xref: /linux/mm/shmem.c (revision 0a98bf52b15dfd66da2cf666495b3f7841c7b5ab)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 
40 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/blkdev.h>
62 #include <linux/pagevec.h>
63 #include <linux/percpu_counter.h>
64 #include <linux/falloc.h>
65 #include <linux/splice.h>
66 #include <linux/security.h>
67 #include <linux/swapops.h>
68 #include <linux/mempolicy.h>
69 #include <linux/namei.h>
70 #include <linux/ctype.h>
71 #include <linux/migrate.h>
72 #include <linux/highmem.h>
73 #include <linux/seq_file.h>
74 #include <linux/magic.h>
75 #include <linux/syscalls.h>
76 #include <linux/fcntl.h>
77 #include <uapi/linux/memfd.h>
78 #include <linux/userfaultfd_k.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 
82 #include <linux/uaccess.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
94 #define SHORT_SYMLINK_LEN 128
95 
96 /*
97  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
98  * inode->i_private (with i_mutex making sure that it has only one user at
99  * a time): we would prefer not to enlarge the shmem inode just for that.
100  */
101 struct shmem_falloc {
102 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
103 	pgoff_t start;		/* start of range currently being fallocated */
104 	pgoff_t next;		/* the next page offset to be fallocated */
105 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
106 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
107 };
108 
109 #ifdef CONFIG_TMPFS
110 static unsigned long shmem_default_max_blocks(void)
111 {
112 	return totalram_pages / 2;
113 }
114 
115 static unsigned long shmem_default_max_inodes(void)
116 {
117 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
118 }
119 #endif
120 
121 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
122 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
123 				struct shmem_inode_info *info, pgoff_t index);
124 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
125 		struct page **pagep, enum sgp_type sgp,
126 		gfp_t gfp, struct vm_area_struct *vma,
127 		struct vm_fault *vmf, vm_fault_t *fault_type);
128 
129 int shmem_getpage(struct inode *inode, pgoff_t index,
130 		struct page **pagep, enum sgp_type sgp)
131 {
132 	return shmem_getpage_gfp(inode, index, pagep, sgp,
133 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
134 }
135 
136 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
137 {
138 	return sb->s_fs_info;
139 }
140 
141 /*
142  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
143  * for shared memory and for shared anonymous (/dev/zero) mappings
144  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
145  * consistent with the pre-accounting of private mappings ...
146  */
147 static inline int shmem_acct_size(unsigned long flags, loff_t size)
148 {
149 	return (flags & VM_NORESERVE) ?
150 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
151 }
152 
153 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
154 {
155 	if (!(flags & VM_NORESERVE))
156 		vm_unacct_memory(VM_ACCT(size));
157 }
158 
159 static inline int shmem_reacct_size(unsigned long flags,
160 		loff_t oldsize, loff_t newsize)
161 {
162 	if (!(flags & VM_NORESERVE)) {
163 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
164 			return security_vm_enough_memory_mm(current->mm,
165 					VM_ACCT(newsize) - VM_ACCT(oldsize));
166 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
167 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
168 	}
169 	return 0;
170 }
171 
172 /*
173  * ... whereas tmpfs objects are accounted incrementally as
174  * pages are allocated, in order to allow large sparse files.
175  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
176  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177  */
178 static inline int shmem_acct_block(unsigned long flags, long pages)
179 {
180 	if (!(flags & VM_NORESERVE))
181 		return 0;
182 
183 	return security_vm_enough_memory_mm(current->mm,
184 			pages * VM_ACCT(PAGE_SIZE));
185 }
186 
187 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
188 {
189 	if (flags & VM_NORESERVE)
190 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
191 }
192 
193 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
194 {
195 	struct shmem_inode_info *info = SHMEM_I(inode);
196 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
197 
198 	if (shmem_acct_block(info->flags, pages))
199 		return false;
200 
201 	if (sbinfo->max_blocks) {
202 		if (percpu_counter_compare(&sbinfo->used_blocks,
203 					   sbinfo->max_blocks - pages) > 0)
204 			goto unacct;
205 		percpu_counter_add(&sbinfo->used_blocks, pages);
206 	}
207 
208 	return true;
209 
210 unacct:
211 	shmem_unacct_blocks(info->flags, pages);
212 	return false;
213 }
214 
215 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
216 {
217 	struct shmem_inode_info *info = SHMEM_I(inode);
218 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219 
220 	if (sbinfo->max_blocks)
221 		percpu_counter_sub(&sbinfo->used_blocks, pages);
222 	shmem_unacct_blocks(info->flags, pages);
223 }
224 
225 static const struct super_operations shmem_ops;
226 static const struct address_space_operations shmem_aops;
227 static const struct file_operations shmem_file_operations;
228 static const struct inode_operations shmem_inode_operations;
229 static const struct inode_operations shmem_dir_inode_operations;
230 static const struct inode_operations shmem_special_inode_operations;
231 static const struct vm_operations_struct shmem_vm_ops;
232 static struct file_system_type shmem_fs_type;
233 
234 bool vma_is_shmem(struct vm_area_struct *vma)
235 {
236 	return vma->vm_ops == &shmem_vm_ops;
237 }
238 
239 static LIST_HEAD(shmem_swaplist);
240 static DEFINE_MUTEX(shmem_swaplist_mutex);
241 
242 static int shmem_reserve_inode(struct super_block *sb)
243 {
244 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
245 	if (sbinfo->max_inodes) {
246 		spin_lock(&sbinfo->stat_lock);
247 		if (!sbinfo->free_inodes) {
248 			spin_unlock(&sbinfo->stat_lock);
249 			return -ENOSPC;
250 		}
251 		sbinfo->free_inodes--;
252 		spin_unlock(&sbinfo->stat_lock);
253 	}
254 	return 0;
255 }
256 
257 static void shmem_free_inode(struct super_block *sb)
258 {
259 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
260 	if (sbinfo->max_inodes) {
261 		spin_lock(&sbinfo->stat_lock);
262 		sbinfo->free_inodes++;
263 		spin_unlock(&sbinfo->stat_lock);
264 	}
265 }
266 
267 /**
268  * shmem_recalc_inode - recalculate the block usage of an inode
269  * @inode: inode to recalc
270  *
271  * We have to calculate the free blocks since the mm can drop
272  * undirtied hole pages behind our back.
273  *
274  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
275  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276  *
277  * It has to be called with the spinlock held.
278  */
279 static void shmem_recalc_inode(struct inode *inode)
280 {
281 	struct shmem_inode_info *info = SHMEM_I(inode);
282 	long freed;
283 
284 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
285 	if (freed > 0) {
286 		info->alloced -= freed;
287 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
288 		shmem_inode_unacct_blocks(inode, freed);
289 	}
290 }
291 
292 bool shmem_charge(struct inode *inode, long pages)
293 {
294 	struct shmem_inode_info *info = SHMEM_I(inode);
295 	unsigned long flags;
296 
297 	if (!shmem_inode_acct_block(inode, pages))
298 		return false;
299 
300 	spin_lock_irqsave(&info->lock, flags);
301 	info->alloced += pages;
302 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
303 	shmem_recalc_inode(inode);
304 	spin_unlock_irqrestore(&info->lock, flags);
305 	inode->i_mapping->nrpages += pages;
306 
307 	return true;
308 }
309 
310 void shmem_uncharge(struct inode *inode, long pages)
311 {
312 	struct shmem_inode_info *info = SHMEM_I(inode);
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&info->lock, flags);
316 	info->alloced -= pages;
317 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
318 	shmem_recalc_inode(inode);
319 	spin_unlock_irqrestore(&info->lock, flags);
320 
321 	shmem_inode_unacct_blocks(inode, pages);
322 }
323 
324 /*
325  * Replace item expected in xarray by a new item, while holding xa_lock.
326  */
327 static int shmem_replace_entry(struct address_space *mapping,
328 			pgoff_t index, void *expected, void *replacement)
329 {
330 	XA_STATE(xas, &mapping->i_pages, index);
331 	void *item;
332 
333 	VM_BUG_ON(!expected);
334 	VM_BUG_ON(!replacement);
335 	item = xas_load(&xas);
336 	if (item != expected)
337 		return -ENOENT;
338 	xas_store(&xas, replacement);
339 	return 0;
340 }
341 
342 /*
343  * Sometimes, before we decide whether to proceed or to fail, we must check
344  * that an entry was not already brought back from swap by a racing thread.
345  *
346  * Checking page is not enough: by the time a SwapCache page is locked, it
347  * might be reused, and again be SwapCache, using the same swap as before.
348  */
349 static bool shmem_confirm_swap(struct address_space *mapping,
350 			       pgoff_t index, swp_entry_t swap)
351 {
352 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
353 }
354 
355 /*
356  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
357  *
358  * SHMEM_HUGE_NEVER:
359  *	disables huge pages for the mount;
360  * SHMEM_HUGE_ALWAYS:
361  *	enables huge pages for the mount;
362  * SHMEM_HUGE_WITHIN_SIZE:
363  *	only allocate huge pages if the page will be fully within i_size,
364  *	also respect fadvise()/madvise() hints;
365  * SHMEM_HUGE_ADVISE:
366  *	only allocate huge pages if requested with fadvise()/madvise();
367  */
368 
369 #define SHMEM_HUGE_NEVER	0
370 #define SHMEM_HUGE_ALWAYS	1
371 #define SHMEM_HUGE_WITHIN_SIZE	2
372 #define SHMEM_HUGE_ADVISE	3
373 
374 /*
375  * Special values.
376  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
377  *
378  * SHMEM_HUGE_DENY:
379  *	disables huge on shm_mnt and all mounts, for emergency use;
380  * SHMEM_HUGE_FORCE:
381  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
382  *
383  */
384 #define SHMEM_HUGE_DENY		(-1)
385 #define SHMEM_HUGE_FORCE	(-2)
386 
387 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
388 /* ifdef here to avoid bloating shmem.o when not necessary */
389 
390 static int shmem_huge __read_mostly;
391 
392 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
393 static int shmem_parse_huge(const char *str)
394 {
395 	if (!strcmp(str, "never"))
396 		return SHMEM_HUGE_NEVER;
397 	if (!strcmp(str, "always"))
398 		return SHMEM_HUGE_ALWAYS;
399 	if (!strcmp(str, "within_size"))
400 		return SHMEM_HUGE_WITHIN_SIZE;
401 	if (!strcmp(str, "advise"))
402 		return SHMEM_HUGE_ADVISE;
403 	if (!strcmp(str, "deny"))
404 		return SHMEM_HUGE_DENY;
405 	if (!strcmp(str, "force"))
406 		return SHMEM_HUGE_FORCE;
407 	return -EINVAL;
408 }
409 
410 static const char *shmem_format_huge(int huge)
411 {
412 	switch (huge) {
413 	case SHMEM_HUGE_NEVER:
414 		return "never";
415 	case SHMEM_HUGE_ALWAYS:
416 		return "always";
417 	case SHMEM_HUGE_WITHIN_SIZE:
418 		return "within_size";
419 	case SHMEM_HUGE_ADVISE:
420 		return "advise";
421 	case SHMEM_HUGE_DENY:
422 		return "deny";
423 	case SHMEM_HUGE_FORCE:
424 		return "force";
425 	default:
426 		VM_BUG_ON(1);
427 		return "bad_val";
428 	}
429 }
430 #endif
431 
432 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
433 		struct shrink_control *sc, unsigned long nr_to_split)
434 {
435 	LIST_HEAD(list), *pos, *next;
436 	LIST_HEAD(to_remove);
437 	struct inode *inode;
438 	struct shmem_inode_info *info;
439 	struct page *page;
440 	unsigned long batch = sc ? sc->nr_to_scan : 128;
441 	int removed = 0, split = 0;
442 
443 	if (list_empty(&sbinfo->shrinklist))
444 		return SHRINK_STOP;
445 
446 	spin_lock(&sbinfo->shrinklist_lock);
447 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
448 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
449 
450 		/* pin the inode */
451 		inode = igrab(&info->vfs_inode);
452 
453 		/* inode is about to be evicted */
454 		if (!inode) {
455 			list_del_init(&info->shrinklist);
456 			removed++;
457 			goto next;
458 		}
459 
460 		/* Check if there's anything to gain */
461 		if (round_up(inode->i_size, PAGE_SIZE) ==
462 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
463 			list_move(&info->shrinklist, &to_remove);
464 			removed++;
465 			goto next;
466 		}
467 
468 		list_move(&info->shrinklist, &list);
469 next:
470 		if (!--batch)
471 			break;
472 	}
473 	spin_unlock(&sbinfo->shrinklist_lock);
474 
475 	list_for_each_safe(pos, next, &to_remove) {
476 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
477 		inode = &info->vfs_inode;
478 		list_del_init(&info->shrinklist);
479 		iput(inode);
480 	}
481 
482 	list_for_each_safe(pos, next, &list) {
483 		int ret;
484 
485 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
486 		inode = &info->vfs_inode;
487 
488 		if (nr_to_split && split >= nr_to_split)
489 			goto leave;
490 
491 		page = find_get_page(inode->i_mapping,
492 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
493 		if (!page)
494 			goto drop;
495 
496 		/* No huge page at the end of the file: nothing to split */
497 		if (!PageTransHuge(page)) {
498 			put_page(page);
499 			goto drop;
500 		}
501 
502 		/*
503 		 * Leave the inode on the list if we failed to lock
504 		 * the page at this time.
505 		 *
506 		 * Waiting for the lock may lead to deadlock in the
507 		 * reclaim path.
508 		 */
509 		if (!trylock_page(page)) {
510 			put_page(page);
511 			goto leave;
512 		}
513 
514 		ret = split_huge_page(page);
515 		unlock_page(page);
516 		put_page(page);
517 
518 		/* If split failed leave the inode on the list */
519 		if (ret)
520 			goto leave;
521 
522 		split++;
523 drop:
524 		list_del_init(&info->shrinklist);
525 		removed++;
526 leave:
527 		iput(inode);
528 	}
529 
530 	spin_lock(&sbinfo->shrinklist_lock);
531 	list_splice_tail(&list, &sbinfo->shrinklist);
532 	sbinfo->shrinklist_len -= removed;
533 	spin_unlock(&sbinfo->shrinklist_lock);
534 
535 	return split;
536 }
537 
538 static long shmem_unused_huge_scan(struct super_block *sb,
539 		struct shrink_control *sc)
540 {
541 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
542 
543 	if (!READ_ONCE(sbinfo->shrinklist_len))
544 		return SHRINK_STOP;
545 
546 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
547 }
548 
549 static long shmem_unused_huge_count(struct super_block *sb,
550 		struct shrink_control *sc)
551 {
552 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
553 	return READ_ONCE(sbinfo->shrinklist_len);
554 }
555 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
556 
557 #define shmem_huge SHMEM_HUGE_DENY
558 
559 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
560 		struct shrink_control *sc, unsigned long nr_to_split)
561 {
562 	return 0;
563 }
564 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 
566 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
567 {
568 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
569 	    (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
570 	    shmem_huge != SHMEM_HUGE_DENY)
571 		return true;
572 	return false;
573 }
574 
575 /*
576  * Like add_to_page_cache_locked, but error if expected item has gone.
577  */
578 static int shmem_add_to_page_cache(struct page *page,
579 				   struct address_space *mapping,
580 				   pgoff_t index, void *expected, gfp_t gfp)
581 {
582 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
583 	unsigned long i = 0;
584 	unsigned long nr = 1UL << compound_order(page);
585 
586 	VM_BUG_ON_PAGE(PageTail(page), page);
587 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
588 	VM_BUG_ON_PAGE(!PageLocked(page), page);
589 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
590 	VM_BUG_ON(expected && PageTransHuge(page));
591 
592 	page_ref_add(page, nr);
593 	page->mapping = mapping;
594 	page->index = index;
595 
596 	do {
597 		void *entry;
598 		xas_lock_irq(&xas);
599 		entry = xas_find_conflict(&xas);
600 		if (entry != expected)
601 			xas_set_err(&xas, -EEXIST);
602 		xas_create_range(&xas);
603 		if (xas_error(&xas))
604 			goto unlock;
605 next:
606 		xas_store(&xas, page + i);
607 		if (++i < nr) {
608 			xas_next(&xas);
609 			goto next;
610 		}
611 		if (PageTransHuge(page)) {
612 			count_vm_event(THP_FILE_ALLOC);
613 			__inc_node_page_state(page, NR_SHMEM_THPS);
614 		}
615 		mapping->nrpages += nr;
616 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
617 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
618 unlock:
619 		xas_unlock_irq(&xas);
620 	} while (xas_nomem(&xas, gfp));
621 
622 	if (xas_error(&xas)) {
623 		page->mapping = NULL;
624 		page_ref_sub(page, nr);
625 		return xas_error(&xas);
626 	}
627 
628 	return 0;
629 }
630 
631 /*
632  * Like delete_from_page_cache, but substitutes swap for page.
633  */
634 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
635 {
636 	struct address_space *mapping = page->mapping;
637 	int error;
638 
639 	VM_BUG_ON_PAGE(PageCompound(page), page);
640 
641 	xa_lock_irq(&mapping->i_pages);
642 	error = shmem_replace_entry(mapping, page->index, page, radswap);
643 	page->mapping = NULL;
644 	mapping->nrpages--;
645 	__dec_node_page_state(page, NR_FILE_PAGES);
646 	__dec_node_page_state(page, NR_SHMEM);
647 	xa_unlock_irq(&mapping->i_pages);
648 	put_page(page);
649 	BUG_ON(error);
650 }
651 
652 /*
653  * Remove swap entry from page cache, free the swap and its page cache.
654  */
655 static int shmem_free_swap(struct address_space *mapping,
656 			   pgoff_t index, void *radswap)
657 {
658 	void *old;
659 
660 	xa_lock_irq(&mapping->i_pages);
661 	old = __xa_cmpxchg(&mapping->i_pages, index, radswap, NULL, 0);
662 	xa_unlock_irq(&mapping->i_pages);
663 	if (old != radswap)
664 		return -ENOENT;
665 	free_swap_and_cache(radix_to_swp_entry(radswap));
666 	return 0;
667 }
668 
669 /*
670  * Determine (in bytes) how many of the shmem object's pages mapped by the
671  * given offsets are swapped out.
672  *
673  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
674  * as long as the inode doesn't go away and racy results are not a problem.
675  */
676 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
677 						pgoff_t start, pgoff_t end)
678 {
679 	XA_STATE(xas, &mapping->i_pages, start);
680 	struct page *page;
681 	unsigned long swapped = 0;
682 
683 	rcu_read_lock();
684 	xas_for_each(&xas, page, end - 1) {
685 		if (xas_retry(&xas, page))
686 			continue;
687 		if (xa_is_value(page))
688 			swapped++;
689 
690 		if (need_resched()) {
691 			xas_pause(&xas);
692 			cond_resched_rcu();
693 		}
694 	}
695 
696 	rcu_read_unlock();
697 
698 	return swapped << PAGE_SHIFT;
699 }
700 
701 /*
702  * Determine (in bytes) how many of the shmem object's pages mapped by the
703  * given vma is swapped out.
704  *
705  * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
706  * as long as the inode doesn't go away and racy results are not a problem.
707  */
708 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
709 {
710 	struct inode *inode = file_inode(vma->vm_file);
711 	struct shmem_inode_info *info = SHMEM_I(inode);
712 	struct address_space *mapping = inode->i_mapping;
713 	unsigned long swapped;
714 
715 	/* Be careful as we don't hold info->lock */
716 	swapped = READ_ONCE(info->swapped);
717 
718 	/*
719 	 * The easier cases are when the shmem object has nothing in swap, or
720 	 * the vma maps it whole. Then we can simply use the stats that we
721 	 * already track.
722 	 */
723 	if (!swapped)
724 		return 0;
725 
726 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
727 		return swapped << PAGE_SHIFT;
728 
729 	/* Here comes the more involved part */
730 	return shmem_partial_swap_usage(mapping,
731 			linear_page_index(vma, vma->vm_start),
732 			linear_page_index(vma, vma->vm_end));
733 }
734 
735 /*
736  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
737  */
738 void shmem_unlock_mapping(struct address_space *mapping)
739 {
740 	struct pagevec pvec;
741 	pgoff_t indices[PAGEVEC_SIZE];
742 	pgoff_t index = 0;
743 
744 	pagevec_init(&pvec);
745 	/*
746 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
747 	 */
748 	while (!mapping_unevictable(mapping)) {
749 		/*
750 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
751 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
752 		 */
753 		pvec.nr = find_get_entries(mapping, index,
754 					   PAGEVEC_SIZE, pvec.pages, indices);
755 		if (!pvec.nr)
756 			break;
757 		index = indices[pvec.nr - 1] + 1;
758 		pagevec_remove_exceptionals(&pvec);
759 		check_move_unevictable_pages(pvec.pages, pvec.nr);
760 		pagevec_release(&pvec);
761 		cond_resched();
762 	}
763 }
764 
765 /*
766  * Remove range of pages and swap entries from page cache, and free them.
767  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
768  */
769 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
770 								 bool unfalloc)
771 {
772 	struct address_space *mapping = inode->i_mapping;
773 	struct shmem_inode_info *info = SHMEM_I(inode);
774 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
775 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
776 	unsigned int partial_start = lstart & (PAGE_SIZE - 1);
777 	unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
778 	struct pagevec pvec;
779 	pgoff_t indices[PAGEVEC_SIZE];
780 	long nr_swaps_freed = 0;
781 	pgoff_t index;
782 	int i;
783 
784 	if (lend == -1)
785 		end = -1;	/* unsigned, so actually very big */
786 
787 	pagevec_init(&pvec);
788 	index = start;
789 	while (index < end) {
790 		pvec.nr = find_get_entries(mapping, index,
791 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
792 			pvec.pages, indices);
793 		if (!pvec.nr)
794 			break;
795 		for (i = 0; i < pagevec_count(&pvec); i++) {
796 			struct page *page = pvec.pages[i];
797 
798 			index = indices[i];
799 			if (index >= end)
800 				break;
801 
802 			if (xa_is_value(page)) {
803 				if (unfalloc)
804 					continue;
805 				nr_swaps_freed += !shmem_free_swap(mapping,
806 								index, page);
807 				continue;
808 			}
809 
810 			VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
811 
812 			if (!trylock_page(page))
813 				continue;
814 
815 			if (PageTransTail(page)) {
816 				/* Middle of THP: zero out the page */
817 				clear_highpage(page);
818 				unlock_page(page);
819 				continue;
820 			} else if (PageTransHuge(page)) {
821 				if (index == round_down(end, HPAGE_PMD_NR)) {
822 					/*
823 					 * Range ends in the middle of THP:
824 					 * zero out the page
825 					 */
826 					clear_highpage(page);
827 					unlock_page(page);
828 					continue;
829 				}
830 				index += HPAGE_PMD_NR - 1;
831 				i += HPAGE_PMD_NR - 1;
832 			}
833 
834 			if (!unfalloc || !PageUptodate(page)) {
835 				VM_BUG_ON_PAGE(PageTail(page), page);
836 				if (page_mapping(page) == mapping) {
837 					VM_BUG_ON_PAGE(PageWriteback(page), page);
838 					truncate_inode_page(mapping, page);
839 				}
840 			}
841 			unlock_page(page);
842 		}
843 		pagevec_remove_exceptionals(&pvec);
844 		pagevec_release(&pvec);
845 		cond_resched();
846 		index++;
847 	}
848 
849 	if (partial_start) {
850 		struct page *page = NULL;
851 		shmem_getpage(inode, start - 1, &page, SGP_READ);
852 		if (page) {
853 			unsigned int top = PAGE_SIZE;
854 			if (start > end) {
855 				top = partial_end;
856 				partial_end = 0;
857 			}
858 			zero_user_segment(page, partial_start, top);
859 			set_page_dirty(page);
860 			unlock_page(page);
861 			put_page(page);
862 		}
863 	}
864 	if (partial_end) {
865 		struct page *page = NULL;
866 		shmem_getpage(inode, end, &page, SGP_READ);
867 		if (page) {
868 			zero_user_segment(page, 0, partial_end);
869 			set_page_dirty(page);
870 			unlock_page(page);
871 			put_page(page);
872 		}
873 	}
874 	if (start >= end)
875 		return;
876 
877 	index = start;
878 	while (index < end) {
879 		cond_resched();
880 
881 		pvec.nr = find_get_entries(mapping, index,
882 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
883 				pvec.pages, indices);
884 		if (!pvec.nr) {
885 			/* If all gone or hole-punch or unfalloc, we're done */
886 			if (index == start || end != -1)
887 				break;
888 			/* But if truncating, restart to make sure all gone */
889 			index = start;
890 			continue;
891 		}
892 		for (i = 0; i < pagevec_count(&pvec); i++) {
893 			struct page *page = pvec.pages[i];
894 
895 			index = indices[i];
896 			if (index >= end)
897 				break;
898 
899 			if (xa_is_value(page)) {
900 				if (unfalloc)
901 					continue;
902 				if (shmem_free_swap(mapping, index, page)) {
903 					/* Swap was replaced by page: retry */
904 					index--;
905 					break;
906 				}
907 				nr_swaps_freed++;
908 				continue;
909 			}
910 
911 			lock_page(page);
912 
913 			if (PageTransTail(page)) {
914 				/* Middle of THP: zero out the page */
915 				clear_highpage(page);
916 				unlock_page(page);
917 				/*
918 				 * Partial thp truncate due 'start' in middle
919 				 * of THP: don't need to look on these pages
920 				 * again on !pvec.nr restart.
921 				 */
922 				if (index != round_down(end, HPAGE_PMD_NR))
923 					start++;
924 				continue;
925 			} else if (PageTransHuge(page)) {
926 				if (index == round_down(end, HPAGE_PMD_NR)) {
927 					/*
928 					 * Range ends in the middle of THP:
929 					 * zero out the page
930 					 */
931 					clear_highpage(page);
932 					unlock_page(page);
933 					continue;
934 				}
935 				index += HPAGE_PMD_NR - 1;
936 				i += HPAGE_PMD_NR - 1;
937 			}
938 
939 			if (!unfalloc || !PageUptodate(page)) {
940 				VM_BUG_ON_PAGE(PageTail(page), page);
941 				if (page_mapping(page) == mapping) {
942 					VM_BUG_ON_PAGE(PageWriteback(page), page);
943 					truncate_inode_page(mapping, page);
944 				} else {
945 					/* Page was replaced by swap: retry */
946 					unlock_page(page);
947 					index--;
948 					break;
949 				}
950 			}
951 			unlock_page(page);
952 		}
953 		pagevec_remove_exceptionals(&pvec);
954 		pagevec_release(&pvec);
955 		index++;
956 	}
957 
958 	spin_lock_irq(&info->lock);
959 	info->swapped -= nr_swaps_freed;
960 	shmem_recalc_inode(inode);
961 	spin_unlock_irq(&info->lock);
962 }
963 
964 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
965 {
966 	shmem_undo_range(inode, lstart, lend, false);
967 	inode->i_ctime = inode->i_mtime = current_time(inode);
968 }
969 EXPORT_SYMBOL_GPL(shmem_truncate_range);
970 
971 static int shmem_getattr(const struct path *path, struct kstat *stat,
972 			 u32 request_mask, unsigned int query_flags)
973 {
974 	struct inode *inode = path->dentry->d_inode;
975 	struct shmem_inode_info *info = SHMEM_I(inode);
976 	struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
977 
978 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
979 		spin_lock_irq(&info->lock);
980 		shmem_recalc_inode(inode);
981 		spin_unlock_irq(&info->lock);
982 	}
983 	generic_fillattr(inode, stat);
984 
985 	if (is_huge_enabled(sb_info))
986 		stat->blksize = HPAGE_PMD_SIZE;
987 
988 	return 0;
989 }
990 
991 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
992 {
993 	struct inode *inode = d_inode(dentry);
994 	struct shmem_inode_info *info = SHMEM_I(inode);
995 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
996 	int error;
997 
998 	error = setattr_prepare(dentry, attr);
999 	if (error)
1000 		return error;
1001 
1002 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1003 		loff_t oldsize = inode->i_size;
1004 		loff_t newsize = attr->ia_size;
1005 
1006 		/* protected by i_mutex */
1007 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1008 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1009 			return -EPERM;
1010 
1011 		if (newsize != oldsize) {
1012 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1013 					oldsize, newsize);
1014 			if (error)
1015 				return error;
1016 			i_size_write(inode, newsize);
1017 			inode->i_ctime = inode->i_mtime = current_time(inode);
1018 		}
1019 		if (newsize <= oldsize) {
1020 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1021 			if (oldsize > holebegin)
1022 				unmap_mapping_range(inode->i_mapping,
1023 							holebegin, 0, 1);
1024 			if (info->alloced)
1025 				shmem_truncate_range(inode,
1026 							newsize, (loff_t)-1);
1027 			/* unmap again to remove racily COWed private pages */
1028 			if (oldsize > holebegin)
1029 				unmap_mapping_range(inode->i_mapping,
1030 							holebegin, 0, 1);
1031 
1032 			/*
1033 			 * Part of the huge page can be beyond i_size: subject
1034 			 * to shrink under memory pressure.
1035 			 */
1036 			if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1037 				spin_lock(&sbinfo->shrinklist_lock);
1038 				/*
1039 				 * _careful to defend against unlocked access to
1040 				 * ->shrink_list in shmem_unused_huge_shrink()
1041 				 */
1042 				if (list_empty_careful(&info->shrinklist)) {
1043 					list_add_tail(&info->shrinklist,
1044 							&sbinfo->shrinklist);
1045 					sbinfo->shrinklist_len++;
1046 				}
1047 				spin_unlock(&sbinfo->shrinklist_lock);
1048 			}
1049 		}
1050 	}
1051 
1052 	setattr_copy(inode, attr);
1053 	if (attr->ia_valid & ATTR_MODE)
1054 		error = posix_acl_chmod(inode, inode->i_mode);
1055 	return error;
1056 }
1057 
1058 static void shmem_evict_inode(struct inode *inode)
1059 {
1060 	struct shmem_inode_info *info = SHMEM_I(inode);
1061 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1062 
1063 	if (inode->i_mapping->a_ops == &shmem_aops) {
1064 		shmem_unacct_size(info->flags, inode->i_size);
1065 		inode->i_size = 0;
1066 		shmem_truncate_range(inode, 0, (loff_t)-1);
1067 		if (!list_empty(&info->shrinklist)) {
1068 			spin_lock(&sbinfo->shrinklist_lock);
1069 			if (!list_empty(&info->shrinklist)) {
1070 				list_del_init(&info->shrinklist);
1071 				sbinfo->shrinklist_len--;
1072 			}
1073 			spin_unlock(&sbinfo->shrinklist_lock);
1074 		}
1075 		if (!list_empty(&info->swaplist)) {
1076 			mutex_lock(&shmem_swaplist_mutex);
1077 			list_del_init(&info->swaplist);
1078 			mutex_unlock(&shmem_swaplist_mutex);
1079 		}
1080 	}
1081 
1082 	simple_xattrs_free(&info->xattrs);
1083 	WARN_ON(inode->i_blocks);
1084 	shmem_free_inode(inode->i_sb);
1085 	clear_inode(inode);
1086 }
1087 
1088 static unsigned long find_swap_entry(struct xarray *xa, void *item)
1089 {
1090 	XA_STATE(xas, xa, 0);
1091 	unsigned int checked = 0;
1092 	void *entry;
1093 
1094 	rcu_read_lock();
1095 	xas_for_each(&xas, entry, ULONG_MAX) {
1096 		if (xas_retry(&xas, entry))
1097 			continue;
1098 		if (entry == item)
1099 			break;
1100 		checked++;
1101 		if ((checked % XA_CHECK_SCHED) != 0)
1102 			continue;
1103 		xas_pause(&xas);
1104 		cond_resched_rcu();
1105 	}
1106 	rcu_read_unlock();
1107 
1108 	return entry ? xas.xa_index : -1;
1109 }
1110 
1111 /*
1112  * If swap found in inode, free it and move page from swapcache to filecache.
1113  */
1114 static int shmem_unuse_inode(struct shmem_inode_info *info,
1115 			     swp_entry_t swap, struct page **pagep)
1116 {
1117 	struct address_space *mapping = info->vfs_inode.i_mapping;
1118 	void *radswap;
1119 	pgoff_t index;
1120 	gfp_t gfp;
1121 	int error = 0;
1122 
1123 	radswap = swp_to_radix_entry(swap);
1124 	index = find_swap_entry(&mapping->i_pages, radswap);
1125 	if (index == -1)
1126 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
1127 
1128 	/*
1129 	 * Move _head_ to start search for next from here.
1130 	 * But be careful: shmem_evict_inode checks list_empty without taking
1131 	 * mutex, and there's an instant in list_move_tail when info->swaplist
1132 	 * would appear empty, if it were the only one on shmem_swaplist.
1133 	 */
1134 	if (shmem_swaplist.next != &info->swaplist)
1135 		list_move_tail(&shmem_swaplist, &info->swaplist);
1136 
1137 	gfp = mapping_gfp_mask(mapping);
1138 	if (shmem_should_replace_page(*pagep, gfp)) {
1139 		mutex_unlock(&shmem_swaplist_mutex);
1140 		error = shmem_replace_page(pagep, gfp, info, index);
1141 		mutex_lock(&shmem_swaplist_mutex);
1142 		/*
1143 		 * We needed to drop mutex to make that restrictive page
1144 		 * allocation, but the inode might have been freed while we
1145 		 * dropped it: although a racing shmem_evict_inode() cannot
1146 		 * complete without emptying the page cache, our page lock
1147 		 * on this swapcache page is not enough to prevent that -
1148 		 * free_swap_and_cache() of our swap entry will only
1149 		 * trylock_page(), removing swap from page cache whatever.
1150 		 *
1151 		 * We must not proceed to shmem_add_to_page_cache() if the
1152 		 * inode has been freed, but of course we cannot rely on
1153 		 * inode or mapping or info to check that.  However, we can
1154 		 * safely check if our swap entry is still in use (and here
1155 		 * it can't have got reused for another page): if it's still
1156 		 * in use, then the inode cannot have been freed yet, and we
1157 		 * can safely proceed (if it's no longer in use, that tells
1158 		 * nothing about the inode, but we don't need to unuse swap).
1159 		 */
1160 		if (!page_swapcount(*pagep))
1161 			error = -ENOENT;
1162 	}
1163 
1164 	/*
1165 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1166 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1167 	 * beneath us (pagelock doesn't help until the page is in pagecache).
1168 	 */
1169 	if (!error)
1170 		error = shmem_add_to_page_cache(*pagep, mapping, index,
1171 						radswap, gfp);
1172 	if (error != -ENOMEM) {
1173 		/*
1174 		 * Truncation and eviction use free_swap_and_cache(), which
1175 		 * only does trylock page: if we raced, best clean up here.
1176 		 */
1177 		delete_from_swap_cache(*pagep);
1178 		set_page_dirty(*pagep);
1179 		if (!error) {
1180 			spin_lock_irq(&info->lock);
1181 			info->swapped--;
1182 			spin_unlock_irq(&info->lock);
1183 			swap_free(swap);
1184 		}
1185 	}
1186 	return error;
1187 }
1188 
1189 /*
1190  * Search through swapped inodes to find and replace swap by page.
1191  */
1192 int shmem_unuse(swp_entry_t swap, struct page *page)
1193 {
1194 	struct list_head *this, *next;
1195 	struct shmem_inode_info *info;
1196 	struct mem_cgroup *memcg;
1197 	int error = 0;
1198 
1199 	/*
1200 	 * There's a faint possibility that swap page was replaced before
1201 	 * caller locked it: caller will come back later with the right page.
1202 	 */
1203 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1204 		goto out;
1205 
1206 	/*
1207 	 * Charge page using GFP_KERNEL while we can wait, before taking
1208 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1209 	 * Charged back to the user (not to caller) when swap account is used.
1210 	 */
1211 	error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1212 					    &memcg, false);
1213 	if (error)
1214 		goto out;
1215 	/* No memory allocation: swap entry occupies the slot for the page */
1216 	error = -EAGAIN;
1217 
1218 	mutex_lock(&shmem_swaplist_mutex);
1219 	list_for_each_safe(this, next, &shmem_swaplist) {
1220 		info = list_entry(this, struct shmem_inode_info, swaplist);
1221 		if (info->swapped)
1222 			error = shmem_unuse_inode(info, swap, &page);
1223 		else
1224 			list_del_init(&info->swaplist);
1225 		cond_resched();
1226 		if (error != -EAGAIN)
1227 			break;
1228 		/* found nothing in this: move on to search the next */
1229 	}
1230 	mutex_unlock(&shmem_swaplist_mutex);
1231 
1232 	if (error) {
1233 		if (error != -ENOMEM)
1234 			error = 0;
1235 		mem_cgroup_cancel_charge(page, memcg, false);
1236 	} else
1237 		mem_cgroup_commit_charge(page, memcg, true, false);
1238 out:
1239 	unlock_page(page);
1240 	put_page(page);
1241 	return error;
1242 }
1243 
1244 /*
1245  * Move the page from the page cache to the swap cache.
1246  */
1247 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1248 {
1249 	struct shmem_inode_info *info;
1250 	struct address_space *mapping;
1251 	struct inode *inode;
1252 	swp_entry_t swap;
1253 	pgoff_t index;
1254 
1255 	VM_BUG_ON_PAGE(PageCompound(page), page);
1256 	BUG_ON(!PageLocked(page));
1257 	mapping = page->mapping;
1258 	index = page->index;
1259 	inode = mapping->host;
1260 	info = SHMEM_I(inode);
1261 	if (info->flags & VM_LOCKED)
1262 		goto redirty;
1263 	if (!total_swap_pages)
1264 		goto redirty;
1265 
1266 	/*
1267 	 * Our capabilities prevent regular writeback or sync from ever calling
1268 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1269 	 * its underlying filesystem, in which case tmpfs should write out to
1270 	 * swap only in response to memory pressure, and not for the writeback
1271 	 * threads or sync.
1272 	 */
1273 	if (!wbc->for_reclaim) {
1274 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1275 		goto redirty;
1276 	}
1277 
1278 	/*
1279 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1280 	 * value into swapfile.c, the only way we can correctly account for a
1281 	 * fallocated page arriving here is now to initialize it and write it.
1282 	 *
1283 	 * That's okay for a page already fallocated earlier, but if we have
1284 	 * not yet completed the fallocation, then (a) we want to keep track
1285 	 * of this page in case we have to undo it, and (b) it may not be a
1286 	 * good idea to continue anyway, once we're pushing into swap.  So
1287 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1288 	 */
1289 	if (!PageUptodate(page)) {
1290 		if (inode->i_private) {
1291 			struct shmem_falloc *shmem_falloc;
1292 			spin_lock(&inode->i_lock);
1293 			shmem_falloc = inode->i_private;
1294 			if (shmem_falloc &&
1295 			    !shmem_falloc->waitq &&
1296 			    index >= shmem_falloc->start &&
1297 			    index < shmem_falloc->next)
1298 				shmem_falloc->nr_unswapped++;
1299 			else
1300 				shmem_falloc = NULL;
1301 			spin_unlock(&inode->i_lock);
1302 			if (shmem_falloc)
1303 				goto redirty;
1304 		}
1305 		clear_highpage(page);
1306 		flush_dcache_page(page);
1307 		SetPageUptodate(page);
1308 	}
1309 
1310 	swap = get_swap_page(page);
1311 	if (!swap.val)
1312 		goto redirty;
1313 
1314 	/*
1315 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1316 	 * if it's not already there.  Do it now before the page is
1317 	 * moved to swap cache, when its pagelock no longer protects
1318 	 * the inode from eviction.  But don't unlock the mutex until
1319 	 * we've incremented swapped, because shmem_unuse_inode() will
1320 	 * prune a !swapped inode from the swaplist under this mutex.
1321 	 */
1322 	mutex_lock(&shmem_swaplist_mutex);
1323 	if (list_empty(&info->swaplist))
1324 		list_add_tail(&info->swaplist, &shmem_swaplist);
1325 
1326 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1327 		spin_lock_irq(&info->lock);
1328 		shmem_recalc_inode(inode);
1329 		info->swapped++;
1330 		spin_unlock_irq(&info->lock);
1331 
1332 		swap_shmem_alloc(swap);
1333 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1334 
1335 		mutex_unlock(&shmem_swaplist_mutex);
1336 		BUG_ON(page_mapped(page));
1337 		swap_writepage(page, wbc);
1338 		return 0;
1339 	}
1340 
1341 	mutex_unlock(&shmem_swaplist_mutex);
1342 	put_swap_page(page, swap);
1343 redirty:
1344 	set_page_dirty(page);
1345 	if (wbc->for_reclaim)
1346 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1347 	unlock_page(page);
1348 	return 0;
1349 }
1350 
1351 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1352 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1353 {
1354 	char buffer[64];
1355 
1356 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1357 		return;		/* show nothing */
1358 
1359 	mpol_to_str(buffer, sizeof(buffer), mpol);
1360 
1361 	seq_printf(seq, ",mpol=%s", buffer);
1362 }
1363 
1364 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1365 {
1366 	struct mempolicy *mpol = NULL;
1367 	if (sbinfo->mpol) {
1368 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1369 		mpol = sbinfo->mpol;
1370 		mpol_get(mpol);
1371 		spin_unlock(&sbinfo->stat_lock);
1372 	}
1373 	return mpol;
1374 }
1375 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1376 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1377 {
1378 }
1379 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1380 {
1381 	return NULL;
1382 }
1383 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1384 #ifndef CONFIG_NUMA
1385 #define vm_policy vm_private_data
1386 #endif
1387 
1388 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1389 		struct shmem_inode_info *info, pgoff_t index)
1390 {
1391 	/* Create a pseudo vma that just contains the policy */
1392 	vma_init(vma, NULL);
1393 	/* Bias interleave by inode number to distribute better across nodes */
1394 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1395 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1396 }
1397 
1398 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1399 {
1400 	/* Drop reference taken by mpol_shared_policy_lookup() */
1401 	mpol_cond_put(vma->vm_policy);
1402 }
1403 
1404 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1405 			struct shmem_inode_info *info, pgoff_t index)
1406 {
1407 	struct vm_area_struct pvma;
1408 	struct page *page;
1409 	struct vm_fault vmf;
1410 
1411 	shmem_pseudo_vma_init(&pvma, info, index);
1412 	vmf.vma = &pvma;
1413 	vmf.address = 0;
1414 	page = swap_cluster_readahead(swap, gfp, &vmf);
1415 	shmem_pseudo_vma_destroy(&pvma);
1416 
1417 	return page;
1418 }
1419 
1420 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1421 		struct shmem_inode_info *info, pgoff_t index)
1422 {
1423 	struct vm_area_struct pvma;
1424 	struct address_space *mapping = info->vfs_inode.i_mapping;
1425 	pgoff_t hindex;
1426 	struct page *page;
1427 
1428 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1429 		return NULL;
1430 
1431 	hindex = round_down(index, HPAGE_PMD_NR);
1432 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1433 								XA_PRESENT))
1434 		return NULL;
1435 
1436 	shmem_pseudo_vma_init(&pvma, info, hindex);
1437 	page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1438 			HPAGE_PMD_ORDER, &pvma, 0, numa_node_id());
1439 	shmem_pseudo_vma_destroy(&pvma);
1440 	if (page)
1441 		prep_transhuge_page(page);
1442 	return page;
1443 }
1444 
1445 static struct page *shmem_alloc_page(gfp_t gfp,
1446 			struct shmem_inode_info *info, pgoff_t index)
1447 {
1448 	struct vm_area_struct pvma;
1449 	struct page *page;
1450 
1451 	shmem_pseudo_vma_init(&pvma, info, index);
1452 	page = alloc_page_vma(gfp, &pvma, 0);
1453 	shmem_pseudo_vma_destroy(&pvma);
1454 
1455 	return page;
1456 }
1457 
1458 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1459 		struct inode *inode,
1460 		pgoff_t index, bool huge)
1461 {
1462 	struct shmem_inode_info *info = SHMEM_I(inode);
1463 	struct page *page;
1464 	int nr;
1465 	int err = -ENOSPC;
1466 
1467 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1468 		huge = false;
1469 	nr = huge ? HPAGE_PMD_NR : 1;
1470 
1471 	if (!shmem_inode_acct_block(inode, nr))
1472 		goto failed;
1473 
1474 	if (huge)
1475 		page = shmem_alloc_hugepage(gfp, info, index);
1476 	else
1477 		page = shmem_alloc_page(gfp, info, index);
1478 	if (page) {
1479 		__SetPageLocked(page);
1480 		__SetPageSwapBacked(page);
1481 		return page;
1482 	}
1483 
1484 	err = -ENOMEM;
1485 	shmem_inode_unacct_blocks(inode, nr);
1486 failed:
1487 	return ERR_PTR(err);
1488 }
1489 
1490 /*
1491  * When a page is moved from swapcache to shmem filecache (either by the
1492  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494  * ignorance of the mapping it belongs to.  If that mapping has special
1495  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496  * we may need to copy to a suitable page before moving to filecache.
1497  *
1498  * In a future release, this may well be extended to respect cpuset and
1499  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500  * but for now it is a simple matter of zone.
1501  */
1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1503 {
1504 	return page_zonenum(page) > gfp_zone(gfp);
1505 }
1506 
1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1508 				struct shmem_inode_info *info, pgoff_t index)
1509 {
1510 	struct page *oldpage, *newpage;
1511 	struct address_space *swap_mapping;
1512 	pgoff_t swap_index;
1513 	int error;
1514 
1515 	oldpage = *pagep;
1516 	swap_index = page_private(oldpage);
1517 	swap_mapping = page_mapping(oldpage);
1518 
1519 	/*
1520 	 * We have arrived here because our zones are constrained, so don't
1521 	 * limit chance of success by further cpuset and node constraints.
1522 	 */
1523 	gfp &= ~GFP_CONSTRAINT_MASK;
1524 	newpage = shmem_alloc_page(gfp, info, index);
1525 	if (!newpage)
1526 		return -ENOMEM;
1527 
1528 	get_page(newpage);
1529 	copy_highpage(newpage, oldpage);
1530 	flush_dcache_page(newpage);
1531 
1532 	__SetPageLocked(newpage);
1533 	__SetPageSwapBacked(newpage);
1534 	SetPageUptodate(newpage);
1535 	set_page_private(newpage, swap_index);
1536 	SetPageSwapCache(newpage);
1537 
1538 	/*
1539 	 * Our caller will very soon move newpage out of swapcache, but it's
1540 	 * a nice clean interface for us to replace oldpage by newpage there.
1541 	 */
1542 	xa_lock_irq(&swap_mapping->i_pages);
1543 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1544 	if (!error) {
1545 		__inc_node_page_state(newpage, NR_FILE_PAGES);
1546 		__dec_node_page_state(oldpage, NR_FILE_PAGES);
1547 	}
1548 	xa_unlock_irq(&swap_mapping->i_pages);
1549 
1550 	if (unlikely(error)) {
1551 		/*
1552 		 * Is this possible?  I think not, now that our callers check
1553 		 * both PageSwapCache and page_private after getting page lock;
1554 		 * but be defensive.  Reverse old to newpage for clear and free.
1555 		 */
1556 		oldpage = newpage;
1557 	} else {
1558 		mem_cgroup_migrate(oldpage, newpage);
1559 		lru_cache_add_anon(newpage);
1560 		*pagep = newpage;
1561 	}
1562 
1563 	ClearPageSwapCache(oldpage);
1564 	set_page_private(oldpage, 0);
1565 
1566 	unlock_page(oldpage);
1567 	put_page(oldpage);
1568 	put_page(oldpage);
1569 	return error;
1570 }
1571 
1572 /*
1573  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1574  *
1575  * If we allocate a new one we do not mark it dirty. That's up to the
1576  * vm. If we swap it in we mark it dirty since we also free the swap
1577  * entry since a page cannot live in both the swap and page cache.
1578  *
1579  * fault_mm and fault_type are only supplied by shmem_fault:
1580  * otherwise they are NULL.
1581  */
1582 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1583 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1584 	struct vm_area_struct *vma, struct vm_fault *vmf,
1585 			vm_fault_t *fault_type)
1586 {
1587 	struct address_space *mapping = inode->i_mapping;
1588 	struct shmem_inode_info *info = SHMEM_I(inode);
1589 	struct shmem_sb_info *sbinfo;
1590 	struct mm_struct *charge_mm;
1591 	struct mem_cgroup *memcg;
1592 	struct page *page;
1593 	swp_entry_t swap;
1594 	enum sgp_type sgp_huge = sgp;
1595 	pgoff_t hindex = index;
1596 	int error;
1597 	int once = 0;
1598 	int alloced = 0;
1599 
1600 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1601 		return -EFBIG;
1602 	if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1603 		sgp = SGP_CACHE;
1604 repeat:
1605 	swap.val = 0;
1606 	page = find_lock_entry(mapping, index);
1607 	if (xa_is_value(page)) {
1608 		swap = radix_to_swp_entry(page);
1609 		page = NULL;
1610 	}
1611 
1612 	if (sgp <= SGP_CACHE &&
1613 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1614 		error = -EINVAL;
1615 		goto unlock;
1616 	}
1617 
1618 	if (page && sgp == SGP_WRITE)
1619 		mark_page_accessed(page);
1620 
1621 	/* fallocated page? */
1622 	if (page && !PageUptodate(page)) {
1623 		if (sgp != SGP_READ)
1624 			goto clear;
1625 		unlock_page(page);
1626 		put_page(page);
1627 		page = NULL;
1628 	}
1629 	if (page || (sgp == SGP_READ && !swap.val)) {
1630 		*pagep = page;
1631 		return 0;
1632 	}
1633 
1634 	/*
1635 	 * Fast cache lookup did not find it:
1636 	 * bring it back from swap or allocate.
1637 	 */
1638 	sbinfo = SHMEM_SB(inode->i_sb);
1639 	charge_mm = vma ? vma->vm_mm : current->mm;
1640 
1641 	if (swap.val) {
1642 		/* Look it up and read it in.. */
1643 		page = lookup_swap_cache(swap, NULL, 0);
1644 		if (!page) {
1645 			/* Or update major stats only when swapin succeeds?? */
1646 			if (fault_type) {
1647 				*fault_type |= VM_FAULT_MAJOR;
1648 				count_vm_event(PGMAJFAULT);
1649 				count_memcg_event_mm(charge_mm, PGMAJFAULT);
1650 			}
1651 			/* Here we actually start the io */
1652 			page = shmem_swapin(swap, gfp, info, index);
1653 			if (!page) {
1654 				error = -ENOMEM;
1655 				goto failed;
1656 			}
1657 		}
1658 
1659 		/* We have to do this with page locked to prevent races */
1660 		lock_page(page);
1661 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1662 		    !shmem_confirm_swap(mapping, index, swap)) {
1663 			error = -EEXIST;	/* try again */
1664 			goto unlock;
1665 		}
1666 		if (!PageUptodate(page)) {
1667 			error = -EIO;
1668 			goto failed;
1669 		}
1670 		wait_on_page_writeback(page);
1671 
1672 		if (shmem_should_replace_page(page, gfp)) {
1673 			error = shmem_replace_page(&page, gfp, info, index);
1674 			if (error)
1675 				goto failed;
1676 		}
1677 
1678 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1679 				false);
1680 		if (!error) {
1681 			error = shmem_add_to_page_cache(page, mapping, index,
1682 						swp_to_radix_entry(swap), gfp);
1683 			/*
1684 			 * We already confirmed swap under page lock, and make
1685 			 * no memory allocation here, so usually no possibility
1686 			 * of error; but free_swap_and_cache() only trylocks a
1687 			 * page, so it is just possible that the entry has been
1688 			 * truncated or holepunched since swap was confirmed.
1689 			 * shmem_undo_range() will have done some of the
1690 			 * unaccounting, now delete_from_swap_cache() will do
1691 			 * the rest.
1692 			 * Reset swap.val? No, leave it so "failed" goes back to
1693 			 * "repeat": reading a hole and writing should succeed.
1694 			 */
1695 			if (error) {
1696 				mem_cgroup_cancel_charge(page, memcg, false);
1697 				delete_from_swap_cache(page);
1698 			}
1699 		}
1700 		if (error)
1701 			goto failed;
1702 
1703 		mem_cgroup_commit_charge(page, memcg, true, false);
1704 
1705 		spin_lock_irq(&info->lock);
1706 		info->swapped--;
1707 		shmem_recalc_inode(inode);
1708 		spin_unlock_irq(&info->lock);
1709 
1710 		if (sgp == SGP_WRITE)
1711 			mark_page_accessed(page);
1712 
1713 		delete_from_swap_cache(page);
1714 		set_page_dirty(page);
1715 		swap_free(swap);
1716 
1717 	} else {
1718 		if (vma && userfaultfd_missing(vma)) {
1719 			*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1720 			return 0;
1721 		}
1722 
1723 		/* shmem_symlink() */
1724 		if (mapping->a_ops != &shmem_aops)
1725 			goto alloc_nohuge;
1726 		if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1727 			goto alloc_nohuge;
1728 		if (shmem_huge == SHMEM_HUGE_FORCE)
1729 			goto alloc_huge;
1730 		switch (sbinfo->huge) {
1731 			loff_t i_size;
1732 			pgoff_t off;
1733 		case SHMEM_HUGE_NEVER:
1734 			goto alloc_nohuge;
1735 		case SHMEM_HUGE_WITHIN_SIZE:
1736 			off = round_up(index, HPAGE_PMD_NR);
1737 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
1738 			if (i_size >= HPAGE_PMD_SIZE &&
1739 					i_size >> PAGE_SHIFT >= off)
1740 				goto alloc_huge;
1741 			/* fallthrough */
1742 		case SHMEM_HUGE_ADVISE:
1743 			if (sgp_huge == SGP_HUGE)
1744 				goto alloc_huge;
1745 			/* TODO: implement fadvise() hints */
1746 			goto alloc_nohuge;
1747 		}
1748 
1749 alloc_huge:
1750 		page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1751 		if (IS_ERR(page)) {
1752 alloc_nohuge:		page = shmem_alloc_and_acct_page(gfp, inode,
1753 					index, false);
1754 		}
1755 		if (IS_ERR(page)) {
1756 			int retry = 5;
1757 			error = PTR_ERR(page);
1758 			page = NULL;
1759 			if (error != -ENOSPC)
1760 				goto failed;
1761 			/*
1762 			 * Try to reclaim some spece by splitting a huge page
1763 			 * beyond i_size on the filesystem.
1764 			 */
1765 			while (retry--) {
1766 				int ret;
1767 				ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1768 				if (ret == SHRINK_STOP)
1769 					break;
1770 				if (ret)
1771 					goto alloc_nohuge;
1772 			}
1773 			goto failed;
1774 		}
1775 
1776 		if (PageTransHuge(page))
1777 			hindex = round_down(index, HPAGE_PMD_NR);
1778 		else
1779 			hindex = index;
1780 
1781 		if (sgp == SGP_WRITE)
1782 			__SetPageReferenced(page);
1783 
1784 		error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1785 				PageTransHuge(page));
1786 		if (error)
1787 			goto unacct;
1788 		error = shmem_add_to_page_cache(page, mapping, hindex,
1789 						NULL, gfp & GFP_RECLAIM_MASK);
1790 		if (error) {
1791 			mem_cgroup_cancel_charge(page, memcg,
1792 					PageTransHuge(page));
1793 			goto unacct;
1794 		}
1795 		mem_cgroup_commit_charge(page, memcg, false,
1796 				PageTransHuge(page));
1797 		lru_cache_add_anon(page);
1798 
1799 		spin_lock_irq(&info->lock);
1800 		info->alloced += 1 << compound_order(page);
1801 		inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1802 		shmem_recalc_inode(inode);
1803 		spin_unlock_irq(&info->lock);
1804 		alloced = true;
1805 
1806 		if (PageTransHuge(page) &&
1807 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1808 				hindex + HPAGE_PMD_NR - 1) {
1809 			/*
1810 			 * Part of the huge page is beyond i_size: subject
1811 			 * to shrink under memory pressure.
1812 			 */
1813 			spin_lock(&sbinfo->shrinklist_lock);
1814 			/*
1815 			 * _careful to defend against unlocked access to
1816 			 * ->shrink_list in shmem_unused_huge_shrink()
1817 			 */
1818 			if (list_empty_careful(&info->shrinklist)) {
1819 				list_add_tail(&info->shrinklist,
1820 						&sbinfo->shrinklist);
1821 				sbinfo->shrinklist_len++;
1822 			}
1823 			spin_unlock(&sbinfo->shrinklist_lock);
1824 		}
1825 
1826 		/*
1827 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1828 		 */
1829 		if (sgp == SGP_FALLOC)
1830 			sgp = SGP_WRITE;
1831 clear:
1832 		/*
1833 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1834 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1835 		 * it now, lest undo on failure cancel our earlier guarantee.
1836 		 */
1837 		if (sgp != SGP_WRITE && !PageUptodate(page)) {
1838 			struct page *head = compound_head(page);
1839 			int i;
1840 
1841 			for (i = 0; i < (1 << compound_order(head)); i++) {
1842 				clear_highpage(head + i);
1843 				flush_dcache_page(head + i);
1844 			}
1845 			SetPageUptodate(head);
1846 		}
1847 	}
1848 
1849 	/* Perhaps the file has been truncated since we checked */
1850 	if (sgp <= SGP_CACHE &&
1851 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1852 		if (alloced) {
1853 			ClearPageDirty(page);
1854 			delete_from_page_cache(page);
1855 			spin_lock_irq(&info->lock);
1856 			shmem_recalc_inode(inode);
1857 			spin_unlock_irq(&info->lock);
1858 		}
1859 		error = -EINVAL;
1860 		goto unlock;
1861 	}
1862 	*pagep = page + index - hindex;
1863 	return 0;
1864 
1865 	/*
1866 	 * Error recovery.
1867 	 */
1868 unacct:
1869 	shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1870 
1871 	if (PageTransHuge(page)) {
1872 		unlock_page(page);
1873 		put_page(page);
1874 		goto alloc_nohuge;
1875 	}
1876 failed:
1877 	if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1878 		error = -EEXIST;
1879 unlock:
1880 	if (page) {
1881 		unlock_page(page);
1882 		put_page(page);
1883 	}
1884 	if (error == -ENOSPC && !once++) {
1885 		spin_lock_irq(&info->lock);
1886 		shmem_recalc_inode(inode);
1887 		spin_unlock_irq(&info->lock);
1888 		goto repeat;
1889 	}
1890 	if (error == -EEXIST)
1891 		goto repeat;
1892 	return error;
1893 }
1894 
1895 /*
1896  * This is like autoremove_wake_function, but it removes the wait queue
1897  * entry unconditionally - even if something else had already woken the
1898  * target.
1899  */
1900 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1901 {
1902 	int ret = default_wake_function(wait, mode, sync, key);
1903 	list_del_init(&wait->entry);
1904 	return ret;
1905 }
1906 
1907 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1908 {
1909 	struct vm_area_struct *vma = vmf->vma;
1910 	struct inode *inode = file_inode(vma->vm_file);
1911 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1912 	enum sgp_type sgp;
1913 	int err;
1914 	vm_fault_t ret = VM_FAULT_LOCKED;
1915 
1916 	/*
1917 	 * Trinity finds that probing a hole which tmpfs is punching can
1918 	 * prevent the hole-punch from ever completing: which in turn
1919 	 * locks writers out with its hold on i_mutex.  So refrain from
1920 	 * faulting pages into the hole while it's being punched.  Although
1921 	 * shmem_undo_range() does remove the additions, it may be unable to
1922 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1923 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1924 	 *
1925 	 * It does not matter if we sometimes reach this check just before the
1926 	 * hole-punch begins, so that one fault then races with the punch:
1927 	 * we just need to make racing faults a rare case.
1928 	 *
1929 	 * The implementation below would be much simpler if we just used a
1930 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1931 	 * and bloating every shmem inode for this unlikely case would be sad.
1932 	 */
1933 	if (unlikely(inode->i_private)) {
1934 		struct shmem_falloc *shmem_falloc;
1935 
1936 		spin_lock(&inode->i_lock);
1937 		shmem_falloc = inode->i_private;
1938 		if (shmem_falloc &&
1939 		    shmem_falloc->waitq &&
1940 		    vmf->pgoff >= shmem_falloc->start &&
1941 		    vmf->pgoff < shmem_falloc->next) {
1942 			wait_queue_head_t *shmem_falloc_waitq;
1943 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1944 
1945 			ret = VM_FAULT_NOPAGE;
1946 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1947 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1948 				/* It's polite to up mmap_sem if we can */
1949 				up_read(&vma->vm_mm->mmap_sem);
1950 				ret = VM_FAULT_RETRY;
1951 			}
1952 
1953 			shmem_falloc_waitq = shmem_falloc->waitq;
1954 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1955 					TASK_UNINTERRUPTIBLE);
1956 			spin_unlock(&inode->i_lock);
1957 			schedule();
1958 
1959 			/*
1960 			 * shmem_falloc_waitq points into the shmem_fallocate()
1961 			 * stack of the hole-punching task: shmem_falloc_waitq
1962 			 * is usually invalid by the time we reach here, but
1963 			 * finish_wait() does not dereference it in that case;
1964 			 * though i_lock needed lest racing with wake_up_all().
1965 			 */
1966 			spin_lock(&inode->i_lock);
1967 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1968 			spin_unlock(&inode->i_lock);
1969 			return ret;
1970 		}
1971 		spin_unlock(&inode->i_lock);
1972 	}
1973 
1974 	sgp = SGP_CACHE;
1975 
1976 	if ((vma->vm_flags & VM_NOHUGEPAGE) ||
1977 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
1978 		sgp = SGP_NOHUGE;
1979 	else if (vma->vm_flags & VM_HUGEPAGE)
1980 		sgp = SGP_HUGE;
1981 
1982 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1983 				  gfp, vma, vmf, &ret);
1984 	if (err)
1985 		return vmf_error(err);
1986 	return ret;
1987 }
1988 
1989 unsigned long shmem_get_unmapped_area(struct file *file,
1990 				      unsigned long uaddr, unsigned long len,
1991 				      unsigned long pgoff, unsigned long flags)
1992 {
1993 	unsigned long (*get_area)(struct file *,
1994 		unsigned long, unsigned long, unsigned long, unsigned long);
1995 	unsigned long addr;
1996 	unsigned long offset;
1997 	unsigned long inflated_len;
1998 	unsigned long inflated_addr;
1999 	unsigned long inflated_offset;
2000 
2001 	if (len > TASK_SIZE)
2002 		return -ENOMEM;
2003 
2004 	get_area = current->mm->get_unmapped_area;
2005 	addr = get_area(file, uaddr, len, pgoff, flags);
2006 
2007 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2008 		return addr;
2009 	if (IS_ERR_VALUE(addr))
2010 		return addr;
2011 	if (addr & ~PAGE_MASK)
2012 		return addr;
2013 	if (addr > TASK_SIZE - len)
2014 		return addr;
2015 
2016 	if (shmem_huge == SHMEM_HUGE_DENY)
2017 		return addr;
2018 	if (len < HPAGE_PMD_SIZE)
2019 		return addr;
2020 	if (flags & MAP_FIXED)
2021 		return addr;
2022 	/*
2023 	 * Our priority is to support MAP_SHARED mapped hugely;
2024 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2025 	 * But if caller specified an address hint, respect that as before.
2026 	 */
2027 	if (uaddr)
2028 		return addr;
2029 
2030 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2031 		struct super_block *sb;
2032 
2033 		if (file) {
2034 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2035 			sb = file_inode(file)->i_sb;
2036 		} else {
2037 			/*
2038 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2039 			 * for "/dev/zero", to create a shared anonymous object.
2040 			 */
2041 			if (IS_ERR(shm_mnt))
2042 				return addr;
2043 			sb = shm_mnt->mnt_sb;
2044 		}
2045 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2046 			return addr;
2047 	}
2048 
2049 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2050 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2051 		return addr;
2052 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2053 		return addr;
2054 
2055 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2056 	if (inflated_len > TASK_SIZE)
2057 		return addr;
2058 	if (inflated_len < len)
2059 		return addr;
2060 
2061 	inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2062 	if (IS_ERR_VALUE(inflated_addr))
2063 		return addr;
2064 	if (inflated_addr & ~PAGE_MASK)
2065 		return addr;
2066 
2067 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2068 	inflated_addr += offset - inflated_offset;
2069 	if (inflated_offset > offset)
2070 		inflated_addr += HPAGE_PMD_SIZE;
2071 
2072 	if (inflated_addr > TASK_SIZE - len)
2073 		return addr;
2074 	return inflated_addr;
2075 }
2076 
2077 #ifdef CONFIG_NUMA
2078 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2079 {
2080 	struct inode *inode = file_inode(vma->vm_file);
2081 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2082 }
2083 
2084 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2085 					  unsigned long addr)
2086 {
2087 	struct inode *inode = file_inode(vma->vm_file);
2088 	pgoff_t index;
2089 
2090 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2091 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2092 }
2093 #endif
2094 
2095 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2096 {
2097 	struct inode *inode = file_inode(file);
2098 	struct shmem_inode_info *info = SHMEM_I(inode);
2099 	int retval = -ENOMEM;
2100 
2101 	spin_lock_irq(&info->lock);
2102 	if (lock && !(info->flags & VM_LOCKED)) {
2103 		if (!user_shm_lock(inode->i_size, user))
2104 			goto out_nomem;
2105 		info->flags |= VM_LOCKED;
2106 		mapping_set_unevictable(file->f_mapping);
2107 	}
2108 	if (!lock && (info->flags & VM_LOCKED) && user) {
2109 		user_shm_unlock(inode->i_size, user);
2110 		info->flags &= ~VM_LOCKED;
2111 		mapping_clear_unevictable(file->f_mapping);
2112 	}
2113 	retval = 0;
2114 
2115 out_nomem:
2116 	spin_unlock_irq(&info->lock);
2117 	return retval;
2118 }
2119 
2120 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2121 {
2122 	file_accessed(file);
2123 	vma->vm_ops = &shmem_vm_ops;
2124 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2125 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2126 			(vma->vm_end & HPAGE_PMD_MASK)) {
2127 		khugepaged_enter(vma, vma->vm_flags);
2128 	}
2129 	return 0;
2130 }
2131 
2132 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2133 				     umode_t mode, dev_t dev, unsigned long flags)
2134 {
2135 	struct inode *inode;
2136 	struct shmem_inode_info *info;
2137 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2138 
2139 	if (shmem_reserve_inode(sb))
2140 		return NULL;
2141 
2142 	inode = new_inode(sb);
2143 	if (inode) {
2144 		inode->i_ino = get_next_ino();
2145 		inode_init_owner(inode, dir, mode);
2146 		inode->i_blocks = 0;
2147 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2148 		inode->i_generation = prandom_u32();
2149 		info = SHMEM_I(inode);
2150 		memset(info, 0, (char *)inode - (char *)info);
2151 		spin_lock_init(&info->lock);
2152 		info->seals = F_SEAL_SEAL;
2153 		info->flags = flags & VM_NORESERVE;
2154 		INIT_LIST_HEAD(&info->shrinklist);
2155 		INIT_LIST_HEAD(&info->swaplist);
2156 		simple_xattrs_init(&info->xattrs);
2157 		cache_no_acl(inode);
2158 
2159 		switch (mode & S_IFMT) {
2160 		default:
2161 			inode->i_op = &shmem_special_inode_operations;
2162 			init_special_inode(inode, mode, dev);
2163 			break;
2164 		case S_IFREG:
2165 			inode->i_mapping->a_ops = &shmem_aops;
2166 			inode->i_op = &shmem_inode_operations;
2167 			inode->i_fop = &shmem_file_operations;
2168 			mpol_shared_policy_init(&info->policy,
2169 						 shmem_get_sbmpol(sbinfo));
2170 			break;
2171 		case S_IFDIR:
2172 			inc_nlink(inode);
2173 			/* Some things misbehave if size == 0 on a directory */
2174 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2175 			inode->i_op = &shmem_dir_inode_operations;
2176 			inode->i_fop = &simple_dir_operations;
2177 			break;
2178 		case S_IFLNK:
2179 			/*
2180 			 * Must not load anything in the rbtree,
2181 			 * mpol_free_shared_policy will not be called.
2182 			 */
2183 			mpol_shared_policy_init(&info->policy, NULL);
2184 			break;
2185 		}
2186 
2187 		lockdep_annotate_inode_mutex_key(inode);
2188 	} else
2189 		shmem_free_inode(sb);
2190 	return inode;
2191 }
2192 
2193 bool shmem_mapping(struct address_space *mapping)
2194 {
2195 	return mapping->a_ops == &shmem_aops;
2196 }
2197 
2198 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2199 				  pmd_t *dst_pmd,
2200 				  struct vm_area_struct *dst_vma,
2201 				  unsigned long dst_addr,
2202 				  unsigned long src_addr,
2203 				  bool zeropage,
2204 				  struct page **pagep)
2205 {
2206 	struct inode *inode = file_inode(dst_vma->vm_file);
2207 	struct shmem_inode_info *info = SHMEM_I(inode);
2208 	struct address_space *mapping = inode->i_mapping;
2209 	gfp_t gfp = mapping_gfp_mask(mapping);
2210 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2211 	struct mem_cgroup *memcg;
2212 	spinlock_t *ptl;
2213 	void *page_kaddr;
2214 	struct page *page;
2215 	pte_t _dst_pte, *dst_pte;
2216 	int ret;
2217 
2218 	ret = -ENOMEM;
2219 	if (!shmem_inode_acct_block(inode, 1))
2220 		goto out;
2221 
2222 	if (!*pagep) {
2223 		page = shmem_alloc_page(gfp, info, pgoff);
2224 		if (!page)
2225 			goto out_unacct_blocks;
2226 
2227 		if (!zeropage) {	/* mcopy_atomic */
2228 			page_kaddr = kmap_atomic(page);
2229 			ret = copy_from_user(page_kaddr,
2230 					     (const void __user *)src_addr,
2231 					     PAGE_SIZE);
2232 			kunmap_atomic(page_kaddr);
2233 
2234 			/* fallback to copy_from_user outside mmap_sem */
2235 			if (unlikely(ret)) {
2236 				*pagep = page;
2237 				shmem_inode_unacct_blocks(inode, 1);
2238 				/* don't free the page */
2239 				return -EFAULT;
2240 			}
2241 		} else {		/* mfill_zeropage_atomic */
2242 			clear_highpage(page);
2243 		}
2244 	} else {
2245 		page = *pagep;
2246 		*pagep = NULL;
2247 	}
2248 
2249 	VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2250 	__SetPageLocked(page);
2251 	__SetPageSwapBacked(page);
2252 	__SetPageUptodate(page);
2253 
2254 	ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2255 	if (ret)
2256 		goto out_release;
2257 
2258 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2259 						gfp & GFP_RECLAIM_MASK);
2260 	if (ret)
2261 		goto out_release_uncharge;
2262 
2263 	mem_cgroup_commit_charge(page, memcg, false, false);
2264 
2265 	_dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2266 	if (dst_vma->vm_flags & VM_WRITE)
2267 		_dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2268 
2269 	ret = -EEXIST;
2270 	dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2271 	if (!pte_none(*dst_pte))
2272 		goto out_release_uncharge_unlock;
2273 
2274 	lru_cache_add_anon(page);
2275 
2276 	spin_lock(&info->lock);
2277 	info->alloced++;
2278 	inode->i_blocks += BLOCKS_PER_PAGE;
2279 	shmem_recalc_inode(inode);
2280 	spin_unlock(&info->lock);
2281 
2282 	inc_mm_counter(dst_mm, mm_counter_file(page));
2283 	page_add_file_rmap(page, false);
2284 	set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2285 
2286 	/* No need to invalidate - it was non-present before */
2287 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
2288 	unlock_page(page);
2289 	pte_unmap_unlock(dst_pte, ptl);
2290 	ret = 0;
2291 out:
2292 	return ret;
2293 out_release_uncharge_unlock:
2294 	pte_unmap_unlock(dst_pte, ptl);
2295 out_release_uncharge:
2296 	mem_cgroup_cancel_charge(page, memcg, false);
2297 out_release:
2298 	unlock_page(page);
2299 	put_page(page);
2300 out_unacct_blocks:
2301 	shmem_inode_unacct_blocks(inode, 1);
2302 	goto out;
2303 }
2304 
2305 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2306 			   pmd_t *dst_pmd,
2307 			   struct vm_area_struct *dst_vma,
2308 			   unsigned long dst_addr,
2309 			   unsigned long src_addr,
2310 			   struct page **pagep)
2311 {
2312 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2313 				      dst_addr, src_addr, false, pagep);
2314 }
2315 
2316 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2317 			     pmd_t *dst_pmd,
2318 			     struct vm_area_struct *dst_vma,
2319 			     unsigned long dst_addr)
2320 {
2321 	struct page *page = NULL;
2322 
2323 	return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2324 				      dst_addr, 0, true, &page);
2325 }
2326 
2327 #ifdef CONFIG_TMPFS
2328 static const struct inode_operations shmem_symlink_inode_operations;
2329 static const struct inode_operations shmem_short_symlink_operations;
2330 
2331 #ifdef CONFIG_TMPFS_XATTR
2332 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2333 #else
2334 #define shmem_initxattrs NULL
2335 #endif
2336 
2337 static int
2338 shmem_write_begin(struct file *file, struct address_space *mapping,
2339 			loff_t pos, unsigned len, unsigned flags,
2340 			struct page **pagep, void **fsdata)
2341 {
2342 	struct inode *inode = mapping->host;
2343 	struct shmem_inode_info *info = SHMEM_I(inode);
2344 	pgoff_t index = pos >> PAGE_SHIFT;
2345 
2346 	/* i_mutex is held by caller */
2347 	if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2348 		if (info->seals & F_SEAL_WRITE)
2349 			return -EPERM;
2350 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2351 			return -EPERM;
2352 	}
2353 
2354 	return shmem_getpage(inode, index, pagep, SGP_WRITE);
2355 }
2356 
2357 static int
2358 shmem_write_end(struct file *file, struct address_space *mapping,
2359 			loff_t pos, unsigned len, unsigned copied,
2360 			struct page *page, void *fsdata)
2361 {
2362 	struct inode *inode = mapping->host;
2363 
2364 	if (pos + copied > inode->i_size)
2365 		i_size_write(inode, pos + copied);
2366 
2367 	if (!PageUptodate(page)) {
2368 		struct page *head = compound_head(page);
2369 		if (PageTransCompound(page)) {
2370 			int i;
2371 
2372 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2373 				if (head + i == page)
2374 					continue;
2375 				clear_highpage(head + i);
2376 				flush_dcache_page(head + i);
2377 			}
2378 		}
2379 		if (copied < PAGE_SIZE) {
2380 			unsigned from = pos & (PAGE_SIZE - 1);
2381 			zero_user_segments(page, 0, from,
2382 					from + copied, PAGE_SIZE);
2383 		}
2384 		SetPageUptodate(head);
2385 	}
2386 	set_page_dirty(page);
2387 	unlock_page(page);
2388 	put_page(page);
2389 
2390 	return copied;
2391 }
2392 
2393 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2394 {
2395 	struct file *file = iocb->ki_filp;
2396 	struct inode *inode = file_inode(file);
2397 	struct address_space *mapping = inode->i_mapping;
2398 	pgoff_t index;
2399 	unsigned long offset;
2400 	enum sgp_type sgp = SGP_READ;
2401 	int error = 0;
2402 	ssize_t retval = 0;
2403 	loff_t *ppos = &iocb->ki_pos;
2404 
2405 	/*
2406 	 * Might this read be for a stacking filesystem?  Then when reading
2407 	 * holes of a sparse file, we actually need to allocate those pages,
2408 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2409 	 */
2410 	if (!iter_is_iovec(to))
2411 		sgp = SGP_CACHE;
2412 
2413 	index = *ppos >> PAGE_SHIFT;
2414 	offset = *ppos & ~PAGE_MASK;
2415 
2416 	for (;;) {
2417 		struct page *page = NULL;
2418 		pgoff_t end_index;
2419 		unsigned long nr, ret;
2420 		loff_t i_size = i_size_read(inode);
2421 
2422 		end_index = i_size >> PAGE_SHIFT;
2423 		if (index > end_index)
2424 			break;
2425 		if (index == end_index) {
2426 			nr = i_size & ~PAGE_MASK;
2427 			if (nr <= offset)
2428 				break;
2429 		}
2430 
2431 		error = shmem_getpage(inode, index, &page, sgp);
2432 		if (error) {
2433 			if (error == -EINVAL)
2434 				error = 0;
2435 			break;
2436 		}
2437 		if (page) {
2438 			if (sgp == SGP_CACHE)
2439 				set_page_dirty(page);
2440 			unlock_page(page);
2441 		}
2442 
2443 		/*
2444 		 * We must evaluate after, since reads (unlike writes)
2445 		 * are called without i_mutex protection against truncate
2446 		 */
2447 		nr = PAGE_SIZE;
2448 		i_size = i_size_read(inode);
2449 		end_index = i_size >> PAGE_SHIFT;
2450 		if (index == end_index) {
2451 			nr = i_size & ~PAGE_MASK;
2452 			if (nr <= offset) {
2453 				if (page)
2454 					put_page(page);
2455 				break;
2456 			}
2457 		}
2458 		nr -= offset;
2459 
2460 		if (page) {
2461 			/*
2462 			 * If users can be writing to this page using arbitrary
2463 			 * virtual addresses, take care about potential aliasing
2464 			 * before reading the page on the kernel side.
2465 			 */
2466 			if (mapping_writably_mapped(mapping))
2467 				flush_dcache_page(page);
2468 			/*
2469 			 * Mark the page accessed if we read the beginning.
2470 			 */
2471 			if (!offset)
2472 				mark_page_accessed(page);
2473 		} else {
2474 			page = ZERO_PAGE(0);
2475 			get_page(page);
2476 		}
2477 
2478 		/*
2479 		 * Ok, we have the page, and it's up-to-date, so
2480 		 * now we can copy it to user space...
2481 		 */
2482 		ret = copy_page_to_iter(page, offset, nr, to);
2483 		retval += ret;
2484 		offset += ret;
2485 		index += offset >> PAGE_SHIFT;
2486 		offset &= ~PAGE_MASK;
2487 
2488 		put_page(page);
2489 		if (!iov_iter_count(to))
2490 			break;
2491 		if (ret < nr) {
2492 			error = -EFAULT;
2493 			break;
2494 		}
2495 		cond_resched();
2496 	}
2497 
2498 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2499 	file_accessed(file);
2500 	return retval ? retval : error;
2501 }
2502 
2503 /*
2504  * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2505  */
2506 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2507 				    pgoff_t index, pgoff_t end, int whence)
2508 {
2509 	struct page *page;
2510 	struct pagevec pvec;
2511 	pgoff_t indices[PAGEVEC_SIZE];
2512 	bool done = false;
2513 	int i;
2514 
2515 	pagevec_init(&pvec);
2516 	pvec.nr = 1;		/* start small: we may be there already */
2517 	while (!done) {
2518 		pvec.nr = find_get_entries(mapping, index,
2519 					pvec.nr, pvec.pages, indices);
2520 		if (!pvec.nr) {
2521 			if (whence == SEEK_DATA)
2522 				index = end;
2523 			break;
2524 		}
2525 		for (i = 0; i < pvec.nr; i++, index++) {
2526 			if (index < indices[i]) {
2527 				if (whence == SEEK_HOLE) {
2528 					done = true;
2529 					break;
2530 				}
2531 				index = indices[i];
2532 			}
2533 			page = pvec.pages[i];
2534 			if (page && !xa_is_value(page)) {
2535 				if (!PageUptodate(page))
2536 					page = NULL;
2537 			}
2538 			if (index >= end ||
2539 			    (page && whence == SEEK_DATA) ||
2540 			    (!page && whence == SEEK_HOLE)) {
2541 				done = true;
2542 				break;
2543 			}
2544 		}
2545 		pagevec_remove_exceptionals(&pvec);
2546 		pagevec_release(&pvec);
2547 		pvec.nr = PAGEVEC_SIZE;
2548 		cond_resched();
2549 	}
2550 	return index;
2551 }
2552 
2553 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2554 {
2555 	struct address_space *mapping = file->f_mapping;
2556 	struct inode *inode = mapping->host;
2557 	pgoff_t start, end;
2558 	loff_t new_offset;
2559 
2560 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2561 		return generic_file_llseek_size(file, offset, whence,
2562 					MAX_LFS_FILESIZE, i_size_read(inode));
2563 	inode_lock(inode);
2564 	/* We're holding i_mutex so we can access i_size directly */
2565 
2566 	if (offset < 0)
2567 		offset = -EINVAL;
2568 	else if (offset >= inode->i_size)
2569 		offset = -ENXIO;
2570 	else {
2571 		start = offset >> PAGE_SHIFT;
2572 		end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2573 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2574 		new_offset <<= PAGE_SHIFT;
2575 		if (new_offset > offset) {
2576 			if (new_offset < inode->i_size)
2577 				offset = new_offset;
2578 			else if (whence == SEEK_DATA)
2579 				offset = -ENXIO;
2580 			else
2581 				offset = inode->i_size;
2582 		}
2583 	}
2584 
2585 	if (offset >= 0)
2586 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2587 	inode_unlock(inode);
2588 	return offset;
2589 }
2590 
2591 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2592 							 loff_t len)
2593 {
2594 	struct inode *inode = file_inode(file);
2595 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2596 	struct shmem_inode_info *info = SHMEM_I(inode);
2597 	struct shmem_falloc shmem_falloc;
2598 	pgoff_t start, index, end;
2599 	int error;
2600 
2601 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2602 		return -EOPNOTSUPP;
2603 
2604 	inode_lock(inode);
2605 
2606 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2607 		struct address_space *mapping = file->f_mapping;
2608 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2609 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2610 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2611 
2612 		/* protected by i_mutex */
2613 		if (info->seals & F_SEAL_WRITE) {
2614 			error = -EPERM;
2615 			goto out;
2616 		}
2617 
2618 		shmem_falloc.waitq = &shmem_falloc_waitq;
2619 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2620 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2621 		spin_lock(&inode->i_lock);
2622 		inode->i_private = &shmem_falloc;
2623 		spin_unlock(&inode->i_lock);
2624 
2625 		if ((u64)unmap_end > (u64)unmap_start)
2626 			unmap_mapping_range(mapping, unmap_start,
2627 					    1 + unmap_end - unmap_start, 0);
2628 		shmem_truncate_range(inode, offset, offset + len - 1);
2629 		/* No need to unmap again: hole-punching leaves COWed pages */
2630 
2631 		spin_lock(&inode->i_lock);
2632 		inode->i_private = NULL;
2633 		wake_up_all(&shmem_falloc_waitq);
2634 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2635 		spin_unlock(&inode->i_lock);
2636 		error = 0;
2637 		goto out;
2638 	}
2639 
2640 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2641 	error = inode_newsize_ok(inode, offset + len);
2642 	if (error)
2643 		goto out;
2644 
2645 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2646 		error = -EPERM;
2647 		goto out;
2648 	}
2649 
2650 	start = offset >> PAGE_SHIFT;
2651 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2652 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2653 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2654 		error = -ENOSPC;
2655 		goto out;
2656 	}
2657 
2658 	shmem_falloc.waitq = NULL;
2659 	shmem_falloc.start = start;
2660 	shmem_falloc.next  = start;
2661 	shmem_falloc.nr_falloced = 0;
2662 	shmem_falloc.nr_unswapped = 0;
2663 	spin_lock(&inode->i_lock);
2664 	inode->i_private = &shmem_falloc;
2665 	spin_unlock(&inode->i_lock);
2666 
2667 	for (index = start; index < end; index++) {
2668 		struct page *page;
2669 
2670 		/*
2671 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2672 		 * been interrupted because we are using up too much memory.
2673 		 */
2674 		if (signal_pending(current))
2675 			error = -EINTR;
2676 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2677 			error = -ENOMEM;
2678 		else
2679 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2680 		if (error) {
2681 			/* Remove the !PageUptodate pages we added */
2682 			if (index > start) {
2683 				shmem_undo_range(inode,
2684 				    (loff_t)start << PAGE_SHIFT,
2685 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2686 			}
2687 			goto undone;
2688 		}
2689 
2690 		/*
2691 		 * Inform shmem_writepage() how far we have reached.
2692 		 * No need for lock or barrier: we have the page lock.
2693 		 */
2694 		shmem_falloc.next++;
2695 		if (!PageUptodate(page))
2696 			shmem_falloc.nr_falloced++;
2697 
2698 		/*
2699 		 * If !PageUptodate, leave it that way so that freeable pages
2700 		 * can be recognized if we need to rollback on error later.
2701 		 * But set_page_dirty so that memory pressure will swap rather
2702 		 * than free the pages we are allocating (and SGP_CACHE pages
2703 		 * might still be clean: we now need to mark those dirty too).
2704 		 */
2705 		set_page_dirty(page);
2706 		unlock_page(page);
2707 		put_page(page);
2708 		cond_resched();
2709 	}
2710 
2711 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2712 		i_size_write(inode, offset + len);
2713 	inode->i_ctime = current_time(inode);
2714 undone:
2715 	spin_lock(&inode->i_lock);
2716 	inode->i_private = NULL;
2717 	spin_unlock(&inode->i_lock);
2718 out:
2719 	inode_unlock(inode);
2720 	return error;
2721 }
2722 
2723 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2724 {
2725 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2726 
2727 	buf->f_type = TMPFS_MAGIC;
2728 	buf->f_bsize = PAGE_SIZE;
2729 	buf->f_namelen = NAME_MAX;
2730 	if (sbinfo->max_blocks) {
2731 		buf->f_blocks = sbinfo->max_blocks;
2732 		buf->f_bavail =
2733 		buf->f_bfree  = sbinfo->max_blocks -
2734 				percpu_counter_sum(&sbinfo->used_blocks);
2735 	}
2736 	if (sbinfo->max_inodes) {
2737 		buf->f_files = sbinfo->max_inodes;
2738 		buf->f_ffree = sbinfo->free_inodes;
2739 	}
2740 	/* else leave those fields 0 like simple_statfs */
2741 	return 0;
2742 }
2743 
2744 /*
2745  * File creation. Allocate an inode, and we're done..
2746  */
2747 static int
2748 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2749 {
2750 	struct inode *inode;
2751 	int error = -ENOSPC;
2752 
2753 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2754 	if (inode) {
2755 		error = simple_acl_create(dir, inode);
2756 		if (error)
2757 			goto out_iput;
2758 		error = security_inode_init_security(inode, dir,
2759 						     &dentry->d_name,
2760 						     shmem_initxattrs, NULL);
2761 		if (error && error != -EOPNOTSUPP)
2762 			goto out_iput;
2763 
2764 		error = 0;
2765 		dir->i_size += BOGO_DIRENT_SIZE;
2766 		dir->i_ctime = dir->i_mtime = current_time(dir);
2767 		d_instantiate(dentry, inode);
2768 		dget(dentry); /* Extra count - pin the dentry in core */
2769 	}
2770 	return error;
2771 out_iput:
2772 	iput(inode);
2773 	return error;
2774 }
2775 
2776 static int
2777 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2778 {
2779 	struct inode *inode;
2780 	int error = -ENOSPC;
2781 
2782 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2783 	if (inode) {
2784 		error = security_inode_init_security(inode, dir,
2785 						     NULL,
2786 						     shmem_initxattrs, NULL);
2787 		if (error && error != -EOPNOTSUPP)
2788 			goto out_iput;
2789 		error = simple_acl_create(dir, inode);
2790 		if (error)
2791 			goto out_iput;
2792 		d_tmpfile(dentry, inode);
2793 	}
2794 	return error;
2795 out_iput:
2796 	iput(inode);
2797 	return error;
2798 }
2799 
2800 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2801 {
2802 	int error;
2803 
2804 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2805 		return error;
2806 	inc_nlink(dir);
2807 	return 0;
2808 }
2809 
2810 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2811 		bool excl)
2812 {
2813 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2814 }
2815 
2816 /*
2817  * Link a file..
2818  */
2819 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2820 {
2821 	struct inode *inode = d_inode(old_dentry);
2822 	int ret;
2823 
2824 	/*
2825 	 * No ordinary (disk based) filesystem counts links as inodes;
2826 	 * but each new link needs a new dentry, pinning lowmem, and
2827 	 * tmpfs dentries cannot be pruned until they are unlinked.
2828 	 */
2829 	ret = shmem_reserve_inode(inode->i_sb);
2830 	if (ret)
2831 		goto out;
2832 
2833 	dir->i_size += BOGO_DIRENT_SIZE;
2834 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2835 	inc_nlink(inode);
2836 	ihold(inode);	/* New dentry reference */
2837 	dget(dentry);		/* Extra pinning count for the created dentry */
2838 	d_instantiate(dentry, inode);
2839 out:
2840 	return ret;
2841 }
2842 
2843 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2844 {
2845 	struct inode *inode = d_inode(dentry);
2846 
2847 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2848 		shmem_free_inode(inode->i_sb);
2849 
2850 	dir->i_size -= BOGO_DIRENT_SIZE;
2851 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2852 	drop_nlink(inode);
2853 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2854 	return 0;
2855 }
2856 
2857 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2858 {
2859 	if (!simple_empty(dentry))
2860 		return -ENOTEMPTY;
2861 
2862 	drop_nlink(d_inode(dentry));
2863 	drop_nlink(dir);
2864 	return shmem_unlink(dir, dentry);
2865 }
2866 
2867 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2868 {
2869 	bool old_is_dir = d_is_dir(old_dentry);
2870 	bool new_is_dir = d_is_dir(new_dentry);
2871 
2872 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2873 		if (old_is_dir) {
2874 			drop_nlink(old_dir);
2875 			inc_nlink(new_dir);
2876 		} else {
2877 			drop_nlink(new_dir);
2878 			inc_nlink(old_dir);
2879 		}
2880 	}
2881 	old_dir->i_ctime = old_dir->i_mtime =
2882 	new_dir->i_ctime = new_dir->i_mtime =
2883 	d_inode(old_dentry)->i_ctime =
2884 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
2885 
2886 	return 0;
2887 }
2888 
2889 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2890 {
2891 	struct dentry *whiteout;
2892 	int error;
2893 
2894 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2895 	if (!whiteout)
2896 		return -ENOMEM;
2897 
2898 	error = shmem_mknod(old_dir, whiteout,
2899 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2900 	dput(whiteout);
2901 	if (error)
2902 		return error;
2903 
2904 	/*
2905 	 * Cheat and hash the whiteout while the old dentry is still in
2906 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2907 	 *
2908 	 * d_lookup() will consistently find one of them at this point,
2909 	 * not sure which one, but that isn't even important.
2910 	 */
2911 	d_rehash(whiteout);
2912 	return 0;
2913 }
2914 
2915 /*
2916  * The VFS layer already does all the dentry stuff for rename,
2917  * we just have to decrement the usage count for the target if
2918  * it exists so that the VFS layer correctly free's it when it
2919  * gets overwritten.
2920  */
2921 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2922 {
2923 	struct inode *inode = d_inode(old_dentry);
2924 	int they_are_dirs = S_ISDIR(inode->i_mode);
2925 
2926 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2927 		return -EINVAL;
2928 
2929 	if (flags & RENAME_EXCHANGE)
2930 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2931 
2932 	if (!simple_empty(new_dentry))
2933 		return -ENOTEMPTY;
2934 
2935 	if (flags & RENAME_WHITEOUT) {
2936 		int error;
2937 
2938 		error = shmem_whiteout(old_dir, old_dentry);
2939 		if (error)
2940 			return error;
2941 	}
2942 
2943 	if (d_really_is_positive(new_dentry)) {
2944 		(void) shmem_unlink(new_dir, new_dentry);
2945 		if (they_are_dirs) {
2946 			drop_nlink(d_inode(new_dentry));
2947 			drop_nlink(old_dir);
2948 		}
2949 	} else if (they_are_dirs) {
2950 		drop_nlink(old_dir);
2951 		inc_nlink(new_dir);
2952 	}
2953 
2954 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2955 	new_dir->i_size += BOGO_DIRENT_SIZE;
2956 	old_dir->i_ctime = old_dir->i_mtime =
2957 	new_dir->i_ctime = new_dir->i_mtime =
2958 	inode->i_ctime = current_time(old_dir);
2959 	return 0;
2960 }
2961 
2962 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2963 {
2964 	int error;
2965 	int len;
2966 	struct inode *inode;
2967 	struct page *page;
2968 
2969 	len = strlen(symname) + 1;
2970 	if (len > PAGE_SIZE)
2971 		return -ENAMETOOLONG;
2972 
2973 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
2974 				VM_NORESERVE);
2975 	if (!inode)
2976 		return -ENOSPC;
2977 
2978 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2979 					     shmem_initxattrs, NULL);
2980 	if (error) {
2981 		if (error != -EOPNOTSUPP) {
2982 			iput(inode);
2983 			return error;
2984 		}
2985 		error = 0;
2986 	}
2987 
2988 	inode->i_size = len-1;
2989 	if (len <= SHORT_SYMLINK_LEN) {
2990 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2991 		if (!inode->i_link) {
2992 			iput(inode);
2993 			return -ENOMEM;
2994 		}
2995 		inode->i_op = &shmem_short_symlink_operations;
2996 	} else {
2997 		inode_nohighmem(inode);
2998 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2999 		if (error) {
3000 			iput(inode);
3001 			return error;
3002 		}
3003 		inode->i_mapping->a_ops = &shmem_aops;
3004 		inode->i_op = &shmem_symlink_inode_operations;
3005 		memcpy(page_address(page), symname, len);
3006 		SetPageUptodate(page);
3007 		set_page_dirty(page);
3008 		unlock_page(page);
3009 		put_page(page);
3010 	}
3011 	dir->i_size += BOGO_DIRENT_SIZE;
3012 	dir->i_ctime = dir->i_mtime = current_time(dir);
3013 	d_instantiate(dentry, inode);
3014 	dget(dentry);
3015 	return 0;
3016 }
3017 
3018 static void shmem_put_link(void *arg)
3019 {
3020 	mark_page_accessed(arg);
3021 	put_page(arg);
3022 }
3023 
3024 static const char *shmem_get_link(struct dentry *dentry,
3025 				  struct inode *inode,
3026 				  struct delayed_call *done)
3027 {
3028 	struct page *page = NULL;
3029 	int error;
3030 	if (!dentry) {
3031 		page = find_get_page(inode->i_mapping, 0);
3032 		if (!page)
3033 			return ERR_PTR(-ECHILD);
3034 		if (!PageUptodate(page)) {
3035 			put_page(page);
3036 			return ERR_PTR(-ECHILD);
3037 		}
3038 	} else {
3039 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3040 		if (error)
3041 			return ERR_PTR(error);
3042 		unlock_page(page);
3043 	}
3044 	set_delayed_call(done, shmem_put_link, page);
3045 	return page_address(page);
3046 }
3047 
3048 #ifdef CONFIG_TMPFS_XATTR
3049 /*
3050  * Superblocks without xattr inode operations may get some security.* xattr
3051  * support from the LSM "for free". As soon as we have any other xattrs
3052  * like ACLs, we also need to implement the security.* handlers at
3053  * filesystem level, though.
3054  */
3055 
3056 /*
3057  * Callback for security_inode_init_security() for acquiring xattrs.
3058  */
3059 static int shmem_initxattrs(struct inode *inode,
3060 			    const struct xattr *xattr_array,
3061 			    void *fs_info)
3062 {
3063 	struct shmem_inode_info *info = SHMEM_I(inode);
3064 	const struct xattr *xattr;
3065 	struct simple_xattr *new_xattr;
3066 	size_t len;
3067 
3068 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3069 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3070 		if (!new_xattr)
3071 			return -ENOMEM;
3072 
3073 		len = strlen(xattr->name) + 1;
3074 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3075 					  GFP_KERNEL);
3076 		if (!new_xattr->name) {
3077 			kfree(new_xattr);
3078 			return -ENOMEM;
3079 		}
3080 
3081 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3082 		       XATTR_SECURITY_PREFIX_LEN);
3083 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3084 		       xattr->name, len);
3085 
3086 		simple_xattr_list_add(&info->xattrs, new_xattr);
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3093 				   struct dentry *unused, struct inode *inode,
3094 				   const char *name, void *buffer, size_t size)
3095 {
3096 	struct shmem_inode_info *info = SHMEM_I(inode);
3097 
3098 	name = xattr_full_name(handler, name);
3099 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3100 }
3101 
3102 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3103 				   struct dentry *unused, struct inode *inode,
3104 				   const char *name, const void *value,
3105 				   size_t size, int flags)
3106 {
3107 	struct shmem_inode_info *info = SHMEM_I(inode);
3108 
3109 	name = xattr_full_name(handler, name);
3110 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
3111 }
3112 
3113 static const struct xattr_handler shmem_security_xattr_handler = {
3114 	.prefix = XATTR_SECURITY_PREFIX,
3115 	.get = shmem_xattr_handler_get,
3116 	.set = shmem_xattr_handler_set,
3117 };
3118 
3119 static const struct xattr_handler shmem_trusted_xattr_handler = {
3120 	.prefix = XATTR_TRUSTED_PREFIX,
3121 	.get = shmem_xattr_handler_get,
3122 	.set = shmem_xattr_handler_set,
3123 };
3124 
3125 static const struct xattr_handler *shmem_xattr_handlers[] = {
3126 #ifdef CONFIG_TMPFS_POSIX_ACL
3127 	&posix_acl_access_xattr_handler,
3128 	&posix_acl_default_xattr_handler,
3129 #endif
3130 	&shmem_security_xattr_handler,
3131 	&shmem_trusted_xattr_handler,
3132 	NULL
3133 };
3134 
3135 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3136 {
3137 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3138 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3139 }
3140 #endif /* CONFIG_TMPFS_XATTR */
3141 
3142 static const struct inode_operations shmem_short_symlink_operations = {
3143 	.get_link	= simple_get_link,
3144 #ifdef CONFIG_TMPFS_XATTR
3145 	.listxattr	= shmem_listxattr,
3146 #endif
3147 };
3148 
3149 static const struct inode_operations shmem_symlink_inode_operations = {
3150 	.get_link	= shmem_get_link,
3151 #ifdef CONFIG_TMPFS_XATTR
3152 	.listxattr	= shmem_listxattr,
3153 #endif
3154 };
3155 
3156 static struct dentry *shmem_get_parent(struct dentry *child)
3157 {
3158 	return ERR_PTR(-ESTALE);
3159 }
3160 
3161 static int shmem_match(struct inode *ino, void *vfh)
3162 {
3163 	__u32 *fh = vfh;
3164 	__u64 inum = fh[2];
3165 	inum = (inum << 32) | fh[1];
3166 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3167 }
3168 
3169 /* Find any alias of inode, but prefer a hashed alias */
3170 static struct dentry *shmem_find_alias(struct inode *inode)
3171 {
3172 	struct dentry *alias = d_find_alias(inode);
3173 
3174 	return alias ?: d_find_any_alias(inode);
3175 }
3176 
3177 
3178 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3179 		struct fid *fid, int fh_len, int fh_type)
3180 {
3181 	struct inode *inode;
3182 	struct dentry *dentry = NULL;
3183 	u64 inum;
3184 
3185 	if (fh_len < 3)
3186 		return NULL;
3187 
3188 	inum = fid->raw[2];
3189 	inum = (inum << 32) | fid->raw[1];
3190 
3191 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3192 			shmem_match, fid->raw);
3193 	if (inode) {
3194 		dentry = shmem_find_alias(inode);
3195 		iput(inode);
3196 	}
3197 
3198 	return dentry;
3199 }
3200 
3201 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3202 				struct inode *parent)
3203 {
3204 	if (*len < 3) {
3205 		*len = 3;
3206 		return FILEID_INVALID;
3207 	}
3208 
3209 	if (inode_unhashed(inode)) {
3210 		/* Unfortunately insert_inode_hash is not idempotent,
3211 		 * so as we hash inodes here rather than at creation
3212 		 * time, we need a lock to ensure we only try
3213 		 * to do it once
3214 		 */
3215 		static DEFINE_SPINLOCK(lock);
3216 		spin_lock(&lock);
3217 		if (inode_unhashed(inode))
3218 			__insert_inode_hash(inode,
3219 					    inode->i_ino + inode->i_generation);
3220 		spin_unlock(&lock);
3221 	}
3222 
3223 	fh[0] = inode->i_generation;
3224 	fh[1] = inode->i_ino;
3225 	fh[2] = ((__u64)inode->i_ino) >> 32;
3226 
3227 	*len = 3;
3228 	return 1;
3229 }
3230 
3231 static const struct export_operations shmem_export_ops = {
3232 	.get_parent     = shmem_get_parent,
3233 	.encode_fh      = shmem_encode_fh,
3234 	.fh_to_dentry	= shmem_fh_to_dentry,
3235 };
3236 
3237 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3238 			       bool remount)
3239 {
3240 	char *this_char, *value, *rest;
3241 	struct mempolicy *mpol = NULL;
3242 	uid_t uid;
3243 	gid_t gid;
3244 
3245 	while (options != NULL) {
3246 		this_char = options;
3247 		for (;;) {
3248 			/*
3249 			 * NUL-terminate this option: unfortunately,
3250 			 * mount options form a comma-separated list,
3251 			 * but mpol's nodelist may also contain commas.
3252 			 */
3253 			options = strchr(options, ',');
3254 			if (options == NULL)
3255 				break;
3256 			options++;
3257 			if (!isdigit(*options)) {
3258 				options[-1] = '\0';
3259 				break;
3260 			}
3261 		}
3262 		if (!*this_char)
3263 			continue;
3264 		if ((value = strchr(this_char,'=')) != NULL) {
3265 			*value++ = 0;
3266 		} else {
3267 			pr_err("tmpfs: No value for mount option '%s'\n",
3268 			       this_char);
3269 			goto error;
3270 		}
3271 
3272 		if (!strcmp(this_char,"size")) {
3273 			unsigned long long size;
3274 			size = memparse(value,&rest);
3275 			if (*rest == '%') {
3276 				size <<= PAGE_SHIFT;
3277 				size *= totalram_pages;
3278 				do_div(size, 100);
3279 				rest++;
3280 			}
3281 			if (*rest)
3282 				goto bad_val;
3283 			sbinfo->max_blocks =
3284 				DIV_ROUND_UP(size, PAGE_SIZE);
3285 		} else if (!strcmp(this_char,"nr_blocks")) {
3286 			sbinfo->max_blocks = memparse(value, &rest);
3287 			if (*rest)
3288 				goto bad_val;
3289 		} else if (!strcmp(this_char,"nr_inodes")) {
3290 			sbinfo->max_inodes = memparse(value, &rest);
3291 			if (*rest)
3292 				goto bad_val;
3293 		} else if (!strcmp(this_char,"mode")) {
3294 			if (remount)
3295 				continue;
3296 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3297 			if (*rest)
3298 				goto bad_val;
3299 		} else if (!strcmp(this_char,"uid")) {
3300 			if (remount)
3301 				continue;
3302 			uid = simple_strtoul(value, &rest, 0);
3303 			if (*rest)
3304 				goto bad_val;
3305 			sbinfo->uid = make_kuid(current_user_ns(), uid);
3306 			if (!uid_valid(sbinfo->uid))
3307 				goto bad_val;
3308 		} else if (!strcmp(this_char,"gid")) {
3309 			if (remount)
3310 				continue;
3311 			gid = simple_strtoul(value, &rest, 0);
3312 			if (*rest)
3313 				goto bad_val;
3314 			sbinfo->gid = make_kgid(current_user_ns(), gid);
3315 			if (!gid_valid(sbinfo->gid))
3316 				goto bad_val;
3317 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3318 		} else if (!strcmp(this_char, "huge")) {
3319 			int huge;
3320 			huge = shmem_parse_huge(value);
3321 			if (huge < 0)
3322 				goto bad_val;
3323 			if (!has_transparent_hugepage() &&
3324 					huge != SHMEM_HUGE_NEVER)
3325 				goto bad_val;
3326 			sbinfo->huge = huge;
3327 #endif
3328 #ifdef CONFIG_NUMA
3329 		} else if (!strcmp(this_char,"mpol")) {
3330 			mpol_put(mpol);
3331 			mpol = NULL;
3332 			if (mpol_parse_str(value, &mpol))
3333 				goto bad_val;
3334 #endif
3335 		} else {
3336 			pr_err("tmpfs: Bad mount option %s\n", this_char);
3337 			goto error;
3338 		}
3339 	}
3340 	sbinfo->mpol = mpol;
3341 	return 0;
3342 
3343 bad_val:
3344 	pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3345 	       value, this_char);
3346 error:
3347 	mpol_put(mpol);
3348 	return 1;
3349 
3350 }
3351 
3352 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3353 {
3354 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3355 	struct shmem_sb_info config = *sbinfo;
3356 	unsigned long inodes;
3357 	int error = -EINVAL;
3358 
3359 	config.mpol = NULL;
3360 	if (shmem_parse_options(data, &config, true))
3361 		return error;
3362 
3363 	spin_lock(&sbinfo->stat_lock);
3364 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3365 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3366 		goto out;
3367 	if (config.max_inodes < inodes)
3368 		goto out;
3369 	/*
3370 	 * Those tests disallow limited->unlimited while any are in use;
3371 	 * but we must separately disallow unlimited->limited, because
3372 	 * in that case we have no record of how much is already in use.
3373 	 */
3374 	if (config.max_blocks && !sbinfo->max_blocks)
3375 		goto out;
3376 	if (config.max_inodes && !sbinfo->max_inodes)
3377 		goto out;
3378 
3379 	error = 0;
3380 	sbinfo->huge = config.huge;
3381 	sbinfo->max_blocks  = config.max_blocks;
3382 	sbinfo->max_inodes  = config.max_inodes;
3383 	sbinfo->free_inodes = config.max_inodes - inodes;
3384 
3385 	/*
3386 	 * Preserve previous mempolicy unless mpol remount option was specified.
3387 	 */
3388 	if (config.mpol) {
3389 		mpol_put(sbinfo->mpol);
3390 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
3391 	}
3392 out:
3393 	spin_unlock(&sbinfo->stat_lock);
3394 	return error;
3395 }
3396 
3397 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3398 {
3399 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3400 
3401 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3402 		seq_printf(seq, ",size=%luk",
3403 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3404 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3405 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3406 	if (sbinfo->mode != (0777 | S_ISVTX))
3407 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3408 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3409 		seq_printf(seq, ",uid=%u",
3410 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3411 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3412 		seq_printf(seq, ",gid=%u",
3413 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3414 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3415 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3416 	if (sbinfo->huge)
3417 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3418 #endif
3419 	shmem_show_mpol(seq, sbinfo->mpol);
3420 	return 0;
3421 }
3422 
3423 #endif /* CONFIG_TMPFS */
3424 
3425 static void shmem_put_super(struct super_block *sb)
3426 {
3427 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3428 
3429 	percpu_counter_destroy(&sbinfo->used_blocks);
3430 	mpol_put(sbinfo->mpol);
3431 	kfree(sbinfo);
3432 	sb->s_fs_info = NULL;
3433 }
3434 
3435 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3436 {
3437 	struct inode *inode;
3438 	struct shmem_sb_info *sbinfo;
3439 	int err = -ENOMEM;
3440 
3441 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3442 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3443 				L1_CACHE_BYTES), GFP_KERNEL);
3444 	if (!sbinfo)
3445 		return -ENOMEM;
3446 
3447 	sbinfo->mode = 0777 | S_ISVTX;
3448 	sbinfo->uid = current_fsuid();
3449 	sbinfo->gid = current_fsgid();
3450 	sb->s_fs_info = sbinfo;
3451 
3452 #ifdef CONFIG_TMPFS
3453 	/*
3454 	 * Per default we only allow half of the physical ram per
3455 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3456 	 * but the internal instance is left unlimited.
3457 	 */
3458 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3459 		sbinfo->max_blocks = shmem_default_max_blocks();
3460 		sbinfo->max_inodes = shmem_default_max_inodes();
3461 		if (shmem_parse_options(data, sbinfo, false)) {
3462 			err = -EINVAL;
3463 			goto failed;
3464 		}
3465 	} else {
3466 		sb->s_flags |= SB_NOUSER;
3467 	}
3468 	sb->s_export_op = &shmem_export_ops;
3469 	sb->s_flags |= SB_NOSEC;
3470 #else
3471 	sb->s_flags |= SB_NOUSER;
3472 #endif
3473 
3474 	spin_lock_init(&sbinfo->stat_lock);
3475 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3476 		goto failed;
3477 	sbinfo->free_inodes = sbinfo->max_inodes;
3478 	spin_lock_init(&sbinfo->shrinklist_lock);
3479 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3480 
3481 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3482 	sb->s_blocksize = PAGE_SIZE;
3483 	sb->s_blocksize_bits = PAGE_SHIFT;
3484 	sb->s_magic = TMPFS_MAGIC;
3485 	sb->s_op = &shmem_ops;
3486 	sb->s_time_gran = 1;
3487 #ifdef CONFIG_TMPFS_XATTR
3488 	sb->s_xattr = shmem_xattr_handlers;
3489 #endif
3490 #ifdef CONFIG_TMPFS_POSIX_ACL
3491 	sb->s_flags |= SB_POSIXACL;
3492 #endif
3493 	uuid_gen(&sb->s_uuid);
3494 
3495 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3496 	if (!inode)
3497 		goto failed;
3498 	inode->i_uid = sbinfo->uid;
3499 	inode->i_gid = sbinfo->gid;
3500 	sb->s_root = d_make_root(inode);
3501 	if (!sb->s_root)
3502 		goto failed;
3503 	return 0;
3504 
3505 failed:
3506 	shmem_put_super(sb);
3507 	return err;
3508 }
3509 
3510 static struct kmem_cache *shmem_inode_cachep;
3511 
3512 static struct inode *shmem_alloc_inode(struct super_block *sb)
3513 {
3514 	struct shmem_inode_info *info;
3515 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3516 	if (!info)
3517 		return NULL;
3518 	return &info->vfs_inode;
3519 }
3520 
3521 static void shmem_destroy_callback(struct rcu_head *head)
3522 {
3523 	struct inode *inode = container_of(head, struct inode, i_rcu);
3524 	if (S_ISLNK(inode->i_mode))
3525 		kfree(inode->i_link);
3526 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3527 }
3528 
3529 static void shmem_destroy_inode(struct inode *inode)
3530 {
3531 	if (S_ISREG(inode->i_mode))
3532 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3533 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3534 }
3535 
3536 static void shmem_init_inode(void *foo)
3537 {
3538 	struct shmem_inode_info *info = foo;
3539 	inode_init_once(&info->vfs_inode);
3540 }
3541 
3542 static void shmem_init_inodecache(void)
3543 {
3544 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3545 				sizeof(struct shmem_inode_info),
3546 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3547 }
3548 
3549 static void shmem_destroy_inodecache(void)
3550 {
3551 	kmem_cache_destroy(shmem_inode_cachep);
3552 }
3553 
3554 static const struct address_space_operations shmem_aops = {
3555 	.writepage	= shmem_writepage,
3556 	.set_page_dirty	= __set_page_dirty_no_writeback,
3557 #ifdef CONFIG_TMPFS
3558 	.write_begin	= shmem_write_begin,
3559 	.write_end	= shmem_write_end,
3560 #endif
3561 #ifdef CONFIG_MIGRATION
3562 	.migratepage	= migrate_page,
3563 #endif
3564 	.error_remove_page = generic_error_remove_page,
3565 };
3566 
3567 static const struct file_operations shmem_file_operations = {
3568 	.mmap		= shmem_mmap,
3569 	.get_unmapped_area = shmem_get_unmapped_area,
3570 #ifdef CONFIG_TMPFS
3571 	.llseek		= shmem_file_llseek,
3572 	.read_iter	= shmem_file_read_iter,
3573 	.write_iter	= generic_file_write_iter,
3574 	.fsync		= noop_fsync,
3575 	.splice_read	= generic_file_splice_read,
3576 	.splice_write	= iter_file_splice_write,
3577 	.fallocate	= shmem_fallocate,
3578 #endif
3579 };
3580 
3581 static const struct inode_operations shmem_inode_operations = {
3582 	.getattr	= shmem_getattr,
3583 	.setattr	= shmem_setattr,
3584 #ifdef CONFIG_TMPFS_XATTR
3585 	.listxattr	= shmem_listxattr,
3586 	.set_acl	= simple_set_acl,
3587 #endif
3588 };
3589 
3590 static const struct inode_operations shmem_dir_inode_operations = {
3591 #ifdef CONFIG_TMPFS
3592 	.create		= shmem_create,
3593 	.lookup		= simple_lookup,
3594 	.link		= shmem_link,
3595 	.unlink		= shmem_unlink,
3596 	.symlink	= shmem_symlink,
3597 	.mkdir		= shmem_mkdir,
3598 	.rmdir		= shmem_rmdir,
3599 	.mknod		= shmem_mknod,
3600 	.rename		= shmem_rename2,
3601 	.tmpfile	= shmem_tmpfile,
3602 #endif
3603 #ifdef CONFIG_TMPFS_XATTR
3604 	.listxattr	= shmem_listxattr,
3605 #endif
3606 #ifdef CONFIG_TMPFS_POSIX_ACL
3607 	.setattr	= shmem_setattr,
3608 	.set_acl	= simple_set_acl,
3609 #endif
3610 };
3611 
3612 static const struct inode_operations shmem_special_inode_operations = {
3613 #ifdef CONFIG_TMPFS_XATTR
3614 	.listxattr	= shmem_listxattr,
3615 #endif
3616 #ifdef CONFIG_TMPFS_POSIX_ACL
3617 	.setattr	= shmem_setattr,
3618 	.set_acl	= simple_set_acl,
3619 #endif
3620 };
3621 
3622 static const struct super_operations shmem_ops = {
3623 	.alloc_inode	= shmem_alloc_inode,
3624 	.destroy_inode	= shmem_destroy_inode,
3625 #ifdef CONFIG_TMPFS
3626 	.statfs		= shmem_statfs,
3627 	.remount_fs	= shmem_remount_fs,
3628 	.show_options	= shmem_show_options,
3629 #endif
3630 	.evict_inode	= shmem_evict_inode,
3631 	.drop_inode	= generic_delete_inode,
3632 	.put_super	= shmem_put_super,
3633 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3634 	.nr_cached_objects	= shmem_unused_huge_count,
3635 	.free_cached_objects	= shmem_unused_huge_scan,
3636 #endif
3637 };
3638 
3639 static const struct vm_operations_struct shmem_vm_ops = {
3640 	.fault		= shmem_fault,
3641 	.map_pages	= filemap_map_pages,
3642 #ifdef CONFIG_NUMA
3643 	.set_policy     = shmem_set_policy,
3644 	.get_policy     = shmem_get_policy,
3645 #endif
3646 };
3647 
3648 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3649 	int flags, const char *dev_name, void *data)
3650 {
3651 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3652 }
3653 
3654 static struct file_system_type shmem_fs_type = {
3655 	.owner		= THIS_MODULE,
3656 	.name		= "tmpfs",
3657 	.mount		= shmem_mount,
3658 	.kill_sb	= kill_litter_super,
3659 	.fs_flags	= FS_USERNS_MOUNT,
3660 };
3661 
3662 int __init shmem_init(void)
3663 {
3664 	int error;
3665 
3666 	/* If rootfs called this, don't re-init */
3667 	if (shmem_inode_cachep)
3668 		return 0;
3669 
3670 	shmem_init_inodecache();
3671 
3672 	error = register_filesystem(&shmem_fs_type);
3673 	if (error) {
3674 		pr_err("Could not register tmpfs\n");
3675 		goto out2;
3676 	}
3677 
3678 	shm_mnt = kern_mount(&shmem_fs_type);
3679 	if (IS_ERR(shm_mnt)) {
3680 		error = PTR_ERR(shm_mnt);
3681 		pr_err("Could not kern_mount tmpfs\n");
3682 		goto out1;
3683 	}
3684 
3685 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3686 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3687 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3688 	else
3689 		shmem_huge = 0; /* just in case it was patched */
3690 #endif
3691 	return 0;
3692 
3693 out1:
3694 	unregister_filesystem(&shmem_fs_type);
3695 out2:
3696 	shmem_destroy_inodecache();
3697 	shm_mnt = ERR_PTR(error);
3698 	return error;
3699 }
3700 
3701 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3702 static ssize_t shmem_enabled_show(struct kobject *kobj,
3703 		struct kobj_attribute *attr, char *buf)
3704 {
3705 	int values[] = {
3706 		SHMEM_HUGE_ALWAYS,
3707 		SHMEM_HUGE_WITHIN_SIZE,
3708 		SHMEM_HUGE_ADVISE,
3709 		SHMEM_HUGE_NEVER,
3710 		SHMEM_HUGE_DENY,
3711 		SHMEM_HUGE_FORCE,
3712 	};
3713 	int i, count;
3714 
3715 	for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3716 		const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3717 
3718 		count += sprintf(buf + count, fmt,
3719 				shmem_format_huge(values[i]));
3720 	}
3721 	buf[count - 1] = '\n';
3722 	return count;
3723 }
3724 
3725 static ssize_t shmem_enabled_store(struct kobject *kobj,
3726 		struct kobj_attribute *attr, const char *buf, size_t count)
3727 {
3728 	char tmp[16];
3729 	int huge;
3730 
3731 	if (count + 1 > sizeof(tmp))
3732 		return -EINVAL;
3733 	memcpy(tmp, buf, count);
3734 	tmp[count] = '\0';
3735 	if (count && tmp[count - 1] == '\n')
3736 		tmp[count - 1] = '\0';
3737 
3738 	huge = shmem_parse_huge(tmp);
3739 	if (huge == -EINVAL)
3740 		return -EINVAL;
3741 	if (!has_transparent_hugepage() &&
3742 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3743 		return -EINVAL;
3744 
3745 	shmem_huge = huge;
3746 	if (shmem_huge > SHMEM_HUGE_DENY)
3747 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3748 	return count;
3749 }
3750 
3751 struct kobj_attribute shmem_enabled_attr =
3752 	__ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3753 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3754 
3755 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3756 bool shmem_huge_enabled(struct vm_area_struct *vma)
3757 {
3758 	struct inode *inode = file_inode(vma->vm_file);
3759 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3760 	loff_t i_size;
3761 	pgoff_t off;
3762 
3763 	if (shmem_huge == SHMEM_HUGE_FORCE)
3764 		return true;
3765 	if (shmem_huge == SHMEM_HUGE_DENY)
3766 		return false;
3767 	switch (sbinfo->huge) {
3768 		case SHMEM_HUGE_NEVER:
3769 			return false;
3770 		case SHMEM_HUGE_ALWAYS:
3771 			return true;
3772 		case SHMEM_HUGE_WITHIN_SIZE:
3773 			off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3774 			i_size = round_up(i_size_read(inode), PAGE_SIZE);
3775 			if (i_size >= HPAGE_PMD_SIZE &&
3776 					i_size >> PAGE_SHIFT >= off)
3777 				return true;
3778 			/* fall through */
3779 		case SHMEM_HUGE_ADVISE:
3780 			/* TODO: implement fadvise() hints */
3781 			return (vma->vm_flags & VM_HUGEPAGE);
3782 		default:
3783 			VM_BUG_ON(1);
3784 			return false;
3785 	}
3786 }
3787 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3788 
3789 #else /* !CONFIG_SHMEM */
3790 
3791 /*
3792  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3793  *
3794  * This is intended for small system where the benefits of the full
3795  * shmem code (swap-backed and resource-limited) are outweighed by
3796  * their complexity. On systems without swap this code should be
3797  * effectively equivalent, but much lighter weight.
3798  */
3799 
3800 static struct file_system_type shmem_fs_type = {
3801 	.name		= "tmpfs",
3802 	.mount		= ramfs_mount,
3803 	.kill_sb	= kill_litter_super,
3804 	.fs_flags	= FS_USERNS_MOUNT,
3805 };
3806 
3807 int __init shmem_init(void)
3808 {
3809 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3810 
3811 	shm_mnt = kern_mount(&shmem_fs_type);
3812 	BUG_ON(IS_ERR(shm_mnt));
3813 
3814 	return 0;
3815 }
3816 
3817 int shmem_unuse(swp_entry_t swap, struct page *page)
3818 {
3819 	return 0;
3820 }
3821 
3822 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3823 {
3824 	return 0;
3825 }
3826 
3827 void shmem_unlock_mapping(struct address_space *mapping)
3828 {
3829 }
3830 
3831 #ifdef CONFIG_MMU
3832 unsigned long shmem_get_unmapped_area(struct file *file,
3833 				      unsigned long addr, unsigned long len,
3834 				      unsigned long pgoff, unsigned long flags)
3835 {
3836 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3837 }
3838 #endif
3839 
3840 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3841 {
3842 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3843 }
3844 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3845 
3846 #define shmem_vm_ops				generic_file_vm_ops
3847 #define shmem_file_operations			ramfs_file_operations
3848 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3849 #define shmem_acct_size(flags, size)		0
3850 #define shmem_unacct_size(flags, size)		do {} while (0)
3851 
3852 #endif /* CONFIG_SHMEM */
3853 
3854 /* common code */
3855 
3856 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3857 				       unsigned long flags, unsigned int i_flags)
3858 {
3859 	struct inode *inode;
3860 	struct file *res;
3861 
3862 	if (IS_ERR(mnt))
3863 		return ERR_CAST(mnt);
3864 
3865 	if (size < 0 || size > MAX_LFS_FILESIZE)
3866 		return ERR_PTR(-EINVAL);
3867 
3868 	if (shmem_acct_size(flags, size))
3869 		return ERR_PTR(-ENOMEM);
3870 
3871 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3872 				flags);
3873 	if (unlikely(!inode)) {
3874 		shmem_unacct_size(flags, size);
3875 		return ERR_PTR(-ENOSPC);
3876 	}
3877 	inode->i_flags |= i_flags;
3878 	inode->i_size = size;
3879 	clear_nlink(inode);	/* It is unlinked */
3880 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3881 	if (!IS_ERR(res))
3882 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3883 				&shmem_file_operations);
3884 	if (IS_ERR(res))
3885 		iput(inode);
3886 	return res;
3887 }
3888 
3889 /**
3890  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3891  * 	kernel internal.  There will be NO LSM permission checks against the
3892  * 	underlying inode.  So users of this interface must do LSM checks at a
3893  *	higher layer.  The users are the big_key and shm implementations.  LSM
3894  *	checks are provided at the key or shm level rather than the inode.
3895  * @name: name for dentry (to be seen in /proc/<pid>/maps
3896  * @size: size to be set for the file
3897  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3898  */
3899 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3900 {
3901 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3902 }
3903 
3904 /**
3905  * shmem_file_setup - get an unlinked file living in tmpfs
3906  * @name: name for dentry (to be seen in /proc/<pid>/maps
3907  * @size: size to be set for the file
3908  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3909  */
3910 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3911 {
3912 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3913 }
3914 EXPORT_SYMBOL_GPL(shmem_file_setup);
3915 
3916 /**
3917  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3918  * @mnt: the tmpfs mount where the file will be created
3919  * @name: name for dentry (to be seen in /proc/<pid>/maps
3920  * @size: size to be set for the file
3921  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3922  */
3923 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3924 				       loff_t size, unsigned long flags)
3925 {
3926 	return __shmem_file_setup(mnt, name, size, flags, 0);
3927 }
3928 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3929 
3930 /**
3931  * shmem_zero_setup - setup a shared anonymous mapping
3932  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3933  */
3934 int shmem_zero_setup(struct vm_area_struct *vma)
3935 {
3936 	struct file *file;
3937 	loff_t size = vma->vm_end - vma->vm_start;
3938 
3939 	/*
3940 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3941 	 * between XFS directory reading and selinux: since this file is only
3942 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3943 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3944 	 */
3945 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3946 	if (IS_ERR(file))
3947 		return PTR_ERR(file);
3948 
3949 	if (vma->vm_file)
3950 		fput(vma->vm_file);
3951 	vma->vm_file = file;
3952 	vma->vm_ops = &shmem_vm_ops;
3953 
3954 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3955 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
3956 			(vma->vm_end & HPAGE_PMD_MASK)) {
3957 		khugepaged_enter(vma, vma->vm_flags);
3958 	}
3959 
3960 	return 0;
3961 }
3962 
3963 /**
3964  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3965  * @mapping:	the page's address_space
3966  * @index:	the page index
3967  * @gfp:	the page allocator flags to use if allocating
3968  *
3969  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3970  * with any new page allocations done using the specified allocation flags.
3971  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3972  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3973  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3974  *
3975  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3976  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3977  */
3978 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3979 					 pgoff_t index, gfp_t gfp)
3980 {
3981 #ifdef CONFIG_SHMEM
3982 	struct inode *inode = mapping->host;
3983 	struct page *page;
3984 	int error;
3985 
3986 	BUG_ON(mapping->a_ops != &shmem_aops);
3987 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3988 				  gfp, NULL, NULL, NULL);
3989 	if (error)
3990 		page = ERR_PTR(error);
3991 	else
3992 		unlock_page(page);
3993 	return page;
3994 #else
3995 	/*
3996 	 * The tiny !SHMEM case uses ramfs without swap
3997 	 */
3998 	return read_cache_page_gfp(mapping, index, gfp);
3999 #endif
4000 }
4001 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4002