bool shmem_huge_force,
617 					      struct vm_area_struct *vma,
618 					      unsigned long vm_flags)
619 {
620 	unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
621 		0 : BIT(HPAGE_PMD_ORDER);
622 	unsigned long within_size_orders;
623 
624 	if (!S_ISREG(inode->i_mode))
625 		return 0;
626 	if (shmem_huge == SHMEM_HUGE_DENY)
627 		return 0;
628 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
629 		return maybe_pmd_order;
630 
631 	/*
632 	 * The huge order allocation for anon shmem is controlled through
633 	 * the mTHP interface, so we still use PMD-sized huge order to
634 	 * check whether global control is enabled.
635 	 *
636 	 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
637 	 * allocate huge pages due to lack of a write size hint.
638 	 *
639 	 * Otherwise, tmpfs will allow getting a highest order hint based on
640 	 * the size of write and fallocate paths, then will try each allowable
641 	 * huge orders.
642 	 */
643 	switch (SHMEM_SB(inode->i_sb)->huge) {
644 	case SHMEM_HUGE_ALWAYS:
645 		if (vma)
646 			return maybe_pmd_order;
647 
648 		return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
649 	case SHMEM_HUGE_WITHIN_SIZE:
650 		if (vma)
651 			within_size_orders = maybe_pmd_order;
652 		else
653 			within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
654 								       index, write_end);
655 
656 		within_size_orders = shmem_get_orders_within_size(inode, within_size_orders,
657 								  index, write_end);
658 		if (within_size_orders > 0)
659 			return within_size_orders;
660 
661 		fallthrough;
662 	case SHMEM_HUGE_ADVISE:
663 		if (vm_flags & VM_HUGEPAGE)
664 			return maybe_pmd_order;
665 		fallthrough;
666 	default:
667 		return 0;
668 	}
669 }
670 
671 static int shmem_parse_huge(const char *str)
672 {
673 	int huge;
674 
675 	if (!str)
676 		return -EINVAL;
677 
678 	if (!strcmp(str, "never"))
679 		huge = SHMEM_HUGE_NEVER;
680 	else if (!strcmp(str, "always"))
681 		huge = SHMEM_HUGE_ALWAYS;
682 	else if (!strcmp(str, "within_size"))
683 		huge = SHMEM_HUGE_WITHIN_SIZE;
684 	else if (!strcmp(str, "advise"))
685 		huge = SHMEM_HUGE_ADVISE;
686 	else if (!strcmp(str, "deny"))
687 		huge = SHMEM_HUGE_DENY;
688 	else if (!strcmp(str, "force"))
689 		huge = SHMEM_HUGE_FORCE;
690 	else
691 		return -EINVAL;
692 
693 	if (!has_transparent_hugepage() &&
694 	    huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
695 		return -EINVAL;
696 
697 	/* Do not override huge allocation policy with non-PMD sized mTHP */
698 	if (huge == SHMEM_HUGE_FORCE &&
699 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
700 		return -EINVAL;
701 
702 	return huge;
703 }
704 
705 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
706 static const char *shmem_format_huge(int huge)
707 {
708 	switch (huge) {
709 	case SHMEM_HUGE_NEVER:
710 		return "never";
711 	case SHMEM_HUGE_ALWAYS:
712 		return "always";
713 	case SHMEM_HUGE_WITHIN_SIZE:
714 		return "within_size";
715 	case SHMEM_HUGE_ADVISE:
716 		return "advise";
717 	case SHMEM_HUGE_DENY:
718 		return "deny";
719 	case SHMEM_HUGE_FORCE:
720 		return "force";
721 	default:
722 		VM_BUG_ON(1);
723 		return "bad_val";
724 	}
725 }
726 #endif
727 
728 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
729 		struct shrink_control *sc, unsigned long nr_to_free)
730 {
731 	LIST_HEAD(list), *pos, *next;
732 	struct inode *inode;
733 	struct shmem_inode_info *info;
734 	struct folio *folio;
735 	unsigned long batch = sc ? sc->nr_to_scan : 128;
736 	unsigned long split = 0, freed = 0;
737 
738 	if (list_empty(&sbinfo->shrinklist))
739 		return SHRINK_STOP;
740 
741 	spin_lock(&sbinfo->shrinklist_lock);
742 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
743 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
744 
745 		/* pin the inode */
746 		inode = igrab(&info->vfs_inode);
747 
748 		/* inode is about to be evicted */
749 		if (!inode) {
750 			list_del_init(&info->shrinklist);
751 			goto next;
752 		}
753 
754 		list_move(&info->shrinklist, &list);
755 next:
756 		sbinfo->shrinklist_len--;
757 		if (!--batch)
758 			break;
759 	}
760 	spin_unlock(&sbinfo->shrinklist_lock);
761 
762 	list_for_each_safe(pos, next, &list) {
763 		pgoff_t next, end;
764 		loff_t i_size;
765 		int ret;
766 
767 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
768 		inode = &info->vfs_inode;
769 
770 		if (nr_to_free && freed >= nr_to_free)
771 			goto move_back;
772 
773 		i_size = i_size_read(inode);
774 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
775 		if (!folio || xa_is_value(folio))
776 			goto drop;
777 
778 		/* No large folio at the end of the file: nothing to split */
779 		if (!folio_test_large(folio)) {
780 			folio_put(folio);
781 			goto drop;
782 		}
783 
784 		/* Check if there is anything to gain from splitting */
785 		next = folio_next_index(folio);
786 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
787 		if (end <= folio->index || end >= next) {
788 			folio_put(folio);
789 			goto drop;
790 		}
791 
792 		/*
793 		 * Move the inode on the list back to shrinklist if we failed
794 		 * to lock the page at this time.
795 		 *
796 		 * Waiting for the lock may lead to deadlock in the
797 		 * reclaim path.
798 		 */
799 		if (!folio_trylock(folio)) {
800 			folio_put(folio);
801 			goto move_back;
802 		}
803 
804 		ret = split_folio(folio);
805 		folio_unlock(folio);
806 		folio_put(folio);
807 
808 		/* If split failed move the inode on the list back to shrinklist */
809 		if (ret)
810 			goto move_back;
811 
812 		freed += next - end;
813 		split++;
814 drop:
815 		list_del_init(&info->shrinklist);
816 		goto put;
817 move_back:
818 		/*
819 		 * Make sure the inode is either on the global list or deleted
820 		 * from any local list before iput() since it could be deleted
821 		 * in another thread once we put the inode (then the local list
822 		 * is corrupted).
823 		 */
824 		spin_lock(&sbinfo->shrinklist_lock);
825 		list_move(&info->shrinklist, &sbinfo->shrinklist);
826 		sbinfo->shrinklist_len++;
827 		spin_unlock(&sbinfo->shrinklist_lock);
828 put:
829 		iput(inode);
830 	}
831 
832 	return split;
833 }
834 
835 static long shmem_unused_huge_scan(struct super_block *sb,
836 		struct shrink_control *sc)
837 {
838 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
839 
840 	if (!READ_ONCE(sbinfo->shrinklist_len))
841 		return SHRINK_STOP;
842 
843 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
844 }
845 
846 static long shmem_unused_huge_count(struct super_block *sb,
847 		struct shrink_control *sc)
848 {
849 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
850 	return READ_ONCE(sbinfo->shrinklist_len);
851 }
852 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
853 
854 #define shmem_huge SHMEM_HUGE_DENY
855 
856 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
857 		struct shrink_control *sc, unsigned long nr_to_free)
858 {
859 	return 0;
860 }
861 
862 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
863 					      loff_t write_end, bool shmem_huge_force,
864 					      struct vm_area_struct *vma,
865 					      unsigned long vm_flags)
866 {
867 	return 0;
868 }
869 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
870 
871 static void shmem_update_stats(struct folio *folio, int nr_pages)
872 {
873 	if (folio_test_pmd_mappable(folio))
874 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
875 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
876 	__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
877 }
878 
879 /*
880  * Somewhat like filemap_add_folio, but error if expected item has gone.
881  */
882 static int shmem_add_to_page_cache(struct folio *folio,
883 				   struct address_space *mapping,
884 				   pgoff_t index, void *expected, gfp_t gfp)
885 {
886 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
887 	long nr = folio_nr_pages(folio);
888 
889 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
890 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
891 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
892 
893 	folio_ref_add(folio, nr);
894 	folio->mapping = mapping;
895 	folio->index = index;
896 
897 	gfp &= GFP_RECLAIM_MASK;
898 	folio_throttle_swaprate(folio, gfp);
899 
900 	do {
901 		xas_lock_irq(&xas);
902 		if (expected != xas_find_conflict(&xas)) {
903 			xas_set_err(&xas, -EEXIST);
904 			goto unlock;
905 		}
906 		if (expected && xas_find_conflict(&xas)) {
907 			xas_set_err(&xas, -EEXIST);
908 			goto unlock;
909 		}
910 		xas_store(&xas, folio);
911 		if (xas_error(&xas))
912 			goto unlock;
913 		shmem_update_stats(folio, nr);
914 		mapping->nrpages += nr;
915 unlock:
916 		xas_unlock_irq(&xas);
917 	} while (xas_nomem(&xas, gfp));
918 
919 	if (xas_error(&xas)) {
920 		folio->mapping = NULL;
921 		folio_ref_sub(folio, nr);
922 		return xas_error(&xas);
923 	}
924 
925 	return 0;
926 }
927 
928 /*
929  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
930  */
931 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
932 {
933 	struct address_space *mapping = folio->mapping;
934 	long nr = folio_nr_pages(folio);
935 	int error;
936 
937 	xa_lock_irq(&mapping->i_pages);
938 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
939 	folio->mapping = NULL;
940 	mapping->nrpages -= nr;
941 	shmem_update_stats(folio, -nr);
942 	xa_unlock_irq(&mapping->i_pages);
943 	folio_put_refs(folio, nr);
944 	BUG_ON(error);
945 }
946 
947 /*
948  * Remove swap entry from page cache, free the swap and its page cache. Returns
949  * the number of pages being freed. 0 means entry not found in XArray (0 pages
950  * being freed).
951  */
952 static long shmem_free_swap(struct address_space *mapping,
953 			    pgoff_t index, void *radswap)
954 {
955 	int order = xa_get_order(&mapping->i_pages, index);
956 	void *old;
957 
958 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
959 	if (old != radswap)
960 		return 0;
961 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
962 
963 	return 1 << order;
964 }
965 
966 /*
967  * Determine (in bytes) how many of the shmem object's pages mapped by the
968  * given offsets are swapped out.
969  *
970  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
971  * as long as the inode doesn't go away and racy results are not a problem.
972  */
973 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
974 						pgoff_t start, pgoff_t end)
975 {
976 	XA_STATE(xas, &mapping->i_pages, start);
977 	struct page *page;
978 	unsigned long swapped = 0;
979 	unsigned long max = end - 1;
980 
981 	rcu_read_lock();
982 	xas_for_each(&xas, page, max) {
983 		if (xas_retry(&xas, page))
984 			continue;
985 		if (xa_is_value(page))
986 			swapped += 1 << xas_get_order(&xas);
987 		if (xas.xa_index == max)
988 			break;
989 		if (need_resched()) {
990 			xas_pause(&xas);
991 			cond_resched_rcu();
992 		}
993 	}
994 	rcu_read_unlock();
995 
996 	return swapped << PAGE_SHIFT;
997 }
998 
999 /*
1000  * Determine (in bytes) how many of the shmem object's pages mapped by the
1001  * given vma is swapped out.
1002  *
1003  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
1004  * as long as the inode doesn't go away and racy results are not a problem.
1005  */
1006 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
1007 {
1008 	struct inode *inode = file_inode(vma->vm_file);
1009 	struct shmem_inode_info *info = SHMEM_I(inode);
1010 	struct address_space *mapping = inode->i_mapping;
1011 	unsigned long swapped;
1012 
1013 	/* Be careful as we don't hold info->lock */
1014 	swapped = READ_ONCE(info->swapped);
1015 
1016 	/*
1017 	 * The easier cases are when the shmem object has nothing in swap, or
1018 	 * the vma maps it whole. Then we can simply use the stats that we
1019 	 * already track.
1020 	 */
1021 	if (!swapped)
1022 		return 0;
1023 
1024 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1025 		return swapped << PAGE_SHIFT;
1026 
1027 	/* Here comes the more involved part */
1028 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1029 					vma->vm_pgoff + vma_pages(vma));
1030 }
1031 
1032 /*
1033  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1034  */
1035 void shmem_unlock_mapping(struct address_space *mapping)
1036 {
1037 	struct folio_batch fbatch;
1038 	pgoff_t index = 0;
1039 
1040 	folio_batch_init(&fbatch);
1041 	/*
1042 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1043 	 */
1044 	while (!mapping_unevictable(mapping) &&
1045 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1046 		check_move_unevictable_folios(&fbatch);
1047 		folio_batch_release(&fbatch);
1048 		cond_resched();
1049 	}
1050 }
1051 
1052 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1053 {
1054 	struct folio *folio;
1055 
1056 	/*
1057 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1058 	 * beyond i_size, and reports fallocated folios as holes.
1059 	 */
1060 	folio = filemap_get_entry(inode->i_mapping, index);
1061 	if (!folio)
1062 		return folio;
1063 	if (!xa_is_value(folio)) {
1064 		folio_lock(folio);
1065 		if (folio->mapping == inode->i_mapping)
1066 			return folio;
1067 		/* The folio has been swapped out */
1068 		folio_unlock(folio);
1069 		folio_put(folio);
1070 	}
1071 	/*
1072 	 * But read a folio back from swap if any of it is within i_size
1073 	 * (although in some cases this is just a waste of time).
1074 	 */
1075 	folio = NULL;
1076 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1077 	return folio;
1078 }
1079 
1080 /*
1081  * Remove range of pages and swap entries from page cache, and free them.
1082  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1083  */
1084 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1085 								 bool unfalloc)
1086 {
1087 	struct address_space *mapping = inode->i_mapping;
1088 	struct shmem_inode_info *info = SHMEM_I(inode);
1089 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1090 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1091 	struct folio_batch fbatch;
1092 	pgoff_t indices[PAGEVEC_SIZE];
1093 	struct folio *folio;
1094 	bool same_folio;
1095 	long nr_swaps_freed = 0;
1096 	pgoff_t index;
1097 	int i;
1098 
1099 	if (lend == -1)
1100 		end = -1;	/* unsigned, so actually very big */
1101 
1102 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1103 		info->fallocend = start;
1104 
1105 	folio_batch_init(&fbatch);
1106 	index = start;
1107 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1108 			&fbatch, indices)) {
1109 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1110 			folio = fbatch.folios[i];
1111 
1112 			if (xa_is_value(folio)) {
1113 				if (unfalloc)
1114 					continue;
1115 				nr_swaps_freed += shmem_free_swap(mapping,
1116 							indices[i], folio);
1117 				continue;
1118 			}
1119 
1120 			if (!unfalloc || !folio_test_uptodate(folio))
1121 				truncate_inode_folio(mapping, folio);
1122 			folio_unlock(folio);
1123 		}
1124 		folio_batch_remove_exceptionals(&fbatch);
1125 		folio_batch_release(&fbatch);
1126 		cond_resched();
1127 	}
1128 
1129 	/*
1130 	 * When undoing a failed fallocate, we want none of the partial folio
1131 	 * zeroing and splitting below, but shall want to truncate the whole
1132 	 * folio when !uptodate indicates that it was added by this fallocate,
1133 	 * even when [lstart, lend] covers only a part of the folio.
1134 	 */
1135 	if (unfalloc)
1136 		goto whole_folios;
1137 
1138 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1139 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1140 	if (folio) {
1141 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1142 		folio_mark_dirty(folio);
1143 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1144 			start = folio_next_index(folio);
1145 			if (same_folio)
1146 				end = folio->index;
1147 		}
1148 		folio_unlock(folio);
1149 		folio_put(folio);
1150 		folio = NULL;
1151 	}
1152 
1153 	if (!same_folio)
1154 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1155 	if (folio) {
1156 		folio_mark_dirty(folio);
1157 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1158 			end = folio->index;
1159 		folio_unlock(folio);
1160 		folio_put(folio);
1161 	}
1162 
1163 whole_folios:
1164 
1165 	index = start;
1166 	while (index < end) {
1167 		cond_resched();
1168 
1169 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1170 				indices)) {
1171 			/* If all gone or hole-punch or unfalloc, we're done */
1172 			if (index == start || end != -1)
1173 				break;
1174 			/* But if truncating, restart to make sure all gone */
1175 			index = start;
1176 			continue;
1177 		}
1178 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1179 			folio = fbatch.folios[i];
1180 
1181 			if (xa_is_value(folio)) {
1182 				long swaps_freed;
1183 
1184 				if (unfalloc)
1185 					continue;
1186 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1187 				if (!swaps_freed) {
1188 					/* Swap was replaced by page: retry */
1189 					index = indices[i];
1190 					break;
1191 				}
1192 				nr_swaps_freed += swaps_freed;
1193 				continue;
1194 			}
1195 
1196 			folio_lock(folio);
1197 
1198 			if (!unfalloc || !folio_test_uptodate(folio)) {
1199 				if (folio_mapping(folio) != mapping) {
1200 					/* Page was replaced by swap: retry */
1201 					folio_unlock(folio);
1202 					index = indices[i];
1203 					break;
1204 				}
1205 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1206 						folio);
1207 
1208 				if (!folio_test_large(folio)) {
1209 					truncate_inode_folio(mapping, folio);
1210 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1211 					/*
1212 					 * If we split a page, reset the loop so
1213 					 * that we pick up the new sub pages.
1214 					 * Otherwise the THP was entirely
1215 					 * dropped or the target range was
1216 					 * zeroed, so just continue the loop as
1217 					 * is.
1218 					 */
1219 					if (!folio_test_large(folio)) {
1220 						folio_unlock(folio);
1221 						index = start;
1222 						break;
1223 					}
1224 				}
1225 			}
1226 			folio_unlock(folio);
1227 		}
1228 		folio_batch_remove_exceptionals(&fbatch);
1229 		folio_batch_release(&fbatch);
1230 	}
1231 
1232 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1233 }
1234 
1235 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1236 {
1237 	shmem_undo_range(inode, lstart, lend, false);
1238 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1239 	inode_inc_iversion(inode);
1240 }
1241 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1242 
1243 static int shmem_getattr(struct mnt_idmap *idmap,
1244 			 const struct path *path, struct kstat *stat,
1245 			 u32 request_mask, unsigned int query_flags)
1246 {
1247 	struct inode *inode = path->dentry->d_inode;
1248 	struct shmem_inode_info *info = SHMEM_I(inode);
1249 
1250 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1251 		shmem_recalc_inode(inode, 0, 0);
1252 
1253 	if (info->fsflags & FS_APPEND_FL)
1254 		stat->attributes |= STATX_ATTR_APPEND;
1255 	if (info->fsflags & FS_IMMUTABLE_FL)
1256 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1257 	if (info->fsflags & FS_NODUMP_FL)
1258 		stat->attributes |= STATX_ATTR_NODUMP;
1259 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1260 			STATX_ATTR_IMMUTABLE |
1261 			STATX_ATTR_NODUMP);
1262 	generic_fillattr(idmap, request_mask, inode, stat);
1263 
1264 	if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1265 		stat->blksize = HPAGE_PMD_SIZE;
1266 
1267 	if (request_mask & STATX_BTIME) {
1268 		stat->result_mask |= STATX_BTIME;
1269 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1270 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static int shmem_setattr(struct mnt_idmap *idmap,
1277 			 struct dentry *dentry, struct iattr *attr)
1278 {
1279 	struct inode *inode = d_inode(dentry);
1280 	struct shmem_inode_info *info = SHMEM_I(inode);
1281 	int error;
1282 	bool update_mtime = false;
1283 	bool update_ctime = true;
1284 
1285 	error = setattr_prepare(idmap, dentry, attr);
1286 	if (error)
1287 		return error;
1288 
1289 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1290 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1291 			return -EPERM;
1292 		}
1293 	}
1294 
1295 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1296 		loff_t oldsize = inode->i_size;
1297 		loff_t newsize = attr->ia_size;
1298 
1299 		/* protected by i_rwsem */
1300 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1301 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1302 			return -EPERM;
1303 
1304 		if (newsize != oldsize) {
1305 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1306 					oldsize, newsize);
1307 			if (error)
1308 				return error;
1309 			i_size_write(inode, newsize);
1310 			update_mtime = true;
1311 		} else {
1312 			update_ctime = false;
1313 		}
1314 		if (newsize <= oldsize) {
1315 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1316 			if (oldsize > holebegin)
1317 				unmap_mapping_range(inode->i_mapping,
1318 							holebegin, 0, 1);
1319 			if (info->alloced)
1320 				shmem_truncate_range(inode,
1321 							newsize, (loff_t)-1);
1322 			/* unmap again to remove racily COWed private pages */
1323 			if (oldsize > holebegin)
1324 				unmap_mapping_range(inode->i_mapping,
1325 							holebegin, 0, 1);
1326 		}
1327 	}
1328 
1329 	if (is_quota_modification(idmap, inode, attr)) {
1330 		error = dquot_initialize(inode);
1331 		if (error)
1332 			return error;
1333 	}
1334 
1335 	/* Transfer quota accounting */
1336 	if (i_uid_needs_update(idmap, attr, inode) ||
1337 	    i_gid_needs_update(idmap, attr, inode)) {
1338 		error = dquot_transfer(idmap, inode, attr);
1339 		if (error)
1340 			return error;
1341 	}
1342 
1343 	setattr_copy(idmap, inode, attr);
1344 	if (attr->ia_valid & ATTR_MODE)
1345 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1346 	if (!error && update_ctime) {
1347 		inode_set_ctime_current(inode);
1348 		if (update_mtime)
1349 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1350 		inode_inc_iversion(inode);
1351 	}
1352 	return error;
1353 }
1354 
1355 static void shmem_evict_inode(struct inode *inode)
1356 {
1357 	struct shmem_inode_info *info = SHMEM_I(inode);
1358 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1359 	size_t freed = 0;
1360 
1361 	if (shmem_mapping(inode->i_mapping)) {
1362 		shmem_unacct_size(info->flags, inode->i_size);
1363 		inode->i_size = 0;
1364 		mapping_set_exiting(inode->i_mapping);
1365 		shmem_truncate_range(inode, 0, (loff_t)-1);
1366 		if (!list_empty(&info->shrinklist)) {
1367 			spin_lock(&sbinfo->shrinklist_lock);
1368 			if (!list_empty(&info->shrinklist)) {
1369 				list_del_init(&info->shrinklist);
1370 				sbinfo->shrinklist_len--;
1371 			}
1372 			spin_unlock(&sbinfo->shrinklist_lock);
1373 		}
1374 		while (!list_empty(&info->swaplist)) {
1375 			/* Wait while shmem_unuse() is scanning this inode... */
1376 			wait_var_event(&info->stop_eviction,
1377 				       !atomic_read(&info->stop_eviction));
1378 			mutex_lock(&shmem_swaplist_mutex);
1379 			/* ...but beware of the race if we peeked too early */
1380 			if (!atomic_read(&info->stop_eviction))
1381 				list_del_init(&info->swaplist);
1382 			mutex_unlock(&shmem_swaplist_mutex);
1383 		}
1384 	}
1385 
1386 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1387 	shmem_free_inode(inode->i_sb, freed);
1388 	WARN_ON(inode->i_blocks);
1389 	clear_inode(inode);
1390 #ifdef CONFIG_TMPFS_QUOTA
1391 	dquot_free_inode(inode);
1392 	dquot_drop(inode);
1393 #endif
1394 }
1395 
1396 static unsigned int shmem_find_swap_entries(struct address_space *mapping,
1397 				pgoff_t start, struct folio_batch *fbatch,
1398 				pgoff_t *indices, unsigned int type)
1399 {
1400 	XA_STATE(xas, &mapping->i_pages, start);
1401 	struct folio *folio;
1402 	swp_entry_t entry;
1403 
1404 	rcu_read_lock();
1405 	xas_for_each(&xas, folio, ULONG_MAX) {
1406 		if (xas_retry(&xas, folio))
1407 			continue;
1408 
1409 		if (!xa_is_value(folio))
1410 			continue;
1411 
1412 		entry = radix_to_swp_entry(folio);
1413 		/*
1414 		 * swapin error entries can be found in the mapping. But they're
1415 		 * deliberately ignored here as we've done everything we can do.
1416 		 */
1417 		if (swp_type(entry) != type)
1418 			continue;
1419 
1420 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1421 		if (!folio_batch_add(fbatch, folio))
1422 			break;
1423 
1424 		if (need_resched()) {
1425 			xas_pause(&xas);
1426 			cond_resched_rcu();
1427 		}
1428 	}
1429 	rcu_read_unlock();
1430 
1431 	return folio_batch_count(fbatch);
1432 }
1433 
1434 /*
1435  * Move the swapped pages for an inode to page cache. Returns the count
1436  * of pages swapped in, or the error in case of failure.
1437  */
1438 static int shmem_unuse_swap_entries(struct inode *inode,
1439 		struct folio_batch *fbatch, pgoff_t *indices)
1440 {
1441 	int i = 0;
1442 	int ret = 0;
1443 	int error = 0;
1444 	struct address_space *mapping = inode->i_mapping;
1445 
1446 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1447 		struct folio *folio = fbatch->folios[i];
1448 
1449 		if (!xa_is_value(folio))
1450 			continue;
1451 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1452 					mapping_gfp_mask(mapping), NULL, NULL);
1453 		if (error == 0) {
1454 			folio_unlock(folio);
1455 			folio_put(folio);
1456 			ret++;
1457 		}
1458 		if (error == -ENOMEM)
1459 			break;
1460 		error = 0;
1461 	}
1462 	return error ? error : ret;
1463 }
1464 
1465 /*
1466  * If swap found in inode, free it and move page from swapcache to filecache.
1467  */
1468 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1469 {
1470 	struct address_space *mapping = inode->i_mapping;
1471 	pgoff_t start = 0;
1472 	struct folio_batch fbatch;
1473 	pgoff_t indices[PAGEVEC_SIZE];
1474 	int ret = 0;
1475 
1476 	do {
1477 		folio_batch_init(&fbatch);
1478 		if (!shmem_find_swap_entries(mapping, start, &fbatch,
1479 					     indices, type)) {
1480 			ret = 0;
1481 			break;
1482 		}
1483 
1484 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1485 		if (ret < 0)
1486 			break;
1487 
1488 		start = indices[folio_batch_count(&fbatch) - 1];
1489 	} while (true);
1490 
1491 	return ret;
1492 }
1493 
1494 /*
1495  * Read all the shared memory data that resides in the swap
1496  * device 'type' back into memory, so the swap device can be
1497  * unused.
1498  */
1499 int shmem_unuse(unsigned int type)
1500 {
1501 	struct shmem_inode_info *info, *next;
1502 	int error = 0;
1503 
1504 	if (list_empty(&shmem_swaplist))
1505 		return 0;
1506 
1507 	mutex_lock(&shmem_swaplist_mutex);
1508 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1509 		if (!info->swapped) {
1510 			list_del_init(&info->swaplist);
1511 			continue;
1512 		}
1513 		/*
1514 		 * Drop the swaplist mutex while searching the inode for swap;
1515 		 * but before doing so, make sure shmem_evict_inode() will not
1516 		 * remove placeholder inode from swaplist, nor let it be freed
1517 		 * (igrab() would protect from unlink, but not from unmount).
1518 		 */
1519 		atomic_inc(&info->stop_eviction);
1520 		mutex_unlock(&shmem_swaplist_mutex);
1521 
1522 		error = shmem_unuse_inode(&info->vfs_inode, type);
1523 		cond_resched();
1524 
1525 		mutex_lock(&shmem_swaplist_mutex);
1526 		next = list_next_entry(info, swaplist);
1527 		if (!info->swapped)
1528 			list_del_init(&info->swaplist);
1529 		if (atomic_dec_and_test(&info->stop_eviction))
1530 			wake_up_var(&info->stop_eviction);
1531 		if (error)
1532 			break;
1533 	}
1534 	mutex_unlock(&shmem_swaplist_mutex);
1535 
1536 	return error;
1537 }
1538 
1539 /**
1540  * shmem_writeout - Write the folio to swap
1541  * @folio: The folio to write
1542  * @wbc: How writeback is to be done
1543  *
1544  * Move the folio from the page cache to the swap cache.
1545  */
1546 int shmem_writeout(struct folio *folio, struct writeback_control *wbc)
1547 {
1548 	struct address_space *mapping = folio->mapping;
1549 	struct inode *inode = mapping->host;
1550 	struct shmem_inode_info *info = SHMEM_I(inode);
1551 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1552 	pgoff_t index;
1553 	int nr_pages;
1554 	bool split = false;
1555 
1556 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1557 		goto redirty;
1558 
1559 	if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1560 		goto redirty;
1561 
1562 	if (!total_swap_pages)
1563 		goto redirty;
1564 
1565 	/*
1566 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1567 	 * split when swapping.
1568 	 *
1569 	 * And shrinkage of pages beyond i_size does not split swap, so
1570 	 * swapout of a large folio crossing i_size needs to split too
1571 	 * (unless fallocate has been used to preallocate beyond EOF).
1572 	 */
1573 	if (folio_test_large(folio)) {
1574 		index = shmem_fallocend(inode,
1575 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1576 		if ((index > folio->index && index < folio_next_index(folio)) ||
1577 		    !IS_ENABLED(CONFIG_THP_SWAP))
1578 			split = true;
1579 	}
1580 
1581 	if (split) {
1582 try_split:
1583 		/* Ensure the subpages are still dirty */
1584 		folio_test_set_dirty(folio);
1585 		if (split_folio_to_list(folio, wbc->list))
1586 			goto redirty;
1587 		folio_clear_dirty(folio);
1588 	}
1589 
1590 	index = folio->index;
1591 	nr_pages = folio_nr_pages(folio);
1592 
1593 	/*
1594 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1595 	 * value into swapfile.c, the only way we can correctly account for a
1596 	 * fallocated folio arriving here is now to initialize it and write it.
1597 	 *
1598 	 * That's okay for a folio already fallocated earlier, but if we have
1599 	 * not yet completed the fallocation, then (a) we want to keep track
1600 	 * of this folio in case we have to undo it, and (b) it may not be a
1601 	 * good idea to continue anyway, once we're pushing into swap.  So
1602 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1603 	 */
1604 	if (!folio_test_uptodate(folio)) {
1605 		if (inode->i_private) {
1606 			struct shmem_falloc *shmem_falloc;
1607 			spin_lock(&inode->i_lock);
1608 			shmem_falloc = inode->i_private;
1609 			if (shmem_falloc &&
1610 			    !shmem_falloc->waitq &&
1611 			    index >= shmem_falloc->start &&
1612 			    index < shmem_falloc->next)
1613 				shmem_falloc->nr_unswapped += nr_pages;
1614 			else
1615 				shmem_falloc = NULL;
1616 			spin_unlock(&inode->i_lock);
1617 			if (shmem_falloc)
1618 				goto redirty;
1619 		}
1620 		folio_zero_range(folio, 0, folio_size(folio));
1621 		flush_dcache_folio(folio);
1622 		folio_mark_uptodate(folio);
1623 	}
1624 
1625 	/*
1626 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1627 	 * if it's not already there.  Do it now before the folio is
1628 	 * moved to swap cache, when its pagelock no longer protects
1629 	 * the inode from eviction.  But don't unlock the mutex until
1630 	 * we've incremented swapped, because shmem_unuse_inode() will
1631 	 * prune a !swapped inode from the swaplist under this mutex.
1632 	 */
1633 	mutex_lock(&shmem_swaplist_mutex);
1634 	if (list_empty(&info->swaplist))
1635 		list_add(&info->swaplist, &shmem_swaplist);
1636 
1637 	if (!folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN)) {
1638 		shmem_recalc_inode(inode, 0, nr_pages);
1639 		swap_shmem_alloc(folio->swap, nr_pages);
1640 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(folio->swap));
1641 
1642 		mutex_unlock(&shmem_swaplist_mutex);
1643 		BUG_ON(folio_mapped(folio));
1644 		return swap_writeout(folio, wbc);
1645 	}
1646 
1647 	list_del_init(&info->swaplist);
1648 	mutex_unlock(&shmem_swaplist_mutex);
1649 	if (nr_pages > 1)
1650 		goto try_split;
1651 redirty:
1652 	folio_mark_dirty(folio);
1653 	if (wbc->for_reclaim)
1654 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1655 	folio_unlock(folio);
1656 	return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(shmem_writeout);
1659 
1660 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1661 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1662 {
1663 	char buffer[64];
1664 
1665 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1666 		return;		/* show nothing */
1667 
1668 	mpol_to_str(buffer, sizeof(buffer), mpol);
1669 
1670 	seq_printf(seq, ",mpol=%s", buffer);
1671 }
1672 
1673 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1674 {
1675 	struct mempolicy *mpol = NULL;
1676 	if (sbinfo->mpol) {
1677 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1678 		mpol = sbinfo->mpol;
1679 		mpol_get(mpol);
1680 		raw_spin_unlock(&sbinfo->stat_lock);
1681 	}
1682 	return mpol;
1683 }
1684 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1685 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1686 {
1687 }
1688 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1689 {
1690 	return NULL;
1691 }
1692 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1693 
1694 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1695 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1696 
1697 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1698 			struct shmem_inode_info *info, pgoff_t index)
1699 {
1700 	struct mempolicy *mpol;
1701 	pgoff_t ilx;
1702 	struct folio *folio;
1703 
1704 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1705 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1706 	mpol_cond_put(mpol);
1707 
1708 	return folio;
1709 }
1710 
1711 /*
1712  * Make sure huge_gfp is always more limited than limit_gfp.
1713  * Some of the flags set permissions, while others set limitations.
1714  */
1715 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1716 {
1717 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1718 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1719 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1720 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1721 
1722 	/* Allow allocations only from the originally specified zones. */
1723 	result |= zoneflags;
1724 
1725 	/*
1726 	 * Minimize the result gfp by taking the union with the deny flags,
1727 	 * and the intersection of the allow flags.
1728 	 */
1729 	result |= (limit_gfp & denyflags);
1730 	result |= (huge_gfp & limit_gfp) & allowflags;
1731 
1732 	return result;
1733 }
1734 
1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1736 bool shmem_hpage_pmd_enabled(void)
1737 {
1738 	if (shmem_huge == SHMEM_HUGE_DENY)
1739 		return false;
1740 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1741 		return true;
1742 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1743 		return true;
1744 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1745 		return true;
1746 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1747 	    shmem_huge != SHMEM_HUGE_NEVER)
1748 		return true;
1749 
1750 	return false;
1751 }
1752 
1753 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1754 				struct vm_area_struct *vma, pgoff_t index,
1755 				loff_t write_end, bool shmem_huge_force)
1756 {
1757 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1758 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1759 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1760 	unsigned int global_orders;
1761 
1762 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1763 		return 0;
1764 
1765 	global_orders = shmem_huge_global_enabled(inode, index, write_end,
1766 						  shmem_huge_force, vma, vm_flags);
1767 	/* Tmpfs huge pages allocation */
1768 	if (!vma || !vma_is_anon_shmem(vma))
1769 		return global_orders;
1770 
1771 	/*
1772 	 * Following the 'deny' semantics of the top level, force the huge
1773 	 * option off from all mounts.
1774 	 */
1775 	if (shmem_huge == SHMEM_HUGE_DENY)
1776 		return 0;
1777 
1778 	/*
1779 	 * Only allow inherit orders if the top-level value is 'force', which
1780 	 * means non-PMD sized THP can not override 'huge' mount option now.
1781 	 */
1782 	if (shmem_huge == SHMEM_HUGE_FORCE)
1783 		return READ_ONCE(huge_shmem_orders_inherit);
1784 
1785 	/* Allow mTHP that will be fully within i_size. */
1786 	mask |= shmem_get_orders_within_size(inode, within_size_orders, index, 0);
1787 
1788 	if (vm_flags & VM_HUGEPAGE)
1789 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1790 
1791 	if (global_orders > 0)
1792 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1793 
1794 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1795 }
1796 
1797 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1798 					   struct address_space *mapping, pgoff_t index,
1799 					   unsigned long orders)
1800 {
1801 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1802 	pgoff_t aligned_index;
1803 	unsigned long pages;
1804 	int order;
1805 
1806 	if (vma) {
1807 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1808 		if (!orders)
1809 			return 0;
1810 	}
1811 
1812 	/* Find the highest order that can add into the page cache */
1813 	order = highest_order(orders);
1814 	while (orders) {
1815 		pages = 1UL << order;
1816 		aligned_index = round_down(index, pages);
1817 		/*
1818 		 * Check for conflict before waiting on a huge allocation.
1819 		 * Conflict might be that a huge page has just been allocated
1820 		 * and added to page cache by a racing thread, or that there
1821 		 * is already at least one small page in the huge extent.
1822 		 * Be careful to retry when appropriate, but not forever!
1823 		 * Elsewhere -EEXIST would be the right code, but not here.
1824 		 */
1825 		if (!xa_find(&mapping->i_pages, &aligned_index,
1826 			     aligned_index + pages - 1, XA_PRESENT))
1827 			break;
1828 		order = next_order(&orders, order);
1829 	}
1830 
1831 	return orders;
1832 }
1833 #else
1834 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1835 					   struct address_space *mapping, pgoff_t index,
1836 					   unsigned long orders)
1837 {
1838 	return 0;
1839 }
1840 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1841 
1842 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1843 		struct shmem_inode_info *info, pgoff_t index)
1844 {
1845 	struct mempolicy *mpol;
1846 	pgoff_t ilx;
1847 	struct folio *folio;
1848 
1849 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1850 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1851 	mpol_cond_put(mpol);
1852 
1853 	return folio;
1854 }
1855 
1856 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1857 		gfp_t gfp, struct inode *inode, pgoff_t index,
1858 		struct mm_struct *fault_mm, unsigned long orders)
1859 {
1860 	struct address_space *mapping = inode->i_mapping;
1861 	struct shmem_inode_info *info = SHMEM_I(inode);
1862 	unsigned long suitable_orders = 0;
1863 	struct folio *folio = NULL;
1864 	long pages;
1865 	int error, order;
1866 
1867 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1868 		orders = 0;
1869 
1870 	if (orders > 0) {
1871 		suitable_orders = shmem_suitable_orders(inode, vmf,
1872 							mapping, index, orders);
1873 
1874 		order = highest_order(suitable_orders);
1875 		while (suitable_orders) {
1876 			pages = 1UL << order;
1877 			index = round_down(index, pages);
1878 			folio = shmem_alloc_folio(gfp, order, info, index);
1879 			if (folio)
1880 				goto allocated;
1881 
1882 			if (pages == HPAGE_PMD_NR)
1883 				count_vm_event(THP_FILE_FALLBACK);
1884 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1885 			order = next_order(&suitable_orders, order);
1886 		}
1887 	} else {
1888 		pages = 1;
1889 		folio = shmem_alloc_folio(gfp, 0, info, index);
1890 	}
1891 	if (!folio)
1892 		return ERR_PTR(-ENOMEM);
1893 
1894 allocated:
1895 	__folio_set_locked(folio);
1896 	__folio_set_swapbacked(folio);
1897 
1898 	gfp &= GFP_RECLAIM_MASK;
1899 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1900 	if (error) {
1901 		if (xa_find(&mapping->i_pages, &index,
1902 				index + pages - 1, XA_PRESENT)) {
1903 			error = -EEXIST;
1904 		} else if (pages > 1) {
1905 			if (pages == HPAGE_PMD_NR) {
1906 				count_vm_event(THP_FILE_FALLBACK);
1907 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1908 			}
1909 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1910 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1911 		}
1912 		goto unlock;
1913 	}
1914 
1915 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1916 	if (error)
1917 		goto unlock;
1918 
1919 	error = shmem_inode_acct_blocks(inode, pages);
1920 	if (error) {
1921 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1922 		long freed;
1923 		/*
1924 		 * Try to reclaim some space by splitting a few
1925 		 * large folios beyond i_size on the filesystem.
1926 		 */
1927 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1928 		/*
1929 		 * And do a shmem_recalc_inode() to account for freed pages:
1930 		 * except our folio is there in cache, so not quite balanced.
1931 		 */
1932 		spin_lock(&info->lock);
1933 		freed = pages + info->alloced - info->swapped -
1934 			READ_ONCE(mapping->nrpages);
1935 		if (freed > 0)
1936 			info->alloced -= freed;
1937 		spin_unlock(&info->lock);
1938 		if (freed > 0)
1939 			shmem_inode_unacct_blocks(inode, freed);
1940 		error = shmem_inode_acct_blocks(inode, pages);
1941 		if (error) {
1942 			filemap_remove_folio(folio);
1943 			goto unlock;
1944 		}
1945 	}
1946 
1947 	shmem_recalc_inode(inode, pages, 0);
1948 	folio_add_lru(folio);
1949 	return folio;
1950 
1951 unlock:
1952 	folio_unlock(folio);
1953 	folio_put(folio);
1954 	return ERR_PTR(error);
1955 }
1956 
1957 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1958 		struct vm_area_struct *vma, pgoff_t index,
1959 		swp_entry_t entry, int order, gfp_t gfp)
1960 {
1961 	struct shmem_inode_info *info = SHMEM_I(inode);
1962 	struct folio *new;
1963 	void *shadow;
1964 	int nr_pages;
1965 
1966 	/*
1967 	 * We have arrived here because our zones are constrained, so don't
1968 	 * limit chance of success with further cpuset and node constraints.
1969 	 */
1970 	gfp &= ~GFP_CONSTRAINT_MASK;
1971 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1972 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1973 
1974 		gfp = limit_gfp_mask(huge_gfp, gfp);
1975 	}
1976 
1977 	new = shmem_alloc_folio(gfp, order, info, index);
1978 	if (!new)
1979 		return ERR_PTR(-ENOMEM);
1980 
1981 	nr_pages = folio_nr_pages(new);
1982 	if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
1983 					   gfp, entry)) {
1984 		folio_put(new);
1985 		return ERR_PTR(-ENOMEM);
1986 	}
1987 
1988 	/*
1989 	 * Prevent parallel swapin from proceeding with the swap cache flag.
1990 	 *
1991 	 * Of course there is another possible concurrent scenario as well,
1992 	 * that is to say, the swap cache flag of a large folio has already
1993 	 * been set by swapcache_prepare(), while another thread may have
1994 	 * already split the large swap entry stored in the shmem mapping.
1995 	 * In this case, shmem_add_to_page_cache() will help identify the
1996 	 * concurrent swapin and return -EEXIST.
1997 	 */
1998 	if (swapcache_prepare(entry, nr_pages)) {
1999 		folio_put(new);
2000 		return ERR_PTR(-EEXIST);
2001 	}
2002 
2003 	__folio_set_locked(new);
2004 	__folio_set_swapbacked(new);
2005 	new->swap = entry;
2006 
2007 	memcg1_swapin(entry, nr_pages);
2008 	shadow = get_shadow_from_swap_cache(entry);
2009 	if (shadow)
2010 		workingset_refault(new, shadow);
2011 	folio_add_lru(new);
2012 	swap_read_folio(new, NULL);
2013 	return new;
2014 }
2015 
2016 /*
2017  * When a page is moved from swapcache to shmem filecache (either by the
2018  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2019  * shmem_unuse_inode()), it may have been read in earlier from swap, in
2020  * ignorance of the mapping it belongs to.  If that mapping has special
2021  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2022  * we may need to copy to a suitable page before moving to filecache.
2023  *
2024  * In a future release, this may well be extended to respect cpuset and
2025  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2026  * but for now it is a simple matter of zone.
2027  */
2028 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2029 {
2030 	return folio_zonenum(folio) > gfp_zone(gfp);
2031 }
2032 
2033 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2034 				struct shmem_inode_info *info, pgoff_t index,
2035 				struct vm_area_struct *vma)
2036 {
2037 	struct folio *new, *old = *foliop;
2038 	swp_entry_t entry = old->swap;
2039 	struct address_space *swap_mapping = swap_address_space(entry);
2040 	pgoff_t swap_index = swap_cache_index(entry);
2041 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2042 	int nr_pages = folio_nr_pages(old);
2043 	int error = 0, i;
2044 
2045 	/*
2046 	 * We have arrived here because our zones are constrained, so don't
2047 	 * limit chance of success by further cpuset and node constraints.
2048 	 */
2049 	gfp &= ~GFP_CONSTRAINT_MASK;
2050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2051 	if (nr_pages > 1) {
2052 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2053 
2054 		gfp = limit_gfp_mask(huge_gfp, gfp);
2055 	}
2056 #endif
2057 
2058 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2059 	if (!new)
2060 		return -ENOMEM;
2061 
2062 	folio_ref_add(new, nr_pages);
2063 	folio_copy(new, old);
2064 	flush_dcache_folio(new);
2065 
2066 	__folio_set_locked(new);
2067 	__folio_set_swapbacked(new);
2068 	folio_mark_uptodate(new);
2069 	new->swap = entry;
2070 	folio_set_swapcache(new);
2071 
2072 	/* Swap cache still stores N entries instead of a high-order entry */
2073 	xa_lock_irq(&swap_mapping->i_pages);
2074 	for (i = 0; i < nr_pages; i++) {
2075 		void *item = xas_load(&xas);
2076 
2077 		if (item != old) {
2078 			error = -ENOENT;
2079 			break;
2080 		}
2081 
2082 		xas_store(&xas, new);
2083 		xas_next(&xas);
2084 	}
2085 	if (!error) {
2086 		mem_cgroup_replace_folio(old, new);
2087 		shmem_update_stats(new, nr_pages);
2088 		shmem_update_stats(old, -nr_pages);
2089 	}
2090 	xa_unlock_irq(&swap_mapping->i_pages);
2091 
2092 	if (unlikely(error)) {
2093 		/*
2094 		 * Is this possible?  I think not, now that our callers
2095 		 * check both the swapcache flag and folio->private
2096 		 * after getting the folio lock; but be defensive.
2097 		 * Reverse old to newpage for clear and free.
2098 		 */
2099 		old = new;
2100 	} else {
2101 		folio_add_lru(new);
2102 		*foliop = new;
2103 	}
2104 
2105 	folio_clear_swapcache(old);
2106 	old->private = NULL;
2107 
2108 	folio_unlock(old);
2109 	/*
2110 	 * The old folio are removed from swap cache, drop the 'nr_pages'
2111 	 * reference, as well as one temporary reference getting from swap
2112 	 * cache.
2113 	 */
2114 	folio_put_refs(old, nr_pages + 1);
2115 	return error;
2116 }
2117 
2118 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2119 					 struct folio *folio, swp_entry_t swap,
2120 					 bool skip_swapcache)
2121 {
2122 	struct address_space *mapping = inode->i_mapping;
2123 	swp_entry_t swapin_error;
2124 	void *old;
2125 	int nr_pages;
2126 
2127 	swapin_error = make_poisoned_swp_entry();
2128 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
2129 			     swp_to_radix_entry(swap),
2130 			     swp_to_radix_entry(swapin_error), 0);
2131 	if (old != swp_to_radix_entry(swap))
2132 		return;
2133 
2134 	nr_pages = folio_nr_pages(folio);
2135 	folio_wait_writeback(folio);
2136 	if (!skip_swapcache)
2137 		delete_from_swap_cache(folio);
2138 	/*
2139 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2140 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2141 	 * in shmem_evict_inode().
2142 	 */
2143 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2144 	swap_free_nr(swap, nr_pages);
2145 }
2146 
2147 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2148 				   swp_entry_t swap, gfp_t gfp)
2149 {
2150 	struct address_space *mapping = inode->i_mapping;
2151 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2152 	int split_order = 0, entry_order;
2153 	int i;
2154 
2155 	/* Convert user data gfp flags to xarray node gfp flags */
2156 	gfp &= GFP_RECLAIM_MASK;
2157 
2158 	for (;;) {
2159 		void *old = NULL;
2160 		int cur_order;
2161 		pgoff_t swap_index;
2162 
2163 		xas_lock_irq(&xas);
2164 		old = xas_load(&xas);
2165 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2166 			xas_set_err(&xas, -EEXIST);
2167 			goto unlock;
2168 		}
2169 
2170 		entry_order = xas_get_order(&xas);
2171 
2172 		if (!entry_order)
2173 			goto unlock;
2174 
2175 		/* Try to split large swap entry in pagecache */
2176 		cur_order = entry_order;
2177 		swap_index = round_down(index, 1 << entry_order);
2178 
2179 		split_order = xas_try_split_min_order(cur_order);
2180 
2181 		while (cur_order > 0) {
2182 			pgoff_t aligned_index =
2183 				round_down(index, 1 << cur_order);
2184 			pgoff_t swap_offset = aligned_index - swap_index;
2185 
2186 			xas_set_order(&xas, index, split_order);
2187 			xas_try_split(&xas, old, cur_order);
2188 			if (xas_error(&xas))
2189 				goto unlock;
2190 
2191 			/*
2192 			 * Re-set the swap entry after splitting, and the swap
2193 			 * offset of the original large entry must be continuous.
2194 			 */
2195 			for (i = 0; i < 1 << cur_order;
2196 			     i += (1 << split_order)) {
2197 				swp_entry_t tmp;
2198 
2199 				tmp = swp_entry(swp_type(swap),
2200 						swp_offset(swap) + swap_offset +
2201 							i);
2202 				__xa_store(&mapping->i_pages, aligned_index + i,
2203 					   swp_to_radix_entry(tmp), 0);
2204 			}
2205 			cur_order = split_order;
2206 			split_order = xas_try_split_min_order(split_order);
2207 		}
2208 
2209 unlock:
2210 		xas_unlock_irq(&xas);
2211 
2212 		if (!xas_nomem(&xas, gfp))
2213 			break;
2214 	}
2215 
2216 	if (xas_error(&xas))
2217 		return xas_error(&xas);
2218 
2219 	return entry_order;
2220 }
2221 
2222 /*
2223  * Swap in the folio pointed to by *foliop.
2224  * Caller has to make sure that *foliop contains a valid swapped folio.
2225  * Returns 0 and the folio in foliop if success. On failure, returns the
2226  * error code and NULL in *foliop.
2227  */
2228 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2229 			     struct folio **foliop, enum sgp_type sgp,
2230 			     gfp_t gfp, struct vm_area_struct *vma,
2231 			     vm_fault_t *fault_type)
2232 {
2233 	struct address_space *mapping = inode->i_mapping;
2234 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2235 	struct shmem_inode_info *info = SHMEM_I(inode);
2236 	struct swap_info_struct *si;
2237 	struct folio *folio = NULL;
2238 	bool skip_swapcache = false;
2239 	swp_entry_t swap;
2240 	int error, nr_pages, order, split_order;
2241 
2242 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2243 	swap = radix_to_swp_entry(*foliop);
2244 	*foliop = NULL;
2245 
2246 	if (is_poisoned_swp_entry(swap))
2247 		return -EIO;
2248 
2249 	si = get_swap_device(swap);
2250 	if (!si) {
2251 		if (!shmem_confirm_swap(mapping, index, swap))
2252 			return -EEXIST;
2253 		else
2254 			return -EINVAL;
2255 	}
2256 
2257 	/* Look it up and read it in.. */
2258 	folio = swap_cache_get_folio(swap, NULL, 0);
2259 	order = xa_get_order(&mapping->i_pages, index);
2260 	if (!folio) {
2261 		bool fallback_order0 = false;
2262 
2263 		/* Or update major stats only when swapin succeeds?? */
2264 		if (fault_type) {
2265 			*fault_type |= VM_FAULT_MAJOR;
2266 			count_vm_event(PGMAJFAULT);
2267 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2268 		}
2269 
2270 		/*
2271 		 * If uffd is active for the vma, we need per-page fault
2272 		 * fidelity to maintain the uffd semantics, then fallback
2273 		 * to swapin order-0 folio, as well as for zswap case.
2274 		 */
2275 		if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2276 				  !zswap_never_enabled()))
2277 			fallback_order0 = true;
2278 
2279 		/* Skip swapcache for synchronous device. */
2280 		if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2281 			folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
2282 			if (!IS_ERR(folio)) {
2283 				skip_swapcache = true;
2284 				goto alloced;
2285 			}
2286 
2287 			/*
2288 			 * Fallback to swapin order-0 folio unless the swap entry
2289 			 * already exists.
2290 			 */
2291 			error = PTR_ERR(folio);
2292 			folio = NULL;
2293 			if (error == -EEXIST)
2294 				goto failed;
2295 		}
2296 
2297 		/*
2298 		 * Now swap device can only swap in order 0 folio, then we
2299 		 * should split the large swap entry stored in the pagecache
2300 		 * if necessary.
2301 		 */
2302 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2303 		if (split_order < 0) {
2304 			error = split_order;
2305 			goto failed;
2306 		}
2307 
2308 		/*
2309 		 * If the large swap entry has already been split, it is
2310 		 * necessary to recalculate the new swap entry based on
2311 		 * the old order alignment.
2312 		 */
2313 		if (split_order > 0) {
2314 			pgoff_t offset = index - round_down(index, 1 << split_order);
2315 
2316 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2317 		}
2318 
2319 		/* Here we actually start the io */
2320 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2321 		if (!folio) {
2322 			error = -ENOMEM;
2323 			goto failed;
2324 		}
2325 	} else if (order != folio_order(folio)) {
2326 		/*
2327 		 * Swap readahead may swap in order 0 folios into swapcache
2328 		 * asynchronously, while the shmem mapping can still stores
2329 		 * large swap entries. In such cases, we should split the
2330 		 * large swap entry to prevent possible data corruption.
2331 		 */
2332 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2333 		if (split_order < 0) {
2334 			error = split_order;
2335 			goto failed;
2336 		}
2337 
2338 		/*
2339 		 * If the large swap entry has already been split, it is
2340 		 * necessary to recalculate the new swap entry based on
2341 		 * the old order alignment.
2342 		 */
2343 		if (split_order > 0) {
2344 			pgoff_t offset = index - round_down(index, 1 << split_order);
2345 
2346 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2347 		}
2348 	}
2349 
2350 alloced:
2351 	/* We have to do this with folio locked to prevent races */
2352 	folio_lock(folio);
2353 	if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2354 	    folio->swap.val != swap.val ||
2355 	    !shmem_confirm_swap(mapping, index, swap) ||
2356 	    xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2357 		error = -EEXIST;
2358 		goto unlock;
2359 	}
2360 	if (!folio_test_uptodate(folio)) {
2361 		error = -EIO;
2362 		goto failed;
2363 	}
2364 	folio_wait_writeback(folio);
2365 	nr_pages = folio_nr_pages(folio);
2366 
2367 	/*
2368 	 * Some architectures may have to restore extra metadata to the
2369 	 * folio after reading from swap.
2370 	 */
2371 	arch_swap_restore(folio_swap(swap, folio), folio);
2372 
2373 	if (shmem_should_replace_folio(folio, gfp)) {
2374 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2375 		if (error)
2376 			goto failed;
2377 	}
2378 
2379 	error = shmem_add_to_page_cache(folio, mapping,
2380 					round_down(index, nr_pages),
2381 					swp_to_radix_entry(swap), gfp);
2382 	if (error)
2383 		goto failed;
2384 
2385 	shmem_recalc_inode(inode, 0, -nr_pages);
2386 
2387 	if (sgp == SGP_WRITE)
2388 		folio_mark_accessed(folio);
2389 
2390 	if (skip_swapcache) {
2391 		folio->swap.val = 0;
2392 		swapcache_clear(si, swap, nr_pages);
2393 	} else {
2394 		delete_from_swap_cache(folio);
2395 	}
2396 	folio_mark_dirty(folio);
2397 	swap_free_nr(swap, nr_pages);
2398 	put_swap_device(si);
2399 
2400 	*foliop = folio;
2401 	return 0;
2402 failed:
2403 	if (!shmem_confirm_swap(mapping, index, swap))
2404 		error = -EEXIST;
2405 	if (error == -EIO)
2406 		shmem_set_folio_swapin_error(inode, index, folio, swap,
2407 					     skip_swapcache);
2408 unlock:
2409 	if (skip_swapcache)
2410 		swapcache_clear(si, swap, folio_nr_pages(folio));
2411 	if (folio) {
2412 		folio_unlock(folio);
2413 		folio_put(folio);
2414 	}
2415 	put_swap_device(si);
2416 
2417 	return error;
2418 }
2419 
2420 /*
2421  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2422  *
2423  * If we allocate a new one we do not mark it dirty. That's up to the
2424  * vm. If we swap it in we mark it dirty since we also free the swap
2425  * entry since a page cannot live in both the swap and page cache.
2426  *
2427  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2428  */
2429 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2430 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2431 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2432 {
2433 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2434 	struct mm_struct *fault_mm;
2435 	struct folio *folio;
2436 	int error;
2437 	bool alloced;
2438 	unsigned long orders = 0;
2439 
2440 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2441 		return -EINVAL;
2442 
2443 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2444 		return -EFBIG;
2445 repeat:
2446 	if (sgp <= SGP_CACHE &&
2447 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2448 		return -EINVAL;
2449 
2450 	alloced = false;
2451 	fault_mm = vma ? vma->vm_mm : NULL;
2452 
2453 	folio = filemap_get_entry(inode->i_mapping, index);
2454 	if (folio && vma && userfaultfd_minor(vma)) {
2455 		if (!xa_is_value(folio))
2456 			folio_put(folio);
2457 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2458 		return 0;
2459 	}
2460 
2461 	if (xa_is_value(folio)) {
2462 		error = shmem_swapin_folio(inode, index, &folio,
2463 					   sgp, gfp, vma, fault_type);
2464 		if (error == -EEXIST)
2465 			goto repeat;
2466 
2467 		*foliop = folio;
2468 		return error;
2469 	}
2470 
2471 	if (folio) {
2472 		folio_lock(folio);
2473 
2474 		/* Has the folio been truncated or swapped out? */
2475 		if (unlikely(folio->mapping != inode->i_mapping)) {
2476 			folio_unlock(folio);
2477 			folio_put(folio);
2478 			goto repeat;
2479 		}
2480 		if (sgp == SGP_WRITE)
2481 			folio_mark_accessed(folio);
2482 		if (folio_test_uptodate(folio))
2483 			goto out;
2484 		/* fallocated folio */
2485 		if (sgp != SGP_READ)
2486 			goto clear;
2487 		folio_unlock(folio);
2488 		folio_put(folio);
2489 	}
2490 
2491 	/*
2492 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2493 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2494 	 */
2495 	*foliop = NULL;
2496 	if (sgp == SGP_READ)
2497 		return 0;
2498 	if (sgp == SGP_NOALLOC)
2499 		return -ENOENT;
2500 
2501 	/*
2502 	 * Fast cache lookup and swap lookup did not find it: allocate.
2503 	 */
2504 
2505 	if (vma && userfaultfd_missing(vma)) {
2506 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2507 		return 0;
2508 	}
2509 
2510 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2511 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2512 	if (orders > 0) {
2513 		gfp_t huge_gfp;
2514 
2515 		huge_gfp = vma_thp_gfp_mask(vma);
2516 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2517 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2518 				inode, index, fault_mm, orders);
2519 		if (!IS_ERR(folio)) {
2520 			if (folio_test_pmd_mappable(folio))
2521 				count_vm_event(THP_FILE_ALLOC);
2522 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2523 			goto alloced;
2524 		}
2525 		if (PTR_ERR(folio) == -EEXIST)
2526 			goto repeat;
2527 	}
2528 
2529 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2530 	if (IS_ERR(folio)) {
2531 		error = PTR_ERR(folio);
2532 		if (error == -EEXIST)
2533 			goto repeat;
2534 		folio = NULL;
2535 		goto unlock;
2536 	}
2537 
2538 alloced:
2539 	alloced = true;
2540 	if (folio_test_large(folio) &&
2541 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2542 					folio_next_index(folio)) {
2543 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2544 		struct shmem_inode_info *info = SHMEM_I(inode);
2545 		/*
2546 		 * Part of the large folio is beyond i_size: subject
2547 		 * to shrink under memory pressure.
2548 		 */
2549 		spin_lock(&sbinfo->shrinklist_lock);
2550 		/*
2551 		 * _careful to defend against unlocked access to
2552 		 * ->shrink_list in shmem_unused_huge_shrink()
2553 		 */
2554 		if (list_empty_careful(&info->shrinklist)) {
2555 			list_add_tail(&info->shrinklist,
2556 				      &sbinfo->shrinklist);
2557 			sbinfo->shrinklist_len++;
2558 		}
2559 		spin_unlock(&sbinfo->shrinklist_lock);
2560 	}
2561 
2562 	if (sgp == SGP_WRITE)
2563 		folio_set_referenced(folio);
2564 	/*
2565 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2566 	 */
2567 	if (sgp == SGP_FALLOC)
2568 		sgp = SGP_WRITE;
2569 clear:
2570 	/*
2571 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2572 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2573 	 * it now, lest undo on failure cancel our earlier guarantee.
2574 	 */
2575 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2576 		long i, n = folio_nr_pages(folio);
2577 
2578 		for (i = 0; i < n; i++)
2579 			clear_highpage(folio_page(folio, i));
2580 		flush_dcache_folio(folio);
2581 		folio_mark_uptodate(folio);
2582 	}
2583 
2584 	/* Perhaps the file has been truncated since we checked */
2585 	if (sgp <= SGP_CACHE &&
2586 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2587 		error = -EINVAL;
2588 		goto unlock;
2589 	}
2590 out:
2591 	*foliop = folio;
2592 	return 0;
2593 
2594 	/*
2595 	 * Error recovery.
2596 	 */
2597 unlock:
2598 	if (alloced)
2599 		filemap_remove_folio(folio);
2600 	shmem_recalc_inode(inode, 0, 0);
2601 	if (folio) {
2602 		folio_unlock(folio);
2603 		folio_put(folio);
2604 	}
2605 	return error;
2606 }
2607 
2608 /**
2609  * shmem_get_folio - find, and lock a shmem folio.
2610  * @inode:	inode to search
2611  * @index:	the page index.
2612  * @write_end:	end of a write, could extend inode size
2613  * @foliop:	pointer to the folio if found
2614  * @sgp:	SGP_* flags to control behavior
2615  *
2616  * Looks up the page cache entry at @inode & @index.  If a folio is
2617  * present, it is returned locked with an increased refcount.
2618  *
2619  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2620  * before unlocking the folio to ensure that the folio is not reclaimed.
2621  * There is no need to reserve space before calling folio_mark_dirty().
2622  *
2623  * When no folio is found, the behavior depends on @sgp:
2624  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2625  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2626  *  - for all other flags a new folio is allocated, inserted into the
2627  *    page cache and returned locked in @foliop.
2628  *
2629  * Context: May sleep.
2630  * Return: 0 if successful, else a negative error code.
2631  */
2632 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2633 		    struct folio **foliop, enum sgp_type sgp)
2634 {
2635 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2636 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2637 }
2638 EXPORT_SYMBOL_GPL(shmem_get_folio);
2639 
2640 /*
2641  * This is like autoremove_wake_function, but it removes the wait queue
2642  * entry unconditionally - even if something else had already woken the
2643  * target.
2644  */
2645 static int synchronous_wake_function(wait_queue_entry_t *wait,
2646 			unsigned int mode, int sync, void *key)
2647 {
2648 	int ret = default_wake_function(wait, mode, sync, key);
2649 	list_del_init(&wait->entry);
2650 	return ret;
2651 }
2652 
2653 /*
2654  * Trinity finds that probing a hole which tmpfs is punching can
2655  * prevent the hole-punch from ever completing: which in turn
2656  * locks writers out with its hold on i_rwsem.  So refrain from
2657  * faulting pages into the hole while it's being punched.  Although
2658  * shmem_undo_range() does remove the additions, it may be unable to
2659  * keep up, as each new page needs its own unmap_mapping_range() call,
2660  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2661  *
2662  * It does not matter if we sometimes reach this check just before the
2663  * hole-punch begins, so that one fault then races with the punch:
2664  * we just need to make racing faults a rare case.
2665  *
2666  * The implementation below would be much simpler if we just used a
2667  * standard mutex or completion: but we cannot take i_rwsem in fault,
2668  * and bloating every shmem inode for this unlikely case would be sad.
2669  */
2670 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2671 {
2672 	struct shmem_falloc *shmem_falloc;
2673 	struct file *fpin = NULL;
2674 	vm_fault_t ret = 0;
2675 
2676 	spin_lock(&inode->i_lock);
2677 	shmem_falloc = inode->i_private;
2678 	if (shmem_falloc &&
2679 	    shmem_falloc->waitq &&
2680 	    vmf->pgoff >= shmem_falloc->start &&
2681 	    vmf->pgoff < shmem_falloc->next) {
2682 		wait_queue_head_t *shmem_falloc_waitq;
2683 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2684 
2685 		ret = VM_FAULT_NOPAGE;
2686 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2687 		shmem_falloc_waitq = shmem_falloc->waitq;
2688 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2689 				TASK_UNINTERRUPTIBLE);
2690 		spin_unlock(&inode->i_lock);
2691 		schedule();
2692 
2693 		/*
2694 		 * shmem_falloc_waitq points into the shmem_fallocate()
2695 		 * stack of the hole-punching task: shmem_falloc_waitq
2696 		 * is usually invalid by the time we reach here, but
2697 		 * finish_wait() does not dereference it in that case;
2698 		 * though i_lock needed lest racing with wake_up_all().
2699 		 */
2700 		spin_lock(&inode->i_lock);
2701 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2702 	}
2703 	spin_unlock(&inode->i_lock);
2704 	if (fpin) {
2705 		fput(fpin);
2706 		ret = VM_FAULT_RETRY;
2707 	}
2708 	return ret;
2709 }
2710 
2711 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2712 {
2713 	struct inode *inode = file_inode(vmf->vma->vm_file);
2714 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2715 	struct folio *folio = NULL;
2716 	vm_fault_t ret = 0;
2717 	int err;
2718 
2719 	/*
2720 	 * Trinity finds that probing a hole which tmpfs is punching can
2721 	 * prevent the hole-punch from ever completing: noted in i_private.
2722 	 */
2723 	if (unlikely(inode->i_private)) {
2724 		ret = shmem_falloc_wait(vmf, inode);
2725 		if (ret)
2726 			return ret;
2727 	}
2728 
2729 	WARN_ON_ONCE(vmf->page != NULL);
2730 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2731 				  gfp, vmf, &ret);
2732 	if (err)
2733 		return vmf_error(err);
2734 	if (folio) {
2735 		vmf->page = folio_file_page(folio, vmf->pgoff);
2736 		ret |= VM_FAULT_LOCKED;
2737 	}
2738 	return ret;
2739 }
2740 
2741 unsigned long shmem_get_unmapped_area(struct file *file,
2742 				      unsigned long uaddr, unsigned long len,
2743 				      unsigned long pgoff, unsigned long flags)
2744 {
2745 	unsigned long addr;
2746 	unsigned long offset;
2747 	unsigned long inflated_len;
2748 	unsigned long inflated_addr;
2749 	unsigned long inflated_offset;
2750 	unsigned long hpage_size;
2751 
2752 	if (len > TASK_SIZE)
2753 		return -ENOMEM;
2754 
2755 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2756 				    flags);
2757 
2758 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2759 		return addr;
2760 	if (IS_ERR_VALUE(addr))
2761 		return addr;
2762 	if (addr & ~PAGE_MASK)
2763 		return addr;
2764 	if (addr > TASK_SIZE - len)
2765 		return addr;
2766 
2767 	if (shmem_huge == SHMEM_HUGE_DENY)
2768 		return addr;
2769 	if (flags & MAP_FIXED)
2770 		return addr;
2771 	/*
2772 	 * Our priority is to support MAP_SHARED mapped hugely;
2773 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2774 	 * But if caller specified an address hint and we allocated area there
2775 	 * successfully, respect that as before.
2776 	 */
2777 	if (uaddr == addr)
2778 		return addr;
2779 
2780 	hpage_size = HPAGE_PMD_SIZE;
2781 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2782 		struct super_block *sb;
2783 		unsigned long __maybe_unused hpage_orders;
2784 		int order = 0;
2785 
2786 		if (file) {
2787 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2788 			sb = file_inode(file)->i_sb;
2789 		} else {
2790 			/*
2791 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2792 			 * for "/dev/zero", to create a shared anonymous object.
2793 			 */
2794 			if (IS_ERR(shm_mnt))
2795 				return addr;
2796 			sb = shm_mnt->mnt_sb;
2797 
2798 			/*
2799 			 * Find the highest mTHP order used for anonymous shmem to
2800 			 * provide a suitable alignment address.
2801 			 */
2802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2803 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2804 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2805 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2806 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2807 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2808 
2809 			if (hpage_orders > 0) {
2810 				order = highest_order(hpage_orders);
2811 				hpage_size = PAGE_SIZE << order;
2812 			}
2813 #endif
2814 		}
2815 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2816 			return addr;
2817 	}
2818 
2819 	if (len < hpage_size)
2820 		return addr;
2821 
2822 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2823 	if (offset && offset + len < 2 * hpage_size)
2824 		return addr;
2825 	if ((addr & (hpage_size - 1)) == offset)
2826 		return addr;
2827 
2828 	inflated_len = len + hpage_size - PAGE_SIZE;
2829 	if (inflated_len > TASK_SIZE)
2830 		return addr;
2831 	if (inflated_len < len)
2832 		return addr;
2833 
2834 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2835 					     inflated_len, 0, flags);
2836 	if (IS_ERR_VALUE(inflated_addr))
2837 		return addr;
2838 	if (inflated_addr & ~PAGE_MASK)
2839 		return addr;
2840 
2841 	inflated_offset = inflated_addr & (hpage_size - 1);
2842 	inflated_addr += offset - inflated_offset;
2843 	if (inflated_offset > offset)
2844 		inflated_addr += hpage_size;
2845 
2846 	if (inflated_addr > TASK_SIZE - len)
2847 		return addr;
2848 	return inflated_addr;
2849 }
2850 
2851 #ifdef CONFIG_NUMA
2852 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2853 {
2854 	struct inode *inode = file_inode(vma->vm_file);
2855 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2856 }
2857 
2858 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2859 					  unsigned long addr, pgoff_t *ilx)
2860 {
2861 	struct inode *inode = file_inode(vma->vm_file);
2862 	pgoff_t index;
2863 
2864 	/*
2865 	 * Bias interleave by inode number to distribute better across nodes;
2866 	 * but this interface is independent of which page order is used, so
2867 	 * supplies only that bias, letting caller apply the offset (adjusted
2868 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2869 	 */
2870 	*ilx = inode->i_ino;
2871 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2872 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2873 }
2874 
2875 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2876 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2877 {
2878 	struct mempolicy *mpol;
2879 
2880 	/* Bias interleave by inode number to distribute better across nodes */
2881 	*ilx = info->vfs_inode.i_ino + (index >> order);
2882 
2883 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2884 	return mpol ? mpol : get_task_policy(current);
2885 }
2886 #else
2887 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2888 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2889 {
2890 	*ilx = 0;
2891 	return NULL;
2892 }
2893 #endif /* CONFIG_NUMA */
2894 
2895 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2896 {
2897 	struct inode *inode = file_inode(file);
2898 	struct shmem_inode_info *info = SHMEM_I(inode);
2899 	int retval = -ENOMEM;
2900 
2901 	/*
2902 	 * What serializes the accesses to info->flags?
2903 	 * ipc_lock_object() when called from shmctl_do_lock(),
2904 	 * no serialization needed when called from shm_destroy().
2905 	 */
2906 	if (lock && !(info->flags & VM_LOCKED)) {
2907 		if (!user_shm_lock(inode->i_size, ucounts))
2908 			goto out_nomem;
2909 		info->flags |= VM_LOCKED;
2910 		mapping_set_unevictable(file->f_mapping);
2911 	}
2912 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2913 		user_shm_unlock(inode->i_size, ucounts);
2914 		info->flags &= ~VM_LOCKED;
2915 		mapping_clear_unevictable(file->f_mapping);
2916 	}
2917 	retval = 0;
2918 
2919 out_nomem:
2920 	return retval;
2921 }
2922 
2923 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2924 {
2925 	struct inode *inode = file_inode(file);
2926 
2927 	file_accessed(file);
2928 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2929 	if (inode->i_nlink)
2930 		vma->vm_ops = &shmem_vm_ops;
2931 	else
2932 		vma->vm_ops = &shmem_anon_vm_ops;
2933 	return 0;
2934 }
2935 
2936 static int shmem_file_open(struct inode *inode, struct file *file)
2937 {
2938 	file->f_mode |= FMODE_CAN_ODIRECT;
2939 	return generic_file_open(inode, file);
2940 }
2941 
2942 #ifdef CONFIG_TMPFS_XATTR
2943 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2944 
2945 #if IS_ENABLED(CONFIG_UNICODE)
2946 /*
2947  * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2948  *
2949  * The casefold file attribute needs some special checks. I can just be added to
2950  * an empty dir, and can't be removed from a non-empty dir.
2951  */
2952 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2953 				      struct dentry *dentry, unsigned int *i_flags)
2954 {
2955 	unsigned int old = inode->i_flags;
2956 	struct super_block *sb = inode->i_sb;
2957 
2958 	if (fsflags & FS_CASEFOLD_FL) {
2959 		if (!(old & S_CASEFOLD)) {
2960 			if (!sb->s_encoding)
2961 				return -EOPNOTSUPP;
2962 
2963 			if (!S_ISDIR(inode->i_mode))
2964 				return -ENOTDIR;
2965 
2966 			if (dentry && !simple_empty(dentry))
2967 				return -ENOTEMPTY;
2968 		}
2969 
2970 		*i_flags = *i_flags | S_CASEFOLD;
2971 	} else if (old & S_CASEFOLD) {
2972 		if (dentry && !simple_empty(dentry))
2973 			return -ENOTEMPTY;
2974 	}
2975 
2976 	return 0;
2977 }
2978 #else
2979 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2980 				      struct dentry *dentry, unsigned int *i_flags)
2981 {
2982 	if (fsflags & FS_CASEFOLD_FL)
2983 		return -EOPNOTSUPP;
2984 
2985 	return 0;
2986 }
2987 #endif
2988 
2989 /*
2990  * chattr's fsflags are unrelated to extended attributes,
2991  * but tmpfs has chosen to enable them under the same config option.
2992  */
2993 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
2994 {
2995 	unsigned int i_flags = 0;
2996 	int ret;
2997 
2998 	ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
2999 	if (ret)
3000 		return ret;
3001 
3002 	if (fsflags & FS_NOATIME_FL)
3003 		i_flags |= S_NOATIME;
3004 	if (fsflags & FS_APPEND_FL)
3005 		i_flags |= S_APPEND;
3006 	if (fsflags & FS_IMMUTABLE_FL)
3007 		i_flags |= S_IMMUTABLE;
3008 	/*
3009 	 * But FS_NODUMP_FL does not require any action in i_flags.
3010 	 */
3011 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3012 
3013 	return 0;
3014 }
3015 #else
3016 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3017 {
3018 }
3019 #define shmem_initxattrs NULL
3020 #endif
3021 
3022 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3023 {
3024 	return &SHMEM_I(inode)->dir_offsets;
3025 }
3026 
3027 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3028 					     struct super_block *sb,
3029 					     struct inode *dir, umode_t mode,
3030 					     dev_t dev, unsigned long flags)
3031 {
3032 	struct inode *inode;
3033 	struct shmem_inode_info *info;
3034 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3035 	ino_t ino;
3036 	int err;
3037 
3038 	err = shmem_reserve_inode(sb, &ino);
3039 	if (err)
3040 		return ERR_PTR(err);
3041 
3042 	inode = new_inode(sb);
3043 	if (!inode) {
3044 		shmem_free_inode(sb, 0);
3045 		return ERR_PTR(-ENOSPC);
3046 	}
3047 
3048 	inode->i_ino = ino;
3049 	inode_init_owner(idmap, inode, dir, mode);
3050 	inode->i_blocks = 0;
3051 	simple_inode_init_ts(inode);
3052 	inode->i_generation = get_random_u32();
3053 	info = SHMEM_I(inode);
3054 	memset(info, 0, (char *)inode - (char *)info);
3055 	spin_lock_init(&info->lock);
3056 	atomic_set(&info->stop_eviction, 0);
3057 	info->seals = F_SEAL_SEAL;
3058 	info->flags = flags & VM_NORESERVE;
3059 	info->i_crtime = inode_get_mtime(inode);
3060 	info->fsflags = (dir == NULL) ? 0 :
3061 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3062 	if (info->fsflags)
3063 		shmem_set_inode_flags(inode, info->fsflags, NULL);
3064 	INIT_LIST_HEAD(&info->shrinklist);
3065 	INIT_LIST_HEAD(&info->swaplist);
3066 	simple_xattrs_init(&info->xattrs);
3067 	cache_no_acl(inode);
3068 	if (sbinfo->noswap)
3069 		mapping_set_unevictable(inode->i_mapping);
3070 
3071 	/* Don't consider 'deny' for emergencies and 'force' for testing */
3072 	if (sbinfo->huge)
3073 		mapping_set_large_folios(inode->i_mapping);
3074 
3075 	switch (mode & S_IFMT) {
3076 	default:
3077 		inode->i_op = &shmem_special_inode_operations;
3078 		init_special_inode(inode, mode, dev);
3079 		break;
3080 	case S_IFREG:
3081 		inode->i_mapping->a_ops = &shmem_aops;
3082 		inode->i_op = &shmem_inode_operations;
3083 		inode->i_fop = &shmem_file_operations;
3084 		mpol_shared_policy_init(&info->policy,
3085 					 shmem_get_sbmpol(sbinfo));
3086 		break;
3087 	case S_IFDIR:
3088 		inc_nlink(inode);
3089 		/* Some things misbehave if size == 0 on a directory */
3090 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
3091 		inode->i_op = &shmem_dir_inode_operations;
3092 		inode->i_fop = &simple_offset_dir_operations;
3093 		simple_offset_init(shmem_get_offset_ctx(inode));
3094 		break;
3095 	case S_IFLNK:
3096 		/*
3097 		 * Must not load anything in the rbtree,
3098 		 * mpol_free_shared_policy will not be called.
3099 		 */
3100 		mpol_shared_policy_init(&info->policy, NULL);
3101 		break;
3102 	}
3103 
3104 	lockdep_annotate_inode_mutex_key(inode);
3105 	return inode;
3106 }
3107 
3108 #ifdef CONFIG_TMPFS_QUOTA
3109 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3110 				     struct super_block *sb, struct inode *dir,
3111 				     umode_t mode, dev_t dev, unsigned long flags)
3112 {
3113 	int err;
3114 	struct inode *inode;
3115 
3116 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3117 	if (IS_ERR(inode))
3118 		return inode;
3119 
3120 	err = dquot_initialize(inode);
3121 	if (err)
3122 		goto errout;
3123 
3124 	err = dquot_alloc_inode(inode);
3125 	if (err) {
3126 		dquot_drop(inode);
3127 		goto errout;
3128 	}
3129 	return inode;
3130 
3131 errout:
3132 	inode->i_flags |= S_NOQUOTA;
3133 	iput(inode);
3134 	return ERR_PTR(err);
3135 }
3136 #else
3137 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3138 				     struct super_block *sb, struct inode *dir,
3139 				     umode_t mode, dev_t dev, unsigned long flags)
3140 {
3141 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3142 }
3143 #endif /* CONFIG_TMPFS_QUOTA */
3144 
3145 #ifdef CONFIG_USERFAULTFD
3146 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3147 			   struct vm_area_struct *dst_vma,
3148 			   unsigned long dst_addr,
3149 			   unsigned long src_addr,
3150 			   uffd_flags_t flags,
3151 			   struct folio **foliop)
3152 {
3153 	struct inode *inode = file_inode(dst_vma->vm_file);
3154 	struct shmem_inode_info *info = SHMEM_I(inode);
3155 	struct address_space *mapping = inode->i_mapping;
3156 	gfp_t gfp = mapping_gfp_mask(mapping);
3157 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3158 	void *page_kaddr;
3159 	struct folio *folio;
3160 	int ret;
3161 	pgoff_t max_off;
3162 
3163 	if (shmem_inode_acct_blocks(inode, 1)) {
3164 		/*
3165 		 * We may have got a page, returned -ENOENT triggering a retry,
3166 		 * and now we find ourselves with -ENOMEM. Release the page, to
3167 		 * avoid a BUG_ON in our caller.
3168 		 */
3169 		if (unlikely(*foliop)) {
3170 			folio_put(*foliop);
3171 			*foliop = NULL;
3172 		}
3173 		return -ENOMEM;
3174 	}
3175 
3176 	if (!*foliop) {
3177 		ret = -ENOMEM;
3178 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3179 		if (!folio)
3180 			goto out_unacct_blocks;
3181 
3182 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3183 			page_kaddr = kmap_local_folio(folio, 0);
3184 			/*
3185 			 * The read mmap_lock is held here.  Despite the
3186 			 * mmap_lock being read recursive a deadlock is still
3187 			 * possible if a writer has taken a lock.  For example:
3188 			 *
3189 			 * process A thread 1 takes read lock on own mmap_lock
3190 			 * process A thread 2 calls mmap, blocks taking write lock
3191 			 * process B thread 1 takes page fault, read lock on own mmap lock
3192 			 * process B thread 2 calls mmap, blocks taking write lock
3193 			 * process A thread 1 blocks taking read lock on process B
3194 			 * process B thread 1 blocks taking read lock on process A
3195 			 *
3196 			 * Disable page faults to prevent potential deadlock
3197 			 * and retry the copy outside the mmap_lock.
3198 			 */
3199 			pagefault_disable();
3200 			ret = copy_from_user(page_kaddr,
3201 					     (const void __user *)src_addr,
3202 					     PAGE_SIZE);
3203 			pagefault_enable();
3204 			kunmap_local(page_kaddr);
3205 
3206 			/* fallback to copy_from_user outside mmap_lock */
3207 			if (unlikely(ret)) {
3208 				*foliop = folio;
3209 				ret = -ENOENT;
3210 				/* don't free the page */
3211 				goto out_unacct_blocks;
3212 			}
3213 
3214 			flush_dcache_folio(folio);
3215 		} else {		/* ZEROPAGE */
3216 			clear_user_highpage(&folio->page, dst_addr);
3217 		}
3218 	} else {
3219 		folio = *foliop;
3220 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3221 		*foliop = NULL;
3222 	}
3223 
3224 	VM_BUG_ON(folio_test_locked(folio));
3225 	VM_BUG_ON(folio_test_swapbacked(folio));
3226 	__folio_set_locked(folio);
3227 	__folio_set_swapbacked(folio);
3228 	__folio_mark_uptodate(folio);
3229 
3230 	ret = -EFAULT;
3231 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3232 	if (unlikely(pgoff >= max_off))
3233 		goto out_release;
3234 
3235 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3236 	if (ret)
3237 		goto out_release;
3238 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3239 	if (ret)
3240 		goto out_release;
3241 
3242 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3243 				       &folio->page, true, flags);
3244 	if (ret)
3245 		goto out_delete_from_cache;
3246 
3247 	shmem_recalc_inode(inode, 1, 0);
3248 	folio_unlock(folio);
3249 	return 0;
3250 out_delete_from_cache:
3251 	filemap_remove_folio(folio);
3252 out_release:
3253 	folio_unlock(folio);
3254 	folio_put(folio);
3255 out_unacct_blocks:
3256 	shmem_inode_unacct_blocks(inode, 1);
3257 	return ret;
3258 }
3259 #endif /* CONFIG_USERFAULTFD */
3260 
3261 #ifdef CONFIG_TMPFS
3262 static const struct inode_operations shmem_symlink_inode_operations;
3263 static const struct inode_operations shmem_short_symlink_operations;
3264 
3265 static int
3266 shmem_write_begin(struct file *file, struct address_space *mapping,
3267 			loff_t pos, unsigned len,
3268 			struct folio **foliop, void **fsdata)
3269 {
3270 	struct inode *inode = mapping->host;
3271 	struct shmem_inode_info *info = SHMEM_I(inode);
3272 	pgoff_t index = pos >> PAGE_SHIFT;
3273 	struct folio *folio;
3274 	int ret = 0;
3275 
3276 	/* i_rwsem is held by caller */
3277 	if (unlikely(info->seals & (F_SEAL_GROW |
3278 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3279 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3280 			return -EPERM;
3281 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3282 			return -EPERM;
3283 	}
3284 
3285 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3286 	if (ret)
3287 		return ret;
3288 
3289 	if (folio_contain_hwpoisoned_page(folio)) {
3290 		folio_unlock(folio);
3291 		folio_put(folio);
3292 		return -EIO;
3293 	}
3294 
3295 	*foliop = folio;
3296 	return 0;
3297 }
3298 
3299 static int
3300 shmem_write_end(struct file *file, struct address_space *mapping,
3301 			loff_t pos, unsigned len, unsigned copied,
3302 			struct folio *folio, void *fsdata)
3303 {
3304 	struct inode *inode = mapping->host;
3305 
3306 	if (pos + copied > inode->i_size)
3307 		i_size_write(inode, pos + copied);
3308 
3309 	if (!folio_test_uptodate(folio)) {
3310 		if (copied < folio_size(folio)) {
3311 			size_t from = offset_in_folio(folio, pos);
3312 			folio_zero_segments(folio, 0, from,
3313 					from + copied, folio_size(folio));
3314 		}
3315 		folio_mark_uptodate(folio);
3316 	}
3317 	folio_mark_dirty(folio);
3318 	folio_unlock(folio);
3319 	folio_put(folio);
3320 
3321 	return copied;
3322 }
3323 
3324 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3325 {
3326 	struct file *file = iocb->ki_filp;
3327 	struct inode *inode = file_inode(file);
3328 	struct address_space *mapping = inode->i_mapping;
3329 	pgoff_t index;
3330 	unsigned long offset;
3331 	int error = 0;
3332 	ssize_t retval = 0;
3333 
3334 	for (;;) {
3335 		struct folio *folio = NULL;
3336 		struct page *page = NULL;
3337 		unsigned long nr, ret;
3338 		loff_t end_offset, i_size = i_size_read(inode);
3339 		bool fallback_page_copy = false;
3340 		size_t fsize;
3341 
3342 		if (unlikely(iocb->ki_pos >= i_size))
3343 			break;
3344 
3345 		index = iocb->ki_pos >> PAGE_SHIFT;
3346 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3347 		if (error) {
3348 			if (error == -EINVAL)
3349 				error = 0;
3350 			break;
3351 		}
3352 		if (folio) {
3353 			folio_unlock(folio);
3354 
3355 			page = folio_file_page(folio, index);
3356 			if (PageHWPoison(page)) {
3357 				folio_put(folio);
3358 				error = -EIO;
3359 				break;
3360 			}
3361 
3362 			if (folio_test_large(folio) &&
3363 			    folio_test_has_hwpoisoned(folio))
3364 				fallback_page_copy = true;
3365 		}
3366 
3367 		/*
3368 		 * We must evaluate after, since reads (unlike writes)
3369 		 * are called without i_rwsem protection against truncate
3370 		 */
3371 		i_size = i_size_read(inode);
3372 		if (unlikely(iocb->ki_pos >= i_size)) {
3373 			if (folio)
3374 				folio_put(folio);
3375 			break;
3376 		}
3377 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3378 		if (folio && likely(!fallback_page_copy))
3379 			fsize = folio_size(folio);
3380 		else
3381 			fsize = PAGE_SIZE;
3382 		offset = iocb->ki_pos & (fsize - 1);
3383 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3384 
3385 		if (folio) {
3386 			/*
3387 			 * If users can be writing to this page using arbitrary
3388 			 * virtual addresses, take care about potential aliasing
3389 			 * before reading the page on the kernel side.
3390 			 */
3391 			if (mapping_writably_mapped(mapping)) {
3392 				if (likely(!fallback_page_copy))
3393 					flush_dcache_folio(folio);
3394 				else
3395 					flush_dcache_page(page);
3396 			}
3397 
3398 			/*
3399 			 * Mark the folio accessed if we read the beginning.
3400 			 */
3401 			if (!offset)
3402 				folio_mark_accessed(folio);
3403 			/*
3404 			 * Ok, we have the page, and it's up-to-date, so
3405 			 * now we can copy it to user space...
3406 			 */
3407 			if (likely(!fallback_page_copy))
3408 				ret = copy_folio_to_iter(folio, offset, nr, to);
3409 			else
3410 				ret = copy_page_to_iter(page, offset, nr, to);
3411 			folio_put(folio);
3412 		} else if (user_backed_iter(to)) {
3413 			/*
3414 			 * Copy to user tends to be so well optimized, but
3415 			 * clear_user() not so much, that it is noticeably
3416 			 * faster to copy the zero page instead of clearing.
3417 			 */
3418 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3419 		} else {
3420 			/*
3421 			 * But submitting the same page twice in a row to
3422 			 * splice() - or others? - can result in confusion:
3423 			 * so don't attempt that optimization on pipes etc.
3424 			 */
3425 			ret = iov_iter_zero(nr, to);
3426 		}
3427 
3428 		retval += ret;
3429 		iocb->ki_pos += ret;
3430 
3431 		if (!iov_iter_count(to))
3432 			break;
3433 		if (ret < nr) {
3434 			error = -EFAULT;
3435 			break;
3436 		}
3437 		cond_resched();
3438 	}
3439 
3440 	file_accessed(file);
3441 	return retval ? retval : error;
3442 }
3443 
3444 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3445 {
3446 	struct file *file = iocb->ki_filp;
3447 	struct inode *inode = file->f_mapping->host;
3448 	ssize_t ret;
3449 
3450 	inode_lock(inode);
3451 	ret = generic_write_checks(iocb, from);
3452 	if (ret <= 0)
3453 		goto unlock;
3454 	ret = file_remove_privs(file);
3455 	if (ret)
3456 		goto unlock;
3457 	ret = file_update_time(file);
3458 	if (ret)
3459 		goto unlock;
3460 	ret = generic_perform_write(iocb, from);
3461 unlock:
3462 	inode_unlock(inode);
3463 	return ret;
3464 }
3465 
3466 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3467 			      struct pipe_buffer *buf)
3468 {
3469 	return true;
3470 }
3471 
3472 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3473 				  struct pipe_buffer *buf)
3474 {
3475 }
3476 
3477 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3478 				    struct pipe_buffer *buf)
3479 {
3480 	return false;
3481 }
3482 
3483 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3484 	.release	= zero_pipe_buf_release,
3485 	.try_steal	= zero_pipe_buf_try_steal,
3486 	.get		= zero_pipe_buf_get,
3487 };
3488 
3489 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3490 					loff_t fpos, size_t size)
3491 {
3492 	size_t offset = fpos & ~PAGE_MASK;
3493 
3494 	size = min_t(size_t, size, PAGE_SIZE - offset);
3495 
3496 	if (!pipe_is_full(pipe)) {
3497 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3498 
3499 		*buf = (struct pipe_buffer) {
3500 			.ops	= &zero_pipe_buf_ops,
3501 			.page	= ZERO_PAGE(0),
3502 			.offset	= offset,
3503 			.len	= size,
3504 		};
3505 		pipe->head++;
3506 	}
3507 
3508 	return size;
3509 }
3510 
3511 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3512 				      struct pipe_inode_info *pipe,
3513 				      size_t len, unsigned int flags)
3514 {
3515 	struct inode *inode = file_inode(in);
3516 	struct address_space *mapping = inode->i_mapping;
3517 	struct folio *folio = NULL;
3518 	size_t total_spliced = 0, used, npages, n, part;
3519 	loff_t isize;
3520 	int error = 0;
3521 
3522 	/* Work out how much data we can actually add into the pipe */
3523 	used = pipe_buf_usage(pipe);
3524 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3525 	len = min_t(size_t, len, npages * PAGE_SIZE);
3526 
3527 	do {
3528 		bool fallback_page_splice = false;
3529 		struct page *page = NULL;
3530 		pgoff_t index;
3531 		size_t size;
3532 
3533 		if (*ppos >= i_size_read(inode))
3534 			break;
3535 
3536 		index = *ppos >> PAGE_SHIFT;
3537 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3538 		if (error) {
3539 			if (error == -EINVAL)
3540 				error = 0;
3541 			break;
3542 		}
3543 		if (folio) {
3544 			folio_unlock(folio);
3545 
3546 			page = folio_file_page(folio, index);
3547 			if (PageHWPoison(page)) {
3548 				error = -EIO;
3549 				break;
3550 			}
3551 
3552 			if (folio_test_large(folio) &&
3553 			    folio_test_has_hwpoisoned(folio))
3554 				fallback_page_splice = true;
3555 		}
3556 
3557 		/*
3558 		 * i_size must be checked after we know the pages are Uptodate.
3559 		 *
3560 		 * Checking i_size after the check allows us to calculate
3561 		 * the correct value for "nr", which means the zero-filled
3562 		 * part of the page is not copied back to userspace (unless
3563 		 * another truncate extends the file - this is desired though).
3564 		 */
3565 		isize = i_size_read(inode);
3566 		if (unlikely(*ppos >= isize))
3567 			break;
3568 		/*
3569 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3570 		 * pages.
3571 		 */
3572 		size = len;
3573 		if (unlikely(fallback_page_splice)) {
3574 			size_t offset = *ppos & ~PAGE_MASK;
3575 
3576 			size = umin(size, PAGE_SIZE - offset);
3577 		}
3578 		part = min_t(loff_t, isize - *ppos, size);
3579 
3580 		if (folio) {
3581 			/*
3582 			 * If users can be writing to this page using arbitrary
3583 			 * virtual addresses, take care about potential aliasing
3584 			 * before reading the page on the kernel side.
3585 			 */
3586 			if (mapping_writably_mapped(mapping)) {
3587 				if (likely(!fallback_page_splice))
3588 					flush_dcache_folio(folio);
3589 				else
3590 					flush_dcache_page(page);
3591 			}
3592 			folio_mark_accessed(folio);
3593 			/*
3594 			 * Ok, we have the page, and it's up-to-date, so we can
3595 			 * now splice it into the pipe.
3596 			 */
3597 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3598 			folio_put(folio);
3599 			folio = NULL;
3600 		} else {
3601 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3602 		}
3603 
3604 		if (!n)
3605 			break;
3606 		len -= n;
3607 		total_spliced += n;
3608 		*ppos += n;
3609 		in->f_ra.prev_pos = *ppos;
3610 		if (pipe_is_full(pipe))
3611 			break;
3612 
3613 		cond_resched();
3614 	} while (len);
3615 
3616 	if (folio)
3617 		folio_put(folio);
3618 
3619 	file_accessed(in);
3620 	return total_spliced ? total_spliced : error;
3621 }
3622 
3623 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3624 {
3625 	struct address_space *mapping = file->f_mapping;
3626 	struct inode *inode = mapping->host;
3627 
3628 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3629 		return generic_file_llseek_size(file, offset, whence,
3630 					MAX_LFS_FILESIZE, i_size_read(inode));
3631 	if (offset < 0)
3632 		return -ENXIO;
3633 
3634 	inode_lock(inode);
3635 	/* We're holding i_rwsem so we can access i_size directly */
3636 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3637 	if (offset >= 0)
3638 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3639 	inode_unlock(inode);
3640 	return offset;
3641 }
3642 
3643 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3644 							 loff_t len)
3645 {
3646 	struct inode *inode = file_inode(file);
3647 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3648 	struct shmem_inode_info *info = SHMEM_I(inode);
3649 	struct shmem_falloc shmem_falloc;
3650 	pgoff_t start, index, end, undo_fallocend;
3651 	int error;
3652 
3653 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3654 		return -EOPNOTSUPP;
3655 
3656 	inode_lock(inode);
3657 
3658 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3659 		struct address_space *mapping = file->f_mapping;
3660 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3661 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3662 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3663 
3664 		/* protected by i_rwsem */
3665 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3666 			error = -EPERM;
3667 			goto out;
3668 		}
3669 
3670 		shmem_falloc.waitq = &shmem_falloc_waitq;
3671 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3672 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3673 		spin_lock(&inode->i_lock);
3674 		inode->i_private = &shmem_falloc;
3675 		spin_unlock(&inode->i_lock);
3676 
3677 		if ((u64)unmap_end > (u64)unmap_start)
3678 			unmap_mapping_range(mapping, unmap_start,
3679 					    1 + unmap_end - unmap_start, 0);
3680 		shmem_truncate_range(inode, offset, offset + len - 1);
3681 		/* No need to unmap again: hole-punching leaves COWed pages */
3682 
3683 		spin_lock(&inode->i_lock);
3684 		inode->i_private = NULL;
3685 		wake_up_all(&shmem_falloc_waitq);
3686 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3687 		spin_unlock(&inode->i_lock);
3688 		error = 0;
3689 		goto out;
3690 	}
3691 
3692 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3693 	error = inode_newsize_ok(inode, offset + len);
3694 	if (error)
3695 		goto out;
3696 
3697 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3698 		error = -EPERM;
3699 		goto out;
3700 	}
3701 
3702 	start = offset >> PAGE_SHIFT;
3703 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3704 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3705 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3706 		error = -ENOSPC;
3707 		goto out;
3708 	}
3709 
3710 	shmem_falloc.waitq = NULL;
3711 	shmem_falloc.start = start;
3712 	shmem_falloc.next  = start;
3713 	shmem_falloc.nr_falloced = 0;
3714 	shmem_falloc.nr_unswapped = 0;
3715 	spin_lock(&inode->i_lock);
3716 	inode->i_private = &shmem_falloc;
3717 	spin_unlock(&inode->i_lock);
3718 
3719 	/*
3720 	 * info->fallocend is only relevant when huge pages might be
3721 	 * involved: to prevent split_huge_page() freeing fallocated
3722 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3723 	 */
3724 	undo_fallocend = info->fallocend;
3725 	if (info->fallocend < end)
3726 		info->fallocend = end;
3727 
3728 	for (index = start; index < end; ) {
3729 		struct folio *folio;
3730 
3731 		/*
3732 		 * Check for fatal signal so that we abort early in OOM
3733 		 * situations. We don't want to abort in case of non-fatal
3734 		 * signals as large fallocate can take noticeable time and
3735 		 * e.g. periodic timers may result in fallocate constantly
3736 		 * restarting.
3737 		 */
3738 		if (fatal_signal_pending(current))
3739 			error = -EINTR;
3740 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3741 			error = -ENOMEM;
3742 		else
3743 			error = shmem_get_folio(inode, index, offset + len,
3744 						&folio, SGP_FALLOC);
3745 		if (error) {
3746 			info->fallocend = undo_fallocend;
3747 			/* Remove the !uptodate folios we added */
3748 			if (index > start) {
3749 				shmem_undo_range(inode,
3750 				    (loff_t)start << PAGE_SHIFT,
3751 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3752 			}
3753 			goto undone;
3754 		}
3755 
3756 		/*
3757 		 * Here is a more important optimization than it appears:
3758 		 * a second SGP_FALLOC on the same large folio will clear it,
3759 		 * making it uptodate and un-undoable if we fail later.
3760 		 */
3761 		index = folio_next_index(folio);
3762 		/* Beware 32-bit wraparound */
3763 		if (!index)
3764 			index--;
3765 
3766 		/*
3767 		 * Inform shmem_writeout() how far we have reached.
3768 		 * No need for lock or barrier: we have the page lock.
3769 		 */
3770 		if (!folio_test_uptodate(folio))
3771 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3772 		shmem_falloc.next = index;
3773 
3774 		/*
3775 		 * If !uptodate, leave it that way so that freeable folios
3776 		 * can be recognized if we need to rollback on error later.
3777 		 * But mark it dirty so that memory pressure will swap rather
3778 		 * than free the folios we are allocating (and SGP_CACHE folios
3779 		 * might still be clean: we now need to mark those dirty too).
3780 		 */
3781 		folio_mark_dirty(folio);
3782 		folio_unlock(folio);
3783 		folio_put(folio);
3784 		cond_resched();
3785 	}
3786 
3787 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3788 		i_size_write(inode, offset + len);
3789 undone:
3790 	spin_lock(&inode->i_lock);
3791 	inode->i_private = NULL;
3792 	spin_unlock(&inode->i_lock);
3793 out:
3794 	if (!error)
3795 		file_modified(file);
3796 	inode_unlock(inode);
3797 	return error;
3798 }
3799 
3800 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3801 {
3802 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3803 
3804 	buf->f_type = TMPFS_MAGIC;
3805 	buf->f_bsize = PAGE_SIZE;
3806 	buf->f_namelen = NAME_MAX;
3807 	if (sbinfo->max_blocks) {
3808 		buf->f_blocks = sbinfo->max_blocks;
3809 		buf->f_bavail =
3810 		buf->f_bfree  = sbinfo->max_blocks -
3811 				percpu_counter_sum(&sbinfo->used_blocks);
3812 	}
3813 	if (sbinfo->max_inodes) {
3814 		buf->f_files = sbinfo->max_inodes;
3815 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3816 	}
3817 	/* else leave those fields 0 like simple_statfs */
3818 
3819 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3820 
3821 	return 0;
3822 }
3823 
3824 /*
3825  * File creation. Allocate an inode, and we're done..
3826  */
3827 static int
3828 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3829 	    struct dentry *dentry, umode_t mode, dev_t dev)
3830 {
3831 	struct inode *inode;
3832 	int error;
3833 
3834 	if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3835 		return -EINVAL;
3836 
3837 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3838 	if (IS_ERR(inode))
3839 		return PTR_ERR(inode);
3840 
3841 	error = simple_acl_create(dir, inode);
3842 	if (error)
3843 		goto out_iput;
3844 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3845 					     shmem_initxattrs, NULL);
3846 	if (error && error != -EOPNOTSUPP)
3847 		goto out_iput;
3848 
3849 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3850 	if (error)
3851 		goto out_iput;
3852 
3853 	dir->i_size += BOGO_DIRENT_SIZE;
3854 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3855 	inode_inc_iversion(dir);
3856 
3857 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3858 		d_add(dentry, inode);
3859 	else
3860 		d_instantiate(dentry, inode);
3861 
3862 	dget(dentry); /* Extra count - pin the dentry in core */
3863 	return error;
3864 
3865 out_iput:
3866 	iput(inode);
3867 	return error;
3868 }
3869 
3870 static int
3871 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3872 	      struct file *file, umode_t mode)
3873 {
3874 	struct inode *inode;
3875 	int error;
3876 
3877 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3878 	if (IS_ERR(inode)) {
3879 		error = PTR_ERR(inode);
3880 		goto err_out;
3881 	}
3882 	error = security_inode_init_security(inode, dir, NULL,
3883 					     shmem_initxattrs, NULL);
3884 	if (error && error != -EOPNOTSUPP)
3885 		goto out_iput;
3886 	error = simple_acl_create(dir, inode);
3887 	if (error)
3888 		goto out_iput;
3889 	d_tmpfile(file, inode);
3890 
3891 err_out:
3892 	return finish_open_simple(file, error);
3893 out_iput:
3894 	iput(inode);
3895 	return error;
3896 }
3897 
3898 static struct dentry *shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3899 				  struct dentry *dentry, umode_t mode)
3900 {
3901 	int error;
3902 
3903 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3904 	if (error)
3905 		return ERR_PTR(error);
3906 	inc_nlink(dir);
3907 	return NULL;
3908 }
3909 
3910 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3911 			struct dentry *dentry, umode_t mode, bool excl)
3912 {
3913 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3914 }
3915 
3916 /*
3917  * Link a file..
3918  */
3919 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3920 		      struct dentry *dentry)
3921 {
3922 	struct inode *inode = d_inode(old_dentry);
3923 	int ret = 0;
3924 
3925 	/*
3926 	 * No ordinary (disk based) filesystem counts links as inodes;
3927 	 * but each new link needs a new dentry, pinning lowmem, and
3928 	 * tmpfs dentries cannot be pruned until they are unlinked.
3929 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3930 	 * first link must skip that, to get the accounting right.
3931 	 */
3932 	if (inode->i_nlink) {
3933 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3934 		if (ret)
3935 			goto out;
3936 	}
3937 
3938 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3939 	if (ret) {
3940 		if (inode->i_nlink)
3941 			shmem_free_inode(inode->i_sb, 0);
3942 		goto out;
3943 	}
3944 
3945 	dir->i_size += BOGO_DIRENT_SIZE;
3946 	inode_set_mtime_to_ts(dir,
3947 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3948 	inode_inc_iversion(dir);
3949 	inc_nlink(inode);
3950 	ihold(inode);	/* New dentry reference */
3951 	dget(dentry);	/* Extra pinning count for the created dentry */
3952 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3953 		d_add(dentry, inode);
3954 	else
3955 		d_instantiate(dentry, inode);
3956 out:
3957 	return ret;
3958 }
3959 
3960 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3961 {
3962 	struct inode *inode = d_inode(dentry);
3963 
3964 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3965 		shmem_free_inode(inode->i_sb, 0);
3966 
3967 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3968 
3969 	dir->i_size -= BOGO_DIRENT_SIZE;
3970 	inode_set_mtime_to_ts(dir,
3971 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3972 	inode_inc_iversion(dir);
3973 	drop_nlink(inode);
3974 	dput(dentry);	/* Undo the count from "create" - does all the work */
3975 
3976 	/*
3977 	 * For now, VFS can't deal with case-insensitive negative dentries, so
3978 	 * we invalidate them
3979 	 */
3980 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3981 		d_invalidate(dentry);
3982 
3983 	return 0;
3984 }
3985 
3986 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3987 {
3988 	if (!simple_empty(dentry))
3989 		return -ENOTEMPTY;
3990 
3991 	drop_nlink(d_inode(dentry));
3992 	drop_nlink(dir);
3993 	return shmem_unlink(dir, dentry);
3994 }
3995 
3996 static int shmem_whiteout(struct mnt_idmap *idmap,
3997 			  struct inode *old_dir, struct dentry *old_dentry)
3998 {
3999 	struct dentry *whiteout;
4000 	int error;
4001 
4002 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4003 	if (!whiteout)
4004 		return -ENOMEM;
4005 
4006 	error = shmem_mknod(idmap, old_dir, whiteout,
4007 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4008 	dput(whiteout);
4009 	if (error)
4010 		return error;
4011 
4012 	/*
4013 	 * Cheat and hash the whiteout while the old dentry is still in
4014 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4015 	 *
4016 	 * d_lookup() will consistently find one of them at this point,
4017 	 * not sure which one, but that isn't even important.
4018 	 */
4019 	d_rehash(whiteout);
4020 	return 0;
4021 }
4022 
4023 /*
4024  * The VFS layer already does all the dentry stuff for rename,
4025  * we just have to decrement the usage count for the target if
4026  * it exists so that the VFS layer correctly free's it when it
4027  * gets overwritten.
4028  */
4029 static int shmem_rename2(struct mnt_idmap *idmap,
4030 			 struct inode *old_dir, struct dentry *old_dentry,
4031 			 struct inode *new_dir, struct dentry *new_dentry,
4032 			 unsigned int flags)
4033 {
4034 	struct inode *inode = d_inode(old_dentry);
4035 	int they_are_dirs = S_ISDIR(inode->i_mode);
4036 	int error;
4037 
4038 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4039 		return -EINVAL;
4040 
4041 	if (flags & RENAME_EXCHANGE)
4042 		return simple_offset_rename_exchange(old_dir, old_dentry,
4043 						     new_dir, new_dentry);
4044 
4045 	if (!simple_empty(new_dentry))
4046 		return -ENOTEMPTY;
4047 
4048 	if (flags & RENAME_WHITEOUT) {
4049 		error = shmem_whiteout(idmap, old_dir, old_dentry);
4050 		if (error)
4051 			return error;
4052 	}
4053 
4054 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4055 	if (error)
4056 		return error;
4057 
4058 	if (d_really_is_positive(new_dentry)) {
4059 		(void) shmem_unlink(new_dir, new_dentry);
4060 		if (they_are_dirs) {
4061 			drop_nlink(d_inode(new_dentry));
4062 			drop_nlink(old_dir);
4063 		}
4064 	} else if (they_are_dirs) {
4065 		drop_nlink(old_dir);
4066 		inc_nlink(new_dir);
4067 	}
4068 
4069 	old_dir->i_size -= BOGO_DIRENT_SIZE;
4070 	new_dir->i_size += BOGO_DIRENT_SIZE;
4071 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4072 	inode_inc_iversion(old_dir);
4073 	inode_inc_iversion(new_dir);
4074 	return 0;
4075 }
4076 
4077 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4078 			 struct dentry *dentry, const char *symname)
4079 {
4080 	int error;
4081 	int len;
4082 	struct inode *inode;
4083 	struct folio *folio;
4084 	char *link;
4085 
4086 	len = strlen(symname) + 1;
4087 	if (len > PAGE_SIZE)
4088 		return -ENAMETOOLONG;
4089 
4090 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4091 				VM_NORESERVE);
4092 	if (IS_ERR(inode))
4093 		return PTR_ERR(inode);
4094 
4095 	error = security_inode_init_security(inode, dir, &dentry->d_name,
4096 					     shmem_initxattrs, NULL);
4097 	if (error && error != -EOPNOTSUPP)
4098 		goto out_iput;
4099 
4100 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4101 	if (error)
4102 		goto out_iput;
4103 
4104 	inode->i_size = len-1;
4105 	if (len <= SHORT_SYMLINK_LEN) {
4106 		link = kmemdup(symname, len, GFP_KERNEL);
4107 		if (!link) {
4108 			error = -ENOMEM;
4109 			goto out_remove_offset;
4110 		}
4111 		inode->i_op = &shmem_short_symlink_operations;
4112 		inode_set_cached_link(inode, link, len - 1);
4113 	} else {
4114 		inode_nohighmem(inode);
4115 		inode->i_mapping->a_ops = &shmem_aops;
4116 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4117 		if (error)
4118 			goto out_remove_offset;
4119 		inode->i_op = &shmem_symlink_inode_operations;
4120 		memcpy(folio_address(folio), symname, len);
4121 		folio_mark_uptodate(folio);
4122 		folio_mark_dirty(folio);
4123 		folio_unlock(folio);
4124 		folio_put(folio);
4125 	}
4126 	dir->i_size += BOGO_DIRENT_SIZE;
4127 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4128 	inode_inc_iversion(dir);
4129 	if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4130 		d_add(dentry, inode);
4131 	else
4132 		d_instantiate(dentry, inode);
4133 	dget(dentry);
4134 	return 0;
4135 
4136 out_remove_offset:
4137 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4138 out_iput:
4139 	iput(inode);
4140 	return error;
4141 }
4142 
4143 static void shmem_put_link(void *arg)
4144 {
4145 	folio_mark_accessed(arg);
4146 	folio_put(arg);
4147 }
4148 
4149 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4150 				  struct delayed_call *done)
4151 {
4152 	struct folio *folio = NULL;
4153 	int error;
4154 
4155 	if (!dentry) {
4156 		folio = filemap_get_folio(inode->i_mapping, 0);
4157 		if (IS_ERR(folio))
4158 			return ERR_PTR(-ECHILD);
4159 		if (PageHWPoison(folio_page(folio, 0)) ||
4160 		    !folio_test_uptodate(folio)) {
4161 			folio_put(folio);
4162 			return ERR_PTR(-ECHILD);
4163 		}
4164 	} else {
4165 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4166 		if (error)
4167 			return ERR_PTR(error);
4168 		if (!folio)
4169 			return ERR_PTR(-ECHILD);
4170 		if (PageHWPoison(folio_page(folio, 0))) {
4171 			folio_unlock(folio);
4172 			folio_put(folio);
4173 			return ERR_PTR(-ECHILD);
4174 		}
4175 		folio_unlock(folio);
4176 	}
4177 	set_delayed_call(done, shmem_put_link, folio);
4178 	return folio_address(folio);
4179 }
4180 
4181 #ifdef CONFIG_TMPFS_XATTR
4182 
4183 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4184 {
4185 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4186 
4187 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4188 
4189 	return 0;
4190 }
4191 
4192 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4193 			      struct dentry *dentry, struct fileattr *fa)
4194 {
4195 	struct inode *inode = d_inode(dentry);
4196 	struct shmem_inode_info *info = SHMEM_I(inode);
4197 	int ret, flags;
4198 
4199 	if (fileattr_has_fsx(fa))
4200 		return -EOPNOTSUPP;
4201 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4202 		return -EOPNOTSUPP;
4203 
4204 	flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4205 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
4206 
4207 	ret = shmem_set_inode_flags(inode, flags, dentry);
4208 
4209 	if (ret)
4210 		return ret;
4211 
4212 	info->fsflags = flags;
4213 
4214 	inode_set_ctime_current(inode);
4215 	inode_inc_iversion(inode);
4216 	return 0;
4217 }
4218 
4219 /*
4220  * Superblocks without xattr inode operations may get some security.* xattr
4221  * support from the LSM "for free". As soon as we have any other xattrs
4222  * like ACLs, we also need to implement the security.* handlers at
4223  * filesystem level, though.
4224  */
4225 
4226 /*
4227  * Callback for security_inode_init_security() for acquiring xattrs.
4228  */
4229 static int shmem_initxattrs(struct inode *inode,
4230 			    const struct xattr *xattr_array, void *fs_info)
4231 {
4232 	struct shmem_inode_info *info = SHMEM_I(inode);
4233 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4234 	const struct xattr *xattr;
4235 	struct simple_xattr *new_xattr;
4236 	size_t ispace = 0;
4237 	size_t len;
4238 
4239 	if (sbinfo->max_inodes) {
4240 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4241 			ispace += simple_xattr_space(xattr->name,
4242 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4243 		}
4244 		if (ispace) {
4245 			raw_spin_lock(&sbinfo->stat_lock);
4246 			if (sbinfo->free_ispace < ispace)
4247 				ispace = 0;
4248 			else
4249 				sbinfo->free_ispace -= ispace;
4250 			raw_spin_unlock(&sbinfo->stat_lock);
4251 			if (!ispace)
4252 				return -ENOSPC;
4253 		}
4254 	}
4255 
4256 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4257 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4258 		if (!new_xattr)
4259 			break;
4260 
4261 		len = strlen(xattr->name) + 1;
4262 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4263 					  GFP_KERNEL_ACCOUNT);
4264 		if (!new_xattr->name) {
4265 			kvfree(new_xattr);
4266 			break;
4267 		}
4268 
4269 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4270 		       XATTR_SECURITY_PREFIX_LEN);
4271 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4272 		       xattr->name, len);
4273 
4274 		simple_xattr_add(&info->xattrs, new_xattr);
4275 	}
4276 
4277 	if (xattr->name != NULL) {
4278 		if (ispace) {
4279 			raw_spin_lock(&sbinfo->stat_lock);
4280 			sbinfo->free_ispace += ispace;
4281 			raw_spin_unlock(&sbinfo->stat_lock);
4282 		}
4283 		simple_xattrs_free(&info->xattrs, NULL);
4284 		return -ENOMEM;
4285 	}
4286 
4287 	return 0;
4288 }
4289 
4290 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4291 				   struct dentry *unused, struct inode *inode,
4292 				   const char *name, void *buffer, size_t size)
4293 {
4294 	struct shmem_inode_info *info = SHMEM_I(inode);
4295 
4296 	name = xattr_full_name(handler, name);
4297 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4298 }
4299 
4300 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4301 				   struct mnt_idmap *idmap,
4302 				   struct dentry *unused, struct inode *inode,
4303 				   const char *name, const void *value,
4304 				   size_t size, int flags)
4305 {
4306 	struct shmem_inode_info *info = SHMEM_I(inode);
4307 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4308 	struct simple_xattr *old_xattr;
4309 	size_t ispace = 0;
4310 
4311 	name = xattr_full_name(handler, name);
4312 	if (value && sbinfo->max_inodes) {
4313 		ispace = simple_xattr_space(name, size);
4314 		raw_spin_lock(&sbinfo->stat_lock);
4315 		if (sbinfo->free_ispace < ispace)
4316 			ispace = 0;
4317 		else
4318 			sbinfo->free_ispace -= ispace;
4319 		raw_spin_unlock(&sbinfo->stat_lock);
4320 		if (!ispace)
4321 			return -ENOSPC;
4322 	}
4323 
4324 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4325 	if (!IS_ERR(old_xattr)) {
4326 		ispace = 0;
4327 		if (old_xattr && sbinfo->max_inodes)
4328 			ispace = simple_xattr_space(old_xattr->name,
4329 						    old_xattr->size);
4330 		simple_xattr_free(old_xattr);
4331 		old_xattr = NULL;
4332 		inode_set_ctime_current(inode);
4333 		inode_inc_iversion(inode);
4334 	}
4335 	if (ispace) {
4336 		raw_spin_lock(&sbinfo->stat_lock);
4337 		sbinfo->free_ispace += ispace;
4338 		raw_spin_unlock(&sbinfo->stat_lock);
4339 	}
4340 	return PTR_ERR(old_xattr);
4341 }
4342 
4343 static const struct xattr_handler shmem_security_xattr_handler = {
4344 	.prefix = XATTR_SECURITY_PREFIX,
4345 	.get = shmem_xattr_handler_get,
4346 	.set = shmem_xattr_handler_set,
4347 };
4348 
4349 static const struct xattr_handler shmem_trusted_xattr_handler = {
4350 	.prefix = XATTR_TRUSTED_PREFIX,
4351 	.get = shmem_xattr_handler_get,
4352 	.set = shmem_xattr_handler_set,
4353 };
4354 
4355 static const struct xattr_handler shmem_user_xattr_handler = {
4356 	.prefix = XATTR_USER_PREFIX,
4357 	.get = shmem_xattr_handler_get,
4358 	.set = shmem_xattr_handler_set,
4359 };
4360 
4361 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4362 	&shmem_security_xattr_handler,
4363 	&shmem_trusted_xattr_handler,
4364 	&shmem_user_xattr_handler,
4365 	NULL
4366 };
4367 
4368 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4369 {
4370 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4371 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4372 }
4373 #endif /* CONFIG_TMPFS_XATTR */
4374 
4375 static const struct inode_operations shmem_short_symlink_operations = {
4376 	.getattr	= shmem_getattr,
4377 	.setattr	= shmem_setattr,
4378 	.get_link	= simple_get_link,
4379 #ifdef CONFIG_TMPFS_XATTR
4380 	.listxattr	= shmem_listxattr,
4381 #endif
4382 };
4383 
4384 static const struct inode_operations shmem_symlink_inode_operations = {
4385 	.getattr	= shmem_getattr,
4386 	.setattr	= shmem_setattr,
4387 	.get_link	= shmem_get_link,
4388 #ifdef CONFIG_TMPFS_XATTR
4389 	.listxattr	= shmem_listxattr,
4390 #endif
4391 };
4392 
4393 static struct dentry *shmem_get_parent(struct dentry *child)
4394 {
4395 	return ERR_PTR(-ESTALE);
4396 }
4397 
4398 static int shmem_match(struct inode *ino, void *vfh)
4399 {
4400 	__u32 *fh = vfh;
4401 	__u64 inum = fh[2];
4402 	inum = (inum << 32) | fh[1];
4403 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4404 }
4405 
4406 /* Find any alias of inode, but prefer a hashed alias */
4407 static struct dentry *shmem_find_alias(struct inode *inode)
4408 {
4409 	struct dentry *alias = d_find_alias(inode);
4410 
4411 	return alias ?: d_find_any_alias(inode);
4412 }
4413 
4414 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4415 		struct fid *fid, int fh_len, int fh_type)
4416 {
4417 	struct inode *inode;
4418 	struct dentry *dentry = NULL;
4419 	u64 inum;
4420 
4421 	if (fh_len < 3)
4422 		return NULL;
4423 
4424 	inum = fid->raw[2];
4425 	inum = (inum << 32) | fid->raw[1];
4426 
4427 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4428 			shmem_match, fid->raw);
4429 	if (inode) {
4430 		dentry = shmem_find_alias(inode);
4431 		iput(inode);
4432 	}
4433 
4434 	return dentry;
4435 }
4436 
4437 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4438 				struct inode *parent)
4439 {
4440 	if (*len < 3) {
4441 		*len = 3;
4442 		return FILEID_INVALID;
4443 	}
4444 
4445 	if (inode_unhashed(inode)) {
4446 		/* Unfortunately insert_inode_hash is not idempotent,
4447 		 * so as we hash inodes here rather than at creation
4448 		 * time, we need a lock to ensure we only try
4449 		 * to do it once
4450 		 */
4451 		static DEFINE_SPINLOCK(lock);
4452 		spin_lock(&lock);
4453 		if (inode_unhashed(inode))
4454 			__insert_inode_hash(inode,
4455 					    inode->i_ino + inode->i_generation);
4456 		spin_unlock(&lock);
4457 	}
4458 
4459 	fh[0] = inode->i_generation;
4460 	fh[1] = inode->i_ino;
4461 	fh[2] = ((__u64)inode->i_ino) >> 32;
4462 
4463 	*len = 3;
4464 	return 1;
4465 }
4466 
4467 static const struct export_operations shmem_export_ops = {
4468 	.get_parent     = shmem_get_parent,
4469 	.encode_fh      = shmem_encode_fh,
4470 	.fh_to_dentry	= shmem_fh_to_dentry,
4471 };
4472 
4473 enum shmem_param {
4474 	Opt_gid,
4475 	Opt_huge,
4476 	Opt_mode,
4477 	Opt_mpol,
4478 	Opt_nr_blocks,
4479 	Opt_nr_inodes,
4480 	Opt_size,
4481 	Opt_uid,
4482 	Opt_inode32,
4483 	Opt_inode64,
4484 	Opt_noswap,
4485 	Opt_quota,
4486 	Opt_usrquota,
4487 	Opt_grpquota,
4488 	Opt_usrquota_block_hardlimit,
4489 	Opt_usrquota_inode_hardlimit,
4490 	Opt_grpquota_block_hardlimit,
4491 	Opt_grpquota_inode_hardlimit,
4492 	Opt_casefold_version,
4493 	Opt_casefold,
4494 	Opt_strict_encoding,
4495 };
4496 
4497 static const struct constant_table shmem_param_enums_huge[] = {
4498 	{"never",	SHMEM_HUGE_NEVER },
4499 	{"always",	SHMEM_HUGE_ALWAYS },
4500 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4501 	{"advise",	SHMEM_HUGE_ADVISE },
4502 	{}
4503 };
4504 
4505 const struct fs_parameter_spec shmem_fs_parameters[] = {
4506 	fsparam_gid   ("gid",		Opt_gid),
4507 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4508 	fsparam_u32oct("mode",		Opt_mode),
4509 	fsparam_string("mpol",		Opt_mpol),
4510 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4511 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4512 	fsparam_string("size",		Opt_size),
4513 	fsparam_uid   ("uid",		Opt_uid),
4514 	fsparam_flag  ("inode32",	Opt_inode32),
4515 	fsparam_flag  ("inode64",	Opt_inode64),
4516 	fsparam_flag  ("noswap",	Opt_noswap),
4517 #ifdef CONFIG_TMPFS_QUOTA
4518 	fsparam_flag  ("quota",		Opt_quota),
4519 	fsparam_flag  ("usrquota",	Opt_usrquota),
4520 	fsparam_flag  ("grpquota",	Opt_grpquota),
4521 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4522 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4523 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4524 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4525 #endif
4526 	fsparam_string("casefold",	Opt_casefold_version),
4527 	fsparam_flag  ("casefold",	Opt_casefold),
4528 	fsparam_flag  ("strict_encoding", Opt_strict_encoding),
4529 	{}
4530 };
4531 
4532 #if IS_ENABLED(CONFIG_UNICODE)
4533 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4534 				    bool latest_version)
4535 {
4536 	struct shmem_options *ctx = fc->fs_private;
4537 	int version = UTF8_LATEST;
4538 	struct unicode_map *encoding;
4539 	char *version_str = param->string + 5;
4540 
4541 	if (!latest_version) {
4542 		if (strncmp(param->string, "utf8-", 5))
4543 			return invalfc(fc, "Only UTF-8 encodings are supported "
4544 				       "in the format: utf8-<version number>");
4545 
4546 		version = utf8_parse_version(version_str);
4547 		if (version < 0)
4548 			return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4549 	}
4550 
4551 	encoding = utf8_load(version);
4552 
4553 	if (IS_ERR(encoding)) {
4554 		return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4555 			       unicode_major(version), unicode_minor(version),
4556 			       unicode_rev(version));
4557 	}
4558 
4559 	pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4560 		unicode_major(version), unicode_minor(version), unicode_rev(version));
4561 
4562 	ctx->encoding = encoding;
4563 
4564 	return 0;
4565 }
4566 #else
4567 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4568 				    bool latest_version)
4569 {
4570 	return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4571 }
4572 #endif
4573 
4574 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4575 {
4576 	struct shmem_options *ctx = fc->fs_private;
4577 	struct fs_parse_result result;
4578 	unsigned long long size;
4579 	char *rest;
4580 	int opt;
4581 	kuid_t kuid;
4582 	kgid_t kgid;
4583 
4584 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4585 	if (opt < 0)
4586 		return opt;
4587 
4588 	switch (opt) {
4589 	case Opt_size:
4590 		size = memparse(param->string, &rest);
4591 		if (*rest == '%') {
4592 			size <<= PAGE_SHIFT;
4593 			size *= totalram_pages();
4594 			do_div(size, 100);
4595 			rest++;
4596 		}
4597 		if (*rest)
4598 			goto bad_value;
4599 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4600 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4601 		break;
4602 	case Opt_nr_blocks:
4603 		ctx->blocks = memparse(param->string, &rest);
4604 		if (*rest || ctx->blocks > LONG_MAX)
4605 			goto bad_value;
4606 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4607 		break;
4608 	case Opt_nr_inodes:
4609 		ctx->inodes = memparse(param->string, &rest);
4610 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4611 			goto bad_value;
4612 		ctx->seen |= SHMEM_SEEN_INODES;
4613 		break;
4614 	case Opt_mode:
4615 		ctx->mode = result.uint_32 & 07777;
4616 		break;
4617 	case Opt_uid:
4618 		kuid = result.uid;
4619 
4620 		/*
4621 		 * The requested uid must be representable in the
4622 		 * filesystem's idmapping.
4623 		 */
4624 		if (!kuid_has_mapping(fc->user_ns, kuid))
4625 			goto bad_value;
4626 
4627 		ctx->uid = kuid;
4628 		break;
4629 	case Opt_gid:
4630 		kgid = result.gid;
4631 
4632 		/*
4633 		 * The requested gid must be representable in the
4634 		 * filesystem's idmapping.
4635 		 */
4636 		if (!kgid_has_mapping(fc->user_ns, kgid))
4637 			goto bad_value;
4638 
4639 		ctx->gid = kgid;
4640 		break;
4641 	case Opt_huge:
4642 		ctx->huge = result.uint_32;
4643 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4644 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4645 		      has_transparent_hugepage()))
4646 			goto unsupported_parameter;
4647 		ctx->seen |= SHMEM_SEEN_HUGE;
4648 		break;
4649 	case Opt_mpol:
4650 		if (IS_ENABLED(CONFIG_NUMA)) {
4651 			mpol_put(ctx->mpol);
4652 			ctx->mpol = NULL;
4653 			if (mpol_parse_str(param->string, &ctx->mpol))
4654 				goto bad_value;
4655 			break;
4656 		}
4657 		goto unsupported_parameter;
4658 	case Opt_inode32:
4659 		ctx->full_inums = false;
4660 		ctx->seen |= SHMEM_SEEN_INUMS;
4661 		break;
4662 	case Opt_inode64:
4663 		if (sizeof(ino_t) < 8) {
4664 			return invalfc(fc,
4665 				       "Cannot use inode64 with <64bit inums in kernel\n");
4666 		}
4667 		ctx->full_inums = true;
4668 		ctx->seen |= SHMEM_SEEN_INUMS;
4669 		break;
4670 	case Opt_noswap:
4671 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4672 			return invalfc(fc,
4673 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4674 		}
4675 		ctx->noswap = true;
4676 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4677 		break;
4678 	case Opt_quota:
4679 		if (fc->user_ns != &init_user_ns)
4680 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4681 		ctx->seen |= SHMEM_SEEN_QUOTA;
4682 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4683 		break;
4684 	case Opt_usrquota:
4685 		if (fc->user_ns != &init_user_ns)
4686 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4687 		ctx->seen |= SHMEM_SEEN_QUOTA;
4688 		ctx->quota_types |= QTYPE_MASK_USR;
4689 		break;
4690 	case Opt_grpquota:
4691 		if (fc->user_ns != &init_user_ns)
4692 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4693 		ctx->seen |= SHMEM_SEEN_QUOTA;
4694 		ctx->quota_types |= QTYPE_MASK_GRP;
4695 		break;
4696 	case Opt_usrquota_block_hardlimit:
4697 		size = memparse(param->string, &rest);
4698 		if (*rest || !size)
4699 			goto bad_value;
4700 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4701 			return invalfc(fc,
4702 				       "User quota block hardlimit too large.");
4703 		ctx->qlimits.usrquota_bhardlimit = size;
4704 		break;
4705 	case Opt_grpquota_block_hardlimit:
4706 		size = memparse(param->string, &rest);
4707 		if (*rest || !size)
4708 			goto bad_value;
4709 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4710 			return invalfc(fc,
4711 				       "Group quota block hardlimit too large.");
4712 		ctx->qlimits.grpquota_bhardlimit = size;
4713 		break;
4714 	case Opt_usrquota_inode_hardlimit:
4715 		size = memparse(param->string, &rest);
4716 		if (*rest || !size)
4717 			goto bad_value;
4718 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4719 			return invalfc(fc,
4720 				       "User quota inode hardlimit too large.");
4721 		ctx->qlimits.usrquota_ihardlimit = size;
4722 		break;
4723 	case Opt_grpquota_inode_hardlimit:
4724 		size = memparse(param->string, &rest);
4725 		if (*rest || !size)
4726 			goto bad_value;
4727 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4728 			return invalfc(fc,
4729 				       "Group quota inode hardlimit too large.");
4730 		ctx->qlimits.grpquota_ihardlimit = size;
4731 		break;
4732 	case Opt_casefold_version:
4733 		return shmem_parse_opt_casefold(fc, param, false);
4734 	case Opt_casefold:
4735 		return shmem_parse_opt_casefold(fc, param, true);
4736 	case Opt_strict_encoding:
4737 #if IS_ENABLED(CONFIG_UNICODE)
4738 		ctx->strict_encoding = true;
4739 		break;
4740 #else
4741 		return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4742 #endif
4743 	}
4744 	return 0;
4745 
4746 unsupported_parameter:
4747 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4748 bad_value:
4749 	return invalfc(fc, "Bad value for '%s'", param->key);
4750 }
4751 
4752 static char *shmem_next_opt(char **s)
4753 {
4754 	char *sbegin = *s;
4755 	char *p;
4756 
4757 	if (sbegin == NULL)
4758 		return NULL;
4759 
4760 	/*
4761 	 * NUL-terminate this option: unfortunately,
4762 	 * mount options form a comma-separated list,
4763 	 * but mpol's nodelist may also contain commas.
4764 	 */
4765 	for (;;) {
4766 		p = strchr(*s, ',');
4767 		if (p == NULL)
4768 			break;
4769 		*s = p + 1;
4770 		if (!isdigit(*(p+1))) {
4771 			*p = '\0';
4772 			return sbegin;
4773 		}
4774 	}
4775 
4776 	*s = NULL;
4777 	return sbegin;
4778 }
4779 
4780 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4781 {
4782 	return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4783 }
4784 
4785 /*
4786  * Reconfigure a shmem filesystem.
4787  */
4788 static int shmem_reconfigure(struct fs_context *fc)
4789 {
4790 	struct shmem_options *ctx = fc->fs_private;
4791 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4792 	unsigned long used_isp;
4793 	struct mempolicy *mpol = NULL;
4794 	const char *err;
4795 
4796 	raw_spin_lock(&sbinfo->stat_lock);
4797 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4798 
4799 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4800 		if (!sbinfo->max_blocks) {
4801 			err = "Cannot retroactively limit size";
4802 			goto out;
4803 		}
4804 		if (percpu_counter_compare(&sbinfo->used_blocks,
4805 					   ctx->blocks) > 0) {
4806 			err = "Too small a size for current use";
4807 			goto out;
4808 		}
4809 	}
4810 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4811 		if (!sbinfo->max_inodes) {
4812 			err = "Cannot retroactively limit inodes";
4813 			goto out;
4814 		}
4815 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4816 			err = "Too few inodes for current use";
4817 			goto out;
4818 		}
4819 	}
4820 
4821 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4822 	    sbinfo->next_ino > UINT_MAX) {
4823 		err = "Current inum too high to switch to 32-bit inums";
4824 		goto out;
4825 	}
4826 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4827 		err = "Cannot disable swap on remount";
4828 		goto out;
4829 	}
4830 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4831 		err = "Cannot enable swap on remount if it was disabled on first mount";
4832 		goto out;
4833 	}
4834 
4835 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4836 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4837 		err = "Cannot enable quota on remount";
4838 		goto out;
4839 	}
4840 
4841 #ifdef CONFIG_TMPFS_QUOTA
4842 #define CHANGED_LIMIT(name)						\
4843 	(ctx->qlimits.name## hardlimit &&				\
4844 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4845 
4846 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4847 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4848 		err = "Cannot change global quota limit on remount";
4849 		goto out;
4850 	}
4851 #endif /* CONFIG_TMPFS_QUOTA */
4852 
4853 	if (ctx->seen & SHMEM_SEEN_HUGE)
4854 		sbinfo->huge = ctx->huge;
4855 	if (ctx->seen & SHMEM_SEEN_INUMS)
4856 		sbinfo->full_inums = ctx->full_inums;
4857 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4858 		sbinfo->max_blocks  = ctx->blocks;
4859 	if (ctx->seen & SHMEM_SEEN_INODES) {
4860 		sbinfo->max_inodes  = ctx->inodes;
4861 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4862 	}
4863 
4864 	/*
4865 	 * Preserve previous mempolicy unless mpol remount option was specified.
4866 	 */
4867 	if (ctx->mpol) {
4868 		mpol = sbinfo->mpol;
4869 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4870 		ctx->mpol = NULL;
4871 	}
4872 
4873 	if (ctx->noswap)
4874 		sbinfo->noswap = true;
4875 
4876 	raw_spin_unlock(&sbinfo->stat_lock);
4877 	mpol_put(mpol);
4878 	return 0;
4879 out:
4880 	raw_spin_unlock(&sbinfo->stat_lock);
4881 	return invalfc(fc, "%s", err);
4882 }
4883 
4884 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4885 {
4886 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4887 	struct mempolicy *mpol;
4888 
4889 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4890 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4891 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4892 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4893 	if (sbinfo->mode != (0777 | S_ISVTX))
4894 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4895 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4896 		seq_printf(seq, ",uid=%u",
4897 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4898 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4899 		seq_printf(seq, ",gid=%u",
4900 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4901 
4902 	/*
4903 	 * Showing inode{64,32} might be useful even if it's the system default,
4904 	 * since then people don't have to resort to checking both here and
4905 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4906 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4907 	 *
4908 	 * We hide it when inode64 isn't the default and we are using 32-bit
4909 	 * inodes, since that probably just means the feature isn't even under
4910 	 * consideration.
4911 	 *
4912 	 * As such:
4913 	 *
4914 	 *                     +-----------------+-----------------+
4915 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4916 	 *  +------------------+-----------------+-----------------+
4917 	 *  | full_inums=true  | show            | show            |
4918 	 *  | full_inums=false | show            | hide            |
4919 	 *  +------------------+-----------------+-----------------+
4920 	 *
4921 	 */
4922 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4923 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4925 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4926 	if (sbinfo->huge)
4927 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4928 #endif
4929 	mpol = shmem_get_sbmpol(sbinfo);
4930 	shmem_show_mpol(seq, mpol);
4931 	mpol_put(mpol);
4932 	if (sbinfo->noswap)
4933 		seq_printf(seq, ",noswap");
4934 #ifdef CONFIG_TMPFS_QUOTA
4935 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4936 		seq_printf(seq, ",usrquota");
4937 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4938 		seq_printf(seq, ",grpquota");
4939 	if (sbinfo->qlimits.usrquota_bhardlimit)
4940 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4941 			   sbinfo->qlimits.usrquota_bhardlimit);
4942 	if (sbinfo->qlimits.grpquota_bhardlimit)
4943 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4944 			   sbinfo->qlimits.grpquota_bhardlimit);
4945 	if (sbinfo->qlimits.usrquota_ihardlimit)
4946 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4947 			   sbinfo->qlimits.usrquota_ihardlimit);
4948 	if (sbinfo->qlimits.grpquota_ihardlimit)
4949 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4950 			   sbinfo->qlimits.grpquota_ihardlimit);
4951 #endif
4952 	return 0;
4953 }
4954 
4955 #endif /* CONFIG_TMPFS */
4956 
4957 static void shmem_put_super(struct super_block *sb)
4958 {
4959 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4960 
4961 #if IS_ENABLED(CONFIG_UNICODE)
4962 	if (sb->s_encoding)
4963 		utf8_unload(sb->s_encoding);
4964 #endif
4965 
4966 #ifdef CONFIG_TMPFS_QUOTA
4967 	shmem_disable_quotas(sb);
4968 #endif
4969 	free_percpu(sbinfo->ino_batch);
4970 	percpu_counter_destroy(&sbinfo->used_blocks);
4971 	mpol_put(sbinfo->mpol);
4972 	kfree(sbinfo);
4973 	sb->s_fs_info = NULL;
4974 }
4975 
4976 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4977 static const struct dentry_operations shmem_ci_dentry_ops = {
4978 	.d_hash = generic_ci_d_hash,
4979 	.d_compare = generic_ci_d_compare,
4980 	.d_delete = always_delete_dentry,
4981 };
4982 #endif
4983 
4984 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4985 {
4986 	struct shmem_options *ctx = fc->fs_private;
4987 	struct inode *inode;
4988 	struct shmem_sb_info *sbinfo;
4989 	int error = -ENOMEM;
4990 
4991 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4992 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4993 				L1_CACHE_BYTES), GFP_KERNEL);
4994 	if (!sbinfo)
4995 		return error;
4996 
4997 	sb->s_fs_info = sbinfo;
4998 
4999 #ifdef CONFIG_TMPFS
5000 	/*
5001 	 * Per default we only allow half of the physical ram per
5002 	 * tmpfs instance, limiting inodes to one per page of lowmem;
5003 	 * but the internal instance is left unlimited.
5004 	 */
5005 	if (!(sb->s_flags & SB_KERNMOUNT)) {
5006 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5007 			ctx->blocks = shmem_default_max_blocks();
5008 		if (!(ctx->seen & SHMEM_SEEN_INODES))
5009 			ctx->inodes = shmem_default_max_inodes();
5010 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
5011 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5012 		sbinfo->noswap = ctx->noswap;
5013 	} else {
5014 		sb->s_flags |= SB_NOUSER;
5015 	}
5016 	sb->s_export_op = &shmem_export_ops;
5017 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5018 
5019 #if IS_ENABLED(CONFIG_UNICODE)
5020 	if (!ctx->encoding && ctx->strict_encoding) {
5021 		pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5022 		error = -EINVAL;
5023 		goto failed;
5024 	}
5025 
5026 	if (ctx->encoding) {
5027 		sb->s_encoding = ctx->encoding;
5028 		sb->s_d_op = &shmem_ci_dentry_ops;
5029 		if (ctx->strict_encoding)
5030 			sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5031 	}
5032 #endif
5033 
5034 #else
5035 	sb->s_flags |= SB_NOUSER;
5036 #endif /* CONFIG_TMPFS */
5037 	sbinfo->max_blocks = ctx->blocks;
5038 	sbinfo->max_inodes = ctx->inodes;
5039 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5040 	if (sb->s_flags & SB_KERNMOUNT) {
5041 		sbinfo->ino_batch = alloc_percpu(ino_t);
5042 		if (!sbinfo->ino_batch)
5043 			goto failed;
5044 	}
5045 	sbinfo->uid = ctx->uid;
5046 	sbinfo->gid = ctx->gid;
5047 	sbinfo->full_inums = ctx->full_inums;
5048 	sbinfo->mode = ctx->mode;
5049 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5050 	if (ctx->seen & SHMEM_SEEN_HUGE)
5051 		sbinfo->huge = ctx->huge;
5052 	else
5053 		sbinfo->huge = tmpfs_huge;
5054 #endif
5055 	sbinfo->mpol = ctx->mpol;
5056 	ctx->mpol = NULL;
5057 
5058 	raw_spin_lock_init(&sbinfo->stat_lock);
5059 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5060 		goto failed;
5061 	spin_lock_init(&sbinfo->shrinklist_lock);
5062 	INIT_LIST_HEAD(&sbinfo->shrinklist);
5063 
5064 	sb->s_maxbytes = MAX_LFS_FILESIZE;
5065 	sb->s_blocksize = PAGE_SIZE;
5066 	sb->s_blocksize_bits = PAGE_SHIFT;
5067 	sb->s_magic = TMPFS_MAGIC;
5068 	sb->s_op = &shmem_ops;
5069 	sb->s_time_gran = 1;
5070 #ifdef CONFIG_TMPFS_XATTR
5071 	sb->s_xattr = shmem_xattr_handlers;
5072 #endif
5073 #ifdef CONFIG_TMPFS_POSIX_ACL
5074 	sb->s_flags |= SB_POSIXACL;
5075 #endif
5076 	uuid_t uuid;
5077 	uuid_gen(&uuid);
5078 	super_set_uuid(sb, uuid.b, sizeof(uuid));
5079 
5080 #ifdef CONFIG_TMPFS_QUOTA
5081 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
5082 		sb->dq_op = &shmem_quota_operations;
5083 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5084 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5085 
5086 		/* Copy the default limits from ctx into sbinfo */
5087 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
5088 		       sizeof(struct shmem_quota_limits));
5089 
5090 		if (shmem_enable_quotas(sb, ctx->quota_types))
5091 			goto failed;
5092 	}
5093 #endif /* CONFIG_TMPFS_QUOTA */
5094 
5095 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5096 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5097 	if (IS_ERR(inode)) {
5098 		error = PTR_ERR(inode);
5099 		goto failed;
5100 	}
5101 	inode->i_uid = sbinfo->uid;
5102 	inode->i_gid = sbinfo->gid;
5103 	sb->s_root = d_make_root(inode);
5104 	if (!sb->s_root)
5105 		goto failed;
5106 	return 0;
5107 
5108 failed:
5109 	shmem_put_super(sb);
5110 	return error;
5111 }
5112 
5113 static int shmem_get_tree(struct fs_context *fc)
5114 {
5115 	return get_tree_nodev(fc, shmem_fill_super);
5116 }
5117 
5118 static void shmem_free_fc(struct fs_context *fc)
5119 {
5120 	struct shmem_options *ctx = fc->fs_private;
5121 
5122 	if (ctx) {
5123 		mpol_put(ctx->mpol);
5124 		kfree(ctx);
5125 	}
5126 }
5127 
5128 static const struct fs_context_operations shmem_fs_context_ops = {
5129 	.free			= shmem_free_fc,
5130 	.get_tree		= shmem_get_tree,
5131 #ifdef CONFIG_TMPFS
5132 	.parse_monolithic	= shmem_parse_monolithic,
5133 	.parse_param		= shmem_parse_one,
5134 	.reconfigure		= shmem_reconfigure,
5135 #endif
5136 };
5137 
5138 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5139 
5140 static struct inode *shmem_alloc_inode(struct super_block *sb)
5141 {
5142 	struct shmem_inode_info *info;
5143 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5144 	if (!info)
5145 		return NULL;
5146 	return &info->vfs_inode;
5147 }
5148 
5149 static void shmem_free_in_core_inode(struct inode *inode)
5150 {
5151 	if (S_ISLNK(inode->i_mode))
5152 		kfree(inode->i_link);
5153 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5154 }
5155 
5156 static void shmem_destroy_inode(struct inode *inode)
5157 {
5158 	if (S_ISREG(inode->i_mode))
5159 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5160 	if (S_ISDIR(inode->i_mode))
5161 		simple_offset_destroy(shmem_get_offset_ctx(inode));
5162 }
5163 
5164 static void shmem_init_inode(void *foo)
5165 {
5166 	struct shmem_inode_info *info = foo;
5167 	inode_init_once(&info->vfs_inode);
5168 }
5169 
5170 static void __init shmem_init_inodecache(void)
5171 {
5172 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5173 				sizeof(struct shmem_inode_info),
5174 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5175 }
5176 
5177 static void __init shmem_destroy_inodecache(void)
5178 {
5179 	kmem_cache_destroy(shmem_inode_cachep);
5180 }
5181 
5182 /* Keep the page in page cache instead of truncating it */
5183 static int shmem_error_remove_folio(struct address_space *mapping,
5184 				   struct folio *folio)
5185 {
5186 	return 0;
5187 }
5188 
5189 static const struct address_space_operations shmem_aops = {
5190 	.dirty_folio	= noop_dirty_folio,
5191 #ifdef CONFIG_TMPFS
5192 	.write_begin	= shmem_write_begin,
5193 	.write_end	= shmem_write_end,
5194 #endif
5195 #ifdef CONFIG_MIGRATION
5196 	.migrate_folio	= migrate_folio,
5197 #endif
5198 	.error_remove_folio = shmem_error_remove_folio,
5199 };
5200 
5201 static const struct file_operations shmem_file_operations = {
5202 	.mmap		= shmem_mmap,
5203 	.open		= shmem_file_open,
5204 	.get_unmapped_area = shmem_get_unmapped_area,
5205 #ifdef CONFIG_TMPFS
5206 	.llseek		= shmem_file_llseek,
5207 	.read_iter	= shmem_file_read_iter,
5208 	.write_iter	= shmem_file_write_iter,
5209 	.fsync		= noop_fsync,
5210 	.splice_read	= shmem_file_splice_read,
5211 	.splice_write	= iter_file_splice_write,
5212 	.fallocate	= shmem_fallocate,
5213 #endif
5214 };
5215 
5216 static const struct inode_operations shmem_inode_operations = {
5217 	.getattr	= shmem_getattr,
5218 	.setattr	= shmem_setattr,
5219 #ifdef CONFIG_TMPFS_XATTR
5220 	.listxattr	= shmem_listxattr,
5221 	.set_acl	= simple_set_acl,
5222 	.fileattr_get	= shmem_fileattr_get,
5223 	.fileattr_set	= shmem_fileattr_set,
5224 #endif
5225 };
5226 
5227 static const struct inode_operations shmem_dir_inode_operations = {
5228 #ifdef CONFIG_TMPFS
5229 	.getattr	= shmem_getattr,
5230 	.create		= shmem_create,
5231 	.lookup		= simple_lookup,
5232 	.link		= shmem_link,
5233 	.unlink		= shmem_unlink,
5234 	.symlink	= shmem_symlink,
5235 	.mkdir		= shmem_mkdir,
5236 	.rmdir		= shmem_rmdir,
5237 	.mknod		= shmem_mknod,
5238 	.rename		= shmem_rename2,
5239 	.tmpfile	= shmem_tmpfile,
5240 	.get_offset_ctx	= shmem_get_offset_ctx,
5241 #endif
5242 #ifdef CONFIG_TMPFS_XATTR
5243 	.listxattr	= shmem_listxattr,
5244 	.fileattr_get	= shmem_fileattr_get,
5245 	.fileattr_set	= shmem_fileattr_set,
5246 #endif
5247 #ifdef CONFIG_TMPFS_POSIX_ACL
5248 	.setattr	= shmem_setattr,
5249 	.set_acl	= simple_set_acl,
5250 #endif
5251 };
5252 
5253 static const struct inode_operations shmem_special_inode_operations = {
5254 	.getattr	= shmem_getattr,
5255 #ifdef CONFIG_TMPFS_XATTR
5256 	.listxattr	= shmem_listxattr,
5257 #endif
5258 #ifdef CONFIG_TMPFS_POSIX_ACL
5259 	.setattr	= shmem_setattr,
5260 	.set_acl	= simple_set_acl,
5261 #endif
5262 };
5263 
5264 static const struct super_operations shmem_ops = {
5265 	.alloc_inode	= shmem_alloc_inode,
5266 	.free_inode	= shmem_free_in_core_inode,
5267 	.destroy_inode	= shmem_destroy_inode,
5268 #ifdef CONFIG_TMPFS
5269 	.statfs		= shmem_statfs,
5270 	.show_options	= shmem_show_options,
5271 #endif
5272 #ifdef CONFIG_TMPFS_QUOTA
5273 	.get_dquots	= shmem_get_dquots,
5274 #endif
5275 	.evict_inode	= shmem_evict_inode,
5276 	.drop_inode	= generic_delete_inode,
5277 	.put_super	= shmem_put_super,
5278 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5279 	.nr_cached_objects	= shmem_unused_huge_count,
5280 	.free_cached_objects	= shmem_unused_huge_scan,
5281 #endif
5282 };
5283 
5284 static const struct vm_operations_struct shmem_vm_ops = {
5285 	.fault		= shmem_fault,
5286 	.map_pages	= filemap_map_pages,
5287 #ifdef CONFIG_NUMA
5288 	.set_policy     = shmem_set_policy,
5289 	.get_policy     = shmem_get_policy,
5290 #endif
5291 };
5292 
5293 static const struct vm_operations_struct shmem_anon_vm_ops = {
5294 	.fault		= shmem_fault,
5295 	.map_pages	= filemap_map_pages,
5296 #ifdef CONFIG_NUMA
5297 	.set_policy     = shmem_set_policy,
5298 	.get_policy     = shmem_get_policy,
5299 #endif
5300 };
5301 
5302 int shmem_init_fs_context(struct fs_context *fc)
5303 {
5304 	struct shmem_options *ctx;
5305 
5306 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5307 	if (!ctx)
5308 		return -ENOMEM;
5309 
5310 	ctx->mode = 0777 | S_ISVTX;
5311 	ctx->uid = current_fsuid();
5312 	ctx->gid = current_fsgid();
5313 
5314 #if IS_ENABLED(CONFIG_UNICODE)
5315 	ctx->encoding = NULL;
5316 #endif
5317 
5318 	fc->fs_private = ctx;
5319 	fc->ops = &shmem_fs_context_ops;
5320 	return 0;
5321 }
5322 
5323 static struct file_system_type shmem_fs_type = {
5324 	.owner		= THIS_MODULE,
5325 	.name		= "tmpfs",
5326 	.init_fs_context = shmem_init_fs_context,
5327 #ifdef CONFIG_TMPFS
5328 	.parameters	= shmem_fs_parameters,
5329 #endif
5330 	.kill_sb	= kill_litter_super,
5331 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5332 };
5333 
5334 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5335 
5336 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store)			\
5337 {									\
5338 	.attr	= { .name = __stringify(_name), .mode = _mode },	\
5339 	.show	= _show,						\
5340 	.store	= _store,						\
5341 }
5342 
5343 #define TMPFS_ATTR_W(_name, _store)				\
5344 	static struct kobj_attribute tmpfs_attr_##_name =	\
5345 			__INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5346 
5347 #define TMPFS_ATTR_RW(_name, _show, _store)			\
5348 	static struct kobj_attribute tmpfs_attr_##_name =	\
5349 			__INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5350 
5351 #define TMPFS_ATTR_RO(_name, _show)				\
5352 	static struct kobj_attribute tmpfs_attr_##_name =	\
5353 			__INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5354 
5355 #if IS_ENABLED(CONFIG_UNICODE)
5356 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5357 			char *buf)
5358 {
5359 		return sysfs_emit(buf, "supported\n");
5360 }
5361 TMPFS_ATTR_RO(casefold, casefold_show);
5362 #endif
5363 
5364 static struct attribute *tmpfs_attributes[] = {
5365 #if IS_ENABLED(CONFIG_UNICODE)
5366 	&tmpfs_attr_casefold.attr,
5367 #endif
5368 	NULL
5369 };
5370 
5371 static const struct attribute_group tmpfs_attribute_group = {
5372 	.attrs = tmpfs_attributes,
5373 	.name = "features"
5374 };
5375 
5376 static struct kobject *tmpfs_kobj;
5377 
5378 static int __init tmpfs_sysfs_init(void)
5379 {
5380 	int ret;
5381 
5382 	tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5383 	if (!tmpfs_kobj)
5384 		return -ENOMEM;
5385 
5386 	ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5387 	if (ret)
5388 		kobject_put(tmpfs_kobj);
5389 
5390 	return ret;
5391 }
5392 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5393 
5394 void __init shmem_init(void)
5395 {
5396 	int error;
5397 
5398 	shmem_init_inodecache();
5399 
5400 #ifdef CONFIG_TMPFS_QUOTA
5401 	register_quota_format(&shmem_quota_format);
5402 #endif
5403 
5404 	error = register_filesystem(&shmem_fs_type);
5405 	if (error) {
5406 		pr_err("Could not register tmpfs\n");
5407 		goto out2;
5408 	}
5409 
5410 	shm_mnt = kern_mount(&shmem_fs_type);
5411 	if (IS_ERR(shm_mnt)) {
5412 		error = PTR_ERR(shm_mnt);
5413 		pr_err("Could not kern_mount tmpfs\n");
5414 		goto out1;
5415 	}
5416 
5417 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5418 	error = tmpfs_sysfs_init();
5419 	if (error) {
5420 		pr_err("Could not init tmpfs sysfs\n");
5421 		goto out1;
5422 	}
5423 #endif
5424 
5425 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5426 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5427 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5428 	else
5429 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5430 
5431 	/*
5432 	 * Default to setting PMD-sized THP to inherit the global setting and
5433 	 * disable all other multi-size THPs.
5434 	 */
5435 	if (!shmem_orders_configured)
5436 		huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5437 #endif
5438 	return;
5439 
5440 out1:
5441 	unregister_filesystem(&shmem_fs_type);
5442 out2:
5443 #ifdef CONFIG_TMPFS_QUOTA
5444 	unregister_quota_format(&shmem_quota_format);
5445 #endif
5446 	shmem_destroy_inodecache();
5447 	shm_mnt = ERR_PTR(error);
5448 }
5449 
5450 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5451 static ssize_t shmem_enabled_show(struct kobject *kobj,
5452 				  struct kobj_attribute *attr, char *buf)
5453 {
5454 	static const int values[] = {
5455 		SHMEM_HUGE_ALWAYS,
5456 		SHMEM_HUGE_WITHIN_SIZE,
5457 		SHMEM_HUGE_ADVISE,
5458 		SHMEM_HUGE_NEVER,
5459 		SHMEM_HUGE_DENY,
5460 		SHMEM_HUGE_FORCE,
5461 	};
5462 	int len = 0;
5463 	int i;
5464 
5465 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5466 		len += sysfs_emit_at(buf, len,
5467 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5468 				i ? " " : "", shmem_format_huge(values[i]));
5469 	}
5470 	len += sysfs_emit_at(buf, len, "\n");
5471 
5472 	return len;
5473 }
5474 
5475 static ssize_t shmem_enabled_store(struct kobject *kobj,
5476 		struct kobj_attribute *attr, const char *buf, size_t count)
5477 {
5478 	char tmp[16];
5479 	int huge, err;
5480 
5481 	if (count + 1 > sizeof(tmp))
5482 		return -EINVAL;
5483 	memcpy(tmp, buf, count);
5484 	tmp[count] = '\0';
5485 	if (count && tmp[count - 1] == '\n')
5486 		tmp[count - 1] = '\0';
5487 
5488 	huge = shmem_parse_huge(tmp);
5489 	if (huge == -EINVAL)
5490 		return huge;
5491 
5492 	shmem_huge = huge;
5493 	if (shmem_huge > SHMEM_HUGE_DENY)
5494 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5495 
5496 	err = start_stop_khugepaged();
5497 	return err ? err : count;
5498 }
5499 
5500 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5501 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5502 
5503 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5504 					  struct kobj_attribute *attr, char *buf)
5505 {
5506 	int order = to_thpsize(kobj)->order;
5507 	const char *output;
5508 
5509 	if (test_bit(order, &huge_shmem_orders_always))
5510 		output = "[always] inherit within_size advise never";
5511 	else if (test_bit(order, &huge_shmem_orders_inherit))
5512 		output = "always [inherit] within_size advise never";
5513 	else if (test_bit(order, &huge_shmem_orders_within_size))
5514 		output = "always inherit [within_size] advise never";
5515 	else if (test_bit(order, &huge_shmem_orders_madvise))
5516 		output = "always inherit within_size [advise] never";
5517 	else
5518 		output = "always inherit within_size advise [never]";
5519 
5520 	return sysfs_emit(buf, "%s\n", output);
5521 }
5522 
5523 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5524 					   struct kobj_attribute *attr,
5525 					   const char *buf, size_t count)
5526 {
5527 	int order = to_thpsize(kobj)->order;
5528 	ssize_t ret = count;
5529 
5530 	if (sysfs_streq(buf, "always")) {
5531 		spin_lock(&huge_shmem_orders_lock);
5532 		clear_bit(order, &huge_shmem_orders_inherit);
5533 		clear_bit(order, &huge_shmem_orders_madvise);
5534 		clear_bit(order, &huge_shmem_orders_within_size);
5535 		set_bit(order, &huge_shmem_orders_always);
5536 		spin_unlock(&huge_shmem_orders_lock);
5537 	} else if (sysfs_streq(buf, "inherit")) {
5538 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5539 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5540 		    order != HPAGE_PMD_ORDER)
5541 			return -EINVAL;
5542 
5543 		spin_lock(&huge_shmem_orders_lock);
5544 		clear_bit(order, &huge_shmem_orders_always);
5545 		clear_bit(order, &huge_shmem_orders_madvise);
5546 		clear_bit(order, &huge_shmem_orders_within_size);
5547 		set_bit(order, &huge_shmem_orders_inherit);
5548 		spin_unlock(&huge_shmem_orders_lock);
5549 	} else if (sysfs_streq(buf, "within_size")) {
5550 		spin_lock(&huge_shmem_orders_lock);
5551 		clear_bit(order, &huge_shmem_orders_always);
5552 		clear_bit(order, &huge_shmem_orders_inherit);
5553 		clear_bit(order, &huge_shmem_orders_madvise);
5554 		set_bit(order, &huge_shmem_orders_within_size);
5555 		spin_unlock(&huge_shmem_orders_lock);
5556 	} else if (sysfs_streq(buf, "advise")) {
5557 		spin_lock(&huge_shmem_orders_lock);
5558 		clear_bit(order, &huge_shmem_orders_always);
5559 		clear_bit(order, &huge_shmem_orders_inherit);
5560 		clear_bit(order, &huge_shmem_orders_within_size);
5561 		set_bit(order, &huge_shmem_orders_madvise);
5562 		spin_unlock(&huge_shmem_orders_lock);
5563 	} else if (sysfs_streq(buf, "never")) {
5564 		spin_lock(&huge_shmem_orders_lock);
5565 		clear_bit(order, &huge_shmem_orders_always);
5566 		clear_bit(order, &huge_shmem_orders_inherit);
5567 		clear_bit(order, &huge_shmem_orders_within_size);
5568 		clear_bit(order, &huge_shmem_orders_madvise);
5569 		spin_unlock(&huge_shmem_orders_lock);
5570 	} else {
5571 		ret = -EINVAL;
5572 	}
5573 
5574 	if (ret > 0) {
5575 		int err = start_stop_khugepaged();
5576 
5577 		if (err)
5578 			ret = err;
5579 	}
5580 	return ret;
5581 }
5582 
5583 struct kobj_attribute thpsize_shmem_enabled_attr =
5584 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5585 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5586 
5587 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5588 
5589 static int __init setup_transparent_hugepage_shmem(char *str)
5590 {
5591 	int huge;
5592 
5593 	huge = shmem_parse_huge(str);
5594 	if (huge == -EINVAL) {
5595 		pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5596 		return huge;
5597 	}
5598 
5599 	shmem_huge = huge;
5600 	return 1;
5601 }
5602 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5603 
5604 static int __init setup_transparent_hugepage_tmpfs(char *str)
5605 {
5606 	int huge;
5607 
5608 	huge = shmem_parse_huge(str);
5609 	if (huge < 0) {
5610 		pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5611 		return huge;
5612 	}
5613 
5614 	tmpfs_huge = huge;
5615 	return 1;
5616 }
5617 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5618 
5619 static char str_dup[PAGE_SIZE] __initdata;
5620 static int __init setup_thp_shmem(char *str)
5621 {
5622 	char *token, *range, *policy, *subtoken;
5623 	unsigned long always, inherit, madvise, within_size;
5624 	char *start_size, *end_size;
5625 	int start, end, nr;
5626 	char *p;
5627 
5628 	if (!str || strlen(str) + 1 > PAGE_SIZE)
5629 		goto err;
5630 	strscpy(str_dup, str);
5631 
5632 	always = huge_shmem_orders_always;
5633 	inherit = huge_shmem_orders_inherit;
5634 	madvise = huge_shmem_orders_madvise;
5635 	within_size = huge_shmem_orders_within_size;
5636 	p = str_dup;
5637 	while ((token = strsep(&p, ";")) != NULL) {
5638 		range = strsep(&token, ":");
5639 		policy = token;
5640 
5641 		if (!policy)
5642 			goto err;
5643 
5644 		while ((subtoken = strsep(&range, ",")) != NULL) {
5645 			if (strchr(subtoken, '-')) {
5646 				start_size = strsep(&subtoken, "-");
5647 				end_size = subtoken;
5648 
5649 				start = get_order_from_str(start_size,
5650 							   THP_ORDERS_ALL_FILE_DEFAULT);
5651 				end = get_order_from_str(end_size,
5652 							 THP_ORDERS_ALL_FILE_DEFAULT);
5653 			} else {
5654 				start_size = end_size = subtoken;
5655 				start = end = get_order_from_str(subtoken,
5656 								 THP_ORDERS_ALL_FILE_DEFAULT);
5657 			}
5658 
5659 			if (start < 0) {
5660 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5661 				       start_size);
5662 				goto err;
5663 			}
5664 
5665 			if (end < 0) {
5666 				pr_err("invalid size %s in thp_shmem boot parameter\n",
5667 				       end_size);
5668 				goto err;
5669 			}
5670 
5671 			if (start > end)
5672 				goto err;
5673 
5674 			nr = end - start + 1;
5675 			if (!strcmp(policy, "always")) {
5676 				bitmap_set(&always, start, nr);
5677 				bitmap_clear(&inherit, start, nr);
5678 				bitmap_clear(&madvise, start, nr);
5679 				bitmap_clear(&within_size, start, nr);
5680 			} else if (!strcmp(policy, "advise")) {
5681 				bitmap_set(&madvise, start, nr);
5682 				bitmap_clear(&inherit, start, nr);
5683 				bitmap_clear(&always, start, nr);
5684 				bitmap_clear(&within_size, start, nr);
5685 			} else if (!strcmp(policy, "inherit")) {
5686 				bitmap_set(&inherit, start, nr);
5687 				bitmap_clear(&madvise, start, nr);
5688 				bitmap_clear(&always, start, nr);
5689 				bitmap_clear(&within_size, start, nr);
5690 			} else if (!strcmp(policy, "within_size")) {
5691 				bitmap_set(&within_size, start, nr);
5692 				bitmap_clear(&inherit, start, nr);
5693 				bitmap_clear(&madvise, start, nr);
5694 				bitmap_clear(&always, start, nr);
5695 			} else if (!strcmp(policy, "never")) {
5696 				bitmap_clear(&inherit, start, nr);
5697 				bitmap_clear(&madvise, start, nr);
5698 				bitmap_clear(&always, start, nr);
5699 				bitmap_clear(&within_size, start, nr);
5700 			} else {
5701 				pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5702 				goto err;
5703 			}
5704 		}
5705 	}
5706 
5707 	huge_shmem_orders_always = always;
5708 	huge_shmem_orders_madvise = madvise;
5709 	huge_shmem_orders_inherit = inherit;
5710 	huge_shmem_orders_within_size = within_size;
5711 	shmem_orders_configured = true;
5712 	return 1;
5713 
5714 err:
5715 	pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5716 	return 0;
5717 }
5718 __setup("thp_shmem=", setup_thp_shmem);
5719 
5720 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5721 
5722 #else /* !CONFIG_SHMEM */
5723 
5724 /*
5725  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5726  *
5727  * This is intended for small system where the benefits of the full
5728  * shmem code (swap-backed and resource-limited) are outweighed by
5729  * their complexity. On systems without swap this code should be
5730  * effectively equivalent, but much lighter weight.
5731  */
5732 
5733 static struct file_system_type shmem_fs_type = {
5734 	.name		= "tmpfs",
5735 	.init_fs_context = ramfs_init_fs_context,
5736 	.parameters	= ramfs_fs_parameters,
5737 	.kill_sb	= ramfs_kill_sb,
5738 	.fs_flags	= FS_USERNS_MOUNT,
5739 };
5740 
5741 void __init shmem_init(void)
5742 {
5743 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5744 
5745 	shm_mnt = kern_mount(&shmem_fs_type);
5746 	BUG_ON(IS_ERR(shm_mnt));
5747 }
5748 
5749 int shmem_unuse(unsigned int type)
5750 {
5751 	return 0;
5752 }
5753 
5754 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5755 {
5756 	return 0;
5757 }
5758 
5759 void shmem_unlock_mapping(struct address_space *mapping)
5760 {
5761 }
5762 
5763 #ifdef CONFIG_MMU
5764 unsigned long shmem_get_unmapped_area(struct file *file,
5765 				      unsigned long addr, unsigned long len,
5766 				      unsigned long pgoff, unsigned long flags)
5767 {
5768 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5769 }
5770 #endif
5771 
5772 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5773 {
5774 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5775 }
5776 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5777 
5778 #define shmem_vm_ops				generic_file_vm_ops
5779 #define shmem_anon_vm_ops			generic_file_vm_ops
5780 #define shmem_file_operations			ramfs_file_operations
5781 #define shmem_acct_size(flags, size)		0
5782 #define shmem_unacct_size(flags, size)		do {} while (0)
5783 
5784 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5785 				struct super_block *sb, struct inode *dir,
5786 				umode_t mode, dev_t dev, unsigned long flags)
5787 {
5788 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5789 	return inode ? inode : ERR_PTR(-ENOSPC);
5790 }
5791 
5792 #endif /* CONFIG_SHMEM */
5793 
5794 /* common code */
5795 
5796 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5797 			loff_t size, unsigned long flags, unsigned int i_flags)
5798 {
5799 	struct inode *inode;
5800 	struct file *res;
5801 
5802 	if (IS_ERR(mnt))
5803 		return ERR_CAST(mnt);
5804 
5805 	if (size < 0 || size > MAX_LFS_FILESIZE)
5806 		return ERR_PTR(-EINVAL);
5807 
5808 	if (shmem_acct_size(flags, size))
5809 		return ERR_PTR(-ENOMEM);
5810 
5811 	if (is_idmapped_mnt(mnt))
5812 		return ERR_PTR(-EINVAL);
5813 
5814 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5815 				S_IFREG | S_IRWXUGO, 0, flags);
5816 	if (IS_ERR(inode)) {
5817 		shmem_unacct_size(flags, size);
5818 		return ERR_CAST(inode);
5819 	}
5820 	inode->i_flags |= i_flags;
5821 	inode->i_size = size;
5822 	clear_nlink(inode);	/* It is unlinked */
5823 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5824 	if (!IS_ERR(res))
5825 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5826 				&shmem_file_operations);
5827 	if (IS_ERR(res))
5828 		iput(inode);
5829 	return res;
5830 }
5831 
5832 /**
5833  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5834  * 	kernel internal.  There will be NO LSM permission checks against the
5835  * 	underlying inode.  So users of this interface must do LSM checks at a
5836  *	higher layer.  The users are the big_key and shm implementations.  LSM
5837  *	checks are provided at the key or shm level rather than the inode.
5838  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5839  * @size: size to be set for the file
5840  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5841  */
5842 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5843 {
5844 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5845 }
5846 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5847 
5848 /**
5849  * shmem_file_setup - get an unlinked file living in tmpfs
5850  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5851  * @size: size to be set for the file
5852  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5853  */
5854 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5855 {
5856 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5857 }
5858 EXPORT_SYMBOL_GPL(shmem_file_setup);
5859 
5860 /**
5861  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5862  * @mnt: the tmpfs mount where the file will be created
5863  * @name: name for dentry (to be seen in /proc/<pid>/maps)
5864  * @size: size to be set for the file
5865  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5866  */
5867 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5868 				       loff_t size, unsigned long flags)
5869 {
5870 	return __shmem_file_setup(mnt, name, size, flags, 0);
5871 }
5872 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5873 
5874 /**
5875  * shmem_zero_setup - setup a shared anonymous mapping
5876  * @vma: the vma to be mmapped is prepared by do_mmap
5877  */
5878 int shmem_zero_setup(struct vm_area_struct *vma)
5879 {
5880 	struct file *file;
5881 	loff_t size = vma->vm_end - vma->vm_start;
5882 
5883 	/*
5884 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5885 	 * between XFS directory reading and selinux: since this file is only
5886 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5887 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5888 	 */
5889 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5890 	if (IS_ERR(file))
5891 		return PTR_ERR(file);
5892 
5893 	if (vma->vm_file)
5894 		fput(vma->vm_file);
5895 	vma->vm_file = file;
5896 	vma->vm_ops = &shmem_anon_vm_ops;
5897 
5898 	return 0;
5899 }
5900 
5901 /**
5902  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5903  * @mapping:	the folio's address_space
5904  * @index:	the folio index
5905  * @gfp:	the page allocator flags to use if allocating
5906  *
5907  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5908  * with any new page allocations done using the specified allocation flags.
5909  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5910  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5911  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5912  *
5913  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5914  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5915  */
5916 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5917 		pgoff_t index, gfp_t gfp)
5918 {
5919 #ifdef CONFIG_SHMEM
5920 	struct inode *inode = mapping->host;
5921 	struct folio *folio;
5922 	int error;
5923 
5924 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5925 				    gfp, NULL, NULL);
5926 	if (error)
5927 		return ERR_PTR(error);
5928 
5929 	folio_unlock(folio);
5930 	return folio;
5931 #else
5932 	/*
5933 	 * The tiny !SHMEM case uses ramfs without swap
5934 	 */
5935 	return mapping_read_folio_gfp(mapping, index, gfp);
5936 #endif
5937 }
5938 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5939 
5940 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5941 					 pgoff_t index, gfp_t gfp)
5942 {
5943 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5944 	struct page *page;
5945 
5946 	if (IS_ERR(folio))
5947 		return &folio->page;
5948 
5949 	page = folio_file_page(folio, index);
5950 	if (PageHWPoison(page)) {
5951 		folio_put(folio);
5952 		return ERR_PTR(-EIO);
5953 	}
5954 
5955 	return page;
5956 }
5957 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5958