xref: /linux/mm/shmem.c (revision 0c3beacf681ec897e0b36685a9b49d01f5cb2dfb)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt __ro_after_init;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 #include <linux/rcupdate_wait.h>
83 
84 #include <linux/uaccess.h>
85 
86 #include "internal.h"
87 
88 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
89 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
90 
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
93 
94 /* Pretend that one inode + its dentry occupy this much memory */
95 #define BOGO_INODE_SIZE 1024
96 
97 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
98 #define SHORT_SYMLINK_LEN 128
99 
100 /*
101  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
102  * inode->i_private (with i_rwsem making sure that it has only one user at
103  * a time): we would prefer not to enlarge the shmem inode just for that.
104  */
105 struct shmem_falloc {
106 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
107 	pgoff_t start;		/* start of range currently being fallocated */
108 	pgoff_t next;		/* the next page offset to be fallocated */
109 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
110 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
111 };
112 
113 struct shmem_options {
114 	unsigned long long blocks;
115 	unsigned long long inodes;
116 	struct mempolicy *mpol;
117 	kuid_t uid;
118 	kgid_t gid;
119 	umode_t mode;
120 	bool full_inums;
121 	int huge;
122 	int seen;
123 	bool noswap;
124 	unsigned short quota_types;
125 	struct shmem_quota_limits qlimits;
126 #define SHMEM_SEEN_BLOCKS 1
127 #define SHMEM_SEEN_INODES 2
128 #define SHMEM_SEEN_HUGE 4
129 #define SHMEM_SEEN_INUMS 8
130 #define SHMEM_SEEN_NOSWAP 16
131 #define SHMEM_SEEN_QUOTA 32
132 };
133 
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 static unsigned long huge_shmem_orders_always __read_mostly;
136 static unsigned long huge_shmem_orders_madvise __read_mostly;
137 static unsigned long huge_shmem_orders_inherit __read_mostly;
138 static unsigned long huge_shmem_orders_within_size __read_mostly;
139 #endif
140 
141 #ifdef CONFIG_TMPFS
142 static unsigned long shmem_default_max_blocks(void)
143 {
144 	return totalram_pages() / 2;
145 }
146 
147 static unsigned long shmem_default_max_inodes(void)
148 {
149 	unsigned long nr_pages = totalram_pages();
150 
151 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
152 			ULONG_MAX / BOGO_INODE_SIZE);
153 }
154 #endif
155 
156 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
157 			struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
158 			struct vm_area_struct *vma, vm_fault_t *fault_type);
159 
160 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
161 {
162 	return sb->s_fs_info;
163 }
164 
165 /*
166  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
167  * for shared memory and for shared anonymous (/dev/zero) mappings
168  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
169  * consistent with the pre-accounting of private mappings ...
170  */
171 static inline int shmem_acct_size(unsigned long flags, loff_t size)
172 {
173 	return (flags & VM_NORESERVE) ?
174 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
175 }
176 
177 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
178 {
179 	if (!(flags & VM_NORESERVE))
180 		vm_unacct_memory(VM_ACCT(size));
181 }
182 
183 static inline int shmem_reacct_size(unsigned long flags,
184 		loff_t oldsize, loff_t newsize)
185 {
186 	if (!(flags & VM_NORESERVE)) {
187 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
188 			return security_vm_enough_memory_mm(current->mm,
189 					VM_ACCT(newsize) - VM_ACCT(oldsize));
190 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
191 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
192 	}
193 	return 0;
194 }
195 
196 /*
197  * ... whereas tmpfs objects are accounted incrementally as
198  * pages are allocated, in order to allow large sparse files.
199  * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
200  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
201  */
202 static inline int shmem_acct_blocks(unsigned long flags, long pages)
203 {
204 	if (!(flags & VM_NORESERVE))
205 		return 0;
206 
207 	return security_vm_enough_memory_mm(current->mm,
208 			pages * VM_ACCT(PAGE_SIZE));
209 }
210 
211 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
212 {
213 	if (flags & VM_NORESERVE)
214 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
215 }
216 
217 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
218 {
219 	struct shmem_inode_info *info = SHMEM_I(inode);
220 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
221 	int err = -ENOSPC;
222 
223 	if (shmem_acct_blocks(info->flags, pages))
224 		return err;
225 
226 	might_sleep();	/* when quotas */
227 	if (sbinfo->max_blocks) {
228 		if (!percpu_counter_limited_add(&sbinfo->used_blocks,
229 						sbinfo->max_blocks, pages))
230 			goto unacct;
231 
232 		err = dquot_alloc_block_nodirty(inode, pages);
233 		if (err) {
234 			percpu_counter_sub(&sbinfo->used_blocks, pages);
235 			goto unacct;
236 		}
237 	} else {
238 		err = dquot_alloc_block_nodirty(inode, pages);
239 		if (err)
240 			goto unacct;
241 	}
242 
243 	return 0;
244 
245 unacct:
246 	shmem_unacct_blocks(info->flags, pages);
247 	return err;
248 }
249 
250 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
251 {
252 	struct shmem_inode_info *info = SHMEM_I(inode);
253 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
254 
255 	might_sleep();	/* when quotas */
256 	dquot_free_block_nodirty(inode, pages);
257 
258 	if (sbinfo->max_blocks)
259 		percpu_counter_sub(&sbinfo->used_blocks, pages);
260 	shmem_unacct_blocks(info->flags, pages);
261 }
262 
263 static const struct super_operations shmem_ops;
264 static const struct address_space_operations shmem_aops;
265 static const struct file_operations shmem_file_operations;
266 static const struct inode_operations shmem_inode_operations;
267 static const struct inode_operations shmem_dir_inode_operations;
268 static const struct inode_operations shmem_special_inode_operations;
269 static const struct vm_operations_struct shmem_vm_ops;
270 static const struct vm_operations_struct shmem_anon_vm_ops;
271 static struct file_system_type shmem_fs_type;
272 
273 bool shmem_mapping(struct address_space *mapping)
274 {
275 	return mapping->a_ops == &shmem_aops;
276 }
277 EXPORT_SYMBOL_GPL(shmem_mapping);
278 
279 bool vma_is_anon_shmem(struct vm_area_struct *vma)
280 {
281 	return vma->vm_ops == &shmem_anon_vm_ops;
282 }
283 
284 bool vma_is_shmem(struct vm_area_struct *vma)
285 {
286 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
287 }
288 
289 static LIST_HEAD(shmem_swaplist);
290 static DEFINE_MUTEX(shmem_swaplist_mutex);
291 
292 #ifdef CONFIG_TMPFS_QUOTA
293 
294 static int shmem_enable_quotas(struct super_block *sb,
295 			       unsigned short quota_types)
296 {
297 	int type, err = 0;
298 
299 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
300 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
301 		if (!(quota_types & (1 << type)))
302 			continue;
303 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
304 					  DQUOT_USAGE_ENABLED |
305 					  DQUOT_LIMITS_ENABLED);
306 		if (err)
307 			goto out_err;
308 	}
309 	return 0;
310 
311 out_err:
312 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
313 		type, err);
314 	for (type--; type >= 0; type--)
315 		dquot_quota_off(sb, type);
316 	return err;
317 }
318 
319 static void shmem_disable_quotas(struct super_block *sb)
320 {
321 	int type;
322 
323 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
324 		dquot_quota_off(sb, type);
325 }
326 
327 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
328 {
329 	return SHMEM_I(inode)->i_dquot;
330 }
331 #endif /* CONFIG_TMPFS_QUOTA */
332 
333 /*
334  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
335  * produces a novel ino for the newly allocated inode.
336  *
337  * It may also be called when making a hard link to permit the space needed by
338  * each dentry. However, in that case, no new inode number is needed since that
339  * internally draws from another pool of inode numbers (currently global
340  * get_next_ino()). This case is indicated by passing NULL as inop.
341  */
342 #define SHMEM_INO_BATCH 1024
343 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
344 {
345 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
346 	ino_t ino;
347 
348 	if (!(sb->s_flags & SB_KERNMOUNT)) {
349 		raw_spin_lock(&sbinfo->stat_lock);
350 		if (sbinfo->max_inodes) {
351 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
352 				raw_spin_unlock(&sbinfo->stat_lock);
353 				return -ENOSPC;
354 			}
355 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
356 		}
357 		if (inop) {
358 			ino = sbinfo->next_ino++;
359 			if (unlikely(is_zero_ino(ino)))
360 				ino = sbinfo->next_ino++;
361 			if (unlikely(!sbinfo->full_inums &&
362 				     ino > UINT_MAX)) {
363 				/*
364 				 * Emulate get_next_ino uint wraparound for
365 				 * compatibility
366 				 */
367 				if (IS_ENABLED(CONFIG_64BIT))
368 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
369 						__func__, MINOR(sb->s_dev));
370 				sbinfo->next_ino = 1;
371 				ino = sbinfo->next_ino++;
372 			}
373 			*inop = ino;
374 		}
375 		raw_spin_unlock(&sbinfo->stat_lock);
376 	} else if (inop) {
377 		/*
378 		 * __shmem_file_setup, one of our callers, is lock-free: it
379 		 * doesn't hold stat_lock in shmem_reserve_inode since
380 		 * max_inodes is always 0, and is called from potentially
381 		 * unknown contexts. As such, use a per-cpu batched allocator
382 		 * which doesn't require the per-sb stat_lock unless we are at
383 		 * the batch boundary.
384 		 *
385 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
386 		 * shmem mounts are not exposed to userspace, so we don't need
387 		 * to worry about things like glibc compatibility.
388 		 */
389 		ino_t *next_ino;
390 
391 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
392 		ino = *next_ino;
393 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
394 			raw_spin_lock(&sbinfo->stat_lock);
395 			ino = sbinfo->next_ino;
396 			sbinfo->next_ino += SHMEM_INO_BATCH;
397 			raw_spin_unlock(&sbinfo->stat_lock);
398 			if (unlikely(is_zero_ino(ino)))
399 				ino++;
400 		}
401 		*inop = ino;
402 		*next_ino = ++ino;
403 		put_cpu();
404 	}
405 
406 	return 0;
407 }
408 
409 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
410 {
411 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
412 	if (sbinfo->max_inodes) {
413 		raw_spin_lock(&sbinfo->stat_lock);
414 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
415 		raw_spin_unlock(&sbinfo->stat_lock);
416 	}
417 }
418 
419 /**
420  * shmem_recalc_inode - recalculate the block usage of an inode
421  * @inode: inode to recalc
422  * @alloced: the change in number of pages allocated to inode
423  * @swapped: the change in number of pages swapped from inode
424  *
425  * We have to calculate the free blocks since the mm can drop
426  * undirtied hole pages behind our back.
427  *
428  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
429  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
430  */
431 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
432 {
433 	struct shmem_inode_info *info = SHMEM_I(inode);
434 	long freed;
435 
436 	spin_lock(&info->lock);
437 	info->alloced += alloced;
438 	info->swapped += swapped;
439 	freed = info->alloced - info->swapped -
440 		READ_ONCE(inode->i_mapping->nrpages);
441 	/*
442 	 * Special case: whereas normally shmem_recalc_inode() is called
443 	 * after i_mapping->nrpages has already been adjusted (up or down),
444 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
445 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
446 	 * been freed.  Compensate here, to avoid the need for a followup call.
447 	 */
448 	if (swapped > 0)
449 		freed += swapped;
450 	if (freed > 0)
451 		info->alloced -= freed;
452 	spin_unlock(&info->lock);
453 
454 	/* The quota case may block */
455 	if (freed > 0)
456 		shmem_inode_unacct_blocks(inode, freed);
457 }
458 
459 bool shmem_charge(struct inode *inode, long pages)
460 {
461 	struct address_space *mapping = inode->i_mapping;
462 
463 	if (shmem_inode_acct_blocks(inode, pages))
464 		return false;
465 
466 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
467 	xa_lock_irq(&mapping->i_pages);
468 	mapping->nrpages += pages;
469 	xa_unlock_irq(&mapping->i_pages);
470 
471 	shmem_recalc_inode(inode, pages, 0);
472 	return true;
473 }
474 
475 void shmem_uncharge(struct inode *inode, long pages)
476 {
477 	/* pages argument is currently unused: keep it to help debugging */
478 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
479 
480 	shmem_recalc_inode(inode, 0, 0);
481 }
482 
483 /*
484  * Replace item expected in xarray by a new item, while holding xa_lock.
485  */
486 static int shmem_replace_entry(struct address_space *mapping,
487 			pgoff_t index, void *expected, void *replacement)
488 {
489 	XA_STATE(xas, &mapping->i_pages, index);
490 	void *item;
491 
492 	VM_BUG_ON(!expected);
493 	VM_BUG_ON(!replacement);
494 	item = xas_load(&xas);
495 	if (item != expected)
496 		return -ENOENT;
497 	xas_store(&xas, replacement);
498 	return 0;
499 }
500 
501 /*
502  * Sometimes, before we decide whether to proceed or to fail, we must check
503  * that an entry was not already brought back from swap by a racing thread.
504  *
505  * Checking folio is not enough: by the time a swapcache folio is locked, it
506  * might be reused, and again be swapcache, using the same swap as before.
507  */
508 static bool shmem_confirm_swap(struct address_space *mapping,
509 			       pgoff_t index, swp_entry_t swap)
510 {
511 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
512 }
513 
514 /*
515  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
516  *
517  * SHMEM_HUGE_NEVER:
518  *	disables huge pages for the mount;
519  * SHMEM_HUGE_ALWAYS:
520  *	enables huge pages for the mount;
521  * SHMEM_HUGE_WITHIN_SIZE:
522  *	only allocate huge pages if the page will be fully within i_size,
523  *	also respect fadvise()/madvise() hints;
524  * SHMEM_HUGE_ADVISE:
525  *	only allocate huge pages if requested with fadvise()/madvise();
526  */
527 
528 #define SHMEM_HUGE_NEVER	0
529 #define SHMEM_HUGE_ALWAYS	1
530 #define SHMEM_HUGE_WITHIN_SIZE	2
531 #define SHMEM_HUGE_ADVISE	3
532 
533 /*
534  * Special values.
535  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
536  *
537  * SHMEM_HUGE_DENY:
538  *	disables huge on shm_mnt and all mounts, for emergency use;
539  * SHMEM_HUGE_FORCE:
540  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
541  *
542  */
543 #define SHMEM_HUGE_DENY		(-1)
544 #define SHMEM_HUGE_FORCE	(-2)
545 
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 /* ifdef here to avoid bloating shmem.o when not necessary */
548 
549 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
550 
551 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
552 				      loff_t write_end, bool shmem_huge_force,
553 				      unsigned long vm_flags)
554 {
555 	loff_t i_size;
556 
557 	if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
558 		return false;
559 	if (!S_ISREG(inode->i_mode))
560 		return false;
561 	if (shmem_huge == SHMEM_HUGE_DENY)
562 		return false;
563 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
564 		return true;
565 
566 	switch (SHMEM_SB(inode->i_sb)->huge) {
567 	case SHMEM_HUGE_ALWAYS:
568 		return true;
569 	case SHMEM_HUGE_WITHIN_SIZE:
570 		index = round_up(index + 1, HPAGE_PMD_NR);
571 		i_size = max(write_end, i_size_read(inode));
572 		i_size = round_up(i_size, PAGE_SIZE);
573 		if (i_size >> PAGE_SHIFT >= index)
574 			return true;
575 		fallthrough;
576 	case SHMEM_HUGE_ADVISE:
577 		if (vm_flags & VM_HUGEPAGE)
578 			return true;
579 		fallthrough;
580 	default:
581 		return false;
582 	}
583 }
584 
585 #if defined(CONFIG_SYSFS)
586 static int shmem_parse_huge(const char *str)
587 {
588 	if (!strcmp(str, "never"))
589 		return SHMEM_HUGE_NEVER;
590 	if (!strcmp(str, "always"))
591 		return SHMEM_HUGE_ALWAYS;
592 	if (!strcmp(str, "within_size"))
593 		return SHMEM_HUGE_WITHIN_SIZE;
594 	if (!strcmp(str, "advise"))
595 		return SHMEM_HUGE_ADVISE;
596 	if (!strcmp(str, "deny"))
597 		return SHMEM_HUGE_DENY;
598 	if (!strcmp(str, "force"))
599 		return SHMEM_HUGE_FORCE;
600 	return -EINVAL;
601 }
602 #endif
603 
604 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
605 static const char *shmem_format_huge(int huge)
606 {
607 	switch (huge) {
608 	case SHMEM_HUGE_NEVER:
609 		return "never";
610 	case SHMEM_HUGE_ALWAYS:
611 		return "always";
612 	case SHMEM_HUGE_WITHIN_SIZE:
613 		return "within_size";
614 	case SHMEM_HUGE_ADVISE:
615 		return "advise";
616 	case SHMEM_HUGE_DENY:
617 		return "deny";
618 	case SHMEM_HUGE_FORCE:
619 		return "force";
620 	default:
621 		VM_BUG_ON(1);
622 		return "bad_val";
623 	}
624 }
625 #endif
626 
627 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
628 		struct shrink_control *sc, unsigned long nr_to_free)
629 {
630 	LIST_HEAD(list), *pos, *next;
631 	struct inode *inode;
632 	struct shmem_inode_info *info;
633 	struct folio *folio;
634 	unsigned long batch = sc ? sc->nr_to_scan : 128;
635 	unsigned long split = 0, freed = 0;
636 
637 	if (list_empty(&sbinfo->shrinklist))
638 		return SHRINK_STOP;
639 
640 	spin_lock(&sbinfo->shrinklist_lock);
641 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
642 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
643 
644 		/* pin the inode */
645 		inode = igrab(&info->vfs_inode);
646 
647 		/* inode is about to be evicted */
648 		if (!inode) {
649 			list_del_init(&info->shrinklist);
650 			goto next;
651 		}
652 
653 		list_move(&info->shrinklist, &list);
654 next:
655 		sbinfo->shrinklist_len--;
656 		if (!--batch)
657 			break;
658 	}
659 	spin_unlock(&sbinfo->shrinklist_lock);
660 
661 	list_for_each_safe(pos, next, &list) {
662 		pgoff_t next, end;
663 		loff_t i_size;
664 		int ret;
665 
666 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 		inode = &info->vfs_inode;
668 
669 		if (nr_to_free && freed >= nr_to_free)
670 			goto move_back;
671 
672 		i_size = i_size_read(inode);
673 		folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
674 		if (!folio || xa_is_value(folio))
675 			goto drop;
676 
677 		/* No large folio at the end of the file: nothing to split */
678 		if (!folio_test_large(folio)) {
679 			folio_put(folio);
680 			goto drop;
681 		}
682 
683 		/* Check if there is anything to gain from splitting */
684 		next = folio_next_index(folio);
685 		end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
686 		if (end <= folio->index || end >= next) {
687 			folio_put(folio);
688 			goto drop;
689 		}
690 
691 		/*
692 		 * Move the inode on the list back to shrinklist if we failed
693 		 * to lock the page at this time.
694 		 *
695 		 * Waiting for the lock may lead to deadlock in the
696 		 * reclaim path.
697 		 */
698 		if (!folio_trylock(folio)) {
699 			folio_put(folio);
700 			goto move_back;
701 		}
702 
703 		ret = split_folio(folio);
704 		folio_unlock(folio);
705 		folio_put(folio);
706 
707 		/* If split failed move the inode on the list back to shrinklist */
708 		if (ret)
709 			goto move_back;
710 
711 		freed += next - end;
712 		split++;
713 drop:
714 		list_del_init(&info->shrinklist);
715 		goto put;
716 move_back:
717 		/*
718 		 * Make sure the inode is either on the global list or deleted
719 		 * from any local list before iput() since it could be deleted
720 		 * in another thread once we put the inode (then the local list
721 		 * is corrupted).
722 		 */
723 		spin_lock(&sbinfo->shrinklist_lock);
724 		list_move(&info->shrinklist, &sbinfo->shrinklist);
725 		sbinfo->shrinklist_len++;
726 		spin_unlock(&sbinfo->shrinklist_lock);
727 put:
728 		iput(inode);
729 	}
730 
731 	return split;
732 }
733 
734 static long shmem_unused_huge_scan(struct super_block *sb,
735 		struct shrink_control *sc)
736 {
737 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
738 
739 	if (!READ_ONCE(sbinfo->shrinklist_len))
740 		return SHRINK_STOP;
741 
742 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
743 }
744 
745 static long shmem_unused_huge_count(struct super_block *sb,
746 		struct shrink_control *sc)
747 {
748 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
749 	return READ_ONCE(sbinfo->shrinklist_len);
750 }
751 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
752 
753 #define shmem_huge SHMEM_HUGE_DENY
754 
755 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
756 		struct shrink_control *sc, unsigned long nr_to_free)
757 {
758 	return 0;
759 }
760 
761 static bool shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
762 				      loff_t write_end, bool shmem_huge_force,
763 				      unsigned long vm_flags)
764 {
765 	return false;
766 }
767 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
768 
769 /*
770  * Somewhat like filemap_add_folio, but error if expected item has gone.
771  */
772 static int shmem_add_to_page_cache(struct folio *folio,
773 				   struct address_space *mapping,
774 				   pgoff_t index, void *expected, gfp_t gfp)
775 {
776 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
777 	long nr = folio_nr_pages(folio);
778 
779 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
780 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
781 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
782 
783 	folio_ref_add(folio, nr);
784 	folio->mapping = mapping;
785 	folio->index = index;
786 
787 	gfp &= GFP_RECLAIM_MASK;
788 	folio_throttle_swaprate(folio, gfp);
789 
790 	do {
791 		xas_lock_irq(&xas);
792 		if (expected != xas_find_conflict(&xas)) {
793 			xas_set_err(&xas, -EEXIST);
794 			goto unlock;
795 		}
796 		if (expected && xas_find_conflict(&xas)) {
797 			xas_set_err(&xas, -EEXIST);
798 			goto unlock;
799 		}
800 		xas_store(&xas, folio);
801 		if (xas_error(&xas))
802 			goto unlock;
803 		if (folio_test_pmd_mappable(folio))
804 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
805 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
806 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
807 		mapping->nrpages += nr;
808 unlock:
809 		xas_unlock_irq(&xas);
810 	} while (xas_nomem(&xas, gfp));
811 
812 	if (xas_error(&xas)) {
813 		folio->mapping = NULL;
814 		folio_ref_sub(folio, nr);
815 		return xas_error(&xas);
816 	}
817 
818 	return 0;
819 }
820 
821 /*
822  * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
823  */
824 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
825 {
826 	struct address_space *mapping = folio->mapping;
827 	long nr = folio_nr_pages(folio);
828 	int error;
829 
830 	xa_lock_irq(&mapping->i_pages);
831 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
832 	folio->mapping = NULL;
833 	mapping->nrpages -= nr;
834 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
835 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
836 	xa_unlock_irq(&mapping->i_pages);
837 	folio_put_refs(folio, nr);
838 	BUG_ON(error);
839 }
840 
841 /*
842  * Remove swap entry from page cache, free the swap and its page cache. Returns
843  * the number of pages being freed. 0 means entry not found in XArray (0 pages
844  * being freed).
845  */
846 static long shmem_free_swap(struct address_space *mapping,
847 			    pgoff_t index, void *radswap)
848 {
849 	int order = xa_get_order(&mapping->i_pages, index);
850 	void *old;
851 
852 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
853 	if (old != radswap)
854 		return 0;
855 	free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
856 
857 	return 1 << order;
858 }
859 
860 /*
861  * Determine (in bytes) how many of the shmem object's pages mapped by the
862  * given offsets are swapped out.
863  *
864  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
865  * as long as the inode doesn't go away and racy results are not a problem.
866  */
867 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
868 						pgoff_t start, pgoff_t end)
869 {
870 	XA_STATE(xas, &mapping->i_pages, start);
871 	struct page *page;
872 	unsigned long swapped = 0;
873 	unsigned long max = end - 1;
874 
875 	rcu_read_lock();
876 	xas_for_each(&xas, page, max) {
877 		if (xas_retry(&xas, page))
878 			continue;
879 		if (xa_is_value(page))
880 			swapped += 1 << xas_get_order(&xas);
881 		if (xas.xa_index == max)
882 			break;
883 		if (need_resched()) {
884 			xas_pause(&xas);
885 			cond_resched_rcu();
886 		}
887 	}
888 	rcu_read_unlock();
889 
890 	return swapped << PAGE_SHIFT;
891 }
892 
893 /*
894  * Determine (in bytes) how many of the shmem object's pages mapped by the
895  * given vma is swapped out.
896  *
897  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
898  * as long as the inode doesn't go away and racy results are not a problem.
899  */
900 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
901 {
902 	struct inode *inode = file_inode(vma->vm_file);
903 	struct shmem_inode_info *info = SHMEM_I(inode);
904 	struct address_space *mapping = inode->i_mapping;
905 	unsigned long swapped;
906 
907 	/* Be careful as we don't hold info->lock */
908 	swapped = READ_ONCE(info->swapped);
909 
910 	/*
911 	 * The easier cases are when the shmem object has nothing in swap, or
912 	 * the vma maps it whole. Then we can simply use the stats that we
913 	 * already track.
914 	 */
915 	if (!swapped)
916 		return 0;
917 
918 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
919 		return swapped << PAGE_SHIFT;
920 
921 	/* Here comes the more involved part */
922 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
923 					vma->vm_pgoff + vma_pages(vma));
924 }
925 
926 /*
927  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
928  */
929 void shmem_unlock_mapping(struct address_space *mapping)
930 {
931 	struct folio_batch fbatch;
932 	pgoff_t index = 0;
933 
934 	folio_batch_init(&fbatch);
935 	/*
936 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
937 	 */
938 	while (!mapping_unevictable(mapping) &&
939 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
940 		check_move_unevictable_folios(&fbatch);
941 		folio_batch_release(&fbatch);
942 		cond_resched();
943 	}
944 }
945 
946 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
947 {
948 	struct folio *folio;
949 
950 	/*
951 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
952 	 * beyond i_size, and reports fallocated folios as holes.
953 	 */
954 	folio = filemap_get_entry(inode->i_mapping, index);
955 	if (!folio)
956 		return folio;
957 	if (!xa_is_value(folio)) {
958 		folio_lock(folio);
959 		if (folio->mapping == inode->i_mapping)
960 			return folio;
961 		/* The folio has been swapped out */
962 		folio_unlock(folio);
963 		folio_put(folio);
964 	}
965 	/*
966 	 * But read a folio back from swap if any of it is within i_size
967 	 * (although in some cases this is just a waste of time).
968 	 */
969 	folio = NULL;
970 	shmem_get_folio(inode, index, 0, &folio, SGP_READ);
971 	return folio;
972 }
973 
974 /*
975  * Remove range of pages and swap entries from page cache, and free them.
976  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
977  */
978 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
979 								 bool unfalloc)
980 {
981 	struct address_space *mapping = inode->i_mapping;
982 	struct shmem_inode_info *info = SHMEM_I(inode);
983 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
984 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
985 	struct folio_batch fbatch;
986 	pgoff_t indices[PAGEVEC_SIZE];
987 	struct folio *folio;
988 	bool same_folio;
989 	long nr_swaps_freed = 0;
990 	pgoff_t index;
991 	int i;
992 
993 	if (lend == -1)
994 		end = -1;	/* unsigned, so actually very big */
995 
996 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
997 		info->fallocend = start;
998 
999 	folio_batch_init(&fbatch);
1000 	index = start;
1001 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1002 			&fbatch, indices)) {
1003 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1004 			folio = fbatch.folios[i];
1005 
1006 			if (xa_is_value(folio)) {
1007 				if (unfalloc)
1008 					continue;
1009 				nr_swaps_freed += shmem_free_swap(mapping,
1010 							indices[i], folio);
1011 				continue;
1012 			}
1013 
1014 			if (!unfalloc || !folio_test_uptodate(folio))
1015 				truncate_inode_folio(mapping, folio);
1016 			folio_unlock(folio);
1017 		}
1018 		folio_batch_remove_exceptionals(&fbatch);
1019 		folio_batch_release(&fbatch);
1020 		cond_resched();
1021 	}
1022 
1023 	/*
1024 	 * When undoing a failed fallocate, we want none of the partial folio
1025 	 * zeroing and splitting below, but shall want to truncate the whole
1026 	 * folio when !uptodate indicates that it was added by this fallocate,
1027 	 * even when [lstart, lend] covers only a part of the folio.
1028 	 */
1029 	if (unfalloc)
1030 		goto whole_folios;
1031 
1032 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1033 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1034 	if (folio) {
1035 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1036 		folio_mark_dirty(folio);
1037 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1038 			start = folio_next_index(folio);
1039 			if (same_folio)
1040 				end = folio->index;
1041 		}
1042 		folio_unlock(folio);
1043 		folio_put(folio);
1044 		folio = NULL;
1045 	}
1046 
1047 	if (!same_folio)
1048 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1049 	if (folio) {
1050 		folio_mark_dirty(folio);
1051 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1052 			end = folio->index;
1053 		folio_unlock(folio);
1054 		folio_put(folio);
1055 	}
1056 
1057 whole_folios:
1058 
1059 	index = start;
1060 	while (index < end) {
1061 		cond_resched();
1062 
1063 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1064 				indices)) {
1065 			/* If all gone or hole-punch or unfalloc, we're done */
1066 			if (index == start || end != -1)
1067 				break;
1068 			/* But if truncating, restart to make sure all gone */
1069 			index = start;
1070 			continue;
1071 		}
1072 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1073 			folio = fbatch.folios[i];
1074 
1075 			if (xa_is_value(folio)) {
1076 				long swaps_freed;
1077 
1078 				if (unfalloc)
1079 					continue;
1080 				swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1081 				if (!swaps_freed) {
1082 					/* Swap was replaced by page: retry */
1083 					index = indices[i];
1084 					break;
1085 				}
1086 				nr_swaps_freed += swaps_freed;
1087 				continue;
1088 			}
1089 
1090 			folio_lock(folio);
1091 
1092 			if (!unfalloc || !folio_test_uptodate(folio)) {
1093 				if (folio_mapping(folio) != mapping) {
1094 					/* Page was replaced by swap: retry */
1095 					folio_unlock(folio);
1096 					index = indices[i];
1097 					break;
1098 				}
1099 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1100 						folio);
1101 
1102 				if (!folio_test_large(folio)) {
1103 					truncate_inode_folio(mapping, folio);
1104 				} else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1105 					/*
1106 					 * If we split a page, reset the loop so
1107 					 * that we pick up the new sub pages.
1108 					 * Otherwise the THP was entirely
1109 					 * dropped or the target range was
1110 					 * zeroed, so just continue the loop as
1111 					 * is.
1112 					 */
1113 					if (!folio_test_large(folio)) {
1114 						folio_unlock(folio);
1115 						index = start;
1116 						break;
1117 					}
1118 				}
1119 			}
1120 			folio_unlock(folio);
1121 		}
1122 		folio_batch_remove_exceptionals(&fbatch);
1123 		folio_batch_release(&fbatch);
1124 	}
1125 
1126 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1127 }
1128 
1129 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1130 {
1131 	shmem_undo_range(inode, lstart, lend, false);
1132 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1133 	inode_inc_iversion(inode);
1134 }
1135 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1136 
1137 static int shmem_getattr(struct mnt_idmap *idmap,
1138 			 const struct path *path, struct kstat *stat,
1139 			 u32 request_mask, unsigned int query_flags)
1140 {
1141 	struct inode *inode = path->dentry->d_inode;
1142 	struct shmem_inode_info *info = SHMEM_I(inode);
1143 
1144 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1145 		shmem_recalc_inode(inode, 0, 0);
1146 
1147 	if (info->fsflags & FS_APPEND_FL)
1148 		stat->attributes |= STATX_ATTR_APPEND;
1149 	if (info->fsflags & FS_IMMUTABLE_FL)
1150 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1151 	if (info->fsflags & FS_NODUMP_FL)
1152 		stat->attributes |= STATX_ATTR_NODUMP;
1153 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1154 			STATX_ATTR_IMMUTABLE |
1155 			STATX_ATTR_NODUMP);
1156 	inode_lock_shared(inode);
1157 	generic_fillattr(idmap, request_mask, inode, stat);
1158 	inode_unlock_shared(inode);
1159 
1160 	if (shmem_huge_global_enabled(inode, 0, 0, false, 0))
1161 		stat->blksize = HPAGE_PMD_SIZE;
1162 
1163 	if (request_mask & STATX_BTIME) {
1164 		stat->result_mask |= STATX_BTIME;
1165 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1166 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int shmem_setattr(struct mnt_idmap *idmap,
1173 			 struct dentry *dentry, struct iattr *attr)
1174 {
1175 	struct inode *inode = d_inode(dentry);
1176 	struct shmem_inode_info *info = SHMEM_I(inode);
1177 	int error;
1178 	bool update_mtime = false;
1179 	bool update_ctime = true;
1180 
1181 	error = setattr_prepare(idmap, dentry, attr);
1182 	if (error)
1183 		return error;
1184 
1185 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1186 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1187 			return -EPERM;
1188 		}
1189 	}
1190 
1191 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1192 		loff_t oldsize = inode->i_size;
1193 		loff_t newsize = attr->ia_size;
1194 
1195 		/* protected by i_rwsem */
1196 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1197 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1198 			return -EPERM;
1199 
1200 		if (newsize != oldsize) {
1201 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1202 					oldsize, newsize);
1203 			if (error)
1204 				return error;
1205 			i_size_write(inode, newsize);
1206 			update_mtime = true;
1207 		} else {
1208 			update_ctime = false;
1209 		}
1210 		if (newsize <= oldsize) {
1211 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1212 			if (oldsize > holebegin)
1213 				unmap_mapping_range(inode->i_mapping,
1214 							holebegin, 0, 1);
1215 			if (info->alloced)
1216 				shmem_truncate_range(inode,
1217 							newsize, (loff_t)-1);
1218 			/* unmap again to remove racily COWed private pages */
1219 			if (oldsize > holebegin)
1220 				unmap_mapping_range(inode->i_mapping,
1221 							holebegin, 0, 1);
1222 		}
1223 	}
1224 
1225 	if (is_quota_modification(idmap, inode, attr)) {
1226 		error = dquot_initialize(inode);
1227 		if (error)
1228 			return error;
1229 	}
1230 
1231 	/* Transfer quota accounting */
1232 	if (i_uid_needs_update(idmap, attr, inode) ||
1233 	    i_gid_needs_update(idmap, attr, inode)) {
1234 		error = dquot_transfer(idmap, inode, attr);
1235 		if (error)
1236 			return error;
1237 	}
1238 
1239 	setattr_copy(idmap, inode, attr);
1240 	if (attr->ia_valid & ATTR_MODE)
1241 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1242 	if (!error && update_ctime) {
1243 		inode_set_ctime_current(inode);
1244 		if (update_mtime)
1245 			inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1246 		inode_inc_iversion(inode);
1247 	}
1248 	return error;
1249 }
1250 
1251 static void shmem_evict_inode(struct inode *inode)
1252 {
1253 	struct shmem_inode_info *info = SHMEM_I(inode);
1254 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1255 	size_t freed = 0;
1256 
1257 	if (shmem_mapping(inode->i_mapping)) {
1258 		shmem_unacct_size(info->flags, inode->i_size);
1259 		inode->i_size = 0;
1260 		mapping_set_exiting(inode->i_mapping);
1261 		shmem_truncate_range(inode, 0, (loff_t)-1);
1262 		if (!list_empty(&info->shrinklist)) {
1263 			spin_lock(&sbinfo->shrinklist_lock);
1264 			if (!list_empty(&info->shrinklist)) {
1265 				list_del_init(&info->shrinklist);
1266 				sbinfo->shrinklist_len--;
1267 			}
1268 			spin_unlock(&sbinfo->shrinklist_lock);
1269 		}
1270 		while (!list_empty(&info->swaplist)) {
1271 			/* Wait while shmem_unuse() is scanning this inode... */
1272 			wait_var_event(&info->stop_eviction,
1273 				       !atomic_read(&info->stop_eviction));
1274 			mutex_lock(&shmem_swaplist_mutex);
1275 			/* ...but beware of the race if we peeked too early */
1276 			if (!atomic_read(&info->stop_eviction))
1277 				list_del_init(&info->swaplist);
1278 			mutex_unlock(&shmem_swaplist_mutex);
1279 		}
1280 	}
1281 
1282 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1283 	shmem_free_inode(inode->i_sb, freed);
1284 	WARN_ON(inode->i_blocks);
1285 	clear_inode(inode);
1286 #ifdef CONFIG_TMPFS_QUOTA
1287 	dquot_free_inode(inode);
1288 	dquot_drop(inode);
1289 #endif
1290 }
1291 
1292 static int shmem_find_swap_entries(struct address_space *mapping,
1293 				   pgoff_t start, struct folio_batch *fbatch,
1294 				   pgoff_t *indices, unsigned int type)
1295 {
1296 	XA_STATE(xas, &mapping->i_pages, start);
1297 	struct folio *folio;
1298 	swp_entry_t entry;
1299 
1300 	rcu_read_lock();
1301 	xas_for_each(&xas, folio, ULONG_MAX) {
1302 		if (xas_retry(&xas, folio))
1303 			continue;
1304 
1305 		if (!xa_is_value(folio))
1306 			continue;
1307 
1308 		entry = radix_to_swp_entry(folio);
1309 		/*
1310 		 * swapin error entries can be found in the mapping. But they're
1311 		 * deliberately ignored here as we've done everything we can do.
1312 		 */
1313 		if (swp_type(entry) != type)
1314 			continue;
1315 
1316 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1317 		if (!folio_batch_add(fbatch, folio))
1318 			break;
1319 
1320 		if (need_resched()) {
1321 			xas_pause(&xas);
1322 			cond_resched_rcu();
1323 		}
1324 	}
1325 	rcu_read_unlock();
1326 
1327 	return xas.xa_index;
1328 }
1329 
1330 /*
1331  * Move the swapped pages for an inode to page cache. Returns the count
1332  * of pages swapped in, or the error in case of failure.
1333  */
1334 static int shmem_unuse_swap_entries(struct inode *inode,
1335 		struct folio_batch *fbatch, pgoff_t *indices)
1336 {
1337 	int i = 0;
1338 	int ret = 0;
1339 	int error = 0;
1340 	struct address_space *mapping = inode->i_mapping;
1341 
1342 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1343 		struct folio *folio = fbatch->folios[i];
1344 
1345 		if (!xa_is_value(folio))
1346 			continue;
1347 		error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1348 					mapping_gfp_mask(mapping), NULL, NULL);
1349 		if (error == 0) {
1350 			folio_unlock(folio);
1351 			folio_put(folio);
1352 			ret++;
1353 		}
1354 		if (error == -ENOMEM)
1355 			break;
1356 		error = 0;
1357 	}
1358 	return error ? error : ret;
1359 }
1360 
1361 /*
1362  * If swap found in inode, free it and move page from swapcache to filecache.
1363  */
1364 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1365 {
1366 	struct address_space *mapping = inode->i_mapping;
1367 	pgoff_t start = 0;
1368 	struct folio_batch fbatch;
1369 	pgoff_t indices[PAGEVEC_SIZE];
1370 	int ret = 0;
1371 
1372 	do {
1373 		folio_batch_init(&fbatch);
1374 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1375 		if (folio_batch_count(&fbatch) == 0) {
1376 			ret = 0;
1377 			break;
1378 		}
1379 
1380 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1381 		if (ret < 0)
1382 			break;
1383 
1384 		start = indices[folio_batch_count(&fbatch) - 1];
1385 	} while (true);
1386 
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Read all the shared memory data that resides in the swap
1392  * device 'type' back into memory, so the swap device can be
1393  * unused.
1394  */
1395 int shmem_unuse(unsigned int type)
1396 {
1397 	struct shmem_inode_info *info, *next;
1398 	int error = 0;
1399 
1400 	if (list_empty(&shmem_swaplist))
1401 		return 0;
1402 
1403 	mutex_lock(&shmem_swaplist_mutex);
1404 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1405 		if (!info->swapped) {
1406 			list_del_init(&info->swaplist);
1407 			continue;
1408 		}
1409 		/*
1410 		 * Drop the swaplist mutex while searching the inode for swap;
1411 		 * but before doing so, make sure shmem_evict_inode() will not
1412 		 * remove placeholder inode from swaplist, nor let it be freed
1413 		 * (igrab() would protect from unlink, but not from unmount).
1414 		 */
1415 		atomic_inc(&info->stop_eviction);
1416 		mutex_unlock(&shmem_swaplist_mutex);
1417 
1418 		error = shmem_unuse_inode(&info->vfs_inode, type);
1419 		cond_resched();
1420 
1421 		mutex_lock(&shmem_swaplist_mutex);
1422 		next = list_next_entry(info, swaplist);
1423 		if (!info->swapped)
1424 			list_del_init(&info->swaplist);
1425 		if (atomic_dec_and_test(&info->stop_eviction))
1426 			wake_up_var(&info->stop_eviction);
1427 		if (error)
1428 			break;
1429 	}
1430 	mutex_unlock(&shmem_swaplist_mutex);
1431 
1432 	return error;
1433 }
1434 
1435 /*
1436  * Move the page from the page cache to the swap cache.
1437  */
1438 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1439 {
1440 	struct folio *folio = page_folio(page);
1441 	struct address_space *mapping = folio->mapping;
1442 	struct inode *inode = mapping->host;
1443 	struct shmem_inode_info *info = SHMEM_I(inode);
1444 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1445 	swp_entry_t swap;
1446 	pgoff_t index;
1447 	int nr_pages;
1448 	bool split = false;
1449 
1450 	/*
1451 	 * Our capabilities prevent regular writeback or sync from ever calling
1452 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1453 	 * its underlying filesystem, in which case tmpfs should write out to
1454 	 * swap only in response to memory pressure, and not for the writeback
1455 	 * threads or sync.
1456 	 */
1457 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1458 		goto redirty;
1459 
1460 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1461 		goto redirty;
1462 
1463 	if (!total_swap_pages)
1464 		goto redirty;
1465 
1466 	/*
1467 	 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1468 	 * split when swapping.
1469 	 *
1470 	 * And shrinkage of pages beyond i_size does not split swap, so
1471 	 * swapout of a large folio crossing i_size needs to split too
1472 	 * (unless fallocate has been used to preallocate beyond EOF).
1473 	 */
1474 	if (folio_test_large(folio)) {
1475 		index = shmem_fallocend(inode,
1476 			DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1477 		if ((index > folio->index && index < folio_next_index(folio)) ||
1478 		    !IS_ENABLED(CONFIG_THP_SWAP))
1479 			split = true;
1480 	}
1481 
1482 	if (split) {
1483 try_split:
1484 		/* Ensure the subpages are still dirty */
1485 		folio_test_set_dirty(folio);
1486 		if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1487 			goto redirty;
1488 		folio = page_folio(page);
1489 		folio_clear_dirty(folio);
1490 	}
1491 
1492 	index = folio->index;
1493 	nr_pages = folio_nr_pages(folio);
1494 
1495 	/*
1496 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1497 	 * value into swapfile.c, the only way we can correctly account for a
1498 	 * fallocated folio arriving here is now to initialize it and write it.
1499 	 *
1500 	 * That's okay for a folio already fallocated earlier, but if we have
1501 	 * not yet completed the fallocation, then (a) we want to keep track
1502 	 * of this folio in case we have to undo it, and (b) it may not be a
1503 	 * good idea to continue anyway, once we're pushing into swap.  So
1504 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1505 	 */
1506 	if (!folio_test_uptodate(folio)) {
1507 		if (inode->i_private) {
1508 			struct shmem_falloc *shmem_falloc;
1509 			spin_lock(&inode->i_lock);
1510 			shmem_falloc = inode->i_private;
1511 			if (shmem_falloc &&
1512 			    !shmem_falloc->waitq &&
1513 			    index >= shmem_falloc->start &&
1514 			    index < shmem_falloc->next)
1515 				shmem_falloc->nr_unswapped++;
1516 			else
1517 				shmem_falloc = NULL;
1518 			spin_unlock(&inode->i_lock);
1519 			if (shmem_falloc)
1520 				goto redirty;
1521 		}
1522 		folio_zero_range(folio, 0, folio_size(folio));
1523 		flush_dcache_folio(folio);
1524 		folio_mark_uptodate(folio);
1525 	}
1526 
1527 	swap = folio_alloc_swap(folio);
1528 	if (!swap.val) {
1529 		if (nr_pages > 1)
1530 			goto try_split;
1531 
1532 		goto redirty;
1533 	}
1534 
1535 	/*
1536 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1537 	 * if it's not already there.  Do it now before the folio is
1538 	 * moved to swap cache, when its pagelock no longer protects
1539 	 * the inode from eviction.  But don't unlock the mutex until
1540 	 * we've incremented swapped, because shmem_unuse_inode() will
1541 	 * prune a !swapped inode from the swaplist under this mutex.
1542 	 */
1543 	mutex_lock(&shmem_swaplist_mutex);
1544 	if (list_empty(&info->swaplist))
1545 		list_add(&info->swaplist, &shmem_swaplist);
1546 
1547 	if (add_to_swap_cache(folio, swap,
1548 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1549 			NULL) == 0) {
1550 		shmem_recalc_inode(inode, 0, nr_pages);
1551 		swap_shmem_alloc(swap, nr_pages);
1552 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1553 
1554 		mutex_unlock(&shmem_swaplist_mutex);
1555 		BUG_ON(folio_mapped(folio));
1556 		return swap_writepage(&folio->page, wbc);
1557 	}
1558 
1559 	mutex_unlock(&shmem_swaplist_mutex);
1560 	put_swap_folio(folio, swap);
1561 redirty:
1562 	folio_mark_dirty(folio);
1563 	if (wbc->for_reclaim)
1564 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1565 	folio_unlock(folio);
1566 	return 0;
1567 }
1568 
1569 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1570 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1571 {
1572 	char buffer[64];
1573 
1574 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1575 		return;		/* show nothing */
1576 
1577 	mpol_to_str(buffer, sizeof(buffer), mpol);
1578 
1579 	seq_printf(seq, ",mpol=%s", buffer);
1580 }
1581 
1582 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1583 {
1584 	struct mempolicy *mpol = NULL;
1585 	if (sbinfo->mpol) {
1586 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1587 		mpol = sbinfo->mpol;
1588 		mpol_get(mpol);
1589 		raw_spin_unlock(&sbinfo->stat_lock);
1590 	}
1591 	return mpol;
1592 }
1593 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1594 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1595 {
1596 }
1597 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1598 {
1599 	return NULL;
1600 }
1601 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1602 
1603 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1604 			pgoff_t index, unsigned int order, pgoff_t *ilx);
1605 
1606 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1607 			struct shmem_inode_info *info, pgoff_t index)
1608 {
1609 	struct mempolicy *mpol;
1610 	pgoff_t ilx;
1611 	struct folio *folio;
1612 
1613 	mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1614 	folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1615 	mpol_cond_put(mpol);
1616 
1617 	return folio;
1618 }
1619 
1620 /*
1621  * Make sure huge_gfp is always more limited than limit_gfp.
1622  * Some of the flags set permissions, while others set limitations.
1623  */
1624 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1625 {
1626 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1627 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1628 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1629 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1630 
1631 	/* Allow allocations only from the originally specified zones. */
1632 	result |= zoneflags;
1633 
1634 	/*
1635 	 * Minimize the result gfp by taking the union with the deny flags,
1636 	 * and the intersection of the allow flags.
1637 	 */
1638 	result |= (limit_gfp & denyflags);
1639 	result |= (huge_gfp & limit_gfp) & allowflags;
1640 
1641 	return result;
1642 }
1643 
1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1645 bool shmem_hpage_pmd_enabled(void)
1646 {
1647 	if (shmem_huge == SHMEM_HUGE_DENY)
1648 		return false;
1649 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1650 		return true;
1651 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1652 		return true;
1653 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1654 		return true;
1655 	if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1656 	    shmem_huge != SHMEM_HUGE_NEVER)
1657 		return true;
1658 
1659 	return false;
1660 }
1661 
1662 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1663 				struct vm_area_struct *vma, pgoff_t index,
1664 				loff_t write_end, bool shmem_huge_force)
1665 {
1666 	unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1667 	unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1668 	unsigned long vm_flags = vma ? vma->vm_flags : 0;
1669 	bool global_huge;
1670 	loff_t i_size;
1671 	int order;
1672 
1673 	if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1674 		return 0;
1675 
1676 	global_huge = shmem_huge_global_enabled(inode, index, write_end,
1677 						shmem_huge_force, vm_flags);
1678 	if (!vma || !vma_is_anon_shmem(vma)) {
1679 		/*
1680 		 * For tmpfs, we now only support PMD sized THP if huge page
1681 		 * is enabled, otherwise fallback to order 0.
1682 		 */
1683 		return global_huge ? BIT(HPAGE_PMD_ORDER) : 0;
1684 	}
1685 
1686 	/*
1687 	 * Following the 'deny' semantics of the top level, force the huge
1688 	 * option off from all mounts.
1689 	 */
1690 	if (shmem_huge == SHMEM_HUGE_DENY)
1691 		return 0;
1692 
1693 	/*
1694 	 * Only allow inherit orders if the top-level value is 'force', which
1695 	 * means non-PMD sized THP can not override 'huge' mount option now.
1696 	 */
1697 	if (shmem_huge == SHMEM_HUGE_FORCE)
1698 		return READ_ONCE(huge_shmem_orders_inherit);
1699 
1700 	/* Allow mTHP that will be fully within i_size. */
1701 	order = highest_order(within_size_orders);
1702 	while (within_size_orders) {
1703 		index = round_up(index + 1, order);
1704 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
1705 		if (i_size >> PAGE_SHIFT >= index) {
1706 			mask |= within_size_orders;
1707 			break;
1708 		}
1709 
1710 		order = next_order(&within_size_orders, order);
1711 	}
1712 
1713 	if (vm_flags & VM_HUGEPAGE)
1714 		mask |= READ_ONCE(huge_shmem_orders_madvise);
1715 
1716 	if (global_huge)
1717 		mask |= READ_ONCE(huge_shmem_orders_inherit);
1718 
1719 	return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1720 }
1721 
1722 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1723 					   struct address_space *mapping, pgoff_t index,
1724 					   unsigned long orders)
1725 {
1726 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1727 	pgoff_t aligned_index;
1728 	unsigned long pages;
1729 	int order;
1730 
1731 	if (vma) {
1732 		orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1733 		if (!orders)
1734 			return 0;
1735 	}
1736 
1737 	/* Find the highest order that can add into the page cache */
1738 	order = highest_order(orders);
1739 	while (orders) {
1740 		pages = 1UL << order;
1741 		aligned_index = round_down(index, pages);
1742 		/*
1743 		 * Check for conflict before waiting on a huge allocation.
1744 		 * Conflict might be that a huge page has just been allocated
1745 		 * and added to page cache by a racing thread, or that there
1746 		 * is already at least one small page in the huge extent.
1747 		 * Be careful to retry when appropriate, but not forever!
1748 		 * Elsewhere -EEXIST would be the right code, but not here.
1749 		 */
1750 		if (!xa_find(&mapping->i_pages, &aligned_index,
1751 			     aligned_index + pages - 1, XA_PRESENT))
1752 			break;
1753 		order = next_order(&orders, order);
1754 	}
1755 
1756 	return orders;
1757 }
1758 #else
1759 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1760 					   struct address_space *mapping, pgoff_t index,
1761 					   unsigned long orders)
1762 {
1763 	return 0;
1764 }
1765 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1766 
1767 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1768 		struct shmem_inode_info *info, pgoff_t index)
1769 {
1770 	struct mempolicy *mpol;
1771 	pgoff_t ilx;
1772 	struct folio *folio;
1773 
1774 	mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1775 	folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1776 	mpol_cond_put(mpol);
1777 
1778 	return folio;
1779 }
1780 
1781 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1782 		gfp_t gfp, struct inode *inode, pgoff_t index,
1783 		struct mm_struct *fault_mm, unsigned long orders)
1784 {
1785 	struct address_space *mapping = inode->i_mapping;
1786 	struct shmem_inode_info *info = SHMEM_I(inode);
1787 	unsigned long suitable_orders = 0;
1788 	struct folio *folio = NULL;
1789 	long pages;
1790 	int error, order;
1791 
1792 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1793 		orders = 0;
1794 
1795 	if (orders > 0) {
1796 		suitable_orders = shmem_suitable_orders(inode, vmf,
1797 							mapping, index, orders);
1798 
1799 		order = highest_order(suitable_orders);
1800 		while (suitable_orders) {
1801 			pages = 1UL << order;
1802 			index = round_down(index, pages);
1803 			folio = shmem_alloc_folio(gfp, order, info, index);
1804 			if (folio)
1805 				goto allocated;
1806 
1807 			if (pages == HPAGE_PMD_NR)
1808 				count_vm_event(THP_FILE_FALLBACK);
1809 			count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1810 			order = next_order(&suitable_orders, order);
1811 		}
1812 	} else {
1813 		pages = 1;
1814 		folio = shmem_alloc_folio(gfp, 0, info, index);
1815 	}
1816 	if (!folio)
1817 		return ERR_PTR(-ENOMEM);
1818 
1819 allocated:
1820 	__folio_set_locked(folio);
1821 	__folio_set_swapbacked(folio);
1822 
1823 	gfp &= GFP_RECLAIM_MASK;
1824 	error = mem_cgroup_charge(folio, fault_mm, gfp);
1825 	if (error) {
1826 		if (xa_find(&mapping->i_pages, &index,
1827 				index + pages - 1, XA_PRESENT)) {
1828 			error = -EEXIST;
1829 		} else if (pages > 1) {
1830 			if (pages == HPAGE_PMD_NR) {
1831 				count_vm_event(THP_FILE_FALLBACK);
1832 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
1833 			}
1834 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1835 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1836 		}
1837 		goto unlock;
1838 	}
1839 
1840 	error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1841 	if (error)
1842 		goto unlock;
1843 
1844 	error = shmem_inode_acct_blocks(inode, pages);
1845 	if (error) {
1846 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1847 		long freed;
1848 		/*
1849 		 * Try to reclaim some space by splitting a few
1850 		 * large folios beyond i_size on the filesystem.
1851 		 */
1852 		shmem_unused_huge_shrink(sbinfo, NULL, pages);
1853 		/*
1854 		 * And do a shmem_recalc_inode() to account for freed pages:
1855 		 * except our folio is there in cache, so not quite balanced.
1856 		 */
1857 		spin_lock(&info->lock);
1858 		freed = pages + info->alloced - info->swapped -
1859 			READ_ONCE(mapping->nrpages);
1860 		if (freed > 0)
1861 			info->alloced -= freed;
1862 		spin_unlock(&info->lock);
1863 		if (freed > 0)
1864 			shmem_inode_unacct_blocks(inode, freed);
1865 		error = shmem_inode_acct_blocks(inode, pages);
1866 		if (error) {
1867 			filemap_remove_folio(folio);
1868 			goto unlock;
1869 		}
1870 	}
1871 
1872 	shmem_recalc_inode(inode, pages, 0);
1873 	folio_add_lru(folio);
1874 	return folio;
1875 
1876 unlock:
1877 	folio_unlock(folio);
1878 	folio_put(folio);
1879 	return ERR_PTR(error);
1880 }
1881 
1882 /*
1883  * When a page is moved from swapcache to shmem filecache (either by the
1884  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1885  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1886  * ignorance of the mapping it belongs to.  If that mapping has special
1887  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1888  * we may need to copy to a suitable page before moving to filecache.
1889  *
1890  * In a future release, this may well be extended to respect cpuset and
1891  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1892  * but for now it is a simple matter of zone.
1893  */
1894 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1895 {
1896 	return folio_zonenum(folio) > gfp_zone(gfp);
1897 }
1898 
1899 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1900 				struct shmem_inode_info *info, pgoff_t index,
1901 				struct vm_area_struct *vma)
1902 {
1903 	struct folio *new, *old = *foliop;
1904 	swp_entry_t entry = old->swap;
1905 	struct address_space *swap_mapping = swap_address_space(entry);
1906 	pgoff_t swap_index = swap_cache_index(entry);
1907 	XA_STATE(xas, &swap_mapping->i_pages, swap_index);
1908 	int nr_pages = folio_nr_pages(old);
1909 	int error = 0, i;
1910 
1911 	/*
1912 	 * We have arrived here because our zones are constrained, so don't
1913 	 * limit chance of success by further cpuset and node constraints.
1914 	 */
1915 	gfp &= ~GFP_CONSTRAINT_MASK;
1916 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1917 	if (nr_pages > 1) {
1918 		gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1919 
1920 		gfp = limit_gfp_mask(huge_gfp, gfp);
1921 	}
1922 #endif
1923 
1924 	new = shmem_alloc_folio(gfp, folio_order(old), info, index);
1925 	if (!new)
1926 		return -ENOMEM;
1927 
1928 	folio_ref_add(new, nr_pages);
1929 	folio_copy(new, old);
1930 	flush_dcache_folio(new);
1931 
1932 	__folio_set_locked(new);
1933 	__folio_set_swapbacked(new);
1934 	folio_mark_uptodate(new);
1935 	new->swap = entry;
1936 	folio_set_swapcache(new);
1937 
1938 	/* Swap cache still stores N entries instead of a high-order entry */
1939 	xa_lock_irq(&swap_mapping->i_pages);
1940 	for (i = 0; i < nr_pages; i++) {
1941 		void *item = xas_load(&xas);
1942 
1943 		if (item != old) {
1944 			error = -ENOENT;
1945 			break;
1946 		}
1947 
1948 		xas_store(&xas, new);
1949 		xas_next(&xas);
1950 	}
1951 	if (!error) {
1952 		mem_cgroup_replace_folio(old, new);
1953 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, nr_pages);
1954 		__lruvec_stat_mod_folio(new, NR_SHMEM, nr_pages);
1955 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -nr_pages);
1956 		__lruvec_stat_mod_folio(old, NR_SHMEM, -nr_pages);
1957 	}
1958 	xa_unlock_irq(&swap_mapping->i_pages);
1959 
1960 	if (unlikely(error)) {
1961 		/*
1962 		 * Is this possible?  I think not, now that our callers
1963 		 * check both the swapcache flag and folio->private
1964 		 * after getting the folio lock; but be defensive.
1965 		 * Reverse old to newpage for clear and free.
1966 		 */
1967 		old = new;
1968 	} else {
1969 		folio_add_lru(new);
1970 		*foliop = new;
1971 	}
1972 
1973 	folio_clear_swapcache(old);
1974 	old->private = NULL;
1975 
1976 	folio_unlock(old);
1977 	/*
1978 	 * The old folio are removed from swap cache, drop the 'nr_pages'
1979 	 * reference, as well as one temporary reference getting from swap
1980 	 * cache.
1981 	 */
1982 	folio_put_refs(old, nr_pages + 1);
1983 	return error;
1984 }
1985 
1986 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1987 					 struct folio *folio, swp_entry_t swap)
1988 {
1989 	struct address_space *mapping = inode->i_mapping;
1990 	swp_entry_t swapin_error;
1991 	void *old;
1992 	int nr_pages;
1993 
1994 	swapin_error = make_poisoned_swp_entry();
1995 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1996 			     swp_to_radix_entry(swap),
1997 			     swp_to_radix_entry(swapin_error), 0);
1998 	if (old != swp_to_radix_entry(swap))
1999 		return;
2000 
2001 	nr_pages = folio_nr_pages(folio);
2002 	folio_wait_writeback(folio);
2003 	delete_from_swap_cache(folio);
2004 	/*
2005 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2006 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2007 	 * in shmem_evict_inode().
2008 	 */
2009 	shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2010 	swap_free_nr(swap, nr_pages);
2011 }
2012 
2013 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2014 				   swp_entry_t swap, gfp_t gfp)
2015 {
2016 	struct address_space *mapping = inode->i_mapping;
2017 	XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2018 	void *alloced_shadow = NULL;
2019 	int alloced_order = 0, i;
2020 
2021 	/* Convert user data gfp flags to xarray node gfp flags */
2022 	gfp &= GFP_RECLAIM_MASK;
2023 
2024 	for (;;) {
2025 		int order = -1, split_order = 0;
2026 		void *old = NULL;
2027 
2028 		xas_lock_irq(&xas);
2029 		old = xas_load(&xas);
2030 		if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2031 			xas_set_err(&xas, -EEXIST);
2032 			goto unlock;
2033 		}
2034 
2035 		order = xas_get_order(&xas);
2036 
2037 		/* Swap entry may have changed before we re-acquire the lock */
2038 		if (alloced_order &&
2039 		    (old != alloced_shadow || order != alloced_order)) {
2040 			xas_destroy(&xas);
2041 			alloced_order = 0;
2042 		}
2043 
2044 		/* Try to split large swap entry in pagecache */
2045 		if (order > 0) {
2046 			if (!alloced_order) {
2047 				split_order = order;
2048 				goto unlock;
2049 			}
2050 			xas_split(&xas, old, order);
2051 
2052 			/*
2053 			 * Re-set the swap entry after splitting, and the swap
2054 			 * offset of the original large entry must be continuous.
2055 			 */
2056 			for (i = 0; i < 1 << order; i++) {
2057 				pgoff_t aligned_index = round_down(index, 1 << order);
2058 				swp_entry_t tmp;
2059 
2060 				tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2061 				__xa_store(&mapping->i_pages, aligned_index + i,
2062 					   swp_to_radix_entry(tmp), 0);
2063 			}
2064 		}
2065 
2066 unlock:
2067 		xas_unlock_irq(&xas);
2068 
2069 		/* split needed, alloc here and retry. */
2070 		if (split_order) {
2071 			xas_split_alloc(&xas, old, split_order, gfp);
2072 			if (xas_error(&xas))
2073 				goto error;
2074 			alloced_shadow = old;
2075 			alloced_order = split_order;
2076 			xas_reset(&xas);
2077 			continue;
2078 		}
2079 
2080 		if (!xas_nomem(&xas, gfp))
2081 			break;
2082 	}
2083 
2084 error:
2085 	if (xas_error(&xas))
2086 		return xas_error(&xas);
2087 
2088 	return alloced_order;
2089 }
2090 
2091 /*
2092  * Swap in the folio pointed to by *foliop.
2093  * Caller has to make sure that *foliop contains a valid swapped folio.
2094  * Returns 0 and the folio in foliop if success. On failure, returns the
2095  * error code and NULL in *foliop.
2096  */
2097 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2098 			     struct folio **foliop, enum sgp_type sgp,
2099 			     gfp_t gfp, struct vm_area_struct *vma,
2100 			     vm_fault_t *fault_type)
2101 {
2102 	struct address_space *mapping = inode->i_mapping;
2103 	struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2104 	struct shmem_inode_info *info = SHMEM_I(inode);
2105 	struct swap_info_struct *si;
2106 	struct folio *folio = NULL;
2107 	swp_entry_t swap;
2108 	int error, nr_pages;
2109 
2110 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2111 	swap = radix_to_swp_entry(*foliop);
2112 	*foliop = NULL;
2113 
2114 	if (is_poisoned_swp_entry(swap))
2115 		return -EIO;
2116 
2117 	si = get_swap_device(swap);
2118 	if (!si) {
2119 		if (!shmem_confirm_swap(mapping, index, swap))
2120 			return -EEXIST;
2121 		else
2122 			return -EINVAL;
2123 	}
2124 
2125 	/* Look it up and read it in.. */
2126 	folio = swap_cache_get_folio(swap, NULL, 0);
2127 	if (!folio) {
2128 		int split_order;
2129 
2130 		/* Or update major stats only when swapin succeeds?? */
2131 		if (fault_type) {
2132 			*fault_type |= VM_FAULT_MAJOR;
2133 			count_vm_event(PGMAJFAULT);
2134 			count_memcg_event_mm(fault_mm, PGMAJFAULT);
2135 		}
2136 
2137 		/*
2138 		 * Now swap device can only swap in order 0 folio, then we
2139 		 * should split the large swap entry stored in the pagecache
2140 		 * if necessary.
2141 		 */
2142 		split_order = shmem_split_large_entry(inode, index, swap, gfp);
2143 		if (split_order < 0) {
2144 			error = split_order;
2145 			goto failed;
2146 		}
2147 
2148 		/*
2149 		 * If the large swap entry has already been split, it is
2150 		 * necessary to recalculate the new swap entry based on
2151 		 * the old order alignment.
2152 		 */
2153 		if (split_order > 0) {
2154 			pgoff_t offset = index - round_down(index, 1 << split_order);
2155 
2156 			swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2157 		}
2158 
2159 		/* Here we actually start the io */
2160 		folio = shmem_swapin_cluster(swap, gfp, info, index);
2161 		if (!folio) {
2162 			error = -ENOMEM;
2163 			goto failed;
2164 		}
2165 	}
2166 
2167 	/* We have to do this with folio locked to prevent races */
2168 	folio_lock(folio);
2169 	if (!folio_test_swapcache(folio) ||
2170 	    folio->swap.val != swap.val ||
2171 	    !shmem_confirm_swap(mapping, index, swap)) {
2172 		error = -EEXIST;
2173 		goto unlock;
2174 	}
2175 	if (!folio_test_uptodate(folio)) {
2176 		error = -EIO;
2177 		goto failed;
2178 	}
2179 	folio_wait_writeback(folio);
2180 	nr_pages = folio_nr_pages(folio);
2181 
2182 	/*
2183 	 * Some architectures may have to restore extra metadata to the
2184 	 * folio after reading from swap.
2185 	 */
2186 	arch_swap_restore(folio_swap(swap, folio), folio);
2187 
2188 	if (shmem_should_replace_folio(folio, gfp)) {
2189 		error = shmem_replace_folio(&folio, gfp, info, index, vma);
2190 		if (error)
2191 			goto failed;
2192 	}
2193 
2194 	error = shmem_add_to_page_cache(folio, mapping,
2195 					round_down(index, nr_pages),
2196 					swp_to_radix_entry(swap), gfp);
2197 	if (error)
2198 		goto failed;
2199 
2200 	shmem_recalc_inode(inode, 0, -nr_pages);
2201 
2202 	if (sgp == SGP_WRITE)
2203 		folio_mark_accessed(folio);
2204 
2205 	delete_from_swap_cache(folio);
2206 	folio_mark_dirty(folio);
2207 	swap_free_nr(swap, nr_pages);
2208 	put_swap_device(si);
2209 
2210 	*foliop = folio;
2211 	return 0;
2212 failed:
2213 	if (!shmem_confirm_swap(mapping, index, swap))
2214 		error = -EEXIST;
2215 	if (error == -EIO)
2216 		shmem_set_folio_swapin_error(inode, index, folio, swap);
2217 unlock:
2218 	if (folio) {
2219 		folio_unlock(folio);
2220 		folio_put(folio);
2221 	}
2222 	put_swap_device(si);
2223 
2224 	return error;
2225 }
2226 
2227 /*
2228  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2229  *
2230  * If we allocate a new one we do not mark it dirty. That's up to the
2231  * vm. If we swap it in we mark it dirty since we also free the swap
2232  * entry since a page cannot live in both the swap and page cache.
2233  *
2234  * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2235  */
2236 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2237 		loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2238 		gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2239 {
2240 	struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2241 	struct mm_struct *fault_mm;
2242 	struct folio *folio;
2243 	int error;
2244 	bool alloced;
2245 	unsigned long orders = 0;
2246 
2247 	if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2248 		return -EINVAL;
2249 
2250 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2251 		return -EFBIG;
2252 repeat:
2253 	if (sgp <= SGP_CACHE &&
2254 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2255 		return -EINVAL;
2256 
2257 	alloced = false;
2258 	fault_mm = vma ? vma->vm_mm : NULL;
2259 
2260 	folio = filemap_get_entry(inode->i_mapping, index);
2261 	if (folio && vma && userfaultfd_minor(vma)) {
2262 		if (!xa_is_value(folio))
2263 			folio_put(folio);
2264 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2265 		return 0;
2266 	}
2267 
2268 	if (xa_is_value(folio)) {
2269 		error = shmem_swapin_folio(inode, index, &folio,
2270 					   sgp, gfp, vma, fault_type);
2271 		if (error == -EEXIST)
2272 			goto repeat;
2273 
2274 		*foliop = folio;
2275 		return error;
2276 	}
2277 
2278 	if (folio) {
2279 		folio_lock(folio);
2280 
2281 		/* Has the folio been truncated or swapped out? */
2282 		if (unlikely(folio->mapping != inode->i_mapping)) {
2283 			folio_unlock(folio);
2284 			folio_put(folio);
2285 			goto repeat;
2286 		}
2287 		if (sgp == SGP_WRITE)
2288 			folio_mark_accessed(folio);
2289 		if (folio_test_uptodate(folio))
2290 			goto out;
2291 		/* fallocated folio */
2292 		if (sgp != SGP_READ)
2293 			goto clear;
2294 		folio_unlock(folio);
2295 		folio_put(folio);
2296 	}
2297 
2298 	/*
2299 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2300 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2301 	 */
2302 	*foliop = NULL;
2303 	if (sgp == SGP_READ)
2304 		return 0;
2305 	if (sgp == SGP_NOALLOC)
2306 		return -ENOENT;
2307 
2308 	/*
2309 	 * Fast cache lookup and swap lookup did not find it: allocate.
2310 	 */
2311 
2312 	if (vma && userfaultfd_missing(vma)) {
2313 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2314 		return 0;
2315 	}
2316 
2317 	/* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2318 	orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2319 	if (orders > 0) {
2320 		gfp_t huge_gfp;
2321 
2322 		huge_gfp = vma_thp_gfp_mask(vma);
2323 		huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2324 		folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2325 				inode, index, fault_mm, orders);
2326 		if (!IS_ERR(folio)) {
2327 			if (folio_test_pmd_mappable(folio))
2328 				count_vm_event(THP_FILE_ALLOC);
2329 			count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2330 			goto alloced;
2331 		}
2332 		if (PTR_ERR(folio) == -EEXIST)
2333 			goto repeat;
2334 	}
2335 
2336 	folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2337 	if (IS_ERR(folio)) {
2338 		error = PTR_ERR(folio);
2339 		if (error == -EEXIST)
2340 			goto repeat;
2341 		folio = NULL;
2342 		goto unlock;
2343 	}
2344 
2345 alloced:
2346 	alloced = true;
2347 	if (folio_test_large(folio) &&
2348 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2349 					folio_next_index(folio)) {
2350 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2351 		struct shmem_inode_info *info = SHMEM_I(inode);
2352 		/*
2353 		 * Part of the large folio is beyond i_size: subject
2354 		 * to shrink under memory pressure.
2355 		 */
2356 		spin_lock(&sbinfo->shrinklist_lock);
2357 		/*
2358 		 * _careful to defend against unlocked access to
2359 		 * ->shrink_list in shmem_unused_huge_shrink()
2360 		 */
2361 		if (list_empty_careful(&info->shrinklist)) {
2362 			list_add_tail(&info->shrinklist,
2363 				      &sbinfo->shrinklist);
2364 			sbinfo->shrinklist_len++;
2365 		}
2366 		spin_unlock(&sbinfo->shrinklist_lock);
2367 	}
2368 
2369 	if (sgp == SGP_WRITE)
2370 		folio_set_referenced(folio);
2371 	/*
2372 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2373 	 */
2374 	if (sgp == SGP_FALLOC)
2375 		sgp = SGP_WRITE;
2376 clear:
2377 	/*
2378 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2379 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2380 	 * it now, lest undo on failure cancel our earlier guarantee.
2381 	 */
2382 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2383 		long i, n = folio_nr_pages(folio);
2384 
2385 		for (i = 0; i < n; i++)
2386 			clear_highpage(folio_page(folio, i));
2387 		flush_dcache_folio(folio);
2388 		folio_mark_uptodate(folio);
2389 	}
2390 
2391 	/* Perhaps the file has been truncated since we checked */
2392 	if (sgp <= SGP_CACHE &&
2393 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2394 		error = -EINVAL;
2395 		goto unlock;
2396 	}
2397 out:
2398 	*foliop = folio;
2399 	return 0;
2400 
2401 	/*
2402 	 * Error recovery.
2403 	 */
2404 unlock:
2405 	if (alloced)
2406 		filemap_remove_folio(folio);
2407 	shmem_recalc_inode(inode, 0, 0);
2408 	if (folio) {
2409 		folio_unlock(folio);
2410 		folio_put(folio);
2411 	}
2412 	return error;
2413 }
2414 
2415 /**
2416  * shmem_get_folio - find, and lock a shmem folio.
2417  * @inode:	inode to search
2418  * @index:	the page index.
2419  * @write_end:	end of a write, could extend inode size
2420  * @foliop:	pointer to the folio if found
2421  * @sgp:	SGP_* flags to control behavior
2422  *
2423  * Looks up the page cache entry at @inode & @index.  If a folio is
2424  * present, it is returned locked with an increased refcount.
2425  *
2426  * If the caller modifies data in the folio, it must call folio_mark_dirty()
2427  * before unlocking the folio to ensure that the folio is not reclaimed.
2428  * There is no need to reserve space before calling folio_mark_dirty().
2429  *
2430  * When no folio is found, the behavior depends on @sgp:
2431  *  - for SGP_READ, *@foliop is %NULL and 0 is returned
2432  *  - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2433  *  - for all other flags a new folio is allocated, inserted into the
2434  *    page cache and returned locked in @foliop.
2435  *
2436  * Context: May sleep.
2437  * Return: 0 if successful, else a negative error code.
2438  */
2439 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2440 		    struct folio **foliop, enum sgp_type sgp)
2441 {
2442 	return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2443 			mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2444 }
2445 EXPORT_SYMBOL_GPL(shmem_get_folio);
2446 
2447 /*
2448  * This is like autoremove_wake_function, but it removes the wait queue
2449  * entry unconditionally - even if something else had already woken the
2450  * target.
2451  */
2452 static int synchronous_wake_function(wait_queue_entry_t *wait,
2453 			unsigned int mode, int sync, void *key)
2454 {
2455 	int ret = default_wake_function(wait, mode, sync, key);
2456 	list_del_init(&wait->entry);
2457 	return ret;
2458 }
2459 
2460 /*
2461  * Trinity finds that probing a hole which tmpfs is punching can
2462  * prevent the hole-punch from ever completing: which in turn
2463  * locks writers out with its hold on i_rwsem.  So refrain from
2464  * faulting pages into the hole while it's being punched.  Although
2465  * shmem_undo_range() does remove the additions, it may be unable to
2466  * keep up, as each new page needs its own unmap_mapping_range() call,
2467  * and the i_mmap tree grows ever slower to scan if new vmas are added.
2468  *
2469  * It does not matter if we sometimes reach this check just before the
2470  * hole-punch begins, so that one fault then races with the punch:
2471  * we just need to make racing faults a rare case.
2472  *
2473  * The implementation below would be much simpler if we just used a
2474  * standard mutex or completion: but we cannot take i_rwsem in fault,
2475  * and bloating every shmem inode for this unlikely case would be sad.
2476  */
2477 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2478 {
2479 	struct shmem_falloc *shmem_falloc;
2480 	struct file *fpin = NULL;
2481 	vm_fault_t ret = 0;
2482 
2483 	spin_lock(&inode->i_lock);
2484 	shmem_falloc = inode->i_private;
2485 	if (shmem_falloc &&
2486 	    shmem_falloc->waitq &&
2487 	    vmf->pgoff >= shmem_falloc->start &&
2488 	    vmf->pgoff < shmem_falloc->next) {
2489 		wait_queue_head_t *shmem_falloc_waitq;
2490 		DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2491 
2492 		ret = VM_FAULT_NOPAGE;
2493 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2494 		shmem_falloc_waitq = shmem_falloc->waitq;
2495 		prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2496 				TASK_UNINTERRUPTIBLE);
2497 		spin_unlock(&inode->i_lock);
2498 		schedule();
2499 
2500 		/*
2501 		 * shmem_falloc_waitq points into the shmem_fallocate()
2502 		 * stack of the hole-punching task: shmem_falloc_waitq
2503 		 * is usually invalid by the time we reach here, but
2504 		 * finish_wait() does not dereference it in that case;
2505 		 * though i_lock needed lest racing with wake_up_all().
2506 		 */
2507 		spin_lock(&inode->i_lock);
2508 		finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2509 	}
2510 	spin_unlock(&inode->i_lock);
2511 	if (fpin) {
2512 		fput(fpin);
2513 		ret = VM_FAULT_RETRY;
2514 	}
2515 	return ret;
2516 }
2517 
2518 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2519 {
2520 	struct inode *inode = file_inode(vmf->vma->vm_file);
2521 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2522 	struct folio *folio = NULL;
2523 	vm_fault_t ret = 0;
2524 	int err;
2525 
2526 	/*
2527 	 * Trinity finds that probing a hole which tmpfs is punching can
2528 	 * prevent the hole-punch from ever completing: noted in i_private.
2529 	 */
2530 	if (unlikely(inode->i_private)) {
2531 		ret = shmem_falloc_wait(vmf, inode);
2532 		if (ret)
2533 			return ret;
2534 	}
2535 
2536 	WARN_ON_ONCE(vmf->page != NULL);
2537 	err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2538 				  gfp, vmf, &ret);
2539 	if (err)
2540 		return vmf_error(err);
2541 	if (folio) {
2542 		vmf->page = folio_file_page(folio, vmf->pgoff);
2543 		ret |= VM_FAULT_LOCKED;
2544 	}
2545 	return ret;
2546 }
2547 
2548 unsigned long shmem_get_unmapped_area(struct file *file,
2549 				      unsigned long uaddr, unsigned long len,
2550 				      unsigned long pgoff, unsigned long flags)
2551 {
2552 	unsigned long addr;
2553 	unsigned long offset;
2554 	unsigned long inflated_len;
2555 	unsigned long inflated_addr;
2556 	unsigned long inflated_offset;
2557 	unsigned long hpage_size;
2558 
2559 	if (len > TASK_SIZE)
2560 		return -ENOMEM;
2561 
2562 	addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2563 				    flags);
2564 
2565 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2566 		return addr;
2567 	if (IS_ERR_VALUE(addr))
2568 		return addr;
2569 	if (addr & ~PAGE_MASK)
2570 		return addr;
2571 	if (addr > TASK_SIZE - len)
2572 		return addr;
2573 
2574 	if (shmem_huge == SHMEM_HUGE_DENY)
2575 		return addr;
2576 	if (flags & MAP_FIXED)
2577 		return addr;
2578 	/*
2579 	 * Our priority is to support MAP_SHARED mapped hugely;
2580 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2581 	 * But if caller specified an address hint and we allocated area there
2582 	 * successfully, respect that as before.
2583 	 */
2584 	if (uaddr == addr)
2585 		return addr;
2586 
2587 	hpage_size = HPAGE_PMD_SIZE;
2588 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2589 		struct super_block *sb;
2590 		unsigned long __maybe_unused hpage_orders;
2591 		int order = 0;
2592 
2593 		if (file) {
2594 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2595 			sb = file_inode(file)->i_sb;
2596 		} else {
2597 			/*
2598 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2599 			 * for "/dev/zero", to create a shared anonymous object.
2600 			 */
2601 			if (IS_ERR(shm_mnt))
2602 				return addr;
2603 			sb = shm_mnt->mnt_sb;
2604 
2605 			/*
2606 			 * Find the highest mTHP order used for anonymous shmem to
2607 			 * provide a suitable alignment address.
2608 			 */
2609 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2610 			hpage_orders = READ_ONCE(huge_shmem_orders_always);
2611 			hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2612 			hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2613 			if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2614 				hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2615 
2616 			if (hpage_orders > 0) {
2617 				order = highest_order(hpage_orders);
2618 				hpage_size = PAGE_SIZE << order;
2619 			}
2620 #endif
2621 		}
2622 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2623 			return addr;
2624 	}
2625 
2626 	if (len < hpage_size)
2627 		return addr;
2628 
2629 	offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2630 	if (offset && offset + len < 2 * hpage_size)
2631 		return addr;
2632 	if ((addr & (hpage_size - 1)) == offset)
2633 		return addr;
2634 
2635 	inflated_len = len + hpage_size - PAGE_SIZE;
2636 	if (inflated_len > TASK_SIZE)
2637 		return addr;
2638 	if (inflated_len < len)
2639 		return addr;
2640 
2641 	inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2642 					     inflated_len, 0, flags);
2643 	if (IS_ERR_VALUE(inflated_addr))
2644 		return addr;
2645 	if (inflated_addr & ~PAGE_MASK)
2646 		return addr;
2647 
2648 	inflated_offset = inflated_addr & (hpage_size - 1);
2649 	inflated_addr += offset - inflated_offset;
2650 	if (inflated_offset > offset)
2651 		inflated_addr += hpage_size;
2652 
2653 	if (inflated_addr > TASK_SIZE - len)
2654 		return addr;
2655 	return inflated_addr;
2656 }
2657 
2658 #ifdef CONFIG_NUMA
2659 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2660 {
2661 	struct inode *inode = file_inode(vma->vm_file);
2662 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2663 }
2664 
2665 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2666 					  unsigned long addr, pgoff_t *ilx)
2667 {
2668 	struct inode *inode = file_inode(vma->vm_file);
2669 	pgoff_t index;
2670 
2671 	/*
2672 	 * Bias interleave by inode number to distribute better across nodes;
2673 	 * but this interface is independent of which page order is used, so
2674 	 * supplies only that bias, letting caller apply the offset (adjusted
2675 	 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2676 	 */
2677 	*ilx = inode->i_ino;
2678 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2679 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2680 }
2681 
2682 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2683 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2684 {
2685 	struct mempolicy *mpol;
2686 
2687 	/* Bias interleave by inode number to distribute better across nodes */
2688 	*ilx = info->vfs_inode.i_ino + (index >> order);
2689 
2690 	mpol = mpol_shared_policy_lookup(&info->policy, index);
2691 	return mpol ? mpol : get_task_policy(current);
2692 }
2693 #else
2694 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2695 			pgoff_t index, unsigned int order, pgoff_t *ilx)
2696 {
2697 	*ilx = 0;
2698 	return NULL;
2699 }
2700 #endif /* CONFIG_NUMA */
2701 
2702 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2703 {
2704 	struct inode *inode = file_inode(file);
2705 	struct shmem_inode_info *info = SHMEM_I(inode);
2706 	int retval = -ENOMEM;
2707 
2708 	/*
2709 	 * What serializes the accesses to info->flags?
2710 	 * ipc_lock_object() when called from shmctl_do_lock(),
2711 	 * no serialization needed when called from shm_destroy().
2712 	 */
2713 	if (lock && !(info->flags & VM_LOCKED)) {
2714 		if (!user_shm_lock(inode->i_size, ucounts))
2715 			goto out_nomem;
2716 		info->flags |= VM_LOCKED;
2717 		mapping_set_unevictable(file->f_mapping);
2718 	}
2719 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2720 		user_shm_unlock(inode->i_size, ucounts);
2721 		info->flags &= ~VM_LOCKED;
2722 		mapping_clear_unevictable(file->f_mapping);
2723 	}
2724 	retval = 0;
2725 
2726 out_nomem:
2727 	return retval;
2728 }
2729 
2730 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2731 {
2732 	struct inode *inode = file_inode(file);
2733 	struct shmem_inode_info *info = SHMEM_I(inode);
2734 	int ret;
2735 
2736 	ret = seal_check_write(info->seals, vma);
2737 	if (ret)
2738 		return ret;
2739 
2740 	file_accessed(file);
2741 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2742 	if (inode->i_nlink)
2743 		vma->vm_ops = &shmem_vm_ops;
2744 	else
2745 		vma->vm_ops = &shmem_anon_vm_ops;
2746 	return 0;
2747 }
2748 
2749 static int shmem_file_open(struct inode *inode, struct file *file)
2750 {
2751 	file->f_mode |= FMODE_CAN_ODIRECT;
2752 	return generic_file_open(inode, file);
2753 }
2754 
2755 #ifdef CONFIG_TMPFS_XATTR
2756 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2757 
2758 /*
2759  * chattr's fsflags are unrelated to extended attributes,
2760  * but tmpfs has chosen to enable them under the same config option.
2761  */
2762 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2763 {
2764 	unsigned int i_flags = 0;
2765 
2766 	if (fsflags & FS_NOATIME_FL)
2767 		i_flags |= S_NOATIME;
2768 	if (fsflags & FS_APPEND_FL)
2769 		i_flags |= S_APPEND;
2770 	if (fsflags & FS_IMMUTABLE_FL)
2771 		i_flags |= S_IMMUTABLE;
2772 	/*
2773 	 * But FS_NODUMP_FL does not require any action in i_flags.
2774 	 */
2775 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2776 }
2777 #else
2778 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2779 {
2780 }
2781 #define shmem_initxattrs NULL
2782 #endif
2783 
2784 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2785 {
2786 	return &SHMEM_I(inode)->dir_offsets;
2787 }
2788 
2789 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2790 					     struct super_block *sb,
2791 					     struct inode *dir, umode_t mode,
2792 					     dev_t dev, unsigned long flags)
2793 {
2794 	struct inode *inode;
2795 	struct shmem_inode_info *info;
2796 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2797 	ino_t ino;
2798 	int err;
2799 
2800 	err = shmem_reserve_inode(sb, &ino);
2801 	if (err)
2802 		return ERR_PTR(err);
2803 
2804 	inode = new_inode(sb);
2805 	if (!inode) {
2806 		shmem_free_inode(sb, 0);
2807 		return ERR_PTR(-ENOSPC);
2808 	}
2809 
2810 	inode->i_ino = ino;
2811 	inode_init_owner(idmap, inode, dir, mode);
2812 	inode->i_blocks = 0;
2813 	simple_inode_init_ts(inode);
2814 	inode->i_generation = get_random_u32();
2815 	info = SHMEM_I(inode);
2816 	memset(info, 0, (char *)inode - (char *)info);
2817 	spin_lock_init(&info->lock);
2818 	atomic_set(&info->stop_eviction, 0);
2819 	info->seals = F_SEAL_SEAL;
2820 	info->flags = flags & VM_NORESERVE;
2821 	info->i_crtime = inode_get_mtime(inode);
2822 	info->fsflags = (dir == NULL) ? 0 :
2823 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2824 	if (info->fsflags)
2825 		shmem_set_inode_flags(inode, info->fsflags);
2826 	INIT_LIST_HEAD(&info->shrinklist);
2827 	INIT_LIST_HEAD(&info->swaplist);
2828 	simple_xattrs_init(&info->xattrs);
2829 	cache_no_acl(inode);
2830 	if (sbinfo->noswap)
2831 		mapping_set_unevictable(inode->i_mapping);
2832 
2833 	/* Don't consider 'deny' for emergencies and 'force' for testing */
2834 	if (sbinfo->huge)
2835 		mapping_set_large_folios(inode->i_mapping);
2836 
2837 	switch (mode & S_IFMT) {
2838 	default:
2839 		inode->i_op = &shmem_special_inode_operations;
2840 		init_special_inode(inode, mode, dev);
2841 		break;
2842 	case S_IFREG:
2843 		inode->i_mapping->a_ops = &shmem_aops;
2844 		inode->i_op = &shmem_inode_operations;
2845 		inode->i_fop = &shmem_file_operations;
2846 		mpol_shared_policy_init(&info->policy,
2847 					 shmem_get_sbmpol(sbinfo));
2848 		break;
2849 	case S_IFDIR:
2850 		inc_nlink(inode);
2851 		/* Some things misbehave if size == 0 on a directory */
2852 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2853 		inode->i_op = &shmem_dir_inode_operations;
2854 		inode->i_fop = &simple_offset_dir_operations;
2855 		simple_offset_init(shmem_get_offset_ctx(inode));
2856 		break;
2857 	case S_IFLNK:
2858 		/*
2859 		 * Must not load anything in the rbtree,
2860 		 * mpol_free_shared_policy will not be called.
2861 		 */
2862 		mpol_shared_policy_init(&info->policy, NULL);
2863 		break;
2864 	}
2865 
2866 	lockdep_annotate_inode_mutex_key(inode);
2867 	return inode;
2868 }
2869 
2870 #ifdef CONFIG_TMPFS_QUOTA
2871 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2872 				     struct super_block *sb, struct inode *dir,
2873 				     umode_t mode, dev_t dev, unsigned long flags)
2874 {
2875 	int err;
2876 	struct inode *inode;
2877 
2878 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2879 	if (IS_ERR(inode))
2880 		return inode;
2881 
2882 	err = dquot_initialize(inode);
2883 	if (err)
2884 		goto errout;
2885 
2886 	err = dquot_alloc_inode(inode);
2887 	if (err) {
2888 		dquot_drop(inode);
2889 		goto errout;
2890 	}
2891 	return inode;
2892 
2893 errout:
2894 	inode->i_flags |= S_NOQUOTA;
2895 	iput(inode);
2896 	return ERR_PTR(err);
2897 }
2898 #else
2899 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2900 				     struct super_block *sb, struct inode *dir,
2901 				     umode_t mode, dev_t dev, unsigned long flags)
2902 {
2903 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2904 }
2905 #endif /* CONFIG_TMPFS_QUOTA */
2906 
2907 #ifdef CONFIG_USERFAULTFD
2908 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2909 			   struct vm_area_struct *dst_vma,
2910 			   unsigned long dst_addr,
2911 			   unsigned long src_addr,
2912 			   uffd_flags_t flags,
2913 			   struct folio **foliop)
2914 {
2915 	struct inode *inode = file_inode(dst_vma->vm_file);
2916 	struct shmem_inode_info *info = SHMEM_I(inode);
2917 	struct address_space *mapping = inode->i_mapping;
2918 	gfp_t gfp = mapping_gfp_mask(mapping);
2919 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2920 	void *page_kaddr;
2921 	struct folio *folio;
2922 	int ret;
2923 	pgoff_t max_off;
2924 
2925 	if (shmem_inode_acct_blocks(inode, 1)) {
2926 		/*
2927 		 * We may have got a page, returned -ENOENT triggering a retry,
2928 		 * and now we find ourselves with -ENOMEM. Release the page, to
2929 		 * avoid a BUG_ON in our caller.
2930 		 */
2931 		if (unlikely(*foliop)) {
2932 			folio_put(*foliop);
2933 			*foliop = NULL;
2934 		}
2935 		return -ENOMEM;
2936 	}
2937 
2938 	if (!*foliop) {
2939 		ret = -ENOMEM;
2940 		folio = shmem_alloc_folio(gfp, 0, info, pgoff);
2941 		if (!folio)
2942 			goto out_unacct_blocks;
2943 
2944 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2945 			page_kaddr = kmap_local_folio(folio, 0);
2946 			/*
2947 			 * The read mmap_lock is held here.  Despite the
2948 			 * mmap_lock being read recursive a deadlock is still
2949 			 * possible if a writer has taken a lock.  For example:
2950 			 *
2951 			 * process A thread 1 takes read lock on own mmap_lock
2952 			 * process A thread 2 calls mmap, blocks taking write lock
2953 			 * process B thread 1 takes page fault, read lock on own mmap lock
2954 			 * process B thread 2 calls mmap, blocks taking write lock
2955 			 * process A thread 1 blocks taking read lock on process B
2956 			 * process B thread 1 blocks taking read lock on process A
2957 			 *
2958 			 * Disable page faults to prevent potential deadlock
2959 			 * and retry the copy outside the mmap_lock.
2960 			 */
2961 			pagefault_disable();
2962 			ret = copy_from_user(page_kaddr,
2963 					     (const void __user *)src_addr,
2964 					     PAGE_SIZE);
2965 			pagefault_enable();
2966 			kunmap_local(page_kaddr);
2967 
2968 			/* fallback to copy_from_user outside mmap_lock */
2969 			if (unlikely(ret)) {
2970 				*foliop = folio;
2971 				ret = -ENOENT;
2972 				/* don't free the page */
2973 				goto out_unacct_blocks;
2974 			}
2975 
2976 			flush_dcache_folio(folio);
2977 		} else {		/* ZEROPAGE */
2978 			clear_user_highpage(&folio->page, dst_addr);
2979 		}
2980 	} else {
2981 		folio = *foliop;
2982 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2983 		*foliop = NULL;
2984 	}
2985 
2986 	VM_BUG_ON(folio_test_locked(folio));
2987 	VM_BUG_ON(folio_test_swapbacked(folio));
2988 	__folio_set_locked(folio);
2989 	__folio_set_swapbacked(folio);
2990 	__folio_mark_uptodate(folio);
2991 
2992 	ret = -EFAULT;
2993 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2994 	if (unlikely(pgoff >= max_off))
2995 		goto out_release;
2996 
2997 	ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
2998 	if (ret)
2999 		goto out_release;
3000 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3001 	if (ret)
3002 		goto out_release;
3003 
3004 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3005 				       &folio->page, true, flags);
3006 	if (ret)
3007 		goto out_delete_from_cache;
3008 
3009 	shmem_recalc_inode(inode, 1, 0);
3010 	folio_unlock(folio);
3011 	return 0;
3012 out_delete_from_cache:
3013 	filemap_remove_folio(folio);
3014 out_release:
3015 	folio_unlock(folio);
3016 	folio_put(folio);
3017 out_unacct_blocks:
3018 	shmem_inode_unacct_blocks(inode, 1);
3019 	return ret;
3020 }
3021 #endif /* CONFIG_USERFAULTFD */
3022 
3023 #ifdef CONFIG_TMPFS
3024 static const struct inode_operations shmem_symlink_inode_operations;
3025 static const struct inode_operations shmem_short_symlink_operations;
3026 
3027 static int
3028 shmem_write_begin(struct file *file, struct address_space *mapping,
3029 			loff_t pos, unsigned len,
3030 			struct folio **foliop, void **fsdata)
3031 {
3032 	struct inode *inode = mapping->host;
3033 	struct shmem_inode_info *info = SHMEM_I(inode);
3034 	pgoff_t index = pos >> PAGE_SHIFT;
3035 	struct folio *folio;
3036 	int ret = 0;
3037 
3038 	/* i_rwsem is held by caller */
3039 	if (unlikely(info->seals & (F_SEAL_GROW |
3040 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3041 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3042 			return -EPERM;
3043 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3044 			return -EPERM;
3045 	}
3046 
3047 	ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3048 	if (ret)
3049 		return ret;
3050 
3051 	if (folio_test_hwpoison(folio) ||
3052 	    (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3053 		folio_unlock(folio);
3054 		folio_put(folio);
3055 		return -EIO;
3056 	}
3057 
3058 	*foliop = folio;
3059 	return 0;
3060 }
3061 
3062 static int
3063 shmem_write_end(struct file *file, struct address_space *mapping,
3064 			loff_t pos, unsigned len, unsigned copied,
3065 			struct folio *folio, void *fsdata)
3066 {
3067 	struct inode *inode = mapping->host;
3068 
3069 	if (pos + copied > inode->i_size)
3070 		i_size_write(inode, pos + copied);
3071 
3072 	if (!folio_test_uptodate(folio)) {
3073 		if (copied < folio_size(folio)) {
3074 			size_t from = offset_in_folio(folio, pos);
3075 			folio_zero_segments(folio, 0, from,
3076 					from + copied, folio_size(folio));
3077 		}
3078 		folio_mark_uptodate(folio);
3079 	}
3080 	folio_mark_dirty(folio);
3081 	folio_unlock(folio);
3082 	folio_put(folio);
3083 
3084 	return copied;
3085 }
3086 
3087 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3088 {
3089 	struct file *file = iocb->ki_filp;
3090 	struct inode *inode = file_inode(file);
3091 	struct address_space *mapping = inode->i_mapping;
3092 	pgoff_t index;
3093 	unsigned long offset;
3094 	int error = 0;
3095 	ssize_t retval = 0;
3096 
3097 	for (;;) {
3098 		struct folio *folio = NULL;
3099 		struct page *page = NULL;
3100 		unsigned long nr, ret;
3101 		loff_t end_offset, i_size = i_size_read(inode);
3102 		bool fallback_page_copy = false;
3103 		size_t fsize;
3104 
3105 		if (unlikely(iocb->ki_pos >= i_size))
3106 			break;
3107 
3108 		index = iocb->ki_pos >> PAGE_SHIFT;
3109 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3110 		if (error) {
3111 			if (error == -EINVAL)
3112 				error = 0;
3113 			break;
3114 		}
3115 		if (folio) {
3116 			folio_unlock(folio);
3117 
3118 			page = folio_file_page(folio, index);
3119 			if (PageHWPoison(page)) {
3120 				folio_put(folio);
3121 				error = -EIO;
3122 				break;
3123 			}
3124 
3125 			if (folio_test_large(folio) &&
3126 			    folio_test_has_hwpoisoned(folio))
3127 				fallback_page_copy = true;
3128 		}
3129 
3130 		/*
3131 		 * We must evaluate after, since reads (unlike writes)
3132 		 * are called without i_rwsem protection against truncate
3133 		 */
3134 		i_size = i_size_read(inode);
3135 		if (unlikely(iocb->ki_pos >= i_size)) {
3136 			if (folio)
3137 				folio_put(folio);
3138 			break;
3139 		}
3140 		end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3141 		if (folio && likely(!fallback_page_copy))
3142 			fsize = folio_size(folio);
3143 		else
3144 			fsize = PAGE_SIZE;
3145 		offset = iocb->ki_pos & (fsize - 1);
3146 		nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3147 
3148 		if (folio) {
3149 			/*
3150 			 * If users can be writing to this page using arbitrary
3151 			 * virtual addresses, take care about potential aliasing
3152 			 * before reading the page on the kernel side.
3153 			 */
3154 			if (mapping_writably_mapped(mapping)) {
3155 				if (likely(!fallback_page_copy))
3156 					flush_dcache_folio(folio);
3157 				else
3158 					flush_dcache_page(page);
3159 			}
3160 
3161 			/*
3162 			 * Mark the folio accessed if we read the beginning.
3163 			 */
3164 			if (!offset)
3165 				folio_mark_accessed(folio);
3166 			/*
3167 			 * Ok, we have the page, and it's up-to-date, so
3168 			 * now we can copy it to user space...
3169 			 */
3170 			if (likely(!fallback_page_copy))
3171 				ret = copy_folio_to_iter(folio, offset, nr, to);
3172 			else
3173 				ret = copy_page_to_iter(page, offset, nr, to);
3174 			folio_put(folio);
3175 		} else if (user_backed_iter(to)) {
3176 			/*
3177 			 * Copy to user tends to be so well optimized, but
3178 			 * clear_user() not so much, that it is noticeably
3179 			 * faster to copy the zero page instead of clearing.
3180 			 */
3181 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3182 		} else {
3183 			/*
3184 			 * But submitting the same page twice in a row to
3185 			 * splice() - or others? - can result in confusion:
3186 			 * so don't attempt that optimization on pipes etc.
3187 			 */
3188 			ret = iov_iter_zero(nr, to);
3189 		}
3190 
3191 		retval += ret;
3192 		iocb->ki_pos += ret;
3193 
3194 		if (!iov_iter_count(to))
3195 			break;
3196 		if (ret < nr) {
3197 			error = -EFAULT;
3198 			break;
3199 		}
3200 		cond_resched();
3201 	}
3202 
3203 	file_accessed(file);
3204 	return retval ? retval : error;
3205 }
3206 
3207 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3208 {
3209 	struct file *file = iocb->ki_filp;
3210 	struct inode *inode = file->f_mapping->host;
3211 	ssize_t ret;
3212 
3213 	inode_lock(inode);
3214 	ret = generic_write_checks(iocb, from);
3215 	if (ret <= 0)
3216 		goto unlock;
3217 	ret = file_remove_privs(file);
3218 	if (ret)
3219 		goto unlock;
3220 	ret = file_update_time(file);
3221 	if (ret)
3222 		goto unlock;
3223 	ret = generic_perform_write(iocb, from);
3224 unlock:
3225 	inode_unlock(inode);
3226 	return ret;
3227 }
3228 
3229 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3230 			      struct pipe_buffer *buf)
3231 {
3232 	return true;
3233 }
3234 
3235 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3236 				  struct pipe_buffer *buf)
3237 {
3238 }
3239 
3240 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3241 				    struct pipe_buffer *buf)
3242 {
3243 	return false;
3244 }
3245 
3246 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3247 	.release	= zero_pipe_buf_release,
3248 	.try_steal	= zero_pipe_buf_try_steal,
3249 	.get		= zero_pipe_buf_get,
3250 };
3251 
3252 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3253 					loff_t fpos, size_t size)
3254 {
3255 	size_t offset = fpos & ~PAGE_MASK;
3256 
3257 	size = min_t(size_t, size, PAGE_SIZE - offset);
3258 
3259 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
3260 		struct pipe_buffer *buf = pipe_head_buf(pipe);
3261 
3262 		*buf = (struct pipe_buffer) {
3263 			.ops	= &zero_pipe_buf_ops,
3264 			.page	= ZERO_PAGE(0),
3265 			.offset	= offset,
3266 			.len	= size,
3267 		};
3268 		pipe->head++;
3269 	}
3270 
3271 	return size;
3272 }
3273 
3274 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3275 				      struct pipe_inode_info *pipe,
3276 				      size_t len, unsigned int flags)
3277 {
3278 	struct inode *inode = file_inode(in);
3279 	struct address_space *mapping = inode->i_mapping;
3280 	struct folio *folio = NULL;
3281 	size_t total_spliced = 0, used, npages, n, part;
3282 	loff_t isize;
3283 	int error = 0;
3284 
3285 	/* Work out how much data we can actually add into the pipe */
3286 	used = pipe_occupancy(pipe->head, pipe->tail);
3287 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
3288 	len = min_t(size_t, len, npages * PAGE_SIZE);
3289 
3290 	do {
3291 		bool fallback_page_splice = false;
3292 		struct page *page = NULL;
3293 		pgoff_t index;
3294 		size_t size;
3295 
3296 		if (*ppos >= i_size_read(inode))
3297 			break;
3298 
3299 		index = *ppos >> PAGE_SHIFT;
3300 		error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3301 		if (error) {
3302 			if (error == -EINVAL)
3303 				error = 0;
3304 			break;
3305 		}
3306 		if (folio) {
3307 			folio_unlock(folio);
3308 
3309 			page = folio_file_page(folio, index);
3310 			if (PageHWPoison(page)) {
3311 				error = -EIO;
3312 				break;
3313 			}
3314 
3315 			if (folio_test_large(folio) &&
3316 			    folio_test_has_hwpoisoned(folio))
3317 				fallback_page_splice = true;
3318 		}
3319 
3320 		/*
3321 		 * i_size must be checked after we know the pages are Uptodate.
3322 		 *
3323 		 * Checking i_size after the check allows us to calculate
3324 		 * the correct value for "nr", which means the zero-filled
3325 		 * part of the page is not copied back to userspace (unless
3326 		 * another truncate extends the file - this is desired though).
3327 		 */
3328 		isize = i_size_read(inode);
3329 		if (unlikely(*ppos >= isize))
3330 			break;
3331 		/*
3332 		 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3333 		 * pages.
3334 		 */
3335 		size = len;
3336 		if (unlikely(fallback_page_splice)) {
3337 			size_t offset = *ppos & ~PAGE_MASK;
3338 
3339 			size = umin(size, PAGE_SIZE - offset);
3340 		}
3341 		part = min_t(loff_t, isize - *ppos, size);
3342 
3343 		if (folio) {
3344 			/*
3345 			 * If users can be writing to this page using arbitrary
3346 			 * virtual addresses, take care about potential aliasing
3347 			 * before reading the page on the kernel side.
3348 			 */
3349 			if (mapping_writably_mapped(mapping)) {
3350 				if (likely(!fallback_page_splice))
3351 					flush_dcache_folio(folio);
3352 				else
3353 					flush_dcache_page(page);
3354 			}
3355 			folio_mark_accessed(folio);
3356 			/*
3357 			 * Ok, we have the page, and it's up-to-date, so we can
3358 			 * now splice it into the pipe.
3359 			 */
3360 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3361 			folio_put(folio);
3362 			folio = NULL;
3363 		} else {
3364 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
3365 		}
3366 
3367 		if (!n)
3368 			break;
3369 		len -= n;
3370 		total_spliced += n;
3371 		*ppos += n;
3372 		in->f_ra.prev_pos = *ppos;
3373 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3374 			break;
3375 
3376 		cond_resched();
3377 	} while (len);
3378 
3379 	if (folio)
3380 		folio_put(folio);
3381 
3382 	file_accessed(in);
3383 	return total_spliced ? total_spliced : error;
3384 }
3385 
3386 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3387 {
3388 	struct address_space *mapping = file->f_mapping;
3389 	struct inode *inode = mapping->host;
3390 
3391 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3392 		return generic_file_llseek_size(file, offset, whence,
3393 					MAX_LFS_FILESIZE, i_size_read(inode));
3394 	if (offset < 0)
3395 		return -ENXIO;
3396 
3397 	inode_lock(inode);
3398 	/* We're holding i_rwsem so we can access i_size directly */
3399 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3400 	if (offset >= 0)
3401 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3402 	inode_unlock(inode);
3403 	return offset;
3404 }
3405 
3406 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3407 							 loff_t len)
3408 {
3409 	struct inode *inode = file_inode(file);
3410 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3411 	struct shmem_inode_info *info = SHMEM_I(inode);
3412 	struct shmem_falloc shmem_falloc;
3413 	pgoff_t start, index, end, undo_fallocend;
3414 	int error;
3415 
3416 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3417 		return -EOPNOTSUPP;
3418 
3419 	inode_lock(inode);
3420 
3421 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3422 		struct address_space *mapping = file->f_mapping;
3423 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3424 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3425 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3426 
3427 		/* protected by i_rwsem */
3428 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3429 			error = -EPERM;
3430 			goto out;
3431 		}
3432 
3433 		shmem_falloc.waitq = &shmem_falloc_waitq;
3434 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3435 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3436 		spin_lock(&inode->i_lock);
3437 		inode->i_private = &shmem_falloc;
3438 		spin_unlock(&inode->i_lock);
3439 
3440 		if ((u64)unmap_end > (u64)unmap_start)
3441 			unmap_mapping_range(mapping, unmap_start,
3442 					    1 + unmap_end - unmap_start, 0);
3443 		shmem_truncate_range(inode, offset, offset + len - 1);
3444 		/* No need to unmap again: hole-punching leaves COWed pages */
3445 
3446 		spin_lock(&inode->i_lock);
3447 		inode->i_private = NULL;
3448 		wake_up_all(&shmem_falloc_waitq);
3449 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3450 		spin_unlock(&inode->i_lock);
3451 		error = 0;
3452 		goto out;
3453 	}
3454 
3455 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3456 	error = inode_newsize_ok(inode, offset + len);
3457 	if (error)
3458 		goto out;
3459 
3460 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3461 		error = -EPERM;
3462 		goto out;
3463 	}
3464 
3465 	start = offset >> PAGE_SHIFT;
3466 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3467 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3468 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3469 		error = -ENOSPC;
3470 		goto out;
3471 	}
3472 
3473 	shmem_falloc.waitq = NULL;
3474 	shmem_falloc.start = start;
3475 	shmem_falloc.next  = start;
3476 	shmem_falloc.nr_falloced = 0;
3477 	shmem_falloc.nr_unswapped = 0;
3478 	spin_lock(&inode->i_lock);
3479 	inode->i_private = &shmem_falloc;
3480 	spin_unlock(&inode->i_lock);
3481 
3482 	/*
3483 	 * info->fallocend is only relevant when huge pages might be
3484 	 * involved: to prevent split_huge_page() freeing fallocated
3485 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3486 	 */
3487 	undo_fallocend = info->fallocend;
3488 	if (info->fallocend < end)
3489 		info->fallocend = end;
3490 
3491 	for (index = start; index < end; ) {
3492 		struct folio *folio;
3493 
3494 		/*
3495 		 * Check for fatal signal so that we abort early in OOM
3496 		 * situations. We don't want to abort in case of non-fatal
3497 		 * signals as large fallocate can take noticeable time and
3498 		 * e.g. periodic timers may result in fallocate constantly
3499 		 * restarting.
3500 		 */
3501 		if (fatal_signal_pending(current))
3502 			error = -EINTR;
3503 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3504 			error = -ENOMEM;
3505 		else
3506 			error = shmem_get_folio(inode, index, offset + len,
3507 						&folio, SGP_FALLOC);
3508 		if (error) {
3509 			info->fallocend = undo_fallocend;
3510 			/* Remove the !uptodate folios we added */
3511 			if (index > start) {
3512 				shmem_undo_range(inode,
3513 				    (loff_t)start << PAGE_SHIFT,
3514 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3515 			}
3516 			goto undone;
3517 		}
3518 
3519 		/*
3520 		 * Here is a more important optimization than it appears:
3521 		 * a second SGP_FALLOC on the same large folio will clear it,
3522 		 * making it uptodate and un-undoable if we fail later.
3523 		 */
3524 		index = folio_next_index(folio);
3525 		/* Beware 32-bit wraparound */
3526 		if (!index)
3527 			index--;
3528 
3529 		/*
3530 		 * Inform shmem_writepage() how far we have reached.
3531 		 * No need for lock or barrier: we have the page lock.
3532 		 */
3533 		if (!folio_test_uptodate(folio))
3534 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3535 		shmem_falloc.next = index;
3536 
3537 		/*
3538 		 * If !uptodate, leave it that way so that freeable folios
3539 		 * can be recognized if we need to rollback on error later.
3540 		 * But mark it dirty so that memory pressure will swap rather
3541 		 * than free the folios we are allocating (and SGP_CACHE folios
3542 		 * might still be clean: we now need to mark those dirty too).
3543 		 */
3544 		folio_mark_dirty(folio);
3545 		folio_unlock(folio);
3546 		folio_put(folio);
3547 		cond_resched();
3548 	}
3549 
3550 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3551 		i_size_write(inode, offset + len);
3552 undone:
3553 	spin_lock(&inode->i_lock);
3554 	inode->i_private = NULL;
3555 	spin_unlock(&inode->i_lock);
3556 out:
3557 	if (!error)
3558 		file_modified(file);
3559 	inode_unlock(inode);
3560 	return error;
3561 }
3562 
3563 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3564 {
3565 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3566 
3567 	buf->f_type = TMPFS_MAGIC;
3568 	buf->f_bsize = PAGE_SIZE;
3569 	buf->f_namelen = NAME_MAX;
3570 	if (sbinfo->max_blocks) {
3571 		buf->f_blocks = sbinfo->max_blocks;
3572 		buf->f_bavail =
3573 		buf->f_bfree  = sbinfo->max_blocks -
3574 				percpu_counter_sum(&sbinfo->used_blocks);
3575 	}
3576 	if (sbinfo->max_inodes) {
3577 		buf->f_files = sbinfo->max_inodes;
3578 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3579 	}
3580 	/* else leave those fields 0 like simple_statfs */
3581 
3582 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3583 
3584 	return 0;
3585 }
3586 
3587 /*
3588  * File creation. Allocate an inode, and we're done..
3589  */
3590 static int
3591 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3592 	    struct dentry *dentry, umode_t mode, dev_t dev)
3593 {
3594 	struct inode *inode;
3595 	int error;
3596 
3597 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3598 	if (IS_ERR(inode))
3599 		return PTR_ERR(inode);
3600 
3601 	error = simple_acl_create(dir, inode);
3602 	if (error)
3603 		goto out_iput;
3604 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3605 					     shmem_initxattrs, NULL);
3606 	if (error && error != -EOPNOTSUPP)
3607 		goto out_iput;
3608 
3609 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3610 	if (error)
3611 		goto out_iput;
3612 
3613 	dir->i_size += BOGO_DIRENT_SIZE;
3614 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3615 	inode_inc_iversion(dir);
3616 	d_instantiate(dentry, inode);
3617 	dget(dentry); /* Extra count - pin the dentry in core */
3618 	return error;
3619 
3620 out_iput:
3621 	iput(inode);
3622 	return error;
3623 }
3624 
3625 static int
3626 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3627 	      struct file *file, umode_t mode)
3628 {
3629 	struct inode *inode;
3630 	int error;
3631 
3632 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3633 	if (IS_ERR(inode)) {
3634 		error = PTR_ERR(inode);
3635 		goto err_out;
3636 	}
3637 	error = security_inode_init_security(inode, dir, NULL,
3638 					     shmem_initxattrs, NULL);
3639 	if (error && error != -EOPNOTSUPP)
3640 		goto out_iput;
3641 	error = simple_acl_create(dir, inode);
3642 	if (error)
3643 		goto out_iput;
3644 	d_tmpfile(file, inode);
3645 
3646 err_out:
3647 	return finish_open_simple(file, error);
3648 out_iput:
3649 	iput(inode);
3650 	return error;
3651 }
3652 
3653 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3654 		       struct dentry *dentry, umode_t mode)
3655 {
3656 	int error;
3657 
3658 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3659 	if (error)
3660 		return error;
3661 	inc_nlink(dir);
3662 	return 0;
3663 }
3664 
3665 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3666 			struct dentry *dentry, umode_t mode, bool excl)
3667 {
3668 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3669 }
3670 
3671 /*
3672  * Link a file..
3673  */
3674 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3675 		      struct dentry *dentry)
3676 {
3677 	struct inode *inode = d_inode(old_dentry);
3678 	int ret = 0;
3679 
3680 	/*
3681 	 * No ordinary (disk based) filesystem counts links as inodes;
3682 	 * but each new link needs a new dentry, pinning lowmem, and
3683 	 * tmpfs dentries cannot be pruned until they are unlinked.
3684 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3685 	 * first link must skip that, to get the accounting right.
3686 	 */
3687 	if (inode->i_nlink) {
3688 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3689 		if (ret)
3690 			goto out;
3691 	}
3692 
3693 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3694 	if (ret) {
3695 		if (inode->i_nlink)
3696 			shmem_free_inode(inode->i_sb, 0);
3697 		goto out;
3698 	}
3699 
3700 	dir->i_size += BOGO_DIRENT_SIZE;
3701 	inode_set_mtime_to_ts(dir,
3702 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3703 	inode_inc_iversion(dir);
3704 	inc_nlink(inode);
3705 	ihold(inode);	/* New dentry reference */
3706 	dget(dentry);	/* Extra pinning count for the created dentry */
3707 	d_instantiate(dentry, inode);
3708 out:
3709 	return ret;
3710 }
3711 
3712 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3713 {
3714 	struct inode *inode = d_inode(dentry);
3715 
3716 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3717 		shmem_free_inode(inode->i_sb, 0);
3718 
3719 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3720 
3721 	dir->i_size -= BOGO_DIRENT_SIZE;
3722 	inode_set_mtime_to_ts(dir,
3723 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3724 	inode_inc_iversion(dir);
3725 	drop_nlink(inode);
3726 	dput(dentry);	/* Undo the count from "create" - does all the work */
3727 	return 0;
3728 }
3729 
3730 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3731 {
3732 	if (!simple_offset_empty(dentry))
3733 		return -ENOTEMPTY;
3734 
3735 	drop_nlink(d_inode(dentry));
3736 	drop_nlink(dir);
3737 	return shmem_unlink(dir, dentry);
3738 }
3739 
3740 static int shmem_whiteout(struct mnt_idmap *idmap,
3741 			  struct inode *old_dir, struct dentry *old_dentry)
3742 {
3743 	struct dentry *whiteout;
3744 	int error;
3745 
3746 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3747 	if (!whiteout)
3748 		return -ENOMEM;
3749 
3750 	error = shmem_mknod(idmap, old_dir, whiteout,
3751 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3752 	dput(whiteout);
3753 	if (error)
3754 		return error;
3755 
3756 	/*
3757 	 * Cheat and hash the whiteout while the old dentry is still in
3758 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3759 	 *
3760 	 * d_lookup() will consistently find one of them at this point,
3761 	 * not sure which one, but that isn't even important.
3762 	 */
3763 	d_rehash(whiteout);
3764 	return 0;
3765 }
3766 
3767 /*
3768  * The VFS layer already does all the dentry stuff for rename,
3769  * we just have to decrement the usage count for the target if
3770  * it exists so that the VFS layer correctly free's it when it
3771  * gets overwritten.
3772  */
3773 static int shmem_rename2(struct mnt_idmap *idmap,
3774 			 struct inode *old_dir, struct dentry *old_dentry,
3775 			 struct inode *new_dir, struct dentry *new_dentry,
3776 			 unsigned int flags)
3777 {
3778 	struct inode *inode = d_inode(old_dentry);
3779 	int they_are_dirs = S_ISDIR(inode->i_mode);
3780 	int error;
3781 
3782 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3783 		return -EINVAL;
3784 
3785 	if (flags & RENAME_EXCHANGE)
3786 		return simple_offset_rename_exchange(old_dir, old_dentry,
3787 						     new_dir, new_dentry);
3788 
3789 	if (!simple_offset_empty(new_dentry))
3790 		return -ENOTEMPTY;
3791 
3792 	if (flags & RENAME_WHITEOUT) {
3793 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3794 		if (error)
3795 			return error;
3796 	}
3797 
3798 	error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
3799 	if (error)
3800 		return error;
3801 
3802 	if (d_really_is_positive(new_dentry)) {
3803 		(void) shmem_unlink(new_dir, new_dentry);
3804 		if (they_are_dirs) {
3805 			drop_nlink(d_inode(new_dentry));
3806 			drop_nlink(old_dir);
3807 		}
3808 	} else if (they_are_dirs) {
3809 		drop_nlink(old_dir);
3810 		inc_nlink(new_dir);
3811 	}
3812 
3813 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3814 	new_dir->i_size += BOGO_DIRENT_SIZE;
3815 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3816 	inode_inc_iversion(old_dir);
3817 	inode_inc_iversion(new_dir);
3818 	return 0;
3819 }
3820 
3821 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3822 			 struct dentry *dentry, const char *symname)
3823 {
3824 	int error;
3825 	int len;
3826 	struct inode *inode;
3827 	struct folio *folio;
3828 
3829 	len = strlen(symname) + 1;
3830 	if (len > PAGE_SIZE)
3831 		return -ENAMETOOLONG;
3832 
3833 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3834 				VM_NORESERVE);
3835 	if (IS_ERR(inode))
3836 		return PTR_ERR(inode);
3837 
3838 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3839 					     shmem_initxattrs, NULL);
3840 	if (error && error != -EOPNOTSUPP)
3841 		goto out_iput;
3842 
3843 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3844 	if (error)
3845 		goto out_iput;
3846 
3847 	inode->i_size = len-1;
3848 	if (len <= SHORT_SYMLINK_LEN) {
3849 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3850 		if (!inode->i_link) {
3851 			error = -ENOMEM;
3852 			goto out_remove_offset;
3853 		}
3854 		inode->i_op = &shmem_short_symlink_operations;
3855 	} else {
3856 		inode_nohighmem(inode);
3857 		inode->i_mapping->a_ops = &shmem_aops;
3858 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
3859 		if (error)
3860 			goto out_remove_offset;
3861 		inode->i_op = &shmem_symlink_inode_operations;
3862 		memcpy(folio_address(folio), symname, len);
3863 		folio_mark_uptodate(folio);
3864 		folio_mark_dirty(folio);
3865 		folio_unlock(folio);
3866 		folio_put(folio);
3867 	}
3868 	dir->i_size += BOGO_DIRENT_SIZE;
3869 	inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3870 	inode_inc_iversion(dir);
3871 	d_instantiate(dentry, inode);
3872 	dget(dentry);
3873 	return 0;
3874 
3875 out_remove_offset:
3876 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3877 out_iput:
3878 	iput(inode);
3879 	return error;
3880 }
3881 
3882 static void shmem_put_link(void *arg)
3883 {
3884 	folio_mark_accessed(arg);
3885 	folio_put(arg);
3886 }
3887 
3888 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
3889 				  struct delayed_call *done)
3890 {
3891 	struct folio *folio = NULL;
3892 	int error;
3893 
3894 	if (!dentry) {
3895 		folio = filemap_get_folio(inode->i_mapping, 0);
3896 		if (IS_ERR(folio))
3897 			return ERR_PTR(-ECHILD);
3898 		if (PageHWPoison(folio_page(folio, 0)) ||
3899 		    !folio_test_uptodate(folio)) {
3900 			folio_put(folio);
3901 			return ERR_PTR(-ECHILD);
3902 		}
3903 	} else {
3904 		error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
3905 		if (error)
3906 			return ERR_PTR(error);
3907 		if (!folio)
3908 			return ERR_PTR(-ECHILD);
3909 		if (PageHWPoison(folio_page(folio, 0))) {
3910 			folio_unlock(folio);
3911 			folio_put(folio);
3912 			return ERR_PTR(-ECHILD);
3913 		}
3914 		folio_unlock(folio);
3915 	}
3916 	set_delayed_call(done, shmem_put_link, folio);
3917 	return folio_address(folio);
3918 }
3919 
3920 #ifdef CONFIG_TMPFS_XATTR
3921 
3922 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3923 {
3924 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3925 
3926 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3927 
3928 	return 0;
3929 }
3930 
3931 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3932 			      struct dentry *dentry, struct fileattr *fa)
3933 {
3934 	struct inode *inode = d_inode(dentry);
3935 	struct shmem_inode_info *info = SHMEM_I(inode);
3936 
3937 	if (fileattr_has_fsx(fa))
3938 		return -EOPNOTSUPP;
3939 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3940 		return -EOPNOTSUPP;
3941 
3942 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3943 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3944 
3945 	shmem_set_inode_flags(inode, info->fsflags);
3946 	inode_set_ctime_current(inode);
3947 	inode_inc_iversion(inode);
3948 	return 0;
3949 }
3950 
3951 /*
3952  * Superblocks without xattr inode operations may get some security.* xattr
3953  * support from the LSM "for free". As soon as we have any other xattrs
3954  * like ACLs, we also need to implement the security.* handlers at
3955  * filesystem level, though.
3956  */
3957 
3958 /*
3959  * Callback for security_inode_init_security() for acquiring xattrs.
3960  */
3961 static int shmem_initxattrs(struct inode *inode,
3962 			    const struct xattr *xattr_array, void *fs_info)
3963 {
3964 	struct shmem_inode_info *info = SHMEM_I(inode);
3965 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3966 	const struct xattr *xattr;
3967 	struct simple_xattr *new_xattr;
3968 	size_t ispace = 0;
3969 	size_t len;
3970 
3971 	if (sbinfo->max_inodes) {
3972 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3973 			ispace += simple_xattr_space(xattr->name,
3974 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3975 		}
3976 		if (ispace) {
3977 			raw_spin_lock(&sbinfo->stat_lock);
3978 			if (sbinfo->free_ispace < ispace)
3979 				ispace = 0;
3980 			else
3981 				sbinfo->free_ispace -= ispace;
3982 			raw_spin_unlock(&sbinfo->stat_lock);
3983 			if (!ispace)
3984 				return -ENOSPC;
3985 		}
3986 	}
3987 
3988 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3989 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3990 		if (!new_xattr)
3991 			break;
3992 
3993 		len = strlen(xattr->name) + 1;
3994 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3995 					  GFP_KERNEL_ACCOUNT);
3996 		if (!new_xattr->name) {
3997 			kvfree(new_xattr);
3998 			break;
3999 		}
4000 
4001 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4002 		       XATTR_SECURITY_PREFIX_LEN);
4003 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4004 		       xattr->name, len);
4005 
4006 		simple_xattr_add(&info->xattrs, new_xattr);
4007 	}
4008 
4009 	if (xattr->name != NULL) {
4010 		if (ispace) {
4011 			raw_spin_lock(&sbinfo->stat_lock);
4012 			sbinfo->free_ispace += ispace;
4013 			raw_spin_unlock(&sbinfo->stat_lock);
4014 		}
4015 		simple_xattrs_free(&info->xattrs, NULL);
4016 		return -ENOMEM;
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4023 				   struct dentry *unused, struct inode *inode,
4024 				   const char *name, void *buffer, size_t size)
4025 {
4026 	struct shmem_inode_info *info = SHMEM_I(inode);
4027 
4028 	name = xattr_full_name(handler, name);
4029 	return simple_xattr_get(&info->xattrs, name, buffer, size);
4030 }
4031 
4032 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4033 				   struct mnt_idmap *idmap,
4034 				   struct dentry *unused, struct inode *inode,
4035 				   const char *name, const void *value,
4036 				   size_t size, int flags)
4037 {
4038 	struct shmem_inode_info *info = SHMEM_I(inode);
4039 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4040 	struct simple_xattr *old_xattr;
4041 	size_t ispace = 0;
4042 
4043 	name = xattr_full_name(handler, name);
4044 	if (value && sbinfo->max_inodes) {
4045 		ispace = simple_xattr_space(name, size);
4046 		raw_spin_lock(&sbinfo->stat_lock);
4047 		if (sbinfo->free_ispace < ispace)
4048 			ispace = 0;
4049 		else
4050 			sbinfo->free_ispace -= ispace;
4051 		raw_spin_unlock(&sbinfo->stat_lock);
4052 		if (!ispace)
4053 			return -ENOSPC;
4054 	}
4055 
4056 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4057 	if (!IS_ERR(old_xattr)) {
4058 		ispace = 0;
4059 		if (old_xattr && sbinfo->max_inodes)
4060 			ispace = simple_xattr_space(old_xattr->name,
4061 						    old_xattr->size);
4062 		simple_xattr_free(old_xattr);
4063 		old_xattr = NULL;
4064 		inode_set_ctime_current(inode);
4065 		inode_inc_iversion(inode);
4066 	}
4067 	if (ispace) {
4068 		raw_spin_lock(&sbinfo->stat_lock);
4069 		sbinfo->free_ispace += ispace;
4070 		raw_spin_unlock(&sbinfo->stat_lock);
4071 	}
4072 	return PTR_ERR(old_xattr);
4073 }
4074 
4075 static const struct xattr_handler shmem_security_xattr_handler = {
4076 	.prefix = XATTR_SECURITY_PREFIX,
4077 	.get = shmem_xattr_handler_get,
4078 	.set = shmem_xattr_handler_set,
4079 };
4080 
4081 static const struct xattr_handler shmem_trusted_xattr_handler = {
4082 	.prefix = XATTR_TRUSTED_PREFIX,
4083 	.get = shmem_xattr_handler_get,
4084 	.set = shmem_xattr_handler_set,
4085 };
4086 
4087 static const struct xattr_handler shmem_user_xattr_handler = {
4088 	.prefix = XATTR_USER_PREFIX,
4089 	.get = shmem_xattr_handler_get,
4090 	.set = shmem_xattr_handler_set,
4091 };
4092 
4093 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4094 	&shmem_security_xattr_handler,
4095 	&shmem_trusted_xattr_handler,
4096 	&shmem_user_xattr_handler,
4097 	NULL
4098 };
4099 
4100 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4101 {
4102 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4103 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4104 }
4105 #endif /* CONFIG_TMPFS_XATTR */
4106 
4107 static const struct inode_operations shmem_short_symlink_operations = {
4108 	.getattr	= shmem_getattr,
4109 	.setattr	= shmem_setattr,
4110 	.get_link	= simple_get_link,
4111 #ifdef CONFIG_TMPFS_XATTR
4112 	.listxattr	= shmem_listxattr,
4113 #endif
4114 };
4115 
4116 static const struct inode_operations shmem_symlink_inode_operations = {
4117 	.getattr	= shmem_getattr,
4118 	.setattr	= shmem_setattr,
4119 	.get_link	= shmem_get_link,
4120 #ifdef CONFIG_TMPFS_XATTR
4121 	.listxattr	= shmem_listxattr,
4122 #endif
4123 };
4124 
4125 static struct dentry *shmem_get_parent(struct dentry *child)
4126 {
4127 	return ERR_PTR(-ESTALE);
4128 }
4129 
4130 static int shmem_match(struct inode *ino, void *vfh)
4131 {
4132 	__u32 *fh = vfh;
4133 	__u64 inum = fh[2];
4134 	inum = (inum << 32) | fh[1];
4135 	return ino->i_ino == inum && fh[0] == ino->i_generation;
4136 }
4137 
4138 /* Find any alias of inode, but prefer a hashed alias */
4139 static struct dentry *shmem_find_alias(struct inode *inode)
4140 {
4141 	struct dentry *alias = d_find_alias(inode);
4142 
4143 	return alias ?: d_find_any_alias(inode);
4144 }
4145 
4146 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4147 		struct fid *fid, int fh_len, int fh_type)
4148 {
4149 	struct inode *inode;
4150 	struct dentry *dentry = NULL;
4151 	u64 inum;
4152 
4153 	if (fh_len < 3)
4154 		return NULL;
4155 
4156 	inum = fid->raw[2];
4157 	inum = (inum << 32) | fid->raw[1];
4158 
4159 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4160 			shmem_match, fid->raw);
4161 	if (inode) {
4162 		dentry = shmem_find_alias(inode);
4163 		iput(inode);
4164 	}
4165 
4166 	return dentry;
4167 }
4168 
4169 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4170 				struct inode *parent)
4171 {
4172 	if (*len < 3) {
4173 		*len = 3;
4174 		return FILEID_INVALID;
4175 	}
4176 
4177 	if (inode_unhashed(inode)) {
4178 		/* Unfortunately insert_inode_hash is not idempotent,
4179 		 * so as we hash inodes here rather than at creation
4180 		 * time, we need a lock to ensure we only try
4181 		 * to do it once
4182 		 */
4183 		static DEFINE_SPINLOCK(lock);
4184 		spin_lock(&lock);
4185 		if (inode_unhashed(inode))
4186 			__insert_inode_hash(inode,
4187 					    inode->i_ino + inode->i_generation);
4188 		spin_unlock(&lock);
4189 	}
4190 
4191 	fh[0] = inode->i_generation;
4192 	fh[1] = inode->i_ino;
4193 	fh[2] = ((__u64)inode->i_ino) >> 32;
4194 
4195 	*len = 3;
4196 	return 1;
4197 }
4198 
4199 static const struct export_operations shmem_export_ops = {
4200 	.get_parent     = shmem_get_parent,
4201 	.encode_fh      = shmem_encode_fh,
4202 	.fh_to_dentry	= shmem_fh_to_dentry,
4203 };
4204 
4205 enum shmem_param {
4206 	Opt_gid,
4207 	Opt_huge,
4208 	Opt_mode,
4209 	Opt_mpol,
4210 	Opt_nr_blocks,
4211 	Opt_nr_inodes,
4212 	Opt_size,
4213 	Opt_uid,
4214 	Opt_inode32,
4215 	Opt_inode64,
4216 	Opt_noswap,
4217 	Opt_quota,
4218 	Opt_usrquota,
4219 	Opt_grpquota,
4220 	Opt_usrquota_block_hardlimit,
4221 	Opt_usrquota_inode_hardlimit,
4222 	Opt_grpquota_block_hardlimit,
4223 	Opt_grpquota_inode_hardlimit,
4224 };
4225 
4226 static const struct constant_table shmem_param_enums_huge[] = {
4227 	{"never",	SHMEM_HUGE_NEVER },
4228 	{"always",	SHMEM_HUGE_ALWAYS },
4229 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
4230 	{"advise",	SHMEM_HUGE_ADVISE },
4231 	{}
4232 };
4233 
4234 const struct fs_parameter_spec shmem_fs_parameters[] = {
4235 	fsparam_gid   ("gid",		Opt_gid),
4236 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
4237 	fsparam_u32oct("mode",		Opt_mode),
4238 	fsparam_string("mpol",		Opt_mpol),
4239 	fsparam_string("nr_blocks",	Opt_nr_blocks),
4240 	fsparam_string("nr_inodes",	Opt_nr_inodes),
4241 	fsparam_string("size",		Opt_size),
4242 	fsparam_uid   ("uid",		Opt_uid),
4243 	fsparam_flag  ("inode32",	Opt_inode32),
4244 	fsparam_flag  ("inode64",	Opt_inode64),
4245 	fsparam_flag  ("noswap",	Opt_noswap),
4246 #ifdef CONFIG_TMPFS_QUOTA
4247 	fsparam_flag  ("quota",		Opt_quota),
4248 	fsparam_flag  ("usrquota",	Opt_usrquota),
4249 	fsparam_flag  ("grpquota",	Opt_grpquota),
4250 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4251 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4252 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4253 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4254 #endif
4255 	{}
4256 };
4257 
4258 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4259 {
4260 	struct shmem_options *ctx = fc->fs_private;
4261 	struct fs_parse_result result;
4262 	unsigned long long size;
4263 	char *rest;
4264 	int opt;
4265 	kuid_t kuid;
4266 	kgid_t kgid;
4267 
4268 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4269 	if (opt < 0)
4270 		return opt;
4271 
4272 	switch (opt) {
4273 	case Opt_size:
4274 		size = memparse(param->string, &rest);
4275 		if (*rest == '%') {
4276 			size <<= PAGE_SHIFT;
4277 			size *= totalram_pages();
4278 			do_div(size, 100);
4279 			rest++;
4280 		}
4281 		if (*rest)
4282 			goto bad_value;
4283 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4284 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4285 		break;
4286 	case Opt_nr_blocks:
4287 		ctx->blocks = memparse(param->string, &rest);
4288 		if (*rest || ctx->blocks > LONG_MAX)
4289 			goto bad_value;
4290 		ctx->seen |= SHMEM_SEEN_BLOCKS;
4291 		break;
4292 	case Opt_nr_inodes:
4293 		ctx->inodes = memparse(param->string, &rest);
4294 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4295 			goto bad_value;
4296 		ctx->seen |= SHMEM_SEEN_INODES;
4297 		break;
4298 	case Opt_mode:
4299 		ctx->mode = result.uint_32 & 07777;
4300 		break;
4301 	case Opt_uid:
4302 		kuid = result.uid;
4303 
4304 		/*
4305 		 * The requested uid must be representable in the
4306 		 * filesystem's idmapping.
4307 		 */
4308 		if (!kuid_has_mapping(fc->user_ns, kuid))
4309 			goto bad_value;
4310 
4311 		ctx->uid = kuid;
4312 		break;
4313 	case Opt_gid:
4314 		kgid = result.gid;
4315 
4316 		/*
4317 		 * The requested gid must be representable in the
4318 		 * filesystem's idmapping.
4319 		 */
4320 		if (!kgid_has_mapping(fc->user_ns, kgid))
4321 			goto bad_value;
4322 
4323 		ctx->gid = kgid;
4324 		break;
4325 	case Opt_huge:
4326 		ctx->huge = result.uint_32;
4327 		if (ctx->huge != SHMEM_HUGE_NEVER &&
4328 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4329 		      has_transparent_hugepage()))
4330 			goto unsupported_parameter;
4331 		ctx->seen |= SHMEM_SEEN_HUGE;
4332 		break;
4333 	case Opt_mpol:
4334 		if (IS_ENABLED(CONFIG_NUMA)) {
4335 			mpol_put(ctx->mpol);
4336 			ctx->mpol = NULL;
4337 			if (mpol_parse_str(param->string, &ctx->mpol))
4338 				goto bad_value;
4339 			break;
4340 		}
4341 		goto unsupported_parameter;
4342 	case Opt_inode32:
4343 		ctx->full_inums = false;
4344 		ctx->seen |= SHMEM_SEEN_INUMS;
4345 		break;
4346 	case Opt_inode64:
4347 		if (sizeof(ino_t) < 8) {
4348 			return invalfc(fc,
4349 				       "Cannot use inode64 with <64bit inums in kernel\n");
4350 		}
4351 		ctx->full_inums = true;
4352 		ctx->seen |= SHMEM_SEEN_INUMS;
4353 		break;
4354 	case Opt_noswap:
4355 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4356 			return invalfc(fc,
4357 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
4358 		}
4359 		ctx->noswap = true;
4360 		ctx->seen |= SHMEM_SEEN_NOSWAP;
4361 		break;
4362 	case Opt_quota:
4363 		if (fc->user_ns != &init_user_ns)
4364 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4365 		ctx->seen |= SHMEM_SEEN_QUOTA;
4366 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4367 		break;
4368 	case Opt_usrquota:
4369 		if (fc->user_ns != &init_user_ns)
4370 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4371 		ctx->seen |= SHMEM_SEEN_QUOTA;
4372 		ctx->quota_types |= QTYPE_MASK_USR;
4373 		break;
4374 	case Opt_grpquota:
4375 		if (fc->user_ns != &init_user_ns)
4376 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4377 		ctx->seen |= SHMEM_SEEN_QUOTA;
4378 		ctx->quota_types |= QTYPE_MASK_GRP;
4379 		break;
4380 	case Opt_usrquota_block_hardlimit:
4381 		size = memparse(param->string, &rest);
4382 		if (*rest || !size)
4383 			goto bad_value;
4384 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4385 			return invalfc(fc,
4386 				       "User quota block hardlimit too large.");
4387 		ctx->qlimits.usrquota_bhardlimit = size;
4388 		break;
4389 	case Opt_grpquota_block_hardlimit:
4390 		size = memparse(param->string, &rest);
4391 		if (*rest || !size)
4392 			goto bad_value;
4393 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4394 			return invalfc(fc,
4395 				       "Group quota block hardlimit too large.");
4396 		ctx->qlimits.grpquota_bhardlimit = size;
4397 		break;
4398 	case Opt_usrquota_inode_hardlimit:
4399 		size = memparse(param->string, &rest);
4400 		if (*rest || !size)
4401 			goto bad_value;
4402 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4403 			return invalfc(fc,
4404 				       "User quota inode hardlimit too large.");
4405 		ctx->qlimits.usrquota_ihardlimit = size;
4406 		break;
4407 	case Opt_grpquota_inode_hardlimit:
4408 		size = memparse(param->string, &rest);
4409 		if (*rest || !size)
4410 			goto bad_value;
4411 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4412 			return invalfc(fc,
4413 				       "Group quota inode hardlimit too large.");
4414 		ctx->qlimits.grpquota_ihardlimit = size;
4415 		break;
4416 	}
4417 	return 0;
4418 
4419 unsupported_parameter:
4420 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4421 bad_value:
4422 	return invalfc(fc, "Bad value for '%s'", param->key);
4423 }
4424 
4425 static int shmem_parse_options(struct fs_context *fc, void *data)
4426 {
4427 	char *options = data;
4428 
4429 	if (options) {
4430 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4431 		if (err)
4432 			return err;
4433 	}
4434 
4435 	while (options != NULL) {
4436 		char *this_char = options;
4437 		for (;;) {
4438 			/*
4439 			 * NUL-terminate this option: unfortunately,
4440 			 * mount options form a comma-separated list,
4441 			 * but mpol's nodelist may also contain commas.
4442 			 */
4443 			options = strchr(options, ',');
4444 			if (options == NULL)
4445 				break;
4446 			options++;
4447 			if (!isdigit(*options)) {
4448 				options[-1] = '\0';
4449 				break;
4450 			}
4451 		}
4452 		if (*this_char) {
4453 			char *value = strchr(this_char, '=');
4454 			size_t len = 0;
4455 			int err;
4456 
4457 			if (value) {
4458 				*value++ = '\0';
4459 				len = strlen(value);
4460 			}
4461 			err = vfs_parse_fs_string(fc, this_char, value, len);
4462 			if (err < 0)
4463 				return err;
4464 		}
4465 	}
4466 	return 0;
4467 }
4468 
4469 /*
4470  * Reconfigure a shmem filesystem.
4471  */
4472 static int shmem_reconfigure(struct fs_context *fc)
4473 {
4474 	struct shmem_options *ctx = fc->fs_private;
4475 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4476 	unsigned long used_isp;
4477 	struct mempolicy *mpol = NULL;
4478 	const char *err;
4479 
4480 	raw_spin_lock(&sbinfo->stat_lock);
4481 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4482 
4483 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4484 		if (!sbinfo->max_blocks) {
4485 			err = "Cannot retroactively limit size";
4486 			goto out;
4487 		}
4488 		if (percpu_counter_compare(&sbinfo->used_blocks,
4489 					   ctx->blocks) > 0) {
4490 			err = "Too small a size for current use";
4491 			goto out;
4492 		}
4493 	}
4494 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4495 		if (!sbinfo->max_inodes) {
4496 			err = "Cannot retroactively limit inodes";
4497 			goto out;
4498 		}
4499 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4500 			err = "Too few inodes for current use";
4501 			goto out;
4502 		}
4503 	}
4504 
4505 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4506 	    sbinfo->next_ino > UINT_MAX) {
4507 		err = "Current inum too high to switch to 32-bit inums";
4508 		goto out;
4509 	}
4510 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4511 		err = "Cannot disable swap on remount";
4512 		goto out;
4513 	}
4514 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4515 		err = "Cannot enable swap on remount if it was disabled on first mount";
4516 		goto out;
4517 	}
4518 
4519 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4520 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4521 		err = "Cannot enable quota on remount";
4522 		goto out;
4523 	}
4524 
4525 #ifdef CONFIG_TMPFS_QUOTA
4526 #define CHANGED_LIMIT(name)						\
4527 	(ctx->qlimits.name## hardlimit &&				\
4528 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4529 
4530 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4531 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4532 		err = "Cannot change global quota limit on remount";
4533 		goto out;
4534 	}
4535 #endif /* CONFIG_TMPFS_QUOTA */
4536 
4537 	if (ctx->seen & SHMEM_SEEN_HUGE)
4538 		sbinfo->huge = ctx->huge;
4539 	if (ctx->seen & SHMEM_SEEN_INUMS)
4540 		sbinfo->full_inums = ctx->full_inums;
4541 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4542 		sbinfo->max_blocks  = ctx->blocks;
4543 	if (ctx->seen & SHMEM_SEEN_INODES) {
4544 		sbinfo->max_inodes  = ctx->inodes;
4545 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4546 	}
4547 
4548 	/*
4549 	 * Preserve previous mempolicy unless mpol remount option was specified.
4550 	 */
4551 	if (ctx->mpol) {
4552 		mpol = sbinfo->mpol;
4553 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4554 		ctx->mpol = NULL;
4555 	}
4556 
4557 	if (ctx->noswap)
4558 		sbinfo->noswap = true;
4559 
4560 	raw_spin_unlock(&sbinfo->stat_lock);
4561 	mpol_put(mpol);
4562 	return 0;
4563 out:
4564 	raw_spin_unlock(&sbinfo->stat_lock);
4565 	return invalfc(fc, "%s", err);
4566 }
4567 
4568 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4569 {
4570 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4571 	struct mempolicy *mpol;
4572 
4573 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4574 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4575 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4576 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4577 	if (sbinfo->mode != (0777 | S_ISVTX))
4578 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4579 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4580 		seq_printf(seq, ",uid=%u",
4581 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4582 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4583 		seq_printf(seq, ",gid=%u",
4584 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4585 
4586 	/*
4587 	 * Showing inode{64,32} might be useful even if it's the system default,
4588 	 * since then people don't have to resort to checking both here and
4589 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4590 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4591 	 *
4592 	 * We hide it when inode64 isn't the default and we are using 32-bit
4593 	 * inodes, since that probably just means the feature isn't even under
4594 	 * consideration.
4595 	 *
4596 	 * As such:
4597 	 *
4598 	 *                     +-----------------+-----------------+
4599 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4600 	 *  +------------------+-----------------+-----------------+
4601 	 *  | full_inums=true  | show            | show            |
4602 	 *  | full_inums=false | show            | hide            |
4603 	 *  +------------------+-----------------+-----------------+
4604 	 *
4605 	 */
4606 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4607 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4609 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4610 	if (sbinfo->huge)
4611 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4612 #endif
4613 	mpol = shmem_get_sbmpol(sbinfo);
4614 	shmem_show_mpol(seq, mpol);
4615 	mpol_put(mpol);
4616 	if (sbinfo->noswap)
4617 		seq_printf(seq, ",noswap");
4618 #ifdef CONFIG_TMPFS_QUOTA
4619 	if (sb_has_quota_active(root->d_sb, USRQUOTA))
4620 		seq_printf(seq, ",usrquota");
4621 	if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4622 		seq_printf(seq, ",grpquota");
4623 	if (sbinfo->qlimits.usrquota_bhardlimit)
4624 		seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4625 			   sbinfo->qlimits.usrquota_bhardlimit);
4626 	if (sbinfo->qlimits.grpquota_bhardlimit)
4627 		seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4628 			   sbinfo->qlimits.grpquota_bhardlimit);
4629 	if (sbinfo->qlimits.usrquota_ihardlimit)
4630 		seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4631 			   sbinfo->qlimits.usrquota_ihardlimit);
4632 	if (sbinfo->qlimits.grpquota_ihardlimit)
4633 		seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4634 			   sbinfo->qlimits.grpquota_ihardlimit);
4635 #endif
4636 	return 0;
4637 }
4638 
4639 #endif /* CONFIG_TMPFS */
4640 
4641 static void shmem_put_super(struct super_block *sb)
4642 {
4643 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4644 
4645 #ifdef CONFIG_TMPFS_QUOTA
4646 	shmem_disable_quotas(sb);
4647 #endif
4648 	free_percpu(sbinfo->ino_batch);
4649 	percpu_counter_destroy(&sbinfo->used_blocks);
4650 	mpol_put(sbinfo->mpol);
4651 	kfree(sbinfo);
4652 	sb->s_fs_info = NULL;
4653 }
4654 
4655 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4656 {
4657 	struct shmem_options *ctx = fc->fs_private;
4658 	struct inode *inode;
4659 	struct shmem_sb_info *sbinfo;
4660 	int error = -ENOMEM;
4661 
4662 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4663 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4664 				L1_CACHE_BYTES), GFP_KERNEL);
4665 	if (!sbinfo)
4666 		return error;
4667 
4668 	sb->s_fs_info = sbinfo;
4669 
4670 #ifdef CONFIG_TMPFS
4671 	/*
4672 	 * Per default we only allow half of the physical ram per
4673 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4674 	 * but the internal instance is left unlimited.
4675 	 */
4676 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4677 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4678 			ctx->blocks = shmem_default_max_blocks();
4679 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4680 			ctx->inodes = shmem_default_max_inodes();
4681 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4682 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4683 		sbinfo->noswap = ctx->noswap;
4684 	} else {
4685 		sb->s_flags |= SB_NOUSER;
4686 	}
4687 	sb->s_export_op = &shmem_export_ops;
4688 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4689 #else
4690 	sb->s_flags |= SB_NOUSER;
4691 #endif
4692 	sbinfo->max_blocks = ctx->blocks;
4693 	sbinfo->max_inodes = ctx->inodes;
4694 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4695 	if (sb->s_flags & SB_KERNMOUNT) {
4696 		sbinfo->ino_batch = alloc_percpu(ino_t);
4697 		if (!sbinfo->ino_batch)
4698 			goto failed;
4699 	}
4700 	sbinfo->uid = ctx->uid;
4701 	sbinfo->gid = ctx->gid;
4702 	sbinfo->full_inums = ctx->full_inums;
4703 	sbinfo->mode = ctx->mode;
4704 	sbinfo->huge = ctx->huge;
4705 	sbinfo->mpol = ctx->mpol;
4706 	ctx->mpol = NULL;
4707 
4708 	raw_spin_lock_init(&sbinfo->stat_lock);
4709 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4710 		goto failed;
4711 	spin_lock_init(&sbinfo->shrinklist_lock);
4712 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4713 
4714 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4715 	sb->s_blocksize = PAGE_SIZE;
4716 	sb->s_blocksize_bits = PAGE_SHIFT;
4717 	sb->s_magic = TMPFS_MAGIC;
4718 	sb->s_op = &shmem_ops;
4719 	sb->s_time_gran = 1;
4720 #ifdef CONFIG_TMPFS_XATTR
4721 	sb->s_xattr = shmem_xattr_handlers;
4722 #endif
4723 #ifdef CONFIG_TMPFS_POSIX_ACL
4724 	sb->s_flags |= SB_POSIXACL;
4725 #endif
4726 	uuid_t uuid;
4727 	uuid_gen(&uuid);
4728 	super_set_uuid(sb, uuid.b, sizeof(uuid));
4729 
4730 #ifdef CONFIG_TMPFS_QUOTA
4731 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4732 		sb->dq_op = &shmem_quota_operations;
4733 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4734 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4735 
4736 		/* Copy the default limits from ctx into sbinfo */
4737 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4738 		       sizeof(struct shmem_quota_limits));
4739 
4740 		if (shmem_enable_quotas(sb, ctx->quota_types))
4741 			goto failed;
4742 	}
4743 #endif /* CONFIG_TMPFS_QUOTA */
4744 
4745 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
4746 				S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
4747 	if (IS_ERR(inode)) {
4748 		error = PTR_ERR(inode);
4749 		goto failed;
4750 	}
4751 	inode->i_uid = sbinfo->uid;
4752 	inode->i_gid = sbinfo->gid;
4753 	sb->s_root = d_make_root(inode);
4754 	if (!sb->s_root)
4755 		goto failed;
4756 	return 0;
4757 
4758 failed:
4759 	shmem_put_super(sb);
4760 	return error;
4761 }
4762 
4763 static int shmem_get_tree(struct fs_context *fc)
4764 {
4765 	return get_tree_nodev(fc, shmem_fill_super);
4766 }
4767 
4768 static void shmem_free_fc(struct fs_context *fc)
4769 {
4770 	struct shmem_options *ctx = fc->fs_private;
4771 
4772 	if (ctx) {
4773 		mpol_put(ctx->mpol);
4774 		kfree(ctx);
4775 	}
4776 }
4777 
4778 static const struct fs_context_operations shmem_fs_context_ops = {
4779 	.free			= shmem_free_fc,
4780 	.get_tree		= shmem_get_tree,
4781 #ifdef CONFIG_TMPFS
4782 	.parse_monolithic	= shmem_parse_options,
4783 	.parse_param		= shmem_parse_one,
4784 	.reconfigure		= shmem_reconfigure,
4785 #endif
4786 };
4787 
4788 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
4789 
4790 static struct inode *shmem_alloc_inode(struct super_block *sb)
4791 {
4792 	struct shmem_inode_info *info;
4793 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4794 	if (!info)
4795 		return NULL;
4796 	return &info->vfs_inode;
4797 }
4798 
4799 static void shmem_free_in_core_inode(struct inode *inode)
4800 {
4801 	if (S_ISLNK(inode->i_mode))
4802 		kfree(inode->i_link);
4803 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4804 }
4805 
4806 static void shmem_destroy_inode(struct inode *inode)
4807 {
4808 	if (S_ISREG(inode->i_mode))
4809 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4810 	if (S_ISDIR(inode->i_mode))
4811 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4812 }
4813 
4814 static void shmem_init_inode(void *foo)
4815 {
4816 	struct shmem_inode_info *info = foo;
4817 	inode_init_once(&info->vfs_inode);
4818 }
4819 
4820 static void __init shmem_init_inodecache(void)
4821 {
4822 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4823 				sizeof(struct shmem_inode_info),
4824 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4825 }
4826 
4827 static void __init shmem_destroy_inodecache(void)
4828 {
4829 	kmem_cache_destroy(shmem_inode_cachep);
4830 }
4831 
4832 /* Keep the page in page cache instead of truncating it */
4833 static int shmem_error_remove_folio(struct address_space *mapping,
4834 				   struct folio *folio)
4835 {
4836 	return 0;
4837 }
4838 
4839 static const struct address_space_operations shmem_aops = {
4840 	.writepage	= shmem_writepage,
4841 	.dirty_folio	= noop_dirty_folio,
4842 #ifdef CONFIG_TMPFS
4843 	.write_begin	= shmem_write_begin,
4844 	.write_end	= shmem_write_end,
4845 #endif
4846 #ifdef CONFIG_MIGRATION
4847 	.migrate_folio	= migrate_folio,
4848 #endif
4849 	.error_remove_folio = shmem_error_remove_folio,
4850 };
4851 
4852 static const struct file_operations shmem_file_operations = {
4853 	.mmap		= shmem_mmap,
4854 	.open		= shmem_file_open,
4855 	.get_unmapped_area = shmem_get_unmapped_area,
4856 #ifdef CONFIG_TMPFS
4857 	.llseek		= shmem_file_llseek,
4858 	.read_iter	= shmem_file_read_iter,
4859 	.write_iter	= shmem_file_write_iter,
4860 	.fsync		= noop_fsync,
4861 	.splice_read	= shmem_file_splice_read,
4862 	.splice_write	= iter_file_splice_write,
4863 	.fallocate	= shmem_fallocate,
4864 #endif
4865 };
4866 
4867 static const struct inode_operations shmem_inode_operations = {
4868 	.getattr	= shmem_getattr,
4869 	.setattr	= shmem_setattr,
4870 #ifdef CONFIG_TMPFS_XATTR
4871 	.listxattr	= shmem_listxattr,
4872 	.set_acl	= simple_set_acl,
4873 	.fileattr_get	= shmem_fileattr_get,
4874 	.fileattr_set	= shmem_fileattr_set,
4875 #endif
4876 };
4877 
4878 static const struct inode_operations shmem_dir_inode_operations = {
4879 #ifdef CONFIG_TMPFS
4880 	.getattr	= shmem_getattr,
4881 	.create		= shmem_create,
4882 	.lookup		= simple_lookup,
4883 	.link		= shmem_link,
4884 	.unlink		= shmem_unlink,
4885 	.symlink	= shmem_symlink,
4886 	.mkdir		= shmem_mkdir,
4887 	.rmdir		= shmem_rmdir,
4888 	.mknod		= shmem_mknod,
4889 	.rename		= shmem_rename2,
4890 	.tmpfile	= shmem_tmpfile,
4891 	.get_offset_ctx	= shmem_get_offset_ctx,
4892 #endif
4893 #ifdef CONFIG_TMPFS_XATTR
4894 	.listxattr	= shmem_listxattr,
4895 	.fileattr_get	= shmem_fileattr_get,
4896 	.fileattr_set	= shmem_fileattr_set,
4897 #endif
4898 #ifdef CONFIG_TMPFS_POSIX_ACL
4899 	.setattr	= shmem_setattr,
4900 	.set_acl	= simple_set_acl,
4901 #endif
4902 };
4903 
4904 static const struct inode_operations shmem_special_inode_operations = {
4905 	.getattr	= shmem_getattr,
4906 #ifdef CONFIG_TMPFS_XATTR
4907 	.listxattr	= shmem_listxattr,
4908 #endif
4909 #ifdef CONFIG_TMPFS_POSIX_ACL
4910 	.setattr	= shmem_setattr,
4911 	.set_acl	= simple_set_acl,
4912 #endif
4913 };
4914 
4915 static const struct super_operations shmem_ops = {
4916 	.alloc_inode	= shmem_alloc_inode,
4917 	.free_inode	= shmem_free_in_core_inode,
4918 	.destroy_inode	= shmem_destroy_inode,
4919 #ifdef CONFIG_TMPFS
4920 	.statfs		= shmem_statfs,
4921 	.show_options	= shmem_show_options,
4922 #endif
4923 #ifdef CONFIG_TMPFS_QUOTA
4924 	.get_dquots	= shmem_get_dquots,
4925 #endif
4926 	.evict_inode	= shmem_evict_inode,
4927 	.drop_inode	= generic_delete_inode,
4928 	.put_super	= shmem_put_super,
4929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4930 	.nr_cached_objects	= shmem_unused_huge_count,
4931 	.free_cached_objects	= shmem_unused_huge_scan,
4932 #endif
4933 };
4934 
4935 static const struct vm_operations_struct shmem_vm_ops = {
4936 	.fault		= shmem_fault,
4937 	.map_pages	= filemap_map_pages,
4938 #ifdef CONFIG_NUMA
4939 	.set_policy     = shmem_set_policy,
4940 	.get_policy     = shmem_get_policy,
4941 #endif
4942 };
4943 
4944 static const struct vm_operations_struct shmem_anon_vm_ops = {
4945 	.fault		= shmem_fault,
4946 	.map_pages	= filemap_map_pages,
4947 #ifdef CONFIG_NUMA
4948 	.set_policy     = shmem_set_policy,
4949 	.get_policy     = shmem_get_policy,
4950 #endif
4951 };
4952 
4953 int shmem_init_fs_context(struct fs_context *fc)
4954 {
4955 	struct shmem_options *ctx;
4956 
4957 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4958 	if (!ctx)
4959 		return -ENOMEM;
4960 
4961 	ctx->mode = 0777 | S_ISVTX;
4962 	ctx->uid = current_fsuid();
4963 	ctx->gid = current_fsgid();
4964 
4965 	fc->fs_private = ctx;
4966 	fc->ops = &shmem_fs_context_ops;
4967 	return 0;
4968 }
4969 
4970 static struct file_system_type shmem_fs_type = {
4971 	.owner		= THIS_MODULE,
4972 	.name		= "tmpfs",
4973 	.init_fs_context = shmem_init_fs_context,
4974 #ifdef CONFIG_TMPFS
4975 	.parameters	= shmem_fs_parameters,
4976 #endif
4977 	.kill_sb	= kill_litter_super,
4978 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4979 };
4980 
4981 void __init shmem_init(void)
4982 {
4983 	int error;
4984 
4985 	shmem_init_inodecache();
4986 
4987 #ifdef CONFIG_TMPFS_QUOTA
4988 	register_quota_format(&shmem_quota_format);
4989 #endif
4990 
4991 	error = register_filesystem(&shmem_fs_type);
4992 	if (error) {
4993 		pr_err("Could not register tmpfs\n");
4994 		goto out2;
4995 	}
4996 
4997 	shm_mnt = kern_mount(&shmem_fs_type);
4998 	if (IS_ERR(shm_mnt)) {
4999 		error = PTR_ERR(shm_mnt);
5000 		pr_err("Could not kern_mount tmpfs\n");
5001 		goto out1;
5002 	}
5003 
5004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5005 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5006 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5007 	else
5008 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5009 
5010 	/*
5011 	 * Default to setting PMD-sized THP to inherit the global setting and
5012 	 * disable all other multi-size THPs.
5013 	 */
5014 	huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5015 #endif
5016 	return;
5017 
5018 out1:
5019 	unregister_filesystem(&shmem_fs_type);
5020 out2:
5021 #ifdef CONFIG_TMPFS_QUOTA
5022 	unregister_quota_format(&shmem_quota_format);
5023 #endif
5024 	shmem_destroy_inodecache();
5025 	shm_mnt = ERR_PTR(error);
5026 }
5027 
5028 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
5029 static ssize_t shmem_enabled_show(struct kobject *kobj,
5030 				  struct kobj_attribute *attr, char *buf)
5031 {
5032 	static const int values[] = {
5033 		SHMEM_HUGE_ALWAYS,
5034 		SHMEM_HUGE_WITHIN_SIZE,
5035 		SHMEM_HUGE_ADVISE,
5036 		SHMEM_HUGE_NEVER,
5037 		SHMEM_HUGE_DENY,
5038 		SHMEM_HUGE_FORCE,
5039 	};
5040 	int len = 0;
5041 	int i;
5042 
5043 	for (i = 0; i < ARRAY_SIZE(values); i++) {
5044 		len += sysfs_emit_at(buf, len,
5045 				shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5046 				i ? " " : "", shmem_format_huge(values[i]));
5047 	}
5048 	len += sysfs_emit_at(buf, len, "\n");
5049 
5050 	return len;
5051 }
5052 
5053 static ssize_t shmem_enabled_store(struct kobject *kobj,
5054 		struct kobj_attribute *attr, const char *buf, size_t count)
5055 {
5056 	char tmp[16];
5057 	int huge, err;
5058 
5059 	if (count + 1 > sizeof(tmp))
5060 		return -EINVAL;
5061 	memcpy(tmp, buf, count);
5062 	tmp[count] = '\0';
5063 	if (count && tmp[count - 1] == '\n')
5064 		tmp[count - 1] = '\0';
5065 
5066 	huge = shmem_parse_huge(tmp);
5067 	if (huge == -EINVAL)
5068 		return -EINVAL;
5069 	if (!has_transparent_hugepage() &&
5070 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
5071 		return -EINVAL;
5072 
5073 	/* Do not override huge allocation policy with non-PMD sized mTHP */
5074 	if (huge == SHMEM_HUGE_FORCE &&
5075 	    huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
5076 		return -EINVAL;
5077 
5078 	shmem_huge = huge;
5079 	if (shmem_huge > SHMEM_HUGE_DENY)
5080 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5081 
5082 	err = start_stop_khugepaged();
5083 	return err ? err : count;
5084 }
5085 
5086 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5087 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5088 
5089 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5090 					  struct kobj_attribute *attr, char *buf)
5091 {
5092 	int order = to_thpsize(kobj)->order;
5093 	const char *output;
5094 
5095 	if (test_bit(order, &huge_shmem_orders_always))
5096 		output = "[always] inherit within_size advise never";
5097 	else if (test_bit(order, &huge_shmem_orders_inherit))
5098 		output = "always [inherit] within_size advise never";
5099 	else if (test_bit(order, &huge_shmem_orders_within_size))
5100 		output = "always inherit [within_size] advise never";
5101 	else if (test_bit(order, &huge_shmem_orders_madvise))
5102 		output = "always inherit within_size [advise] never";
5103 	else
5104 		output = "always inherit within_size advise [never]";
5105 
5106 	return sysfs_emit(buf, "%s\n", output);
5107 }
5108 
5109 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5110 					   struct kobj_attribute *attr,
5111 					   const char *buf, size_t count)
5112 {
5113 	int order = to_thpsize(kobj)->order;
5114 	ssize_t ret = count;
5115 
5116 	if (sysfs_streq(buf, "always")) {
5117 		spin_lock(&huge_shmem_orders_lock);
5118 		clear_bit(order, &huge_shmem_orders_inherit);
5119 		clear_bit(order, &huge_shmem_orders_madvise);
5120 		clear_bit(order, &huge_shmem_orders_within_size);
5121 		set_bit(order, &huge_shmem_orders_always);
5122 		spin_unlock(&huge_shmem_orders_lock);
5123 	} else if (sysfs_streq(buf, "inherit")) {
5124 		/* Do not override huge allocation policy with non-PMD sized mTHP */
5125 		if (shmem_huge == SHMEM_HUGE_FORCE &&
5126 		    order != HPAGE_PMD_ORDER)
5127 			return -EINVAL;
5128 
5129 		spin_lock(&huge_shmem_orders_lock);
5130 		clear_bit(order, &huge_shmem_orders_always);
5131 		clear_bit(order, &huge_shmem_orders_madvise);
5132 		clear_bit(order, &huge_shmem_orders_within_size);
5133 		set_bit(order, &huge_shmem_orders_inherit);
5134 		spin_unlock(&huge_shmem_orders_lock);
5135 	} else if (sysfs_streq(buf, "within_size")) {
5136 		spin_lock(&huge_shmem_orders_lock);
5137 		clear_bit(order, &huge_shmem_orders_always);
5138 		clear_bit(order, &huge_shmem_orders_inherit);
5139 		clear_bit(order, &huge_shmem_orders_madvise);
5140 		set_bit(order, &huge_shmem_orders_within_size);
5141 		spin_unlock(&huge_shmem_orders_lock);
5142 	} else if (sysfs_streq(buf, "advise")) {
5143 		spin_lock(&huge_shmem_orders_lock);
5144 		clear_bit(order, &huge_shmem_orders_always);
5145 		clear_bit(order, &huge_shmem_orders_inherit);
5146 		clear_bit(order, &huge_shmem_orders_within_size);
5147 		set_bit(order, &huge_shmem_orders_madvise);
5148 		spin_unlock(&huge_shmem_orders_lock);
5149 	} else if (sysfs_streq(buf, "never")) {
5150 		spin_lock(&huge_shmem_orders_lock);
5151 		clear_bit(order, &huge_shmem_orders_always);
5152 		clear_bit(order, &huge_shmem_orders_inherit);
5153 		clear_bit(order, &huge_shmem_orders_within_size);
5154 		clear_bit(order, &huge_shmem_orders_madvise);
5155 		spin_unlock(&huge_shmem_orders_lock);
5156 	} else {
5157 		ret = -EINVAL;
5158 	}
5159 
5160 	if (ret > 0) {
5161 		int err = start_stop_khugepaged();
5162 
5163 		if (err)
5164 			ret = err;
5165 	}
5166 	return ret;
5167 }
5168 
5169 struct kobj_attribute thpsize_shmem_enabled_attr =
5170 	__ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5171 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5172 
5173 #else /* !CONFIG_SHMEM */
5174 
5175 /*
5176  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5177  *
5178  * This is intended for small system where the benefits of the full
5179  * shmem code (swap-backed and resource-limited) are outweighed by
5180  * their complexity. On systems without swap this code should be
5181  * effectively equivalent, but much lighter weight.
5182  */
5183 
5184 static struct file_system_type shmem_fs_type = {
5185 	.name		= "tmpfs",
5186 	.init_fs_context = ramfs_init_fs_context,
5187 	.parameters	= ramfs_fs_parameters,
5188 	.kill_sb	= ramfs_kill_sb,
5189 	.fs_flags	= FS_USERNS_MOUNT,
5190 };
5191 
5192 void __init shmem_init(void)
5193 {
5194 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5195 
5196 	shm_mnt = kern_mount(&shmem_fs_type);
5197 	BUG_ON(IS_ERR(shm_mnt));
5198 }
5199 
5200 int shmem_unuse(unsigned int type)
5201 {
5202 	return 0;
5203 }
5204 
5205 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5206 {
5207 	return 0;
5208 }
5209 
5210 void shmem_unlock_mapping(struct address_space *mapping)
5211 {
5212 }
5213 
5214 #ifdef CONFIG_MMU
5215 unsigned long shmem_get_unmapped_area(struct file *file,
5216 				      unsigned long addr, unsigned long len,
5217 				      unsigned long pgoff, unsigned long flags)
5218 {
5219 	return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5220 }
5221 #endif
5222 
5223 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5224 {
5225 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5226 }
5227 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5228 
5229 #define shmem_vm_ops				generic_file_vm_ops
5230 #define shmem_anon_vm_ops			generic_file_vm_ops
5231 #define shmem_file_operations			ramfs_file_operations
5232 #define shmem_acct_size(flags, size)		0
5233 #define shmem_unacct_size(flags, size)		do {} while (0)
5234 
5235 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5236 				struct super_block *sb, struct inode *dir,
5237 				umode_t mode, dev_t dev, unsigned long flags)
5238 {
5239 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5240 	return inode ? inode : ERR_PTR(-ENOSPC);
5241 }
5242 
5243 #endif /* CONFIG_SHMEM */
5244 
5245 /* common code */
5246 
5247 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5248 			loff_t size, unsigned long flags, unsigned int i_flags)
5249 {
5250 	struct inode *inode;
5251 	struct file *res;
5252 
5253 	if (IS_ERR(mnt))
5254 		return ERR_CAST(mnt);
5255 
5256 	if (size < 0 || size > MAX_LFS_FILESIZE)
5257 		return ERR_PTR(-EINVAL);
5258 
5259 	if (shmem_acct_size(flags, size))
5260 		return ERR_PTR(-ENOMEM);
5261 
5262 	if (is_idmapped_mnt(mnt))
5263 		return ERR_PTR(-EINVAL);
5264 
5265 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5266 				S_IFREG | S_IRWXUGO, 0, flags);
5267 	if (IS_ERR(inode)) {
5268 		shmem_unacct_size(flags, size);
5269 		return ERR_CAST(inode);
5270 	}
5271 	inode->i_flags |= i_flags;
5272 	inode->i_size = size;
5273 	clear_nlink(inode);	/* It is unlinked */
5274 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5275 	if (!IS_ERR(res))
5276 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5277 				&shmem_file_operations);
5278 	if (IS_ERR(res))
5279 		iput(inode);
5280 	return res;
5281 }
5282 
5283 /**
5284  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5285  * 	kernel internal.  There will be NO LSM permission checks against the
5286  * 	underlying inode.  So users of this interface must do LSM checks at a
5287  *	higher layer.  The users are the big_key and shm implementations.  LSM
5288  *	checks are provided at the key or shm level rather than the inode.
5289  * @name: name for dentry (to be seen in /proc/<pid>/maps
5290  * @size: size to be set for the file
5291  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5292  */
5293 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5294 {
5295 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5296 }
5297 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5298 
5299 /**
5300  * shmem_file_setup - get an unlinked file living in tmpfs
5301  * @name: name for dentry (to be seen in /proc/<pid>/maps
5302  * @size: size to be set for the file
5303  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5304  */
5305 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5306 {
5307 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5308 }
5309 EXPORT_SYMBOL_GPL(shmem_file_setup);
5310 
5311 /**
5312  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5313  * @mnt: the tmpfs mount where the file will be created
5314  * @name: name for dentry (to be seen in /proc/<pid>/maps
5315  * @size: size to be set for the file
5316  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5317  */
5318 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5319 				       loff_t size, unsigned long flags)
5320 {
5321 	return __shmem_file_setup(mnt, name, size, flags, 0);
5322 }
5323 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5324 
5325 /**
5326  * shmem_zero_setup - setup a shared anonymous mapping
5327  * @vma: the vma to be mmapped is prepared by do_mmap
5328  */
5329 int shmem_zero_setup(struct vm_area_struct *vma)
5330 {
5331 	struct file *file;
5332 	loff_t size = vma->vm_end - vma->vm_start;
5333 
5334 	/*
5335 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5336 	 * between XFS directory reading and selinux: since this file is only
5337 	 * accessible to the user through its mapping, use S_PRIVATE flag to
5338 	 * bypass file security, in the same way as shmem_kernel_file_setup().
5339 	 */
5340 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5341 	if (IS_ERR(file))
5342 		return PTR_ERR(file);
5343 
5344 	if (vma->vm_file)
5345 		fput(vma->vm_file);
5346 	vma->vm_file = file;
5347 	vma->vm_ops = &shmem_anon_vm_ops;
5348 
5349 	return 0;
5350 }
5351 
5352 /**
5353  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5354  * @mapping:	the folio's address_space
5355  * @index:	the folio index
5356  * @gfp:	the page allocator flags to use if allocating
5357  *
5358  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5359  * with any new page allocations done using the specified allocation flags.
5360  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5361  * suit tmpfs, since it may have pages in swapcache, and needs to find those
5362  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5363  *
5364  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5365  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5366  */
5367 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5368 		pgoff_t index, gfp_t gfp)
5369 {
5370 #ifdef CONFIG_SHMEM
5371 	struct inode *inode = mapping->host;
5372 	struct folio *folio;
5373 	int error;
5374 
5375 	error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5376 				    gfp, NULL, NULL);
5377 	if (error)
5378 		return ERR_PTR(error);
5379 
5380 	folio_unlock(folio);
5381 	return folio;
5382 #else
5383 	/*
5384 	 * The tiny !SHMEM case uses ramfs without swap
5385 	 */
5386 	return mapping_read_folio_gfp(mapping, index, gfp);
5387 #endif
5388 }
5389 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5390 
5391 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5392 					 pgoff_t index, gfp_t gfp)
5393 {
5394 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5395 	struct page *page;
5396 
5397 	if (IS_ERR(folio))
5398 		return &folio->page;
5399 
5400 	page = folio_file_page(folio, index);
5401 	if (PageHWPoison(page)) {
5402 		folio_put(folio);
5403 		return ERR_PTR(-EIO);
5404 	}
5405 
5406 	return page;
5407 }
5408 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5409