1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/export.h> 33 #include <linux/swap.h> 34 #include <linux/uio.h> 35 36 static struct vfsmount *shm_mnt; 37 38 #ifdef CONFIG_SHMEM 39 /* 40 * This virtual memory filesystem is heavily based on the ramfs. It 41 * extends ramfs by the ability to use swap and honor resource limits 42 * which makes it a completely usable filesystem. 43 */ 44 45 #include <linux/xattr.h> 46 #include <linux/exportfs.h> 47 #include <linux/posix_acl.h> 48 #include <linux/posix_acl_xattr.h> 49 #include <linux/mman.h> 50 #include <linux/string.h> 51 #include <linux/slab.h> 52 #include <linux/backing-dev.h> 53 #include <linux/shmem_fs.h> 54 #include <linux/writeback.h> 55 #include <linux/blkdev.h> 56 #include <linux/pagevec.h> 57 #include <linux/percpu_counter.h> 58 #include <linux/falloc.h> 59 #include <linux/splice.h> 60 #include <linux/security.h> 61 #include <linux/swapops.h> 62 #include <linux/mempolicy.h> 63 #include <linux/namei.h> 64 #include <linux/ctype.h> 65 #include <linux/migrate.h> 66 #include <linux/highmem.h> 67 #include <linux/seq_file.h> 68 #include <linux/magic.h> 69 #include <linux/syscalls.h> 70 #include <linux/fcntl.h> 71 #include <uapi/linux/memfd.h> 72 73 #include <asm/uaccess.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 79 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 80 81 /* Pretend that each entry is of this size in directory's i_size */ 82 #define BOGO_DIRENT_SIZE 20 83 84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 85 #define SHORT_SYMLINK_LEN 128 86 87 /* 88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 89 * inode->i_private (with i_mutex making sure that it has only one user at 90 * a time): we would prefer not to enlarge the shmem inode just for that. 91 */ 92 struct shmem_falloc { 93 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 94 pgoff_t start; /* start of range currently being fallocated */ 95 pgoff_t next; /* the next page offset to be fallocated */ 96 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 97 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 98 }; 99 100 /* Flag allocation requirements to shmem_getpage */ 101 enum sgp_type { 102 SGP_READ, /* don't exceed i_size, don't allocate page */ 103 SGP_CACHE, /* don't exceed i_size, may allocate page */ 104 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */ 105 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */ 106 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */ 107 }; 108 109 #ifdef CONFIG_TMPFS 110 static unsigned long shmem_default_max_blocks(void) 111 { 112 return totalram_pages / 2; 113 } 114 115 static unsigned long shmem_default_max_inodes(void) 116 { 117 return min(totalram_pages - totalhigh_pages, totalram_pages / 2); 118 } 119 #endif 120 121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 122 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 123 struct shmem_inode_info *info, pgoff_t index); 124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 125 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type); 126 127 static inline int shmem_getpage(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, int *fault_type) 129 { 130 return shmem_getpage_gfp(inode, index, pagep, sgp, 131 mapping_gfp_mask(inode->i_mapping), fault_type); 132 } 133 134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 135 { 136 return sb->s_fs_info; 137 } 138 139 /* 140 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 141 * for shared memory and for shared anonymous (/dev/zero) mappings 142 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 143 * consistent with the pre-accounting of private mappings ... 144 */ 145 static inline int shmem_acct_size(unsigned long flags, loff_t size) 146 { 147 return (flags & VM_NORESERVE) ? 148 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 149 } 150 151 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 152 { 153 if (!(flags & VM_NORESERVE)) 154 vm_unacct_memory(VM_ACCT(size)); 155 } 156 157 static inline int shmem_reacct_size(unsigned long flags, 158 loff_t oldsize, loff_t newsize) 159 { 160 if (!(flags & VM_NORESERVE)) { 161 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 162 return security_vm_enough_memory_mm(current->mm, 163 VM_ACCT(newsize) - VM_ACCT(oldsize)); 164 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 165 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 166 } 167 return 0; 168 } 169 170 /* 171 * ... whereas tmpfs objects are accounted incrementally as 172 * pages are allocated, in order to allow huge sparse files. 173 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 174 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 175 */ 176 static inline int shmem_acct_block(unsigned long flags) 177 { 178 return (flags & VM_NORESERVE) ? 179 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0; 180 } 181 182 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 183 { 184 if (flags & VM_NORESERVE) 185 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 186 } 187 188 static const struct super_operations shmem_ops; 189 static const struct address_space_operations shmem_aops; 190 static const struct file_operations shmem_file_operations; 191 static const struct inode_operations shmem_inode_operations; 192 static const struct inode_operations shmem_dir_inode_operations; 193 static const struct inode_operations shmem_special_inode_operations; 194 static const struct vm_operations_struct shmem_vm_ops; 195 196 static LIST_HEAD(shmem_swaplist); 197 static DEFINE_MUTEX(shmem_swaplist_mutex); 198 199 static int shmem_reserve_inode(struct super_block *sb) 200 { 201 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 202 if (sbinfo->max_inodes) { 203 spin_lock(&sbinfo->stat_lock); 204 if (!sbinfo->free_inodes) { 205 spin_unlock(&sbinfo->stat_lock); 206 return -ENOSPC; 207 } 208 sbinfo->free_inodes--; 209 spin_unlock(&sbinfo->stat_lock); 210 } 211 return 0; 212 } 213 214 static void shmem_free_inode(struct super_block *sb) 215 { 216 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 217 if (sbinfo->max_inodes) { 218 spin_lock(&sbinfo->stat_lock); 219 sbinfo->free_inodes++; 220 spin_unlock(&sbinfo->stat_lock); 221 } 222 } 223 224 /** 225 * shmem_recalc_inode - recalculate the block usage of an inode 226 * @inode: inode to recalc 227 * 228 * We have to calculate the free blocks since the mm can drop 229 * undirtied hole pages behind our back. 230 * 231 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 232 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 233 * 234 * It has to be called with the spinlock held. 235 */ 236 static void shmem_recalc_inode(struct inode *inode) 237 { 238 struct shmem_inode_info *info = SHMEM_I(inode); 239 long freed; 240 241 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 242 if (freed > 0) { 243 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 244 if (sbinfo->max_blocks) 245 percpu_counter_add(&sbinfo->used_blocks, -freed); 246 info->alloced -= freed; 247 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 248 shmem_unacct_blocks(info->flags, freed); 249 } 250 } 251 252 /* 253 * Replace item expected in radix tree by a new item, while holding tree lock. 254 */ 255 static int shmem_radix_tree_replace(struct address_space *mapping, 256 pgoff_t index, void *expected, void *replacement) 257 { 258 void **pslot; 259 void *item; 260 261 VM_BUG_ON(!expected); 262 VM_BUG_ON(!replacement); 263 pslot = radix_tree_lookup_slot(&mapping->page_tree, index); 264 if (!pslot) 265 return -ENOENT; 266 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock); 267 if (item != expected) 268 return -ENOENT; 269 radix_tree_replace_slot(pslot, replacement); 270 return 0; 271 } 272 273 /* 274 * Sometimes, before we decide whether to proceed or to fail, we must check 275 * that an entry was not already brought back from swap by a racing thread. 276 * 277 * Checking page is not enough: by the time a SwapCache page is locked, it 278 * might be reused, and again be SwapCache, using the same swap as before. 279 */ 280 static bool shmem_confirm_swap(struct address_space *mapping, 281 pgoff_t index, swp_entry_t swap) 282 { 283 void *item; 284 285 rcu_read_lock(); 286 item = radix_tree_lookup(&mapping->page_tree, index); 287 rcu_read_unlock(); 288 return item == swp_to_radix_entry(swap); 289 } 290 291 /* 292 * Like add_to_page_cache_locked, but error if expected item has gone. 293 */ 294 static int shmem_add_to_page_cache(struct page *page, 295 struct address_space *mapping, 296 pgoff_t index, void *expected) 297 { 298 int error; 299 300 VM_BUG_ON_PAGE(!PageLocked(page), page); 301 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 302 303 get_page(page); 304 page->mapping = mapping; 305 page->index = index; 306 307 spin_lock_irq(&mapping->tree_lock); 308 if (!expected) 309 error = radix_tree_insert(&mapping->page_tree, index, page); 310 else 311 error = shmem_radix_tree_replace(mapping, index, expected, 312 page); 313 if (!error) { 314 mapping->nrpages++; 315 __inc_zone_page_state(page, NR_FILE_PAGES); 316 __inc_zone_page_state(page, NR_SHMEM); 317 spin_unlock_irq(&mapping->tree_lock); 318 } else { 319 page->mapping = NULL; 320 spin_unlock_irq(&mapping->tree_lock); 321 put_page(page); 322 } 323 return error; 324 } 325 326 /* 327 * Like delete_from_page_cache, but substitutes swap for page. 328 */ 329 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 330 { 331 struct address_space *mapping = page->mapping; 332 int error; 333 334 spin_lock_irq(&mapping->tree_lock); 335 error = shmem_radix_tree_replace(mapping, page->index, page, radswap); 336 page->mapping = NULL; 337 mapping->nrpages--; 338 __dec_zone_page_state(page, NR_FILE_PAGES); 339 __dec_zone_page_state(page, NR_SHMEM); 340 spin_unlock_irq(&mapping->tree_lock); 341 put_page(page); 342 BUG_ON(error); 343 } 344 345 /* 346 * Remove swap entry from radix tree, free the swap and its page cache. 347 */ 348 static int shmem_free_swap(struct address_space *mapping, 349 pgoff_t index, void *radswap) 350 { 351 void *old; 352 353 spin_lock_irq(&mapping->tree_lock); 354 old = radix_tree_delete_item(&mapping->page_tree, index, radswap); 355 spin_unlock_irq(&mapping->tree_lock); 356 if (old != radswap) 357 return -ENOENT; 358 free_swap_and_cache(radix_to_swp_entry(radswap)); 359 return 0; 360 } 361 362 /* 363 * Determine (in bytes) how many of the shmem object's pages mapped by the 364 * given offsets are swapped out. 365 * 366 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 367 * as long as the inode doesn't go away and racy results are not a problem. 368 */ 369 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 370 pgoff_t start, pgoff_t end) 371 { 372 struct radix_tree_iter iter; 373 void **slot; 374 struct page *page; 375 unsigned long swapped = 0; 376 377 rcu_read_lock(); 378 379 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 380 if (iter.index >= end) 381 break; 382 383 page = radix_tree_deref_slot(slot); 384 385 if (radix_tree_deref_retry(page)) { 386 slot = radix_tree_iter_retry(&iter); 387 continue; 388 } 389 390 if (radix_tree_exceptional_entry(page)) 391 swapped++; 392 393 if (need_resched()) { 394 cond_resched_rcu(); 395 slot = radix_tree_iter_next(&iter); 396 } 397 } 398 399 rcu_read_unlock(); 400 401 return swapped << PAGE_SHIFT; 402 } 403 404 /* 405 * Determine (in bytes) how many of the shmem object's pages mapped by the 406 * given vma is swapped out. 407 * 408 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU, 409 * as long as the inode doesn't go away and racy results are not a problem. 410 */ 411 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 412 { 413 struct inode *inode = file_inode(vma->vm_file); 414 struct shmem_inode_info *info = SHMEM_I(inode); 415 struct address_space *mapping = inode->i_mapping; 416 unsigned long swapped; 417 418 /* Be careful as we don't hold info->lock */ 419 swapped = READ_ONCE(info->swapped); 420 421 /* 422 * The easier cases are when the shmem object has nothing in swap, or 423 * the vma maps it whole. Then we can simply use the stats that we 424 * already track. 425 */ 426 if (!swapped) 427 return 0; 428 429 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 430 return swapped << PAGE_SHIFT; 431 432 /* Here comes the more involved part */ 433 return shmem_partial_swap_usage(mapping, 434 linear_page_index(vma, vma->vm_start), 435 linear_page_index(vma, vma->vm_end)); 436 } 437 438 /* 439 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 440 */ 441 void shmem_unlock_mapping(struct address_space *mapping) 442 { 443 struct pagevec pvec; 444 pgoff_t indices[PAGEVEC_SIZE]; 445 pgoff_t index = 0; 446 447 pagevec_init(&pvec, 0); 448 /* 449 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 450 */ 451 while (!mapping_unevictable(mapping)) { 452 /* 453 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 454 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 455 */ 456 pvec.nr = find_get_entries(mapping, index, 457 PAGEVEC_SIZE, pvec.pages, indices); 458 if (!pvec.nr) 459 break; 460 index = indices[pvec.nr - 1] + 1; 461 pagevec_remove_exceptionals(&pvec); 462 check_move_unevictable_pages(pvec.pages, pvec.nr); 463 pagevec_release(&pvec); 464 cond_resched(); 465 } 466 } 467 468 /* 469 * Remove range of pages and swap entries from radix tree, and free them. 470 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 471 */ 472 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 473 bool unfalloc) 474 { 475 struct address_space *mapping = inode->i_mapping; 476 struct shmem_inode_info *info = SHMEM_I(inode); 477 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 478 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 479 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 480 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 481 struct pagevec pvec; 482 pgoff_t indices[PAGEVEC_SIZE]; 483 long nr_swaps_freed = 0; 484 pgoff_t index; 485 int i; 486 487 if (lend == -1) 488 end = -1; /* unsigned, so actually very big */ 489 490 pagevec_init(&pvec, 0); 491 index = start; 492 while (index < end) { 493 pvec.nr = find_get_entries(mapping, index, 494 min(end - index, (pgoff_t)PAGEVEC_SIZE), 495 pvec.pages, indices); 496 if (!pvec.nr) 497 break; 498 for (i = 0; i < pagevec_count(&pvec); i++) { 499 struct page *page = pvec.pages[i]; 500 501 index = indices[i]; 502 if (index >= end) 503 break; 504 505 if (radix_tree_exceptional_entry(page)) { 506 if (unfalloc) 507 continue; 508 nr_swaps_freed += !shmem_free_swap(mapping, 509 index, page); 510 continue; 511 } 512 513 if (!trylock_page(page)) 514 continue; 515 if (!unfalloc || !PageUptodate(page)) { 516 if (page->mapping == mapping) { 517 VM_BUG_ON_PAGE(PageWriteback(page), page); 518 truncate_inode_page(mapping, page); 519 } 520 } 521 unlock_page(page); 522 } 523 pagevec_remove_exceptionals(&pvec); 524 pagevec_release(&pvec); 525 cond_resched(); 526 index++; 527 } 528 529 if (partial_start) { 530 struct page *page = NULL; 531 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL); 532 if (page) { 533 unsigned int top = PAGE_SIZE; 534 if (start > end) { 535 top = partial_end; 536 partial_end = 0; 537 } 538 zero_user_segment(page, partial_start, top); 539 set_page_dirty(page); 540 unlock_page(page); 541 put_page(page); 542 } 543 } 544 if (partial_end) { 545 struct page *page = NULL; 546 shmem_getpage(inode, end, &page, SGP_READ, NULL); 547 if (page) { 548 zero_user_segment(page, 0, partial_end); 549 set_page_dirty(page); 550 unlock_page(page); 551 put_page(page); 552 } 553 } 554 if (start >= end) 555 return; 556 557 index = start; 558 while (index < end) { 559 cond_resched(); 560 561 pvec.nr = find_get_entries(mapping, index, 562 min(end - index, (pgoff_t)PAGEVEC_SIZE), 563 pvec.pages, indices); 564 if (!pvec.nr) { 565 /* If all gone or hole-punch or unfalloc, we're done */ 566 if (index == start || end != -1) 567 break; 568 /* But if truncating, restart to make sure all gone */ 569 index = start; 570 continue; 571 } 572 for (i = 0; i < pagevec_count(&pvec); i++) { 573 struct page *page = pvec.pages[i]; 574 575 index = indices[i]; 576 if (index >= end) 577 break; 578 579 if (radix_tree_exceptional_entry(page)) { 580 if (unfalloc) 581 continue; 582 if (shmem_free_swap(mapping, index, page)) { 583 /* Swap was replaced by page: retry */ 584 index--; 585 break; 586 } 587 nr_swaps_freed++; 588 continue; 589 } 590 591 lock_page(page); 592 if (!unfalloc || !PageUptodate(page)) { 593 if (page->mapping == mapping) { 594 VM_BUG_ON_PAGE(PageWriteback(page), page); 595 truncate_inode_page(mapping, page); 596 } else { 597 /* Page was replaced by swap: retry */ 598 unlock_page(page); 599 index--; 600 break; 601 } 602 } 603 unlock_page(page); 604 } 605 pagevec_remove_exceptionals(&pvec); 606 pagevec_release(&pvec); 607 index++; 608 } 609 610 spin_lock(&info->lock); 611 info->swapped -= nr_swaps_freed; 612 shmem_recalc_inode(inode); 613 spin_unlock(&info->lock); 614 } 615 616 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 617 { 618 shmem_undo_range(inode, lstart, lend, false); 619 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 620 } 621 EXPORT_SYMBOL_GPL(shmem_truncate_range); 622 623 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry, 624 struct kstat *stat) 625 { 626 struct inode *inode = dentry->d_inode; 627 struct shmem_inode_info *info = SHMEM_I(inode); 628 629 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 630 spin_lock(&info->lock); 631 shmem_recalc_inode(inode); 632 spin_unlock(&info->lock); 633 } 634 generic_fillattr(inode, stat); 635 return 0; 636 } 637 638 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 639 { 640 struct inode *inode = d_inode(dentry); 641 struct shmem_inode_info *info = SHMEM_I(inode); 642 int error; 643 644 error = inode_change_ok(inode, attr); 645 if (error) 646 return error; 647 648 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 649 loff_t oldsize = inode->i_size; 650 loff_t newsize = attr->ia_size; 651 652 /* protected by i_mutex */ 653 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 654 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 655 return -EPERM; 656 657 if (newsize != oldsize) { 658 error = shmem_reacct_size(SHMEM_I(inode)->flags, 659 oldsize, newsize); 660 if (error) 661 return error; 662 i_size_write(inode, newsize); 663 inode->i_ctime = inode->i_mtime = CURRENT_TIME; 664 } 665 if (newsize <= oldsize) { 666 loff_t holebegin = round_up(newsize, PAGE_SIZE); 667 if (oldsize > holebegin) 668 unmap_mapping_range(inode->i_mapping, 669 holebegin, 0, 1); 670 if (info->alloced) 671 shmem_truncate_range(inode, 672 newsize, (loff_t)-1); 673 /* unmap again to remove racily COWed private pages */ 674 if (oldsize > holebegin) 675 unmap_mapping_range(inode->i_mapping, 676 holebegin, 0, 1); 677 } 678 } 679 680 setattr_copy(inode, attr); 681 if (attr->ia_valid & ATTR_MODE) 682 error = posix_acl_chmod(inode, inode->i_mode); 683 return error; 684 } 685 686 static void shmem_evict_inode(struct inode *inode) 687 { 688 struct shmem_inode_info *info = SHMEM_I(inode); 689 690 if (inode->i_mapping->a_ops == &shmem_aops) { 691 shmem_unacct_size(info->flags, inode->i_size); 692 inode->i_size = 0; 693 shmem_truncate_range(inode, 0, (loff_t)-1); 694 if (!list_empty(&info->swaplist)) { 695 mutex_lock(&shmem_swaplist_mutex); 696 list_del_init(&info->swaplist); 697 mutex_unlock(&shmem_swaplist_mutex); 698 } 699 } 700 701 simple_xattrs_free(&info->xattrs); 702 WARN_ON(inode->i_blocks); 703 shmem_free_inode(inode->i_sb); 704 clear_inode(inode); 705 } 706 707 /* 708 * If swap found in inode, free it and move page from swapcache to filecache. 709 */ 710 static int shmem_unuse_inode(struct shmem_inode_info *info, 711 swp_entry_t swap, struct page **pagep) 712 { 713 struct address_space *mapping = info->vfs_inode.i_mapping; 714 void *radswap; 715 pgoff_t index; 716 gfp_t gfp; 717 int error = 0; 718 719 radswap = swp_to_radix_entry(swap); 720 index = radix_tree_locate_item(&mapping->page_tree, radswap); 721 if (index == -1) 722 return -EAGAIN; /* tell shmem_unuse we found nothing */ 723 724 /* 725 * Move _head_ to start search for next from here. 726 * But be careful: shmem_evict_inode checks list_empty without taking 727 * mutex, and there's an instant in list_move_tail when info->swaplist 728 * would appear empty, if it were the only one on shmem_swaplist. 729 */ 730 if (shmem_swaplist.next != &info->swaplist) 731 list_move_tail(&shmem_swaplist, &info->swaplist); 732 733 gfp = mapping_gfp_mask(mapping); 734 if (shmem_should_replace_page(*pagep, gfp)) { 735 mutex_unlock(&shmem_swaplist_mutex); 736 error = shmem_replace_page(pagep, gfp, info, index); 737 mutex_lock(&shmem_swaplist_mutex); 738 /* 739 * We needed to drop mutex to make that restrictive page 740 * allocation, but the inode might have been freed while we 741 * dropped it: although a racing shmem_evict_inode() cannot 742 * complete without emptying the radix_tree, our page lock 743 * on this swapcache page is not enough to prevent that - 744 * free_swap_and_cache() of our swap entry will only 745 * trylock_page(), removing swap from radix_tree whatever. 746 * 747 * We must not proceed to shmem_add_to_page_cache() if the 748 * inode has been freed, but of course we cannot rely on 749 * inode or mapping or info to check that. However, we can 750 * safely check if our swap entry is still in use (and here 751 * it can't have got reused for another page): if it's still 752 * in use, then the inode cannot have been freed yet, and we 753 * can safely proceed (if it's no longer in use, that tells 754 * nothing about the inode, but we don't need to unuse swap). 755 */ 756 if (!page_swapcount(*pagep)) 757 error = -ENOENT; 758 } 759 760 /* 761 * We rely on shmem_swaplist_mutex, not only to protect the swaplist, 762 * but also to hold up shmem_evict_inode(): so inode cannot be freed 763 * beneath us (pagelock doesn't help until the page is in pagecache). 764 */ 765 if (!error) 766 error = shmem_add_to_page_cache(*pagep, mapping, index, 767 radswap); 768 if (error != -ENOMEM) { 769 /* 770 * Truncation and eviction use free_swap_and_cache(), which 771 * only does trylock page: if we raced, best clean up here. 772 */ 773 delete_from_swap_cache(*pagep); 774 set_page_dirty(*pagep); 775 if (!error) { 776 spin_lock(&info->lock); 777 info->swapped--; 778 spin_unlock(&info->lock); 779 swap_free(swap); 780 } 781 } 782 return error; 783 } 784 785 /* 786 * Search through swapped inodes to find and replace swap by page. 787 */ 788 int shmem_unuse(swp_entry_t swap, struct page *page) 789 { 790 struct list_head *this, *next; 791 struct shmem_inode_info *info; 792 struct mem_cgroup *memcg; 793 int error = 0; 794 795 /* 796 * There's a faint possibility that swap page was replaced before 797 * caller locked it: caller will come back later with the right page. 798 */ 799 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val)) 800 goto out; 801 802 /* 803 * Charge page using GFP_KERNEL while we can wait, before taking 804 * the shmem_swaplist_mutex which might hold up shmem_writepage(). 805 * Charged back to the user (not to caller) when swap account is used. 806 */ 807 error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg, 808 false); 809 if (error) 810 goto out; 811 /* No radix_tree_preload: swap entry keeps a place for page in tree */ 812 error = -EAGAIN; 813 814 mutex_lock(&shmem_swaplist_mutex); 815 list_for_each_safe(this, next, &shmem_swaplist) { 816 info = list_entry(this, struct shmem_inode_info, swaplist); 817 if (info->swapped) 818 error = shmem_unuse_inode(info, swap, &page); 819 else 820 list_del_init(&info->swaplist); 821 cond_resched(); 822 if (error != -EAGAIN) 823 break; 824 /* found nothing in this: move on to search the next */ 825 } 826 mutex_unlock(&shmem_swaplist_mutex); 827 828 if (error) { 829 if (error != -ENOMEM) 830 error = 0; 831 mem_cgroup_cancel_charge(page, memcg, false); 832 } else 833 mem_cgroup_commit_charge(page, memcg, true, false); 834 out: 835 unlock_page(page); 836 put_page(page); 837 return error; 838 } 839 840 /* 841 * Move the page from the page cache to the swap cache. 842 */ 843 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 844 { 845 struct shmem_inode_info *info; 846 struct address_space *mapping; 847 struct inode *inode; 848 swp_entry_t swap; 849 pgoff_t index; 850 851 BUG_ON(!PageLocked(page)); 852 mapping = page->mapping; 853 index = page->index; 854 inode = mapping->host; 855 info = SHMEM_I(inode); 856 if (info->flags & VM_LOCKED) 857 goto redirty; 858 if (!total_swap_pages) 859 goto redirty; 860 861 /* 862 * Our capabilities prevent regular writeback or sync from ever calling 863 * shmem_writepage; but a stacking filesystem might use ->writepage of 864 * its underlying filesystem, in which case tmpfs should write out to 865 * swap only in response to memory pressure, and not for the writeback 866 * threads or sync. 867 */ 868 if (!wbc->for_reclaim) { 869 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 870 goto redirty; 871 } 872 873 /* 874 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 875 * value into swapfile.c, the only way we can correctly account for a 876 * fallocated page arriving here is now to initialize it and write it. 877 * 878 * That's okay for a page already fallocated earlier, but if we have 879 * not yet completed the fallocation, then (a) we want to keep track 880 * of this page in case we have to undo it, and (b) it may not be a 881 * good idea to continue anyway, once we're pushing into swap. So 882 * reactivate the page, and let shmem_fallocate() quit when too many. 883 */ 884 if (!PageUptodate(page)) { 885 if (inode->i_private) { 886 struct shmem_falloc *shmem_falloc; 887 spin_lock(&inode->i_lock); 888 shmem_falloc = inode->i_private; 889 if (shmem_falloc && 890 !shmem_falloc->waitq && 891 index >= shmem_falloc->start && 892 index < shmem_falloc->next) 893 shmem_falloc->nr_unswapped++; 894 else 895 shmem_falloc = NULL; 896 spin_unlock(&inode->i_lock); 897 if (shmem_falloc) 898 goto redirty; 899 } 900 clear_highpage(page); 901 flush_dcache_page(page); 902 SetPageUptodate(page); 903 } 904 905 swap = get_swap_page(); 906 if (!swap.val) 907 goto redirty; 908 909 if (mem_cgroup_try_charge_swap(page, swap)) 910 goto free_swap; 911 912 /* 913 * Add inode to shmem_unuse()'s list of swapped-out inodes, 914 * if it's not already there. Do it now before the page is 915 * moved to swap cache, when its pagelock no longer protects 916 * the inode from eviction. But don't unlock the mutex until 917 * we've incremented swapped, because shmem_unuse_inode() will 918 * prune a !swapped inode from the swaplist under this mutex. 919 */ 920 mutex_lock(&shmem_swaplist_mutex); 921 if (list_empty(&info->swaplist)) 922 list_add_tail(&info->swaplist, &shmem_swaplist); 923 924 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 925 spin_lock(&info->lock); 926 shmem_recalc_inode(inode); 927 info->swapped++; 928 spin_unlock(&info->lock); 929 930 swap_shmem_alloc(swap); 931 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 932 933 mutex_unlock(&shmem_swaplist_mutex); 934 BUG_ON(page_mapped(page)); 935 swap_writepage(page, wbc); 936 return 0; 937 } 938 939 mutex_unlock(&shmem_swaplist_mutex); 940 free_swap: 941 swapcache_free(swap); 942 redirty: 943 set_page_dirty(page); 944 if (wbc->for_reclaim) 945 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 946 unlock_page(page); 947 return 0; 948 } 949 950 #ifdef CONFIG_NUMA 951 #ifdef CONFIG_TMPFS 952 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 953 { 954 char buffer[64]; 955 956 if (!mpol || mpol->mode == MPOL_DEFAULT) 957 return; /* show nothing */ 958 959 mpol_to_str(buffer, sizeof(buffer), mpol); 960 961 seq_printf(seq, ",mpol=%s", buffer); 962 } 963 964 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 965 { 966 struct mempolicy *mpol = NULL; 967 if (sbinfo->mpol) { 968 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 969 mpol = sbinfo->mpol; 970 mpol_get(mpol); 971 spin_unlock(&sbinfo->stat_lock); 972 } 973 return mpol; 974 } 975 #endif /* CONFIG_TMPFS */ 976 977 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 978 struct shmem_inode_info *info, pgoff_t index) 979 { 980 struct vm_area_struct pvma; 981 struct page *page; 982 983 /* Create a pseudo vma that just contains the policy */ 984 pvma.vm_start = 0; 985 /* Bias interleave by inode number to distribute better across nodes */ 986 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 987 pvma.vm_ops = NULL; 988 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 989 990 page = swapin_readahead(swap, gfp, &pvma, 0); 991 992 /* Drop reference taken by mpol_shared_policy_lookup() */ 993 mpol_cond_put(pvma.vm_policy); 994 995 return page; 996 } 997 998 static struct page *shmem_alloc_page(gfp_t gfp, 999 struct shmem_inode_info *info, pgoff_t index) 1000 { 1001 struct vm_area_struct pvma; 1002 struct page *page; 1003 1004 /* Create a pseudo vma that just contains the policy */ 1005 pvma.vm_start = 0; 1006 /* Bias interleave by inode number to distribute better across nodes */ 1007 pvma.vm_pgoff = index + info->vfs_inode.i_ino; 1008 pvma.vm_ops = NULL; 1009 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1010 1011 page = alloc_page_vma(gfp, &pvma, 0); 1012 1013 /* Drop reference taken by mpol_shared_policy_lookup() */ 1014 mpol_cond_put(pvma.vm_policy); 1015 1016 return page; 1017 } 1018 #else /* !CONFIG_NUMA */ 1019 #ifdef CONFIG_TMPFS 1020 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1021 { 1022 } 1023 #endif /* CONFIG_TMPFS */ 1024 1025 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1026 struct shmem_inode_info *info, pgoff_t index) 1027 { 1028 return swapin_readahead(swap, gfp, NULL, 0); 1029 } 1030 1031 static inline struct page *shmem_alloc_page(gfp_t gfp, 1032 struct shmem_inode_info *info, pgoff_t index) 1033 { 1034 return alloc_page(gfp); 1035 } 1036 #endif /* CONFIG_NUMA */ 1037 1038 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS) 1039 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1040 { 1041 return NULL; 1042 } 1043 #endif 1044 1045 /* 1046 * When a page is moved from swapcache to shmem filecache (either by the 1047 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1048 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1049 * ignorance of the mapping it belongs to. If that mapping has special 1050 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1051 * we may need to copy to a suitable page before moving to filecache. 1052 * 1053 * In a future release, this may well be extended to respect cpuset and 1054 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1055 * but for now it is a simple matter of zone. 1056 */ 1057 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1058 { 1059 return page_zonenum(page) > gfp_zone(gfp); 1060 } 1061 1062 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1063 struct shmem_inode_info *info, pgoff_t index) 1064 { 1065 struct page *oldpage, *newpage; 1066 struct address_space *swap_mapping; 1067 pgoff_t swap_index; 1068 int error; 1069 1070 oldpage = *pagep; 1071 swap_index = page_private(oldpage); 1072 swap_mapping = page_mapping(oldpage); 1073 1074 /* 1075 * We have arrived here because our zones are constrained, so don't 1076 * limit chance of success by further cpuset and node constraints. 1077 */ 1078 gfp &= ~GFP_CONSTRAINT_MASK; 1079 newpage = shmem_alloc_page(gfp, info, index); 1080 if (!newpage) 1081 return -ENOMEM; 1082 1083 get_page(newpage); 1084 copy_highpage(newpage, oldpage); 1085 flush_dcache_page(newpage); 1086 1087 __SetPageLocked(newpage); 1088 SetPageUptodate(newpage); 1089 SetPageSwapBacked(newpage); 1090 set_page_private(newpage, swap_index); 1091 SetPageSwapCache(newpage); 1092 1093 /* 1094 * Our caller will very soon move newpage out of swapcache, but it's 1095 * a nice clean interface for us to replace oldpage by newpage there. 1096 */ 1097 spin_lock_irq(&swap_mapping->tree_lock); 1098 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage, 1099 newpage); 1100 if (!error) { 1101 __inc_zone_page_state(newpage, NR_FILE_PAGES); 1102 __dec_zone_page_state(oldpage, NR_FILE_PAGES); 1103 } 1104 spin_unlock_irq(&swap_mapping->tree_lock); 1105 1106 if (unlikely(error)) { 1107 /* 1108 * Is this possible? I think not, now that our callers check 1109 * both PageSwapCache and page_private after getting page lock; 1110 * but be defensive. Reverse old to newpage for clear and free. 1111 */ 1112 oldpage = newpage; 1113 } else { 1114 mem_cgroup_migrate(oldpage, newpage); 1115 lru_cache_add_anon(newpage); 1116 *pagep = newpage; 1117 } 1118 1119 ClearPageSwapCache(oldpage); 1120 set_page_private(oldpage, 0); 1121 1122 unlock_page(oldpage); 1123 put_page(oldpage); 1124 put_page(oldpage); 1125 return error; 1126 } 1127 1128 /* 1129 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1130 * 1131 * If we allocate a new one we do not mark it dirty. That's up to the 1132 * vm. If we swap it in we mark it dirty since we also free the swap 1133 * entry since a page cannot live in both the swap and page cache 1134 */ 1135 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1136 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type) 1137 { 1138 struct address_space *mapping = inode->i_mapping; 1139 struct shmem_inode_info *info; 1140 struct shmem_sb_info *sbinfo; 1141 struct mem_cgroup *memcg; 1142 struct page *page; 1143 swp_entry_t swap; 1144 int error; 1145 int once = 0; 1146 int alloced = 0; 1147 1148 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1149 return -EFBIG; 1150 repeat: 1151 swap.val = 0; 1152 page = find_lock_entry(mapping, index); 1153 if (radix_tree_exceptional_entry(page)) { 1154 swap = radix_to_swp_entry(page); 1155 page = NULL; 1156 } 1157 1158 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1159 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1160 error = -EINVAL; 1161 goto unlock; 1162 } 1163 1164 if (page && sgp == SGP_WRITE) 1165 mark_page_accessed(page); 1166 1167 /* fallocated page? */ 1168 if (page && !PageUptodate(page)) { 1169 if (sgp != SGP_READ) 1170 goto clear; 1171 unlock_page(page); 1172 put_page(page); 1173 page = NULL; 1174 } 1175 if (page || (sgp == SGP_READ && !swap.val)) { 1176 *pagep = page; 1177 return 0; 1178 } 1179 1180 /* 1181 * Fast cache lookup did not find it: 1182 * bring it back from swap or allocate. 1183 */ 1184 info = SHMEM_I(inode); 1185 sbinfo = SHMEM_SB(inode->i_sb); 1186 1187 if (swap.val) { 1188 /* Look it up and read it in.. */ 1189 page = lookup_swap_cache(swap); 1190 if (!page) { 1191 /* here we actually do the io */ 1192 if (fault_type) 1193 *fault_type |= VM_FAULT_MAJOR; 1194 page = shmem_swapin(swap, gfp, info, index); 1195 if (!page) { 1196 error = -ENOMEM; 1197 goto failed; 1198 } 1199 } 1200 1201 /* We have to do this with page locked to prevent races */ 1202 lock_page(page); 1203 if (!PageSwapCache(page) || page_private(page) != swap.val || 1204 !shmem_confirm_swap(mapping, index, swap)) { 1205 error = -EEXIST; /* try again */ 1206 goto unlock; 1207 } 1208 if (!PageUptodate(page)) { 1209 error = -EIO; 1210 goto failed; 1211 } 1212 wait_on_page_writeback(page); 1213 1214 if (shmem_should_replace_page(page, gfp)) { 1215 error = shmem_replace_page(&page, gfp, info, index); 1216 if (error) 1217 goto failed; 1218 } 1219 1220 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg, 1221 false); 1222 if (!error) { 1223 error = shmem_add_to_page_cache(page, mapping, index, 1224 swp_to_radix_entry(swap)); 1225 /* 1226 * We already confirmed swap under page lock, and make 1227 * no memory allocation here, so usually no possibility 1228 * of error; but free_swap_and_cache() only trylocks a 1229 * page, so it is just possible that the entry has been 1230 * truncated or holepunched since swap was confirmed. 1231 * shmem_undo_range() will have done some of the 1232 * unaccounting, now delete_from_swap_cache() will do 1233 * the rest. 1234 * Reset swap.val? No, leave it so "failed" goes back to 1235 * "repeat": reading a hole and writing should succeed. 1236 */ 1237 if (error) { 1238 mem_cgroup_cancel_charge(page, memcg, false); 1239 delete_from_swap_cache(page); 1240 } 1241 } 1242 if (error) 1243 goto failed; 1244 1245 mem_cgroup_commit_charge(page, memcg, true, false); 1246 1247 spin_lock(&info->lock); 1248 info->swapped--; 1249 shmem_recalc_inode(inode); 1250 spin_unlock(&info->lock); 1251 1252 if (sgp == SGP_WRITE) 1253 mark_page_accessed(page); 1254 1255 delete_from_swap_cache(page); 1256 set_page_dirty(page); 1257 swap_free(swap); 1258 1259 } else { 1260 if (shmem_acct_block(info->flags)) { 1261 error = -ENOSPC; 1262 goto failed; 1263 } 1264 if (sbinfo->max_blocks) { 1265 if (percpu_counter_compare(&sbinfo->used_blocks, 1266 sbinfo->max_blocks) >= 0) { 1267 error = -ENOSPC; 1268 goto unacct; 1269 } 1270 percpu_counter_inc(&sbinfo->used_blocks); 1271 } 1272 1273 page = shmem_alloc_page(gfp, info, index); 1274 if (!page) { 1275 error = -ENOMEM; 1276 goto decused; 1277 } 1278 1279 __SetPageSwapBacked(page); 1280 __SetPageLocked(page); 1281 if (sgp == SGP_WRITE) 1282 __SetPageReferenced(page); 1283 1284 error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg, 1285 false); 1286 if (error) 1287 goto decused; 1288 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); 1289 if (!error) { 1290 error = shmem_add_to_page_cache(page, mapping, index, 1291 NULL); 1292 radix_tree_preload_end(); 1293 } 1294 if (error) { 1295 mem_cgroup_cancel_charge(page, memcg, false); 1296 goto decused; 1297 } 1298 mem_cgroup_commit_charge(page, memcg, false, false); 1299 lru_cache_add_anon(page); 1300 1301 spin_lock(&info->lock); 1302 info->alloced++; 1303 inode->i_blocks += BLOCKS_PER_PAGE; 1304 shmem_recalc_inode(inode); 1305 spin_unlock(&info->lock); 1306 alloced = true; 1307 1308 /* 1309 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1310 */ 1311 if (sgp == SGP_FALLOC) 1312 sgp = SGP_WRITE; 1313 clear: 1314 /* 1315 * Let SGP_WRITE caller clear ends if write does not fill page; 1316 * but SGP_FALLOC on a page fallocated earlier must initialize 1317 * it now, lest undo on failure cancel our earlier guarantee. 1318 */ 1319 if (sgp != SGP_WRITE) { 1320 clear_highpage(page); 1321 flush_dcache_page(page); 1322 SetPageUptodate(page); 1323 } 1324 if (sgp == SGP_DIRTY) 1325 set_page_dirty(page); 1326 } 1327 1328 /* Perhaps the file has been truncated since we checked */ 1329 if (sgp != SGP_WRITE && sgp != SGP_FALLOC && 1330 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1331 if (alloced) { 1332 ClearPageDirty(page); 1333 delete_from_page_cache(page); 1334 spin_lock(&info->lock); 1335 shmem_recalc_inode(inode); 1336 spin_unlock(&info->lock); 1337 } 1338 error = -EINVAL; 1339 goto unlock; 1340 } 1341 *pagep = page; 1342 return 0; 1343 1344 /* 1345 * Error recovery. 1346 */ 1347 decused: 1348 if (sbinfo->max_blocks) 1349 percpu_counter_add(&sbinfo->used_blocks, -1); 1350 unacct: 1351 shmem_unacct_blocks(info->flags, 1); 1352 failed: 1353 if (swap.val && !shmem_confirm_swap(mapping, index, swap)) 1354 error = -EEXIST; 1355 unlock: 1356 if (page) { 1357 unlock_page(page); 1358 put_page(page); 1359 } 1360 if (error == -ENOSPC && !once++) { 1361 info = SHMEM_I(inode); 1362 spin_lock(&info->lock); 1363 shmem_recalc_inode(inode); 1364 spin_unlock(&info->lock); 1365 goto repeat; 1366 } 1367 if (error == -EEXIST) /* from above or from radix_tree_insert */ 1368 goto repeat; 1369 return error; 1370 } 1371 1372 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1373 { 1374 struct inode *inode = file_inode(vma->vm_file); 1375 int error; 1376 int ret = VM_FAULT_LOCKED; 1377 1378 /* 1379 * Trinity finds that probing a hole which tmpfs is punching can 1380 * prevent the hole-punch from ever completing: which in turn 1381 * locks writers out with its hold on i_mutex. So refrain from 1382 * faulting pages into the hole while it's being punched. Although 1383 * shmem_undo_range() does remove the additions, it may be unable to 1384 * keep up, as each new page needs its own unmap_mapping_range() call, 1385 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1386 * 1387 * It does not matter if we sometimes reach this check just before the 1388 * hole-punch begins, so that one fault then races with the punch: 1389 * we just need to make racing faults a rare case. 1390 * 1391 * The implementation below would be much simpler if we just used a 1392 * standard mutex or completion: but we cannot take i_mutex in fault, 1393 * and bloating every shmem inode for this unlikely case would be sad. 1394 */ 1395 if (unlikely(inode->i_private)) { 1396 struct shmem_falloc *shmem_falloc; 1397 1398 spin_lock(&inode->i_lock); 1399 shmem_falloc = inode->i_private; 1400 if (shmem_falloc && 1401 shmem_falloc->waitq && 1402 vmf->pgoff >= shmem_falloc->start && 1403 vmf->pgoff < shmem_falloc->next) { 1404 wait_queue_head_t *shmem_falloc_waitq; 1405 DEFINE_WAIT(shmem_fault_wait); 1406 1407 ret = VM_FAULT_NOPAGE; 1408 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 1409 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 1410 /* It's polite to up mmap_sem if we can */ 1411 up_read(&vma->vm_mm->mmap_sem); 1412 ret = VM_FAULT_RETRY; 1413 } 1414 1415 shmem_falloc_waitq = shmem_falloc->waitq; 1416 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 1417 TASK_UNINTERRUPTIBLE); 1418 spin_unlock(&inode->i_lock); 1419 schedule(); 1420 1421 /* 1422 * shmem_falloc_waitq points into the shmem_fallocate() 1423 * stack of the hole-punching task: shmem_falloc_waitq 1424 * is usually invalid by the time we reach here, but 1425 * finish_wait() does not dereference it in that case; 1426 * though i_lock needed lest racing with wake_up_all(). 1427 */ 1428 spin_lock(&inode->i_lock); 1429 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 1430 spin_unlock(&inode->i_lock); 1431 return ret; 1432 } 1433 spin_unlock(&inode->i_lock); 1434 } 1435 1436 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret); 1437 if (error) 1438 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS); 1439 1440 if (ret & VM_FAULT_MAJOR) { 1441 count_vm_event(PGMAJFAULT); 1442 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1443 } 1444 return ret; 1445 } 1446 1447 #ifdef CONFIG_NUMA 1448 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 1449 { 1450 struct inode *inode = file_inode(vma->vm_file); 1451 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 1452 } 1453 1454 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 1455 unsigned long addr) 1456 { 1457 struct inode *inode = file_inode(vma->vm_file); 1458 pgoff_t index; 1459 1460 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 1461 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 1462 } 1463 #endif 1464 1465 int shmem_lock(struct file *file, int lock, struct user_struct *user) 1466 { 1467 struct inode *inode = file_inode(file); 1468 struct shmem_inode_info *info = SHMEM_I(inode); 1469 int retval = -ENOMEM; 1470 1471 spin_lock(&info->lock); 1472 if (lock && !(info->flags & VM_LOCKED)) { 1473 if (!user_shm_lock(inode->i_size, user)) 1474 goto out_nomem; 1475 info->flags |= VM_LOCKED; 1476 mapping_set_unevictable(file->f_mapping); 1477 } 1478 if (!lock && (info->flags & VM_LOCKED) && user) { 1479 user_shm_unlock(inode->i_size, user); 1480 info->flags &= ~VM_LOCKED; 1481 mapping_clear_unevictable(file->f_mapping); 1482 } 1483 retval = 0; 1484 1485 out_nomem: 1486 spin_unlock(&info->lock); 1487 return retval; 1488 } 1489 1490 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 1491 { 1492 file_accessed(file); 1493 vma->vm_ops = &shmem_vm_ops; 1494 return 0; 1495 } 1496 1497 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 1498 umode_t mode, dev_t dev, unsigned long flags) 1499 { 1500 struct inode *inode; 1501 struct shmem_inode_info *info; 1502 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 1503 1504 if (shmem_reserve_inode(sb)) 1505 return NULL; 1506 1507 inode = new_inode(sb); 1508 if (inode) { 1509 inode->i_ino = get_next_ino(); 1510 inode_init_owner(inode, dir, mode); 1511 inode->i_blocks = 0; 1512 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1513 inode->i_generation = get_seconds(); 1514 info = SHMEM_I(inode); 1515 memset(info, 0, (char *)inode - (char *)info); 1516 spin_lock_init(&info->lock); 1517 info->seals = F_SEAL_SEAL; 1518 info->flags = flags & VM_NORESERVE; 1519 INIT_LIST_HEAD(&info->swaplist); 1520 simple_xattrs_init(&info->xattrs); 1521 cache_no_acl(inode); 1522 1523 switch (mode & S_IFMT) { 1524 default: 1525 inode->i_op = &shmem_special_inode_operations; 1526 init_special_inode(inode, mode, dev); 1527 break; 1528 case S_IFREG: 1529 inode->i_mapping->a_ops = &shmem_aops; 1530 inode->i_op = &shmem_inode_operations; 1531 inode->i_fop = &shmem_file_operations; 1532 mpol_shared_policy_init(&info->policy, 1533 shmem_get_sbmpol(sbinfo)); 1534 break; 1535 case S_IFDIR: 1536 inc_nlink(inode); 1537 /* Some things misbehave if size == 0 on a directory */ 1538 inode->i_size = 2 * BOGO_DIRENT_SIZE; 1539 inode->i_op = &shmem_dir_inode_operations; 1540 inode->i_fop = &simple_dir_operations; 1541 break; 1542 case S_IFLNK: 1543 /* 1544 * Must not load anything in the rbtree, 1545 * mpol_free_shared_policy will not be called. 1546 */ 1547 mpol_shared_policy_init(&info->policy, NULL); 1548 break; 1549 } 1550 } else 1551 shmem_free_inode(sb); 1552 return inode; 1553 } 1554 1555 bool shmem_mapping(struct address_space *mapping) 1556 { 1557 if (!mapping->host) 1558 return false; 1559 1560 return mapping->host->i_sb->s_op == &shmem_ops; 1561 } 1562 1563 #ifdef CONFIG_TMPFS 1564 static const struct inode_operations shmem_symlink_inode_operations; 1565 static const struct inode_operations shmem_short_symlink_operations; 1566 1567 #ifdef CONFIG_TMPFS_XATTR 1568 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 1569 #else 1570 #define shmem_initxattrs NULL 1571 #endif 1572 1573 static int 1574 shmem_write_begin(struct file *file, struct address_space *mapping, 1575 loff_t pos, unsigned len, unsigned flags, 1576 struct page **pagep, void **fsdata) 1577 { 1578 struct inode *inode = mapping->host; 1579 struct shmem_inode_info *info = SHMEM_I(inode); 1580 pgoff_t index = pos >> PAGE_SHIFT; 1581 1582 /* i_mutex is held by caller */ 1583 if (unlikely(info->seals)) { 1584 if (info->seals & F_SEAL_WRITE) 1585 return -EPERM; 1586 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 1587 return -EPERM; 1588 } 1589 1590 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL); 1591 } 1592 1593 static int 1594 shmem_write_end(struct file *file, struct address_space *mapping, 1595 loff_t pos, unsigned len, unsigned copied, 1596 struct page *page, void *fsdata) 1597 { 1598 struct inode *inode = mapping->host; 1599 1600 if (pos + copied > inode->i_size) 1601 i_size_write(inode, pos + copied); 1602 1603 if (!PageUptodate(page)) { 1604 if (copied < PAGE_SIZE) { 1605 unsigned from = pos & (PAGE_SIZE - 1); 1606 zero_user_segments(page, 0, from, 1607 from + copied, PAGE_SIZE); 1608 } 1609 SetPageUptodate(page); 1610 } 1611 set_page_dirty(page); 1612 unlock_page(page); 1613 put_page(page); 1614 1615 return copied; 1616 } 1617 1618 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1619 { 1620 struct file *file = iocb->ki_filp; 1621 struct inode *inode = file_inode(file); 1622 struct address_space *mapping = inode->i_mapping; 1623 pgoff_t index; 1624 unsigned long offset; 1625 enum sgp_type sgp = SGP_READ; 1626 int error = 0; 1627 ssize_t retval = 0; 1628 loff_t *ppos = &iocb->ki_pos; 1629 1630 /* 1631 * Might this read be for a stacking filesystem? Then when reading 1632 * holes of a sparse file, we actually need to allocate those pages, 1633 * and even mark them dirty, so it cannot exceed the max_blocks limit. 1634 */ 1635 if (!iter_is_iovec(to)) 1636 sgp = SGP_DIRTY; 1637 1638 index = *ppos >> PAGE_SHIFT; 1639 offset = *ppos & ~PAGE_MASK; 1640 1641 for (;;) { 1642 struct page *page = NULL; 1643 pgoff_t end_index; 1644 unsigned long nr, ret; 1645 loff_t i_size = i_size_read(inode); 1646 1647 end_index = i_size >> PAGE_SHIFT; 1648 if (index > end_index) 1649 break; 1650 if (index == end_index) { 1651 nr = i_size & ~PAGE_MASK; 1652 if (nr <= offset) 1653 break; 1654 } 1655 1656 error = shmem_getpage(inode, index, &page, sgp, NULL); 1657 if (error) { 1658 if (error == -EINVAL) 1659 error = 0; 1660 break; 1661 } 1662 if (page) 1663 unlock_page(page); 1664 1665 /* 1666 * We must evaluate after, since reads (unlike writes) 1667 * are called without i_mutex protection against truncate 1668 */ 1669 nr = PAGE_SIZE; 1670 i_size = i_size_read(inode); 1671 end_index = i_size >> PAGE_SHIFT; 1672 if (index == end_index) { 1673 nr = i_size & ~PAGE_MASK; 1674 if (nr <= offset) { 1675 if (page) 1676 put_page(page); 1677 break; 1678 } 1679 } 1680 nr -= offset; 1681 1682 if (page) { 1683 /* 1684 * If users can be writing to this page using arbitrary 1685 * virtual addresses, take care about potential aliasing 1686 * before reading the page on the kernel side. 1687 */ 1688 if (mapping_writably_mapped(mapping)) 1689 flush_dcache_page(page); 1690 /* 1691 * Mark the page accessed if we read the beginning. 1692 */ 1693 if (!offset) 1694 mark_page_accessed(page); 1695 } else { 1696 page = ZERO_PAGE(0); 1697 get_page(page); 1698 } 1699 1700 /* 1701 * Ok, we have the page, and it's up-to-date, so 1702 * now we can copy it to user space... 1703 */ 1704 ret = copy_page_to_iter(page, offset, nr, to); 1705 retval += ret; 1706 offset += ret; 1707 index += offset >> PAGE_SHIFT; 1708 offset &= ~PAGE_MASK; 1709 1710 put_page(page); 1711 if (!iov_iter_count(to)) 1712 break; 1713 if (ret < nr) { 1714 error = -EFAULT; 1715 break; 1716 } 1717 cond_resched(); 1718 } 1719 1720 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 1721 file_accessed(file); 1722 return retval ? retval : error; 1723 } 1724 1725 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 1726 struct pipe_inode_info *pipe, size_t len, 1727 unsigned int flags) 1728 { 1729 struct address_space *mapping = in->f_mapping; 1730 struct inode *inode = mapping->host; 1731 unsigned int loff, nr_pages, req_pages; 1732 struct page *pages[PIPE_DEF_BUFFERS]; 1733 struct partial_page partial[PIPE_DEF_BUFFERS]; 1734 struct page *page; 1735 pgoff_t index, end_index; 1736 loff_t isize, left; 1737 int error, page_nr; 1738 struct splice_pipe_desc spd = { 1739 .pages = pages, 1740 .partial = partial, 1741 .nr_pages_max = PIPE_DEF_BUFFERS, 1742 .flags = flags, 1743 .ops = &page_cache_pipe_buf_ops, 1744 .spd_release = spd_release_page, 1745 }; 1746 1747 isize = i_size_read(inode); 1748 if (unlikely(*ppos >= isize)) 1749 return 0; 1750 1751 left = isize - *ppos; 1752 if (unlikely(left < len)) 1753 len = left; 1754 1755 if (splice_grow_spd(pipe, &spd)) 1756 return -ENOMEM; 1757 1758 index = *ppos >> PAGE_SHIFT; 1759 loff = *ppos & ~PAGE_MASK; 1760 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT; 1761 nr_pages = min(req_pages, spd.nr_pages_max); 1762 1763 spd.nr_pages = find_get_pages_contig(mapping, index, 1764 nr_pages, spd.pages); 1765 index += spd.nr_pages; 1766 error = 0; 1767 1768 while (spd.nr_pages < nr_pages) { 1769 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL); 1770 if (error) 1771 break; 1772 unlock_page(page); 1773 spd.pages[spd.nr_pages++] = page; 1774 index++; 1775 } 1776 1777 index = *ppos >> PAGE_SHIFT; 1778 nr_pages = spd.nr_pages; 1779 spd.nr_pages = 0; 1780 1781 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 1782 unsigned int this_len; 1783 1784 if (!len) 1785 break; 1786 1787 this_len = min_t(unsigned long, len, PAGE_SIZE - loff); 1788 page = spd.pages[page_nr]; 1789 1790 if (!PageUptodate(page) || page->mapping != mapping) { 1791 error = shmem_getpage(inode, index, &page, 1792 SGP_CACHE, NULL); 1793 if (error) 1794 break; 1795 unlock_page(page); 1796 put_page(spd.pages[page_nr]); 1797 spd.pages[page_nr] = page; 1798 } 1799 1800 isize = i_size_read(inode); 1801 end_index = (isize - 1) >> PAGE_SHIFT; 1802 if (unlikely(!isize || index > end_index)) 1803 break; 1804 1805 if (end_index == index) { 1806 unsigned int plen; 1807 1808 plen = ((isize - 1) & ~PAGE_MASK) + 1; 1809 if (plen <= loff) 1810 break; 1811 1812 this_len = min(this_len, plen - loff); 1813 len = this_len; 1814 } 1815 1816 spd.partial[page_nr].offset = loff; 1817 spd.partial[page_nr].len = this_len; 1818 len -= this_len; 1819 loff = 0; 1820 spd.nr_pages++; 1821 index++; 1822 } 1823 1824 while (page_nr < nr_pages) 1825 put_page(spd.pages[page_nr++]); 1826 1827 if (spd.nr_pages) 1828 error = splice_to_pipe(pipe, &spd); 1829 1830 splice_shrink_spd(&spd); 1831 1832 if (error > 0) { 1833 *ppos += error; 1834 file_accessed(in); 1835 } 1836 return error; 1837 } 1838 1839 /* 1840 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree. 1841 */ 1842 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 1843 pgoff_t index, pgoff_t end, int whence) 1844 { 1845 struct page *page; 1846 struct pagevec pvec; 1847 pgoff_t indices[PAGEVEC_SIZE]; 1848 bool done = false; 1849 int i; 1850 1851 pagevec_init(&pvec, 0); 1852 pvec.nr = 1; /* start small: we may be there already */ 1853 while (!done) { 1854 pvec.nr = find_get_entries(mapping, index, 1855 pvec.nr, pvec.pages, indices); 1856 if (!pvec.nr) { 1857 if (whence == SEEK_DATA) 1858 index = end; 1859 break; 1860 } 1861 for (i = 0; i < pvec.nr; i++, index++) { 1862 if (index < indices[i]) { 1863 if (whence == SEEK_HOLE) { 1864 done = true; 1865 break; 1866 } 1867 index = indices[i]; 1868 } 1869 page = pvec.pages[i]; 1870 if (page && !radix_tree_exceptional_entry(page)) { 1871 if (!PageUptodate(page)) 1872 page = NULL; 1873 } 1874 if (index >= end || 1875 (page && whence == SEEK_DATA) || 1876 (!page && whence == SEEK_HOLE)) { 1877 done = true; 1878 break; 1879 } 1880 } 1881 pagevec_remove_exceptionals(&pvec); 1882 pagevec_release(&pvec); 1883 pvec.nr = PAGEVEC_SIZE; 1884 cond_resched(); 1885 } 1886 return index; 1887 } 1888 1889 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 1890 { 1891 struct address_space *mapping = file->f_mapping; 1892 struct inode *inode = mapping->host; 1893 pgoff_t start, end; 1894 loff_t new_offset; 1895 1896 if (whence != SEEK_DATA && whence != SEEK_HOLE) 1897 return generic_file_llseek_size(file, offset, whence, 1898 MAX_LFS_FILESIZE, i_size_read(inode)); 1899 inode_lock(inode); 1900 /* We're holding i_mutex so we can access i_size directly */ 1901 1902 if (offset < 0) 1903 offset = -EINVAL; 1904 else if (offset >= inode->i_size) 1905 offset = -ENXIO; 1906 else { 1907 start = offset >> PAGE_SHIFT; 1908 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 1909 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 1910 new_offset <<= PAGE_SHIFT; 1911 if (new_offset > offset) { 1912 if (new_offset < inode->i_size) 1913 offset = new_offset; 1914 else if (whence == SEEK_DATA) 1915 offset = -ENXIO; 1916 else 1917 offset = inode->i_size; 1918 } 1919 } 1920 1921 if (offset >= 0) 1922 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 1923 inode_unlock(inode); 1924 return offset; 1925 } 1926 1927 /* 1928 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes, 1929 * so reuse a tag which we firmly believe is never set or cleared on shmem. 1930 */ 1931 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE 1932 #define LAST_SCAN 4 /* about 150ms max */ 1933 1934 static void shmem_tag_pins(struct address_space *mapping) 1935 { 1936 struct radix_tree_iter iter; 1937 void **slot; 1938 pgoff_t start; 1939 struct page *page; 1940 1941 lru_add_drain(); 1942 start = 0; 1943 rcu_read_lock(); 1944 1945 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1946 page = radix_tree_deref_slot(slot); 1947 if (!page || radix_tree_exception(page)) { 1948 if (radix_tree_deref_retry(page)) { 1949 slot = radix_tree_iter_retry(&iter); 1950 continue; 1951 } 1952 } else if (page_count(page) - page_mapcount(page) > 1) { 1953 spin_lock_irq(&mapping->tree_lock); 1954 radix_tree_tag_set(&mapping->page_tree, iter.index, 1955 SHMEM_TAG_PINNED); 1956 spin_unlock_irq(&mapping->tree_lock); 1957 } 1958 1959 if (need_resched()) { 1960 cond_resched_rcu(); 1961 slot = radix_tree_iter_next(&iter); 1962 } 1963 } 1964 rcu_read_unlock(); 1965 } 1966 1967 /* 1968 * Setting SEAL_WRITE requires us to verify there's no pending writer. However, 1969 * via get_user_pages(), drivers might have some pending I/O without any active 1970 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages 1971 * and see whether it has an elevated ref-count. If so, we tag them and wait for 1972 * them to be dropped. 1973 * The caller must guarantee that no new user will acquire writable references 1974 * to those pages to avoid races. 1975 */ 1976 static int shmem_wait_for_pins(struct address_space *mapping) 1977 { 1978 struct radix_tree_iter iter; 1979 void **slot; 1980 pgoff_t start; 1981 struct page *page; 1982 int error, scan; 1983 1984 shmem_tag_pins(mapping); 1985 1986 error = 0; 1987 for (scan = 0; scan <= LAST_SCAN; scan++) { 1988 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED)) 1989 break; 1990 1991 if (!scan) 1992 lru_add_drain_all(); 1993 else if (schedule_timeout_killable((HZ << scan) / 200)) 1994 scan = LAST_SCAN; 1995 1996 start = 0; 1997 rcu_read_lock(); 1998 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 1999 start, SHMEM_TAG_PINNED) { 2000 2001 page = radix_tree_deref_slot(slot); 2002 if (radix_tree_exception(page)) { 2003 if (radix_tree_deref_retry(page)) { 2004 slot = radix_tree_iter_retry(&iter); 2005 continue; 2006 } 2007 2008 page = NULL; 2009 } 2010 2011 if (page && 2012 page_count(page) - page_mapcount(page) != 1) { 2013 if (scan < LAST_SCAN) 2014 goto continue_resched; 2015 2016 /* 2017 * On the last scan, we clean up all those tags 2018 * we inserted; but make a note that we still 2019 * found pages pinned. 2020 */ 2021 error = -EBUSY; 2022 } 2023 2024 spin_lock_irq(&mapping->tree_lock); 2025 radix_tree_tag_clear(&mapping->page_tree, 2026 iter.index, SHMEM_TAG_PINNED); 2027 spin_unlock_irq(&mapping->tree_lock); 2028 continue_resched: 2029 if (need_resched()) { 2030 cond_resched_rcu(); 2031 slot = radix_tree_iter_next(&iter); 2032 } 2033 } 2034 rcu_read_unlock(); 2035 } 2036 2037 return error; 2038 } 2039 2040 #define F_ALL_SEALS (F_SEAL_SEAL | \ 2041 F_SEAL_SHRINK | \ 2042 F_SEAL_GROW | \ 2043 F_SEAL_WRITE) 2044 2045 int shmem_add_seals(struct file *file, unsigned int seals) 2046 { 2047 struct inode *inode = file_inode(file); 2048 struct shmem_inode_info *info = SHMEM_I(inode); 2049 int error; 2050 2051 /* 2052 * SEALING 2053 * Sealing allows multiple parties to share a shmem-file but restrict 2054 * access to a specific subset of file operations. Seals can only be 2055 * added, but never removed. This way, mutually untrusted parties can 2056 * share common memory regions with a well-defined policy. A malicious 2057 * peer can thus never perform unwanted operations on a shared object. 2058 * 2059 * Seals are only supported on special shmem-files and always affect 2060 * the whole underlying inode. Once a seal is set, it may prevent some 2061 * kinds of access to the file. Currently, the following seals are 2062 * defined: 2063 * SEAL_SEAL: Prevent further seals from being set on this file 2064 * SEAL_SHRINK: Prevent the file from shrinking 2065 * SEAL_GROW: Prevent the file from growing 2066 * SEAL_WRITE: Prevent write access to the file 2067 * 2068 * As we don't require any trust relationship between two parties, we 2069 * must prevent seals from being removed. Therefore, sealing a file 2070 * only adds a given set of seals to the file, it never touches 2071 * existing seals. Furthermore, the "setting seals"-operation can be 2072 * sealed itself, which basically prevents any further seal from being 2073 * added. 2074 * 2075 * Semantics of sealing are only defined on volatile files. Only 2076 * anonymous shmem files support sealing. More importantly, seals are 2077 * never written to disk. Therefore, there's no plan to support it on 2078 * other file types. 2079 */ 2080 2081 if (file->f_op != &shmem_file_operations) 2082 return -EINVAL; 2083 if (!(file->f_mode & FMODE_WRITE)) 2084 return -EPERM; 2085 if (seals & ~(unsigned int)F_ALL_SEALS) 2086 return -EINVAL; 2087 2088 inode_lock(inode); 2089 2090 if (info->seals & F_SEAL_SEAL) { 2091 error = -EPERM; 2092 goto unlock; 2093 } 2094 2095 if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) { 2096 error = mapping_deny_writable(file->f_mapping); 2097 if (error) 2098 goto unlock; 2099 2100 error = shmem_wait_for_pins(file->f_mapping); 2101 if (error) { 2102 mapping_allow_writable(file->f_mapping); 2103 goto unlock; 2104 } 2105 } 2106 2107 info->seals |= seals; 2108 error = 0; 2109 2110 unlock: 2111 inode_unlock(inode); 2112 return error; 2113 } 2114 EXPORT_SYMBOL_GPL(shmem_add_seals); 2115 2116 int shmem_get_seals(struct file *file) 2117 { 2118 if (file->f_op != &shmem_file_operations) 2119 return -EINVAL; 2120 2121 return SHMEM_I(file_inode(file))->seals; 2122 } 2123 EXPORT_SYMBOL_GPL(shmem_get_seals); 2124 2125 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2126 { 2127 long error; 2128 2129 switch (cmd) { 2130 case F_ADD_SEALS: 2131 /* disallow upper 32bit */ 2132 if (arg > UINT_MAX) 2133 return -EINVAL; 2134 2135 error = shmem_add_seals(file, arg); 2136 break; 2137 case F_GET_SEALS: 2138 error = shmem_get_seals(file); 2139 break; 2140 default: 2141 error = -EINVAL; 2142 break; 2143 } 2144 2145 return error; 2146 } 2147 2148 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2149 loff_t len) 2150 { 2151 struct inode *inode = file_inode(file); 2152 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2153 struct shmem_inode_info *info = SHMEM_I(inode); 2154 struct shmem_falloc shmem_falloc; 2155 pgoff_t start, index, end; 2156 int error; 2157 2158 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2159 return -EOPNOTSUPP; 2160 2161 inode_lock(inode); 2162 2163 if (mode & FALLOC_FL_PUNCH_HOLE) { 2164 struct address_space *mapping = file->f_mapping; 2165 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2166 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2167 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2168 2169 /* protected by i_mutex */ 2170 if (info->seals & F_SEAL_WRITE) { 2171 error = -EPERM; 2172 goto out; 2173 } 2174 2175 shmem_falloc.waitq = &shmem_falloc_waitq; 2176 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2177 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2178 spin_lock(&inode->i_lock); 2179 inode->i_private = &shmem_falloc; 2180 spin_unlock(&inode->i_lock); 2181 2182 if ((u64)unmap_end > (u64)unmap_start) 2183 unmap_mapping_range(mapping, unmap_start, 2184 1 + unmap_end - unmap_start, 0); 2185 shmem_truncate_range(inode, offset, offset + len - 1); 2186 /* No need to unmap again: hole-punching leaves COWed pages */ 2187 2188 spin_lock(&inode->i_lock); 2189 inode->i_private = NULL; 2190 wake_up_all(&shmem_falloc_waitq); 2191 spin_unlock(&inode->i_lock); 2192 error = 0; 2193 goto out; 2194 } 2195 2196 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2197 error = inode_newsize_ok(inode, offset + len); 2198 if (error) 2199 goto out; 2200 2201 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2202 error = -EPERM; 2203 goto out; 2204 } 2205 2206 start = offset >> PAGE_SHIFT; 2207 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2208 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2209 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2210 error = -ENOSPC; 2211 goto out; 2212 } 2213 2214 shmem_falloc.waitq = NULL; 2215 shmem_falloc.start = start; 2216 shmem_falloc.next = start; 2217 shmem_falloc.nr_falloced = 0; 2218 shmem_falloc.nr_unswapped = 0; 2219 spin_lock(&inode->i_lock); 2220 inode->i_private = &shmem_falloc; 2221 spin_unlock(&inode->i_lock); 2222 2223 for (index = start; index < end; index++) { 2224 struct page *page; 2225 2226 /* 2227 * Good, the fallocate(2) manpage permits EINTR: we may have 2228 * been interrupted because we are using up too much memory. 2229 */ 2230 if (signal_pending(current)) 2231 error = -EINTR; 2232 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2233 error = -ENOMEM; 2234 else 2235 error = shmem_getpage(inode, index, &page, SGP_FALLOC, 2236 NULL); 2237 if (error) { 2238 /* Remove the !PageUptodate pages we added */ 2239 shmem_undo_range(inode, 2240 (loff_t)start << PAGE_SHIFT, 2241 (loff_t)index << PAGE_SHIFT, true); 2242 goto undone; 2243 } 2244 2245 /* 2246 * Inform shmem_writepage() how far we have reached. 2247 * No need for lock or barrier: we have the page lock. 2248 */ 2249 shmem_falloc.next++; 2250 if (!PageUptodate(page)) 2251 shmem_falloc.nr_falloced++; 2252 2253 /* 2254 * If !PageUptodate, leave it that way so that freeable pages 2255 * can be recognized if we need to rollback on error later. 2256 * But set_page_dirty so that memory pressure will swap rather 2257 * than free the pages we are allocating (and SGP_CACHE pages 2258 * might still be clean: we now need to mark those dirty too). 2259 */ 2260 set_page_dirty(page); 2261 unlock_page(page); 2262 put_page(page); 2263 cond_resched(); 2264 } 2265 2266 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2267 i_size_write(inode, offset + len); 2268 inode->i_ctime = CURRENT_TIME; 2269 undone: 2270 spin_lock(&inode->i_lock); 2271 inode->i_private = NULL; 2272 spin_unlock(&inode->i_lock); 2273 out: 2274 inode_unlock(inode); 2275 return error; 2276 } 2277 2278 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2279 { 2280 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2281 2282 buf->f_type = TMPFS_MAGIC; 2283 buf->f_bsize = PAGE_SIZE; 2284 buf->f_namelen = NAME_MAX; 2285 if (sbinfo->max_blocks) { 2286 buf->f_blocks = sbinfo->max_blocks; 2287 buf->f_bavail = 2288 buf->f_bfree = sbinfo->max_blocks - 2289 percpu_counter_sum(&sbinfo->used_blocks); 2290 } 2291 if (sbinfo->max_inodes) { 2292 buf->f_files = sbinfo->max_inodes; 2293 buf->f_ffree = sbinfo->free_inodes; 2294 } 2295 /* else leave those fields 0 like simple_statfs */ 2296 return 0; 2297 } 2298 2299 /* 2300 * File creation. Allocate an inode, and we're done.. 2301 */ 2302 static int 2303 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2304 { 2305 struct inode *inode; 2306 int error = -ENOSPC; 2307 2308 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2309 if (inode) { 2310 error = simple_acl_create(dir, inode); 2311 if (error) 2312 goto out_iput; 2313 error = security_inode_init_security(inode, dir, 2314 &dentry->d_name, 2315 shmem_initxattrs, NULL); 2316 if (error && error != -EOPNOTSUPP) 2317 goto out_iput; 2318 2319 error = 0; 2320 dir->i_size += BOGO_DIRENT_SIZE; 2321 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2322 d_instantiate(dentry, inode); 2323 dget(dentry); /* Extra count - pin the dentry in core */ 2324 } 2325 return error; 2326 out_iput: 2327 iput(inode); 2328 return error; 2329 } 2330 2331 static int 2332 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2333 { 2334 struct inode *inode; 2335 int error = -ENOSPC; 2336 2337 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2338 if (inode) { 2339 error = security_inode_init_security(inode, dir, 2340 NULL, 2341 shmem_initxattrs, NULL); 2342 if (error && error != -EOPNOTSUPP) 2343 goto out_iput; 2344 error = simple_acl_create(dir, inode); 2345 if (error) 2346 goto out_iput; 2347 d_tmpfile(dentry, inode); 2348 } 2349 return error; 2350 out_iput: 2351 iput(inode); 2352 return error; 2353 } 2354 2355 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2356 { 2357 int error; 2358 2359 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2360 return error; 2361 inc_nlink(dir); 2362 return 0; 2363 } 2364 2365 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2366 bool excl) 2367 { 2368 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2369 } 2370 2371 /* 2372 * Link a file.. 2373 */ 2374 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2375 { 2376 struct inode *inode = d_inode(old_dentry); 2377 int ret; 2378 2379 /* 2380 * No ordinary (disk based) filesystem counts links as inodes; 2381 * but each new link needs a new dentry, pinning lowmem, and 2382 * tmpfs dentries cannot be pruned until they are unlinked. 2383 */ 2384 ret = shmem_reserve_inode(inode->i_sb); 2385 if (ret) 2386 goto out; 2387 2388 dir->i_size += BOGO_DIRENT_SIZE; 2389 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2390 inc_nlink(inode); 2391 ihold(inode); /* New dentry reference */ 2392 dget(dentry); /* Extra pinning count for the created dentry */ 2393 d_instantiate(dentry, inode); 2394 out: 2395 return ret; 2396 } 2397 2398 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2399 { 2400 struct inode *inode = d_inode(dentry); 2401 2402 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2403 shmem_free_inode(inode->i_sb); 2404 2405 dir->i_size -= BOGO_DIRENT_SIZE; 2406 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2407 drop_nlink(inode); 2408 dput(dentry); /* Undo the count from "create" - this does all the work */ 2409 return 0; 2410 } 2411 2412 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2413 { 2414 if (!simple_empty(dentry)) 2415 return -ENOTEMPTY; 2416 2417 drop_nlink(d_inode(dentry)); 2418 drop_nlink(dir); 2419 return shmem_unlink(dir, dentry); 2420 } 2421 2422 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2423 { 2424 bool old_is_dir = d_is_dir(old_dentry); 2425 bool new_is_dir = d_is_dir(new_dentry); 2426 2427 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2428 if (old_is_dir) { 2429 drop_nlink(old_dir); 2430 inc_nlink(new_dir); 2431 } else { 2432 drop_nlink(new_dir); 2433 inc_nlink(old_dir); 2434 } 2435 } 2436 old_dir->i_ctime = old_dir->i_mtime = 2437 new_dir->i_ctime = new_dir->i_mtime = 2438 d_inode(old_dentry)->i_ctime = 2439 d_inode(new_dentry)->i_ctime = CURRENT_TIME; 2440 2441 return 0; 2442 } 2443 2444 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 2445 { 2446 struct dentry *whiteout; 2447 int error; 2448 2449 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 2450 if (!whiteout) 2451 return -ENOMEM; 2452 2453 error = shmem_mknod(old_dir, whiteout, 2454 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 2455 dput(whiteout); 2456 if (error) 2457 return error; 2458 2459 /* 2460 * Cheat and hash the whiteout while the old dentry is still in 2461 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 2462 * 2463 * d_lookup() will consistently find one of them at this point, 2464 * not sure which one, but that isn't even important. 2465 */ 2466 d_rehash(whiteout); 2467 return 0; 2468 } 2469 2470 /* 2471 * The VFS layer already does all the dentry stuff for rename, 2472 * we just have to decrement the usage count for the target if 2473 * it exists so that the VFS layer correctly free's it when it 2474 * gets overwritten. 2475 */ 2476 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 2477 { 2478 struct inode *inode = d_inode(old_dentry); 2479 int they_are_dirs = S_ISDIR(inode->i_mode); 2480 2481 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 2482 return -EINVAL; 2483 2484 if (flags & RENAME_EXCHANGE) 2485 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 2486 2487 if (!simple_empty(new_dentry)) 2488 return -ENOTEMPTY; 2489 2490 if (flags & RENAME_WHITEOUT) { 2491 int error; 2492 2493 error = shmem_whiteout(old_dir, old_dentry); 2494 if (error) 2495 return error; 2496 } 2497 2498 if (d_really_is_positive(new_dentry)) { 2499 (void) shmem_unlink(new_dir, new_dentry); 2500 if (they_are_dirs) { 2501 drop_nlink(d_inode(new_dentry)); 2502 drop_nlink(old_dir); 2503 } 2504 } else if (they_are_dirs) { 2505 drop_nlink(old_dir); 2506 inc_nlink(new_dir); 2507 } 2508 2509 old_dir->i_size -= BOGO_DIRENT_SIZE; 2510 new_dir->i_size += BOGO_DIRENT_SIZE; 2511 old_dir->i_ctime = old_dir->i_mtime = 2512 new_dir->i_ctime = new_dir->i_mtime = 2513 inode->i_ctime = CURRENT_TIME; 2514 return 0; 2515 } 2516 2517 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2518 { 2519 int error; 2520 int len; 2521 struct inode *inode; 2522 struct page *page; 2523 struct shmem_inode_info *info; 2524 2525 len = strlen(symname) + 1; 2526 if (len > PAGE_SIZE) 2527 return -ENAMETOOLONG; 2528 2529 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE); 2530 if (!inode) 2531 return -ENOSPC; 2532 2533 error = security_inode_init_security(inode, dir, &dentry->d_name, 2534 shmem_initxattrs, NULL); 2535 if (error) { 2536 if (error != -EOPNOTSUPP) { 2537 iput(inode); 2538 return error; 2539 } 2540 error = 0; 2541 } 2542 2543 info = SHMEM_I(inode); 2544 inode->i_size = len-1; 2545 if (len <= SHORT_SYMLINK_LEN) { 2546 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 2547 if (!inode->i_link) { 2548 iput(inode); 2549 return -ENOMEM; 2550 } 2551 inode->i_op = &shmem_short_symlink_operations; 2552 } else { 2553 inode_nohighmem(inode); 2554 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL); 2555 if (error) { 2556 iput(inode); 2557 return error; 2558 } 2559 inode->i_mapping->a_ops = &shmem_aops; 2560 inode->i_op = &shmem_symlink_inode_operations; 2561 memcpy(page_address(page), symname, len); 2562 SetPageUptodate(page); 2563 set_page_dirty(page); 2564 unlock_page(page); 2565 put_page(page); 2566 } 2567 dir->i_size += BOGO_DIRENT_SIZE; 2568 dir->i_ctime = dir->i_mtime = CURRENT_TIME; 2569 d_instantiate(dentry, inode); 2570 dget(dentry); 2571 return 0; 2572 } 2573 2574 static void shmem_put_link(void *arg) 2575 { 2576 mark_page_accessed(arg); 2577 put_page(arg); 2578 } 2579 2580 static const char *shmem_get_link(struct dentry *dentry, 2581 struct inode *inode, 2582 struct delayed_call *done) 2583 { 2584 struct page *page = NULL; 2585 int error; 2586 if (!dentry) { 2587 page = find_get_page(inode->i_mapping, 0); 2588 if (!page) 2589 return ERR_PTR(-ECHILD); 2590 if (!PageUptodate(page)) { 2591 put_page(page); 2592 return ERR_PTR(-ECHILD); 2593 } 2594 } else { 2595 error = shmem_getpage(inode, 0, &page, SGP_READ, NULL); 2596 if (error) 2597 return ERR_PTR(error); 2598 unlock_page(page); 2599 } 2600 set_delayed_call(done, shmem_put_link, page); 2601 return page_address(page); 2602 } 2603 2604 #ifdef CONFIG_TMPFS_XATTR 2605 /* 2606 * Superblocks without xattr inode operations may get some security.* xattr 2607 * support from the LSM "for free". As soon as we have any other xattrs 2608 * like ACLs, we also need to implement the security.* handlers at 2609 * filesystem level, though. 2610 */ 2611 2612 /* 2613 * Callback for security_inode_init_security() for acquiring xattrs. 2614 */ 2615 static int shmem_initxattrs(struct inode *inode, 2616 const struct xattr *xattr_array, 2617 void *fs_info) 2618 { 2619 struct shmem_inode_info *info = SHMEM_I(inode); 2620 const struct xattr *xattr; 2621 struct simple_xattr *new_xattr; 2622 size_t len; 2623 2624 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 2625 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 2626 if (!new_xattr) 2627 return -ENOMEM; 2628 2629 len = strlen(xattr->name) + 1; 2630 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 2631 GFP_KERNEL); 2632 if (!new_xattr->name) { 2633 kfree(new_xattr); 2634 return -ENOMEM; 2635 } 2636 2637 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 2638 XATTR_SECURITY_PREFIX_LEN); 2639 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 2640 xattr->name, len); 2641 2642 simple_xattr_list_add(&info->xattrs, new_xattr); 2643 } 2644 2645 return 0; 2646 } 2647 2648 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 2649 struct dentry *dentry, const char *name, 2650 void *buffer, size_t size) 2651 { 2652 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2653 2654 name = xattr_full_name(handler, name); 2655 return simple_xattr_get(&info->xattrs, name, buffer, size); 2656 } 2657 2658 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 2659 struct dentry *dentry, const char *name, 2660 const void *value, size_t size, int flags) 2661 { 2662 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2663 2664 name = xattr_full_name(handler, name); 2665 return simple_xattr_set(&info->xattrs, name, value, size, flags); 2666 } 2667 2668 static const struct xattr_handler shmem_security_xattr_handler = { 2669 .prefix = XATTR_SECURITY_PREFIX, 2670 .get = shmem_xattr_handler_get, 2671 .set = shmem_xattr_handler_set, 2672 }; 2673 2674 static const struct xattr_handler shmem_trusted_xattr_handler = { 2675 .prefix = XATTR_TRUSTED_PREFIX, 2676 .get = shmem_xattr_handler_get, 2677 .set = shmem_xattr_handler_set, 2678 }; 2679 2680 static const struct xattr_handler *shmem_xattr_handlers[] = { 2681 #ifdef CONFIG_TMPFS_POSIX_ACL 2682 &posix_acl_access_xattr_handler, 2683 &posix_acl_default_xattr_handler, 2684 #endif 2685 &shmem_security_xattr_handler, 2686 &shmem_trusted_xattr_handler, 2687 NULL 2688 }; 2689 2690 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 2691 { 2692 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 2693 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 2694 } 2695 #endif /* CONFIG_TMPFS_XATTR */ 2696 2697 static const struct inode_operations shmem_short_symlink_operations = { 2698 .readlink = generic_readlink, 2699 .get_link = simple_get_link, 2700 #ifdef CONFIG_TMPFS_XATTR 2701 .setxattr = generic_setxattr, 2702 .getxattr = generic_getxattr, 2703 .listxattr = shmem_listxattr, 2704 .removexattr = generic_removexattr, 2705 #endif 2706 }; 2707 2708 static const struct inode_operations shmem_symlink_inode_operations = { 2709 .readlink = generic_readlink, 2710 .get_link = shmem_get_link, 2711 #ifdef CONFIG_TMPFS_XATTR 2712 .setxattr = generic_setxattr, 2713 .getxattr = generic_getxattr, 2714 .listxattr = shmem_listxattr, 2715 .removexattr = generic_removexattr, 2716 #endif 2717 }; 2718 2719 static struct dentry *shmem_get_parent(struct dentry *child) 2720 { 2721 return ERR_PTR(-ESTALE); 2722 } 2723 2724 static int shmem_match(struct inode *ino, void *vfh) 2725 { 2726 __u32 *fh = vfh; 2727 __u64 inum = fh[2]; 2728 inum = (inum << 32) | fh[1]; 2729 return ino->i_ino == inum && fh[0] == ino->i_generation; 2730 } 2731 2732 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 2733 struct fid *fid, int fh_len, int fh_type) 2734 { 2735 struct inode *inode; 2736 struct dentry *dentry = NULL; 2737 u64 inum; 2738 2739 if (fh_len < 3) 2740 return NULL; 2741 2742 inum = fid->raw[2]; 2743 inum = (inum << 32) | fid->raw[1]; 2744 2745 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 2746 shmem_match, fid->raw); 2747 if (inode) { 2748 dentry = d_find_alias(inode); 2749 iput(inode); 2750 } 2751 2752 return dentry; 2753 } 2754 2755 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 2756 struct inode *parent) 2757 { 2758 if (*len < 3) { 2759 *len = 3; 2760 return FILEID_INVALID; 2761 } 2762 2763 if (inode_unhashed(inode)) { 2764 /* Unfortunately insert_inode_hash is not idempotent, 2765 * so as we hash inodes here rather than at creation 2766 * time, we need a lock to ensure we only try 2767 * to do it once 2768 */ 2769 static DEFINE_SPINLOCK(lock); 2770 spin_lock(&lock); 2771 if (inode_unhashed(inode)) 2772 __insert_inode_hash(inode, 2773 inode->i_ino + inode->i_generation); 2774 spin_unlock(&lock); 2775 } 2776 2777 fh[0] = inode->i_generation; 2778 fh[1] = inode->i_ino; 2779 fh[2] = ((__u64)inode->i_ino) >> 32; 2780 2781 *len = 3; 2782 return 1; 2783 } 2784 2785 static const struct export_operations shmem_export_ops = { 2786 .get_parent = shmem_get_parent, 2787 .encode_fh = shmem_encode_fh, 2788 .fh_to_dentry = shmem_fh_to_dentry, 2789 }; 2790 2791 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 2792 bool remount) 2793 { 2794 char *this_char, *value, *rest; 2795 struct mempolicy *mpol = NULL; 2796 uid_t uid; 2797 gid_t gid; 2798 2799 while (options != NULL) { 2800 this_char = options; 2801 for (;;) { 2802 /* 2803 * NUL-terminate this option: unfortunately, 2804 * mount options form a comma-separated list, 2805 * but mpol's nodelist may also contain commas. 2806 */ 2807 options = strchr(options, ','); 2808 if (options == NULL) 2809 break; 2810 options++; 2811 if (!isdigit(*options)) { 2812 options[-1] = '\0'; 2813 break; 2814 } 2815 } 2816 if (!*this_char) 2817 continue; 2818 if ((value = strchr(this_char,'=')) != NULL) { 2819 *value++ = 0; 2820 } else { 2821 pr_err("tmpfs: No value for mount option '%s'\n", 2822 this_char); 2823 goto error; 2824 } 2825 2826 if (!strcmp(this_char,"size")) { 2827 unsigned long long size; 2828 size = memparse(value,&rest); 2829 if (*rest == '%') { 2830 size <<= PAGE_SHIFT; 2831 size *= totalram_pages; 2832 do_div(size, 100); 2833 rest++; 2834 } 2835 if (*rest) 2836 goto bad_val; 2837 sbinfo->max_blocks = 2838 DIV_ROUND_UP(size, PAGE_SIZE); 2839 } else if (!strcmp(this_char,"nr_blocks")) { 2840 sbinfo->max_blocks = memparse(value, &rest); 2841 if (*rest) 2842 goto bad_val; 2843 } else if (!strcmp(this_char,"nr_inodes")) { 2844 sbinfo->max_inodes = memparse(value, &rest); 2845 if (*rest) 2846 goto bad_val; 2847 } else if (!strcmp(this_char,"mode")) { 2848 if (remount) 2849 continue; 2850 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 2851 if (*rest) 2852 goto bad_val; 2853 } else if (!strcmp(this_char,"uid")) { 2854 if (remount) 2855 continue; 2856 uid = simple_strtoul(value, &rest, 0); 2857 if (*rest) 2858 goto bad_val; 2859 sbinfo->uid = make_kuid(current_user_ns(), uid); 2860 if (!uid_valid(sbinfo->uid)) 2861 goto bad_val; 2862 } else if (!strcmp(this_char,"gid")) { 2863 if (remount) 2864 continue; 2865 gid = simple_strtoul(value, &rest, 0); 2866 if (*rest) 2867 goto bad_val; 2868 sbinfo->gid = make_kgid(current_user_ns(), gid); 2869 if (!gid_valid(sbinfo->gid)) 2870 goto bad_val; 2871 } else if (!strcmp(this_char,"mpol")) { 2872 mpol_put(mpol); 2873 mpol = NULL; 2874 if (mpol_parse_str(value, &mpol)) 2875 goto bad_val; 2876 } else { 2877 pr_err("tmpfs: Bad mount option %s\n", this_char); 2878 goto error; 2879 } 2880 } 2881 sbinfo->mpol = mpol; 2882 return 0; 2883 2884 bad_val: 2885 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 2886 value, this_char); 2887 error: 2888 mpol_put(mpol); 2889 return 1; 2890 2891 } 2892 2893 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 2894 { 2895 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2896 struct shmem_sb_info config = *sbinfo; 2897 unsigned long inodes; 2898 int error = -EINVAL; 2899 2900 config.mpol = NULL; 2901 if (shmem_parse_options(data, &config, true)) 2902 return error; 2903 2904 spin_lock(&sbinfo->stat_lock); 2905 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 2906 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 2907 goto out; 2908 if (config.max_inodes < inodes) 2909 goto out; 2910 /* 2911 * Those tests disallow limited->unlimited while any are in use; 2912 * but we must separately disallow unlimited->limited, because 2913 * in that case we have no record of how much is already in use. 2914 */ 2915 if (config.max_blocks && !sbinfo->max_blocks) 2916 goto out; 2917 if (config.max_inodes && !sbinfo->max_inodes) 2918 goto out; 2919 2920 error = 0; 2921 sbinfo->max_blocks = config.max_blocks; 2922 sbinfo->max_inodes = config.max_inodes; 2923 sbinfo->free_inodes = config.max_inodes - inodes; 2924 2925 /* 2926 * Preserve previous mempolicy unless mpol remount option was specified. 2927 */ 2928 if (config.mpol) { 2929 mpol_put(sbinfo->mpol); 2930 sbinfo->mpol = config.mpol; /* transfers initial ref */ 2931 } 2932 out: 2933 spin_unlock(&sbinfo->stat_lock); 2934 return error; 2935 } 2936 2937 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 2938 { 2939 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 2940 2941 if (sbinfo->max_blocks != shmem_default_max_blocks()) 2942 seq_printf(seq, ",size=%luk", 2943 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 2944 if (sbinfo->max_inodes != shmem_default_max_inodes()) 2945 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 2946 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX)) 2947 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 2948 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 2949 seq_printf(seq, ",uid=%u", 2950 from_kuid_munged(&init_user_ns, sbinfo->uid)); 2951 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 2952 seq_printf(seq, ",gid=%u", 2953 from_kgid_munged(&init_user_ns, sbinfo->gid)); 2954 shmem_show_mpol(seq, sbinfo->mpol); 2955 return 0; 2956 } 2957 2958 #define MFD_NAME_PREFIX "memfd:" 2959 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1) 2960 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN) 2961 2962 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING) 2963 2964 SYSCALL_DEFINE2(memfd_create, 2965 const char __user *, uname, 2966 unsigned int, flags) 2967 { 2968 struct shmem_inode_info *info; 2969 struct file *file; 2970 int fd, error; 2971 char *name; 2972 long len; 2973 2974 if (flags & ~(unsigned int)MFD_ALL_FLAGS) 2975 return -EINVAL; 2976 2977 /* length includes terminating zero */ 2978 len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1); 2979 if (len <= 0) 2980 return -EFAULT; 2981 if (len > MFD_NAME_MAX_LEN + 1) 2982 return -EINVAL; 2983 2984 name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY); 2985 if (!name) 2986 return -ENOMEM; 2987 2988 strcpy(name, MFD_NAME_PREFIX); 2989 if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) { 2990 error = -EFAULT; 2991 goto err_name; 2992 } 2993 2994 /* terminating-zero may have changed after strnlen_user() returned */ 2995 if (name[len + MFD_NAME_PREFIX_LEN - 1]) { 2996 error = -EFAULT; 2997 goto err_name; 2998 } 2999 3000 fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0); 3001 if (fd < 0) { 3002 error = fd; 3003 goto err_name; 3004 } 3005 3006 file = shmem_file_setup(name, 0, VM_NORESERVE); 3007 if (IS_ERR(file)) { 3008 error = PTR_ERR(file); 3009 goto err_fd; 3010 } 3011 info = SHMEM_I(file_inode(file)); 3012 file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE; 3013 file->f_flags |= O_RDWR | O_LARGEFILE; 3014 if (flags & MFD_ALLOW_SEALING) 3015 info->seals &= ~F_SEAL_SEAL; 3016 3017 fd_install(fd, file); 3018 kfree(name); 3019 return fd; 3020 3021 err_fd: 3022 put_unused_fd(fd); 3023 err_name: 3024 kfree(name); 3025 return error; 3026 } 3027 3028 #endif /* CONFIG_TMPFS */ 3029 3030 static void shmem_put_super(struct super_block *sb) 3031 { 3032 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3033 3034 percpu_counter_destroy(&sbinfo->used_blocks); 3035 mpol_put(sbinfo->mpol); 3036 kfree(sbinfo); 3037 sb->s_fs_info = NULL; 3038 } 3039 3040 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3041 { 3042 struct inode *inode; 3043 struct shmem_sb_info *sbinfo; 3044 int err = -ENOMEM; 3045 3046 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3047 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3048 L1_CACHE_BYTES), GFP_KERNEL); 3049 if (!sbinfo) 3050 return -ENOMEM; 3051 3052 sbinfo->mode = S_IRWXUGO | S_ISVTX; 3053 sbinfo->uid = current_fsuid(); 3054 sbinfo->gid = current_fsgid(); 3055 sb->s_fs_info = sbinfo; 3056 3057 #ifdef CONFIG_TMPFS 3058 /* 3059 * Per default we only allow half of the physical ram per 3060 * tmpfs instance, limiting inodes to one per page of lowmem; 3061 * but the internal instance is left unlimited. 3062 */ 3063 if (!(sb->s_flags & MS_KERNMOUNT)) { 3064 sbinfo->max_blocks = shmem_default_max_blocks(); 3065 sbinfo->max_inodes = shmem_default_max_inodes(); 3066 if (shmem_parse_options(data, sbinfo, false)) { 3067 err = -EINVAL; 3068 goto failed; 3069 } 3070 } else { 3071 sb->s_flags |= MS_NOUSER; 3072 } 3073 sb->s_export_op = &shmem_export_ops; 3074 sb->s_flags |= MS_NOSEC; 3075 #else 3076 sb->s_flags |= MS_NOUSER; 3077 #endif 3078 3079 spin_lock_init(&sbinfo->stat_lock); 3080 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3081 goto failed; 3082 sbinfo->free_inodes = sbinfo->max_inodes; 3083 3084 sb->s_maxbytes = MAX_LFS_FILESIZE; 3085 sb->s_blocksize = PAGE_SIZE; 3086 sb->s_blocksize_bits = PAGE_SHIFT; 3087 sb->s_magic = TMPFS_MAGIC; 3088 sb->s_op = &shmem_ops; 3089 sb->s_time_gran = 1; 3090 #ifdef CONFIG_TMPFS_XATTR 3091 sb->s_xattr = shmem_xattr_handlers; 3092 #endif 3093 #ifdef CONFIG_TMPFS_POSIX_ACL 3094 sb->s_flags |= MS_POSIXACL; 3095 #endif 3096 3097 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3098 if (!inode) 3099 goto failed; 3100 inode->i_uid = sbinfo->uid; 3101 inode->i_gid = sbinfo->gid; 3102 sb->s_root = d_make_root(inode); 3103 if (!sb->s_root) 3104 goto failed; 3105 return 0; 3106 3107 failed: 3108 shmem_put_super(sb); 3109 return err; 3110 } 3111 3112 static struct kmem_cache *shmem_inode_cachep; 3113 3114 static struct inode *shmem_alloc_inode(struct super_block *sb) 3115 { 3116 struct shmem_inode_info *info; 3117 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3118 if (!info) 3119 return NULL; 3120 return &info->vfs_inode; 3121 } 3122 3123 static void shmem_destroy_callback(struct rcu_head *head) 3124 { 3125 struct inode *inode = container_of(head, struct inode, i_rcu); 3126 kfree(inode->i_link); 3127 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3128 } 3129 3130 static void shmem_destroy_inode(struct inode *inode) 3131 { 3132 if (S_ISREG(inode->i_mode)) 3133 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3134 call_rcu(&inode->i_rcu, shmem_destroy_callback); 3135 } 3136 3137 static void shmem_init_inode(void *foo) 3138 { 3139 struct shmem_inode_info *info = foo; 3140 inode_init_once(&info->vfs_inode); 3141 } 3142 3143 static int shmem_init_inodecache(void) 3144 { 3145 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3146 sizeof(struct shmem_inode_info), 3147 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3148 return 0; 3149 } 3150 3151 static void shmem_destroy_inodecache(void) 3152 { 3153 kmem_cache_destroy(shmem_inode_cachep); 3154 } 3155 3156 static const struct address_space_operations shmem_aops = { 3157 .writepage = shmem_writepage, 3158 .set_page_dirty = __set_page_dirty_no_writeback, 3159 #ifdef CONFIG_TMPFS 3160 .write_begin = shmem_write_begin, 3161 .write_end = shmem_write_end, 3162 #endif 3163 #ifdef CONFIG_MIGRATION 3164 .migratepage = migrate_page, 3165 #endif 3166 .error_remove_page = generic_error_remove_page, 3167 }; 3168 3169 static const struct file_operations shmem_file_operations = { 3170 .mmap = shmem_mmap, 3171 #ifdef CONFIG_TMPFS 3172 .llseek = shmem_file_llseek, 3173 .read_iter = shmem_file_read_iter, 3174 .write_iter = generic_file_write_iter, 3175 .fsync = noop_fsync, 3176 .splice_read = shmem_file_splice_read, 3177 .splice_write = iter_file_splice_write, 3178 .fallocate = shmem_fallocate, 3179 #endif 3180 }; 3181 3182 static const struct inode_operations shmem_inode_operations = { 3183 .getattr = shmem_getattr, 3184 .setattr = shmem_setattr, 3185 #ifdef CONFIG_TMPFS_XATTR 3186 .setxattr = generic_setxattr, 3187 .getxattr = generic_getxattr, 3188 .listxattr = shmem_listxattr, 3189 .removexattr = generic_removexattr, 3190 .set_acl = simple_set_acl, 3191 #endif 3192 }; 3193 3194 static const struct inode_operations shmem_dir_inode_operations = { 3195 #ifdef CONFIG_TMPFS 3196 .create = shmem_create, 3197 .lookup = simple_lookup, 3198 .link = shmem_link, 3199 .unlink = shmem_unlink, 3200 .symlink = shmem_symlink, 3201 .mkdir = shmem_mkdir, 3202 .rmdir = shmem_rmdir, 3203 .mknod = shmem_mknod, 3204 .rename2 = shmem_rename2, 3205 .tmpfile = shmem_tmpfile, 3206 #endif 3207 #ifdef CONFIG_TMPFS_XATTR 3208 .setxattr = generic_setxattr, 3209 .getxattr = generic_getxattr, 3210 .listxattr = shmem_listxattr, 3211 .removexattr = generic_removexattr, 3212 #endif 3213 #ifdef CONFIG_TMPFS_POSIX_ACL 3214 .setattr = shmem_setattr, 3215 .set_acl = simple_set_acl, 3216 #endif 3217 }; 3218 3219 static const struct inode_operations shmem_special_inode_operations = { 3220 #ifdef CONFIG_TMPFS_XATTR 3221 .setxattr = generic_setxattr, 3222 .getxattr = generic_getxattr, 3223 .listxattr = shmem_listxattr, 3224 .removexattr = generic_removexattr, 3225 #endif 3226 #ifdef CONFIG_TMPFS_POSIX_ACL 3227 .setattr = shmem_setattr, 3228 .set_acl = simple_set_acl, 3229 #endif 3230 }; 3231 3232 static const struct super_operations shmem_ops = { 3233 .alloc_inode = shmem_alloc_inode, 3234 .destroy_inode = shmem_destroy_inode, 3235 #ifdef CONFIG_TMPFS 3236 .statfs = shmem_statfs, 3237 .remount_fs = shmem_remount_fs, 3238 .show_options = shmem_show_options, 3239 #endif 3240 .evict_inode = shmem_evict_inode, 3241 .drop_inode = generic_delete_inode, 3242 .put_super = shmem_put_super, 3243 }; 3244 3245 static const struct vm_operations_struct shmem_vm_ops = { 3246 .fault = shmem_fault, 3247 .map_pages = filemap_map_pages, 3248 #ifdef CONFIG_NUMA 3249 .set_policy = shmem_set_policy, 3250 .get_policy = shmem_get_policy, 3251 #endif 3252 }; 3253 3254 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3255 int flags, const char *dev_name, void *data) 3256 { 3257 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3258 } 3259 3260 static struct file_system_type shmem_fs_type = { 3261 .owner = THIS_MODULE, 3262 .name = "tmpfs", 3263 .mount = shmem_mount, 3264 .kill_sb = kill_litter_super, 3265 .fs_flags = FS_USERNS_MOUNT, 3266 }; 3267 3268 int __init shmem_init(void) 3269 { 3270 int error; 3271 3272 /* If rootfs called this, don't re-init */ 3273 if (shmem_inode_cachep) 3274 return 0; 3275 3276 error = shmem_init_inodecache(); 3277 if (error) 3278 goto out3; 3279 3280 error = register_filesystem(&shmem_fs_type); 3281 if (error) { 3282 pr_err("Could not register tmpfs\n"); 3283 goto out2; 3284 } 3285 3286 shm_mnt = kern_mount(&shmem_fs_type); 3287 if (IS_ERR(shm_mnt)) { 3288 error = PTR_ERR(shm_mnt); 3289 pr_err("Could not kern_mount tmpfs\n"); 3290 goto out1; 3291 } 3292 return 0; 3293 3294 out1: 3295 unregister_filesystem(&shmem_fs_type); 3296 out2: 3297 shmem_destroy_inodecache(); 3298 out3: 3299 shm_mnt = ERR_PTR(error); 3300 return error; 3301 } 3302 3303 #else /* !CONFIG_SHMEM */ 3304 3305 /* 3306 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3307 * 3308 * This is intended for small system where the benefits of the full 3309 * shmem code (swap-backed and resource-limited) are outweighed by 3310 * their complexity. On systems without swap this code should be 3311 * effectively equivalent, but much lighter weight. 3312 */ 3313 3314 static struct file_system_type shmem_fs_type = { 3315 .name = "tmpfs", 3316 .mount = ramfs_mount, 3317 .kill_sb = kill_litter_super, 3318 .fs_flags = FS_USERNS_MOUNT, 3319 }; 3320 3321 int __init shmem_init(void) 3322 { 3323 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3324 3325 shm_mnt = kern_mount(&shmem_fs_type); 3326 BUG_ON(IS_ERR(shm_mnt)); 3327 3328 return 0; 3329 } 3330 3331 int shmem_unuse(swp_entry_t swap, struct page *page) 3332 { 3333 return 0; 3334 } 3335 3336 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3337 { 3338 return 0; 3339 } 3340 3341 void shmem_unlock_mapping(struct address_space *mapping) 3342 { 3343 } 3344 3345 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3346 { 3347 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3348 } 3349 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3350 3351 #define shmem_vm_ops generic_file_vm_ops 3352 #define shmem_file_operations ramfs_file_operations 3353 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3354 #define shmem_acct_size(flags, size) 0 3355 #define shmem_unacct_size(flags, size) do {} while (0) 3356 3357 #endif /* CONFIG_SHMEM */ 3358 3359 /* common code */ 3360 3361 static struct dentry_operations anon_ops = { 3362 .d_dname = simple_dname 3363 }; 3364 3365 static struct file *__shmem_file_setup(const char *name, loff_t size, 3366 unsigned long flags, unsigned int i_flags) 3367 { 3368 struct file *res; 3369 struct inode *inode; 3370 struct path path; 3371 struct super_block *sb; 3372 struct qstr this; 3373 3374 if (IS_ERR(shm_mnt)) 3375 return ERR_CAST(shm_mnt); 3376 3377 if (size < 0 || size > MAX_LFS_FILESIZE) 3378 return ERR_PTR(-EINVAL); 3379 3380 if (shmem_acct_size(flags, size)) 3381 return ERR_PTR(-ENOMEM); 3382 3383 res = ERR_PTR(-ENOMEM); 3384 this.name = name; 3385 this.len = strlen(name); 3386 this.hash = 0; /* will go */ 3387 sb = shm_mnt->mnt_sb; 3388 path.mnt = mntget(shm_mnt); 3389 path.dentry = d_alloc_pseudo(sb, &this); 3390 if (!path.dentry) 3391 goto put_memory; 3392 d_set_d_op(path.dentry, &anon_ops); 3393 3394 res = ERR_PTR(-ENOSPC); 3395 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags); 3396 if (!inode) 3397 goto put_memory; 3398 3399 inode->i_flags |= i_flags; 3400 d_instantiate(path.dentry, inode); 3401 inode->i_size = size; 3402 clear_nlink(inode); /* It is unlinked */ 3403 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3404 if (IS_ERR(res)) 3405 goto put_path; 3406 3407 res = alloc_file(&path, FMODE_WRITE | FMODE_READ, 3408 &shmem_file_operations); 3409 if (IS_ERR(res)) 3410 goto put_path; 3411 3412 return res; 3413 3414 put_memory: 3415 shmem_unacct_size(flags, size); 3416 put_path: 3417 path_put(&path); 3418 return res; 3419 } 3420 3421 /** 3422 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 3423 * kernel internal. There will be NO LSM permission checks against the 3424 * underlying inode. So users of this interface must do LSM checks at a 3425 * higher layer. The users are the big_key and shm implementations. LSM 3426 * checks are provided at the key or shm level rather than the inode. 3427 * @name: name for dentry (to be seen in /proc/<pid>/maps 3428 * @size: size to be set for the file 3429 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3430 */ 3431 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 3432 { 3433 return __shmem_file_setup(name, size, flags, S_PRIVATE); 3434 } 3435 3436 /** 3437 * shmem_file_setup - get an unlinked file living in tmpfs 3438 * @name: name for dentry (to be seen in /proc/<pid>/maps 3439 * @size: size to be set for the file 3440 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 3441 */ 3442 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 3443 { 3444 return __shmem_file_setup(name, size, flags, 0); 3445 } 3446 EXPORT_SYMBOL_GPL(shmem_file_setup); 3447 3448 /** 3449 * shmem_zero_setup - setup a shared anonymous mapping 3450 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 3451 */ 3452 int shmem_zero_setup(struct vm_area_struct *vma) 3453 { 3454 struct file *file; 3455 loff_t size = vma->vm_end - vma->vm_start; 3456 3457 /* 3458 * Cloning a new file under mmap_sem leads to a lock ordering conflict 3459 * between XFS directory reading and selinux: since this file is only 3460 * accessible to the user through its mapping, use S_PRIVATE flag to 3461 * bypass file security, in the same way as shmem_kernel_file_setup(). 3462 */ 3463 file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE); 3464 if (IS_ERR(file)) 3465 return PTR_ERR(file); 3466 3467 if (vma->vm_file) 3468 fput(vma->vm_file); 3469 vma->vm_file = file; 3470 vma->vm_ops = &shmem_vm_ops; 3471 return 0; 3472 } 3473 3474 /** 3475 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 3476 * @mapping: the page's address_space 3477 * @index: the page index 3478 * @gfp: the page allocator flags to use if allocating 3479 * 3480 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 3481 * with any new page allocations done using the specified allocation flags. 3482 * But read_cache_page_gfp() uses the ->readpage() method: which does not 3483 * suit tmpfs, since it may have pages in swapcache, and needs to find those 3484 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 3485 * 3486 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 3487 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 3488 */ 3489 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 3490 pgoff_t index, gfp_t gfp) 3491 { 3492 #ifdef CONFIG_SHMEM 3493 struct inode *inode = mapping->host; 3494 struct page *page; 3495 int error; 3496 3497 BUG_ON(mapping->a_ops != &shmem_aops); 3498 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL); 3499 if (error) 3500 page = ERR_PTR(error); 3501 else 3502 unlock_page(page); 3503 return page; 3504 #else 3505 /* 3506 * The tiny !SHMEM case uses ramfs without swap 3507 */ 3508 return read_cache_page_gfp(mapping, index, gfp); 3509 #endif 3510 } 3511 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 3512