xref: /linux/mm/shmem.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * This file is released under the GPL.
18  */
19 
20 /*
21  * This virtual memory filesystem is heavily based on the ramfs. It
22  * extends ramfs by the ability to use swap and honor resource limits
23  * which makes it a completely usable filesystem.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/fs.h>
29 #include <linux/mm.h>
30 #include <linux/mman.h>
31 #include <linux/file.h>
32 #include <linux/swap.h>
33 #include <linux/pagemap.h>
34 #include <linux/string.h>
35 #include <linux/slab.h>
36 #include <linux/backing-dev.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/mount.h>
39 #include <linux/writeback.h>
40 #include <linux/vfs.h>
41 #include <linux/blkdev.h>
42 #include <linux/security.h>
43 #include <linux/swapops.h>
44 #include <linux/mempolicy.h>
45 #include <linux/namei.h>
46 #include <linux/ctype.h>
47 #include <linux/migrate.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/div64.h>
51 #include <asm/pgtable.h>
52 
53 /* This magic number is used in glibc for posix shared memory */
54 #define TMPFS_MAGIC	0x01021994
55 
56 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
57 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
58 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
59 
60 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
61 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
62 
63 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
64 
65 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
66 #define SHMEM_PAGEIN	 VM_READ
67 #define SHMEM_TRUNCATE	 VM_WRITE
68 
69 /* Definition to limit shmem_truncate's steps between cond_rescheds */
70 #define LATENCY_LIMIT	 64
71 
72 /* Pretend that each entry is of this size in directory's i_size */
73 #define BOGO_DIRENT_SIZE 20
74 
75 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
76 enum sgp_type {
77 	SGP_QUICK,	/* don't try more than file page cache lookup */
78 	SGP_READ,	/* don't exceed i_size, don't allocate page */
79 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
80 	SGP_WRITE,	/* may exceed i_size, may allocate page */
81 };
82 
83 static int shmem_getpage(struct inode *inode, unsigned long idx,
84 			 struct page **pagep, enum sgp_type sgp, int *type);
85 
86 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
87 {
88 	/*
89 	 * The above definition of ENTRIES_PER_PAGE, and the use of
90 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
91 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
92 	 */
93 	return alloc_pages(gfp_mask, PAGE_CACHE_SHIFT-PAGE_SHIFT);
94 }
95 
96 static inline void shmem_dir_free(struct page *page)
97 {
98 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
99 }
100 
101 static struct page **shmem_dir_map(struct page *page)
102 {
103 	return (struct page **)kmap_atomic(page, KM_USER0);
104 }
105 
106 static inline void shmem_dir_unmap(struct page **dir)
107 {
108 	kunmap_atomic(dir, KM_USER0);
109 }
110 
111 static swp_entry_t *shmem_swp_map(struct page *page)
112 {
113 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
114 }
115 
116 static inline void shmem_swp_balance_unmap(void)
117 {
118 	/*
119 	 * When passing a pointer to an i_direct entry, to code which
120 	 * also handles indirect entries and so will shmem_swp_unmap,
121 	 * we must arrange for the preempt count to remain in balance.
122 	 * What kmap_atomic of a lowmem page does depends on config
123 	 * and architecture, so pretend to kmap_atomic some lowmem page.
124 	 */
125 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
126 }
127 
128 static inline void shmem_swp_unmap(swp_entry_t *entry)
129 {
130 	kunmap_atomic(entry, KM_USER1);
131 }
132 
133 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134 {
135 	return sb->s_fs_info;
136 }
137 
138 /*
139  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140  * for shared memory and for shared anonymous (/dev/zero) mappings
141  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142  * consistent with the pre-accounting of private mappings ...
143  */
144 static inline int shmem_acct_size(unsigned long flags, loff_t size)
145 {
146 	return (flags & VM_ACCOUNT)?
147 		security_vm_enough_memory(VM_ACCT(size)): 0;
148 }
149 
150 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151 {
152 	if (flags & VM_ACCOUNT)
153 		vm_unacct_memory(VM_ACCT(size));
154 }
155 
156 /*
157  * ... whereas tmpfs objects are accounted incrementally as
158  * pages are allocated, in order to allow huge sparse files.
159  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161  */
162 static inline int shmem_acct_block(unsigned long flags)
163 {
164 	return (flags & VM_ACCOUNT)?
165 		0: security_vm_enough_memory(VM_ACCT(PAGE_CACHE_SIZE));
166 }
167 
168 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169 {
170 	if (!(flags & VM_ACCOUNT))
171 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172 }
173 
174 static struct super_operations shmem_ops;
175 static const struct address_space_operations shmem_aops;
176 static struct file_operations shmem_file_operations;
177 static struct inode_operations shmem_inode_operations;
178 static struct inode_operations shmem_dir_inode_operations;
179 static struct vm_operations_struct shmem_vm_ops;
180 
181 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
182 	.ra_pages	= 0,	/* No readahead */
183 	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
184 	.unplug_io_fn	= default_unplug_io_fn,
185 };
186 
187 static LIST_HEAD(shmem_swaplist);
188 static DEFINE_SPINLOCK(shmem_swaplist_lock);
189 
190 static void shmem_free_blocks(struct inode *inode, long pages)
191 {
192 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
193 	if (sbinfo->max_blocks) {
194 		spin_lock(&sbinfo->stat_lock);
195 		sbinfo->free_blocks += pages;
196 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
197 		spin_unlock(&sbinfo->stat_lock);
198 	}
199 }
200 
201 /*
202  * shmem_recalc_inode - recalculate the size of an inode
203  *
204  * @inode: inode to recalc
205  *
206  * We have to calculate the free blocks since the mm can drop
207  * undirtied hole pages behind our back.
208  *
209  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
210  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
211  *
212  * It has to be called with the spinlock held.
213  */
214 static void shmem_recalc_inode(struct inode *inode)
215 {
216 	struct shmem_inode_info *info = SHMEM_I(inode);
217 	long freed;
218 
219 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
220 	if (freed > 0) {
221 		info->alloced -= freed;
222 		shmem_unacct_blocks(info->flags, freed);
223 		shmem_free_blocks(inode, freed);
224 	}
225 }
226 
227 /*
228  * shmem_swp_entry - find the swap vector position in the info structure
229  *
230  * @info:  info structure for the inode
231  * @index: index of the page to find
232  * @page:  optional page to add to the structure. Has to be preset to
233  *         all zeros
234  *
235  * If there is no space allocated yet it will return NULL when
236  * page is NULL, else it will use the page for the needed block,
237  * setting it to NULL on return to indicate that it has been used.
238  *
239  * The swap vector is organized the following way:
240  *
241  * There are SHMEM_NR_DIRECT entries directly stored in the
242  * shmem_inode_info structure. So small files do not need an addional
243  * allocation.
244  *
245  * For pages with index > SHMEM_NR_DIRECT there is the pointer
246  * i_indirect which points to a page which holds in the first half
247  * doubly indirect blocks, in the second half triple indirect blocks:
248  *
249  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
250  * following layout (for SHMEM_NR_DIRECT == 16):
251  *
252  * i_indirect -> dir --> 16-19
253  * 	      |	     +-> 20-23
254  * 	      |
255  * 	      +-->dir2 --> 24-27
256  * 	      |	       +-> 28-31
257  * 	      |	       +-> 32-35
258  * 	      |	       +-> 36-39
259  * 	      |
260  * 	      +-->dir3 --> 40-43
261  * 	       	       +-> 44-47
262  * 	      	       +-> 48-51
263  * 	      	       +-> 52-55
264  */
265 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
266 {
267 	unsigned long offset;
268 	struct page **dir;
269 	struct page *subdir;
270 
271 	if (index < SHMEM_NR_DIRECT) {
272 		shmem_swp_balance_unmap();
273 		return info->i_direct+index;
274 	}
275 	if (!info->i_indirect) {
276 		if (page) {
277 			info->i_indirect = *page;
278 			*page = NULL;
279 		}
280 		return NULL;			/* need another page */
281 	}
282 
283 	index -= SHMEM_NR_DIRECT;
284 	offset = index % ENTRIES_PER_PAGE;
285 	index /= ENTRIES_PER_PAGE;
286 	dir = shmem_dir_map(info->i_indirect);
287 
288 	if (index >= ENTRIES_PER_PAGE/2) {
289 		index -= ENTRIES_PER_PAGE/2;
290 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
291 		index %= ENTRIES_PER_PAGE;
292 		subdir = *dir;
293 		if (!subdir) {
294 			if (page) {
295 				*dir = *page;
296 				*page = NULL;
297 			}
298 			shmem_dir_unmap(dir);
299 			return NULL;		/* need another page */
300 		}
301 		shmem_dir_unmap(dir);
302 		dir = shmem_dir_map(subdir);
303 	}
304 
305 	dir += index;
306 	subdir = *dir;
307 	if (!subdir) {
308 		if (!page || !(subdir = *page)) {
309 			shmem_dir_unmap(dir);
310 			return NULL;		/* need a page */
311 		}
312 		*dir = subdir;
313 		*page = NULL;
314 	}
315 	shmem_dir_unmap(dir);
316 	return shmem_swp_map(subdir) + offset;
317 }
318 
319 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
320 {
321 	long incdec = value? 1: -1;
322 
323 	entry->val = value;
324 	info->swapped += incdec;
325 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
326 		struct page *page = kmap_atomic_to_page(entry);
327 		set_page_private(page, page_private(page) + incdec);
328 	}
329 }
330 
331 /*
332  * shmem_swp_alloc - get the position of the swap entry for the page.
333  *                   If it does not exist allocate the entry.
334  *
335  * @info:	info structure for the inode
336  * @index:	index of the page to find
337  * @sgp:	check and recheck i_size? skip allocation?
338  */
339 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
340 {
341 	struct inode *inode = &info->vfs_inode;
342 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
343 	struct page *page = NULL;
344 	swp_entry_t *entry;
345 
346 	if (sgp != SGP_WRITE &&
347 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
348 		return ERR_PTR(-EINVAL);
349 
350 	while (!(entry = shmem_swp_entry(info, index, &page))) {
351 		if (sgp == SGP_READ)
352 			return shmem_swp_map(ZERO_PAGE(0));
353 		/*
354 		 * Test free_blocks against 1 not 0, since we have 1 data
355 		 * page (and perhaps indirect index pages) yet to allocate:
356 		 * a waste to allocate index if we cannot allocate data.
357 		 */
358 		if (sbinfo->max_blocks) {
359 			spin_lock(&sbinfo->stat_lock);
360 			if (sbinfo->free_blocks <= 1) {
361 				spin_unlock(&sbinfo->stat_lock);
362 				return ERR_PTR(-ENOSPC);
363 			}
364 			sbinfo->free_blocks--;
365 			inode->i_blocks += BLOCKS_PER_PAGE;
366 			spin_unlock(&sbinfo->stat_lock);
367 		}
368 
369 		spin_unlock(&info->lock);
370 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping) | __GFP_ZERO);
371 		if (page)
372 			set_page_private(page, 0);
373 		spin_lock(&info->lock);
374 
375 		if (!page) {
376 			shmem_free_blocks(inode, 1);
377 			return ERR_PTR(-ENOMEM);
378 		}
379 		if (sgp != SGP_WRITE &&
380 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
381 			entry = ERR_PTR(-EINVAL);
382 			break;
383 		}
384 		if (info->next_index <= index)
385 			info->next_index = index + 1;
386 	}
387 	if (page) {
388 		/* another task gave its page, or truncated the file */
389 		shmem_free_blocks(inode, 1);
390 		shmem_dir_free(page);
391 	}
392 	if (info->next_index <= index && !IS_ERR(entry))
393 		info->next_index = index + 1;
394 	return entry;
395 }
396 
397 /*
398  * shmem_free_swp - free some swap entries in a directory
399  *
400  * @dir:   pointer to the directory
401  * @edir:  pointer after last entry of the directory
402  */
403 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)
404 {
405 	swp_entry_t *ptr;
406 	int freed = 0;
407 
408 	for (ptr = dir; ptr < edir; ptr++) {
409 		if (ptr->val) {
410 			free_swap_and_cache(*ptr);
411 			*ptr = (swp_entry_t){0};
412 			freed++;
413 		}
414 	}
415 	return freed;
416 }
417 
418 static int shmem_map_and_free_swp(struct page *subdir,
419 		int offset, int limit, struct page ***dir)
420 {
421 	swp_entry_t *ptr;
422 	int freed = 0;
423 
424 	ptr = shmem_swp_map(subdir);
425 	for (; offset < limit; offset += LATENCY_LIMIT) {
426 		int size = limit - offset;
427 		if (size > LATENCY_LIMIT)
428 			size = LATENCY_LIMIT;
429 		freed += shmem_free_swp(ptr+offset, ptr+offset+size);
430 		if (need_resched()) {
431 			shmem_swp_unmap(ptr);
432 			if (*dir) {
433 				shmem_dir_unmap(*dir);
434 				*dir = NULL;
435 			}
436 			cond_resched();
437 			ptr = shmem_swp_map(subdir);
438 		}
439 	}
440 	shmem_swp_unmap(ptr);
441 	return freed;
442 }
443 
444 static void shmem_free_pages(struct list_head *next)
445 {
446 	struct page *page;
447 	int freed = 0;
448 
449 	do {
450 		page = container_of(next, struct page, lru);
451 		next = next->next;
452 		shmem_dir_free(page);
453 		freed++;
454 		if (freed >= LATENCY_LIMIT) {
455 			cond_resched();
456 			freed = 0;
457 		}
458 	} while (next);
459 }
460 
461 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
462 {
463 	struct shmem_inode_info *info = SHMEM_I(inode);
464 	unsigned long idx;
465 	unsigned long size;
466 	unsigned long limit;
467 	unsigned long stage;
468 	unsigned long diroff;
469 	struct page **dir;
470 	struct page *topdir;
471 	struct page *middir;
472 	struct page *subdir;
473 	swp_entry_t *ptr;
474 	LIST_HEAD(pages_to_free);
475 	long nr_pages_to_free = 0;
476 	long nr_swaps_freed = 0;
477 	int offset;
478 	int freed;
479 	int punch_hole = 0;
480 
481 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
482 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
483 	if (idx >= info->next_index)
484 		return;
485 
486 	spin_lock(&info->lock);
487 	info->flags |= SHMEM_TRUNCATE;
488 	if (likely(end == (loff_t) -1)) {
489 		limit = info->next_index;
490 		info->next_index = idx;
491 	} else {
492 		limit = (end + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
493 		if (limit > info->next_index)
494 			limit = info->next_index;
495 		punch_hole = 1;
496 	}
497 
498 	topdir = info->i_indirect;
499 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
500 		info->i_indirect = NULL;
501 		nr_pages_to_free++;
502 		list_add(&topdir->lru, &pages_to_free);
503 	}
504 	spin_unlock(&info->lock);
505 
506 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
507 		ptr = info->i_direct;
508 		size = limit;
509 		if (size > SHMEM_NR_DIRECT)
510 			size = SHMEM_NR_DIRECT;
511 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size);
512 	}
513 	if (!topdir)
514 		goto done2;
515 
516 	BUG_ON(limit <= SHMEM_NR_DIRECT);
517 	limit -= SHMEM_NR_DIRECT;
518 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
519 	offset = idx % ENTRIES_PER_PAGE;
520 	idx -= offset;
521 
522 	dir = shmem_dir_map(topdir);
523 	stage = ENTRIES_PER_PAGEPAGE/2;
524 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
525 		middir = topdir;
526 		diroff = idx/ENTRIES_PER_PAGE;
527 	} else {
528 		dir += ENTRIES_PER_PAGE/2;
529 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
530 		while (stage <= idx)
531 			stage += ENTRIES_PER_PAGEPAGE;
532 		middir = *dir;
533 		if (*dir) {
534 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
535 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
536 			if (!diroff && !offset) {
537 				*dir = NULL;
538 				nr_pages_to_free++;
539 				list_add(&middir->lru, &pages_to_free);
540 			}
541 			shmem_dir_unmap(dir);
542 			dir = shmem_dir_map(middir);
543 		} else {
544 			diroff = 0;
545 			offset = 0;
546 			idx = stage;
547 		}
548 	}
549 
550 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
551 		if (unlikely(idx == stage)) {
552 			shmem_dir_unmap(dir);
553 			dir = shmem_dir_map(topdir) +
554 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
555 			while (!*dir) {
556 				dir++;
557 				idx += ENTRIES_PER_PAGEPAGE;
558 				if (idx >= limit)
559 					goto done1;
560 			}
561 			stage = idx + ENTRIES_PER_PAGEPAGE;
562 			middir = *dir;
563 			*dir = NULL;
564 			nr_pages_to_free++;
565 			list_add(&middir->lru, &pages_to_free);
566 			shmem_dir_unmap(dir);
567 			cond_resched();
568 			dir = shmem_dir_map(middir);
569 			diroff = 0;
570 		}
571 		subdir = dir[diroff];
572 		if (subdir && page_private(subdir)) {
573 			size = limit - idx;
574 			if (size > ENTRIES_PER_PAGE)
575 				size = ENTRIES_PER_PAGE;
576 			freed = shmem_map_and_free_swp(subdir,
577 						offset, size, &dir);
578 			if (!dir)
579 				dir = shmem_dir_map(middir);
580 			nr_swaps_freed += freed;
581 			if (offset)
582 				spin_lock(&info->lock);
583 			set_page_private(subdir, page_private(subdir) - freed);
584 			if (offset)
585 				spin_unlock(&info->lock);
586 			if (!punch_hole)
587 				BUG_ON(page_private(subdir) > offset);
588 		}
589 		if (offset)
590 			offset = 0;
591 		else if (subdir && !page_private(subdir)) {
592 			dir[diroff] = NULL;
593 			nr_pages_to_free++;
594 			list_add(&subdir->lru, &pages_to_free);
595 		}
596 	}
597 done1:
598 	shmem_dir_unmap(dir);
599 done2:
600 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
601 		/*
602 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
603 		 * may have swizzled a page in from swap since vmtruncate or
604 		 * generic_delete_inode did it, before we lowered next_index.
605 		 * Also, though shmem_getpage checks i_size before adding to
606 		 * cache, no recheck after: so fix the narrow window there too.
607 		 */
608 		truncate_inode_pages_range(inode->i_mapping, start, end);
609 	}
610 
611 	spin_lock(&info->lock);
612 	info->flags &= ~SHMEM_TRUNCATE;
613 	info->swapped -= nr_swaps_freed;
614 	if (nr_pages_to_free)
615 		shmem_free_blocks(inode, nr_pages_to_free);
616 	shmem_recalc_inode(inode);
617 	spin_unlock(&info->lock);
618 
619 	/*
620 	 * Empty swap vector directory pages to be freed?
621 	 */
622 	if (!list_empty(&pages_to_free)) {
623 		pages_to_free.prev->next = NULL;
624 		shmem_free_pages(pages_to_free.next);
625 	}
626 }
627 
628 static void shmem_truncate(struct inode *inode)
629 {
630 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
631 }
632 
633 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
634 {
635 	struct inode *inode = dentry->d_inode;
636 	struct page *page = NULL;
637 	int error;
638 
639 	if (attr->ia_valid & ATTR_SIZE) {
640 		if (attr->ia_size < inode->i_size) {
641 			/*
642 			 * If truncating down to a partial page, then
643 			 * if that page is already allocated, hold it
644 			 * in memory until the truncation is over, so
645 			 * truncate_partial_page cannnot miss it were
646 			 * it assigned to swap.
647 			 */
648 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
649 				(void) shmem_getpage(inode,
650 					attr->ia_size>>PAGE_CACHE_SHIFT,
651 						&page, SGP_READ, NULL);
652 			}
653 			/*
654 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
655 			 * detect if any pages might have been added to cache
656 			 * after truncate_inode_pages.  But we needn't bother
657 			 * if it's being fully truncated to zero-length: the
658 			 * nrpages check is efficient enough in that case.
659 			 */
660 			if (attr->ia_size) {
661 				struct shmem_inode_info *info = SHMEM_I(inode);
662 				spin_lock(&info->lock);
663 				info->flags &= ~SHMEM_PAGEIN;
664 				spin_unlock(&info->lock);
665 			}
666 		}
667 	}
668 
669 	error = inode_change_ok(inode, attr);
670 	if (!error)
671 		error = inode_setattr(inode, attr);
672 	if (page)
673 		page_cache_release(page);
674 	return error;
675 }
676 
677 static void shmem_delete_inode(struct inode *inode)
678 {
679 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
680 	struct shmem_inode_info *info = SHMEM_I(inode);
681 
682 	if (inode->i_op->truncate == shmem_truncate) {
683 		truncate_inode_pages(inode->i_mapping, 0);
684 		shmem_unacct_size(info->flags, inode->i_size);
685 		inode->i_size = 0;
686 		shmem_truncate(inode);
687 		if (!list_empty(&info->swaplist)) {
688 			spin_lock(&shmem_swaplist_lock);
689 			list_del_init(&info->swaplist);
690 			spin_unlock(&shmem_swaplist_lock);
691 		}
692 	}
693 	BUG_ON(inode->i_blocks);
694 	if (sbinfo->max_inodes) {
695 		spin_lock(&sbinfo->stat_lock);
696 		sbinfo->free_inodes++;
697 		spin_unlock(&sbinfo->stat_lock);
698 	}
699 	clear_inode(inode);
700 }
701 
702 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
703 {
704 	swp_entry_t *ptr;
705 
706 	for (ptr = dir; ptr < edir; ptr++) {
707 		if (ptr->val == entry.val)
708 			return ptr - dir;
709 	}
710 	return -1;
711 }
712 
713 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
714 {
715 	struct inode *inode;
716 	unsigned long idx;
717 	unsigned long size;
718 	unsigned long limit;
719 	unsigned long stage;
720 	struct page **dir;
721 	struct page *subdir;
722 	swp_entry_t *ptr;
723 	int offset;
724 
725 	idx = 0;
726 	ptr = info->i_direct;
727 	spin_lock(&info->lock);
728 	limit = info->next_index;
729 	size = limit;
730 	if (size > SHMEM_NR_DIRECT)
731 		size = SHMEM_NR_DIRECT;
732 	offset = shmem_find_swp(entry, ptr, ptr+size);
733 	if (offset >= 0) {
734 		shmem_swp_balance_unmap();
735 		goto found;
736 	}
737 	if (!info->i_indirect)
738 		goto lost2;
739 
740 	dir = shmem_dir_map(info->i_indirect);
741 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
742 
743 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
744 		if (unlikely(idx == stage)) {
745 			shmem_dir_unmap(dir-1);
746 			dir = shmem_dir_map(info->i_indirect) +
747 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
748 			while (!*dir) {
749 				dir++;
750 				idx += ENTRIES_PER_PAGEPAGE;
751 				if (idx >= limit)
752 					goto lost1;
753 			}
754 			stage = idx + ENTRIES_PER_PAGEPAGE;
755 			subdir = *dir;
756 			shmem_dir_unmap(dir);
757 			dir = shmem_dir_map(subdir);
758 		}
759 		subdir = *dir;
760 		if (subdir && page_private(subdir)) {
761 			ptr = shmem_swp_map(subdir);
762 			size = limit - idx;
763 			if (size > ENTRIES_PER_PAGE)
764 				size = ENTRIES_PER_PAGE;
765 			offset = shmem_find_swp(entry, ptr, ptr+size);
766 			if (offset >= 0) {
767 				shmem_dir_unmap(dir);
768 				goto found;
769 			}
770 			shmem_swp_unmap(ptr);
771 		}
772 	}
773 lost1:
774 	shmem_dir_unmap(dir-1);
775 lost2:
776 	spin_unlock(&info->lock);
777 	return 0;
778 found:
779 	idx += offset;
780 	inode = &info->vfs_inode;
781 	if (move_from_swap_cache(page, idx, inode->i_mapping) == 0) {
782 		info->flags |= SHMEM_PAGEIN;
783 		shmem_swp_set(info, ptr + offset, 0);
784 	}
785 	shmem_swp_unmap(ptr);
786 	spin_unlock(&info->lock);
787 	/*
788 	 * Decrement swap count even when the entry is left behind:
789 	 * try_to_unuse will skip over mms, then reincrement count.
790 	 */
791 	swap_free(entry);
792 	return 1;
793 }
794 
795 /*
796  * shmem_unuse() search for an eventually swapped out shmem page.
797  */
798 int shmem_unuse(swp_entry_t entry, struct page *page)
799 {
800 	struct list_head *p, *next;
801 	struct shmem_inode_info *info;
802 	int found = 0;
803 
804 	spin_lock(&shmem_swaplist_lock);
805 	list_for_each_safe(p, next, &shmem_swaplist) {
806 		info = list_entry(p, struct shmem_inode_info, swaplist);
807 		if (!info->swapped)
808 			list_del_init(&info->swaplist);
809 		else if (shmem_unuse_inode(info, entry, page)) {
810 			/* move head to start search for next from here */
811 			list_move_tail(&shmem_swaplist, &info->swaplist);
812 			found = 1;
813 			break;
814 		}
815 	}
816 	spin_unlock(&shmem_swaplist_lock);
817 	return found;
818 }
819 
820 /*
821  * Move the page from the page cache to the swap cache.
822  */
823 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
824 {
825 	struct shmem_inode_info *info;
826 	swp_entry_t *entry, swap;
827 	struct address_space *mapping;
828 	unsigned long index;
829 	struct inode *inode;
830 
831 	BUG_ON(!PageLocked(page));
832 	BUG_ON(page_mapped(page));
833 
834 	mapping = page->mapping;
835 	index = page->index;
836 	inode = mapping->host;
837 	info = SHMEM_I(inode);
838 	if (info->flags & VM_LOCKED)
839 		goto redirty;
840 	swap = get_swap_page();
841 	if (!swap.val)
842 		goto redirty;
843 
844 	spin_lock(&info->lock);
845 	shmem_recalc_inode(inode);
846 	if (index >= info->next_index) {
847 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
848 		goto unlock;
849 	}
850 	entry = shmem_swp_entry(info, index, NULL);
851 	BUG_ON(!entry);
852 	BUG_ON(entry->val);
853 
854 	if (move_to_swap_cache(page, swap) == 0) {
855 		shmem_swp_set(info, entry, swap.val);
856 		shmem_swp_unmap(entry);
857 		spin_unlock(&info->lock);
858 		if (list_empty(&info->swaplist)) {
859 			spin_lock(&shmem_swaplist_lock);
860 			/* move instead of add in case we're racing */
861 			list_move_tail(&info->swaplist, &shmem_swaplist);
862 			spin_unlock(&shmem_swaplist_lock);
863 		}
864 		unlock_page(page);
865 		return 0;
866 	}
867 
868 	shmem_swp_unmap(entry);
869 unlock:
870 	spin_unlock(&info->lock);
871 	swap_free(swap);
872 redirty:
873 	set_page_dirty(page);
874 	return AOP_WRITEPAGE_ACTIVATE;	/* Return with the page locked */
875 }
876 
877 #ifdef CONFIG_NUMA
878 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
879 {
880 	char *nodelist = strchr(value, ':');
881 	int err = 1;
882 
883 	if (nodelist) {
884 		/* NUL-terminate policy string */
885 		*nodelist++ = '\0';
886 		if (nodelist_parse(nodelist, *policy_nodes))
887 			goto out;
888 	}
889 	if (!strcmp(value, "default")) {
890 		*policy = MPOL_DEFAULT;
891 		/* Don't allow a nodelist */
892 		if (!nodelist)
893 			err = 0;
894 	} else if (!strcmp(value, "prefer")) {
895 		*policy = MPOL_PREFERRED;
896 		/* Insist on a nodelist of one node only */
897 		if (nodelist) {
898 			char *rest = nodelist;
899 			while (isdigit(*rest))
900 				rest++;
901 			if (!*rest)
902 				err = 0;
903 		}
904 	} else if (!strcmp(value, "bind")) {
905 		*policy = MPOL_BIND;
906 		/* Insist on a nodelist */
907 		if (nodelist)
908 			err = 0;
909 	} else if (!strcmp(value, "interleave")) {
910 		*policy = MPOL_INTERLEAVE;
911 		/* Default to nodes online if no nodelist */
912 		if (!nodelist)
913 			*policy_nodes = node_online_map;
914 		err = 0;
915 	}
916 out:
917 	/* Restore string for error message */
918 	if (nodelist)
919 		*--nodelist = ':';
920 	return err;
921 }
922 
923 static struct page *shmem_swapin_async(struct shared_policy *p,
924 				       swp_entry_t entry, unsigned long idx)
925 {
926 	struct page *page;
927 	struct vm_area_struct pvma;
928 
929 	/* Create a pseudo vma that just contains the policy */
930 	memset(&pvma, 0, sizeof(struct vm_area_struct));
931 	pvma.vm_end = PAGE_SIZE;
932 	pvma.vm_pgoff = idx;
933 	pvma.vm_policy = mpol_shared_policy_lookup(p, idx);
934 	page = read_swap_cache_async(entry, &pvma, 0);
935 	mpol_free(pvma.vm_policy);
936 	return page;
937 }
938 
939 struct page *shmem_swapin(struct shmem_inode_info *info, swp_entry_t entry,
940 			  unsigned long idx)
941 {
942 	struct shared_policy *p = &info->policy;
943 	int i, num;
944 	struct page *page;
945 	unsigned long offset;
946 
947 	num = valid_swaphandles(entry, &offset);
948 	for (i = 0; i < num; offset++, i++) {
949 		page = shmem_swapin_async(p,
950 				swp_entry(swp_type(entry), offset), idx);
951 		if (!page)
952 			break;
953 		page_cache_release(page);
954 	}
955 	lru_add_drain();	/* Push any new pages onto the LRU now */
956 	return shmem_swapin_async(p, entry, idx);
957 }
958 
959 static struct page *
960 shmem_alloc_page(gfp_t gfp, struct shmem_inode_info *info,
961 		 unsigned long idx)
962 {
963 	struct vm_area_struct pvma;
964 	struct page *page;
965 
966 	memset(&pvma, 0, sizeof(struct vm_area_struct));
967 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
968 	pvma.vm_pgoff = idx;
969 	pvma.vm_end = PAGE_SIZE;
970 	page = alloc_page_vma(gfp | __GFP_ZERO, &pvma, 0);
971 	mpol_free(pvma.vm_policy);
972 	return page;
973 }
974 #else
975 static inline int shmem_parse_mpol(char *value, int *policy, nodemask_t *policy_nodes)
976 {
977 	return 1;
978 }
979 
980 static inline struct page *
981 shmem_swapin(struct shmem_inode_info *info,swp_entry_t entry,unsigned long idx)
982 {
983 	swapin_readahead(entry, 0, NULL);
984 	return read_swap_cache_async(entry, NULL, 0);
985 }
986 
987 static inline struct page *
988 shmem_alloc_page(gfp_t gfp,struct shmem_inode_info *info, unsigned long idx)
989 {
990 	return alloc_page(gfp | __GFP_ZERO);
991 }
992 #endif
993 
994 /*
995  * shmem_getpage - either get the page from swap or allocate a new one
996  *
997  * If we allocate a new one we do not mark it dirty. That's up to the
998  * vm. If we swap it in we mark it dirty since we also free the swap
999  * entry since a page cannot live in both the swap and page cache
1000  */
1001 static int shmem_getpage(struct inode *inode, unsigned long idx,
1002 			struct page **pagep, enum sgp_type sgp, int *type)
1003 {
1004 	struct address_space *mapping = inode->i_mapping;
1005 	struct shmem_inode_info *info = SHMEM_I(inode);
1006 	struct shmem_sb_info *sbinfo;
1007 	struct page *filepage = *pagep;
1008 	struct page *swappage;
1009 	swp_entry_t *entry;
1010 	swp_entry_t swap;
1011 	int error;
1012 
1013 	if (idx >= SHMEM_MAX_INDEX)
1014 		return -EFBIG;
1015 	/*
1016 	 * Normally, filepage is NULL on entry, and either found
1017 	 * uptodate immediately, or allocated and zeroed, or read
1018 	 * in under swappage, which is then assigned to filepage.
1019 	 * But shmem_prepare_write passes in a locked filepage,
1020 	 * which may be found not uptodate by other callers too,
1021 	 * and may need to be copied from the swappage read in.
1022 	 */
1023 repeat:
1024 	if (!filepage)
1025 		filepage = find_lock_page(mapping, idx);
1026 	if (filepage && PageUptodate(filepage))
1027 		goto done;
1028 	error = 0;
1029 	if (sgp == SGP_QUICK)
1030 		goto failed;
1031 
1032 	spin_lock(&info->lock);
1033 	shmem_recalc_inode(inode);
1034 	entry = shmem_swp_alloc(info, idx, sgp);
1035 	if (IS_ERR(entry)) {
1036 		spin_unlock(&info->lock);
1037 		error = PTR_ERR(entry);
1038 		goto failed;
1039 	}
1040 	swap = *entry;
1041 
1042 	if (swap.val) {
1043 		/* Look it up and read it in.. */
1044 		swappage = lookup_swap_cache(swap);
1045 		if (!swappage) {
1046 			shmem_swp_unmap(entry);
1047 			/* here we actually do the io */
1048 			if (type && *type == VM_FAULT_MINOR) {
1049 				__count_vm_event(PGMAJFAULT);
1050 				*type = VM_FAULT_MAJOR;
1051 			}
1052 			spin_unlock(&info->lock);
1053 			swappage = shmem_swapin(info, swap, idx);
1054 			if (!swappage) {
1055 				spin_lock(&info->lock);
1056 				entry = shmem_swp_alloc(info, idx, sgp);
1057 				if (IS_ERR(entry))
1058 					error = PTR_ERR(entry);
1059 				else {
1060 					if (entry->val == swap.val)
1061 						error = -ENOMEM;
1062 					shmem_swp_unmap(entry);
1063 				}
1064 				spin_unlock(&info->lock);
1065 				if (error)
1066 					goto failed;
1067 				goto repeat;
1068 			}
1069 			wait_on_page_locked(swappage);
1070 			page_cache_release(swappage);
1071 			goto repeat;
1072 		}
1073 
1074 		/* We have to do this with page locked to prevent races */
1075 		if (TestSetPageLocked(swappage)) {
1076 			shmem_swp_unmap(entry);
1077 			spin_unlock(&info->lock);
1078 			wait_on_page_locked(swappage);
1079 			page_cache_release(swappage);
1080 			goto repeat;
1081 		}
1082 		if (PageWriteback(swappage)) {
1083 			shmem_swp_unmap(entry);
1084 			spin_unlock(&info->lock);
1085 			wait_on_page_writeback(swappage);
1086 			unlock_page(swappage);
1087 			page_cache_release(swappage);
1088 			goto repeat;
1089 		}
1090 		if (!PageUptodate(swappage)) {
1091 			shmem_swp_unmap(entry);
1092 			spin_unlock(&info->lock);
1093 			unlock_page(swappage);
1094 			page_cache_release(swappage);
1095 			error = -EIO;
1096 			goto failed;
1097 		}
1098 
1099 		if (filepage) {
1100 			shmem_swp_set(info, entry, 0);
1101 			shmem_swp_unmap(entry);
1102 			delete_from_swap_cache(swappage);
1103 			spin_unlock(&info->lock);
1104 			copy_highpage(filepage, swappage);
1105 			unlock_page(swappage);
1106 			page_cache_release(swappage);
1107 			flush_dcache_page(filepage);
1108 			SetPageUptodate(filepage);
1109 			set_page_dirty(filepage);
1110 			swap_free(swap);
1111 		} else if (!(error = move_from_swap_cache(
1112 				swappage, idx, mapping))) {
1113 			info->flags |= SHMEM_PAGEIN;
1114 			shmem_swp_set(info, entry, 0);
1115 			shmem_swp_unmap(entry);
1116 			spin_unlock(&info->lock);
1117 			filepage = swappage;
1118 			swap_free(swap);
1119 		} else {
1120 			shmem_swp_unmap(entry);
1121 			spin_unlock(&info->lock);
1122 			unlock_page(swappage);
1123 			page_cache_release(swappage);
1124 			if (error == -ENOMEM) {
1125 				/* let kswapd refresh zone for GFP_ATOMICs */
1126 				blk_congestion_wait(WRITE, HZ/50);
1127 			}
1128 			goto repeat;
1129 		}
1130 	} else if (sgp == SGP_READ && !filepage) {
1131 		shmem_swp_unmap(entry);
1132 		filepage = find_get_page(mapping, idx);
1133 		if (filepage &&
1134 		    (!PageUptodate(filepage) || TestSetPageLocked(filepage))) {
1135 			spin_unlock(&info->lock);
1136 			wait_on_page_locked(filepage);
1137 			page_cache_release(filepage);
1138 			filepage = NULL;
1139 			goto repeat;
1140 		}
1141 		spin_unlock(&info->lock);
1142 	} else {
1143 		shmem_swp_unmap(entry);
1144 		sbinfo = SHMEM_SB(inode->i_sb);
1145 		if (sbinfo->max_blocks) {
1146 			spin_lock(&sbinfo->stat_lock);
1147 			if (sbinfo->free_blocks == 0 ||
1148 			    shmem_acct_block(info->flags)) {
1149 				spin_unlock(&sbinfo->stat_lock);
1150 				spin_unlock(&info->lock);
1151 				error = -ENOSPC;
1152 				goto failed;
1153 			}
1154 			sbinfo->free_blocks--;
1155 			inode->i_blocks += BLOCKS_PER_PAGE;
1156 			spin_unlock(&sbinfo->stat_lock);
1157 		} else if (shmem_acct_block(info->flags)) {
1158 			spin_unlock(&info->lock);
1159 			error = -ENOSPC;
1160 			goto failed;
1161 		}
1162 
1163 		if (!filepage) {
1164 			spin_unlock(&info->lock);
1165 			filepage = shmem_alloc_page(mapping_gfp_mask(mapping),
1166 						    info,
1167 						    idx);
1168 			if (!filepage) {
1169 				shmem_unacct_blocks(info->flags, 1);
1170 				shmem_free_blocks(inode, 1);
1171 				error = -ENOMEM;
1172 				goto failed;
1173 			}
1174 
1175 			spin_lock(&info->lock);
1176 			entry = shmem_swp_alloc(info, idx, sgp);
1177 			if (IS_ERR(entry))
1178 				error = PTR_ERR(entry);
1179 			else {
1180 				swap = *entry;
1181 				shmem_swp_unmap(entry);
1182 			}
1183 			if (error || swap.val || 0 != add_to_page_cache_lru(
1184 					filepage, mapping, idx, GFP_ATOMIC)) {
1185 				spin_unlock(&info->lock);
1186 				page_cache_release(filepage);
1187 				shmem_unacct_blocks(info->flags, 1);
1188 				shmem_free_blocks(inode, 1);
1189 				filepage = NULL;
1190 				if (error)
1191 					goto failed;
1192 				goto repeat;
1193 			}
1194 			info->flags |= SHMEM_PAGEIN;
1195 		}
1196 
1197 		info->alloced++;
1198 		spin_unlock(&info->lock);
1199 		flush_dcache_page(filepage);
1200 		SetPageUptodate(filepage);
1201 	}
1202 done:
1203 	if (*pagep != filepage) {
1204 		unlock_page(filepage);
1205 		*pagep = filepage;
1206 	}
1207 	return 0;
1208 
1209 failed:
1210 	if (*pagep != filepage) {
1211 		unlock_page(filepage);
1212 		page_cache_release(filepage);
1213 	}
1214 	return error;
1215 }
1216 
1217 struct page *shmem_nopage(struct vm_area_struct *vma, unsigned long address, int *type)
1218 {
1219 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1220 	struct page *page = NULL;
1221 	unsigned long idx;
1222 	int error;
1223 
1224 	idx = (address - vma->vm_start) >> PAGE_SHIFT;
1225 	idx += vma->vm_pgoff;
1226 	idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
1227 	if (((loff_t) idx << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1228 		return NOPAGE_SIGBUS;
1229 
1230 	error = shmem_getpage(inode, idx, &page, SGP_CACHE, type);
1231 	if (error)
1232 		return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;
1233 
1234 	mark_page_accessed(page);
1235 	return page;
1236 }
1237 
1238 static int shmem_populate(struct vm_area_struct *vma,
1239 	unsigned long addr, unsigned long len,
1240 	pgprot_t prot, unsigned long pgoff, int nonblock)
1241 {
1242 	struct inode *inode = vma->vm_file->f_dentry->d_inode;
1243 	struct mm_struct *mm = vma->vm_mm;
1244 	enum sgp_type sgp = nonblock? SGP_QUICK: SGP_CACHE;
1245 	unsigned long size;
1246 
1247 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1248 	if (pgoff >= size || pgoff + (len >> PAGE_SHIFT) > size)
1249 		return -EINVAL;
1250 
1251 	while ((long) len > 0) {
1252 		struct page *page = NULL;
1253 		int err;
1254 		/*
1255 		 * Will need changing if PAGE_CACHE_SIZE != PAGE_SIZE
1256 		 */
1257 		err = shmem_getpage(inode, pgoff, &page, sgp, NULL);
1258 		if (err)
1259 			return err;
1260 		/* Page may still be null, but only if nonblock was set. */
1261 		if (page) {
1262 			mark_page_accessed(page);
1263 			err = install_page(mm, vma, addr, page, prot);
1264 			if (err) {
1265 				page_cache_release(page);
1266 				return err;
1267 			}
1268 		} else if (vma->vm_flags & VM_NONLINEAR) {
1269 			/* No page was found just because we can't read it in
1270 			 * now (being here implies nonblock != 0), but the page
1271 			 * may exist, so set the PTE to fault it in later. */
1272     			err = install_file_pte(mm, vma, addr, pgoff, prot);
1273 			if (err)
1274 	    			return err;
1275 		}
1276 
1277 		len -= PAGE_SIZE;
1278 		addr += PAGE_SIZE;
1279 		pgoff++;
1280 	}
1281 	return 0;
1282 }
1283 
1284 #ifdef CONFIG_NUMA
1285 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1286 {
1287 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1288 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1289 }
1290 
1291 struct mempolicy *
1292 shmem_get_policy(struct vm_area_struct *vma, unsigned long addr)
1293 {
1294 	struct inode *i = vma->vm_file->f_dentry->d_inode;
1295 	unsigned long idx;
1296 
1297 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1298 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1299 }
1300 #endif
1301 
1302 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1303 {
1304 	struct inode *inode = file->f_dentry->d_inode;
1305 	struct shmem_inode_info *info = SHMEM_I(inode);
1306 	int retval = -ENOMEM;
1307 
1308 	spin_lock(&info->lock);
1309 	if (lock && !(info->flags & VM_LOCKED)) {
1310 		if (!user_shm_lock(inode->i_size, user))
1311 			goto out_nomem;
1312 		info->flags |= VM_LOCKED;
1313 	}
1314 	if (!lock && (info->flags & VM_LOCKED) && user) {
1315 		user_shm_unlock(inode->i_size, user);
1316 		info->flags &= ~VM_LOCKED;
1317 	}
1318 	retval = 0;
1319 out_nomem:
1320 	spin_unlock(&info->lock);
1321 	return retval;
1322 }
1323 
1324 int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1325 {
1326 	file_accessed(file);
1327 	vma->vm_ops = &shmem_vm_ops;
1328 	return 0;
1329 }
1330 
1331 static struct inode *
1332 shmem_get_inode(struct super_block *sb, int mode, dev_t dev)
1333 {
1334 	struct inode *inode;
1335 	struct shmem_inode_info *info;
1336 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1337 
1338 	if (sbinfo->max_inodes) {
1339 		spin_lock(&sbinfo->stat_lock);
1340 		if (!sbinfo->free_inodes) {
1341 			spin_unlock(&sbinfo->stat_lock);
1342 			return NULL;
1343 		}
1344 		sbinfo->free_inodes--;
1345 		spin_unlock(&sbinfo->stat_lock);
1346 	}
1347 
1348 	inode = new_inode(sb);
1349 	if (inode) {
1350 		inode->i_mode = mode;
1351 		inode->i_uid = current->fsuid;
1352 		inode->i_gid = current->fsgid;
1353 		inode->i_blksize = PAGE_CACHE_SIZE;
1354 		inode->i_blocks = 0;
1355 		inode->i_mapping->a_ops = &shmem_aops;
1356 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1357 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1358 		info = SHMEM_I(inode);
1359 		memset(info, 0, (char *)inode - (char *)info);
1360 		spin_lock_init(&info->lock);
1361 		INIT_LIST_HEAD(&info->swaplist);
1362 
1363 		switch (mode & S_IFMT) {
1364 		default:
1365 			init_special_inode(inode, mode, dev);
1366 			break;
1367 		case S_IFREG:
1368 			inode->i_op = &shmem_inode_operations;
1369 			inode->i_fop = &shmem_file_operations;
1370 			mpol_shared_policy_init(&info->policy, sbinfo->policy,
1371 							&sbinfo->policy_nodes);
1372 			break;
1373 		case S_IFDIR:
1374 			inode->i_nlink++;
1375 			/* Some things misbehave if size == 0 on a directory */
1376 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1377 			inode->i_op = &shmem_dir_inode_operations;
1378 			inode->i_fop = &simple_dir_operations;
1379 			break;
1380 		case S_IFLNK:
1381 			/*
1382 			 * Must not load anything in the rbtree,
1383 			 * mpol_free_shared_policy will not be called.
1384 			 */
1385 			mpol_shared_policy_init(&info->policy, MPOL_DEFAULT,
1386 						NULL);
1387 			break;
1388 		}
1389 	} else if (sbinfo->max_inodes) {
1390 		spin_lock(&sbinfo->stat_lock);
1391 		sbinfo->free_inodes++;
1392 		spin_unlock(&sbinfo->stat_lock);
1393 	}
1394 	return inode;
1395 }
1396 
1397 #ifdef CONFIG_TMPFS
1398 static struct inode_operations shmem_symlink_inode_operations;
1399 static struct inode_operations shmem_symlink_inline_operations;
1400 
1401 /*
1402  * Normally tmpfs makes no use of shmem_prepare_write, but it
1403  * lets a tmpfs file be used read-write below the loop driver.
1404  */
1405 static int
1406 shmem_prepare_write(struct file *file, struct page *page, unsigned offset, unsigned to)
1407 {
1408 	struct inode *inode = page->mapping->host;
1409 	return shmem_getpage(inode, page->index, &page, SGP_WRITE, NULL);
1410 }
1411 
1412 static ssize_t
1413 shmem_file_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
1414 {
1415 	struct inode	*inode = file->f_dentry->d_inode;
1416 	loff_t		pos;
1417 	unsigned long	written;
1418 	ssize_t		err;
1419 
1420 	if ((ssize_t) count < 0)
1421 		return -EINVAL;
1422 
1423 	if (!access_ok(VERIFY_READ, buf, count))
1424 		return -EFAULT;
1425 
1426 	mutex_lock(&inode->i_mutex);
1427 
1428 	pos = *ppos;
1429 	written = 0;
1430 
1431 	err = generic_write_checks(file, &pos, &count, 0);
1432 	if (err || !count)
1433 		goto out;
1434 
1435 	err = remove_suid(file->f_dentry);
1436 	if (err)
1437 		goto out;
1438 
1439 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1440 
1441 	do {
1442 		struct page *page = NULL;
1443 		unsigned long bytes, index, offset;
1444 		char *kaddr;
1445 		int left;
1446 
1447 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1448 		index = pos >> PAGE_CACHE_SHIFT;
1449 		bytes = PAGE_CACHE_SIZE - offset;
1450 		if (bytes > count)
1451 			bytes = count;
1452 
1453 		/*
1454 		 * We don't hold page lock across copy from user -
1455 		 * what would it guard against? - so no deadlock here.
1456 		 * But it still may be a good idea to prefault below.
1457 		 */
1458 
1459 		err = shmem_getpage(inode, index, &page, SGP_WRITE, NULL);
1460 		if (err)
1461 			break;
1462 
1463 		left = bytes;
1464 		if (PageHighMem(page)) {
1465 			volatile unsigned char dummy;
1466 			__get_user(dummy, buf);
1467 			__get_user(dummy, buf + bytes - 1);
1468 
1469 			kaddr = kmap_atomic(page, KM_USER0);
1470 			left = __copy_from_user_inatomic(kaddr + offset,
1471 							buf, bytes);
1472 			kunmap_atomic(kaddr, KM_USER0);
1473 		}
1474 		if (left) {
1475 			kaddr = kmap(page);
1476 			left = __copy_from_user(kaddr + offset, buf, bytes);
1477 			kunmap(page);
1478 		}
1479 
1480 		written += bytes;
1481 		count -= bytes;
1482 		pos += bytes;
1483 		buf += bytes;
1484 		if (pos > inode->i_size)
1485 			i_size_write(inode, pos);
1486 
1487 		flush_dcache_page(page);
1488 		set_page_dirty(page);
1489 		mark_page_accessed(page);
1490 		page_cache_release(page);
1491 
1492 		if (left) {
1493 			pos -= left;
1494 			written -= left;
1495 			err = -EFAULT;
1496 			break;
1497 		}
1498 
1499 		/*
1500 		 * Our dirty pages are not counted in nr_dirty,
1501 		 * and we do not attempt to balance dirty pages.
1502 		 */
1503 
1504 		cond_resched();
1505 	} while (count);
1506 
1507 	*ppos = pos;
1508 	if (written)
1509 		err = written;
1510 out:
1511 	mutex_unlock(&inode->i_mutex);
1512 	return err;
1513 }
1514 
1515 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1516 {
1517 	struct inode *inode = filp->f_dentry->d_inode;
1518 	struct address_space *mapping = inode->i_mapping;
1519 	unsigned long index, offset;
1520 
1521 	index = *ppos >> PAGE_CACHE_SHIFT;
1522 	offset = *ppos & ~PAGE_CACHE_MASK;
1523 
1524 	for (;;) {
1525 		struct page *page = NULL;
1526 		unsigned long end_index, nr, ret;
1527 		loff_t i_size = i_size_read(inode);
1528 
1529 		end_index = i_size >> PAGE_CACHE_SHIFT;
1530 		if (index > end_index)
1531 			break;
1532 		if (index == end_index) {
1533 			nr = i_size & ~PAGE_CACHE_MASK;
1534 			if (nr <= offset)
1535 				break;
1536 		}
1537 
1538 		desc->error = shmem_getpage(inode, index, &page, SGP_READ, NULL);
1539 		if (desc->error) {
1540 			if (desc->error == -EINVAL)
1541 				desc->error = 0;
1542 			break;
1543 		}
1544 
1545 		/*
1546 		 * We must evaluate after, since reads (unlike writes)
1547 		 * are called without i_mutex protection against truncate
1548 		 */
1549 		nr = PAGE_CACHE_SIZE;
1550 		i_size = i_size_read(inode);
1551 		end_index = i_size >> PAGE_CACHE_SHIFT;
1552 		if (index == end_index) {
1553 			nr = i_size & ~PAGE_CACHE_MASK;
1554 			if (nr <= offset) {
1555 				if (page)
1556 					page_cache_release(page);
1557 				break;
1558 			}
1559 		}
1560 		nr -= offset;
1561 
1562 		if (page) {
1563 			/*
1564 			 * If users can be writing to this page using arbitrary
1565 			 * virtual addresses, take care about potential aliasing
1566 			 * before reading the page on the kernel side.
1567 			 */
1568 			if (mapping_writably_mapped(mapping))
1569 				flush_dcache_page(page);
1570 			/*
1571 			 * Mark the page accessed if we read the beginning.
1572 			 */
1573 			if (!offset)
1574 				mark_page_accessed(page);
1575 		} else {
1576 			page = ZERO_PAGE(0);
1577 			page_cache_get(page);
1578 		}
1579 
1580 		/*
1581 		 * Ok, we have the page, and it's up-to-date, so
1582 		 * now we can copy it to user space...
1583 		 *
1584 		 * The actor routine returns how many bytes were actually used..
1585 		 * NOTE! This may not be the same as how much of a user buffer
1586 		 * we filled up (we may be padding etc), so we can only update
1587 		 * "pos" here (the actor routine has to update the user buffer
1588 		 * pointers and the remaining count).
1589 		 */
1590 		ret = actor(desc, page, offset, nr);
1591 		offset += ret;
1592 		index += offset >> PAGE_CACHE_SHIFT;
1593 		offset &= ~PAGE_CACHE_MASK;
1594 
1595 		page_cache_release(page);
1596 		if (ret != nr || !desc->count)
1597 			break;
1598 
1599 		cond_resched();
1600 	}
1601 
1602 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1603 	file_accessed(filp);
1604 }
1605 
1606 static ssize_t shmem_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1607 {
1608 	read_descriptor_t desc;
1609 
1610 	if ((ssize_t) count < 0)
1611 		return -EINVAL;
1612 	if (!access_ok(VERIFY_WRITE, buf, count))
1613 		return -EFAULT;
1614 	if (!count)
1615 		return 0;
1616 
1617 	desc.written = 0;
1618 	desc.count = count;
1619 	desc.arg.buf = buf;
1620 	desc.error = 0;
1621 
1622 	do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1623 	if (desc.written)
1624 		return desc.written;
1625 	return desc.error;
1626 }
1627 
1628 static ssize_t shmem_file_sendfile(struct file *in_file, loff_t *ppos,
1629 			 size_t count, read_actor_t actor, void *target)
1630 {
1631 	read_descriptor_t desc;
1632 
1633 	if (!count)
1634 		return 0;
1635 
1636 	desc.written = 0;
1637 	desc.count = count;
1638 	desc.arg.data = target;
1639 	desc.error = 0;
1640 
1641 	do_shmem_file_read(in_file, ppos, &desc, actor);
1642 	if (desc.written)
1643 		return desc.written;
1644 	return desc.error;
1645 }
1646 
1647 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1648 {
1649 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1650 
1651 	buf->f_type = TMPFS_MAGIC;
1652 	buf->f_bsize = PAGE_CACHE_SIZE;
1653 	buf->f_namelen = NAME_MAX;
1654 	spin_lock(&sbinfo->stat_lock);
1655 	if (sbinfo->max_blocks) {
1656 		buf->f_blocks = sbinfo->max_blocks;
1657 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1658 	}
1659 	if (sbinfo->max_inodes) {
1660 		buf->f_files = sbinfo->max_inodes;
1661 		buf->f_ffree = sbinfo->free_inodes;
1662 	}
1663 	/* else leave those fields 0 like simple_statfs */
1664 	spin_unlock(&sbinfo->stat_lock);
1665 	return 0;
1666 }
1667 
1668 /*
1669  * File creation. Allocate an inode, and we're done..
1670  */
1671 static int
1672 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1673 {
1674 	struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);
1675 	int error = -ENOSPC;
1676 
1677 	if (inode) {
1678 		error = security_inode_init_security(inode, dir, NULL, NULL,
1679 						     NULL);
1680 		if (error) {
1681 			if (error != -EOPNOTSUPP) {
1682 				iput(inode);
1683 				return error;
1684 			}
1685 			error = 0;
1686 		}
1687 		if (dir->i_mode & S_ISGID) {
1688 			inode->i_gid = dir->i_gid;
1689 			if (S_ISDIR(mode))
1690 				inode->i_mode |= S_ISGID;
1691 		}
1692 		dir->i_size += BOGO_DIRENT_SIZE;
1693 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1694 		d_instantiate(dentry, inode);
1695 		dget(dentry); /* Extra count - pin the dentry in core */
1696 	}
1697 	return error;
1698 }
1699 
1700 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1701 {
1702 	int error;
1703 
1704 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1705 		return error;
1706 	dir->i_nlink++;
1707 	return 0;
1708 }
1709 
1710 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1711 		struct nameidata *nd)
1712 {
1713 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1714 }
1715 
1716 /*
1717  * Link a file..
1718  */
1719 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1720 {
1721 	struct inode *inode = old_dentry->d_inode;
1722 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1723 
1724 	/*
1725 	 * No ordinary (disk based) filesystem counts links as inodes;
1726 	 * but each new link needs a new dentry, pinning lowmem, and
1727 	 * tmpfs dentries cannot be pruned until they are unlinked.
1728 	 */
1729 	if (sbinfo->max_inodes) {
1730 		spin_lock(&sbinfo->stat_lock);
1731 		if (!sbinfo->free_inodes) {
1732 			spin_unlock(&sbinfo->stat_lock);
1733 			return -ENOSPC;
1734 		}
1735 		sbinfo->free_inodes--;
1736 		spin_unlock(&sbinfo->stat_lock);
1737 	}
1738 
1739 	dir->i_size += BOGO_DIRENT_SIZE;
1740 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1741 	inode->i_nlink++;
1742 	atomic_inc(&inode->i_count);	/* New dentry reference */
1743 	dget(dentry);		/* Extra pinning count for the created dentry */
1744 	d_instantiate(dentry, inode);
1745 	return 0;
1746 }
1747 
1748 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1749 {
1750 	struct inode *inode = dentry->d_inode;
1751 
1752 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) {
1753 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1754 		if (sbinfo->max_inodes) {
1755 			spin_lock(&sbinfo->stat_lock);
1756 			sbinfo->free_inodes++;
1757 			spin_unlock(&sbinfo->stat_lock);
1758 		}
1759 	}
1760 
1761 	dir->i_size -= BOGO_DIRENT_SIZE;
1762 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1763 	inode->i_nlink--;
1764 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1765 	return 0;
1766 }
1767 
1768 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1769 {
1770 	if (!simple_empty(dentry))
1771 		return -ENOTEMPTY;
1772 
1773 	dentry->d_inode->i_nlink--;
1774 	dir->i_nlink--;
1775 	return shmem_unlink(dir, dentry);
1776 }
1777 
1778 /*
1779  * The VFS layer already does all the dentry stuff for rename,
1780  * we just have to decrement the usage count for the target if
1781  * it exists so that the VFS layer correctly free's it when it
1782  * gets overwritten.
1783  */
1784 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1785 {
1786 	struct inode *inode = old_dentry->d_inode;
1787 	int they_are_dirs = S_ISDIR(inode->i_mode);
1788 
1789 	if (!simple_empty(new_dentry))
1790 		return -ENOTEMPTY;
1791 
1792 	if (new_dentry->d_inode) {
1793 		(void) shmem_unlink(new_dir, new_dentry);
1794 		if (they_are_dirs)
1795 			old_dir->i_nlink--;
1796 	} else if (they_are_dirs) {
1797 		old_dir->i_nlink--;
1798 		new_dir->i_nlink++;
1799 	}
1800 
1801 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1802 	new_dir->i_size += BOGO_DIRENT_SIZE;
1803 	old_dir->i_ctime = old_dir->i_mtime =
1804 	new_dir->i_ctime = new_dir->i_mtime =
1805 	inode->i_ctime = CURRENT_TIME;
1806 	return 0;
1807 }
1808 
1809 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1810 {
1811 	int error;
1812 	int len;
1813 	struct inode *inode;
1814 	struct page *page = NULL;
1815 	char *kaddr;
1816 	struct shmem_inode_info *info;
1817 
1818 	len = strlen(symname) + 1;
1819 	if (len > PAGE_CACHE_SIZE)
1820 		return -ENAMETOOLONG;
1821 
1822 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);
1823 	if (!inode)
1824 		return -ENOSPC;
1825 
1826 	error = security_inode_init_security(inode, dir, NULL, NULL,
1827 					     NULL);
1828 	if (error) {
1829 		if (error != -EOPNOTSUPP) {
1830 			iput(inode);
1831 			return error;
1832 		}
1833 		error = 0;
1834 	}
1835 
1836 	info = SHMEM_I(inode);
1837 	inode->i_size = len-1;
1838 	if (len <= (char *)inode - (char *)info) {
1839 		/* do it inline */
1840 		memcpy(info, symname, len);
1841 		inode->i_op = &shmem_symlink_inline_operations;
1842 	} else {
1843 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1844 		if (error) {
1845 			iput(inode);
1846 			return error;
1847 		}
1848 		inode->i_op = &shmem_symlink_inode_operations;
1849 		kaddr = kmap_atomic(page, KM_USER0);
1850 		memcpy(kaddr, symname, len);
1851 		kunmap_atomic(kaddr, KM_USER0);
1852 		set_page_dirty(page);
1853 		page_cache_release(page);
1854 	}
1855 	if (dir->i_mode & S_ISGID)
1856 		inode->i_gid = dir->i_gid;
1857 	dir->i_size += BOGO_DIRENT_SIZE;
1858 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1859 	d_instantiate(dentry, inode);
1860 	dget(dentry);
1861 	return 0;
1862 }
1863 
1864 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1865 {
1866 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1867 	return NULL;
1868 }
1869 
1870 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1871 {
1872 	struct page *page = NULL;
1873 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1874 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1875 	return page;
1876 }
1877 
1878 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1879 {
1880 	if (!IS_ERR(nd_get_link(nd))) {
1881 		struct page *page = cookie;
1882 		kunmap(page);
1883 		mark_page_accessed(page);
1884 		page_cache_release(page);
1885 	}
1886 }
1887 
1888 static struct inode_operations shmem_symlink_inline_operations = {
1889 	.readlink	= generic_readlink,
1890 	.follow_link	= shmem_follow_link_inline,
1891 };
1892 
1893 static struct inode_operations shmem_symlink_inode_operations = {
1894 	.truncate	= shmem_truncate,
1895 	.readlink	= generic_readlink,
1896 	.follow_link	= shmem_follow_link,
1897 	.put_link	= shmem_put_link,
1898 };
1899 
1900 static int shmem_parse_options(char *options, int *mode, uid_t *uid,
1901 	gid_t *gid, unsigned long *blocks, unsigned long *inodes,
1902 	int *policy, nodemask_t *policy_nodes)
1903 {
1904 	char *this_char, *value, *rest;
1905 
1906 	while (options != NULL) {
1907 		this_char = options;
1908 		for (;;) {
1909 			/*
1910 			 * NUL-terminate this option: unfortunately,
1911 			 * mount options form a comma-separated list,
1912 			 * but mpol's nodelist may also contain commas.
1913 			 */
1914 			options = strchr(options, ',');
1915 			if (options == NULL)
1916 				break;
1917 			options++;
1918 			if (!isdigit(*options)) {
1919 				options[-1] = '\0';
1920 				break;
1921 			}
1922 		}
1923 		if (!*this_char)
1924 			continue;
1925 		if ((value = strchr(this_char,'=')) != NULL) {
1926 			*value++ = 0;
1927 		} else {
1928 			printk(KERN_ERR
1929 			    "tmpfs: No value for mount option '%s'\n",
1930 			    this_char);
1931 			return 1;
1932 		}
1933 
1934 		if (!strcmp(this_char,"size")) {
1935 			unsigned long long size;
1936 			size = memparse(value,&rest);
1937 			if (*rest == '%') {
1938 				size <<= PAGE_SHIFT;
1939 				size *= totalram_pages;
1940 				do_div(size, 100);
1941 				rest++;
1942 			}
1943 			if (*rest)
1944 				goto bad_val;
1945 			*blocks = size >> PAGE_CACHE_SHIFT;
1946 		} else if (!strcmp(this_char,"nr_blocks")) {
1947 			*blocks = memparse(value,&rest);
1948 			if (*rest)
1949 				goto bad_val;
1950 		} else if (!strcmp(this_char,"nr_inodes")) {
1951 			*inodes = memparse(value,&rest);
1952 			if (*rest)
1953 				goto bad_val;
1954 		} else if (!strcmp(this_char,"mode")) {
1955 			if (!mode)
1956 				continue;
1957 			*mode = simple_strtoul(value,&rest,8);
1958 			if (*rest)
1959 				goto bad_val;
1960 		} else if (!strcmp(this_char,"uid")) {
1961 			if (!uid)
1962 				continue;
1963 			*uid = simple_strtoul(value,&rest,0);
1964 			if (*rest)
1965 				goto bad_val;
1966 		} else if (!strcmp(this_char,"gid")) {
1967 			if (!gid)
1968 				continue;
1969 			*gid = simple_strtoul(value,&rest,0);
1970 			if (*rest)
1971 				goto bad_val;
1972 		} else if (!strcmp(this_char,"mpol")) {
1973 			if (shmem_parse_mpol(value,policy,policy_nodes))
1974 				goto bad_val;
1975 		} else {
1976 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
1977 			       this_char);
1978 			return 1;
1979 		}
1980 	}
1981 	return 0;
1982 
1983 bad_val:
1984 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
1985 	       value, this_char);
1986 	return 1;
1987 
1988 }
1989 
1990 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
1991 {
1992 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1993 	unsigned long max_blocks = sbinfo->max_blocks;
1994 	unsigned long max_inodes = sbinfo->max_inodes;
1995 	int policy = sbinfo->policy;
1996 	nodemask_t policy_nodes = sbinfo->policy_nodes;
1997 	unsigned long blocks;
1998 	unsigned long inodes;
1999 	int error = -EINVAL;
2000 
2001 	if (shmem_parse_options(data, NULL, NULL, NULL, &max_blocks,
2002 				&max_inodes, &policy, &policy_nodes))
2003 		return error;
2004 
2005 	spin_lock(&sbinfo->stat_lock);
2006 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2007 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2008 	if (max_blocks < blocks)
2009 		goto out;
2010 	if (max_inodes < inodes)
2011 		goto out;
2012 	/*
2013 	 * Those tests also disallow limited->unlimited while any are in
2014 	 * use, so i_blocks will always be zero when max_blocks is zero;
2015 	 * but we must separately disallow unlimited->limited, because
2016 	 * in that case we have no record of how much is already in use.
2017 	 */
2018 	if (max_blocks && !sbinfo->max_blocks)
2019 		goto out;
2020 	if (max_inodes && !sbinfo->max_inodes)
2021 		goto out;
2022 
2023 	error = 0;
2024 	sbinfo->max_blocks  = max_blocks;
2025 	sbinfo->free_blocks = max_blocks - blocks;
2026 	sbinfo->max_inodes  = max_inodes;
2027 	sbinfo->free_inodes = max_inodes - inodes;
2028 	sbinfo->policy = policy;
2029 	sbinfo->policy_nodes = policy_nodes;
2030 out:
2031 	spin_unlock(&sbinfo->stat_lock);
2032 	return error;
2033 }
2034 #endif
2035 
2036 static void shmem_put_super(struct super_block *sb)
2037 {
2038 	kfree(sb->s_fs_info);
2039 	sb->s_fs_info = NULL;
2040 }
2041 
2042 static int shmem_fill_super(struct super_block *sb,
2043 			    void *data, int silent)
2044 {
2045 	struct inode *inode;
2046 	struct dentry *root;
2047 	int mode   = S_IRWXUGO | S_ISVTX;
2048 	uid_t uid = current->fsuid;
2049 	gid_t gid = current->fsgid;
2050 	int err = -ENOMEM;
2051 	struct shmem_sb_info *sbinfo;
2052 	unsigned long blocks = 0;
2053 	unsigned long inodes = 0;
2054 	int policy = MPOL_DEFAULT;
2055 	nodemask_t policy_nodes = node_online_map;
2056 
2057 #ifdef CONFIG_TMPFS
2058 	/*
2059 	 * Per default we only allow half of the physical ram per
2060 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2061 	 * but the internal instance is left unlimited.
2062 	 */
2063 	if (!(sb->s_flags & MS_NOUSER)) {
2064 		blocks = totalram_pages / 2;
2065 		inodes = totalram_pages - totalhigh_pages;
2066 		if (inodes > blocks)
2067 			inodes = blocks;
2068 		if (shmem_parse_options(data, &mode, &uid, &gid, &blocks,
2069 					&inodes, &policy, &policy_nodes))
2070 			return -EINVAL;
2071 	}
2072 #else
2073 	sb->s_flags |= MS_NOUSER;
2074 #endif
2075 
2076 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2077 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2078 				L1_CACHE_BYTES), GFP_KERNEL);
2079 	if (!sbinfo)
2080 		return -ENOMEM;
2081 
2082 	spin_lock_init(&sbinfo->stat_lock);
2083 	sbinfo->max_blocks = blocks;
2084 	sbinfo->free_blocks = blocks;
2085 	sbinfo->max_inodes = inodes;
2086 	sbinfo->free_inodes = inodes;
2087 	sbinfo->policy = policy;
2088 	sbinfo->policy_nodes = policy_nodes;
2089 
2090 	sb->s_fs_info = sbinfo;
2091 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2092 	sb->s_blocksize = PAGE_CACHE_SIZE;
2093 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2094 	sb->s_magic = TMPFS_MAGIC;
2095 	sb->s_op = &shmem_ops;
2096 	sb->s_time_gran = 1;
2097 
2098 	inode = shmem_get_inode(sb, S_IFDIR | mode, 0);
2099 	if (!inode)
2100 		goto failed;
2101 	inode->i_uid = uid;
2102 	inode->i_gid = gid;
2103 	root = d_alloc_root(inode);
2104 	if (!root)
2105 		goto failed_iput;
2106 	sb->s_root = root;
2107 	return 0;
2108 
2109 failed_iput:
2110 	iput(inode);
2111 failed:
2112 	shmem_put_super(sb);
2113 	return err;
2114 }
2115 
2116 static struct kmem_cache *shmem_inode_cachep;
2117 
2118 static struct inode *shmem_alloc_inode(struct super_block *sb)
2119 {
2120 	struct shmem_inode_info *p;
2121 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, SLAB_KERNEL);
2122 	if (!p)
2123 		return NULL;
2124 	return &p->vfs_inode;
2125 }
2126 
2127 static void shmem_destroy_inode(struct inode *inode)
2128 {
2129 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2130 		/* only struct inode is valid if it's an inline symlink */
2131 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2132 	}
2133 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2134 }
2135 
2136 static void init_once(void *foo, struct kmem_cache *cachep,
2137 		      unsigned long flags)
2138 {
2139 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2140 
2141 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2142 	    SLAB_CTOR_CONSTRUCTOR) {
2143 		inode_init_once(&p->vfs_inode);
2144 	}
2145 }
2146 
2147 static int init_inodecache(void)
2148 {
2149 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2150 				sizeof(struct shmem_inode_info),
2151 				0, 0, init_once, NULL);
2152 	if (shmem_inode_cachep == NULL)
2153 		return -ENOMEM;
2154 	return 0;
2155 }
2156 
2157 static void destroy_inodecache(void)
2158 {
2159 	if (kmem_cache_destroy(shmem_inode_cachep))
2160 		printk(KERN_INFO "shmem_inode_cache: not all structures were freed\n");
2161 }
2162 
2163 static const struct address_space_operations shmem_aops = {
2164 	.writepage	= shmem_writepage,
2165 	.set_page_dirty	= __set_page_dirty_nobuffers,
2166 #ifdef CONFIG_TMPFS
2167 	.prepare_write	= shmem_prepare_write,
2168 	.commit_write	= simple_commit_write,
2169 #endif
2170 	.migratepage	= migrate_page,
2171 };
2172 
2173 static struct file_operations shmem_file_operations = {
2174 	.mmap		= shmem_mmap,
2175 #ifdef CONFIG_TMPFS
2176 	.llseek		= generic_file_llseek,
2177 	.read		= shmem_file_read,
2178 	.write		= shmem_file_write,
2179 	.fsync		= simple_sync_file,
2180 	.sendfile	= shmem_file_sendfile,
2181 #endif
2182 };
2183 
2184 static struct inode_operations shmem_inode_operations = {
2185 	.truncate	= shmem_truncate,
2186 	.setattr	= shmem_notify_change,
2187 	.truncate_range	= shmem_truncate_range,
2188 };
2189 
2190 static struct inode_operations shmem_dir_inode_operations = {
2191 #ifdef CONFIG_TMPFS
2192 	.create		= shmem_create,
2193 	.lookup		= simple_lookup,
2194 	.link		= shmem_link,
2195 	.unlink		= shmem_unlink,
2196 	.symlink	= shmem_symlink,
2197 	.mkdir		= shmem_mkdir,
2198 	.rmdir		= shmem_rmdir,
2199 	.mknod		= shmem_mknod,
2200 	.rename		= shmem_rename,
2201 #endif
2202 };
2203 
2204 static struct super_operations shmem_ops = {
2205 	.alloc_inode	= shmem_alloc_inode,
2206 	.destroy_inode	= shmem_destroy_inode,
2207 #ifdef CONFIG_TMPFS
2208 	.statfs		= shmem_statfs,
2209 	.remount_fs	= shmem_remount_fs,
2210 #endif
2211 	.delete_inode	= shmem_delete_inode,
2212 	.drop_inode	= generic_delete_inode,
2213 	.put_super	= shmem_put_super,
2214 };
2215 
2216 static struct vm_operations_struct shmem_vm_ops = {
2217 	.nopage		= shmem_nopage,
2218 	.populate	= shmem_populate,
2219 #ifdef CONFIG_NUMA
2220 	.set_policy     = shmem_set_policy,
2221 	.get_policy     = shmem_get_policy,
2222 #endif
2223 };
2224 
2225 
2226 static int shmem_get_sb(struct file_system_type *fs_type,
2227 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2228 {
2229 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2230 }
2231 
2232 static struct file_system_type tmpfs_fs_type = {
2233 	.owner		= THIS_MODULE,
2234 	.name		= "tmpfs",
2235 	.get_sb		= shmem_get_sb,
2236 	.kill_sb	= kill_litter_super,
2237 };
2238 static struct vfsmount *shm_mnt;
2239 
2240 static int __init init_tmpfs(void)
2241 {
2242 	int error;
2243 
2244 	error = init_inodecache();
2245 	if (error)
2246 		goto out3;
2247 
2248 	error = register_filesystem(&tmpfs_fs_type);
2249 	if (error) {
2250 		printk(KERN_ERR "Could not register tmpfs\n");
2251 		goto out2;
2252 	}
2253 
2254 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2255 				tmpfs_fs_type.name, NULL);
2256 	if (IS_ERR(shm_mnt)) {
2257 		error = PTR_ERR(shm_mnt);
2258 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2259 		goto out1;
2260 	}
2261 	return 0;
2262 
2263 out1:
2264 	unregister_filesystem(&tmpfs_fs_type);
2265 out2:
2266 	destroy_inodecache();
2267 out3:
2268 	shm_mnt = ERR_PTR(error);
2269 	return error;
2270 }
2271 module_init(init_tmpfs)
2272 
2273 /*
2274  * shmem_file_setup - get an unlinked file living in tmpfs
2275  *
2276  * @name: name for dentry (to be seen in /proc/<pid>/maps
2277  * @size: size to be set for the file
2278  *
2279  */
2280 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2281 {
2282 	int error;
2283 	struct file *file;
2284 	struct inode *inode;
2285 	struct dentry *dentry, *root;
2286 	struct qstr this;
2287 
2288 	if (IS_ERR(shm_mnt))
2289 		return (void *)shm_mnt;
2290 
2291 	if (size < 0 || size > SHMEM_MAX_BYTES)
2292 		return ERR_PTR(-EINVAL);
2293 
2294 	if (shmem_acct_size(flags, size))
2295 		return ERR_PTR(-ENOMEM);
2296 
2297 	error = -ENOMEM;
2298 	this.name = name;
2299 	this.len = strlen(name);
2300 	this.hash = 0; /* will go */
2301 	root = shm_mnt->mnt_root;
2302 	dentry = d_alloc(root, &this);
2303 	if (!dentry)
2304 		goto put_memory;
2305 
2306 	error = -ENFILE;
2307 	file = get_empty_filp();
2308 	if (!file)
2309 		goto put_dentry;
2310 
2311 	error = -ENOSPC;
2312 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);
2313 	if (!inode)
2314 		goto close_file;
2315 
2316 	SHMEM_I(inode)->flags = flags & VM_ACCOUNT;
2317 	d_instantiate(dentry, inode);
2318 	inode->i_size = size;
2319 	inode->i_nlink = 0;	/* It is unlinked */
2320 	file->f_vfsmnt = mntget(shm_mnt);
2321 	file->f_dentry = dentry;
2322 	file->f_mapping = inode->i_mapping;
2323 	file->f_op = &shmem_file_operations;
2324 	file->f_mode = FMODE_WRITE | FMODE_READ;
2325 	return file;
2326 
2327 close_file:
2328 	put_filp(file);
2329 put_dentry:
2330 	dput(dentry);
2331 put_memory:
2332 	shmem_unacct_size(flags, size);
2333 	return ERR_PTR(error);
2334 }
2335 
2336 /*
2337  * shmem_zero_setup - setup a shared anonymous mapping
2338  *
2339  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2340  */
2341 int shmem_zero_setup(struct vm_area_struct *vma)
2342 {
2343 	struct file *file;
2344 	loff_t size = vma->vm_end - vma->vm_start;
2345 
2346 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2347 	if (IS_ERR(file))
2348 		return PTR_ERR(file);
2349 
2350 	if (vma->vm_file)
2351 		fput(vma->vm_file);
2352 	vma->vm_file = file;
2353 	vma->vm_ops = &shmem_vm_ops;
2354 	return 0;
2355 }
2356