xref: /linux/mm/shmem.c (revision 12871a0bd67dd4db4418e1daafcd46e9d329ef10)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/percpu_counter.h>
32 #include <linux/swap.h>
33 
34 static struct vfsmount *shm_mnt;
35 
36 #ifdef CONFIG_SHMEM
37 /*
38  * This virtual memory filesystem is heavily based on the ramfs. It
39  * extends ramfs by the ability to use swap and honor resource limits
40  * which makes it a completely usable filesystem.
41  */
42 
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63 
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67 
68 /*
69  * The maximum size of a shmem/tmpfs file is limited by the maximum size of
70  * its triple-indirect swap vector - see illustration at shmem_swp_entry().
71  *
72  * With 4kB page size, maximum file size is just over 2TB on a 32-bit kernel,
73  * but one eighth of that on a 64-bit kernel.  With 8kB page size, maximum
74  * file size is just over 4TB on a 64-bit kernel, but 16TB on a 32-bit kernel,
75  * MAX_LFS_FILESIZE being then more restrictive than swap vector layout.
76  *
77  * We use / and * instead of shifts in the definitions below, so that the swap
78  * vector can be tested with small even values (e.g. 20) for ENTRIES_PER_PAGE.
79  */
80 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
81 #define ENTRIES_PER_PAGEPAGE ((unsigned long long)ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
82 
83 #define SHMSWP_MAX_INDEX (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
84 #define SHMSWP_MAX_BYTES (SHMSWP_MAX_INDEX << PAGE_CACHE_SHIFT)
85 
86 #define SHMEM_MAX_BYTES  min_t(unsigned long long, SHMSWP_MAX_BYTES, MAX_LFS_FILESIZE)
87 #define SHMEM_MAX_INDEX  ((unsigned long)((SHMEM_MAX_BYTES+1) >> PAGE_CACHE_SHIFT))
88 
89 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
90 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
91 
92 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
93 #define SHMEM_PAGEIN	 VM_READ
94 #define SHMEM_TRUNCATE	 VM_WRITE
95 
96 /* Definition to limit shmem_truncate's steps between cond_rescheds */
97 #define LATENCY_LIMIT	 64
98 
99 /* Pretend that each entry is of this size in directory's i_size */
100 #define BOGO_DIRENT_SIZE 20
101 
102 struct shmem_xattr {
103 	struct list_head list;	/* anchored by shmem_inode_info->xattr_list */
104 	char *name;		/* xattr name */
105 	size_t size;
106 	char value[0];
107 };
108 
109 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
110 enum sgp_type {
111 	SGP_READ,	/* don't exceed i_size, don't allocate page */
112 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
113 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
114 	SGP_WRITE,	/* may exceed i_size, may allocate page */
115 };
116 
117 #ifdef CONFIG_TMPFS
118 static unsigned long shmem_default_max_blocks(void)
119 {
120 	return totalram_pages / 2;
121 }
122 
123 static unsigned long shmem_default_max_inodes(void)
124 {
125 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
126 }
127 #endif
128 
129 static int shmem_getpage(struct inode *inode, unsigned long idx,
130 			 struct page **pagep, enum sgp_type sgp, int *type);
131 
132 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
133 {
134 	/*
135 	 * The above definition of ENTRIES_PER_PAGE, and the use of
136 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
137 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
138 	 *
139 	 * Mobility flags are masked out as swap vectors cannot move
140 	 */
141 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
142 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
143 }
144 
145 static inline void shmem_dir_free(struct page *page)
146 {
147 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
148 }
149 
150 static struct page **shmem_dir_map(struct page *page)
151 {
152 	return (struct page **)kmap_atomic(page, KM_USER0);
153 }
154 
155 static inline void shmem_dir_unmap(struct page **dir)
156 {
157 	kunmap_atomic(dir, KM_USER0);
158 }
159 
160 static swp_entry_t *shmem_swp_map(struct page *page)
161 {
162 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
163 }
164 
165 static inline void shmem_swp_balance_unmap(void)
166 {
167 	/*
168 	 * When passing a pointer to an i_direct entry, to code which
169 	 * also handles indirect entries and so will shmem_swp_unmap,
170 	 * we must arrange for the preempt count to remain in balance.
171 	 * What kmap_atomic of a lowmem page does depends on config
172 	 * and architecture, so pretend to kmap_atomic some lowmem page.
173 	 */
174 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
175 }
176 
177 static inline void shmem_swp_unmap(swp_entry_t *entry)
178 {
179 	kunmap_atomic(entry, KM_USER1);
180 }
181 
182 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
183 {
184 	return sb->s_fs_info;
185 }
186 
187 /*
188  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
189  * for shared memory and for shared anonymous (/dev/zero) mappings
190  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
191  * consistent with the pre-accounting of private mappings ...
192  */
193 static inline int shmem_acct_size(unsigned long flags, loff_t size)
194 {
195 	return (flags & VM_NORESERVE) ?
196 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
197 }
198 
199 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
200 {
201 	if (!(flags & VM_NORESERVE))
202 		vm_unacct_memory(VM_ACCT(size));
203 }
204 
205 /*
206  * ... whereas tmpfs objects are accounted incrementally as
207  * pages are allocated, in order to allow huge sparse files.
208  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
209  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
210  */
211 static inline int shmem_acct_block(unsigned long flags)
212 {
213 	return (flags & VM_NORESERVE) ?
214 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
215 }
216 
217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 	if (flags & VM_NORESERVE)
220 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
221 }
222 
223 static const struct super_operations shmem_ops;
224 static const struct address_space_operations shmem_aops;
225 static const struct file_operations shmem_file_operations;
226 static const struct inode_operations shmem_inode_operations;
227 static const struct inode_operations shmem_dir_inode_operations;
228 static const struct inode_operations shmem_special_inode_operations;
229 static const struct vm_operations_struct shmem_vm_ops;
230 
231 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
232 	.ra_pages	= 0,	/* No readahead */
233 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
234 };
235 
236 static LIST_HEAD(shmem_swaplist);
237 static DEFINE_MUTEX(shmem_swaplist_mutex);
238 
239 static void shmem_free_blocks(struct inode *inode, long pages)
240 {
241 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 	if (sbinfo->max_blocks) {
243 		percpu_counter_add(&sbinfo->used_blocks, -pages);
244 		spin_lock(&inode->i_lock);
245 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
246 		spin_unlock(&inode->i_lock);
247 	}
248 }
249 
250 static int shmem_reserve_inode(struct super_block *sb)
251 {
252 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
253 	if (sbinfo->max_inodes) {
254 		spin_lock(&sbinfo->stat_lock);
255 		if (!sbinfo->free_inodes) {
256 			spin_unlock(&sbinfo->stat_lock);
257 			return -ENOSPC;
258 		}
259 		sbinfo->free_inodes--;
260 		spin_unlock(&sbinfo->stat_lock);
261 	}
262 	return 0;
263 }
264 
265 static void shmem_free_inode(struct super_block *sb)
266 {
267 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
268 	if (sbinfo->max_inodes) {
269 		spin_lock(&sbinfo->stat_lock);
270 		sbinfo->free_inodes++;
271 		spin_unlock(&sbinfo->stat_lock);
272 	}
273 }
274 
275 /**
276  * shmem_recalc_inode - recalculate the size of an inode
277  * @inode: inode to recalc
278  *
279  * We have to calculate the free blocks since the mm can drop
280  * undirtied hole pages behind our back.
281  *
282  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
283  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284  *
285  * It has to be called with the spinlock held.
286  */
287 static void shmem_recalc_inode(struct inode *inode)
288 {
289 	struct shmem_inode_info *info = SHMEM_I(inode);
290 	long freed;
291 
292 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293 	if (freed > 0) {
294 		info->alloced -= freed;
295 		shmem_unacct_blocks(info->flags, freed);
296 		shmem_free_blocks(inode, freed);
297 	}
298 }
299 
300 /**
301  * shmem_swp_entry - find the swap vector position in the info structure
302  * @info:  info structure for the inode
303  * @index: index of the page to find
304  * @page:  optional page to add to the structure. Has to be preset to
305  *         all zeros
306  *
307  * If there is no space allocated yet it will return NULL when
308  * page is NULL, else it will use the page for the needed block,
309  * setting it to NULL on return to indicate that it has been used.
310  *
311  * The swap vector is organized the following way:
312  *
313  * There are SHMEM_NR_DIRECT entries directly stored in the
314  * shmem_inode_info structure. So small files do not need an addional
315  * allocation.
316  *
317  * For pages with index > SHMEM_NR_DIRECT there is the pointer
318  * i_indirect which points to a page which holds in the first half
319  * doubly indirect blocks, in the second half triple indirect blocks:
320  *
321  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
322  * following layout (for SHMEM_NR_DIRECT == 16):
323  *
324  * i_indirect -> dir --> 16-19
325  * 	      |	     +-> 20-23
326  * 	      |
327  * 	      +-->dir2 --> 24-27
328  * 	      |	       +-> 28-31
329  * 	      |	       +-> 32-35
330  * 	      |	       +-> 36-39
331  * 	      |
332  * 	      +-->dir3 --> 40-43
333  * 	       	       +-> 44-47
334  * 	      	       +-> 48-51
335  * 	      	       +-> 52-55
336  */
337 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
338 {
339 	unsigned long offset;
340 	struct page **dir;
341 	struct page *subdir;
342 
343 	if (index < SHMEM_NR_DIRECT) {
344 		shmem_swp_balance_unmap();
345 		return info->i_direct+index;
346 	}
347 	if (!info->i_indirect) {
348 		if (page) {
349 			info->i_indirect = *page;
350 			*page = NULL;
351 		}
352 		return NULL;			/* need another page */
353 	}
354 
355 	index -= SHMEM_NR_DIRECT;
356 	offset = index % ENTRIES_PER_PAGE;
357 	index /= ENTRIES_PER_PAGE;
358 	dir = shmem_dir_map(info->i_indirect);
359 
360 	if (index >= ENTRIES_PER_PAGE/2) {
361 		index -= ENTRIES_PER_PAGE/2;
362 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
363 		index %= ENTRIES_PER_PAGE;
364 		subdir = *dir;
365 		if (!subdir) {
366 			if (page) {
367 				*dir = *page;
368 				*page = NULL;
369 			}
370 			shmem_dir_unmap(dir);
371 			return NULL;		/* need another page */
372 		}
373 		shmem_dir_unmap(dir);
374 		dir = shmem_dir_map(subdir);
375 	}
376 
377 	dir += index;
378 	subdir = *dir;
379 	if (!subdir) {
380 		if (!page || !(subdir = *page)) {
381 			shmem_dir_unmap(dir);
382 			return NULL;		/* need a page */
383 		}
384 		*dir = subdir;
385 		*page = NULL;
386 	}
387 	shmem_dir_unmap(dir);
388 	return shmem_swp_map(subdir) + offset;
389 }
390 
391 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
392 {
393 	long incdec = value? 1: -1;
394 
395 	entry->val = value;
396 	info->swapped += incdec;
397 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
398 		struct page *page = kmap_atomic_to_page(entry);
399 		set_page_private(page, page_private(page) + incdec);
400 	}
401 }
402 
403 /**
404  * shmem_swp_alloc - get the position of the swap entry for the page.
405  * @info:	info structure for the inode
406  * @index:	index of the page to find
407  * @sgp:	check and recheck i_size? skip allocation?
408  *
409  * If the entry does not exist, allocate it.
410  */
411 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
412 {
413 	struct inode *inode = &info->vfs_inode;
414 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
415 	struct page *page = NULL;
416 	swp_entry_t *entry;
417 
418 	if (sgp != SGP_WRITE &&
419 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
420 		return ERR_PTR(-EINVAL);
421 
422 	while (!(entry = shmem_swp_entry(info, index, &page))) {
423 		if (sgp == SGP_READ)
424 			return shmem_swp_map(ZERO_PAGE(0));
425 		/*
426 		 * Test used_blocks against 1 less max_blocks, since we have 1 data
427 		 * page (and perhaps indirect index pages) yet to allocate:
428 		 * a waste to allocate index if we cannot allocate data.
429 		 */
430 		if (sbinfo->max_blocks) {
431 			if (percpu_counter_compare(&sbinfo->used_blocks,
432 						sbinfo->max_blocks - 1) >= 0)
433 				return ERR_PTR(-ENOSPC);
434 			percpu_counter_inc(&sbinfo->used_blocks);
435 			spin_lock(&inode->i_lock);
436 			inode->i_blocks += BLOCKS_PER_PAGE;
437 			spin_unlock(&inode->i_lock);
438 		}
439 
440 		spin_unlock(&info->lock);
441 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
442 		spin_lock(&info->lock);
443 
444 		if (!page) {
445 			shmem_free_blocks(inode, 1);
446 			return ERR_PTR(-ENOMEM);
447 		}
448 		if (sgp != SGP_WRITE &&
449 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
450 			entry = ERR_PTR(-EINVAL);
451 			break;
452 		}
453 		if (info->next_index <= index)
454 			info->next_index = index + 1;
455 	}
456 	if (page) {
457 		/* another task gave its page, or truncated the file */
458 		shmem_free_blocks(inode, 1);
459 		shmem_dir_free(page);
460 	}
461 	if (info->next_index <= index && !IS_ERR(entry))
462 		info->next_index = index + 1;
463 	return entry;
464 }
465 
466 /**
467  * shmem_free_swp - free some swap entries in a directory
468  * @dir:        pointer to the directory
469  * @edir:       pointer after last entry of the directory
470  * @punch_lock: pointer to spinlock when needed for the holepunch case
471  */
472 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
473 						spinlock_t *punch_lock)
474 {
475 	spinlock_t *punch_unlock = NULL;
476 	swp_entry_t *ptr;
477 	int freed = 0;
478 
479 	for (ptr = dir; ptr < edir; ptr++) {
480 		if (ptr->val) {
481 			if (unlikely(punch_lock)) {
482 				punch_unlock = punch_lock;
483 				punch_lock = NULL;
484 				spin_lock(punch_unlock);
485 				if (!ptr->val)
486 					continue;
487 			}
488 			free_swap_and_cache(*ptr);
489 			*ptr = (swp_entry_t){0};
490 			freed++;
491 		}
492 	}
493 	if (punch_unlock)
494 		spin_unlock(punch_unlock);
495 	return freed;
496 }
497 
498 static int shmem_map_and_free_swp(struct page *subdir, int offset,
499 		int limit, struct page ***dir, spinlock_t *punch_lock)
500 {
501 	swp_entry_t *ptr;
502 	int freed = 0;
503 
504 	ptr = shmem_swp_map(subdir);
505 	for (; offset < limit; offset += LATENCY_LIMIT) {
506 		int size = limit - offset;
507 		if (size > LATENCY_LIMIT)
508 			size = LATENCY_LIMIT;
509 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
510 							punch_lock);
511 		if (need_resched()) {
512 			shmem_swp_unmap(ptr);
513 			if (*dir) {
514 				shmem_dir_unmap(*dir);
515 				*dir = NULL;
516 			}
517 			cond_resched();
518 			ptr = shmem_swp_map(subdir);
519 		}
520 	}
521 	shmem_swp_unmap(ptr);
522 	return freed;
523 }
524 
525 static void shmem_free_pages(struct list_head *next)
526 {
527 	struct page *page;
528 	int freed = 0;
529 
530 	do {
531 		page = container_of(next, struct page, lru);
532 		next = next->next;
533 		shmem_dir_free(page);
534 		freed++;
535 		if (freed >= LATENCY_LIMIT) {
536 			cond_resched();
537 			freed = 0;
538 		}
539 	} while (next);
540 }
541 
542 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
543 {
544 	struct shmem_inode_info *info = SHMEM_I(inode);
545 	unsigned long idx;
546 	unsigned long size;
547 	unsigned long limit;
548 	unsigned long stage;
549 	unsigned long diroff;
550 	struct page **dir;
551 	struct page *topdir;
552 	struct page *middir;
553 	struct page *subdir;
554 	swp_entry_t *ptr;
555 	LIST_HEAD(pages_to_free);
556 	long nr_pages_to_free = 0;
557 	long nr_swaps_freed = 0;
558 	int offset;
559 	int freed;
560 	int punch_hole;
561 	spinlock_t *needs_lock;
562 	spinlock_t *punch_lock;
563 	unsigned long upper_limit;
564 
565 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
566 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
567 	if (idx >= info->next_index)
568 		return;
569 
570 	spin_lock(&info->lock);
571 	info->flags |= SHMEM_TRUNCATE;
572 	if (likely(end == (loff_t) -1)) {
573 		limit = info->next_index;
574 		upper_limit = SHMEM_MAX_INDEX;
575 		info->next_index = idx;
576 		needs_lock = NULL;
577 		punch_hole = 0;
578 	} else {
579 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
580 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
581 							PAGE_CACHE_SHIFT;
582 			upper_limit = SHMEM_MAX_INDEX;
583 		} else {
584 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
585 			upper_limit = limit;
586 		}
587 		needs_lock = &info->lock;
588 		punch_hole = 1;
589 	}
590 
591 	topdir = info->i_indirect;
592 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
593 		info->i_indirect = NULL;
594 		nr_pages_to_free++;
595 		list_add(&topdir->lru, &pages_to_free);
596 	}
597 	spin_unlock(&info->lock);
598 
599 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
600 		ptr = info->i_direct;
601 		size = limit;
602 		if (size > SHMEM_NR_DIRECT)
603 			size = SHMEM_NR_DIRECT;
604 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
605 	}
606 
607 	/*
608 	 * If there are no indirect blocks or we are punching a hole
609 	 * below indirect blocks, nothing to be done.
610 	 */
611 	if (!topdir || limit <= SHMEM_NR_DIRECT)
612 		goto done2;
613 
614 	/*
615 	 * The truncation case has already dropped info->lock, and we're safe
616 	 * because i_size and next_index have already been lowered, preventing
617 	 * access beyond.  But in the punch_hole case, we still need to take
618 	 * the lock when updating the swap directory, because there might be
619 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
620 	 * shmem_writepage.  However, whenever we find we can remove a whole
621 	 * directory page (not at the misaligned start or end of the range),
622 	 * we first NULLify its pointer in the level above, and then have no
623 	 * need to take the lock when updating its contents: needs_lock and
624 	 * punch_lock (either pointing to info->lock or NULL) manage this.
625 	 */
626 
627 	upper_limit -= SHMEM_NR_DIRECT;
628 	limit -= SHMEM_NR_DIRECT;
629 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
630 	offset = idx % ENTRIES_PER_PAGE;
631 	idx -= offset;
632 
633 	dir = shmem_dir_map(topdir);
634 	stage = ENTRIES_PER_PAGEPAGE/2;
635 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
636 		middir = topdir;
637 		diroff = idx/ENTRIES_PER_PAGE;
638 	} else {
639 		dir += ENTRIES_PER_PAGE/2;
640 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
641 		while (stage <= idx)
642 			stage += ENTRIES_PER_PAGEPAGE;
643 		middir = *dir;
644 		if (*dir) {
645 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
646 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
647 			if (!diroff && !offset && upper_limit >= stage) {
648 				if (needs_lock) {
649 					spin_lock(needs_lock);
650 					*dir = NULL;
651 					spin_unlock(needs_lock);
652 					needs_lock = NULL;
653 				} else
654 					*dir = NULL;
655 				nr_pages_to_free++;
656 				list_add(&middir->lru, &pages_to_free);
657 			}
658 			shmem_dir_unmap(dir);
659 			dir = shmem_dir_map(middir);
660 		} else {
661 			diroff = 0;
662 			offset = 0;
663 			idx = stage;
664 		}
665 	}
666 
667 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
668 		if (unlikely(idx == stage)) {
669 			shmem_dir_unmap(dir);
670 			dir = shmem_dir_map(topdir) +
671 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
672 			while (!*dir) {
673 				dir++;
674 				idx += ENTRIES_PER_PAGEPAGE;
675 				if (idx >= limit)
676 					goto done1;
677 			}
678 			stage = idx + ENTRIES_PER_PAGEPAGE;
679 			middir = *dir;
680 			if (punch_hole)
681 				needs_lock = &info->lock;
682 			if (upper_limit >= stage) {
683 				if (needs_lock) {
684 					spin_lock(needs_lock);
685 					*dir = NULL;
686 					spin_unlock(needs_lock);
687 					needs_lock = NULL;
688 				} else
689 					*dir = NULL;
690 				nr_pages_to_free++;
691 				list_add(&middir->lru, &pages_to_free);
692 			}
693 			shmem_dir_unmap(dir);
694 			cond_resched();
695 			dir = shmem_dir_map(middir);
696 			diroff = 0;
697 		}
698 		punch_lock = needs_lock;
699 		subdir = dir[diroff];
700 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
701 			if (needs_lock) {
702 				spin_lock(needs_lock);
703 				dir[diroff] = NULL;
704 				spin_unlock(needs_lock);
705 				punch_lock = NULL;
706 			} else
707 				dir[diroff] = NULL;
708 			nr_pages_to_free++;
709 			list_add(&subdir->lru, &pages_to_free);
710 		}
711 		if (subdir && page_private(subdir) /* has swap entries */) {
712 			size = limit - idx;
713 			if (size > ENTRIES_PER_PAGE)
714 				size = ENTRIES_PER_PAGE;
715 			freed = shmem_map_and_free_swp(subdir,
716 					offset, size, &dir, punch_lock);
717 			if (!dir)
718 				dir = shmem_dir_map(middir);
719 			nr_swaps_freed += freed;
720 			if (offset || punch_lock) {
721 				spin_lock(&info->lock);
722 				set_page_private(subdir,
723 					page_private(subdir) - freed);
724 				spin_unlock(&info->lock);
725 			} else
726 				BUG_ON(page_private(subdir) != freed);
727 		}
728 		offset = 0;
729 	}
730 done1:
731 	shmem_dir_unmap(dir);
732 done2:
733 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
734 		/*
735 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
736 		 * may have swizzled a page in from swap since
737 		 * truncate_pagecache or generic_delete_inode did it, before we
738 		 * lowered next_index.  Also, though shmem_getpage checks
739 		 * i_size before adding to cache, no recheck after: so fix the
740 		 * narrow window there too.
741 		 *
742 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
743 		 * every time for punch_hole (which never got a chance to clear
744 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
745 		 * yet hardly ever necessary: try to optimize them out later.
746 		 */
747 		truncate_inode_pages_range(inode->i_mapping, start, end);
748 		if (punch_hole)
749 			unmap_mapping_range(inode->i_mapping, start,
750 							end - start, 1);
751 	}
752 
753 	spin_lock(&info->lock);
754 	info->flags &= ~SHMEM_TRUNCATE;
755 	info->swapped -= nr_swaps_freed;
756 	if (nr_pages_to_free)
757 		shmem_free_blocks(inode, nr_pages_to_free);
758 	shmem_recalc_inode(inode);
759 	spin_unlock(&info->lock);
760 
761 	/*
762 	 * Empty swap vector directory pages to be freed?
763 	 */
764 	if (!list_empty(&pages_to_free)) {
765 		pages_to_free.prev->next = NULL;
766 		shmem_free_pages(pages_to_free.next);
767 	}
768 }
769 
770 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
771 {
772 	struct inode *inode = dentry->d_inode;
773 	loff_t newsize = attr->ia_size;
774 	int error;
775 
776 	error = inode_change_ok(inode, attr);
777 	if (error)
778 		return error;
779 
780 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
781 					&& newsize != inode->i_size) {
782 		struct page *page = NULL;
783 
784 		if (newsize < inode->i_size) {
785 			/*
786 			 * If truncating down to a partial page, then
787 			 * if that page is already allocated, hold it
788 			 * in memory until the truncation is over, so
789 			 * truncate_partial_page cannot miss it were
790 			 * it assigned to swap.
791 			 */
792 			if (newsize & (PAGE_CACHE_SIZE-1)) {
793 				(void) shmem_getpage(inode,
794 					newsize >> PAGE_CACHE_SHIFT,
795 						&page, SGP_READ, NULL);
796 				if (page)
797 					unlock_page(page);
798 			}
799 			/*
800 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
801 			 * detect if any pages might have been added to cache
802 			 * after truncate_inode_pages.  But we needn't bother
803 			 * if it's being fully truncated to zero-length: the
804 			 * nrpages check is efficient enough in that case.
805 			 */
806 			if (newsize) {
807 				struct shmem_inode_info *info = SHMEM_I(inode);
808 				spin_lock(&info->lock);
809 				info->flags &= ~SHMEM_PAGEIN;
810 				spin_unlock(&info->lock);
811 			}
812 		}
813 
814 		/* XXX(truncate): truncate_setsize should be called last */
815 		truncate_setsize(inode, newsize);
816 		if (page)
817 			page_cache_release(page);
818 		shmem_truncate_range(inode, newsize, (loff_t)-1);
819 	}
820 
821 	setattr_copy(inode, attr);
822 #ifdef CONFIG_TMPFS_POSIX_ACL
823 	if (attr->ia_valid & ATTR_MODE)
824 		error = generic_acl_chmod(inode);
825 #endif
826 	return error;
827 }
828 
829 static void shmem_evict_inode(struct inode *inode)
830 {
831 	struct shmem_inode_info *info = SHMEM_I(inode);
832 	struct shmem_xattr *xattr, *nxattr;
833 
834 	if (inode->i_mapping->a_ops == &shmem_aops) {
835 		truncate_inode_pages(inode->i_mapping, 0);
836 		shmem_unacct_size(info->flags, inode->i_size);
837 		inode->i_size = 0;
838 		shmem_truncate_range(inode, 0, (loff_t)-1);
839 		if (!list_empty(&info->swaplist)) {
840 			mutex_lock(&shmem_swaplist_mutex);
841 			list_del_init(&info->swaplist);
842 			mutex_unlock(&shmem_swaplist_mutex);
843 		}
844 	}
845 
846 	list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
847 		kfree(xattr->name);
848 		kfree(xattr);
849 	}
850 	BUG_ON(inode->i_blocks);
851 	shmem_free_inode(inode->i_sb);
852 	end_writeback(inode);
853 }
854 
855 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
856 {
857 	swp_entry_t *ptr;
858 
859 	for (ptr = dir; ptr < edir; ptr++) {
860 		if (ptr->val == entry.val)
861 			return ptr - dir;
862 	}
863 	return -1;
864 }
865 
866 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
867 {
868 	struct address_space *mapping;
869 	unsigned long idx;
870 	unsigned long size;
871 	unsigned long limit;
872 	unsigned long stage;
873 	struct page **dir;
874 	struct page *subdir;
875 	swp_entry_t *ptr;
876 	int offset;
877 	int error;
878 
879 	idx = 0;
880 	ptr = info->i_direct;
881 	spin_lock(&info->lock);
882 	if (!info->swapped) {
883 		list_del_init(&info->swaplist);
884 		goto lost2;
885 	}
886 	limit = info->next_index;
887 	size = limit;
888 	if (size > SHMEM_NR_DIRECT)
889 		size = SHMEM_NR_DIRECT;
890 	offset = shmem_find_swp(entry, ptr, ptr+size);
891 	if (offset >= 0) {
892 		shmem_swp_balance_unmap();
893 		goto found;
894 	}
895 	if (!info->i_indirect)
896 		goto lost2;
897 
898 	dir = shmem_dir_map(info->i_indirect);
899 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
900 
901 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
902 		if (unlikely(idx == stage)) {
903 			shmem_dir_unmap(dir-1);
904 			if (cond_resched_lock(&info->lock)) {
905 				/* check it has not been truncated */
906 				if (limit > info->next_index) {
907 					limit = info->next_index;
908 					if (idx >= limit)
909 						goto lost2;
910 				}
911 			}
912 			dir = shmem_dir_map(info->i_indirect) +
913 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
914 			while (!*dir) {
915 				dir++;
916 				idx += ENTRIES_PER_PAGEPAGE;
917 				if (idx >= limit)
918 					goto lost1;
919 			}
920 			stage = idx + ENTRIES_PER_PAGEPAGE;
921 			subdir = *dir;
922 			shmem_dir_unmap(dir);
923 			dir = shmem_dir_map(subdir);
924 		}
925 		subdir = *dir;
926 		if (subdir && page_private(subdir)) {
927 			ptr = shmem_swp_map(subdir);
928 			size = limit - idx;
929 			if (size > ENTRIES_PER_PAGE)
930 				size = ENTRIES_PER_PAGE;
931 			offset = shmem_find_swp(entry, ptr, ptr+size);
932 			shmem_swp_unmap(ptr);
933 			if (offset >= 0) {
934 				shmem_dir_unmap(dir);
935 				ptr = shmem_swp_map(subdir);
936 				goto found;
937 			}
938 		}
939 	}
940 lost1:
941 	shmem_dir_unmap(dir-1);
942 lost2:
943 	spin_unlock(&info->lock);
944 	return 0;
945 found:
946 	idx += offset;
947 	ptr += offset;
948 
949 	/*
950 	 * Move _head_ to start search for next from here.
951 	 * But be careful: shmem_evict_inode checks list_empty without taking
952 	 * mutex, and there's an instant in list_move_tail when info->swaplist
953 	 * would appear empty, if it were the only one on shmem_swaplist.  We
954 	 * could avoid doing it if inode NULL; or use this minor optimization.
955 	 */
956 	if (shmem_swaplist.next != &info->swaplist)
957 		list_move_tail(&shmem_swaplist, &info->swaplist);
958 
959 	/*
960 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
961 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
962 	 * beneath us (pagelock doesn't help until the page is in pagecache).
963 	 */
964 	mapping = info->vfs_inode.i_mapping;
965 	error = add_to_page_cache_locked(page, mapping, idx, GFP_NOWAIT);
966 	/* which does mem_cgroup_uncharge_cache_page on error */
967 
968 	if (error == -EEXIST) {
969 		struct page *filepage = find_get_page(mapping, idx);
970 		error = 1;
971 		if (filepage) {
972 			/*
973 			 * There might be a more uptodate page coming down
974 			 * from a stacked writepage: forget our swappage if so.
975 			 */
976 			if (PageUptodate(filepage))
977 				error = 0;
978 			page_cache_release(filepage);
979 		}
980 	}
981 	if (!error) {
982 		delete_from_swap_cache(page);
983 		set_page_dirty(page);
984 		info->flags |= SHMEM_PAGEIN;
985 		shmem_swp_set(info, ptr, 0);
986 		swap_free(entry);
987 		error = 1;	/* not an error, but entry was found */
988 	}
989 	shmem_swp_unmap(ptr);
990 	spin_unlock(&info->lock);
991 	return error;
992 }
993 
994 /*
995  * shmem_unuse() search for an eventually swapped out shmem page.
996  */
997 int shmem_unuse(swp_entry_t entry, struct page *page)
998 {
999 	struct list_head *p, *next;
1000 	struct shmem_inode_info *info;
1001 	int found = 0;
1002 	int error;
1003 
1004 	/*
1005 	 * Charge page using GFP_KERNEL while we can wait, before taking
1006 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1007 	 * Charged back to the user (not to caller) when swap account is used.
1008 	 * add_to_page_cache() will be called with GFP_NOWAIT.
1009 	 */
1010 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
1011 	if (error)
1012 		goto out;
1013 	/*
1014 	 * Try to preload while we can wait, to not make a habit of
1015 	 * draining atomic reserves; but don't latch on to this cpu,
1016 	 * it's okay if sometimes we get rescheduled after this.
1017 	 */
1018 	error = radix_tree_preload(GFP_KERNEL);
1019 	if (error)
1020 		goto uncharge;
1021 	radix_tree_preload_end();
1022 
1023 	mutex_lock(&shmem_swaplist_mutex);
1024 	list_for_each_safe(p, next, &shmem_swaplist) {
1025 		info = list_entry(p, struct shmem_inode_info, swaplist);
1026 		found = shmem_unuse_inode(info, entry, page);
1027 		cond_resched();
1028 		if (found)
1029 			break;
1030 	}
1031 	mutex_unlock(&shmem_swaplist_mutex);
1032 
1033 uncharge:
1034 	if (!found)
1035 		mem_cgroup_uncharge_cache_page(page);
1036 	if (found < 0)
1037 		error = found;
1038 out:
1039 	unlock_page(page);
1040 	page_cache_release(page);
1041 	return error;
1042 }
1043 
1044 /*
1045  * Move the page from the page cache to the swap cache.
1046  */
1047 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1048 {
1049 	struct shmem_inode_info *info;
1050 	swp_entry_t *entry, swap;
1051 	struct address_space *mapping;
1052 	unsigned long index;
1053 	struct inode *inode;
1054 
1055 	BUG_ON(!PageLocked(page));
1056 	mapping = page->mapping;
1057 	index = page->index;
1058 	inode = mapping->host;
1059 	info = SHMEM_I(inode);
1060 	if (info->flags & VM_LOCKED)
1061 		goto redirty;
1062 	if (!total_swap_pages)
1063 		goto redirty;
1064 
1065 	/*
1066 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1067 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1068 	 * may use the ->writepage of its underlying filesystem, in which case
1069 	 * tmpfs should write out to swap only in response to memory pressure,
1070 	 * and not for the writeback threads or sync.  However, in those cases,
1071 	 * we do still want to check if there's a redundant swappage to be
1072 	 * discarded.
1073 	 */
1074 	if (wbc->for_reclaim)
1075 		swap = get_swap_page();
1076 	else
1077 		swap.val = 0;
1078 
1079 	/*
1080 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1081 	 * if it's not already there.  Do it now because we cannot take
1082 	 * mutex while holding spinlock, and must do so before the page
1083 	 * is moved to swap cache, when its pagelock no longer protects
1084 	 * the inode from eviction.  But don't unlock the mutex until
1085 	 * we've taken the spinlock, because shmem_unuse_inode() will
1086 	 * prune a !swapped inode from the swaplist under both locks.
1087 	 */
1088 	if (swap.val) {
1089 		mutex_lock(&shmem_swaplist_mutex);
1090 		if (list_empty(&info->swaplist))
1091 			list_add_tail(&info->swaplist, &shmem_swaplist);
1092 	}
1093 
1094 	spin_lock(&info->lock);
1095 	if (swap.val)
1096 		mutex_unlock(&shmem_swaplist_mutex);
1097 
1098 	if (index >= info->next_index) {
1099 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1100 		goto unlock;
1101 	}
1102 	entry = shmem_swp_entry(info, index, NULL);
1103 	if (entry->val) {
1104 		/*
1105 		 * The more uptodate page coming down from a stacked
1106 		 * writepage should replace our old swappage.
1107 		 */
1108 		free_swap_and_cache(*entry);
1109 		shmem_swp_set(info, entry, 0);
1110 	}
1111 	shmem_recalc_inode(inode);
1112 
1113 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1114 		delete_from_page_cache(page);
1115 		shmem_swp_set(info, entry, swap.val);
1116 		shmem_swp_unmap(entry);
1117 		swap_shmem_alloc(swap);
1118 		spin_unlock(&info->lock);
1119 		BUG_ON(page_mapped(page));
1120 		swap_writepage(page, wbc);
1121 		return 0;
1122 	}
1123 
1124 	shmem_swp_unmap(entry);
1125 unlock:
1126 	spin_unlock(&info->lock);
1127 	/*
1128 	 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
1129 	 * clear SWAP_HAS_CACHE flag.
1130 	 */
1131 	swapcache_free(swap, NULL);
1132 redirty:
1133 	set_page_dirty(page);
1134 	if (wbc->for_reclaim)
1135 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1136 	unlock_page(page);
1137 	return 0;
1138 }
1139 
1140 #ifdef CONFIG_NUMA
1141 #ifdef CONFIG_TMPFS
1142 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1143 {
1144 	char buffer[64];
1145 
1146 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1147 		return;		/* show nothing */
1148 
1149 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1150 
1151 	seq_printf(seq, ",mpol=%s", buffer);
1152 }
1153 
1154 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1155 {
1156 	struct mempolicy *mpol = NULL;
1157 	if (sbinfo->mpol) {
1158 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1159 		mpol = sbinfo->mpol;
1160 		mpol_get(mpol);
1161 		spin_unlock(&sbinfo->stat_lock);
1162 	}
1163 	return mpol;
1164 }
1165 #endif /* CONFIG_TMPFS */
1166 
1167 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1168 			struct shmem_inode_info *info, unsigned long idx)
1169 {
1170 	struct mempolicy mpol, *spol;
1171 	struct vm_area_struct pvma;
1172 	struct page *page;
1173 
1174 	spol = mpol_cond_copy(&mpol,
1175 				mpol_shared_policy_lookup(&info->policy, idx));
1176 
1177 	/* Create a pseudo vma that just contains the policy */
1178 	pvma.vm_start = 0;
1179 	pvma.vm_pgoff = idx;
1180 	pvma.vm_ops = NULL;
1181 	pvma.vm_policy = spol;
1182 	page = swapin_readahead(entry, gfp, &pvma, 0);
1183 	return page;
1184 }
1185 
1186 static struct page *shmem_alloc_page(gfp_t gfp,
1187 			struct shmem_inode_info *info, unsigned long idx)
1188 {
1189 	struct vm_area_struct pvma;
1190 
1191 	/* Create a pseudo vma that just contains the policy */
1192 	pvma.vm_start = 0;
1193 	pvma.vm_pgoff = idx;
1194 	pvma.vm_ops = NULL;
1195 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1196 
1197 	/*
1198 	 * alloc_page_vma() will drop the shared policy reference
1199 	 */
1200 	return alloc_page_vma(gfp, &pvma, 0);
1201 }
1202 #else /* !CONFIG_NUMA */
1203 #ifdef CONFIG_TMPFS
1204 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1205 {
1206 }
1207 #endif /* CONFIG_TMPFS */
1208 
1209 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1210 			struct shmem_inode_info *info, unsigned long idx)
1211 {
1212 	return swapin_readahead(entry, gfp, NULL, 0);
1213 }
1214 
1215 static inline struct page *shmem_alloc_page(gfp_t gfp,
1216 			struct shmem_inode_info *info, unsigned long idx)
1217 {
1218 	return alloc_page(gfp);
1219 }
1220 #endif /* CONFIG_NUMA */
1221 
1222 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1223 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1224 {
1225 	return NULL;
1226 }
1227 #endif
1228 
1229 /*
1230  * shmem_getpage - either get the page from swap or allocate a new one
1231  *
1232  * If we allocate a new one we do not mark it dirty. That's up to the
1233  * vm. If we swap it in we mark it dirty since we also free the swap
1234  * entry since a page cannot live in both the swap and page cache
1235  */
1236 static int shmem_getpage(struct inode *inode, unsigned long idx,
1237 			struct page **pagep, enum sgp_type sgp, int *type)
1238 {
1239 	struct address_space *mapping = inode->i_mapping;
1240 	struct shmem_inode_info *info = SHMEM_I(inode);
1241 	struct shmem_sb_info *sbinfo;
1242 	struct page *filepage = *pagep;
1243 	struct page *swappage;
1244 	struct page *prealloc_page = NULL;
1245 	swp_entry_t *entry;
1246 	swp_entry_t swap;
1247 	gfp_t gfp;
1248 	int error;
1249 
1250 	if (idx >= SHMEM_MAX_INDEX)
1251 		return -EFBIG;
1252 
1253 	if (type)
1254 		*type = 0;
1255 
1256 	/*
1257 	 * Normally, filepage is NULL on entry, and either found
1258 	 * uptodate immediately, or allocated and zeroed, or read
1259 	 * in under swappage, which is then assigned to filepage.
1260 	 * But shmem_readpage (required for splice) passes in a locked
1261 	 * filepage, which may be found not uptodate by other callers
1262 	 * too, and may need to be copied from the swappage read in.
1263 	 */
1264 repeat:
1265 	if (!filepage)
1266 		filepage = find_lock_page(mapping, idx);
1267 	if (filepage && PageUptodate(filepage))
1268 		goto done;
1269 	gfp = mapping_gfp_mask(mapping);
1270 	if (!filepage) {
1271 		/*
1272 		 * Try to preload while we can wait, to not make a habit of
1273 		 * draining atomic reserves; but don't latch on to this cpu.
1274 		 */
1275 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1276 		if (error)
1277 			goto failed;
1278 		radix_tree_preload_end();
1279 		if (sgp != SGP_READ && !prealloc_page) {
1280 			/* We don't care if this fails */
1281 			prealloc_page = shmem_alloc_page(gfp, info, idx);
1282 			if (prealloc_page) {
1283 				if (mem_cgroup_cache_charge(prealloc_page,
1284 						current->mm, GFP_KERNEL)) {
1285 					page_cache_release(prealloc_page);
1286 					prealloc_page = NULL;
1287 				}
1288 			}
1289 		}
1290 	}
1291 	error = 0;
1292 
1293 	spin_lock(&info->lock);
1294 	shmem_recalc_inode(inode);
1295 	entry = shmem_swp_alloc(info, idx, sgp);
1296 	if (IS_ERR(entry)) {
1297 		spin_unlock(&info->lock);
1298 		error = PTR_ERR(entry);
1299 		goto failed;
1300 	}
1301 	swap = *entry;
1302 
1303 	if (swap.val) {
1304 		/* Look it up and read it in.. */
1305 		swappage = lookup_swap_cache(swap);
1306 		if (!swappage) {
1307 			shmem_swp_unmap(entry);
1308 			spin_unlock(&info->lock);
1309 			/* here we actually do the io */
1310 			if (type)
1311 				*type |= VM_FAULT_MAJOR;
1312 			swappage = shmem_swapin(swap, gfp, info, idx);
1313 			if (!swappage) {
1314 				spin_lock(&info->lock);
1315 				entry = shmem_swp_alloc(info, idx, sgp);
1316 				if (IS_ERR(entry))
1317 					error = PTR_ERR(entry);
1318 				else {
1319 					if (entry->val == swap.val)
1320 						error = -ENOMEM;
1321 					shmem_swp_unmap(entry);
1322 				}
1323 				spin_unlock(&info->lock);
1324 				if (error)
1325 					goto failed;
1326 				goto repeat;
1327 			}
1328 			wait_on_page_locked(swappage);
1329 			page_cache_release(swappage);
1330 			goto repeat;
1331 		}
1332 
1333 		/* We have to do this with page locked to prevent races */
1334 		if (!trylock_page(swappage)) {
1335 			shmem_swp_unmap(entry);
1336 			spin_unlock(&info->lock);
1337 			wait_on_page_locked(swappage);
1338 			page_cache_release(swappage);
1339 			goto repeat;
1340 		}
1341 		if (PageWriteback(swappage)) {
1342 			shmem_swp_unmap(entry);
1343 			spin_unlock(&info->lock);
1344 			wait_on_page_writeback(swappage);
1345 			unlock_page(swappage);
1346 			page_cache_release(swappage);
1347 			goto repeat;
1348 		}
1349 		if (!PageUptodate(swappage)) {
1350 			shmem_swp_unmap(entry);
1351 			spin_unlock(&info->lock);
1352 			unlock_page(swappage);
1353 			page_cache_release(swappage);
1354 			error = -EIO;
1355 			goto failed;
1356 		}
1357 
1358 		if (filepage) {
1359 			shmem_swp_set(info, entry, 0);
1360 			shmem_swp_unmap(entry);
1361 			delete_from_swap_cache(swappage);
1362 			spin_unlock(&info->lock);
1363 			copy_highpage(filepage, swappage);
1364 			unlock_page(swappage);
1365 			page_cache_release(swappage);
1366 			flush_dcache_page(filepage);
1367 			SetPageUptodate(filepage);
1368 			set_page_dirty(filepage);
1369 			swap_free(swap);
1370 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1371 					idx, GFP_NOWAIT))) {
1372 			info->flags |= SHMEM_PAGEIN;
1373 			shmem_swp_set(info, entry, 0);
1374 			shmem_swp_unmap(entry);
1375 			delete_from_swap_cache(swappage);
1376 			spin_unlock(&info->lock);
1377 			filepage = swappage;
1378 			set_page_dirty(filepage);
1379 			swap_free(swap);
1380 		} else {
1381 			shmem_swp_unmap(entry);
1382 			spin_unlock(&info->lock);
1383 			if (error == -ENOMEM) {
1384 				/*
1385 				 * reclaim from proper memory cgroup and
1386 				 * call memcg's OOM if needed.
1387 				 */
1388 				error = mem_cgroup_shmem_charge_fallback(
1389 								swappage,
1390 								current->mm,
1391 								gfp);
1392 				if (error) {
1393 					unlock_page(swappage);
1394 					page_cache_release(swappage);
1395 					goto failed;
1396 				}
1397 			}
1398 			unlock_page(swappage);
1399 			page_cache_release(swappage);
1400 			goto repeat;
1401 		}
1402 	} else if (sgp == SGP_READ && !filepage) {
1403 		shmem_swp_unmap(entry);
1404 		filepage = find_get_page(mapping, idx);
1405 		if (filepage &&
1406 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1407 			spin_unlock(&info->lock);
1408 			wait_on_page_locked(filepage);
1409 			page_cache_release(filepage);
1410 			filepage = NULL;
1411 			goto repeat;
1412 		}
1413 		spin_unlock(&info->lock);
1414 	} else {
1415 		shmem_swp_unmap(entry);
1416 		sbinfo = SHMEM_SB(inode->i_sb);
1417 		if (sbinfo->max_blocks) {
1418 			if (percpu_counter_compare(&sbinfo->used_blocks,
1419 						sbinfo->max_blocks) >= 0 ||
1420 			    shmem_acct_block(info->flags))
1421 				goto nospace;
1422 			percpu_counter_inc(&sbinfo->used_blocks);
1423 			spin_lock(&inode->i_lock);
1424 			inode->i_blocks += BLOCKS_PER_PAGE;
1425 			spin_unlock(&inode->i_lock);
1426 		} else if (shmem_acct_block(info->flags))
1427 			goto nospace;
1428 
1429 		if (!filepage) {
1430 			int ret;
1431 
1432 			if (!prealloc_page) {
1433 				spin_unlock(&info->lock);
1434 				filepage = shmem_alloc_page(gfp, info, idx);
1435 				if (!filepage) {
1436 					shmem_unacct_blocks(info->flags, 1);
1437 					shmem_free_blocks(inode, 1);
1438 					error = -ENOMEM;
1439 					goto failed;
1440 				}
1441 				SetPageSwapBacked(filepage);
1442 
1443 				/*
1444 				 * Precharge page while we can wait, compensate
1445 				 * after
1446 				 */
1447 				error = mem_cgroup_cache_charge(filepage,
1448 					current->mm, GFP_KERNEL);
1449 				if (error) {
1450 					page_cache_release(filepage);
1451 					shmem_unacct_blocks(info->flags, 1);
1452 					shmem_free_blocks(inode, 1);
1453 					filepage = NULL;
1454 					goto failed;
1455 				}
1456 
1457 				spin_lock(&info->lock);
1458 			} else {
1459 				filepage = prealloc_page;
1460 				prealloc_page = NULL;
1461 				SetPageSwapBacked(filepage);
1462 			}
1463 
1464 			entry = shmem_swp_alloc(info, idx, sgp);
1465 			if (IS_ERR(entry))
1466 				error = PTR_ERR(entry);
1467 			else {
1468 				swap = *entry;
1469 				shmem_swp_unmap(entry);
1470 			}
1471 			ret = error || swap.val;
1472 			if (ret)
1473 				mem_cgroup_uncharge_cache_page(filepage);
1474 			else
1475 				ret = add_to_page_cache_lru(filepage, mapping,
1476 						idx, GFP_NOWAIT);
1477 			/*
1478 			 * At add_to_page_cache_lru() failure, uncharge will
1479 			 * be done automatically.
1480 			 */
1481 			if (ret) {
1482 				spin_unlock(&info->lock);
1483 				page_cache_release(filepage);
1484 				shmem_unacct_blocks(info->flags, 1);
1485 				shmem_free_blocks(inode, 1);
1486 				filepage = NULL;
1487 				if (error)
1488 					goto failed;
1489 				goto repeat;
1490 			}
1491 			info->flags |= SHMEM_PAGEIN;
1492 		}
1493 
1494 		info->alloced++;
1495 		spin_unlock(&info->lock);
1496 		clear_highpage(filepage);
1497 		flush_dcache_page(filepage);
1498 		SetPageUptodate(filepage);
1499 		if (sgp == SGP_DIRTY)
1500 			set_page_dirty(filepage);
1501 	}
1502 done:
1503 	*pagep = filepage;
1504 	error = 0;
1505 	goto out;
1506 
1507 nospace:
1508 	/*
1509 	 * Perhaps the page was brought in from swap between find_lock_page
1510 	 * and taking info->lock?  We allow for that at add_to_page_cache_lru,
1511 	 * but must also avoid reporting a spurious ENOSPC while working on a
1512 	 * full tmpfs.  (When filepage has been passed in to shmem_getpage, it
1513 	 * is already in page cache, which prevents this race from occurring.)
1514 	 */
1515 	if (!filepage) {
1516 		struct page *page = find_get_page(mapping, idx);
1517 		if (page) {
1518 			spin_unlock(&info->lock);
1519 			page_cache_release(page);
1520 			goto repeat;
1521 		}
1522 	}
1523 	spin_unlock(&info->lock);
1524 	error = -ENOSPC;
1525 failed:
1526 	if (*pagep != filepage) {
1527 		unlock_page(filepage);
1528 		page_cache_release(filepage);
1529 	}
1530 out:
1531 	if (prealloc_page) {
1532 		mem_cgroup_uncharge_cache_page(prealloc_page);
1533 		page_cache_release(prealloc_page);
1534 	}
1535 	return error;
1536 }
1537 
1538 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1539 {
1540 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1541 	int error;
1542 	int ret;
1543 
1544 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1545 		return VM_FAULT_SIGBUS;
1546 
1547 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1548 	if (error)
1549 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1550 	if (ret & VM_FAULT_MAJOR) {
1551 		count_vm_event(PGMAJFAULT);
1552 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1553 	}
1554 	return ret | VM_FAULT_LOCKED;
1555 }
1556 
1557 #ifdef CONFIG_NUMA
1558 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1559 {
1560 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1561 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1562 }
1563 
1564 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1565 					  unsigned long addr)
1566 {
1567 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1568 	unsigned long idx;
1569 
1570 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1571 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1572 }
1573 #endif
1574 
1575 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1576 {
1577 	struct inode *inode = file->f_path.dentry->d_inode;
1578 	struct shmem_inode_info *info = SHMEM_I(inode);
1579 	int retval = -ENOMEM;
1580 
1581 	spin_lock(&info->lock);
1582 	if (lock && !(info->flags & VM_LOCKED)) {
1583 		if (!user_shm_lock(inode->i_size, user))
1584 			goto out_nomem;
1585 		info->flags |= VM_LOCKED;
1586 		mapping_set_unevictable(file->f_mapping);
1587 	}
1588 	if (!lock && (info->flags & VM_LOCKED) && user) {
1589 		user_shm_unlock(inode->i_size, user);
1590 		info->flags &= ~VM_LOCKED;
1591 		mapping_clear_unevictable(file->f_mapping);
1592 		scan_mapping_unevictable_pages(file->f_mapping);
1593 	}
1594 	retval = 0;
1595 
1596 out_nomem:
1597 	spin_unlock(&info->lock);
1598 	return retval;
1599 }
1600 
1601 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1602 {
1603 	file_accessed(file);
1604 	vma->vm_ops = &shmem_vm_ops;
1605 	vma->vm_flags |= VM_CAN_NONLINEAR;
1606 	return 0;
1607 }
1608 
1609 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1610 				     int mode, dev_t dev, unsigned long flags)
1611 {
1612 	struct inode *inode;
1613 	struct shmem_inode_info *info;
1614 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1615 
1616 	if (shmem_reserve_inode(sb))
1617 		return NULL;
1618 
1619 	inode = new_inode(sb);
1620 	if (inode) {
1621 		inode->i_ino = get_next_ino();
1622 		inode_init_owner(inode, dir, mode);
1623 		inode->i_blocks = 0;
1624 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1625 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1626 		inode->i_generation = get_seconds();
1627 		info = SHMEM_I(inode);
1628 		memset(info, 0, (char *)inode - (char *)info);
1629 		spin_lock_init(&info->lock);
1630 		info->flags = flags & VM_NORESERVE;
1631 		INIT_LIST_HEAD(&info->swaplist);
1632 		INIT_LIST_HEAD(&info->xattr_list);
1633 		cache_no_acl(inode);
1634 
1635 		switch (mode & S_IFMT) {
1636 		default:
1637 			inode->i_op = &shmem_special_inode_operations;
1638 			init_special_inode(inode, mode, dev);
1639 			break;
1640 		case S_IFREG:
1641 			inode->i_mapping->a_ops = &shmem_aops;
1642 			inode->i_op = &shmem_inode_operations;
1643 			inode->i_fop = &shmem_file_operations;
1644 			mpol_shared_policy_init(&info->policy,
1645 						 shmem_get_sbmpol(sbinfo));
1646 			break;
1647 		case S_IFDIR:
1648 			inc_nlink(inode);
1649 			/* Some things misbehave if size == 0 on a directory */
1650 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1651 			inode->i_op = &shmem_dir_inode_operations;
1652 			inode->i_fop = &simple_dir_operations;
1653 			break;
1654 		case S_IFLNK:
1655 			/*
1656 			 * Must not load anything in the rbtree,
1657 			 * mpol_free_shared_policy will not be called.
1658 			 */
1659 			mpol_shared_policy_init(&info->policy, NULL);
1660 			break;
1661 		}
1662 	} else
1663 		shmem_free_inode(sb);
1664 	return inode;
1665 }
1666 
1667 #ifdef CONFIG_TMPFS
1668 static const struct inode_operations shmem_symlink_inode_operations;
1669 static const struct inode_operations shmem_symlink_inline_operations;
1670 
1671 /*
1672  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1673  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1674  * below the loop driver, in the generic fashion that many filesystems support.
1675  */
1676 static int shmem_readpage(struct file *file, struct page *page)
1677 {
1678 	struct inode *inode = page->mapping->host;
1679 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1680 	unlock_page(page);
1681 	return error;
1682 }
1683 
1684 static int
1685 shmem_write_begin(struct file *file, struct address_space *mapping,
1686 			loff_t pos, unsigned len, unsigned flags,
1687 			struct page **pagep, void **fsdata)
1688 {
1689 	struct inode *inode = mapping->host;
1690 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1691 	*pagep = NULL;
1692 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1693 }
1694 
1695 static int
1696 shmem_write_end(struct file *file, struct address_space *mapping,
1697 			loff_t pos, unsigned len, unsigned copied,
1698 			struct page *page, void *fsdata)
1699 {
1700 	struct inode *inode = mapping->host;
1701 
1702 	if (pos + copied > inode->i_size)
1703 		i_size_write(inode, pos + copied);
1704 
1705 	set_page_dirty(page);
1706 	unlock_page(page);
1707 	page_cache_release(page);
1708 
1709 	return copied;
1710 }
1711 
1712 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1713 {
1714 	struct inode *inode = filp->f_path.dentry->d_inode;
1715 	struct address_space *mapping = inode->i_mapping;
1716 	unsigned long index, offset;
1717 	enum sgp_type sgp = SGP_READ;
1718 
1719 	/*
1720 	 * Might this read be for a stacking filesystem?  Then when reading
1721 	 * holes of a sparse file, we actually need to allocate those pages,
1722 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1723 	 */
1724 	if (segment_eq(get_fs(), KERNEL_DS))
1725 		sgp = SGP_DIRTY;
1726 
1727 	index = *ppos >> PAGE_CACHE_SHIFT;
1728 	offset = *ppos & ~PAGE_CACHE_MASK;
1729 
1730 	for (;;) {
1731 		struct page *page = NULL;
1732 		unsigned long end_index, nr, ret;
1733 		loff_t i_size = i_size_read(inode);
1734 
1735 		end_index = i_size >> PAGE_CACHE_SHIFT;
1736 		if (index > end_index)
1737 			break;
1738 		if (index == end_index) {
1739 			nr = i_size & ~PAGE_CACHE_MASK;
1740 			if (nr <= offset)
1741 				break;
1742 		}
1743 
1744 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1745 		if (desc->error) {
1746 			if (desc->error == -EINVAL)
1747 				desc->error = 0;
1748 			break;
1749 		}
1750 		if (page)
1751 			unlock_page(page);
1752 
1753 		/*
1754 		 * We must evaluate after, since reads (unlike writes)
1755 		 * are called without i_mutex protection against truncate
1756 		 */
1757 		nr = PAGE_CACHE_SIZE;
1758 		i_size = i_size_read(inode);
1759 		end_index = i_size >> PAGE_CACHE_SHIFT;
1760 		if (index == end_index) {
1761 			nr = i_size & ~PAGE_CACHE_MASK;
1762 			if (nr <= offset) {
1763 				if (page)
1764 					page_cache_release(page);
1765 				break;
1766 			}
1767 		}
1768 		nr -= offset;
1769 
1770 		if (page) {
1771 			/*
1772 			 * If users can be writing to this page using arbitrary
1773 			 * virtual addresses, take care about potential aliasing
1774 			 * before reading the page on the kernel side.
1775 			 */
1776 			if (mapping_writably_mapped(mapping))
1777 				flush_dcache_page(page);
1778 			/*
1779 			 * Mark the page accessed if we read the beginning.
1780 			 */
1781 			if (!offset)
1782 				mark_page_accessed(page);
1783 		} else {
1784 			page = ZERO_PAGE(0);
1785 			page_cache_get(page);
1786 		}
1787 
1788 		/*
1789 		 * Ok, we have the page, and it's up-to-date, so
1790 		 * now we can copy it to user space...
1791 		 *
1792 		 * The actor routine returns how many bytes were actually used..
1793 		 * NOTE! This may not be the same as how much of a user buffer
1794 		 * we filled up (we may be padding etc), so we can only update
1795 		 * "pos" here (the actor routine has to update the user buffer
1796 		 * pointers and the remaining count).
1797 		 */
1798 		ret = actor(desc, page, offset, nr);
1799 		offset += ret;
1800 		index += offset >> PAGE_CACHE_SHIFT;
1801 		offset &= ~PAGE_CACHE_MASK;
1802 
1803 		page_cache_release(page);
1804 		if (ret != nr || !desc->count)
1805 			break;
1806 
1807 		cond_resched();
1808 	}
1809 
1810 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1811 	file_accessed(filp);
1812 }
1813 
1814 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1815 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1816 {
1817 	struct file *filp = iocb->ki_filp;
1818 	ssize_t retval;
1819 	unsigned long seg;
1820 	size_t count;
1821 	loff_t *ppos = &iocb->ki_pos;
1822 
1823 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1824 	if (retval)
1825 		return retval;
1826 
1827 	for (seg = 0; seg < nr_segs; seg++) {
1828 		read_descriptor_t desc;
1829 
1830 		desc.written = 0;
1831 		desc.arg.buf = iov[seg].iov_base;
1832 		desc.count = iov[seg].iov_len;
1833 		if (desc.count == 0)
1834 			continue;
1835 		desc.error = 0;
1836 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1837 		retval += desc.written;
1838 		if (desc.error) {
1839 			retval = retval ?: desc.error;
1840 			break;
1841 		}
1842 		if (desc.count > 0)
1843 			break;
1844 	}
1845 	return retval;
1846 }
1847 
1848 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1849 {
1850 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1851 
1852 	buf->f_type = TMPFS_MAGIC;
1853 	buf->f_bsize = PAGE_CACHE_SIZE;
1854 	buf->f_namelen = NAME_MAX;
1855 	if (sbinfo->max_blocks) {
1856 		buf->f_blocks = sbinfo->max_blocks;
1857 		buf->f_bavail = buf->f_bfree =
1858 				sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
1859 	}
1860 	if (sbinfo->max_inodes) {
1861 		buf->f_files = sbinfo->max_inodes;
1862 		buf->f_ffree = sbinfo->free_inodes;
1863 	}
1864 	/* else leave those fields 0 like simple_statfs */
1865 	return 0;
1866 }
1867 
1868 /*
1869  * File creation. Allocate an inode, and we're done..
1870  */
1871 static int
1872 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1873 {
1874 	struct inode *inode;
1875 	int error = -ENOSPC;
1876 
1877 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1878 	if (inode) {
1879 		error = security_inode_init_security(inode, dir,
1880 						     &dentry->d_name, NULL,
1881 						     NULL, NULL);
1882 		if (error) {
1883 			if (error != -EOPNOTSUPP) {
1884 				iput(inode);
1885 				return error;
1886 			}
1887 		}
1888 #ifdef CONFIG_TMPFS_POSIX_ACL
1889 		error = generic_acl_init(inode, dir);
1890 		if (error) {
1891 			iput(inode);
1892 			return error;
1893 		}
1894 #else
1895 		error = 0;
1896 #endif
1897 		dir->i_size += BOGO_DIRENT_SIZE;
1898 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1899 		d_instantiate(dentry, inode);
1900 		dget(dentry); /* Extra count - pin the dentry in core */
1901 	}
1902 	return error;
1903 }
1904 
1905 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1906 {
1907 	int error;
1908 
1909 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1910 		return error;
1911 	inc_nlink(dir);
1912 	return 0;
1913 }
1914 
1915 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1916 		struct nameidata *nd)
1917 {
1918 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1919 }
1920 
1921 /*
1922  * Link a file..
1923  */
1924 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1925 {
1926 	struct inode *inode = old_dentry->d_inode;
1927 	int ret;
1928 
1929 	/*
1930 	 * No ordinary (disk based) filesystem counts links as inodes;
1931 	 * but each new link needs a new dentry, pinning lowmem, and
1932 	 * tmpfs dentries cannot be pruned until they are unlinked.
1933 	 */
1934 	ret = shmem_reserve_inode(inode->i_sb);
1935 	if (ret)
1936 		goto out;
1937 
1938 	dir->i_size += BOGO_DIRENT_SIZE;
1939 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1940 	inc_nlink(inode);
1941 	ihold(inode);	/* New dentry reference */
1942 	dget(dentry);		/* Extra pinning count for the created dentry */
1943 	d_instantiate(dentry, inode);
1944 out:
1945 	return ret;
1946 }
1947 
1948 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1949 {
1950 	struct inode *inode = dentry->d_inode;
1951 
1952 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1953 		shmem_free_inode(inode->i_sb);
1954 
1955 	dir->i_size -= BOGO_DIRENT_SIZE;
1956 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1957 	drop_nlink(inode);
1958 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1959 	return 0;
1960 }
1961 
1962 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1963 {
1964 	if (!simple_empty(dentry))
1965 		return -ENOTEMPTY;
1966 
1967 	drop_nlink(dentry->d_inode);
1968 	drop_nlink(dir);
1969 	return shmem_unlink(dir, dentry);
1970 }
1971 
1972 /*
1973  * The VFS layer already does all the dentry stuff for rename,
1974  * we just have to decrement the usage count for the target if
1975  * it exists so that the VFS layer correctly free's it when it
1976  * gets overwritten.
1977  */
1978 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1979 {
1980 	struct inode *inode = old_dentry->d_inode;
1981 	int they_are_dirs = S_ISDIR(inode->i_mode);
1982 
1983 	if (!simple_empty(new_dentry))
1984 		return -ENOTEMPTY;
1985 
1986 	if (new_dentry->d_inode) {
1987 		(void) shmem_unlink(new_dir, new_dentry);
1988 		if (they_are_dirs)
1989 			drop_nlink(old_dir);
1990 	} else if (they_are_dirs) {
1991 		drop_nlink(old_dir);
1992 		inc_nlink(new_dir);
1993 	}
1994 
1995 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1996 	new_dir->i_size += BOGO_DIRENT_SIZE;
1997 	old_dir->i_ctime = old_dir->i_mtime =
1998 	new_dir->i_ctime = new_dir->i_mtime =
1999 	inode->i_ctime = CURRENT_TIME;
2000 	return 0;
2001 }
2002 
2003 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2004 {
2005 	int error;
2006 	int len;
2007 	struct inode *inode;
2008 	struct page *page = NULL;
2009 	char *kaddr;
2010 	struct shmem_inode_info *info;
2011 
2012 	len = strlen(symname) + 1;
2013 	if (len > PAGE_CACHE_SIZE)
2014 		return -ENAMETOOLONG;
2015 
2016 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2017 	if (!inode)
2018 		return -ENOSPC;
2019 
2020 	error = security_inode_init_security(inode, dir, &dentry->d_name, NULL,
2021 					     NULL, NULL);
2022 	if (error) {
2023 		if (error != -EOPNOTSUPP) {
2024 			iput(inode);
2025 			return error;
2026 		}
2027 		error = 0;
2028 	}
2029 
2030 	info = SHMEM_I(inode);
2031 	inode->i_size = len-1;
2032 	if (len <= SHMEM_SYMLINK_INLINE_LEN) {
2033 		/* do it inline */
2034 		memcpy(info->inline_symlink, symname, len);
2035 		inode->i_op = &shmem_symlink_inline_operations;
2036 	} else {
2037 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2038 		if (error) {
2039 			iput(inode);
2040 			return error;
2041 		}
2042 		inode->i_mapping->a_ops = &shmem_aops;
2043 		inode->i_op = &shmem_symlink_inode_operations;
2044 		kaddr = kmap_atomic(page, KM_USER0);
2045 		memcpy(kaddr, symname, len);
2046 		kunmap_atomic(kaddr, KM_USER0);
2047 		set_page_dirty(page);
2048 		unlock_page(page);
2049 		page_cache_release(page);
2050 	}
2051 	dir->i_size += BOGO_DIRENT_SIZE;
2052 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2053 	d_instantiate(dentry, inode);
2054 	dget(dentry);
2055 	return 0;
2056 }
2057 
2058 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
2059 {
2060 	nd_set_link(nd, SHMEM_I(dentry->d_inode)->inline_symlink);
2061 	return NULL;
2062 }
2063 
2064 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2065 {
2066 	struct page *page = NULL;
2067 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2068 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
2069 	if (page)
2070 		unlock_page(page);
2071 	return page;
2072 }
2073 
2074 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2075 {
2076 	if (!IS_ERR(nd_get_link(nd))) {
2077 		struct page *page = cookie;
2078 		kunmap(page);
2079 		mark_page_accessed(page);
2080 		page_cache_release(page);
2081 	}
2082 }
2083 
2084 #ifdef CONFIG_TMPFS_XATTR
2085 /*
2086  * Superblocks without xattr inode operations may get some security.* xattr
2087  * support from the LSM "for free". As soon as we have any other xattrs
2088  * like ACLs, we also need to implement the security.* handlers at
2089  * filesystem level, though.
2090  */
2091 
2092 static int shmem_xattr_get(struct dentry *dentry, const char *name,
2093 			   void *buffer, size_t size)
2094 {
2095 	struct shmem_inode_info *info;
2096 	struct shmem_xattr *xattr;
2097 	int ret = -ENODATA;
2098 
2099 	info = SHMEM_I(dentry->d_inode);
2100 
2101 	spin_lock(&info->lock);
2102 	list_for_each_entry(xattr, &info->xattr_list, list) {
2103 		if (strcmp(name, xattr->name))
2104 			continue;
2105 
2106 		ret = xattr->size;
2107 		if (buffer) {
2108 			if (size < xattr->size)
2109 				ret = -ERANGE;
2110 			else
2111 				memcpy(buffer, xattr->value, xattr->size);
2112 		}
2113 		break;
2114 	}
2115 	spin_unlock(&info->lock);
2116 	return ret;
2117 }
2118 
2119 static int shmem_xattr_set(struct dentry *dentry, const char *name,
2120 			   const void *value, size_t size, int flags)
2121 {
2122 	struct inode *inode = dentry->d_inode;
2123 	struct shmem_inode_info *info = SHMEM_I(inode);
2124 	struct shmem_xattr *xattr;
2125 	struct shmem_xattr *new_xattr = NULL;
2126 	size_t len;
2127 	int err = 0;
2128 
2129 	/* value == NULL means remove */
2130 	if (value) {
2131 		/* wrap around? */
2132 		len = sizeof(*new_xattr) + size;
2133 		if (len <= sizeof(*new_xattr))
2134 			return -ENOMEM;
2135 
2136 		new_xattr = kmalloc(len, GFP_KERNEL);
2137 		if (!new_xattr)
2138 			return -ENOMEM;
2139 
2140 		new_xattr->name = kstrdup(name, GFP_KERNEL);
2141 		if (!new_xattr->name) {
2142 			kfree(new_xattr);
2143 			return -ENOMEM;
2144 		}
2145 
2146 		new_xattr->size = size;
2147 		memcpy(new_xattr->value, value, size);
2148 	}
2149 
2150 	spin_lock(&info->lock);
2151 	list_for_each_entry(xattr, &info->xattr_list, list) {
2152 		if (!strcmp(name, xattr->name)) {
2153 			if (flags & XATTR_CREATE) {
2154 				xattr = new_xattr;
2155 				err = -EEXIST;
2156 			} else if (new_xattr) {
2157 				list_replace(&xattr->list, &new_xattr->list);
2158 			} else {
2159 				list_del(&xattr->list);
2160 			}
2161 			goto out;
2162 		}
2163 	}
2164 	if (flags & XATTR_REPLACE) {
2165 		xattr = new_xattr;
2166 		err = -ENODATA;
2167 	} else {
2168 		list_add(&new_xattr->list, &info->xattr_list);
2169 		xattr = NULL;
2170 	}
2171 out:
2172 	spin_unlock(&info->lock);
2173 	if (xattr)
2174 		kfree(xattr->name);
2175 	kfree(xattr);
2176 	return err;
2177 }
2178 
2179 
2180 static const struct xattr_handler *shmem_xattr_handlers[] = {
2181 #ifdef CONFIG_TMPFS_POSIX_ACL
2182 	&generic_acl_access_handler,
2183 	&generic_acl_default_handler,
2184 #endif
2185 	NULL
2186 };
2187 
2188 static int shmem_xattr_validate(const char *name)
2189 {
2190 	struct { const char *prefix; size_t len; } arr[] = {
2191 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2192 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2193 	};
2194 	int i;
2195 
2196 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2197 		size_t preflen = arr[i].len;
2198 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2199 			if (!name[preflen])
2200 				return -EINVAL;
2201 			return 0;
2202 		}
2203 	}
2204 	return -EOPNOTSUPP;
2205 }
2206 
2207 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2208 			      void *buffer, size_t size)
2209 {
2210 	int err;
2211 
2212 	/*
2213 	 * If this is a request for a synthetic attribute in the system.*
2214 	 * namespace use the generic infrastructure to resolve a handler
2215 	 * for it via sb->s_xattr.
2216 	 */
2217 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2218 		return generic_getxattr(dentry, name, buffer, size);
2219 
2220 	err = shmem_xattr_validate(name);
2221 	if (err)
2222 		return err;
2223 
2224 	return shmem_xattr_get(dentry, name, buffer, size);
2225 }
2226 
2227 static int shmem_setxattr(struct dentry *dentry, const char *name,
2228 			  const void *value, size_t size, int flags)
2229 {
2230 	int err;
2231 
2232 	/*
2233 	 * If this is a request for a synthetic attribute in the system.*
2234 	 * namespace use the generic infrastructure to resolve a handler
2235 	 * for it via sb->s_xattr.
2236 	 */
2237 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2238 		return generic_setxattr(dentry, name, value, size, flags);
2239 
2240 	err = shmem_xattr_validate(name);
2241 	if (err)
2242 		return err;
2243 
2244 	if (size == 0)
2245 		value = "";  /* empty EA, do not remove */
2246 
2247 	return shmem_xattr_set(dentry, name, value, size, flags);
2248 
2249 }
2250 
2251 static int shmem_removexattr(struct dentry *dentry, const char *name)
2252 {
2253 	int err;
2254 
2255 	/*
2256 	 * If this is a request for a synthetic attribute in the system.*
2257 	 * namespace use the generic infrastructure to resolve a handler
2258 	 * for it via sb->s_xattr.
2259 	 */
2260 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2261 		return generic_removexattr(dentry, name);
2262 
2263 	err = shmem_xattr_validate(name);
2264 	if (err)
2265 		return err;
2266 
2267 	return shmem_xattr_set(dentry, name, NULL, 0, XATTR_REPLACE);
2268 }
2269 
2270 static bool xattr_is_trusted(const char *name)
2271 {
2272 	return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2273 }
2274 
2275 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2276 {
2277 	bool trusted = capable(CAP_SYS_ADMIN);
2278 	struct shmem_xattr *xattr;
2279 	struct shmem_inode_info *info;
2280 	size_t used = 0;
2281 
2282 	info = SHMEM_I(dentry->d_inode);
2283 
2284 	spin_lock(&info->lock);
2285 	list_for_each_entry(xattr, &info->xattr_list, list) {
2286 		size_t len;
2287 
2288 		/* skip "trusted." attributes for unprivileged callers */
2289 		if (!trusted && xattr_is_trusted(xattr->name))
2290 			continue;
2291 
2292 		len = strlen(xattr->name) + 1;
2293 		used += len;
2294 		if (buffer) {
2295 			if (size < used) {
2296 				used = -ERANGE;
2297 				break;
2298 			}
2299 			memcpy(buffer, xattr->name, len);
2300 			buffer += len;
2301 		}
2302 	}
2303 	spin_unlock(&info->lock);
2304 
2305 	return used;
2306 }
2307 #endif /* CONFIG_TMPFS_XATTR */
2308 
2309 static const struct inode_operations shmem_symlink_inline_operations = {
2310 	.readlink	= generic_readlink,
2311 	.follow_link	= shmem_follow_link_inline,
2312 #ifdef CONFIG_TMPFS_XATTR
2313 	.setxattr	= shmem_setxattr,
2314 	.getxattr	= shmem_getxattr,
2315 	.listxattr	= shmem_listxattr,
2316 	.removexattr	= shmem_removexattr,
2317 #endif
2318 };
2319 
2320 static const struct inode_operations shmem_symlink_inode_operations = {
2321 	.readlink	= generic_readlink,
2322 	.follow_link	= shmem_follow_link,
2323 	.put_link	= shmem_put_link,
2324 #ifdef CONFIG_TMPFS_XATTR
2325 	.setxattr	= shmem_setxattr,
2326 	.getxattr	= shmem_getxattr,
2327 	.listxattr	= shmem_listxattr,
2328 	.removexattr	= shmem_removexattr,
2329 #endif
2330 };
2331 
2332 static struct dentry *shmem_get_parent(struct dentry *child)
2333 {
2334 	return ERR_PTR(-ESTALE);
2335 }
2336 
2337 static int shmem_match(struct inode *ino, void *vfh)
2338 {
2339 	__u32 *fh = vfh;
2340 	__u64 inum = fh[2];
2341 	inum = (inum << 32) | fh[1];
2342 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2343 }
2344 
2345 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2346 		struct fid *fid, int fh_len, int fh_type)
2347 {
2348 	struct inode *inode;
2349 	struct dentry *dentry = NULL;
2350 	u64 inum = fid->raw[2];
2351 	inum = (inum << 32) | fid->raw[1];
2352 
2353 	if (fh_len < 3)
2354 		return NULL;
2355 
2356 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2357 			shmem_match, fid->raw);
2358 	if (inode) {
2359 		dentry = d_find_alias(inode);
2360 		iput(inode);
2361 	}
2362 
2363 	return dentry;
2364 }
2365 
2366 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2367 				int connectable)
2368 {
2369 	struct inode *inode = dentry->d_inode;
2370 
2371 	if (*len < 3) {
2372 		*len = 3;
2373 		return 255;
2374 	}
2375 
2376 	if (inode_unhashed(inode)) {
2377 		/* Unfortunately insert_inode_hash is not idempotent,
2378 		 * so as we hash inodes here rather than at creation
2379 		 * time, we need a lock to ensure we only try
2380 		 * to do it once
2381 		 */
2382 		static DEFINE_SPINLOCK(lock);
2383 		spin_lock(&lock);
2384 		if (inode_unhashed(inode))
2385 			__insert_inode_hash(inode,
2386 					    inode->i_ino + inode->i_generation);
2387 		spin_unlock(&lock);
2388 	}
2389 
2390 	fh[0] = inode->i_generation;
2391 	fh[1] = inode->i_ino;
2392 	fh[2] = ((__u64)inode->i_ino) >> 32;
2393 
2394 	*len = 3;
2395 	return 1;
2396 }
2397 
2398 static const struct export_operations shmem_export_ops = {
2399 	.get_parent     = shmem_get_parent,
2400 	.encode_fh      = shmem_encode_fh,
2401 	.fh_to_dentry	= shmem_fh_to_dentry,
2402 };
2403 
2404 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2405 			       bool remount)
2406 {
2407 	char *this_char, *value, *rest;
2408 
2409 	while (options != NULL) {
2410 		this_char = options;
2411 		for (;;) {
2412 			/*
2413 			 * NUL-terminate this option: unfortunately,
2414 			 * mount options form a comma-separated list,
2415 			 * but mpol's nodelist may also contain commas.
2416 			 */
2417 			options = strchr(options, ',');
2418 			if (options == NULL)
2419 				break;
2420 			options++;
2421 			if (!isdigit(*options)) {
2422 				options[-1] = '\0';
2423 				break;
2424 			}
2425 		}
2426 		if (!*this_char)
2427 			continue;
2428 		if ((value = strchr(this_char,'=')) != NULL) {
2429 			*value++ = 0;
2430 		} else {
2431 			printk(KERN_ERR
2432 			    "tmpfs: No value for mount option '%s'\n",
2433 			    this_char);
2434 			return 1;
2435 		}
2436 
2437 		if (!strcmp(this_char,"size")) {
2438 			unsigned long long size;
2439 			size = memparse(value,&rest);
2440 			if (*rest == '%') {
2441 				size <<= PAGE_SHIFT;
2442 				size *= totalram_pages;
2443 				do_div(size, 100);
2444 				rest++;
2445 			}
2446 			if (*rest)
2447 				goto bad_val;
2448 			sbinfo->max_blocks =
2449 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2450 		} else if (!strcmp(this_char,"nr_blocks")) {
2451 			sbinfo->max_blocks = memparse(value, &rest);
2452 			if (*rest)
2453 				goto bad_val;
2454 		} else if (!strcmp(this_char,"nr_inodes")) {
2455 			sbinfo->max_inodes = memparse(value, &rest);
2456 			if (*rest)
2457 				goto bad_val;
2458 		} else if (!strcmp(this_char,"mode")) {
2459 			if (remount)
2460 				continue;
2461 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2462 			if (*rest)
2463 				goto bad_val;
2464 		} else if (!strcmp(this_char,"uid")) {
2465 			if (remount)
2466 				continue;
2467 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2468 			if (*rest)
2469 				goto bad_val;
2470 		} else if (!strcmp(this_char,"gid")) {
2471 			if (remount)
2472 				continue;
2473 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2474 			if (*rest)
2475 				goto bad_val;
2476 		} else if (!strcmp(this_char,"mpol")) {
2477 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2478 				goto bad_val;
2479 		} else {
2480 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2481 			       this_char);
2482 			return 1;
2483 		}
2484 	}
2485 	return 0;
2486 
2487 bad_val:
2488 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2489 	       value, this_char);
2490 	return 1;
2491 
2492 }
2493 
2494 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2495 {
2496 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2497 	struct shmem_sb_info config = *sbinfo;
2498 	unsigned long inodes;
2499 	int error = -EINVAL;
2500 
2501 	if (shmem_parse_options(data, &config, true))
2502 		return error;
2503 
2504 	spin_lock(&sbinfo->stat_lock);
2505 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2506 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2507 		goto out;
2508 	if (config.max_inodes < inodes)
2509 		goto out;
2510 	/*
2511 	 * Those tests also disallow limited->unlimited while any are in
2512 	 * use, so i_blocks will always be zero when max_blocks is zero;
2513 	 * but we must separately disallow unlimited->limited, because
2514 	 * in that case we have no record of how much is already in use.
2515 	 */
2516 	if (config.max_blocks && !sbinfo->max_blocks)
2517 		goto out;
2518 	if (config.max_inodes && !sbinfo->max_inodes)
2519 		goto out;
2520 
2521 	error = 0;
2522 	sbinfo->max_blocks  = config.max_blocks;
2523 	sbinfo->max_inodes  = config.max_inodes;
2524 	sbinfo->free_inodes = config.max_inodes - inodes;
2525 
2526 	mpol_put(sbinfo->mpol);
2527 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2528 out:
2529 	spin_unlock(&sbinfo->stat_lock);
2530 	return error;
2531 }
2532 
2533 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2534 {
2535 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2536 
2537 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2538 		seq_printf(seq, ",size=%luk",
2539 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2540 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2541 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2542 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2543 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2544 	if (sbinfo->uid != 0)
2545 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2546 	if (sbinfo->gid != 0)
2547 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2548 	shmem_show_mpol(seq, sbinfo->mpol);
2549 	return 0;
2550 }
2551 #endif /* CONFIG_TMPFS */
2552 
2553 static void shmem_put_super(struct super_block *sb)
2554 {
2555 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2556 
2557 	percpu_counter_destroy(&sbinfo->used_blocks);
2558 	kfree(sbinfo);
2559 	sb->s_fs_info = NULL;
2560 }
2561 
2562 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2563 {
2564 	struct inode *inode;
2565 	struct dentry *root;
2566 	struct shmem_sb_info *sbinfo;
2567 	int err = -ENOMEM;
2568 
2569 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2570 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2571 				L1_CACHE_BYTES), GFP_KERNEL);
2572 	if (!sbinfo)
2573 		return -ENOMEM;
2574 
2575 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2576 	sbinfo->uid = current_fsuid();
2577 	sbinfo->gid = current_fsgid();
2578 	sb->s_fs_info = sbinfo;
2579 
2580 #ifdef CONFIG_TMPFS
2581 	/*
2582 	 * Per default we only allow half of the physical ram per
2583 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2584 	 * but the internal instance is left unlimited.
2585 	 */
2586 	if (!(sb->s_flags & MS_NOUSER)) {
2587 		sbinfo->max_blocks = shmem_default_max_blocks();
2588 		sbinfo->max_inodes = shmem_default_max_inodes();
2589 		if (shmem_parse_options(data, sbinfo, false)) {
2590 			err = -EINVAL;
2591 			goto failed;
2592 		}
2593 	}
2594 	sb->s_export_op = &shmem_export_ops;
2595 #else
2596 	sb->s_flags |= MS_NOUSER;
2597 #endif
2598 
2599 	spin_lock_init(&sbinfo->stat_lock);
2600 	if (percpu_counter_init(&sbinfo->used_blocks, 0))
2601 		goto failed;
2602 	sbinfo->free_inodes = sbinfo->max_inodes;
2603 
2604 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2605 	sb->s_blocksize = PAGE_CACHE_SIZE;
2606 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2607 	sb->s_magic = TMPFS_MAGIC;
2608 	sb->s_op = &shmem_ops;
2609 	sb->s_time_gran = 1;
2610 #ifdef CONFIG_TMPFS_XATTR
2611 	sb->s_xattr = shmem_xattr_handlers;
2612 #endif
2613 #ifdef CONFIG_TMPFS_POSIX_ACL
2614 	sb->s_flags |= MS_POSIXACL;
2615 #endif
2616 
2617 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2618 	if (!inode)
2619 		goto failed;
2620 	inode->i_uid = sbinfo->uid;
2621 	inode->i_gid = sbinfo->gid;
2622 	root = d_alloc_root(inode);
2623 	if (!root)
2624 		goto failed_iput;
2625 	sb->s_root = root;
2626 	return 0;
2627 
2628 failed_iput:
2629 	iput(inode);
2630 failed:
2631 	shmem_put_super(sb);
2632 	return err;
2633 }
2634 
2635 static struct kmem_cache *shmem_inode_cachep;
2636 
2637 static struct inode *shmem_alloc_inode(struct super_block *sb)
2638 {
2639 	struct shmem_inode_info *p;
2640 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2641 	if (!p)
2642 		return NULL;
2643 	return &p->vfs_inode;
2644 }
2645 
2646 static void shmem_i_callback(struct rcu_head *head)
2647 {
2648 	struct inode *inode = container_of(head, struct inode, i_rcu);
2649 	INIT_LIST_HEAD(&inode->i_dentry);
2650 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2651 }
2652 
2653 static void shmem_destroy_inode(struct inode *inode)
2654 {
2655 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2656 		/* only struct inode is valid if it's an inline symlink */
2657 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2658 	}
2659 	call_rcu(&inode->i_rcu, shmem_i_callback);
2660 }
2661 
2662 static void init_once(void *foo)
2663 {
2664 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2665 
2666 	inode_init_once(&p->vfs_inode);
2667 }
2668 
2669 static int init_inodecache(void)
2670 {
2671 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2672 				sizeof(struct shmem_inode_info),
2673 				0, SLAB_PANIC, init_once);
2674 	return 0;
2675 }
2676 
2677 static void destroy_inodecache(void)
2678 {
2679 	kmem_cache_destroy(shmem_inode_cachep);
2680 }
2681 
2682 static const struct address_space_operations shmem_aops = {
2683 	.writepage	= shmem_writepage,
2684 	.set_page_dirty	= __set_page_dirty_no_writeback,
2685 #ifdef CONFIG_TMPFS
2686 	.readpage	= shmem_readpage,
2687 	.write_begin	= shmem_write_begin,
2688 	.write_end	= shmem_write_end,
2689 #endif
2690 	.migratepage	= migrate_page,
2691 	.error_remove_page = generic_error_remove_page,
2692 };
2693 
2694 static const struct file_operations shmem_file_operations = {
2695 	.mmap		= shmem_mmap,
2696 #ifdef CONFIG_TMPFS
2697 	.llseek		= generic_file_llseek,
2698 	.read		= do_sync_read,
2699 	.write		= do_sync_write,
2700 	.aio_read	= shmem_file_aio_read,
2701 	.aio_write	= generic_file_aio_write,
2702 	.fsync		= noop_fsync,
2703 	.splice_read	= generic_file_splice_read,
2704 	.splice_write	= generic_file_splice_write,
2705 #endif
2706 };
2707 
2708 static const struct inode_operations shmem_inode_operations = {
2709 	.setattr	= shmem_notify_change,
2710 	.truncate_range	= shmem_truncate_range,
2711 #ifdef CONFIG_TMPFS_XATTR
2712 	.setxattr	= shmem_setxattr,
2713 	.getxattr	= shmem_getxattr,
2714 	.listxattr	= shmem_listxattr,
2715 	.removexattr	= shmem_removexattr,
2716 #endif
2717 #ifdef CONFIG_TMPFS_POSIX_ACL
2718 	.check_acl	= generic_check_acl,
2719 #endif
2720 
2721 };
2722 
2723 static const struct inode_operations shmem_dir_inode_operations = {
2724 #ifdef CONFIG_TMPFS
2725 	.create		= shmem_create,
2726 	.lookup		= simple_lookup,
2727 	.link		= shmem_link,
2728 	.unlink		= shmem_unlink,
2729 	.symlink	= shmem_symlink,
2730 	.mkdir		= shmem_mkdir,
2731 	.rmdir		= shmem_rmdir,
2732 	.mknod		= shmem_mknod,
2733 	.rename		= shmem_rename,
2734 #endif
2735 #ifdef CONFIG_TMPFS_XATTR
2736 	.setxattr	= shmem_setxattr,
2737 	.getxattr	= shmem_getxattr,
2738 	.listxattr	= shmem_listxattr,
2739 	.removexattr	= shmem_removexattr,
2740 #endif
2741 #ifdef CONFIG_TMPFS_POSIX_ACL
2742 	.setattr	= shmem_notify_change,
2743 	.check_acl	= generic_check_acl,
2744 #endif
2745 };
2746 
2747 static const struct inode_operations shmem_special_inode_operations = {
2748 #ifdef CONFIG_TMPFS_XATTR
2749 	.setxattr	= shmem_setxattr,
2750 	.getxattr	= shmem_getxattr,
2751 	.listxattr	= shmem_listxattr,
2752 	.removexattr	= shmem_removexattr,
2753 #endif
2754 #ifdef CONFIG_TMPFS_POSIX_ACL
2755 	.setattr	= shmem_notify_change,
2756 	.check_acl	= generic_check_acl,
2757 #endif
2758 };
2759 
2760 static const struct super_operations shmem_ops = {
2761 	.alloc_inode	= shmem_alloc_inode,
2762 	.destroy_inode	= shmem_destroy_inode,
2763 #ifdef CONFIG_TMPFS
2764 	.statfs		= shmem_statfs,
2765 	.remount_fs	= shmem_remount_fs,
2766 	.show_options	= shmem_show_options,
2767 #endif
2768 	.evict_inode	= shmem_evict_inode,
2769 	.drop_inode	= generic_delete_inode,
2770 	.put_super	= shmem_put_super,
2771 };
2772 
2773 static const struct vm_operations_struct shmem_vm_ops = {
2774 	.fault		= shmem_fault,
2775 #ifdef CONFIG_NUMA
2776 	.set_policy     = shmem_set_policy,
2777 	.get_policy     = shmem_get_policy,
2778 #endif
2779 };
2780 
2781 
2782 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2783 	int flags, const char *dev_name, void *data)
2784 {
2785 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
2786 }
2787 
2788 static struct file_system_type tmpfs_fs_type = {
2789 	.owner		= THIS_MODULE,
2790 	.name		= "tmpfs",
2791 	.mount		= shmem_mount,
2792 	.kill_sb	= kill_litter_super,
2793 };
2794 
2795 int __init init_tmpfs(void)
2796 {
2797 	int error;
2798 
2799 	error = bdi_init(&shmem_backing_dev_info);
2800 	if (error)
2801 		goto out4;
2802 
2803 	error = init_inodecache();
2804 	if (error)
2805 		goto out3;
2806 
2807 	error = register_filesystem(&tmpfs_fs_type);
2808 	if (error) {
2809 		printk(KERN_ERR "Could not register tmpfs\n");
2810 		goto out2;
2811 	}
2812 
2813 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2814 				tmpfs_fs_type.name, NULL);
2815 	if (IS_ERR(shm_mnt)) {
2816 		error = PTR_ERR(shm_mnt);
2817 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2818 		goto out1;
2819 	}
2820 	return 0;
2821 
2822 out1:
2823 	unregister_filesystem(&tmpfs_fs_type);
2824 out2:
2825 	destroy_inodecache();
2826 out3:
2827 	bdi_destroy(&shmem_backing_dev_info);
2828 out4:
2829 	shm_mnt = ERR_PTR(error);
2830 	return error;
2831 }
2832 
2833 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2834 /**
2835  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2836  * @inode: the inode to be searched
2837  * @pgoff: the offset to be searched
2838  * @pagep: the pointer for the found page to be stored
2839  * @ent: the pointer for the found swap entry to be stored
2840  *
2841  * If a page is found, refcount of it is incremented. Callers should handle
2842  * these refcount.
2843  */
2844 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2845 					struct page **pagep, swp_entry_t *ent)
2846 {
2847 	swp_entry_t entry = { .val = 0 }, *ptr;
2848 	struct page *page = NULL;
2849 	struct shmem_inode_info *info = SHMEM_I(inode);
2850 
2851 	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2852 		goto out;
2853 
2854 	spin_lock(&info->lock);
2855 	ptr = shmem_swp_entry(info, pgoff, NULL);
2856 #ifdef CONFIG_SWAP
2857 	if (ptr && ptr->val) {
2858 		entry.val = ptr->val;
2859 		page = find_get_page(&swapper_space, entry.val);
2860 	} else
2861 #endif
2862 		page = find_get_page(inode->i_mapping, pgoff);
2863 	if (ptr)
2864 		shmem_swp_unmap(ptr);
2865 	spin_unlock(&info->lock);
2866 out:
2867 	*pagep = page;
2868 	*ent = entry;
2869 }
2870 #endif
2871 
2872 #else /* !CONFIG_SHMEM */
2873 
2874 /*
2875  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2876  *
2877  * This is intended for small system where the benefits of the full
2878  * shmem code (swap-backed and resource-limited) are outweighed by
2879  * their complexity. On systems without swap this code should be
2880  * effectively equivalent, but much lighter weight.
2881  */
2882 
2883 #include <linux/ramfs.h>
2884 
2885 static struct file_system_type tmpfs_fs_type = {
2886 	.name		= "tmpfs",
2887 	.mount		= ramfs_mount,
2888 	.kill_sb	= kill_litter_super,
2889 };
2890 
2891 int __init init_tmpfs(void)
2892 {
2893 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2894 
2895 	shm_mnt = kern_mount(&tmpfs_fs_type);
2896 	BUG_ON(IS_ERR(shm_mnt));
2897 
2898 	return 0;
2899 }
2900 
2901 int shmem_unuse(swp_entry_t entry, struct page *page)
2902 {
2903 	return 0;
2904 }
2905 
2906 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2907 {
2908 	return 0;
2909 }
2910 
2911 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2912 /**
2913  * mem_cgroup_get_shmem_target - find a page or entry assigned to the shmem file
2914  * @inode: the inode to be searched
2915  * @pgoff: the offset to be searched
2916  * @pagep: the pointer for the found page to be stored
2917  * @ent: the pointer for the found swap entry to be stored
2918  *
2919  * If a page is found, refcount of it is incremented. Callers should handle
2920  * these refcount.
2921  */
2922 void mem_cgroup_get_shmem_target(struct inode *inode, pgoff_t pgoff,
2923 					struct page **pagep, swp_entry_t *ent)
2924 {
2925 	struct page *page = NULL;
2926 
2927 	if ((pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
2928 		goto out;
2929 	page = find_get_page(inode->i_mapping, pgoff);
2930 out:
2931 	*pagep = page;
2932 	*ent = (swp_entry_t){ .val = 0 };
2933 }
2934 #endif
2935 
2936 #define shmem_vm_ops				generic_file_vm_ops
2937 #define shmem_file_operations			ramfs_file_operations
2938 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
2939 #define shmem_acct_size(flags, size)		0
2940 #define shmem_unacct_size(flags, size)		do {} while (0)
2941 #define SHMEM_MAX_BYTES				MAX_LFS_FILESIZE
2942 
2943 #endif /* CONFIG_SHMEM */
2944 
2945 /* common code */
2946 
2947 /**
2948  * shmem_file_setup - get an unlinked file living in tmpfs
2949  * @name: name for dentry (to be seen in /proc/<pid>/maps
2950  * @size: size to be set for the file
2951  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2952  */
2953 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2954 {
2955 	int error;
2956 	struct file *file;
2957 	struct inode *inode;
2958 	struct path path;
2959 	struct dentry *root;
2960 	struct qstr this;
2961 
2962 	if (IS_ERR(shm_mnt))
2963 		return (void *)shm_mnt;
2964 
2965 	if (size < 0 || size > SHMEM_MAX_BYTES)
2966 		return ERR_PTR(-EINVAL);
2967 
2968 	if (shmem_acct_size(flags, size))
2969 		return ERR_PTR(-ENOMEM);
2970 
2971 	error = -ENOMEM;
2972 	this.name = name;
2973 	this.len = strlen(name);
2974 	this.hash = 0; /* will go */
2975 	root = shm_mnt->mnt_root;
2976 	path.dentry = d_alloc(root, &this);
2977 	if (!path.dentry)
2978 		goto put_memory;
2979 	path.mnt = mntget(shm_mnt);
2980 
2981 	error = -ENOSPC;
2982 	inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2983 	if (!inode)
2984 		goto put_dentry;
2985 
2986 	d_instantiate(path.dentry, inode);
2987 	inode->i_size = size;
2988 	inode->i_nlink = 0;	/* It is unlinked */
2989 #ifndef CONFIG_MMU
2990 	error = ramfs_nommu_expand_for_mapping(inode, size);
2991 	if (error)
2992 		goto put_dentry;
2993 #endif
2994 
2995 	error = -ENFILE;
2996 	file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2997 		  &shmem_file_operations);
2998 	if (!file)
2999 		goto put_dentry;
3000 
3001 	return file;
3002 
3003 put_dentry:
3004 	path_put(&path);
3005 put_memory:
3006 	shmem_unacct_size(flags, size);
3007 	return ERR_PTR(error);
3008 }
3009 EXPORT_SYMBOL_GPL(shmem_file_setup);
3010 
3011 /**
3012  * shmem_zero_setup - setup a shared anonymous mapping
3013  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3014  */
3015 int shmem_zero_setup(struct vm_area_struct *vma)
3016 {
3017 	struct file *file;
3018 	loff_t size = vma->vm_end - vma->vm_start;
3019 
3020 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3021 	if (IS_ERR(file))
3022 		return PTR_ERR(file);
3023 
3024 	if (vma->vm_file)
3025 		fput(vma->vm_file);
3026 	vma->vm_file = file;
3027 	vma->vm_ops = &shmem_vm_ops;
3028 	vma->vm_flags |= VM_CAN_NONLINEAR;
3029 	return 0;
3030 }
3031