xref: /linux/mm/shmem.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2005 Hugh Dickins.
10  * Copyright (C) 2002-2005 VERITAS Software Corporation.
11  * Copyright (C) 2004 Andi Kleen, SuSE Labs
12  *
13  * Extended attribute support for tmpfs:
14  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
15  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
16  *
17  * tiny-shmem:
18  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
19  *
20  * This file is released under the GPL.
21  */
22 
23 #include <linux/fs.h>
24 #include <linux/init.h>
25 #include <linux/vfs.h>
26 #include <linux/mount.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/swap.h>
31 #include <linux/ima.h>
32 
33 static struct vfsmount *shm_mnt;
34 
35 #ifdef CONFIG_SHMEM
36 /*
37  * This virtual memory filesystem is heavily based on the ramfs. It
38  * extends ramfs by the ability to use swap and honor resource limits
39  * which makes it a completely usable filesystem.
40  */
41 
42 #include <linux/xattr.h>
43 #include <linux/exportfs.h>
44 #include <linux/generic_acl.h>
45 #include <linux/mman.h>
46 #include <linux/pagemap.h>
47 #include <linux/string.h>
48 #include <linux/slab.h>
49 #include <linux/backing-dev.h>
50 #include <linux/shmem_fs.h>
51 #include <linux/writeback.h>
52 #include <linux/vfs.h>
53 #include <linux/blkdev.h>
54 #include <linux/security.h>
55 #include <linux/swapops.h>
56 #include <linux/mempolicy.h>
57 #include <linux/namei.h>
58 #include <linux/ctype.h>
59 #include <linux/migrate.h>
60 #include <linux/highmem.h>
61 #include <linux/seq_file.h>
62 #include <linux/magic.h>
63 
64 #include <asm/uaccess.h>
65 #include <asm/div64.h>
66 #include <asm/pgtable.h>
67 
68 #define ENTRIES_PER_PAGE (PAGE_CACHE_SIZE/sizeof(unsigned long))
69 #define ENTRIES_PER_PAGEPAGE (ENTRIES_PER_PAGE*ENTRIES_PER_PAGE)
70 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
71 
72 #define SHMEM_MAX_INDEX  (SHMEM_NR_DIRECT + (ENTRIES_PER_PAGEPAGE/2) * (ENTRIES_PER_PAGE+1))
73 #define SHMEM_MAX_BYTES  ((unsigned long long)SHMEM_MAX_INDEX << PAGE_CACHE_SHIFT)
74 
75 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
76 
77 /* info->flags needs VM_flags to handle pagein/truncate races efficiently */
78 #define SHMEM_PAGEIN	 VM_READ
79 #define SHMEM_TRUNCATE	 VM_WRITE
80 
81 /* Definition to limit shmem_truncate's steps between cond_rescheds */
82 #define LATENCY_LIMIT	 64
83 
84 /* Pretend that each entry is of this size in directory's i_size */
85 #define BOGO_DIRENT_SIZE 20
86 
87 /* Flag allocation requirements to shmem_getpage and shmem_swp_alloc */
88 enum sgp_type {
89 	SGP_READ,	/* don't exceed i_size, don't allocate page */
90 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
91 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
92 	SGP_WRITE,	/* may exceed i_size, may allocate page */
93 };
94 
95 #ifdef CONFIG_TMPFS
96 static unsigned long shmem_default_max_blocks(void)
97 {
98 	return totalram_pages / 2;
99 }
100 
101 static unsigned long shmem_default_max_inodes(void)
102 {
103 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
104 }
105 #endif
106 
107 static int shmem_getpage(struct inode *inode, unsigned long idx,
108 			 struct page **pagep, enum sgp_type sgp, int *type);
109 
110 static inline struct page *shmem_dir_alloc(gfp_t gfp_mask)
111 {
112 	/*
113 	 * The above definition of ENTRIES_PER_PAGE, and the use of
114 	 * BLOCKS_PER_PAGE on indirect pages, assume PAGE_CACHE_SIZE:
115 	 * might be reconsidered if it ever diverges from PAGE_SIZE.
116 	 *
117 	 * Mobility flags are masked out as swap vectors cannot move
118 	 */
119 	return alloc_pages((gfp_mask & ~GFP_MOVABLE_MASK) | __GFP_ZERO,
120 				PAGE_CACHE_SHIFT-PAGE_SHIFT);
121 }
122 
123 static inline void shmem_dir_free(struct page *page)
124 {
125 	__free_pages(page, PAGE_CACHE_SHIFT-PAGE_SHIFT);
126 }
127 
128 static struct page **shmem_dir_map(struct page *page)
129 {
130 	return (struct page **)kmap_atomic(page, KM_USER0);
131 }
132 
133 static inline void shmem_dir_unmap(struct page **dir)
134 {
135 	kunmap_atomic(dir, KM_USER0);
136 }
137 
138 static swp_entry_t *shmem_swp_map(struct page *page)
139 {
140 	return (swp_entry_t *)kmap_atomic(page, KM_USER1);
141 }
142 
143 static inline void shmem_swp_balance_unmap(void)
144 {
145 	/*
146 	 * When passing a pointer to an i_direct entry, to code which
147 	 * also handles indirect entries and so will shmem_swp_unmap,
148 	 * we must arrange for the preempt count to remain in balance.
149 	 * What kmap_atomic of a lowmem page does depends on config
150 	 * and architecture, so pretend to kmap_atomic some lowmem page.
151 	 */
152 	(void) kmap_atomic(ZERO_PAGE(0), KM_USER1);
153 }
154 
155 static inline void shmem_swp_unmap(swp_entry_t *entry)
156 {
157 	kunmap_atomic(entry, KM_USER1);
158 }
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_kern(VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 /*
184  * ... whereas tmpfs objects are accounted incrementally as
185  * pages are allocated, in order to allow huge sparse files.
186  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
187  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
188  */
189 static inline int shmem_acct_block(unsigned long flags)
190 {
191 	return (flags & VM_NORESERVE) ?
192 		security_vm_enough_memory_kern(VM_ACCT(PAGE_CACHE_SIZE)) : 0;
193 }
194 
195 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 {
197 	if (flags & VM_NORESERVE)
198 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
199 }
200 
201 static const struct super_operations shmem_ops;
202 static const struct address_space_operations shmem_aops;
203 static const struct file_operations shmem_file_operations;
204 static const struct inode_operations shmem_inode_operations;
205 static const struct inode_operations shmem_dir_inode_operations;
206 static const struct inode_operations shmem_special_inode_operations;
207 static struct vm_operations_struct shmem_vm_ops;
208 
209 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
210 	.ra_pages	= 0,	/* No readahead */
211 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
212 	.unplug_io_fn	= default_unplug_io_fn,
213 };
214 
215 static LIST_HEAD(shmem_swaplist);
216 static DEFINE_MUTEX(shmem_swaplist_mutex);
217 
218 static void shmem_free_blocks(struct inode *inode, long pages)
219 {
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	if (sbinfo->max_blocks) {
222 		spin_lock(&sbinfo->stat_lock);
223 		sbinfo->free_blocks += pages;
224 		inode->i_blocks -= pages*BLOCKS_PER_PAGE;
225 		spin_unlock(&sbinfo->stat_lock);
226 	}
227 }
228 
229 static int shmem_reserve_inode(struct super_block *sb)
230 {
231 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
232 	if (sbinfo->max_inodes) {
233 		spin_lock(&sbinfo->stat_lock);
234 		if (!sbinfo->free_inodes) {
235 			spin_unlock(&sbinfo->stat_lock);
236 			return -ENOSPC;
237 		}
238 		sbinfo->free_inodes--;
239 		spin_unlock(&sbinfo->stat_lock);
240 	}
241 	return 0;
242 }
243 
244 static void shmem_free_inode(struct super_block *sb)
245 {
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
247 	if (sbinfo->max_inodes) {
248 		spin_lock(&sbinfo->stat_lock);
249 		sbinfo->free_inodes++;
250 		spin_unlock(&sbinfo->stat_lock);
251 	}
252 }
253 
254 /**
255  * shmem_recalc_inode - recalculate the size of an inode
256  * @inode: inode to recalc
257  *
258  * We have to calculate the free blocks since the mm can drop
259  * undirtied hole pages behind our back.
260  *
261  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
262  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
263  *
264  * It has to be called with the spinlock held.
265  */
266 static void shmem_recalc_inode(struct inode *inode)
267 {
268 	struct shmem_inode_info *info = SHMEM_I(inode);
269 	long freed;
270 
271 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
272 	if (freed > 0) {
273 		info->alloced -= freed;
274 		shmem_unacct_blocks(info->flags, freed);
275 		shmem_free_blocks(inode, freed);
276 	}
277 }
278 
279 /**
280  * shmem_swp_entry - find the swap vector position in the info structure
281  * @info:  info structure for the inode
282  * @index: index of the page to find
283  * @page:  optional page to add to the structure. Has to be preset to
284  *         all zeros
285  *
286  * If there is no space allocated yet it will return NULL when
287  * page is NULL, else it will use the page for the needed block,
288  * setting it to NULL on return to indicate that it has been used.
289  *
290  * The swap vector is organized the following way:
291  *
292  * There are SHMEM_NR_DIRECT entries directly stored in the
293  * shmem_inode_info structure. So small files do not need an addional
294  * allocation.
295  *
296  * For pages with index > SHMEM_NR_DIRECT there is the pointer
297  * i_indirect which points to a page which holds in the first half
298  * doubly indirect blocks, in the second half triple indirect blocks:
299  *
300  * For an artificial ENTRIES_PER_PAGE = 4 this would lead to the
301  * following layout (for SHMEM_NR_DIRECT == 16):
302  *
303  * i_indirect -> dir --> 16-19
304  * 	      |	     +-> 20-23
305  * 	      |
306  * 	      +-->dir2 --> 24-27
307  * 	      |	       +-> 28-31
308  * 	      |	       +-> 32-35
309  * 	      |	       +-> 36-39
310  * 	      |
311  * 	      +-->dir3 --> 40-43
312  * 	       	       +-> 44-47
313  * 	      	       +-> 48-51
314  * 	      	       +-> 52-55
315  */
316 static swp_entry_t *shmem_swp_entry(struct shmem_inode_info *info, unsigned long index, struct page **page)
317 {
318 	unsigned long offset;
319 	struct page **dir;
320 	struct page *subdir;
321 
322 	if (index < SHMEM_NR_DIRECT) {
323 		shmem_swp_balance_unmap();
324 		return info->i_direct+index;
325 	}
326 	if (!info->i_indirect) {
327 		if (page) {
328 			info->i_indirect = *page;
329 			*page = NULL;
330 		}
331 		return NULL;			/* need another page */
332 	}
333 
334 	index -= SHMEM_NR_DIRECT;
335 	offset = index % ENTRIES_PER_PAGE;
336 	index /= ENTRIES_PER_PAGE;
337 	dir = shmem_dir_map(info->i_indirect);
338 
339 	if (index >= ENTRIES_PER_PAGE/2) {
340 		index -= ENTRIES_PER_PAGE/2;
341 		dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;
342 		index %= ENTRIES_PER_PAGE;
343 		subdir = *dir;
344 		if (!subdir) {
345 			if (page) {
346 				*dir = *page;
347 				*page = NULL;
348 			}
349 			shmem_dir_unmap(dir);
350 			return NULL;		/* need another page */
351 		}
352 		shmem_dir_unmap(dir);
353 		dir = shmem_dir_map(subdir);
354 	}
355 
356 	dir += index;
357 	subdir = *dir;
358 	if (!subdir) {
359 		if (!page || !(subdir = *page)) {
360 			shmem_dir_unmap(dir);
361 			return NULL;		/* need a page */
362 		}
363 		*dir = subdir;
364 		*page = NULL;
365 	}
366 	shmem_dir_unmap(dir);
367 	return shmem_swp_map(subdir) + offset;
368 }
369 
370 static void shmem_swp_set(struct shmem_inode_info *info, swp_entry_t *entry, unsigned long value)
371 {
372 	long incdec = value? 1: -1;
373 
374 	entry->val = value;
375 	info->swapped += incdec;
376 	if ((unsigned long)(entry - info->i_direct) >= SHMEM_NR_DIRECT) {
377 		struct page *page = kmap_atomic_to_page(entry);
378 		set_page_private(page, page_private(page) + incdec);
379 	}
380 }
381 
382 /**
383  * shmem_swp_alloc - get the position of the swap entry for the page.
384  * @info:	info structure for the inode
385  * @index:	index of the page to find
386  * @sgp:	check and recheck i_size? skip allocation?
387  *
388  * If the entry does not exist, allocate it.
389  */
390 static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long index, enum sgp_type sgp)
391 {
392 	struct inode *inode = &info->vfs_inode;
393 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
394 	struct page *page = NULL;
395 	swp_entry_t *entry;
396 
397 	if (sgp != SGP_WRITE &&
398 	    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode))
399 		return ERR_PTR(-EINVAL);
400 
401 	while (!(entry = shmem_swp_entry(info, index, &page))) {
402 		if (sgp == SGP_READ)
403 			return shmem_swp_map(ZERO_PAGE(0));
404 		/*
405 		 * Test free_blocks against 1 not 0, since we have 1 data
406 		 * page (and perhaps indirect index pages) yet to allocate:
407 		 * a waste to allocate index if we cannot allocate data.
408 		 */
409 		if (sbinfo->max_blocks) {
410 			spin_lock(&sbinfo->stat_lock);
411 			if (sbinfo->free_blocks <= 1) {
412 				spin_unlock(&sbinfo->stat_lock);
413 				return ERR_PTR(-ENOSPC);
414 			}
415 			sbinfo->free_blocks--;
416 			inode->i_blocks += BLOCKS_PER_PAGE;
417 			spin_unlock(&sbinfo->stat_lock);
418 		}
419 
420 		spin_unlock(&info->lock);
421 		page = shmem_dir_alloc(mapping_gfp_mask(inode->i_mapping));
422 		if (page)
423 			set_page_private(page, 0);
424 		spin_lock(&info->lock);
425 
426 		if (!page) {
427 			shmem_free_blocks(inode, 1);
428 			return ERR_PTR(-ENOMEM);
429 		}
430 		if (sgp != SGP_WRITE &&
431 		    ((loff_t) index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
432 			entry = ERR_PTR(-EINVAL);
433 			break;
434 		}
435 		if (info->next_index <= index)
436 			info->next_index = index + 1;
437 	}
438 	if (page) {
439 		/* another task gave its page, or truncated the file */
440 		shmem_free_blocks(inode, 1);
441 		shmem_dir_free(page);
442 	}
443 	if (info->next_index <= index && !IS_ERR(entry))
444 		info->next_index = index + 1;
445 	return entry;
446 }
447 
448 /**
449  * shmem_free_swp - free some swap entries in a directory
450  * @dir:        pointer to the directory
451  * @edir:       pointer after last entry of the directory
452  * @punch_lock: pointer to spinlock when needed for the holepunch case
453  */
454 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir,
455 						spinlock_t *punch_lock)
456 {
457 	spinlock_t *punch_unlock = NULL;
458 	swp_entry_t *ptr;
459 	int freed = 0;
460 
461 	for (ptr = dir; ptr < edir; ptr++) {
462 		if (ptr->val) {
463 			if (unlikely(punch_lock)) {
464 				punch_unlock = punch_lock;
465 				punch_lock = NULL;
466 				spin_lock(punch_unlock);
467 				if (!ptr->val)
468 					continue;
469 			}
470 			free_swap_and_cache(*ptr);
471 			*ptr = (swp_entry_t){0};
472 			freed++;
473 		}
474 	}
475 	if (punch_unlock)
476 		spin_unlock(punch_unlock);
477 	return freed;
478 }
479 
480 static int shmem_map_and_free_swp(struct page *subdir, int offset,
481 		int limit, struct page ***dir, spinlock_t *punch_lock)
482 {
483 	swp_entry_t *ptr;
484 	int freed = 0;
485 
486 	ptr = shmem_swp_map(subdir);
487 	for (; offset < limit; offset += LATENCY_LIMIT) {
488 		int size = limit - offset;
489 		if (size > LATENCY_LIMIT)
490 			size = LATENCY_LIMIT;
491 		freed += shmem_free_swp(ptr+offset, ptr+offset+size,
492 							punch_lock);
493 		if (need_resched()) {
494 			shmem_swp_unmap(ptr);
495 			if (*dir) {
496 				shmem_dir_unmap(*dir);
497 				*dir = NULL;
498 			}
499 			cond_resched();
500 			ptr = shmem_swp_map(subdir);
501 		}
502 	}
503 	shmem_swp_unmap(ptr);
504 	return freed;
505 }
506 
507 static void shmem_free_pages(struct list_head *next)
508 {
509 	struct page *page;
510 	int freed = 0;
511 
512 	do {
513 		page = container_of(next, struct page, lru);
514 		next = next->next;
515 		shmem_dir_free(page);
516 		freed++;
517 		if (freed >= LATENCY_LIMIT) {
518 			cond_resched();
519 			freed = 0;
520 		}
521 	} while (next);
522 }
523 
524 static void shmem_truncate_range(struct inode *inode, loff_t start, loff_t end)
525 {
526 	struct shmem_inode_info *info = SHMEM_I(inode);
527 	unsigned long idx;
528 	unsigned long size;
529 	unsigned long limit;
530 	unsigned long stage;
531 	unsigned long diroff;
532 	struct page **dir;
533 	struct page *topdir;
534 	struct page *middir;
535 	struct page *subdir;
536 	swp_entry_t *ptr;
537 	LIST_HEAD(pages_to_free);
538 	long nr_pages_to_free = 0;
539 	long nr_swaps_freed = 0;
540 	int offset;
541 	int freed;
542 	int punch_hole;
543 	spinlock_t *needs_lock;
544 	spinlock_t *punch_lock;
545 	unsigned long upper_limit;
546 
547 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
548 	idx = (start + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
549 	if (idx >= info->next_index)
550 		return;
551 
552 	spin_lock(&info->lock);
553 	info->flags |= SHMEM_TRUNCATE;
554 	if (likely(end == (loff_t) -1)) {
555 		limit = info->next_index;
556 		upper_limit = SHMEM_MAX_INDEX;
557 		info->next_index = idx;
558 		needs_lock = NULL;
559 		punch_hole = 0;
560 	} else {
561 		if (end + 1 >= inode->i_size) {	/* we may free a little more */
562 			limit = (inode->i_size + PAGE_CACHE_SIZE - 1) >>
563 							PAGE_CACHE_SHIFT;
564 			upper_limit = SHMEM_MAX_INDEX;
565 		} else {
566 			limit = (end + 1) >> PAGE_CACHE_SHIFT;
567 			upper_limit = limit;
568 		}
569 		needs_lock = &info->lock;
570 		punch_hole = 1;
571 	}
572 
573 	topdir = info->i_indirect;
574 	if (topdir && idx <= SHMEM_NR_DIRECT && !punch_hole) {
575 		info->i_indirect = NULL;
576 		nr_pages_to_free++;
577 		list_add(&topdir->lru, &pages_to_free);
578 	}
579 	spin_unlock(&info->lock);
580 
581 	if (info->swapped && idx < SHMEM_NR_DIRECT) {
582 		ptr = info->i_direct;
583 		size = limit;
584 		if (size > SHMEM_NR_DIRECT)
585 			size = SHMEM_NR_DIRECT;
586 		nr_swaps_freed = shmem_free_swp(ptr+idx, ptr+size, needs_lock);
587 	}
588 
589 	/*
590 	 * If there are no indirect blocks or we are punching a hole
591 	 * below indirect blocks, nothing to be done.
592 	 */
593 	if (!topdir || limit <= SHMEM_NR_DIRECT)
594 		goto done2;
595 
596 	/*
597 	 * The truncation case has already dropped info->lock, and we're safe
598 	 * because i_size and next_index have already been lowered, preventing
599 	 * access beyond.  But in the punch_hole case, we still need to take
600 	 * the lock when updating the swap directory, because there might be
601 	 * racing accesses by shmem_getpage(SGP_CACHE), shmem_unuse_inode or
602 	 * shmem_writepage.  However, whenever we find we can remove a whole
603 	 * directory page (not at the misaligned start or end of the range),
604 	 * we first NULLify its pointer in the level above, and then have no
605 	 * need to take the lock when updating its contents: needs_lock and
606 	 * punch_lock (either pointing to info->lock or NULL) manage this.
607 	 */
608 
609 	upper_limit -= SHMEM_NR_DIRECT;
610 	limit -= SHMEM_NR_DIRECT;
611 	idx = (idx > SHMEM_NR_DIRECT)? (idx - SHMEM_NR_DIRECT): 0;
612 	offset = idx % ENTRIES_PER_PAGE;
613 	idx -= offset;
614 
615 	dir = shmem_dir_map(topdir);
616 	stage = ENTRIES_PER_PAGEPAGE/2;
617 	if (idx < ENTRIES_PER_PAGEPAGE/2) {
618 		middir = topdir;
619 		diroff = idx/ENTRIES_PER_PAGE;
620 	} else {
621 		dir += ENTRIES_PER_PAGE/2;
622 		dir += (idx - ENTRIES_PER_PAGEPAGE/2)/ENTRIES_PER_PAGEPAGE;
623 		while (stage <= idx)
624 			stage += ENTRIES_PER_PAGEPAGE;
625 		middir = *dir;
626 		if (*dir) {
627 			diroff = ((idx - ENTRIES_PER_PAGEPAGE/2) %
628 				ENTRIES_PER_PAGEPAGE) / ENTRIES_PER_PAGE;
629 			if (!diroff && !offset && upper_limit >= stage) {
630 				if (needs_lock) {
631 					spin_lock(needs_lock);
632 					*dir = NULL;
633 					spin_unlock(needs_lock);
634 					needs_lock = NULL;
635 				} else
636 					*dir = NULL;
637 				nr_pages_to_free++;
638 				list_add(&middir->lru, &pages_to_free);
639 			}
640 			shmem_dir_unmap(dir);
641 			dir = shmem_dir_map(middir);
642 		} else {
643 			diroff = 0;
644 			offset = 0;
645 			idx = stage;
646 		}
647 	}
648 
649 	for (; idx < limit; idx += ENTRIES_PER_PAGE, diroff++) {
650 		if (unlikely(idx == stage)) {
651 			shmem_dir_unmap(dir);
652 			dir = shmem_dir_map(topdir) +
653 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
654 			while (!*dir) {
655 				dir++;
656 				idx += ENTRIES_PER_PAGEPAGE;
657 				if (idx >= limit)
658 					goto done1;
659 			}
660 			stage = idx + ENTRIES_PER_PAGEPAGE;
661 			middir = *dir;
662 			if (punch_hole)
663 				needs_lock = &info->lock;
664 			if (upper_limit >= stage) {
665 				if (needs_lock) {
666 					spin_lock(needs_lock);
667 					*dir = NULL;
668 					spin_unlock(needs_lock);
669 					needs_lock = NULL;
670 				} else
671 					*dir = NULL;
672 				nr_pages_to_free++;
673 				list_add(&middir->lru, &pages_to_free);
674 			}
675 			shmem_dir_unmap(dir);
676 			cond_resched();
677 			dir = shmem_dir_map(middir);
678 			diroff = 0;
679 		}
680 		punch_lock = needs_lock;
681 		subdir = dir[diroff];
682 		if (subdir && !offset && upper_limit-idx >= ENTRIES_PER_PAGE) {
683 			if (needs_lock) {
684 				spin_lock(needs_lock);
685 				dir[diroff] = NULL;
686 				spin_unlock(needs_lock);
687 				punch_lock = NULL;
688 			} else
689 				dir[diroff] = NULL;
690 			nr_pages_to_free++;
691 			list_add(&subdir->lru, &pages_to_free);
692 		}
693 		if (subdir && page_private(subdir) /* has swap entries */) {
694 			size = limit - idx;
695 			if (size > ENTRIES_PER_PAGE)
696 				size = ENTRIES_PER_PAGE;
697 			freed = shmem_map_and_free_swp(subdir,
698 					offset, size, &dir, punch_lock);
699 			if (!dir)
700 				dir = shmem_dir_map(middir);
701 			nr_swaps_freed += freed;
702 			if (offset || punch_lock) {
703 				spin_lock(&info->lock);
704 				set_page_private(subdir,
705 					page_private(subdir) - freed);
706 				spin_unlock(&info->lock);
707 			} else
708 				BUG_ON(page_private(subdir) != freed);
709 		}
710 		offset = 0;
711 	}
712 done1:
713 	shmem_dir_unmap(dir);
714 done2:
715 	if (inode->i_mapping->nrpages && (info->flags & SHMEM_PAGEIN)) {
716 		/*
717 		 * Call truncate_inode_pages again: racing shmem_unuse_inode
718 		 * may have swizzled a page in from swap since vmtruncate or
719 		 * generic_delete_inode did it, before we lowered next_index.
720 		 * Also, though shmem_getpage checks i_size before adding to
721 		 * cache, no recheck after: so fix the narrow window there too.
722 		 *
723 		 * Recalling truncate_inode_pages_range and unmap_mapping_range
724 		 * every time for punch_hole (which never got a chance to clear
725 		 * SHMEM_PAGEIN at the start of vmtruncate_range) is expensive,
726 		 * yet hardly ever necessary: try to optimize them out later.
727 		 */
728 		truncate_inode_pages_range(inode->i_mapping, start, end);
729 		if (punch_hole)
730 			unmap_mapping_range(inode->i_mapping, start,
731 							end - start, 1);
732 	}
733 
734 	spin_lock(&info->lock);
735 	info->flags &= ~SHMEM_TRUNCATE;
736 	info->swapped -= nr_swaps_freed;
737 	if (nr_pages_to_free)
738 		shmem_free_blocks(inode, nr_pages_to_free);
739 	shmem_recalc_inode(inode);
740 	spin_unlock(&info->lock);
741 
742 	/*
743 	 * Empty swap vector directory pages to be freed?
744 	 */
745 	if (!list_empty(&pages_to_free)) {
746 		pages_to_free.prev->next = NULL;
747 		shmem_free_pages(pages_to_free.next);
748 	}
749 }
750 
751 static void shmem_truncate(struct inode *inode)
752 {
753 	shmem_truncate_range(inode, inode->i_size, (loff_t)-1);
754 }
755 
756 static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
757 {
758 	struct inode *inode = dentry->d_inode;
759 	struct page *page = NULL;
760 	int error;
761 
762 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
763 		if (attr->ia_size < inode->i_size) {
764 			/*
765 			 * If truncating down to a partial page, then
766 			 * if that page is already allocated, hold it
767 			 * in memory until the truncation is over, so
768 			 * truncate_partial_page cannnot miss it were
769 			 * it assigned to swap.
770 			 */
771 			if (attr->ia_size & (PAGE_CACHE_SIZE-1)) {
772 				(void) shmem_getpage(inode,
773 					attr->ia_size>>PAGE_CACHE_SHIFT,
774 						&page, SGP_READ, NULL);
775 				if (page)
776 					unlock_page(page);
777 			}
778 			/*
779 			 * Reset SHMEM_PAGEIN flag so that shmem_truncate can
780 			 * detect if any pages might have been added to cache
781 			 * after truncate_inode_pages.  But we needn't bother
782 			 * if it's being fully truncated to zero-length: the
783 			 * nrpages check is efficient enough in that case.
784 			 */
785 			if (attr->ia_size) {
786 				struct shmem_inode_info *info = SHMEM_I(inode);
787 				spin_lock(&info->lock);
788 				info->flags &= ~SHMEM_PAGEIN;
789 				spin_unlock(&info->lock);
790 			}
791 		}
792 	}
793 
794 	error = inode_change_ok(inode, attr);
795 	if (!error)
796 		error = inode_setattr(inode, attr);
797 #ifdef CONFIG_TMPFS_POSIX_ACL
798 	if (!error && (attr->ia_valid & ATTR_MODE))
799 		error = generic_acl_chmod(inode, &shmem_acl_ops);
800 #endif
801 	if (page)
802 		page_cache_release(page);
803 	return error;
804 }
805 
806 static void shmem_delete_inode(struct inode *inode)
807 {
808 	struct shmem_inode_info *info = SHMEM_I(inode);
809 
810 	if (inode->i_op->truncate == shmem_truncate) {
811 		truncate_inode_pages(inode->i_mapping, 0);
812 		shmem_unacct_size(info->flags, inode->i_size);
813 		inode->i_size = 0;
814 		shmem_truncate(inode);
815 		if (!list_empty(&info->swaplist)) {
816 			mutex_lock(&shmem_swaplist_mutex);
817 			list_del_init(&info->swaplist);
818 			mutex_unlock(&shmem_swaplist_mutex);
819 		}
820 	}
821 	BUG_ON(inode->i_blocks);
822 	shmem_free_inode(inode->i_sb);
823 	clear_inode(inode);
824 }
825 
826 static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
827 {
828 	swp_entry_t *ptr;
829 
830 	for (ptr = dir; ptr < edir; ptr++) {
831 		if (ptr->val == entry.val)
832 			return ptr - dir;
833 	}
834 	return -1;
835 }
836 
837 static int shmem_unuse_inode(struct shmem_inode_info *info, swp_entry_t entry, struct page *page)
838 {
839 	struct inode *inode;
840 	unsigned long idx;
841 	unsigned long size;
842 	unsigned long limit;
843 	unsigned long stage;
844 	struct page **dir;
845 	struct page *subdir;
846 	swp_entry_t *ptr;
847 	int offset;
848 	int error;
849 
850 	idx = 0;
851 	ptr = info->i_direct;
852 	spin_lock(&info->lock);
853 	if (!info->swapped) {
854 		list_del_init(&info->swaplist);
855 		goto lost2;
856 	}
857 	limit = info->next_index;
858 	size = limit;
859 	if (size > SHMEM_NR_DIRECT)
860 		size = SHMEM_NR_DIRECT;
861 	offset = shmem_find_swp(entry, ptr, ptr+size);
862 	if (offset >= 0)
863 		goto found;
864 	if (!info->i_indirect)
865 		goto lost2;
866 
867 	dir = shmem_dir_map(info->i_indirect);
868 	stage = SHMEM_NR_DIRECT + ENTRIES_PER_PAGEPAGE/2;
869 
870 	for (idx = SHMEM_NR_DIRECT; idx < limit; idx += ENTRIES_PER_PAGE, dir++) {
871 		if (unlikely(idx == stage)) {
872 			shmem_dir_unmap(dir-1);
873 			if (cond_resched_lock(&info->lock)) {
874 				/* check it has not been truncated */
875 				if (limit > info->next_index) {
876 					limit = info->next_index;
877 					if (idx >= limit)
878 						goto lost2;
879 				}
880 			}
881 			dir = shmem_dir_map(info->i_indirect) +
882 			    ENTRIES_PER_PAGE/2 + idx/ENTRIES_PER_PAGEPAGE;
883 			while (!*dir) {
884 				dir++;
885 				idx += ENTRIES_PER_PAGEPAGE;
886 				if (idx >= limit)
887 					goto lost1;
888 			}
889 			stage = idx + ENTRIES_PER_PAGEPAGE;
890 			subdir = *dir;
891 			shmem_dir_unmap(dir);
892 			dir = shmem_dir_map(subdir);
893 		}
894 		subdir = *dir;
895 		if (subdir && page_private(subdir)) {
896 			ptr = shmem_swp_map(subdir);
897 			size = limit - idx;
898 			if (size > ENTRIES_PER_PAGE)
899 				size = ENTRIES_PER_PAGE;
900 			offset = shmem_find_swp(entry, ptr, ptr+size);
901 			shmem_swp_unmap(ptr);
902 			if (offset >= 0) {
903 				shmem_dir_unmap(dir);
904 				goto found;
905 			}
906 		}
907 	}
908 lost1:
909 	shmem_dir_unmap(dir-1);
910 lost2:
911 	spin_unlock(&info->lock);
912 	return 0;
913 found:
914 	idx += offset;
915 	inode = igrab(&info->vfs_inode);
916 	spin_unlock(&info->lock);
917 
918 	/*
919 	 * Move _head_ to start search for next from here.
920 	 * But be careful: shmem_delete_inode checks list_empty without taking
921 	 * mutex, and there's an instant in list_move_tail when info->swaplist
922 	 * would appear empty, if it were the only one on shmem_swaplist.  We
923 	 * could avoid doing it if inode NULL; or use this minor optimization.
924 	 */
925 	if (shmem_swaplist.next != &info->swaplist)
926 		list_move_tail(&shmem_swaplist, &info->swaplist);
927 	mutex_unlock(&shmem_swaplist_mutex);
928 
929 	error = 1;
930 	if (!inode)
931 		goto out;
932 	/*
933 	 * Charge page using GFP_KERNEL while we can wait.
934 	 * Charged back to the user(not to caller) when swap account is used.
935 	 * add_to_page_cache() will be called with GFP_NOWAIT.
936 	 */
937 	error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
938 	if (error)
939 		goto out;
940 	error = radix_tree_preload(GFP_KERNEL);
941 	if (error) {
942 		mem_cgroup_uncharge_cache_page(page);
943 		goto out;
944 	}
945 	error = 1;
946 
947 	spin_lock(&info->lock);
948 	ptr = shmem_swp_entry(info, idx, NULL);
949 	if (ptr && ptr->val == entry.val) {
950 		error = add_to_page_cache_locked(page, inode->i_mapping,
951 						idx, GFP_NOWAIT);
952 		/* does mem_cgroup_uncharge_cache_page on error */
953 	} else	/* we must compensate for our precharge above */
954 		mem_cgroup_uncharge_cache_page(page);
955 
956 	if (error == -EEXIST) {
957 		struct page *filepage = find_get_page(inode->i_mapping, idx);
958 		error = 1;
959 		if (filepage) {
960 			/*
961 			 * There might be a more uptodate page coming down
962 			 * from a stacked writepage: forget our swappage if so.
963 			 */
964 			if (PageUptodate(filepage))
965 				error = 0;
966 			page_cache_release(filepage);
967 		}
968 	}
969 	if (!error) {
970 		delete_from_swap_cache(page);
971 		set_page_dirty(page);
972 		info->flags |= SHMEM_PAGEIN;
973 		shmem_swp_set(info, ptr, 0);
974 		swap_free(entry);
975 		error = 1;	/* not an error, but entry was found */
976 	}
977 	if (ptr)
978 		shmem_swp_unmap(ptr);
979 	spin_unlock(&info->lock);
980 	radix_tree_preload_end();
981 out:
982 	unlock_page(page);
983 	page_cache_release(page);
984 	iput(inode);		/* allows for NULL */
985 	return error;
986 }
987 
988 /*
989  * shmem_unuse() search for an eventually swapped out shmem page.
990  */
991 int shmem_unuse(swp_entry_t entry, struct page *page)
992 {
993 	struct list_head *p, *next;
994 	struct shmem_inode_info *info;
995 	int found = 0;
996 
997 	mutex_lock(&shmem_swaplist_mutex);
998 	list_for_each_safe(p, next, &shmem_swaplist) {
999 		info = list_entry(p, struct shmem_inode_info, swaplist);
1000 		found = shmem_unuse_inode(info, entry, page);
1001 		cond_resched();
1002 		if (found)
1003 			goto out;
1004 	}
1005 	mutex_unlock(&shmem_swaplist_mutex);
1006 out:	return found;	/* 0 or 1 or -ENOMEM */
1007 }
1008 
1009 /*
1010  * Move the page from the page cache to the swap cache.
1011  */
1012 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1013 {
1014 	struct shmem_inode_info *info;
1015 	swp_entry_t *entry, swap;
1016 	struct address_space *mapping;
1017 	unsigned long index;
1018 	struct inode *inode;
1019 
1020 	BUG_ON(!PageLocked(page));
1021 	mapping = page->mapping;
1022 	index = page->index;
1023 	inode = mapping->host;
1024 	info = SHMEM_I(inode);
1025 	if (info->flags & VM_LOCKED)
1026 		goto redirty;
1027 	if (!total_swap_pages)
1028 		goto redirty;
1029 
1030 	/*
1031 	 * shmem_backing_dev_info's capabilities prevent regular writeback or
1032 	 * sync from ever calling shmem_writepage; but a stacking filesystem
1033 	 * may use the ->writepage of its underlying filesystem, in which case
1034 	 * tmpfs should write out to swap only in response to memory pressure,
1035 	 * and not for pdflush or sync.  However, in those cases, we do still
1036 	 * want to check if there's a redundant swappage to be discarded.
1037 	 */
1038 	if (wbc->for_reclaim)
1039 		swap = get_swap_page();
1040 	else
1041 		swap.val = 0;
1042 
1043 	spin_lock(&info->lock);
1044 	if (index >= info->next_index) {
1045 		BUG_ON(!(info->flags & SHMEM_TRUNCATE));
1046 		goto unlock;
1047 	}
1048 	entry = shmem_swp_entry(info, index, NULL);
1049 	if (entry->val) {
1050 		/*
1051 		 * The more uptodate page coming down from a stacked
1052 		 * writepage should replace our old swappage.
1053 		 */
1054 		free_swap_and_cache(*entry);
1055 		shmem_swp_set(info, entry, 0);
1056 	}
1057 	shmem_recalc_inode(inode);
1058 
1059 	if (swap.val && add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1060 		remove_from_page_cache(page);
1061 		shmem_swp_set(info, entry, swap.val);
1062 		shmem_swp_unmap(entry);
1063 		if (list_empty(&info->swaplist))
1064 			inode = igrab(inode);
1065 		else
1066 			inode = NULL;
1067 		spin_unlock(&info->lock);
1068 		swap_duplicate(swap);
1069 		BUG_ON(page_mapped(page));
1070 		page_cache_release(page);	/* pagecache ref */
1071 		set_page_dirty(page);
1072 		unlock_page(page);
1073 		if (inode) {
1074 			mutex_lock(&shmem_swaplist_mutex);
1075 			/* move instead of add in case we're racing */
1076 			list_move_tail(&info->swaplist, &shmem_swaplist);
1077 			mutex_unlock(&shmem_swaplist_mutex);
1078 			iput(inode);
1079 		}
1080 		return 0;
1081 	}
1082 
1083 	shmem_swp_unmap(entry);
1084 unlock:
1085 	spin_unlock(&info->lock);
1086 	swap_free(swap);
1087 redirty:
1088 	set_page_dirty(page);
1089 	if (wbc->for_reclaim)
1090 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1091 	unlock_page(page);
1092 	return 0;
1093 }
1094 
1095 #ifdef CONFIG_NUMA
1096 #ifdef CONFIG_TMPFS
1097 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1098 {
1099 	char buffer[64];
1100 
1101 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1102 		return;		/* show nothing */
1103 
1104 	mpol_to_str(buffer, sizeof(buffer), mpol, 1);
1105 
1106 	seq_printf(seq, ",mpol=%s", buffer);
1107 }
1108 
1109 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1110 {
1111 	struct mempolicy *mpol = NULL;
1112 	if (sbinfo->mpol) {
1113 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1114 		mpol = sbinfo->mpol;
1115 		mpol_get(mpol);
1116 		spin_unlock(&sbinfo->stat_lock);
1117 	}
1118 	return mpol;
1119 }
1120 #endif /* CONFIG_TMPFS */
1121 
1122 static struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1123 			struct shmem_inode_info *info, unsigned long idx)
1124 {
1125 	struct mempolicy mpol, *spol;
1126 	struct vm_area_struct pvma;
1127 	struct page *page;
1128 
1129 	spol = mpol_cond_copy(&mpol,
1130 				mpol_shared_policy_lookup(&info->policy, idx));
1131 
1132 	/* Create a pseudo vma that just contains the policy */
1133 	pvma.vm_start = 0;
1134 	pvma.vm_pgoff = idx;
1135 	pvma.vm_ops = NULL;
1136 	pvma.vm_policy = spol;
1137 	page = swapin_readahead(entry, gfp, &pvma, 0);
1138 	return page;
1139 }
1140 
1141 static struct page *shmem_alloc_page(gfp_t gfp,
1142 			struct shmem_inode_info *info, unsigned long idx)
1143 {
1144 	struct vm_area_struct pvma;
1145 
1146 	/* Create a pseudo vma that just contains the policy */
1147 	pvma.vm_start = 0;
1148 	pvma.vm_pgoff = idx;
1149 	pvma.vm_ops = NULL;
1150 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, idx);
1151 
1152 	/*
1153 	 * alloc_page_vma() will drop the shared policy reference
1154 	 */
1155 	return alloc_page_vma(gfp, &pvma, 0);
1156 }
1157 #else /* !CONFIG_NUMA */
1158 #ifdef CONFIG_TMPFS
1159 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *p)
1160 {
1161 }
1162 #endif /* CONFIG_TMPFS */
1163 
1164 static inline struct page *shmem_swapin(swp_entry_t entry, gfp_t gfp,
1165 			struct shmem_inode_info *info, unsigned long idx)
1166 {
1167 	return swapin_readahead(entry, gfp, NULL, 0);
1168 }
1169 
1170 static inline struct page *shmem_alloc_page(gfp_t gfp,
1171 			struct shmem_inode_info *info, unsigned long idx)
1172 {
1173 	return alloc_page(gfp);
1174 }
1175 #endif /* CONFIG_NUMA */
1176 
1177 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1178 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1179 {
1180 	return NULL;
1181 }
1182 #endif
1183 
1184 /*
1185  * shmem_getpage - either get the page from swap or allocate a new one
1186  *
1187  * If we allocate a new one we do not mark it dirty. That's up to the
1188  * vm. If we swap it in we mark it dirty since we also free the swap
1189  * entry since a page cannot live in both the swap and page cache
1190  */
1191 static int shmem_getpage(struct inode *inode, unsigned long idx,
1192 			struct page **pagep, enum sgp_type sgp, int *type)
1193 {
1194 	struct address_space *mapping = inode->i_mapping;
1195 	struct shmem_inode_info *info = SHMEM_I(inode);
1196 	struct shmem_sb_info *sbinfo;
1197 	struct page *filepage = *pagep;
1198 	struct page *swappage;
1199 	swp_entry_t *entry;
1200 	swp_entry_t swap;
1201 	gfp_t gfp;
1202 	int error;
1203 
1204 	if (idx >= SHMEM_MAX_INDEX)
1205 		return -EFBIG;
1206 
1207 	if (type)
1208 		*type = 0;
1209 
1210 	/*
1211 	 * Normally, filepage is NULL on entry, and either found
1212 	 * uptodate immediately, or allocated and zeroed, or read
1213 	 * in under swappage, which is then assigned to filepage.
1214 	 * But shmem_readpage (required for splice) passes in a locked
1215 	 * filepage, which may be found not uptodate by other callers
1216 	 * too, and may need to be copied from the swappage read in.
1217 	 */
1218 repeat:
1219 	if (!filepage)
1220 		filepage = find_lock_page(mapping, idx);
1221 	if (filepage && PageUptodate(filepage))
1222 		goto done;
1223 	error = 0;
1224 	gfp = mapping_gfp_mask(mapping);
1225 	if (!filepage) {
1226 		/*
1227 		 * Try to preload while we can wait, to not make a habit of
1228 		 * draining atomic reserves; but don't latch on to this cpu.
1229 		 */
1230 		error = radix_tree_preload(gfp & ~__GFP_HIGHMEM);
1231 		if (error)
1232 			goto failed;
1233 		radix_tree_preload_end();
1234 	}
1235 
1236 	spin_lock(&info->lock);
1237 	shmem_recalc_inode(inode);
1238 	entry = shmem_swp_alloc(info, idx, sgp);
1239 	if (IS_ERR(entry)) {
1240 		spin_unlock(&info->lock);
1241 		error = PTR_ERR(entry);
1242 		goto failed;
1243 	}
1244 	swap = *entry;
1245 
1246 	if (swap.val) {
1247 		/* Look it up and read it in.. */
1248 		swappage = lookup_swap_cache(swap);
1249 		if (!swappage) {
1250 			shmem_swp_unmap(entry);
1251 			/* here we actually do the io */
1252 			if (type && !(*type & VM_FAULT_MAJOR)) {
1253 				__count_vm_event(PGMAJFAULT);
1254 				*type |= VM_FAULT_MAJOR;
1255 			}
1256 			spin_unlock(&info->lock);
1257 			swappage = shmem_swapin(swap, gfp, info, idx);
1258 			if (!swappage) {
1259 				spin_lock(&info->lock);
1260 				entry = shmem_swp_alloc(info, idx, sgp);
1261 				if (IS_ERR(entry))
1262 					error = PTR_ERR(entry);
1263 				else {
1264 					if (entry->val == swap.val)
1265 						error = -ENOMEM;
1266 					shmem_swp_unmap(entry);
1267 				}
1268 				spin_unlock(&info->lock);
1269 				if (error)
1270 					goto failed;
1271 				goto repeat;
1272 			}
1273 			wait_on_page_locked(swappage);
1274 			page_cache_release(swappage);
1275 			goto repeat;
1276 		}
1277 
1278 		/* We have to do this with page locked to prevent races */
1279 		if (!trylock_page(swappage)) {
1280 			shmem_swp_unmap(entry);
1281 			spin_unlock(&info->lock);
1282 			wait_on_page_locked(swappage);
1283 			page_cache_release(swappage);
1284 			goto repeat;
1285 		}
1286 		if (PageWriteback(swappage)) {
1287 			shmem_swp_unmap(entry);
1288 			spin_unlock(&info->lock);
1289 			wait_on_page_writeback(swappage);
1290 			unlock_page(swappage);
1291 			page_cache_release(swappage);
1292 			goto repeat;
1293 		}
1294 		if (!PageUptodate(swappage)) {
1295 			shmem_swp_unmap(entry);
1296 			spin_unlock(&info->lock);
1297 			unlock_page(swappage);
1298 			page_cache_release(swappage);
1299 			error = -EIO;
1300 			goto failed;
1301 		}
1302 
1303 		if (filepage) {
1304 			shmem_swp_set(info, entry, 0);
1305 			shmem_swp_unmap(entry);
1306 			delete_from_swap_cache(swappage);
1307 			spin_unlock(&info->lock);
1308 			copy_highpage(filepage, swappage);
1309 			unlock_page(swappage);
1310 			page_cache_release(swappage);
1311 			flush_dcache_page(filepage);
1312 			SetPageUptodate(filepage);
1313 			set_page_dirty(filepage);
1314 			swap_free(swap);
1315 		} else if (!(error = add_to_page_cache_locked(swappage, mapping,
1316 					idx, GFP_NOWAIT))) {
1317 			info->flags |= SHMEM_PAGEIN;
1318 			shmem_swp_set(info, entry, 0);
1319 			shmem_swp_unmap(entry);
1320 			delete_from_swap_cache(swappage);
1321 			spin_unlock(&info->lock);
1322 			filepage = swappage;
1323 			set_page_dirty(filepage);
1324 			swap_free(swap);
1325 		} else {
1326 			shmem_swp_unmap(entry);
1327 			spin_unlock(&info->lock);
1328 			if (error == -ENOMEM) {
1329 				/* allow reclaim from this memory cgroup */
1330 				error = mem_cgroup_shrink_usage(swappage,
1331 								current->mm,
1332 								gfp);
1333 				if (error) {
1334 					unlock_page(swappage);
1335 					page_cache_release(swappage);
1336 					goto failed;
1337 				}
1338 			}
1339 			unlock_page(swappage);
1340 			page_cache_release(swappage);
1341 			goto repeat;
1342 		}
1343 	} else if (sgp == SGP_READ && !filepage) {
1344 		shmem_swp_unmap(entry);
1345 		filepage = find_get_page(mapping, idx);
1346 		if (filepage &&
1347 		    (!PageUptodate(filepage) || !trylock_page(filepage))) {
1348 			spin_unlock(&info->lock);
1349 			wait_on_page_locked(filepage);
1350 			page_cache_release(filepage);
1351 			filepage = NULL;
1352 			goto repeat;
1353 		}
1354 		spin_unlock(&info->lock);
1355 	} else {
1356 		shmem_swp_unmap(entry);
1357 		sbinfo = SHMEM_SB(inode->i_sb);
1358 		if (sbinfo->max_blocks) {
1359 			spin_lock(&sbinfo->stat_lock);
1360 			if (sbinfo->free_blocks == 0 ||
1361 			    shmem_acct_block(info->flags)) {
1362 				spin_unlock(&sbinfo->stat_lock);
1363 				spin_unlock(&info->lock);
1364 				error = -ENOSPC;
1365 				goto failed;
1366 			}
1367 			sbinfo->free_blocks--;
1368 			inode->i_blocks += BLOCKS_PER_PAGE;
1369 			spin_unlock(&sbinfo->stat_lock);
1370 		} else if (shmem_acct_block(info->flags)) {
1371 			spin_unlock(&info->lock);
1372 			error = -ENOSPC;
1373 			goto failed;
1374 		}
1375 
1376 		if (!filepage) {
1377 			int ret;
1378 
1379 			spin_unlock(&info->lock);
1380 			filepage = shmem_alloc_page(gfp, info, idx);
1381 			if (!filepage) {
1382 				shmem_unacct_blocks(info->flags, 1);
1383 				shmem_free_blocks(inode, 1);
1384 				error = -ENOMEM;
1385 				goto failed;
1386 			}
1387 			SetPageSwapBacked(filepage);
1388 
1389 			/* Precharge page while we can wait, compensate after */
1390 			error = mem_cgroup_cache_charge(filepage, current->mm,
1391 					GFP_KERNEL);
1392 			if (error) {
1393 				page_cache_release(filepage);
1394 				shmem_unacct_blocks(info->flags, 1);
1395 				shmem_free_blocks(inode, 1);
1396 				filepage = NULL;
1397 				goto failed;
1398 			}
1399 
1400 			spin_lock(&info->lock);
1401 			entry = shmem_swp_alloc(info, idx, sgp);
1402 			if (IS_ERR(entry))
1403 				error = PTR_ERR(entry);
1404 			else {
1405 				swap = *entry;
1406 				shmem_swp_unmap(entry);
1407 			}
1408 			ret = error || swap.val;
1409 			if (ret)
1410 				mem_cgroup_uncharge_cache_page(filepage);
1411 			else
1412 				ret = add_to_page_cache_lru(filepage, mapping,
1413 						idx, GFP_NOWAIT);
1414 			/*
1415 			 * At add_to_page_cache_lru() failure, uncharge will
1416 			 * be done automatically.
1417 			 */
1418 			if (ret) {
1419 				spin_unlock(&info->lock);
1420 				page_cache_release(filepage);
1421 				shmem_unacct_blocks(info->flags, 1);
1422 				shmem_free_blocks(inode, 1);
1423 				filepage = NULL;
1424 				if (error)
1425 					goto failed;
1426 				goto repeat;
1427 			}
1428 			info->flags |= SHMEM_PAGEIN;
1429 		}
1430 
1431 		info->alloced++;
1432 		spin_unlock(&info->lock);
1433 		clear_highpage(filepage);
1434 		flush_dcache_page(filepage);
1435 		SetPageUptodate(filepage);
1436 		if (sgp == SGP_DIRTY)
1437 			set_page_dirty(filepage);
1438 	}
1439 done:
1440 	*pagep = filepage;
1441 	return 0;
1442 
1443 failed:
1444 	if (*pagep != filepage) {
1445 		unlock_page(filepage);
1446 		page_cache_release(filepage);
1447 	}
1448 	return error;
1449 }
1450 
1451 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1452 {
1453 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1454 	int error;
1455 	int ret;
1456 
1457 	if (((loff_t)vmf->pgoff << PAGE_CACHE_SHIFT) >= i_size_read(inode))
1458 		return VM_FAULT_SIGBUS;
1459 
1460 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1461 	if (error)
1462 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1463 
1464 	return ret | VM_FAULT_LOCKED;
1465 }
1466 
1467 #ifdef CONFIG_NUMA
1468 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new)
1469 {
1470 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1471 	return mpol_set_shared_policy(&SHMEM_I(i)->policy, vma, new);
1472 }
1473 
1474 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1475 					  unsigned long addr)
1476 {
1477 	struct inode *i = vma->vm_file->f_path.dentry->d_inode;
1478 	unsigned long idx;
1479 
1480 	idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1481 	return mpol_shared_policy_lookup(&SHMEM_I(i)->policy, idx);
1482 }
1483 #endif
1484 
1485 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1486 {
1487 	struct inode *inode = file->f_path.dentry->d_inode;
1488 	struct shmem_inode_info *info = SHMEM_I(inode);
1489 	int retval = -ENOMEM;
1490 
1491 	spin_lock(&info->lock);
1492 	if (lock && !(info->flags & VM_LOCKED)) {
1493 		if (!user_shm_lock(inode->i_size, user))
1494 			goto out_nomem;
1495 		info->flags |= VM_LOCKED;
1496 		mapping_set_unevictable(file->f_mapping);
1497 	}
1498 	if (!lock && (info->flags & VM_LOCKED) && user) {
1499 		user_shm_unlock(inode->i_size, user);
1500 		info->flags &= ~VM_LOCKED;
1501 		mapping_clear_unevictable(file->f_mapping);
1502 		scan_mapping_unevictable_pages(file->f_mapping);
1503 	}
1504 	retval = 0;
1505 
1506 out_nomem:
1507 	spin_unlock(&info->lock);
1508 	return retval;
1509 }
1510 
1511 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1512 {
1513 	file_accessed(file);
1514 	vma->vm_ops = &shmem_vm_ops;
1515 	vma->vm_flags |= VM_CAN_NONLINEAR;
1516 	return 0;
1517 }
1518 
1519 static struct inode *shmem_get_inode(struct super_block *sb, int mode,
1520 					dev_t dev, unsigned long flags)
1521 {
1522 	struct inode *inode;
1523 	struct shmem_inode_info *info;
1524 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1525 
1526 	if (shmem_reserve_inode(sb))
1527 		return NULL;
1528 
1529 	inode = new_inode(sb);
1530 	if (inode) {
1531 		inode->i_mode = mode;
1532 		inode->i_uid = current_fsuid();
1533 		inode->i_gid = current_fsgid();
1534 		inode->i_blocks = 0;
1535 		inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1536 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1537 		inode->i_generation = get_seconds();
1538 		info = SHMEM_I(inode);
1539 		memset(info, 0, (char *)inode - (char *)info);
1540 		spin_lock_init(&info->lock);
1541 		info->flags = flags & VM_NORESERVE;
1542 		INIT_LIST_HEAD(&info->swaplist);
1543 
1544 		switch (mode & S_IFMT) {
1545 		default:
1546 			inode->i_op = &shmem_special_inode_operations;
1547 			init_special_inode(inode, mode, dev);
1548 			break;
1549 		case S_IFREG:
1550 			inode->i_mapping->a_ops = &shmem_aops;
1551 			inode->i_op = &shmem_inode_operations;
1552 			inode->i_fop = &shmem_file_operations;
1553 			mpol_shared_policy_init(&info->policy,
1554 						 shmem_get_sbmpol(sbinfo));
1555 			break;
1556 		case S_IFDIR:
1557 			inc_nlink(inode);
1558 			/* Some things misbehave if size == 0 on a directory */
1559 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1560 			inode->i_op = &shmem_dir_inode_operations;
1561 			inode->i_fop = &simple_dir_operations;
1562 			break;
1563 		case S_IFLNK:
1564 			/*
1565 			 * Must not load anything in the rbtree,
1566 			 * mpol_free_shared_policy will not be called.
1567 			 */
1568 			mpol_shared_policy_init(&info->policy, NULL);
1569 			break;
1570 		}
1571 	} else
1572 		shmem_free_inode(sb);
1573 	return inode;
1574 }
1575 
1576 #ifdef CONFIG_TMPFS
1577 static const struct inode_operations shmem_symlink_inode_operations;
1578 static const struct inode_operations shmem_symlink_inline_operations;
1579 
1580 /*
1581  * Normally tmpfs avoids the use of shmem_readpage and shmem_write_begin;
1582  * but providing them allows a tmpfs file to be used for splice, sendfile, and
1583  * below the loop driver, in the generic fashion that many filesystems support.
1584  */
1585 static int shmem_readpage(struct file *file, struct page *page)
1586 {
1587 	struct inode *inode = page->mapping->host;
1588 	int error = shmem_getpage(inode, page->index, &page, SGP_CACHE, NULL);
1589 	unlock_page(page);
1590 	return error;
1591 }
1592 
1593 static int
1594 shmem_write_begin(struct file *file, struct address_space *mapping,
1595 			loff_t pos, unsigned len, unsigned flags,
1596 			struct page **pagep, void **fsdata)
1597 {
1598 	struct inode *inode = mapping->host;
1599 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1600 	*pagep = NULL;
1601 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1602 }
1603 
1604 static int
1605 shmem_write_end(struct file *file, struct address_space *mapping,
1606 			loff_t pos, unsigned len, unsigned copied,
1607 			struct page *page, void *fsdata)
1608 {
1609 	struct inode *inode = mapping->host;
1610 
1611 	if (pos + copied > inode->i_size)
1612 		i_size_write(inode, pos + copied);
1613 
1614 	unlock_page(page);
1615 	set_page_dirty(page);
1616 	page_cache_release(page);
1617 
1618 	return copied;
1619 }
1620 
1621 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1622 {
1623 	struct inode *inode = filp->f_path.dentry->d_inode;
1624 	struct address_space *mapping = inode->i_mapping;
1625 	unsigned long index, offset;
1626 	enum sgp_type sgp = SGP_READ;
1627 
1628 	/*
1629 	 * Might this read be for a stacking filesystem?  Then when reading
1630 	 * holes of a sparse file, we actually need to allocate those pages,
1631 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1632 	 */
1633 	if (segment_eq(get_fs(), KERNEL_DS))
1634 		sgp = SGP_DIRTY;
1635 
1636 	index = *ppos >> PAGE_CACHE_SHIFT;
1637 	offset = *ppos & ~PAGE_CACHE_MASK;
1638 
1639 	for (;;) {
1640 		struct page *page = NULL;
1641 		unsigned long end_index, nr, ret;
1642 		loff_t i_size = i_size_read(inode);
1643 
1644 		end_index = i_size >> PAGE_CACHE_SHIFT;
1645 		if (index > end_index)
1646 			break;
1647 		if (index == end_index) {
1648 			nr = i_size & ~PAGE_CACHE_MASK;
1649 			if (nr <= offset)
1650 				break;
1651 		}
1652 
1653 		desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1654 		if (desc->error) {
1655 			if (desc->error == -EINVAL)
1656 				desc->error = 0;
1657 			break;
1658 		}
1659 		if (page)
1660 			unlock_page(page);
1661 
1662 		/*
1663 		 * We must evaluate after, since reads (unlike writes)
1664 		 * are called without i_mutex protection against truncate
1665 		 */
1666 		nr = PAGE_CACHE_SIZE;
1667 		i_size = i_size_read(inode);
1668 		end_index = i_size >> PAGE_CACHE_SHIFT;
1669 		if (index == end_index) {
1670 			nr = i_size & ~PAGE_CACHE_MASK;
1671 			if (nr <= offset) {
1672 				if (page)
1673 					page_cache_release(page);
1674 				break;
1675 			}
1676 		}
1677 		nr -= offset;
1678 
1679 		if (page) {
1680 			/*
1681 			 * If users can be writing to this page using arbitrary
1682 			 * virtual addresses, take care about potential aliasing
1683 			 * before reading the page on the kernel side.
1684 			 */
1685 			if (mapping_writably_mapped(mapping))
1686 				flush_dcache_page(page);
1687 			/*
1688 			 * Mark the page accessed if we read the beginning.
1689 			 */
1690 			if (!offset)
1691 				mark_page_accessed(page);
1692 		} else {
1693 			page = ZERO_PAGE(0);
1694 			page_cache_get(page);
1695 		}
1696 
1697 		/*
1698 		 * Ok, we have the page, and it's up-to-date, so
1699 		 * now we can copy it to user space...
1700 		 *
1701 		 * The actor routine returns how many bytes were actually used..
1702 		 * NOTE! This may not be the same as how much of a user buffer
1703 		 * we filled up (we may be padding etc), so we can only update
1704 		 * "pos" here (the actor routine has to update the user buffer
1705 		 * pointers and the remaining count).
1706 		 */
1707 		ret = actor(desc, page, offset, nr);
1708 		offset += ret;
1709 		index += offset >> PAGE_CACHE_SHIFT;
1710 		offset &= ~PAGE_CACHE_MASK;
1711 
1712 		page_cache_release(page);
1713 		if (ret != nr || !desc->count)
1714 			break;
1715 
1716 		cond_resched();
1717 	}
1718 
1719 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1720 	file_accessed(filp);
1721 }
1722 
1723 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1724 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1725 {
1726 	struct file *filp = iocb->ki_filp;
1727 	ssize_t retval;
1728 	unsigned long seg;
1729 	size_t count;
1730 	loff_t *ppos = &iocb->ki_pos;
1731 
1732 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1733 	if (retval)
1734 		return retval;
1735 
1736 	for (seg = 0; seg < nr_segs; seg++) {
1737 		read_descriptor_t desc;
1738 
1739 		desc.written = 0;
1740 		desc.arg.buf = iov[seg].iov_base;
1741 		desc.count = iov[seg].iov_len;
1742 		if (desc.count == 0)
1743 			continue;
1744 		desc.error = 0;
1745 		do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1746 		retval += desc.written;
1747 		if (desc.error) {
1748 			retval = retval ?: desc.error;
1749 			break;
1750 		}
1751 		if (desc.count > 0)
1752 			break;
1753 	}
1754 	return retval;
1755 }
1756 
1757 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1758 {
1759 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1760 
1761 	buf->f_type = TMPFS_MAGIC;
1762 	buf->f_bsize = PAGE_CACHE_SIZE;
1763 	buf->f_namelen = NAME_MAX;
1764 	spin_lock(&sbinfo->stat_lock);
1765 	if (sbinfo->max_blocks) {
1766 		buf->f_blocks = sbinfo->max_blocks;
1767 		buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
1768 	}
1769 	if (sbinfo->max_inodes) {
1770 		buf->f_files = sbinfo->max_inodes;
1771 		buf->f_ffree = sbinfo->free_inodes;
1772 	}
1773 	/* else leave those fields 0 like simple_statfs */
1774 	spin_unlock(&sbinfo->stat_lock);
1775 	return 0;
1776 }
1777 
1778 /*
1779  * File creation. Allocate an inode, and we're done..
1780  */
1781 static int
1782 shmem_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1783 {
1784 	struct inode *inode;
1785 	int error = -ENOSPC;
1786 
1787 	inode = shmem_get_inode(dir->i_sb, mode, dev, VM_NORESERVE);
1788 	if (inode) {
1789 		error = security_inode_init_security(inode, dir, NULL, NULL,
1790 						     NULL);
1791 		if (error) {
1792 			if (error != -EOPNOTSUPP) {
1793 				iput(inode);
1794 				return error;
1795 			}
1796 		}
1797 		error = shmem_acl_init(inode, dir);
1798 		if (error) {
1799 			iput(inode);
1800 			return error;
1801 		}
1802 		if (dir->i_mode & S_ISGID) {
1803 			inode->i_gid = dir->i_gid;
1804 			if (S_ISDIR(mode))
1805 				inode->i_mode |= S_ISGID;
1806 		}
1807 		dir->i_size += BOGO_DIRENT_SIZE;
1808 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1809 		d_instantiate(dentry, inode);
1810 		dget(dentry); /* Extra count - pin the dentry in core */
1811 	}
1812 	return error;
1813 }
1814 
1815 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1816 {
1817 	int error;
1818 
1819 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1820 		return error;
1821 	inc_nlink(dir);
1822 	return 0;
1823 }
1824 
1825 static int shmem_create(struct inode *dir, struct dentry *dentry, int mode,
1826 		struct nameidata *nd)
1827 {
1828 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1829 }
1830 
1831 /*
1832  * Link a file..
1833  */
1834 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1835 {
1836 	struct inode *inode = old_dentry->d_inode;
1837 	int ret;
1838 
1839 	/*
1840 	 * No ordinary (disk based) filesystem counts links as inodes;
1841 	 * but each new link needs a new dentry, pinning lowmem, and
1842 	 * tmpfs dentries cannot be pruned until they are unlinked.
1843 	 */
1844 	ret = shmem_reserve_inode(inode->i_sb);
1845 	if (ret)
1846 		goto out;
1847 
1848 	dir->i_size += BOGO_DIRENT_SIZE;
1849 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1850 	inc_nlink(inode);
1851 	atomic_inc(&inode->i_count);	/* New dentry reference */
1852 	dget(dentry);		/* Extra pinning count for the created dentry */
1853 	d_instantiate(dentry, inode);
1854 out:
1855 	return ret;
1856 }
1857 
1858 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1859 {
1860 	struct inode *inode = dentry->d_inode;
1861 
1862 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1863 		shmem_free_inode(inode->i_sb);
1864 
1865 	dir->i_size -= BOGO_DIRENT_SIZE;
1866 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1867 	drop_nlink(inode);
1868 	dput(dentry);	/* Undo the count from "create" - this does all the work */
1869 	return 0;
1870 }
1871 
1872 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1873 {
1874 	if (!simple_empty(dentry))
1875 		return -ENOTEMPTY;
1876 
1877 	drop_nlink(dentry->d_inode);
1878 	drop_nlink(dir);
1879 	return shmem_unlink(dir, dentry);
1880 }
1881 
1882 /*
1883  * The VFS layer already does all the dentry stuff for rename,
1884  * we just have to decrement the usage count for the target if
1885  * it exists so that the VFS layer correctly free's it when it
1886  * gets overwritten.
1887  */
1888 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1889 {
1890 	struct inode *inode = old_dentry->d_inode;
1891 	int they_are_dirs = S_ISDIR(inode->i_mode);
1892 
1893 	if (!simple_empty(new_dentry))
1894 		return -ENOTEMPTY;
1895 
1896 	if (new_dentry->d_inode) {
1897 		(void) shmem_unlink(new_dir, new_dentry);
1898 		if (they_are_dirs)
1899 			drop_nlink(old_dir);
1900 	} else if (they_are_dirs) {
1901 		drop_nlink(old_dir);
1902 		inc_nlink(new_dir);
1903 	}
1904 
1905 	old_dir->i_size -= BOGO_DIRENT_SIZE;
1906 	new_dir->i_size += BOGO_DIRENT_SIZE;
1907 	old_dir->i_ctime = old_dir->i_mtime =
1908 	new_dir->i_ctime = new_dir->i_mtime =
1909 	inode->i_ctime = CURRENT_TIME;
1910 	return 0;
1911 }
1912 
1913 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1914 {
1915 	int error;
1916 	int len;
1917 	struct inode *inode;
1918 	struct page *page = NULL;
1919 	char *kaddr;
1920 	struct shmem_inode_info *info;
1921 
1922 	len = strlen(symname) + 1;
1923 	if (len > PAGE_CACHE_SIZE)
1924 		return -ENAMETOOLONG;
1925 
1926 	inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1927 	if (!inode)
1928 		return -ENOSPC;
1929 
1930 	error = security_inode_init_security(inode, dir, NULL, NULL,
1931 					     NULL);
1932 	if (error) {
1933 		if (error != -EOPNOTSUPP) {
1934 			iput(inode);
1935 			return error;
1936 		}
1937 		error = 0;
1938 	}
1939 
1940 	info = SHMEM_I(inode);
1941 	inode->i_size = len-1;
1942 	if (len <= (char *)inode - (char *)info) {
1943 		/* do it inline */
1944 		memcpy(info, symname, len);
1945 		inode->i_op = &shmem_symlink_inline_operations;
1946 	} else {
1947 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1948 		if (error) {
1949 			iput(inode);
1950 			return error;
1951 		}
1952 		unlock_page(page);
1953 		inode->i_mapping->a_ops = &shmem_aops;
1954 		inode->i_op = &shmem_symlink_inode_operations;
1955 		kaddr = kmap_atomic(page, KM_USER0);
1956 		memcpy(kaddr, symname, len);
1957 		kunmap_atomic(kaddr, KM_USER0);
1958 		set_page_dirty(page);
1959 		page_cache_release(page);
1960 	}
1961 	if (dir->i_mode & S_ISGID)
1962 		inode->i_gid = dir->i_gid;
1963 	dir->i_size += BOGO_DIRENT_SIZE;
1964 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1965 	d_instantiate(dentry, inode);
1966 	dget(dentry);
1967 	return 0;
1968 }
1969 
1970 static void *shmem_follow_link_inline(struct dentry *dentry, struct nameidata *nd)
1971 {
1972 	nd_set_link(nd, (char *)SHMEM_I(dentry->d_inode));
1973 	return NULL;
1974 }
1975 
1976 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1977 {
1978 	struct page *page = NULL;
1979 	int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
1980 	nd_set_link(nd, res ? ERR_PTR(res) : kmap(page));
1981 	if (page)
1982 		unlock_page(page);
1983 	return page;
1984 }
1985 
1986 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1987 {
1988 	if (!IS_ERR(nd_get_link(nd))) {
1989 		struct page *page = cookie;
1990 		kunmap(page);
1991 		mark_page_accessed(page);
1992 		page_cache_release(page);
1993 	}
1994 }
1995 
1996 static const struct inode_operations shmem_symlink_inline_operations = {
1997 	.readlink	= generic_readlink,
1998 	.follow_link	= shmem_follow_link_inline,
1999 };
2000 
2001 static const struct inode_operations shmem_symlink_inode_operations = {
2002 	.truncate	= shmem_truncate,
2003 	.readlink	= generic_readlink,
2004 	.follow_link	= shmem_follow_link,
2005 	.put_link	= shmem_put_link,
2006 };
2007 
2008 #ifdef CONFIG_TMPFS_POSIX_ACL
2009 /*
2010  * Superblocks without xattr inode operations will get security.* xattr
2011  * support from the VFS "for free". As soon as we have any other xattrs
2012  * like ACLs, we also need to implement the security.* handlers at
2013  * filesystem level, though.
2014  */
2015 
2016 static size_t shmem_xattr_security_list(struct inode *inode, char *list,
2017 					size_t list_len, const char *name,
2018 					size_t name_len)
2019 {
2020 	return security_inode_listsecurity(inode, list, list_len);
2021 }
2022 
2023 static int shmem_xattr_security_get(struct inode *inode, const char *name,
2024 				    void *buffer, size_t size)
2025 {
2026 	if (strcmp(name, "") == 0)
2027 		return -EINVAL;
2028 	return xattr_getsecurity(inode, name, buffer, size);
2029 }
2030 
2031 static int shmem_xattr_security_set(struct inode *inode, const char *name,
2032 				    const void *value, size_t size, int flags)
2033 {
2034 	if (strcmp(name, "") == 0)
2035 		return -EINVAL;
2036 	return security_inode_setsecurity(inode, name, value, size, flags);
2037 }
2038 
2039 static struct xattr_handler shmem_xattr_security_handler = {
2040 	.prefix = XATTR_SECURITY_PREFIX,
2041 	.list   = shmem_xattr_security_list,
2042 	.get    = shmem_xattr_security_get,
2043 	.set    = shmem_xattr_security_set,
2044 };
2045 
2046 static struct xattr_handler *shmem_xattr_handlers[] = {
2047 	&shmem_xattr_acl_access_handler,
2048 	&shmem_xattr_acl_default_handler,
2049 	&shmem_xattr_security_handler,
2050 	NULL
2051 };
2052 #endif
2053 
2054 static struct dentry *shmem_get_parent(struct dentry *child)
2055 {
2056 	return ERR_PTR(-ESTALE);
2057 }
2058 
2059 static int shmem_match(struct inode *ino, void *vfh)
2060 {
2061 	__u32 *fh = vfh;
2062 	__u64 inum = fh[2];
2063 	inum = (inum << 32) | fh[1];
2064 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2065 }
2066 
2067 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2068 		struct fid *fid, int fh_len, int fh_type)
2069 {
2070 	struct inode *inode;
2071 	struct dentry *dentry = NULL;
2072 	u64 inum = fid->raw[2];
2073 	inum = (inum << 32) | fid->raw[1];
2074 
2075 	if (fh_len < 3)
2076 		return NULL;
2077 
2078 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2079 			shmem_match, fid->raw);
2080 	if (inode) {
2081 		dentry = d_find_alias(inode);
2082 		iput(inode);
2083 	}
2084 
2085 	return dentry;
2086 }
2087 
2088 static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len,
2089 				int connectable)
2090 {
2091 	struct inode *inode = dentry->d_inode;
2092 
2093 	if (*len < 3)
2094 		return 255;
2095 
2096 	if (hlist_unhashed(&inode->i_hash)) {
2097 		/* Unfortunately insert_inode_hash is not idempotent,
2098 		 * so as we hash inodes here rather than at creation
2099 		 * time, we need a lock to ensure we only try
2100 		 * to do it once
2101 		 */
2102 		static DEFINE_SPINLOCK(lock);
2103 		spin_lock(&lock);
2104 		if (hlist_unhashed(&inode->i_hash))
2105 			__insert_inode_hash(inode,
2106 					    inode->i_ino + inode->i_generation);
2107 		spin_unlock(&lock);
2108 	}
2109 
2110 	fh[0] = inode->i_generation;
2111 	fh[1] = inode->i_ino;
2112 	fh[2] = ((__u64)inode->i_ino) >> 32;
2113 
2114 	*len = 3;
2115 	return 1;
2116 }
2117 
2118 static const struct export_operations shmem_export_ops = {
2119 	.get_parent     = shmem_get_parent,
2120 	.encode_fh      = shmem_encode_fh,
2121 	.fh_to_dentry	= shmem_fh_to_dentry,
2122 };
2123 
2124 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2125 			       bool remount)
2126 {
2127 	char *this_char, *value, *rest;
2128 
2129 	while (options != NULL) {
2130 		this_char = options;
2131 		for (;;) {
2132 			/*
2133 			 * NUL-terminate this option: unfortunately,
2134 			 * mount options form a comma-separated list,
2135 			 * but mpol's nodelist may also contain commas.
2136 			 */
2137 			options = strchr(options, ',');
2138 			if (options == NULL)
2139 				break;
2140 			options++;
2141 			if (!isdigit(*options)) {
2142 				options[-1] = '\0';
2143 				break;
2144 			}
2145 		}
2146 		if (!*this_char)
2147 			continue;
2148 		if ((value = strchr(this_char,'=')) != NULL) {
2149 			*value++ = 0;
2150 		} else {
2151 			printk(KERN_ERR
2152 			    "tmpfs: No value for mount option '%s'\n",
2153 			    this_char);
2154 			return 1;
2155 		}
2156 
2157 		if (!strcmp(this_char,"size")) {
2158 			unsigned long long size;
2159 			size = memparse(value,&rest);
2160 			if (*rest == '%') {
2161 				size <<= PAGE_SHIFT;
2162 				size *= totalram_pages;
2163 				do_div(size, 100);
2164 				rest++;
2165 			}
2166 			if (*rest)
2167 				goto bad_val;
2168 			sbinfo->max_blocks =
2169 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2170 		} else if (!strcmp(this_char,"nr_blocks")) {
2171 			sbinfo->max_blocks = memparse(value, &rest);
2172 			if (*rest)
2173 				goto bad_val;
2174 		} else if (!strcmp(this_char,"nr_inodes")) {
2175 			sbinfo->max_inodes = memparse(value, &rest);
2176 			if (*rest)
2177 				goto bad_val;
2178 		} else if (!strcmp(this_char,"mode")) {
2179 			if (remount)
2180 				continue;
2181 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2182 			if (*rest)
2183 				goto bad_val;
2184 		} else if (!strcmp(this_char,"uid")) {
2185 			if (remount)
2186 				continue;
2187 			sbinfo->uid = simple_strtoul(value, &rest, 0);
2188 			if (*rest)
2189 				goto bad_val;
2190 		} else if (!strcmp(this_char,"gid")) {
2191 			if (remount)
2192 				continue;
2193 			sbinfo->gid = simple_strtoul(value, &rest, 0);
2194 			if (*rest)
2195 				goto bad_val;
2196 		} else if (!strcmp(this_char,"mpol")) {
2197 			if (mpol_parse_str(value, &sbinfo->mpol, 1))
2198 				goto bad_val;
2199 		} else {
2200 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2201 			       this_char);
2202 			return 1;
2203 		}
2204 	}
2205 	return 0;
2206 
2207 bad_val:
2208 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2209 	       value, this_char);
2210 	return 1;
2211 
2212 }
2213 
2214 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2215 {
2216 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2217 	struct shmem_sb_info config = *sbinfo;
2218 	unsigned long blocks;
2219 	unsigned long inodes;
2220 	int error = -EINVAL;
2221 
2222 	if (shmem_parse_options(data, &config, true))
2223 		return error;
2224 
2225 	spin_lock(&sbinfo->stat_lock);
2226 	blocks = sbinfo->max_blocks - sbinfo->free_blocks;
2227 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2228 	if (config.max_blocks < blocks)
2229 		goto out;
2230 	if (config.max_inodes < inodes)
2231 		goto out;
2232 	/*
2233 	 * Those tests also disallow limited->unlimited while any are in
2234 	 * use, so i_blocks will always be zero when max_blocks is zero;
2235 	 * but we must separately disallow unlimited->limited, because
2236 	 * in that case we have no record of how much is already in use.
2237 	 */
2238 	if (config.max_blocks && !sbinfo->max_blocks)
2239 		goto out;
2240 	if (config.max_inodes && !sbinfo->max_inodes)
2241 		goto out;
2242 
2243 	error = 0;
2244 	sbinfo->max_blocks  = config.max_blocks;
2245 	sbinfo->free_blocks = config.max_blocks - blocks;
2246 	sbinfo->max_inodes  = config.max_inodes;
2247 	sbinfo->free_inodes = config.max_inodes - inodes;
2248 
2249 	mpol_put(sbinfo->mpol);
2250 	sbinfo->mpol        = config.mpol;	/* transfers initial ref */
2251 out:
2252 	spin_unlock(&sbinfo->stat_lock);
2253 	return error;
2254 }
2255 
2256 static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs)
2257 {
2258 	struct shmem_sb_info *sbinfo = SHMEM_SB(vfs->mnt_sb);
2259 
2260 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2261 		seq_printf(seq, ",size=%luk",
2262 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2263 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2264 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2265 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2266 		seq_printf(seq, ",mode=%03o", sbinfo->mode);
2267 	if (sbinfo->uid != 0)
2268 		seq_printf(seq, ",uid=%u", sbinfo->uid);
2269 	if (sbinfo->gid != 0)
2270 		seq_printf(seq, ",gid=%u", sbinfo->gid);
2271 	shmem_show_mpol(seq, sbinfo->mpol);
2272 	return 0;
2273 }
2274 #endif /* CONFIG_TMPFS */
2275 
2276 static void shmem_put_super(struct super_block *sb)
2277 {
2278 	kfree(sb->s_fs_info);
2279 	sb->s_fs_info = NULL;
2280 }
2281 
2282 static int shmem_fill_super(struct super_block *sb,
2283 			    void *data, int silent)
2284 {
2285 	struct inode *inode;
2286 	struct dentry *root;
2287 	struct shmem_sb_info *sbinfo;
2288 	int err = -ENOMEM;
2289 
2290 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2291 	sbinfo = kmalloc(max((int)sizeof(struct shmem_sb_info),
2292 				L1_CACHE_BYTES), GFP_KERNEL);
2293 	if (!sbinfo)
2294 		return -ENOMEM;
2295 
2296 	sbinfo->max_blocks = 0;
2297 	sbinfo->max_inodes = 0;
2298 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2299 	sbinfo->uid = current_fsuid();
2300 	sbinfo->gid = current_fsgid();
2301 	sbinfo->mpol = NULL;
2302 	sb->s_fs_info = sbinfo;
2303 
2304 #ifdef CONFIG_TMPFS
2305 	/*
2306 	 * Per default we only allow half of the physical ram per
2307 	 * tmpfs instance, limiting inodes to one per page of lowmem;
2308 	 * but the internal instance is left unlimited.
2309 	 */
2310 	if (!(sb->s_flags & MS_NOUSER)) {
2311 		sbinfo->max_blocks = shmem_default_max_blocks();
2312 		sbinfo->max_inodes = shmem_default_max_inodes();
2313 		if (shmem_parse_options(data, sbinfo, false)) {
2314 			err = -EINVAL;
2315 			goto failed;
2316 		}
2317 	}
2318 	sb->s_export_op = &shmem_export_ops;
2319 #else
2320 	sb->s_flags |= MS_NOUSER;
2321 #endif
2322 
2323 	spin_lock_init(&sbinfo->stat_lock);
2324 	sbinfo->free_blocks = sbinfo->max_blocks;
2325 	sbinfo->free_inodes = sbinfo->max_inodes;
2326 
2327 	sb->s_maxbytes = SHMEM_MAX_BYTES;
2328 	sb->s_blocksize = PAGE_CACHE_SIZE;
2329 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2330 	sb->s_magic = TMPFS_MAGIC;
2331 	sb->s_op = &shmem_ops;
2332 	sb->s_time_gran = 1;
2333 #ifdef CONFIG_TMPFS_POSIX_ACL
2334 	sb->s_xattr = shmem_xattr_handlers;
2335 	sb->s_flags |= MS_POSIXACL;
2336 #endif
2337 
2338 	inode = shmem_get_inode(sb, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2339 	if (!inode)
2340 		goto failed;
2341 	inode->i_uid = sbinfo->uid;
2342 	inode->i_gid = sbinfo->gid;
2343 	root = d_alloc_root(inode);
2344 	if (!root)
2345 		goto failed_iput;
2346 	sb->s_root = root;
2347 	return 0;
2348 
2349 failed_iput:
2350 	iput(inode);
2351 failed:
2352 	shmem_put_super(sb);
2353 	return err;
2354 }
2355 
2356 static struct kmem_cache *shmem_inode_cachep;
2357 
2358 static struct inode *shmem_alloc_inode(struct super_block *sb)
2359 {
2360 	struct shmem_inode_info *p;
2361 	p = (struct shmem_inode_info *)kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2362 	if (!p)
2363 		return NULL;
2364 	return &p->vfs_inode;
2365 }
2366 
2367 static void shmem_destroy_inode(struct inode *inode)
2368 {
2369 	if ((inode->i_mode & S_IFMT) == S_IFREG) {
2370 		/* only struct inode is valid if it's an inline symlink */
2371 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2372 	}
2373 	shmem_acl_destroy_inode(inode);
2374 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2375 }
2376 
2377 static void init_once(void *foo)
2378 {
2379 	struct shmem_inode_info *p = (struct shmem_inode_info *) foo;
2380 
2381 	inode_init_once(&p->vfs_inode);
2382 #ifdef CONFIG_TMPFS_POSIX_ACL
2383 	p->i_acl = NULL;
2384 	p->i_default_acl = NULL;
2385 #endif
2386 }
2387 
2388 static int init_inodecache(void)
2389 {
2390 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2391 				sizeof(struct shmem_inode_info),
2392 				0, SLAB_PANIC, init_once);
2393 	return 0;
2394 }
2395 
2396 static void destroy_inodecache(void)
2397 {
2398 	kmem_cache_destroy(shmem_inode_cachep);
2399 }
2400 
2401 static const struct address_space_operations shmem_aops = {
2402 	.writepage	= shmem_writepage,
2403 	.set_page_dirty	= __set_page_dirty_no_writeback,
2404 #ifdef CONFIG_TMPFS
2405 	.readpage	= shmem_readpage,
2406 	.write_begin	= shmem_write_begin,
2407 	.write_end	= shmem_write_end,
2408 #endif
2409 	.migratepage	= migrate_page,
2410 };
2411 
2412 static const struct file_operations shmem_file_operations = {
2413 	.mmap		= shmem_mmap,
2414 #ifdef CONFIG_TMPFS
2415 	.llseek		= generic_file_llseek,
2416 	.read		= do_sync_read,
2417 	.write		= do_sync_write,
2418 	.aio_read	= shmem_file_aio_read,
2419 	.aio_write	= generic_file_aio_write,
2420 	.fsync		= simple_sync_file,
2421 	.splice_read	= generic_file_splice_read,
2422 	.splice_write	= generic_file_splice_write,
2423 #endif
2424 };
2425 
2426 static const struct inode_operations shmem_inode_operations = {
2427 	.truncate	= shmem_truncate,
2428 	.setattr	= shmem_notify_change,
2429 	.truncate_range	= shmem_truncate_range,
2430 #ifdef CONFIG_TMPFS_POSIX_ACL
2431 	.setxattr	= generic_setxattr,
2432 	.getxattr	= generic_getxattr,
2433 	.listxattr	= generic_listxattr,
2434 	.removexattr	= generic_removexattr,
2435 	.permission	= shmem_permission,
2436 #endif
2437 
2438 };
2439 
2440 static const struct inode_operations shmem_dir_inode_operations = {
2441 #ifdef CONFIG_TMPFS
2442 	.create		= shmem_create,
2443 	.lookup		= simple_lookup,
2444 	.link		= shmem_link,
2445 	.unlink		= shmem_unlink,
2446 	.symlink	= shmem_symlink,
2447 	.mkdir		= shmem_mkdir,
2448 	.rmdir		= shmem_rmdir,
2449 	.mknod		= shmem_mknod,
2450 	.rename		= shmem_rename,
2451 #endif
2452 #ifdef CONFIG_TMPFS_POSIX_ACL
2453 	.setattr	= shmem_notify_change,
2454 	.setxattr	= generic_setxattr,
2455 	.getxattr	= generic_getxattr,
2456 	.listxattr	= generic_listxattr,
2457 	.removexattr	= generic_removexattr,
2458 	.permission	= shmem_permission,
2459 #endif
2460 };
2461 
2462 static const struct inode_operations shmem_special_inode_operations = {
2463 #ifdef CONFIG_TMPFS_POSIX_ACL
2464 	.setattr	= shmem_notify_change,
2465 	.setxattr	= generic_setxattr,
2466 	.getxattr	= generic_getxattr,
2467 	.listxattr	= generic_listxattr,
2468 	.removexattr	= generic_removexattr,
2469 	.permission	= shmem_permission,
2470 #endif
2471 };
2472 
2473 static const struct super_operations shmem_ops = {
2474 	.alloc_inode	= shmem_alloc_inode,
2475 	.destroy_inode	= shmem_destroy_inode,
2476 #ifdef CONFIG_TMPFS
2477 	.statfs		= shmem_statfs,
2478 	.remount_fs	= shmem_remount_fs,
2479 	.show_options	= shmem_show_options,
2480 #endif
2481 	.delete_inode	= shmem_delete_inode,
2482 	.drop_inode	= generic_delete_inode,
2483 	.put_super	= shmem_put_super,
2484 };
2485 
2486 static struct vm_operations_struct shmem_vm_ops = {
2487 	.fault		= shmem_fault,
2488 #ifdef CONFIG_NUMA
2489 	.set_policy     = shmem_set_policy,
2490 	.get_policy     = shmem_get_policy,
2491 #endif
2492 };
2493 
2494 
2495 static int shmem_get_sb(struct file_system_type *fs_type,
2496 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
2497 {
2498 	return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt);
2499 }
2500 
2501 static struct file_system_type tmpfs_fs_type = {
2502 	.owner		= THIS_MODULE,
2503 	.name		= "tmpfs",
2504 	.get_sb		= shmem_get_sb,
2505 	.kill_sb	= kill_litter_super,
2506 };
2507 
2508 static int __init init_tmpfs(void)
2509 {
2510 	int error;
2511 
2512 	error = bdi_init(&shmem_backing_dev_info);
2513 	if (error)
2514 		goto out4;
2515 
2516 	error = init_inodecache();
2517 	if (error)
2518 		goto out3;
2519 
2520 	error = register_filesystem(&tmpfs_fs_type);
2521 	if (error) {
2522 		printk(KERN_ERR "Could not register tmpfs\n");
2523 		goto out2;
2524 	}
2525 
2526 	shm_mnt = vfs_kern_mount(&tmpfs_fs_type, MS_NOUSER,
2527 				tmpfs_fs_type.name, NULL);
2528 	if (IS_ERR(shm_mnt)) {
2529 		error = PTR_ERR(shm_mnt);
2530 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
2531 		goto out1;
2532 	}
2533 	return 0;
2534 
2535 out1:
2536 	unregister_filesystem(&tmpfs_fs_type);
2537 out2:
2538 	destroy_inodecache();
2539 out3:
2540 	bdi_destroy(&shmem_backing_dev_info);
2541 out4:
2542 	shm_mnt = ERR_PTR(error);
2543 	return error;
2544 }
2545 
2546 #else /* !CONFIG_SHMEM */
2547 
2548 /*
2549  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2550  *
2551  * This is intended for small system where the benefits of the full
2552  * shmem code (swap-backed and resource-limited) are outweighed by
2553  * their complexity. On systems without swap this code should be
2554  * effectively equivalent, but much lighter weight.
2555  */
2556 
2557 #include <linux/ramfs.h>
2558 
2559 static struct file_system_type tmpfs_fs_type = {
2560 	.name		= "tmpfs",
2561 	.get_sb		= ramfs_get_sb,
2562 	.kill_sb	= kill_litter_super,
2563 };
2564 
2565 static int __init init_tmpfs(void)
2566 {
2567 	BUG_ON(register_filesystem(&tmpfs_fs_type) != 0);
2568 
2569 	shm_mnt = kern_mount(&tmpfs_fs_type);
2570 	BUG_ON(IS_ERR(shm_mnt));
2571 
2572 	return 0;
2573 }
2574 
2575 int shmem_unuse(swp_entry_t entry, struct page *page)
2576 {
2577 	return 0;
2578 }
2579 
2580 #define shmem_vm_ops				generic_file_vm_ops
2581 #define shmem_file_operations			ramfs_file_operations
2582 #define shmem_get_inode(sb, mode, dev, flags)	ramfs_get_inode(sb, mode, dev)
2583 #define shmem_acct_size(flags, size)		0
2584 #define shmem_unacct_size(flags, size)		do {} while (0)
2585 #define SHMEM_MAX_BYTES				LLONG_MAX
2586 
2587 #endif /* CONFIG_SHMEM */
2588 
2589 /* common code */
2590 
2591 /**
2592  * shmem_file_setup - get an unlinked file living in tmpfs
2593  * @name: name for dentry (to be seen in /proc/<pid>/maps
2594  * @size: size to be set for the file
2595  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2596  */
2597 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags)
2598 {
2599 	int error;
2600 	struct file *file;
2601 	struct inode *inode;
2602 	struct dentry *dentry, *root;
2603 	struct qstr this;
2604 
2605 	if (IS_ERR(shm_mnt))
2606 		return (void *)shm_mnt;
2607 
2608 	if (size < 0 || size > SHMEM_MAX_BYTES)
2609 		return ERR_PTR(-EINVAL);
2610 
2611 	if (shmem_acct_size(flags, size))
2612 		return ERR_PTR(-ENOMEM);
2613 
2614 	error = -ENOMEM;
2615 	this.name = name;
2616 	this.len = strlen(name);
2617 	this.hash = 0; /* will go */
2618 	root = shm_mnt->mnt_root;
2619 	dentry = d_alloc(root, &this);
2620 	if (!dentry)
2621 		goto put_memory;
2622 
2623 	error = -ENFILE;
2624 	file = get_empty_filp();
2625 	if (!file)
2626 		goto put_dentry;
2627 
2628 	error = -ENOSPC;
2629 	inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0, flags);
2630 	if (!inode)
2631 		goto close_file;
2632 
2633 	d_instantiate(dentry, inode);
2634 	inode->i_size = size;
2635 	inode->i_nlink = 0;	/* It is unlinked */
2636 	init_file(file, shm_mnt, dentry, FMODE_WRITE | FMODE_READ,
2637 		  &shmem_file_operations);
2638 
2639 #ifndef CONFIG_MMU
2640 	error = ramfs_nommu_expand_for_mapping(inode, size);
2641 	if (error)
2642 		goto close_file;
2643 #endif
2644 	return file;
2645 
2646 close_file:
2647 	put_filp(file);
2648 put_dentry:
2649 	dput(dentry);
2650 put_memory:
2651 	shmem_unacct_size(flags, size);
2652 	return ERR_PTR(error);
2653 }
2654 EXPORT_SYMBOL_GPL(shmem_file_setup);
2655 
2656 /**
2657  * shmem_zero_setup - setup a shared anonymous mapping
2658  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2659  */
2660 int shmem_zero_setup(struct vm_area_struct *vma)
2661 {
2662 	struct file *file;
2663 	loff_t size = vma->vm_end - vma->vm_start;
2664 
2665 	file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2666 	if (IS_ERR(file))
2667 		return PTR_ERR(file);
2668 
2669 	ima_shm_check(file);
2670 	if (vma->vm_file)
2671 		fput(vma->vm_file);
2672 	vma->vm_file = file;
2673 	vma->vm_ops = &shmem_vm_ops;
2674 	return 0;
2675 }
2676 
2677 module_init(init_tmpfs)
2678