1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 #include <linux/fs_parser.h> 41 42 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 43 44 static struct vfsmount *shm_mnt; 45 46 #ifdef CONFIG_SHMEM 47 /* 48 * This virtual memory filesystem is heavily based on the ramfs. It 49 * extends ramfs by the ability to use swap and honor resource limits 50 * which makes it a completely usable filesystem. 51 */ 52 53 #include <linux/xattr.h> 54 #include <linux/exportfs.h> 55 #include <linux/posix_acl.h> 56 #include <linux/posix_acl_xattr.h> 57 #include <linux/mman.h> 58 #include <linux/string.h> 59 #include <linux/slab.h> 60 #include <linux/backing-dev.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/writeback.h> 63 #include <linux/blkdev.h> 64 #include <linux/pagevec.h> 65 #include <linux/percpu_counter.h> 66 #include <linux/falloc.h> 67 #include <linux/splice.h> 68 #include <linux/security.h> 69 #include <linux/swapops.h> 70 #include <linux/mempolicy.h> 71 #include <linux/namei.h> 72 #include <linux/ctype.h> 73 #include <linux/migrate.h> 74 #include <linux/highmem.h> 75 #include <linux/seq_file.h> 76 #include <linux/magic.h> 77 #include <linux/syscalls.h> 78 #include <linux/fcntl.h> 79 #include <uapi/linux/memfd.h> 80 #include <linux/userfaultfd_k.h> 81 #include <linux/rmap.h> 82 #include <linux/uuid.h> 83 84 #include <linux/uaccess.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 struct shmem_options { 111 unsigned long long blocks; 112 unsigned long long inodes; 113 struct mempolicy *mpol; 114 kuid_t uid; 115 kgid_t gid; 116 umode_t mode; 117 bool full_inums; 118 int huge; 119 int seen; 120 #define SHMEM_SEEN_BLOCKS 1 121 #define SHMEM_SEEN_INODES 2 122 #define SHMEM_SEEN_HUGE 4 123 #define SHMEM_SEEN_INUMS 8 124 }; 125 126 #ifdef CONFIG_TMPFS 127 static unsigned long shmem_default_max_blocks(void) 128 { 129 return totalram_pages() / 2; 130 } 131 132 static unsigned long shmem_default_max_inodes(void) 133 { 134 unsigned long nr_pages = totalram_pages(); 135 136 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 137 } 138 #endif 139 140 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 141 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 142 struct shmem_inode_info *info, pgoff_t index); 143 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 144 struct page **pagep, enum sgp_type sgp, 145 gfp_t gfp, struct vm_area_struct *vma, 146 vm_fault_t *fault_type); 147 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 148 struct page **pagep, enum sgp_type sgp, 149 gfp_t gfp, struct vm_area_struct *vma, 150 struct vm_fault *vmf, vm_fault_t *fault_type); 151 152 int shmem_getpage(struct inode *inode, pgoff_t index, 153 struct page **pagep, enum sgp_type sgp) 154 { 155 return shmem_getpage_gfp(inode, index, pagep, sgp, 156 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 157 } 158 159 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 160 { 161 return sb->s_fs_info; 162 } 163 164 /* 165 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 166 * for shared memory and for shared anonymous (/dev/zero) mappings 167 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 168 * consistent with the pre-accounting of private mappings ... 169 */ 170 static inline int shmem_acct_size(unsigned long flags, loff_t size) 171 { 172 return (flags & VM_NORESERVE) ? 173 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 174 } 175 176 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 177 { 178 if (!(flags & VM_NORESERVE)) 179 vm_unacct_memory(VM_ACCT(size)); 180 } 181 182 static inline int shmem_reacct_size(unsigned long flags, 183 loff_t oldsize, loff_t newsize) 184 { 185 if (!(flags & VM_NORESERVE)) { 186 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 187 return security_vm_enough_memory_mm(current->mm, 188 VM_ACCT(newsize) - VM_ACCT(oldsize)); 189 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 190 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 191 } 192 return 0; 193 } 194 195 /* 196 * ... whereas tmpfs objects are accounted incrementally as 197 * pages are allocated, in order to allow large sparse files. 198 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 199 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 200 */ 201 static inline int shmem_acct_block(unsigned long flags, long pages) 202 { 203 if (!(flags & VM_NORESERVE)) 204 return 0; 205 206 return security_vm_enough_memory_mm(current->mm, 207 pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 211 { 212 if (flags & VM_NORESERVE) 213 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 214 } 215 216 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 217 { 218 struct shmem_inode_info *info = SHMEM_I(inode); 219 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 220 221 if (shmem_acct_block(info->flags, pages)) 222 return false; 223 224 if (sbinfo->max_blocks) { 225 if (percpu_counter_compare(&sbinfo->used_blocks, 226 sbinfo->max_blocks - pages) > 0) 227 goto unacct; 228 percpu_counter_add(&sbinfo->used_blocks, pages); 229 } 230 231 return true; 232 233 unacct: 234 shmem_unacct_blocks(info->flags, pages); 235 return false; 236 } 237 238 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 239 { 240 struct shmem_inode_info *info = SHMEM_I(inode); 241 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 242 243 if (sbinfo->max_blocks) 244 percpu_counter_sub(&sbinfo->used_blocks, pages); 245 shmem_unacct_blocks(info->flags, pages); 246 } 247 248 static const struct super_operations shmem_ops; 249 static const struct address_space_operations shmem_aops; 250 static const struct file_operations shmem_file_operations; 251 static const struct inode_operations shmem_inode_operations; 252 static const struct inode_operations shmem_dir_inode_operations; 253 static const struct inode_operations shmem_special_inode_operations; 254 static const struct vm_operations_struct shmem_vm_ops; 255 static struct file_system_type shmem_fs_type; 256 257 bool vma_is_shmem(struct vm_area_struct *vma) 258 { 259 return vma->vm_ops == &shmem_vm_ops; 260 } 261 262 static LIST_HEAD(shmem_swaplist); 263 static DEFINE_MUTEX(shmem_swaplist_mutex); 264 265 /* 266 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 267 * produces a novel ino for the newly allocated inode. 268 * 269 * It may also be called when making a hard link to permit the space needed by 270 * each dentry. However, in that case, no new inode number is needed since that 271 * internally draws from another pool of inode numbers (currently global 272 * get_next_ino()). This case is indicated by passing NULL as inop. 273 */ 274 #define SHMEM_INO_BATCH 1024 275 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 276 { 277 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 278 ino_t ino; 279 280 if (!(sb->s_flags & SB_KERNMOUNT)) { 281 spin_lock(&sbinfo->stat_lock); 282 if (sbinfo->max_inodes) { 283 if (!sbinfo->free_inodes) { 284 spin_unlock(&sbinfo->stat_lock); 285 return -ENOSPC; 286 } 287 sbinfo->free_inodes--; 288 } 289 if (inop) { 290 ino = sbinfo->next_ino++; 291 if (unlikely(is_zero_ino(ino))) 292 ino = sbinfo->next_ino++; 293 if (unlikely(!sbinfo->full_inums && 294 ino > UINT_MAX)) { 295 /* 296 * Emulate get_next_ino uint wraparound for 297 * compatibility 298 */ 299 if (IS_ENABLED(CONFIG_64BIT)) 300 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 301 __func__, MINOR(sb->s_dev)); 302 sbinfo->next_ino = 1; 303 ino = sbinfo->next_ino++; 304 } 305 *inop = ino; 306 } 307 spin_unlock(&sbinfo->stat_lock); 308 } else if (inop) { 309 /* 310 * __shmem_file_setup, one of our callers, is lock-free: it 311 * doesn't hold stat_lock in shmem_reserve_inode since 312 * max_inodes is always 0, and is called from potentially 313 * unknown contexts. As such, use a per-cpu batched allocator 314 * which doesn't require the per-sb stat_lock unless we are at 315 * the batch boundary. 316 * 317 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 318 * shmem mounts are not exposed to userspace, so we don't need 319 * to worry about things like glibc compatibility. 320 */ 321 ino_t *next_ino; 322 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 323 ino = *next_ino; 324 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 325 spin_lock(&sbinfo->stat_lock); 326 ino = sbinfo->next_ino; 327 sbinfo->next_ino += SHMEM_INO_BATCH; 328 spin_unlock(&sbinfo->stat_lock); 329 if (unlikely(is_zero_ino(ino))) 330 ino++; 331 } 332 *inop = ino; 333 *next_ino = ++ino; 334 put_cpu(); 335 } 336 337 return 0; 338 } 339 340 static void shmem_free_inode(struct super_block *sb) 341 { 342 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 343 if (sbinfo->max_inodes) { 344 spin_lock(&sbinfo->stat_lock); 345 sbinfo->free_inodes++; 346 spin_unlock(&sbinfo->stat_lock); 347 } 348 } 349 350 /** 351 * shmem_recalc_inode - recalculate the block usage of an inode 352 * @inode: inode to recalc 353 * 354 * We have to calculate the free blocks since the mm can drop 355 * undirtied hole pages behind our back. 356 * 357 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 358 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 359 * 360 * It has to be called with the spinlock held. 361 */ 362 static void shmem_recalc_inode(struct inode *inode) 363 { 364 struct shmem_inode_info *info = SHMEM_I(inode); 365 long freed; 366 367 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 368 if (freed > 0) { 369 info->alloced -= freed; 370 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 371 shmem_inode_unacct_blocks(inode, freed); 372 } 373 } 374 375 bool shmem_charge(struct inode *inode, long pages) 376 { 377 struct shmem_inode_info *info = SHMEM_I(inode); 378 unsigned long flags; 379 380 if (!shmem_inode_acct_block(inode, pages)) 381 return false; 382 383 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 384 inode->i_mapping->nrpages += pages; 385 386 spin_lock_irqsave(&info->lock, flags); 387 info->alloced += pages; 388 inode->i_blocks += pages * BLOCKS_PER_PAGE; 389 shmem_recalc_inode(inode); 390 spin_unlock_irqrestore(&info->lock, flags); 391 392 return true; 393 } 394 395 void shmem_uncharge(struct inode *inode, long pages) 396 { 397 struct shmem_inode_info *info = SHMEM_I(inode); 398 unsigned long flags; 399 400 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 401 402 spin_lock_irqsave(&info->lock, flags); 403 info->alloced -= pages; 404 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 405 shmem_recalc_inode(inode); 406 spin_unlock_irqrestore(&info->lock, flags); 407 408 shmem_inode_unacct_blocks(inode, pages); 409 } 410 411 /* 412 * Replace item expected in xarray by a new item, while holding xa_lock. 413 */ 414 static int shmem_replace_entry(struct address_space *mapping, 415 pgoff_t index, void *expected, void *replacement) 416 { 417 XA_STATE(xas, &mapping->i_pages, index); 418 void *item; 419 420 VM_BUG_ON(!expected); 421 VM_BUG_ON(!replacement); 422 item = xas_load(&xas); 423 if (item != expected) 424 return -ENOENT; 425 xas_store(&xas, replacement); 426 return 0; 427 } 428 429 /* 430 * Sometimes, before we decide whether to proceed or to fail, we must check 431 * that an entry was not already brought back from swap by a racing thread. 432 * 433 * Checking page is not enough: by the time a SwapCache page is locked, it 434 * might be reused, and again be SwapCache, using the same swap as before. 435 */ 436 static bool shmem_confirm_swap(struct address_space *mapping, 437 pgoff_t index, swp_entry_t swap) 438 { 439 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 440 } 441 442 /* 443 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 444 * 445 * SHMEM_HUGE_NEVER: 446 * disables huge pages for the mount; 447 * SHMEM_HUGE_ALWAYS: 448 * enables huge pages for the mount; 449 * SHMEM_HUGE_WITHIN_SIZE: 450 * only allocate huge pages if the page will be fully within i_size, 451 * also respect fadvise()/madvise() hints; 452 * SHMEM_HUGE_ADVISE: 453 * only allocate huge pages if requested with fadvise()/madvise(); 454 */ 455 456 #define SHMEM_HUGE_NEVER 0 457 #define SHMEM_HUGE_ALWAYS 1 458 #define SHMEM_HUGE_WITHIN_SIZE 2 459 #define SHMEM_HUGE_ADVISE 3 460 461 /* 462 * Special values. 463 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 464 * 465 * SHMEM_HUGE_DENY: 466 * disables huge on shm_mnt and all mounts, for emergency use; 467 * SHMEM_HUGE_FORCE: 468 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 469 * 470 */ 471 #define SHMEM_HUGE_DENY (-1) 472 #define SHMEM_HUGE_FORCE (-2) 473 474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 475 /* ifdef here to avoid bloating shmem.o when not necessary */ 476 477 static int shmem_huge __read_mostly; 478 479 #if defined(CONFIG_SYSFS) 480 static int shmem_parse_huge(const char *str) 481 { 482 if (!strcmp(str, "never")) 483 return SHMEM_HUGE_NEVER; 484 if (!strcmp(str, "always")) 485 return SHMEM_HUGE_ALWAYS; 486 if (!strcmp(str, "within_size")) 487 return SHMEM_HUGE_WITHIN_SIZE; 488 if (!strcmp(str, "advise")) 489 return SHMEM_HUGE_ADVISE; 490 if (!strcmp(str, "deny")) 491 return SHMEM_HUGE_DENY; 492 if (!strcmp(str, "force")) 493 return SHMEM_HUGE_FORCE; 494 return -EINVAL; 495 } 496 #endif 497 498 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 499 static const char *shmem_format_huge(int huge) 500 { 501 switch (huge) { 502 case SHMEM_HUGE_NEVER: 503 return "never"; 504 case SHMEM_HUGE_ALWAYS: 505 return "always"; 506 case SHMEM_HUGE_WITHIN_SIZE: 507 return "within_size"; 508 case SHMEM_HUGE_ADVISE: 509 return "advise"; 510 case SHMEM_HUGE_DENY: 511 return "deny"; 512 case SHMEM_HUGE_FORCE: 513 return "force"; 514 default: 515 VM_BUG_ON(1); 516 return "bad_val"; 517 } 518 } 519 #endif 520 521 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 522 struct shrink_control *sc, unsigned long nr_to_split) 523 { 524 LIST_HEAD(list), *pos, *next; 525 LIST_HEAD(to_remove); 526 struct inode *inode; 527 struct shmem_inode_info *info; 528 struct page *page; 529 unsigned long batch = sc ? sc->nr_to_scan : 128; 530 int removed = 0, split = 0; 531 532 if (list_empty(&sbinfo->shrinklist)) 533 return SHRINK_STOP; 534 535 spin_lock(&sbinfo->shrinklist_lock); 536 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 537 info = list_entry(pos, struct shmem_inode_info, shrinklist); 538 539 /* pin the inode */ 540 inode = igrab(&info->vfs_inode); 541 542 /* inode is about to be evicted */ 543 if (!inode) { 544 list_del_init(&info->shrinklist); 545 removed++; 546 goto next; 547 } 548 549 /* Check if there's anything to gain */ 550 if (round_up(inode->i_size, PAGE_SIZE) == 551 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 552 list_move(&info->shrinklist, &to_remove); 553 removed++; 554 goto next; 555 } 556 557 list_move(&info->shrinklist, &list); 558 next: 559 if (!--batch) 560 break; 561 } 562 spin_unlock(&sbinfo->shrinklist_lock); 563 564 list_for_each_safe(pos, next, &to_remove) { 565 info = list_entry(pos, struct shmem_inode_info, shrinklist); 566 inode = &info->vfs_inode; 567 list_del_init(&info->shrinklist); 568 iput(inode); 569 } 570 571 list_for_each_safe(pos, next, &list) { 572 int ret; 573 574 info = list_entry(pos, struct shmem_inode_info, shrinklist); 575 inode = &info->vfs_inode; 576 577 if (nr_to_split && split >= nr_to_split) 578 goto leave; 579 580 page = find_get_page(inode->i_mapping, 581 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 582 if (!page) 583 goto drop; 584 585 /* No huge page at the end of the file: nothing to split */ 586 if (!PageTransHuge(page)) { 587 put_page(page); 588 goto drop; 589 } 590 591 /* 592 * Leave the inode on the list if we failed to lock 593 * the page at this time. 594 * 595 * Waiting for the lock may lead to deadlock in the 596 * reclaim path. 597 */ 598 if (!trylock_page(page)) { 599 put_page(page); 600 goto leave; 601 } 602 603 ret = split_huge_page(page); 604 unlock_page(page); 605 put_page(page); 606 607 /* If split failed leave the inode on the list */ 608 if (ret) 609 goto leave; 610 611 split++; 612 drop: 613 list_del_init(&info->shrinklist); 614 removed++; 615 leave: 616 iput(inode); 617 } 618 619 spin_lock(&sbinfo->shrinklist_lock); 620 list_splice_tail(&list, &sbinfo->shrinklist); 621 sbinfo->shrinklist_len -= removed; 622 spin_unlock(&sbinfo->shrinklist_lock); 623 624 return split; 625 } 626 627 static long shmem_unused_huge_scan(struct super_block *sb, 628 struct shrink_control *sc) 629 { 630 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 631 632 if (!READ_ONCE(sbinfo->shrinklist_len)) 633 return SHRINK_STOP; 634 635 return shmem_unused_huge_shrink(sbinfo, sc, 0); 636 } 637 638 static long shmem_unused_huge_count(struct super_block *sb, 639 struct shrink_control *sc) 640 { 641 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 642 return READ_ONCE(sbinfo->shrinklist_len); 643 } 644 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 645 646 #define shmem_huge SHMEM_HUGE_DENY 647 648 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 649 struct shrink_control *sc, unsigned long nr_to_split) 650 { 651 return 0; 652 } 653 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 654 655 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 656 { 657 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 658 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 659 shmem_huge != SHMEM_HUGE_DENY) 660 return true; 661 return false; 662 } 663 664 /* 665 * Like add_to_page_cache_locked, but error if expected item has gone. 666 */ 667 static int shmem_add_to_page_cache(struct page *page, 668 struct address_space *mapping, 669 pgoff_t index, void *expected, gfp_t gfp, 670 struct mm_struct *charge_mm) 671 { 672 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 673 unsigned long i = 0; 674 unsigned long nr = compound_nr(page); 675 int error; 676 677 VM_BUG_ON_PAGE(PageTail(page), page); 678 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 679 VM_BUG_ON_PAGE(!PageLocked(page), page); 680 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 681 VM_BUG_ON(expected && PageTransHuge(page)); 682 683 page_ref_add(page, nr); 684 page->mapping = mapping; 685 page->index = index; 686 687 if (!PageSwapCache(page)) { 688 error = mem_cgroup_charge(page, charge_mm, gfp); 689 if (error) { 690 if (PageTransHuge(page)) { 691 count_vm_event(THP_FILE_FALLBACK); 692 count_vm_event(THP_FILE_FALLBACK_CHARGE); 693 } 694 goto error; 695 } 696 } 697 cgroup_throttle_swaprate(page, gfp); 698 699 do { 700 void *entry; 701 xas_lock_irq(&xas); 702 entry = xas_find_conflict(&xas); 703 if (entry != expected) 704 xas_set_err(&xas, -EEXIST); 705 xas_create_range(&xas); 706 if (xas_error(&xas)) 707 goto unlock; 708 next: 709 xas_store(&xas, page); 710 if (++i < nr) { 711 xas_next(&xas); 712 goto next; 713 } 714 if (PageTransHuge(page)) { 715 count_vm_event(THP_FILE_ALLOC); 716 __inc_node_page_state(page, NR_SHMEM_THPS); 717 } 718 mapping->nrpages += nr; 719 __mod_lruvec_page_state(page, NR_FILE_PAGES, nr); 720 __mod_lruvec_page_state(page, NR_SHMEM, nr); 721 unlock: 722 xas_unlock_irq(&xas); 723 } while (xas_nomem(&xas, gfp)); 724 725 if (xas_error(&xas)) { 726 error = xas_error(&xas); 727 goto error; 728 } 729 730 return 0; 731 error: 732 page->mapping = NULL; 733 page_ref_sub(page, nr); 734 return error; 735 } 736 737 /* 738 * Like delete_from_page_cache, but substitutes swap for page. 739 */ 740 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 741 { 742 struct address_space *mapping = page->mapping; 743 int error; 744 745 VM_BUG_ON_PAGE(PageCompound(page), page); 746 747 xa_lock_irq(&mapping->i_pages); 748 error = shmem_replace_entry(mapping, page->index, page, radswap); 749 page->mapping = NULL; 750 mapping->nrpages--; 751 __dec_lruvec_page_state(page, NR_FILE_PAGES); 752 __dec_lruvec_page_state(page, NR_SHMEM); 753 xa_unlock_irq(&mapping->i_pages); 754 put_page(page); 755 BUG_ON(error); 756 } 757 758 /* 759 * Remove swap entry from page cache, free the swap and its page cache. 760 */ 761 static int shmem_free_swap(struct address_space *mapping, 762 pgoff_t index, void *radswap) 763 { 764 void *old; 765 766 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 767 if (old != radswap) 768 return -ENOENT; 769 free_swap_and_cache(radix_to_swp_entry(radswap)); 770 return 0; 771 } 772 773 /* 774 * Determine (in bytes) how many of the shmem object's pages mapped by the 775 * given offsets are swapped out. 776 * 777 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 778 * as long as the inode doesn't go away and racy results are not a problem. 779 */ 780 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 781 pgoff_t start, pgoff_t end) 782 { 783 XA_STATE(xas, &mapping->i_pages, start); 784 struct page *page; 785 unsigned long swapped = 0; 786 787 rcu_read_lock(); 788 xas_for_each(&xas, page, end - 1) { 789 if (xas_retry(&xas, page)) 790 continue; 791 if (xa_is_value(page)) 792 swapped++; 793 794 if (need_resched()) { 795 xas_pause(&xas); 796 cond_resched_rcu(); 797 } 798 } 799 800 rcu_read_unlock(); 801 802 return swapped << PAGE_SHIFT; 803 } 804 805 /* 806 * Determine (in bytes) how many of the shmem object's pages mapped by the 807 * given vma is swapped out. 808 * 809 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 810 * as long as the inode doesn't go away and racy results are not a problem. 811 */ 812 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 813 { 814 struct inode *inode = file_inode(vma->vm_file); 815 struct shmem_inode_info *info = SHMEM_I(inode); 816 struct address_space *mapping = inode->i_mapping; 817 unsigned long swapped; 818 819 /* Be careful as we don't hold info->lock */ 820 swapped = READ_ONCE(info->swapped); 821 822 /* 823 * The easier cases are when the shmem object has nothing in swap, or 824 * the vma maps it whole. Then we can simply use the stats that we 825 * already track. 826 */ 827 if (!swapped) 828 return 0; 829 830 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 831 return swapped << PAGE_SHIFT; 832 833 /* Here comes the more involved part */ 834 return shmem_partial_swap_usage(mapping, 835 linear_page_index(vma, vma->vm_start), 836 linear_page_index(vma, vma->vm_end)); 837 } 838 839 /* 840 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 841 */ 842 void shmem_unlock_mapping(struct address_space *mapping) 843 { 844 struct pagevec pvec; 845 pgoff_t indices[PAGEVEC_SIZE]; 846 pgoff_t index = 0; 847 848 pagevec_init(&pvec); 849 /* 850 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 851 */ 852 while (!mapping_unevictable(mapping)) { 853 /* 854 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 855 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 856 */ 857 pvec.nr = find_get_entries(mapping, index, 858 PAGEVEC_SIZE, pvec.pages, indices); 859 if (!pvec.nr) 860 break; 861 index = indices[pvec.nr - 1] + 1; 862 pagevec_remove_exceptionals(&pvec); 863 check_move_unevictable_pages(&pvec); 864 pagevec_release(&pvec); 865 cond_resched(); 866 } 867 } 868 869 /* 870 * Check whether a hole-punch or truncation needs to split a huge page, 871 * returning true if no split was required, or the split has been successful. 872 * 873 * Eviction (or truncation to 0 size) should never need to split a huge page; 874 * but in rare cases might do so, if shmem_undo_range() failed to trylock on 875 * head, and then succeeded to trylock on tail. 876 * 877 * A split can only succeed when there are no additional references on the 878 * huge page: so the split below relies upon find_get_entries() having stopped 879 * when it found a subpage of the huge page, without getting further references. 880 */ 881 static bool shmem_punch_compound(struct page *page, pgoff_t start, pgoff_t end) 882 { 883 if (!PageTransCompound(page)) 884 return true; 885 886 /* Just proceed to delete a huge page wholly within the range punched */ 887 if (PageHead(page) && 888 page->index >= start && page->index + HPAGE_PMD_NR <= end) 889 return true; 890 891 /* Try to split huge page, so we can truly punch the hole or truncate */ 892 return split_huge_page(page) >= 0; 893 } 894 895 /* 896 * Remove range of pages and swap entries from page cache, and free them. 897 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 898 */ 899 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 900 bool unfalloc) 901 { 902 struct address_space *mapping = inode->i_mapping; 903 struct shmem_inode_info *info = SHMEM_I(inode); 904 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 905 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 906 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 907 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 908 struct pagevec pvec; 909 pgoff_t indices[PAGEVEC_SIZE]; 910 long nr_swaps_freed = 0; 911 pgoff_t index; 912 int i; 913 914 if (lend == -1) 915 end = -1; /* unsigned, so actually very big */ 916 917 pagevec_init(&pvec); 918 index = start; 919 while (index < end) { 920 pvec.nr = find_get_entries(mapping, index, 921 min(end - index, (pgoff_t)PAGEVEC_SIZE), 922 pvec.pages, indices); 923 if (!pvec.nr) 924 break; 925 for (i = 0; i < pagevec_count(&pvec); i++) { 926 struct page *page = pvec.pages[i]; 927 928 index = indices[i]; 929 if (index >= end) 930 break; 931 932 if (xa_is_value(page)) { 933 if (unfalloc) 934 continue; 935 nr_swaps_freed += !shmem_free_swap(mapping, 936 index, page); 937 continue; 938 } 939 940 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 941 942 if (!trylock_page(page)) 943 continue; 944 945 if ((!unfalloc || !PageUptodate(page)) && 946 page_mapping(page) == mapping) { 947 VM_BUG_ON_PAGE(PageWriteback(page), page); 948 if (shmem_punch_compound(page, start, end)) 949 truncate_inode_page(mapping, page); 950 } 951 unlock_page(page); 952 } 953 pagevec_remove_exceptionals(&pvec); 954 pagevec_release(&pvec); 955 cond_resched(); 956 index++; 957 } 958 959 if (partial_start) { 960 struct page *page = NULL; 961 shmem_getpage(inode, start - 1, &page, SGP_READ); 962 if (page) { 963 unsigned int top = PAGE_SIZE; 964 if (start > end) { 965 top = partial_end; 966 partial_end = 0; 967 } 968 zero_user_segment(page, partial_start, top); 969 set_page_dirty(page); 970 unlock_page(page); 971 put_page(page); 972 } 973 } 974 if (partial_end) { 975 struct page *page = NULL; 976 shmem_getpage(inode, end, &page, SGP_READ); 977 if (page) { 978 zero_user_segment(page, 0, partial_end); 979 set_page_dirty(page); 980 unlock_page(page); 981 put_page(page); 982 } 983 } 984 if (start >= end) 985 return; 986 987 index = start; 988 while (index < end) { 989 cond_resched(); 990 991 pvec.nr = find_get_entries(mapping, index, 992 min(end - index, (pgoff_t)PAGEVEC_SIZE), 993 pvec.pages, indices); 994 if (!pvec.nr) { 995 /* If all gone or hole-punch or unfalloc, we're done */ 996 if (index == start || end != -1) 997 break; 998 /* But if truncating, restart to make sure all gone */ 999 index = start; 1000 continue; 1001 } 1002 for (i = 0; i < pagevec_count(&pvec); i++) { 1003 struct page *page = pvec.pages[i]; 1004 1005 index = indices[i]; 1006 if (index >= end) 1007 break; 1008 1009 if (xa_is_value(page)) { 1010 if (unfalloc) 1011 continue; 1012 if (shmem_free_swap(mapping, index, page)) { 1013 /* Swap was replaced by page: retry */ 1014 index--; 1015 break; 1016 } 1017 nr_swaps_freed++; 1018 continue; 1019 } 1020 1021 lock_page(page); 1022 1023 if (!unfalloc || !PageUptodate(page)) { 1024 if (page_mapping(page) != mapping) { 1025 /* Page was replaced by swap: retry */ 1026 unlock_page(page); 1027 index--; 1028 break; 1029 } 1030 VM_BUG_ON_PAGE(PageWriteback(page), page); 1031 if (shmem_punch_compound(page, start, end)) 1032 truncate_inode_page(mapping, page); 1033 else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1034 /* Wipe the page and don't get stuck */ 1035 clear_highpage(page); 1036 flush_dcache_page(page); 1037 set_page_dirty(page); 1038 if (index < 1039 round_up(start, HPAGE_PMD_NR)) 1040 start = index + 1; 1041 } 1042 } 1043 unlock_page(page); 1044 } 1045 pagevec_remove_exceptionals(&pvec); 1046 pagevec_release(&pvec); 1047 index++; 1048 } 1049 1050 spin_lock_irq(&info->lock); 1051 info->swapped -= nr_swaps_freed; 1052 shmem_recalc_inode(inode); 1053 spin_unlock_irq(&info->lock); 1054 } 1055 1056 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1057 { 1058 shmem_undo_range(inode, lstart, lend, false); 1059 inode->i_ctime = inode->i_mtime = current_time(inode); 1060 } 1061 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1062 1063 static int shmem_getattr(const struct path *path, struct kstat *stat, 1064 u32 request_mask, unsigned int query_flags) 1065 { 1066 struct inode *inode = path->dentry->d_inode; 1067 struct shmem_inode_info *info = SHMEM_I(inode); 1068 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 1069 1070 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 1071 spin_lock_irq(&info->lock); 1072 shmem_recalc_inode(inode); 1073 spin_unlock_irq(&info->lock); 1074 } 1075 generic_fillattr(inode, stat); 1076 1077 if (is_huge_enabled(sb_info)) 1078 stat->blksize = HPAGE_PMD_SIZE; 1079 1080 return 0; 1081 } 1082 1083 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1084 { 1085 struct inode *inode = d_inode(dentry); 1086 struct shmem_inode_info *info = SHMEM_I(inode); 1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1088 int error; 1089 1090 error = setattr_prepare(dentry, attr); 1091 if (error) 1092 return error; 1093 1094 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1095 loff_t oldsize = inode->i_size; 1096 loff_t newsize = attr->ia_size; 1097 1098 /* protected by i_mutex */ 1099 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1100 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1101 return -EPERM; 1102 1103 if (newsize != oldsize) { 1104 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1105 oldsize, newsize); 1106 if (error) 1107 return error; 1108 i_size_write(inode, newsize); 1109 inode->i_ctime = inode->i_mtime = current_time(inode); 1110 } 1111 if (newsize <= oldsize) { 1112 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1113 if (oldsize > holebegin) 1114 unmap_mapping_range(inode->i_mapping, 1115 holebegin, 0, 1); 1116 if (info->alloced) 1117 shmem_truncate_range(inode, 1118 newsize, (loff_t)-1); 1119 /* unmap again to remove racily COWed private pages */ 1120 if (oldsize > holebegin) 1121 unmap_mapping_range(inode->i_mapping, 1122 holebegin, 0, 1); 1123 1124 /* 1125 * Part of the huge page can be beyond i_size: subject 1126 * to shrink under memory pressure. 1127 */ 1128 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 1129 spin_lock(&sbinfo->shrinklist_lock); 1130 /* 1131 * _careful to defend against unlocked access to 1132 * ->shrink_list in shmem_unused_huge_shrink() 1133 */ 1134 if (list_empty_careful(&info->shrinklist)) { 1135 list_add_tail(&info->shrinklist, 1136 &sbinfo->shrinklist); 1137 sbinfo->shrinklist_len++; 1138 } 1139 spin_unlock(&sbinfo->shrinklist_lock); 1140 } 1141 } 1142 } 1143 1144 setattr_copy(inode, attr); 1145 if (attr->ia_valid & ATTR_MODE) 1146 error = posix_acl_chmod(inode, inode->i_mode); 1147 return error; 1148 } 1149 1150 static void shmem_evict_inode(struct inode *inode) 1151 { 1152 struct shmem_inode_info *info = SHMEM_I(inode); 1153 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1154 1155 if (inode->i_mapping->a_ops == &shmem_aops) { 1156 shmem_unacct_size(info->flags, inode->i_size); 1157 inode->i_size = 0; 1158 shmem_truncate_range(inode, 0, (loff_t)-1); 1159 if (!list_empty(&info->shrinklist)) { 1160 spin_lock(&sbinfo->shrinklist_lock); 1161 if (!list_empty(&info->shrinklist)) { 1162 list_del_init(&info->shrinklist); 1163 sbinfo->shrinklist_len--; 1164 } 1165 spin_unlock(&sbinfo->shrinklist_lock); 1166 } 1167 while (!list_empty(&info->swaplist)) { 1168 /* Wait while shmem_unuse() is scanning this inode... */ 1169 wait_var_event(&info->stop_eviction, 1170 !atomic_read(&info->stop_eviction)); 1171 mutex_lock(&shmem_swaplist_mutex); 1172 /* ...but beware of the race if we peeked too early */ 1173 if (!atomic_read(&info->stop_eviction)) 1174 list_del_init(&info->swaplist); 1175 mutex_unlock(&shmem_swaplist_mutex); 1176 } 1177 } 1178 1179 simple_xattrs_free(&info->xattrs); 1180 WARN_ON(inode->i_blocks); 1181 shmem_free_inode(inode->i_sb); 1182 clear_inode(inode); 1183 } 1184 1185 extern struct swap_info_struct *swap_info[]; 1186 1187 static int shmem_find_swap_entries(struct address_space *mapping, 1188 pgoff_t start, unsigned int nr_entries, 1189 struct page **entries, pgoff_t *indices, 1190 unsigned int type, bool frontswap) 1191 { 1192 XA_STATE(xas, &mapping->i_pages, start); 1193 struct page *page; 1194 swp_entry_t entry; 1195 unsigned int ret = 0; 1196 1197 if (!nr_entries) 1198 return 0; 1199 1200 rcu_read_lock(); 1201 xas_for_each(&xas, page, ULONG_MAX) { 1202 if (xas_retry(&xas, page)) 1203 continue; 1204 1205 if (!xa_is_value(page)) 1206 continue; 1207 1208 entry = radix_to_swp_entry(page); 1209 if (swp_type(entry) != type) 1210 continue; 1211 if (frontswap && 1212 !frontswap_test(swap_info[type], swp_offset(entry))) 1213 continue; 1214 1215 indices[ret] = xas.xa_index; 1216 entries[ret] = page; 1217 1218 if (need_resched()) { 1219 xas_pause(&xas); 1220 cond_resched_rcu(); 1221 } 1222 if (++ret == nr_entries) 1223 break; 1224 } 1225 rcu_read_unlock(); 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * Move the swapped pages for an inode to page cache. Returns the count 1232 * of pages swapped in, or the error in case of failure. 1233 */ 1234 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1235 pgoff_t *indices) 1236 { 1237 int i = 0; 1238 int ret = 0; 1239 int error = 0; 1240 struct address_space *mapping = inode->i_mapping; 1241 1242 for (i = 0; i < pvec.nr; i++) { 1243 struct page *page = pvec.pages[i]; 1244 1245 if (!xa_is_value(page)) 1246 continue; 1247 error = shmem_swapin_page(inode, indices[i], 1248 &page, SGP_CACHE, 1249 mapping_gfp_mask(mapping), 1250 NULL, NULL); 1251 if (error == 0) { 1252 unlock_page(page); 1253 put_page(page); 1254 ret++; 1255 } 1256 if (error == -ENOMEM) 1257 break; 1258 error = 0; 1259 } 1260 return error ? error : ret; 1261 } 1262 1263 /* 1264 * If swap found in inode, free it and move page from swapcache to filecache. 1265 */ 1266 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1267 bool frontswap, unsigned long *fs_pages_to_unuse) 1268 { 1269 struct address_space *mapping = inode->i_mapping; 1270 pgoff_t start = 0; 1271 struct pagevec pvec; 1272 pgoff_t indices[PAGEVEC_SIZE]; 1273 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1274 int ret = 0; 1275 1276 pagevec_init(&pvec); 1277 do { 1278 unsigned int nr_entries = PAGEVEC_SIZE; 1279 1280 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1281 nr_entries = *fs_pages_to_unuse; 1282 1283 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1284 pvec.pages, indices, 1285 type, frontswap); 1286 if (pvec.nr == 0) { 1287 ret = 0; 1288 break; 1289 } 1290 1291 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1292 if (ret < 0) 1293 break; 1294 1295 if (frontswap_partial) { 1296 *fs_pages_to_unuse -= ret; 1297 if (*fs_pages_to_unuse == 0) { 1298 ret = FRONTSWAP_PAGES_UNUSED; 1299 break; 1300 } 1301 } 1302 1303 start = indices[pvec.nr - 1]; 1304 } while (true); 1305 1306 return ret; 1307 } 1308 1309 /* 1310 * Read all the shared memory data that resides in the swap 1311 * device 'type' back into memory, so the swap device can be 1312 * unused. 1313 */ 1314 int shmem_unuse(unsigned int type, bool frontswap, 1315 unsigned long *fs_pages_to_unuse) 1316 { 1317 struct shmem_inode_info *info, *next; 1318 int error = 0; 1319 1320 if (list_empty(&shmem_swaplist)) 1321 return 0; 1322 1323 mutex_lock(&shmem_swaplist_mutex); 1324 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1325 if (!info->swapped) { 1326 list_del_init(&info->swaplist); 1327 continue; 1328 } 1329 /* 1330 * Drop the swaplist mutex while searching the inode for swap; 1331 * but before doing so, make sure shmem_evict_inode() will not 1332 * remove placeholder inode from swaplist, nor let it be freed 1333 * (igrab() would protect from unlink, but not from unmount). 1334 */ 1335 atomic_inc(&info->stop_eviction); 1336 mutex_unlock(&shmem_swaplist_mutex); 1337 1338 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1339 fs_pages_to_unuse); 1340 cond_resched(); 1341 1342 mutex_lock(&shmem_swaplist_mutex); 1343 next = list_next_entry(info, swaplist); 1344 if (!info->swapped) 1345 list_del_init(&info->swaplist); 1346 if (atomic_dec_and_test(&info->stop_eviction)) 1347 wake_up_var(&info->stop_eviction); 1348 if (error) 1349 break; 1350 } 1351 mutex_unlock(&shmem_swaplist_mutex); 1352 1353 return error; 1354 } 1355 1356 /* 1357 * Move the page from the page cache to the swap cache. 1358 */ 1359 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1360 { 1361 struct shmem_inode_info *info; 1362 struct address_space *mapping; 1363 struct inode *inode; 1364 swp_entry_t swap; 1365 pgoff_t index; 1366 1367 VM_BUG_ON_PAGE(PageCompound(page), page); 1368 BUG_ON(!PageLocked(page)); 1369 mapping = page->mapping; 1370 index = page->index; 1371 inode = mapping->host; 1372 info = SHMEM_I(inode); 1373 if (info->flags & VM_LOCKED) 1374 goto redirty; 1375 if (!total_swap_pages) 1376 goto redirty; 1377 1378 /* 1379 * Our capabilities prevent regular writeback or sync from ever calling 1380 * shmem_writepage; but a stacking filesystem might use ->writepage of 1381 * its underlying filesystem, in which case tmpfs should write out to 1382 * swap only in response to memory pressure, and not for the writeback 1383 * threads or sync. 1384 */ 1385 if (!wbc->for_reclaim) { 1386 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1387 goto redirty; 1388 } 1389 1390 /* 1391 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1392 * value into swapfile.c, the only way we can correctly account for a 1393 * fallocated page arriving here is now to initialize it and write it. 1394 * 1395 * That's okay for a page already fallocated earlier, but if we have 1396 * not yet completed the fallocation, then (a) we want to keep track 1397 * of this page in case we have to undo it, and (b) it may not be a 1398 * good idea to continue anyway, once we're pushing into swap. So 1399 * reactivate the page, and let shmem_fallocate() quit when too many. 1400 */ 1401 if (!PageUptodate(page)) { 1402 if (inode->i_private) { 1403 struct shmem_falloc *shmem_falloc; 1404 spin_lock(&inode->i_lock); 1405 shmem_falloc = inode->i_private; 1406 if (shmem_falloc && 1407 !shmem_falloc->waitq && 1408 index >= shmem_falloc->start && 1409 index < shmem_falloc->next) 1410 shmem_falloc->nr_unswapped++; 1411 else 1412 shmem_falloc = NULL; 1413 spin_unlock(&inode->i_lock); 1414 if (shmem_falloc) 1415 goto redirty; 1416 } 1417 clear_highpage(page); 1418 flush_dcache_page(page); 1419 SetPageUptodate(page); 1420 } 1421 1422 swap = get_swap_page(page); 1423 if (!swap.val) 1424 goto redirty; 1425 1426 /* 1427 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1428 * if it's not already there. Do it now before the page is 1429 * moved to swap cache, when its pagelock no longer protects 1430 * the inode from eviction. But don't unlock the mutex until 1431 * we've incremented swapped, because shmem_unuse_inode() will 1432 * prune a !swapped inode from the swaplist under this mutex. 1433 */ 1434 mutex_lock(&shmem_swaplist_mutex); 1435 if (list_empty(&info->swaplist)) 1436 list_add(&info->swaplist, &shmem_swaplist); 1437 1438 if (add_to_swap_cache(page, swap, 1439 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1440 NULL) == 0) { 1441 spin_lock_irq(&info->lock); 1442 shmem_recalc_inode(inode); 1443 info->swapped++; 1444 spin_unlock_irq(&info->lock); 1445 1446 swap_shmem_alloc(swap); 1447 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1448 1449 mutex_unlock(&shmem_swaplist_mutex); 1450 BUG_ON(page_mapped(page)); 1451 swap_writepage(page, wbc); 1452 return 0; 1453 } 1454 1455 mutex_unlock(&shmem_swaplist_mutex); 1456 put_swap_page(page, swap); 1457 redirty: 1458 set_page_dirty(page); 1459 if (wbc->for_reclaim) 1460 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1461 unlock_page(page); 1462 return 0; 1463 } 1464 1465 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1466 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1467 { 1468 char buffer[64]; 1469 1470 if (!mpol || mpol->mode == MPOL_DEFAULT) 1471 return; /* show nothing */ 1472 1473 mpol_to_str(buffer, sizeof(buffer), mpol); 1474 1475 seq_printf(seq, ",mpol=%s", buffer); 1476 } 1477 1478 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1479 { 1480 struct mempolicy *mpol = NULL; 1481 if (sbinfo->mpol) { 1482 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1483 mpol = sbinfo->mpol; 1484 mpol_get(mpol); 1485 spin_unlock(&sbinfo->stat_lock); 1486 } 1487 return mpol; 1488 } 1489 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1490 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1491 { 1492 } 1493 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1494 { 1495 return NULL; 1496 } 1497 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1498 #ifndef CONFIG_NUMA 1499 #define vm_policy vm_private_data 1500 #endif 1501 1502 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1503 struct shmem_inode_info *info, pgoff_t index) 1504 { 1505 /* Create a pseudo vma that just contains the policy */ 1506 vma_init(vma, NULL); 1507 /* Bias interleave by inode number to distribute better across nodes */ 1508 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1509 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1510 } 1511 1512 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1513 { 1514 /* Drop reference taken by mpol_shared_policy_lookup() */ 1515 mpol_cond_put(vma->vm_policy); 1516 } 1517 1518 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1519 struct shmem_inode_info *info, pgoff_t index) 1520 { 1521 struct vm_area_struct pvma; 1522 struct page *page; 1523 struct vm_fault vmf; 1524 1525 shmem_pseudo_vma_init(&pvma, info, index); 1526 vmf.vma = &pvma; 1527 vmf.address = 0; 1528 page = swap_cluster_readahead(swap, gfp, &vmf); 1529 shmem_pseudo_vma_destroy(&pvma); 1530 1531 return page; 1532 } 1533 1534 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1535 struct shmem_inode_info *info, pgoff_t index) 1536 { 1537 struct vm_area_struct pvma; 1538 struct address_space *mapping = info->vfs_inode.i_mapping; 1539 pgoff_t hindex; 1540 struct page *page; 1541 1542 hindex = round_down(index, HPAGE_PMD_NR); 1543 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1544 XA_PRESENT)) 1545 return NULL; 1546 1547 shmem_pseudo_vma_init(&pvma, info, hindex); 1548 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1549 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1550 shmem_pseudo_vma_destroy(&pvma); 1551 if (page) 1552 prep_transhuge_page(page); 1553 else 1554 count_vm_event(THP_FILE_FALLBACK); 1555 return page; 1556 } 1557 1558 static struct page *shmem_alloc_page(gfp_t gfp, 1559 struct shmem_inode_info *info, pgoff_t index) 1560 { 1561 struct vm_area_struct pvma; 1562 struct page *page; 1563 1564 shmem_pseudo_vma_init(&pvma, info, index); 1565 page = alloc_page_vma(gfp, &pvma, 0); 1566 shmem_pseudo_vma_destroy(&pvma); 1567 1568 return page; 1569 } 1570 1571 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1572 struct inode *inode, 1573 pgoff_t index, bool huge) 1574 { 1575 struct shmem_inode_info *info = SHMEM_I(inode); 1576 struct page *page; 1577 int nr; 1578 int err = -ENOSPC; 1579 1580 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1581 huge = false; 1582 nr = huge ? HPAGE_PMD_NR : 1; 1583 1584 if (!shmem_inode_acct_block(inode, nr)) 1585 goto failed; 1586 1587 if (huge) 1588 page = shmem_alloc_hugepage(gfp, info, index); 1589 else 1590 page = shmem_alloc_page(gfp, info, index); 1591 if (page) { 1592 __SetPageLocked(page); 1593 __SetPageSwapBacked(page); 1594 return page; 1595 } 1596 1597 err = -ENOMEM; 1598 shmem_inode_unacct_blocks(inode, nr); 1599 failed: 1600 return ERR_PTR(err); 1601 } 1602 1603 /* 1604 * When a page is moved from swapcache to shmem filecache (either by the 1605 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1606 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1607 * ignorance of the mapping it belongs to. If that mapping has special 1608 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1609 * we may need to copy to a suitable page before moving to filecache. 1610 * 1611 * In a future release, this may well be extended to respect cpuset and 1612 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1613 * but for now it is a simple matter of zone. 1614 */ 1615 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1616 { 1617 return page_zonenum(page) > gfp_zone(gfp); 1618 } 1619 1620 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1621 struct shmem_inode_info *info, pgoff_t index) 1622 { 1623 struct page *oldpage, *newpage; 1624 struct address_space *swap_mapping; 1625 swp_entry_t entry; 1626 pgoff_t swap_index; 1627 int error; 1628 1629 oldpage = *pagep; 1630 entry.val = page_private(oldpage); 1631 swap_index = swp_offset(entry); 1632 swap_mapping = page_mapping(oldpage); 1633 1634 /* 1635 * We have arrived here because our zones are constrained, so don't 1636 * limit chance of success by further cpuset and node constraints. 1637 */ 1638 gfp &= ~GFP_CONSTRAINT_MASK; 1639 newpage = shmem_alloc_page(gfp, info, index); 1640 if (!newpage) 1641 return -ENOMEM; 1642 1643 get_page(newpage); 1644 copy_highpage(newpage, oldpage); 1645 flush_dcache_page(newpage); 1646 1647 __SetPageLocked(newpage); 1648 __SetPageSwapBacked(newpage); 1649 SetPageUptodate(newpage); 1650 set_page_private(newpage, entry.val); 1651 SetPageSwapCache(newpage); 1652 1653 /* 1654 * Our caller will very soon move newpage out of swapcache, but it's 1655 * a nice clean interface for us to replace oldpage by newpage there. 1656 */ 1657 xa_lock_irq(&swap_mapping->i_pages); 1658 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1659 if (!error) { 1660 mem_cgroup_migrate(oldpage, newpage); 1661 __inc_lruvec_page_state(newpage, NR_FILE_PAGES); 1662 __dec_lruvec_page_state(oldpage, NR_FILE_PAGES); 1663 } 1664 xa_unlock_irq(&swap_mapping->i_pages); 1665 1666 if (unlikely(error)) { 1667 /* 1668 * Is this possible? I think not, now that our callers check 1669 * both PageSwapCache and page_private after getting page lock; 1670 * but be defensive. Reverse old to newpage for clear and free. 1671 */ 1672 oldpage = newpage; 1673 } else { 1674 lru_cache_add(newpage); 1675 *pagep = newpage; 1676 } 1677 1678 ClearPageSwapCache(oldpage); 1679 set_page_private(oldpage, 0); 1680 1681 unlock_page(oldpage); 1682 put_page(oldpage); 1683 put_page(oldpage); 1684 return error; 1685 } 1686 1687 /* 1688 * Swap in the page pointed to by *pagep. 1689 * Caller has to make sure that *pagep contains a valid swapped page. 1690 * Returns 0 and the page in pagep if success. On failure, returns the 1691 * error code and NULL in *pagep. 1692 */ 1693 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1694 struct page **pagep, enum sgp_type sgp, 1695 gfp_t gfp, struct vm_area_struct *vma, 1696 vm_fault_t *fault_type) 1697 { 1698 struct address_space *mapping = inode->i_mapping; 1699 struct shmem_inode_info *info = SHMEM_I(inode); 1700 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1701 struct page *page; 1702 swp_entry_t swap; 1703 int error; 1704 1705 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1706 swap = radix_to_swp_entry(*pagep); 1707 *pagep = NULL; 1708 1709 /* Look it up and read it in.. */ 1710 page = lookup_swap_cache(swap, NULL, 0); 1711 if (!page) { 1712 /* Or update major stats only when swapin succeeds?? */ 1713 if (fault_type) { 1714 *fault_type |= VM_FAULT_MAJOR; 1715 count_vm_event(PGMAJFAULT); 1716 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1717 } 1718 /* Here we actually start the io */ 1719 page = shmem_swapin(swap, gfp, info, index); 1720 if (!page) { 1721 error = -ENOMEM; 1722 goto failed; 1723 } 1724 } 1725 1726 /* We have to do this with page locked to prevent races */ 1727 lock_page(page); 1728 if (!PageSwapCache(page) || page_private(page) != swap.val || 1729 !shmem_confirm_swap(mapping, index, swap)) { 1730 error = -EEXIST; 1731 goto unlock; 1732 } 1733 if (!PageUptodate(page)) { 1734 error = -EIO; 1735 goto failed; 1736 } 1737 wait_on_page_writeback(page); 1738 1739 if (shmem_should_replace_page(page, gfp)) { 1740 error = shmem_replace_page(&page, gfp, info, index); 1741 if (error) 1742 goto failed; 1743 } 1744 1745 error = shmem_add_to_page_cache(page, mapping, index, 1746 swp_to_radix_entry(swap), gfp, 1747 charge_mm); 1748 if (error) 1749 goto failed; 1750 1751 spin_lock_irq(&info->lock); 1752 info->swapped--; 1753 shmem_recalc_inode(inode); 1754 spin_unlock_irq(&info->lock); 1755 1756 if (sgp == SGP_WRITE) 1757 mark_page_accessed(page); 1758 1759 delete_from_swap_cache(page); 1760 set_page_dirty(page); 1761 swap_free(swap); 1762 1763 *pagep = page; 1764 return 0; 1765 failed: 1766 if (!shmem_confirm_swap(mapping, index, swap)) 1767 error = -EEXIST; 1768 unlock: 1769 if (page) { 1770 unlock_page(page); 1771 put_page(page); 1772 } 1773 1774 return error; 1775 } 1776 1777 /* 1778 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1779 * 1780 * If we allocate a new one we do not mark it dirty. That's up to the 1781 * vm. If we swap it in we mark it dirty since we also free the swap 1782 * entry since a page cannot live in both the swap and page cache. 1783 * 1784 * vmf and fault_type are only supplied by shmem_fault: 1785 * otherwise they are NULL. 1786 */ 1787 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1788 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1789 struct vm_area_struct *vma, struct vm_fault *vmf, 1790 vm_fault_t *fault_type) 1791 { 1792 struct address_space *mapping = inode->i_mapping; 1793 struct shmem_inode_info *info = SHMEM_I(inode); 1794 struct shmem_sb_info *sbinfo; 1795 struct mm_struct *charge_mm; 1796 struct page *page; 1797 enum sgp_type sgp_huge = sgp; 1798 pgoff_t hindex = index; 1799 int error; 1800 int once = 0; 1801 int alloced = 0; 1802 1803 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1804 return -EFBIG; 1805 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1806 sgp = SGP_CACHE; 1807 repeat: 1808 if (sgp <= SGP_CACHE && 1809 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1810 return -EINVAL; 1811 } 1812 1813 sbinfo = SHMEM_SB(inode->i_sb); 1814 charge_mm = vma ? vma->vm_mm : current->mm; 1815 1816 page = find_lock_entry(mapping, index); 1817 if (xa_is_value(page)) { 1818 error = shmem_swapin_page(inode, index, &page, 1819 sgp, gfp, vma, fault_type); 1820 if (error == -EEXIST) 1821 goto repeat; 1822 1823 *pagep = page; 1824 return error; 1825 } 1826 1827 if (page && sgp == SGP_WRITE) 1828 mark_page_accessed(page); 1829 1830 /* fallocated page? */ 1831 if (page && !PageUptodate(page)) { 1832 if (sgp != SGP_READ) 1833 goto clear; 1834 unlock_page(page); 1835 put_page(page); 1836 page = NULL; 1837 } 1838 if (page || sgp == SGP_READ) { 1839 *pagep = page; 1840 return 0; 1841 } 1842 1843 /* 1844 * Fast cache lookup did not find it: 1845 * bring it back from swap or allocate. 1846 */ 1847 1848 if (vma && userfaultfd_missing(vma)) { 1849 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1850 return 0; 1851 } 1852 1853 /* shmem_symlink() */ 1854 if (mapping->a_ops != &shmem_aops) 1855 goto alloc_nohuge; 1856 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1857 goto alloc_nohuge; 1858 if (shmem_huge == SHMEM_HUGE_FORCE) 1859 goto alloc_huge; 1860 switch (sbinfo->huge) { 1861 case SHMEM_HUGE_NEVER: 1862 goto alloc_nohuge; 1863 case SHMEM_HUGE_WITHIN_SIZE: { 1864 loff_t i_size; 1865 pgoff_t off; 1866 1867 off = round_up(index, HPAGE_PMD_NR); 1868 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1869 if (i_size >= HPAGE_PMD_SIZE && 1870 i_size >> PAGE_SHIFT >= off) 1871 goto alloc_huge; 1872 1873 fallthrough; 1874 } 1875 case SHMEM_HUGE_ADVISE: 1876 if (sgp_huge == SGP_HUGE) 1877 goto alloc_huge; 1878 /* TODO: implement fadvise() hints */ 1879 goto alloc_nohuge; 1880 } 1881 1882 alloc_huge: 1883 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1884 if (IS_ERR(page)) { 1885 alloc_nohuge: 1886 page = shmem_alloc_and_acct_page(gfp, inode, 1887 index, false); 1888 } 1889 if (IS_ERR(page)) { 1890 int retry = 5; 1891 1892 error = PTR_ERR(page); 1893 page = NULL; 1894 if (error != -ENOSPC) 1895 goto unlock; 1896 /* 1897 * Try to reclaim some space by splitting a huge page 1898 * beyond i_size on the filesystem. 1899 */ 1900 while (retry--) { 1901 int ret; 1902 1903 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1904 if (ret == SHRINK_STOP) 1905 break; 1906 if (ret) 1907 goto alloc_nohuge; 1908 } 1909 goto unlock; 1910 } 1911 1912 if (PageTransHuge(page)) 1913 hindex = round_down(index, HPAGE_PMD_NR); 1914 else 1915 hindex = index; 1916 1917 if (sgp == SGP_WRITE) 1918 __SetPageReferenced(page); 1919 1920 error = shmem_add_to_page_cache(page, mapping, hindex, 1921 NULL, gfp & GFP_RECLAIM_MASK, 1922 charge_mm); 1923 if (error) 1924 goto unacct; 1925 lru_cache_add(page); 1926 1927 spin_lock_irq(&info->lock); 1928 info->alloced += compound_nr(page); 1929 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1930 shmem_recalc_inode(inode); 1931 spin_unlock_irq(&info->lock); 1932 alloced = true; 1933 1934 if (PageTransHuge(page) && 1935 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1936 hindex + HPAGE_PMD_NR - 1) { 1937 /* 1938 * Part of the huge page is beyond i_size: subject 1939 * to shrink under memory pressure. 1940 */ 1941 spin_lock(&sbinfo->shrinklist_lock); 1942 /* 1943 * _careful to defend against unlocked access to 1944 * ->shrink_list in shmem_unused_huge_shrink() 1945 */ 1946 if (list_empty_careful(&info->shrinklist)) { 1947 list_add_tail(&info->shrinklist, 1948 &sbinfo->shrinklist); 1949 sbinfo->shrinklist_len++; 1950 } 1951 spin_unlock(&sbinfo->shrinklist_lock); 1952 } 1953 1954 /* 1955 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1956 */ 1957 if (sgp == SGP_FALLOC) 1958 sgp = SGP_WRITE; 1959 clear: 1960 /* 1961 * Let SGP_WRITE caller clear ends if write does not fill page; 1962 * but SGP_FALLOC on a page fallocated earlier must initialize 1963 * it now, lest undo on failure cancel our earlier guarantee. 1964 */ 1965 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1966 struct page *head = compound_head(page); 1967 int i; 1968 1969 for (i = 0; i < compound_nr(head); i++) { 1970 clear_highpage(head + i); 1971 flush_dcache_page(head + i); 1972 } 1973 SetPageUptodate(head); 1974 } 1975 1976 /* Perhaps the file has been truncated since we checked */ 1977 if (sgp <= SGP_CACHE && 1978 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1979 if (alloced) { 1980 ClearPageDirty(page); 1981 delete_from_page_cache(page); 1982 spin_lock_irq(&info->lock); 1983 shmem_recalc_inode(inode); 1984 spin_unlock_irq(&info->lock); 1985 } 1986 error = -EINVAL; 1987 goto unlock; 1988 } 1989 *pagep = page + index - hindex; 1990 return 0; 1991 1992 /* 1993 * Error recovery. 1994 */ 1995 unacct: 1996 shmem_inode_unacct_blocks(inode, compound_nr(page)); 1997 1998 if (PageTransHuge(page)) { 1999 unlock_page(page); 2000 put_page(page); 2001 goto alloc_nohuge; 2002 } 2003 unlock: 2004 if (page) { 2005 unlock_page(page); 2006 put_page(page); 2007 } 2008 if (error == -ENOSPC && !once++) { 2009 spin_lock_irq(&info->lock); 2010 shmem_recalc_inode(inode); 2011 spin_unlock_irq(&info->lock); 2012 goto repeat; 2013 } 2014 if (error == -EEXIST) 2015 goto repeat; 2016 return error; 2017 } 2018 2019 /* 2020 * This is like autoremove_wake_function, but it removes the wait queue 2021 * entry unconditionally - even if something else had already woken the 2022 * target. 2023 */ 2024 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2025 { 2026 int ret = default_wake_function(wait, mode, sync, key); 2027 list_del_init(&wait->entry); 2028 return ret; 2029 } 2030 2031 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2032 { 2033 struct vm_area_struct *vma = vmf->vma; 2034 struct inode *inode = file_inode(vma->vm_file); 2035 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2036 enum sgp_type sgp; 2037 int err; 2038 vm_fault_t ret = VM_FAULT_LOCKED; 2039 2040 /* 2041 * Trinity finds that probing a hole which tmpfs is punching can 2042 * prevent the hole-punch from ever completing: which in turn 2043 * locks writers out with its hold on i_mutex. So refrain from 2044 * faulting pages into the hole while it's being punched. Although 2045 * shmem_undo_range() does remove the additions, it may be unable to 2046 * keep up, as each new page needs its own unmap_mapping_range() call, 2047 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2048 * 2049 * It does not matter if we sometimes reach this check just before the 2050 * hole-punch begins, so that one fault then races with the punch: 2051 * we just need to make racing faults a rare case. 2052 * 2053 * The implementation below would be much simpler if we just used a 2054 * standard mutex or completion: but we cannot take i_mutex in fault, 2055 * and bloating every shmem inode for this unlikely case would be sad. 2056 */ 2057 if (unlikely(inode->i_private)) { 2058 struct shmem_falloc *shmem_falloc; 2059 2060 spin_lock(&inode->i_lock); 2061 shmem_falloc = inode->i_private; 2062 if (shmem_falloc && 2063 shmem_falloc->waitq && 2064 vmf->pgoff >= shmem_falloc->start && 2065 vmf->pgoff < shmem_falloc->next) { 2066 struct file *fpin; 2067 wait_queue_head_t *shmem_falloc_waitq; 2068 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2069 2070 ret = VM_FAULT_NOPAGE; 2071 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2072 if (fpin) 2073 ret = VM_FAULT_RETRY; 2074 2075 shmem_falloc_waitq = shmem_falloc->waitq; 2076 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2077 TASK_UNINTERRUPTIBLE); 2078 spin_unlock(&inode->i_lock); 2079 schedule(); 2080 2081 /* 2082 * shmem_falloc_waitq points into the shmem_fallocate() 2083 * stack of the hole-punching task: shmem_falloc_waitq 2084 * is usually invalid by the time we reach here, but 2085 * finish_wait() does not dereference it in that case; 2086 * though i_lock needed lest racing with wake_up_all(). 2087 */ 2088 spin_lock(&inode->i_lock); 2089 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2090 spin_unlock(&inode->i_lock); 2091 2092 if (fpin) 2093 fput(fpin); 2094 return ret; 2095 } 2096 spin_unlock(&inode->i_lock); 2097 } 2098 2099 sgp = SGP_CACHE; 2100 2101 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2102 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2103 sgp = SGP_NOHUGE; 2104 else if (vma->vm_flags & VM_HUGEPAGE) 2105 sgp = SGP_HUGE; 2106 2107 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2108 gfp, vma, vmf, &ret); 2109 if (err) 2110 return vmf_error(err); 2111 return ret; 2112 } 2113 2114 unsigned long shmem_get_unmapped_area(struct file *file, 2115 unsigned long uaddr, unsigned long len, 2116 unsigned long pgoff, unsigned long flags) 2117 { 2118 unsigned long (*get_area)(struct file *, 2119 unsigned long, unsigned long, unsigned long, unsigned long); 2120 unsigned long addr; 2121 unsigned long offset; 2122 unsigned long inflated_len; 2123 unsigned long inflated_addr; 2124 unsigned long inflated_offset; 2125 2126 if (len > TASK_SIZE) 2127 return -ENOMEM; 2128 2129 get_area = current->mm->get_unmapped_area; 2130 addr = get_area(file, uaddr, len, pgoff, flags); 2131 2132 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2133 return addr; 2134 if (IS_ERR_VALUE(addr)) 2135 return addr; 2136 if (addr & ~PAGE_MASK) 2137 return addr; 2138 if (addr > TASK_SIZE - len) 2139 return addr; 2140 2141 if (shmem_huge == SHMEM_HUGE_DENY) 2142 return addr; 2143 if (len < HPAGE_PMD_SIZE) 2144 return addr; 2145 if (flags & MAP_FIXED) 2146 return addr; 2147 /* 2148 * Our priority is to support MAP_SHARED mapped hugely; 2149 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2150 * But if caller specified an address hint and we allocated area there 2151 * successfully, respect that as before. 2152 */ 2153 if (uaddr == addr) 2154 return addr; 2155 2156 if (shmem_huge != SHMEM_HUGE_FORCE) { 2157 struct super_block *sb; 2158 2159 if (file) { 2160 VM_BUG_ON(file->f_op != &shmem_file_operations); 2161 sb = file_inode(file)->i_sb; 2162 } else { 2163 /* 2164 * Called directly from mm/mmap.c, or drivers/char/mem.c 2165 * for "/dev/zero", to create a shared anonymous object. 2166 */ 2167 if (IS_ERR(shm_mnt)) 2168 return addr; 2169 sb = shm_mnt->mnt_sb; 2170 } 2171 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2172 return addr; 2173 } 2174 2175 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2176 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2177 return addr; 2178 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2179 return addr; 2180 2181 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2182 if (inflated_len > TASK_SIZE) 2183 return addr; 2184 if (inflated_len < len) 2185 return addr; 2186 2187 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2188 if (IS_ERR_VALUE(inflated_addr)) 2189 return addr; 2190 if (inflated_addr & ~PAGE_MASK) 2191 return addr; 2192 2193 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2194 inflated_addr += offset - inflated_offset; 2195 if (inflated_offset > offset) 2196 inflated_addr += HPAGE_PMD_SIZE; 2197 2198 if (inflated_addr > TASK_SIZE - len) 2199 return addr; 2200 return inflated_addr; 2201 } 2202 2203 #ifdef CONFIG_NUMA 2204 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2205 { 2206 struct inode *inode = file_inode(vma->vm_file); 2207 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2208 } 2209 2210 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2211 unsigned long addr) 2212 { 2213 struct inode *inode = file_inode(vma->vm_file); 2214 pgoff_t index; 2215 2216 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2217 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2218 } 2219 #endif 2220 2221 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2222 { 2223 struct inode *inode = file_inode(file); 2224 struct shmem_inode_info *info = SHMEM_I(inode); 2225 int retval = -ENOMEM; 2226 2227 /* 2228 * What serializes the accesses to info->flags? 2229 * ipc_lock_object() when called from shmctl_do_lock(), 2230 * no serialization needed when called from shm_destroy(). 2231 */ 2232 if (lock && !(info->flags & VM_LOCKED)) { 2233 if (!user_shm_lock(inode->i_size, user)) 2234 goto out_nomem; 2235 info->flags |= VM_LOCKED; 2236 mapping_set_unevictable(file->f_mapping); 2237 } 2238 if (!lock && (info->flags & VM_LOCKED) && user) { 2239 user_shm_unlock(inode->i_size, user); 2240 info->flags &= ~VM_LOCKED; 2241 mapping_clear_unevictable(file->f_mapping); 2242 } 2243 retval = 0; 2244 2245 out_nomem: 2246 return retval; 2247 } 2248 2249 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2250 { 2251 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2252 2253 if (info->seals & F_SEAL_FUTURE_WRITE) { 2254 /* 2255 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2256 * "future write" seal active. 2257 */ 2258 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2259 return -EPERM; 2260 2261 /* 2262 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 2263 * MAP_SHARED and read-only, take care to not allow mprotect to 2264 * revert protections on such mappings. Do this only for shared 2265 * mappings. For private mappings, don't need to mask 2266 * VM_MAYWRITE as we still want them to be COW-writable. 2267 */ 2268 if (vma->vm_flags & VM_SHARED) 2269 vma->vm_flags &= ~(VM_MAYWRITE); 2270 } 2271 2272 file_accessed(file); 2273 vma->vm_ops = &shmem_vm_ops; 2274 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 2275 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2276 (vma->vm_end & HPAGE_PMD_MASK)) { 2277 khugepaged_enter(vma, vma->vm_flags); 2278 } 2279 return 0; 2280 } 2281 2282 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2283 umode_t mode, dev_t dev, unsigned long flags) 2284 { 2285 struct inode *inode; 2286 struct shmem_inode_info *info; 2287 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2288 ino_t ino; 2289 2290 if (shmem_reserve_inode(sb, &ino)) 2291 return NULL; 2292 2293 inode = new_inode(sb); 2294 if (inode) { 2295 inode->i_ino = ino; 2296 inode_init_owner(inode, dir, mode); 2297 inode->i_blocks = 0; 2298 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2299 inode->i_generation = prandom_u32(); 2300 info = SHMEM_I(inode); 2301 memset(info, 0, (char *)inode - (char *)info); 2302 spin_lock_init(&info->lock); 2303 atomic_set(&info->stop_eviction, 0); 2304 info->seals = F_SEAL_SEAL; 2305 info->flags = flags & VM_NORESERVE; 2306 INIT_LIST_HEAD(&info->shrinklist); 2307 INIT_LIST_HEAD(&info->swaplist); 2308 simple_xattrs_init(&info->xattrs); 2309 cache_no_acl(inode); 2310 2311 switch (mode & S_IFMT) { 2312 default: 2313 inode->i_op = &shmem_special_inode_operations; 2314 init_special_inode(inode, mode, dev); 2315 break; 2316 case S_IFREG: 2317 inode->i_mapping->a_ops = &shmem_aops; 2318 inode->i_op = &shmem_inode_operations; 2319 inode->i_fop = &shmem_file_operations; 2320 mpol_shared_policy_init(&info->policy, 2321 shmem_get_sbmpol(sbinfo)); 2322 break; 2323 case S_IFDIR: 2324 inc_nlink(inode); 2325 /* Some things misbehave if size == 0 on a directory */ 2326 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2327 inode->i_op = &shmem_dir_inode_operations; 2328 inode->i_fop = &simple_dir_operations; 2329 break; 2330 case S_IFLNK: 2331 /* 2332 * Must not load anything in the rbtree, 2333 * mpol_free_shared_policy will not be called. 2334 */ 2335 mpol_shared_policy_init(&info->policy, NULL); 2336 break; 2337 } 2338 2339 lockdep_annotate_inode_mutex_key(inode); 2340 } else 2341 shmem_free_inode(sb); 2342 return inode; 2343 } 2344 2345 bool shmem_mapping(struct address_space *mapping) 2346 { 2347 return mapping->a_ops == &shmem_aops; 2348 } 2349 2350 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2351 pmd_t *dst_pmd, 2352 struct vm_area_struct *dst_vma, 2353 unsigned long dst_addr, 2354 unsigned long src_addr, 2355 bool zeropage, 2356 struct page **pagep) 2357 { 2358 struct inode *inode = file_inode(dst_vma->vm_file); 2359 struct shmem_inode_info *info = SHMEM_I(inode); 2360 struct address_space *mapping = inode->i_mapping; 2361 gfp_t gfp = mapping_gfp_mask(mapping); 2362 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2363 spinlock_t *ptl; 2364 void *page_kaddr; 2365 struct page *page; 2366 pte_t _dst_pte, *dst_pte; 2367 int ret; 2368 pgoff_t offset, max_off; 2369 2370 ret = -ENOMEM; 2371 if (!shmem_inode_acct_block(inode, 1)) 2372 goto out; 2373 2374 if (!*pagep) { 2375 page = shmem_alloc_page(gfp, info, pgoff); 2376 if (!page) 2377 goto out_unacct_blocks; 2378 2379 if (!zeropage) { /* mcopy_atomic */ 2380 page_kaddr = kmap_atomic(page); 2381 ret = copy_from_user(page_kaddr, 2382 (const void __user *)src_addr, 2383 PAGE_SIZE); 2384 kunmap_atomic(page_kaddr); 2385 2386 /* fallback to copy_from_user outside mmap_lock */ 2387 if (unlikely(ret)) { 2388 *pagep = page; 2389 shmem_inode_unacct_blocks(inode, 1); 2390 /* don't free the page */ 2391 return -ENOENT; 2392 } 2393 } else { /* mfill_zeropage_atomic */ 2394 clear_highpage(page); 2395 } 2396 } else { 2397 page = *pagep; 2398 *pagep = NULL; 2399 } 2400 2401 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2402 __SetPageLocked(page); 2403 __SetPageSwapBacked(page); 2404 __SetPageUptodate(page); 2405 2406 ret = -EFAULT; 2407 offset = linear_page_index(dst_vma, dst_addr); 2408 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2409 if (unlikely(offset >= max_off)) 2410 goto out_release; 2411 2412 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2413 gfp & GFP_RECLAIM_MASK, dst_mm); 2414 if (ret) 2415 goto out_release; 2416 2417 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2418 if (dst_vma->vm_flags & VM_WRITE) 2419 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2420 else { 2421 /* 2422 * We don't set the pte dirty if the vma has no 2423 * VM_WRITE permission, so mark the page dirty or it 2424 * could be freed from under us. We could do it 2425 * unconditionally before unlock_page(), but doing it 2426 * only if VM_WRITE is not set is faster. 2427 */ 2428 set_page_dirty(page); 2429 } 2430 2431 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2432 2433 ret = -EFAULT; 2434 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2435 if (unlikely(offset >= max_off)) 2436 goto out_release_unlock; 2437 2438 ret = -EEXIST; 2439 if (!pte_none(*dst_pte)) 2440 goto out_release_unlock; 2441 2442 lru_cache_add(page); 2443 2444 spin_lock_irq(&info->lock); 2445 info->alloced++; 2446 inode->i_blocks += BLOCKS_PER_PAGE; 2447 shmem_recalc_inode(inode); 2448 spin_unlock_irq(&info->lock); 2449 2450 inc_mm_counter(dst_mm, mm_counter_file(page)); 2451 page_add_file_rmap(page, false); 2452 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2453 2454 /* No need to invalidate - it was non-present before */ 2455 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2456 pte_unmap_unlock(dst_pte, ptl); 2457 unlock_page(page); 2458 ret = 0; 2459 out: 2460 return ret; 2461 out_release_unlock: 2462 pte_unmap_unlock(dst_pte, ptl); 2463 ClearPageDirty(page); 2464 delete_from_page_cache(page); 2465 out_release: 2466 unlock_page(page); 2467 put_page(page); 2468 out_unacct_blocks: 2469 shmem_inode_unacct_blocks(inode, 1); 2470 goto out; 2471 } 2472 2473 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2474 pmd_t *dst_pmd, 2475 struct vm_area_struct *dst_vma, 2476 unsigned long dst_addr, 2477 unsigned long src_addr, 2478 struct page **pagep) 2479 { 2480 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2481 dst_addr, src_addr, false, pagep); 2482 } 2483 2484 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2485 pmd_t *dst_pmd, 2486 struct vm_area_struct *dst_vma, 2487 unsigned long dst_addr) 2488 { 2489 struct page *page = NULL; 2490 2491 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2492 dst_addr, 0, true, &page); 2493 } 2494 2495 #ifdef CONFIG_TMPFS 2496 static const struct inode_operations shmem_symlink_inode_operations; 2497 static const struct inode_operations shmem_short_symlink_operations; 2498 2499 #ifdef CONFIG_TMPFS_XATTR 2500 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2501 #else 2502 #define shmem_initxattrs NULL 2503 #endif 2504 2505 static int 2506 shmem_write_begin(struct file *file, struct address_space *mapping, 2507 loff_t pos, unsigned len, unsigned flags, 2508 struct page **pagep, void **fsdata) 2509 { 2510 struct inode *inode = mapping->host; 2511 struct shmem_inode_info *info = SHMEM_I(inode); 2512 pgoff_t index = pos >> PAGE_SHIFT; 2513 2514 /* i_mutex is held by caller */ 2515 if (unlikely(info->seals & (F_SEAL_GROW | 2516 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2517 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2518 return -EPERM; 2519 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2520 return -EPERM; 2521 } 2522 2523 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2524 } 2525 2526 static int 2527 shmem_write_end(struct file *file, struct address_space *mapping, 2528 loff_t pos, unsigned len, unsigned copied, 2529 struct page *page, void *fsdata) 2530 { 2531 struct inode *inode = mapping->host; 2532 2533 if (pos + copied > inode->i_size) 2534 i_size_write(inode, pos + copied); 2535 2536 if (!PageUptodate(page)) { 2537 struct page *head = compound_head(page); 2538 if (PageTransCompound(page)) { 2539 int i; 2540 2541 for (i = 0; i < HPAGE_PMD_NR; i++) { 2542 if (head + i == page) 2543 continue; 2544 clear_highpage(head + i); 2545 flush_dcache_page(head + i); 2546 } 2547 } 2548 if (copied < PAGE_SIZE) { 2549 unsigned from = pos & (PAGE_SIZE - 1); 2550 zero_user_segments(page, 0, from, 2551 from + copied, PAGE_SIZE); 2552 } 2553 SetPageUptodate(head); 2554 } 2555 set_page_dirty(page); 2556 unlock_page(page); 2557 put_page(page); 2558 2559 return copied; 2560 } 2561 2562 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2563 { 2564 struct file *file = iocb->ki_filp; 2565 struct inode *inode = file_inode(file); 2566 struct address_space *mapping = inode->i_mapping; 2567 pgoff_t index; 2568 unsigned long offset; 2569 enum sgp_type sgp = SGP_READ; 2570 int error = 0; 2571 ssize_t retval = 0; 2572 loff_t *ppos = &iocb->ki_pos; 2573 2574 /* 2575 * Might this read be for a stacking filesystem? Then when reading 2576 * holes of a sparse file, we actually need to allocate those pages, 2577 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2578 */ 2579 if (!iter_is_iovec(to)) 2580 sgp = SGP_CACHE; 2581 2582 index = *ppos >> PAGE_SHIFT; 2583 offset = *ppos & ~PAGE_MASK; 2584 2585 for (;;) { 2586 struct page *page = NULL; 2587 pgoff_t end_index; 2588 unsigned long nr, ret; 2589 loff_t i_size = i_size_read(inode); 2590 2591 end_index = i_size >> PAGE_SHIFT; 2592 if (index > end_index) 2593 break; 2594 if (index == end_index) { 2595 nr = i_size & ~PAGE_MASK; 2596 if (nr <= offset) 2597 break; 2598 } 2599 2600 error = shmem_getpage(inode, index, &page, sgp); 2601 if (error) { 2602 if (error == -EINVAL) 2603 error = 0; 2604 break; 2605 } 2606 if (page) { 2607 if (sgp == SGP_CACHE) 2608 set_page_dirty(page); 2609 unlock_page(page); 2610 } 2611 2612 /* 2613 * We must evaluate after, since reads (unlike writes) 2614 * are called without i_mutex protection against truncate 2615 */ 2616 nr = PAGE_SIZE; 2617 i_size = i_size_read(inode); 2618 end_index = i_size >> PAGE_SHIFT; 2619 if (index == end_index) { 2620 nr = i_size & ~PAGE_MASK; 2621 if (nr <= offset) { 2622 if (page) 2623 put_page(page); 2624 break; 2625 } 2626 } 2627 nr -= offset; 2628 2629 if (page) { 2630 /* 2631 * If users can be writing to this page using arbitrary 2632 * virtual addresses, take care about potential aliasing 2633 * before reading the page on the kernel side. 2634 */ 2635 if (mapping_writably_mapped(mapping)) 2636 flush_dcache_page(page); 2637 /* 2638 * Mark the page accessed if we read the beginning. 2639 */ 2640 if (!offset) 2641 mark_page_accessed(page); 2642 } else { 2643 page = ZERO_PAGE(0); 2644 get_page(page); 2645 } 2646 2647 /* 2648 * Ok, we have the page, and it's up-to-date, so 2649 * now we can copy it to user space... 2650 */ 2651 ret = copy_page_to_iter(page, offset, nr, to); 2652 retval += ret; 2653 offset += ret; 2654 index += offset >> PAGE_SHIFT; 2655 offset &= ~PAGE_MASK; 2656 2657 put_page(page); 2658 if (!iov_iter_count(to)) 2659 break; 2660 if (ret < nr) { 2661 error = -EFAULT; 2662 break; 2663 } 2664 cond_resched(); 2665 } 2666 2667 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2668 file_accessed(file); 2669 return retval ? retval : error; 2670 } 2671 2672 /* 2673 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2674 */ 2675 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2676 pgoff_t index, pgoff_t end, int whence) 2677 { 2678 struct page *page; 2679 struct pagevec pvec; 2680 pgoff_t indices[PAGEVEC_SIZE]; 2681 bool done = false; 2682 int i; 2683 2684 pagevec_init(&pvec); 2685 pvec.nr = 1; /* start small: we may be there already */ 2686 while (!done) { 2687 pvec.nr = find_get_entries(mapping, index, 2688 pvec.nr, pvec.pages, indices); 2689 if (!pvec.nr) { 2690 if (whence == SEEK_DATA) 2691 index = end; 2692 break; 2693 } 2694 for (i = 0; i < pvec.nr; i++, index++) { 2695 if (index < indices[i]) { 2696 if (whence == SEEK_HOLE) { 2697 done = true; 2698 break; 2699 } 2700 index = indices[i]; 2701 } 2702 page = pvec.pages[i]; 2703 if (page && !xa_is_value(page)) { 2704 if (!PageUptodate(page)) 2705 page = NULL; 2706 } 2707 if (index >= end || 2708 (page && whence == SEEK_DATA) || 2709 (!page && whence == SEEK_HOLE)) { 2710 done = true; 2711 break; 2712 } 2713 } 2714 pagevec_remove_exceptionals(&pvec); 2715 pagevec_release(&pvec); 2716 pvec.nr = PAGEVEC_SIZE; 2717 cond_resched(); 2718 } 2719 return index; 2720 } 2721 2722 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2723 { 2724 struct address_space *mapping = file->f_mapping; 2725 struct inode *inode = mapping->host; 2726 pgoff_t start, end; 2727 loff_t new_offset; 2728 2729 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2730 return generic_file_llseek_size(file, offset, whence, 2731 MAX_LFS_FILESIZE, i_size_read(inode)); 2732 inode_lock(inode); 2733 /* We're holding i_mutex so we can access i_size directly */ 2734 2735 if (offset < 0 || offset >= inode->i_size) 2736 offset = -ENXIO; 2737 else { 2738 start = offset >> PAGE_SHIFT; 2739 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2740 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2741 new_offset <<= PAGE_SHIFT; 2742 if (new_offset > offset) { 2743 if (new_offset < inode->i_size) 2744 offset = new_offset; 2745 else if (whence == SEEK_DATA) 2746 offset = -ENXIO; 2747 else 2748 offset = inode->i_size; 2749 } 2750 } 2751 2752 if (offset >= 0) 2753 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2754 inode_unlock(inode); 2755 return offset; 2756 } 2757 2758 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2759 loff_t len) 2760 { 2761 struct inode *inode = file_inode(file); 2762 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2763 struct shmem_inode_info *info = SHMEM_I(inode); 2764 struct shmem_falloc shmem_falloc; 2765 pgoff_t start, index, end; 2766 int error; 2767 2768 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2769 return -EOPNOTSUPP; 2770 2771 inode_lock(inode); 2772 2773 if (mode & FALLOC_FL_PUNCH_HOLE) { 2774 struct address_space *mapping = file->f_mapping; 2775 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2776 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2777 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2778 2779 /* protected by i_mutex */ 2780 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2781 error = -EPERM; 2782 goto out; 2783 } 2784 2785 shmem_falloc.waitq = &shmem_falloc_waitq; 2786 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 2787 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2788 spin_lock(&inode->i_lock); 2789 inode->i_private = &shmem_falloc; 2790 spin_unlock(&inode->i_lock); 2791 2792 if ((u64)unmap_end > (u64)unmap_start) 2793 unmap_mapping_range(mapping, unmap_start, 2794 1 + unmap_end - unmap_start, 0); 2795 shmem_truncate_range(inode, offset, offset + len - 1); 2796 /* No need to unmap again: hole-punching leaves COWed pages */ 2797 2798 spin_lock(&inode->i_lock); 2799 inode->i_private = NULL; 2800 wake_up_all(&shmem_falloc_waitq); 2801 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2802 spin_unlock(&inode->i_lock); 2803 error = 0; 2804 goto out; 2805 } 2806 2807 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2808 error = inode_newsize_ok(inode, offset + len); 2809 if (error) 2810 goto out; 2811 2812 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2813 error = -EPERM; 2814 goto out; 2815 } 2816 2817 start = offset >> PAGE_SHIFT; 2818 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2819 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2820 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2821 error = -ENOSPC; 2822 goto out; 2823 } 2824 2825 shmem_falloc.waitq = NULL; 2826 shmem_falloc.start = start; 2827 shmem_falloc.next = start; 2828 shmem_falloc.nr_falloced = 0; 2829 shmem_falloc.nr_unswapped = 0; 2830 spin_lock(&inode->i_lock); 2831 inode->i_private = &shmem_falloc; 2832 spin_unlock(&inode->i_lock); 2833 2834 for (index = start; index < end; index++) { 2835 struct page *page; 2836 2837 /* 2838 * Good, the fallocate(2) manpage permits EINTR: we may have 2839 * been interrupted because we are using up too much memory. 2840 */ 2841 if (signal_pending(current)) 2842 error = -EINTR; 2843 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2844 error = -ENOMEM; 2845 else 2846 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2847 if (error) { 2848 /* Remove the !PageUptodate pages we added */ 2849 if (index > start) { 2850 shmem_undo_range(inode, 2851 (loff_t)start << PAGE_SHIFT, 2852 ((loff_t)index << PAGE_SHIFT) - 1, true); 2853 } 2854 goto undone; 2855 } 2856 2857 /* 2858 * Inform shmem_writepage() how far we have reached. 2859 * No need for lock or barrier: we have the page lock. 2860 */ 2861 shmem_falloc.next++; 2862 if (!PageUptodate(page)) 2863 shmem_falloc.nr_falloced++; 2864 2865 /* 2866 * If !PageUptodate, leave it that way so that freeable pages 2867 * can be recognized if we need to rollback on error later. 2868 * But set_page_dirty so that memory pressure will swap rather 2869 * than free the pages we are allocating (and SGP_CACHE pages 2870 * might still be clean: we now need to mark those dirty too). 2871 */ 2872 set_page_dirty(page); 2873 unlock_page(page); 2874 put_page(page); 2875 cond_resched(); 2876 } 2877 2878 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2879 i_size_write(inode, offset + len); 2880 inode->i_ctime = current_time(inode); 2881 undone: 2882 spin_lock(&inode->i_lock); 2883 inode->i_private = NULL; 2884 spin_unlock(&inode->i_lock); 2885 out: 2886 inode_unlock(inode); 2887 return error; 2888 } 2889 2890 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2891 { 2892 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2893 2894 buf->f_type = TMPFS_MAGIC; 2895 buf->f_bsize = PAGE_SIZE; 2896 buf->f_namelen = NAME_MAX; 2897 if (sbinfo->max_blocks) { 2898 buf->f_blocks = sbinfo->max_blocks; 2899 buf->f_bavail = 2900 buf->f_bfree = sbinfo->max_blocks - 2901 percpu_counter_sum(&sbinfo->used_blocks); 2902 } 2903 if (sbinfo->max_inodes) { 2904 buf->f_files = sbinfo->max_inodes; 2905 buf->f_ffree = sbinfo->free_inodes; 2906 } 2907 /* else leave those fields 0 like simple_statfs */ 2908 return 0; 2909 } 2910 2911 /* 2912 * File creation. Allocate an inode, and we're done.. 2913 */ 2914 static int 2915 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2916 { 2917 struct inode *inode; 2918 int error = -ENOSPC; 2919 2920 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2921 if (inode) { 2922 error = simple_acl_create(dir, inode); 2923 if (error) 2924 goto out_iput; 2925 error = security_inode_init_security(inode, dir, 2926 &dentry->d_name, 2927 shmem_initxattrs, NULL); 2928 if (error && error != -EOPNOTSUPP) 2929 goto out_iput; 2930 2931 error = 0; 2932 dir->i_size += BOGO_DIRENT_SIZE; 2933 dir->i_ctime = dir->i_mtime = current_time(dir); 2934 d_instantiate(dentry, inode); 2935 dget(dentry); /* Extra count - pin the dentry in core */ 2936 } 2937 return error; 2938 out_iput: 2939 iput(inode); 2940 return error; 2941 } 2942 2943 static int 2944 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2945 { 2946 struct inode *inode; 2947 int error = -ENOSPC; 2948 2949 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2950 if (inode) { 2951 error = security_inode_init_security(inode, dir, 2952 NULL, 2953 shmem_initxattrs, NULL); 2954 if (error && error != -EOPNOTSUPP) 2955 goto out_iput; 2956 error = simple_acl_create(dir, inode); 2957 if (error) 2958 goto out_iput; 2959 d_tmpfile(dentry, inode); 2960 } 2961 return error; 2962 out_iput: 2963 iput(inode); 2964 return error; 2965 } 2966 2967 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2968 { 2969 int error; 2970 2971 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2972 return error; 2973 inc_nlink(dir); 2974 return 0; 2975 } 2976 2977 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2978 bool excl) 2979 { 2980 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2981 } 2982 2983 /* 2984 * Link a file.. 2985 */ 2986 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2987 { 2988 struct inode *inode = d_inode(old_dentry); 2989 int ret = 0; 2990 2991 /* 2992 * No ordinary (disk based) filesystem counts links as inodes; 2993 * but each new link needs a new dentry, pinning lowmem, and 2994 * tmpfs dentries cannot be pruned until they are unlinked. 2995 * But if an O_TMPFILE file is linked into the tmpfs, the 2996 * first link must skip that, to get the accounting right. 2997 */ 2998 if (inode->i_nlink) { 2999 ret = shmem_reserve_inode(inode->i_sb, NULL); 3000 if (ret) 3001 goto out; 3002 } 3003 3004 dir->i_size += BOGO_DIRENT_SIZE; 3005 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3006 inc_nlink(inode); 3007 ihold(inode); /* New dentry reference */ 3008 dget(dentry); /* Extra pinning count for the created dentry */ 3009 d_instantiate(dentry, inode); 3010 out: 3011 return ret; 3012 } 3013 3014 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3015 { 3016 struct inode *inode = d_inode(dentry); 3017 3018 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3019 shmem_free_inode(inode->i_sb); 3020 3021 dir->i_size -= BOGO_DIRENT_SIZE; 3022 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 3023 drop_nlink(inode); 3024 dput(dentry); /* Undo the count from "create" - this does all the work */ 3025 return 0; 3026 } 3027 3028 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3029 { 3030 if (!simple_empty(dentry)) 3031 return -ENOTEMPTY; 3032 3033 drop_nlink(d_inode(dentry)); 3034 drop_nlink(dir); 3035 return shmem_unlink(dir, dentry); 3036 } 3037 3038 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 3039 { 3040 bool old_is_dir = d_is_dir(old_dentry); 3041 bool new_is_dir = d_is_dir(new_dentry); 3042 3043 if (old_dir != new_dir && old_is_dir != new_is_dir) { 3044 if (old_is_dir) { 3045 drop_nlink(old_dir); 3046 inc_nlink(new_dir); 3047 } else { 3048 drop_nlink(new_dir); 3049 inc_nlink(old_dir); 3050 } 3051 } 3052 old_dir->i_ctime = old_dir->i_mtime = 3053 new_dir->i_ctime = new_dir->i_mtime = 3054 d_inode(old_dentry)->i_ctime = 3055 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3056 3057 return 0; 3058 } 3059 3060 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3061 { 3062 struct dentry *whiteout; 3063 int error; 3064 3065 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3066 if (!whiteout) 3067 return -ENOMEM; 3068 3069 error = shmem_mknod(old_dir, whiteout, 3070 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3071 dput(whiteout); 3072 if (error) 3073 return error; 3074 3075 /* 3076 * Cheat and hash the whiteout while the old dentry is still in 3077 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3078 * 3079 * d_lookup() will consistently find one of them at this point, 3080 * not sure which one, but that isn't even important. 3081 */ 3082 d_rehash(whiteout); 3083 return 0; 3084 } 3085 3086 /* 3087 * The VFS layer already does all the dentry stuff for rename, 3088 * we just have to decrement the usage count for the target if 3089 * it exists so that the VFS layer correctly free's it when it 3090 * gets overwritten. 3091 */ 3092 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3093 { 3094 struct inode *inode = d_inode(old_dentry); 3095 int they_are_dirs = S_ISDIR(inode->i_mode); 3096 3097 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3098 return -EINVAL; 3099 3100 if (flags & RENAME_EXCHANGE) 3101 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3102 3103 if (!simple_empty(new_dentry)) 3104 return -ENOTEMPTY; 3105 3106 if (flags & RENAME_WHITEOUT) { 3107 int error; 3108 3109 error = shmem_whiteout(old_dir, old_dentry); 3110 if (error) 3111 return error; 3112 } 3113 3114 if (d_really_is_positive(new_dentry)) { 3115 (void) shmem_unlink(new_dir, new_dentry); 3116 if (they_are_dirs) { 3117 drop_nlink(d_inode(new_dentry)); 3118 drop_nlink(old_dir); 3119 } 3120 } else if (they_are_dirs) { 3121 drop_nlink(old_dir); 3122 inc_nlink(new_dir); 3123 } 3124 3125 old_dir->i_size -= BOGO_DIRENT_SIZE; 3126 new_dir->i_size += BOGO_DIRENT_SIZE; 3127 old_dir->i_ctime = old_dir->i_mtime = 3128 new_dir->i_ctime = new_dir->i_mtime = 3129 inode->i_ctime = current_time(old_dir); 3130 return 0; 3131 } 3132 3133 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3134 { 3135 int error; 3136 int len; 3137 struct inode *inode; 3138 struct page *page; 3139 3140 len = strlen(symname) + 1; 3141 if (len > PAGE_SIZE) 3142 return -ENAMETOOLONG; 3143 3144 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3145 VM_NORESERVE); 3146 if (!inode) 3147 return -ENOSPC; 3148 3149 error = security_inode_init_security(inode, dir, &dentry->d_name, 3150 shmem_initxattrs, NULL); 3151 if (error && error != -EOPNOTSUPP) { 3152 iput(inode); 3153 return error; 3154 } 3155 3156 inode->i_size = len-1; 3157 if (len <= SHORT_SYMLINK_LEN) { 3158 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3159 if (!inode->i_link) { 3160 iput(inode); 3161 return -ENOMEM; 3162 } 3163 inode->i_op = &shmem_short_symlink_operations; 3164 } else { 3165 inode_nohighmem(inode); 3166 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3167 if (error) { 3168 iput(inode); 3169 return error; 3170 } 3171 inode->i_mapping->a_ops = &shmem_aops; 3172 inode->i_op = &shmem_symlink_inode_operations; 3173 memcpy(page_address(page), symname, len); 3174 SetPageUptodate(page); 3175 set_page_dirty(page); 3176 unlock_page(page); 3177 put_page(page); 3178 } 3179 dir->i_size += BOGO_DIRENT_SIZE; 3180 dir->i_ctime = dir->i_mtime = current_time(dir); 3181 d_instantiate(dentry, inode); 3182 dget(dentry); 3183 return 0; 3184 } 3185 3186 static void shmem_put_link(void *arg) 3187 { 3188 mark_page_accessed(arg); 3189 put_page(arg); 3190 } 3191 3192 static const char *shmem_get_link(struct dentry *dentry, 3193 struct inode *inode, 3194 struct delayed_call *done) 3195 { 3196 struct page *page = NULL; 3197 int error; 3198 if (!dentry) { 3199 page = find_get_page(inode->i_mapping, 0); 3200 if (!page) 3201 return ERR_PTR(-ECHILD); 3202 if (!PageUptodate(page)) { 3203 put_page(page); 3204 return ERR_PTR(-ECHILD); 3205 } 3206 } else { 3207 error = shmem_getpage(inode, 0, &page, SGP_READ); 3208 if (error) 3209 return ERR_PTR(error); 3210 unlock_page(page); 3211 } 3212 set_delayed_call(done, shmem_put_link, page); 3213 return page_address(page); 3214 } 3215 3216 #ifdef CONFIG_TMPFS_XATTR 3217 /* 3218 * Superblocks without xattr inode operations may get some security.* xattr 3219 * support from the LSM "for free". As soon as we have any other xattrs 3220 * like ACLs, we also need to implement the security.* handlers at 3221 * filesystem level, though. 3222 */ 3223 3224 /* 3225 * Callback for security_inode_init_security() for acquiring xattrs. 3226 */ 3227 static int shmem_initxattrs(struct inode *inode, 3228 const struct xattr *xattr_array, 3229 void *fs_info) 3230 { 3231 struct shmem_inode_info *info = SHMEM_I(inode); 3232 const struct xattr *xattr; 3233 struct simple_xattr *new_xattr; 3234 size_t len; 3235 3236 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3237 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3238 if (!new_xattr) 3239 return -ENOMEM; 3240 3241 len = strlen(xattr->name) + 1; 3242 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3243 GFP_KERNEL); 3244 if (!new_xattr->name) { 3245 kvfree(new_xattr); 3246 return -ENOMEM; 3247 } 3248 3249 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3250 XATTR_SECURITY_PREFIX_LEN); 3251 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3252 xattr->name, len); 3253 3254 simple_xattr_list_add(&info->xattrs, new_xattr); 3255 } 3256 3257 return 0; 3258 } 3259 3260 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3261 struct dentry *unused, struct inode *inode, 3262 const char *name, void *buffer, size_t size) 3263 { 3264 struct shmem_inode_info *info = SHMEM_I(inode); 3265 3266 name = xattr_full_name(handler, name); 3267 return simple_xattr_get(&info->xattrs, name, buffer, size); 3268 } 3269 3270 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3271 struct dentry *unused, struct inode *inode, 3272 const char *name, const void *value, 3273 size_t size, int flags) 3274 { 3275 struct shmem_inode_info *info = SHMEM_I(inode); 3276 3277 name = xattr_full_name(handler, name); 3278 return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL); 3279 } 3280 3281 static const struct xattr_handler shmem_security_xattr_handler = { 3282 .prefix = XATTR_SECURITY_PREFIX, 3283 .get = shmem_xattr_handler_get, 3284 .set = shmem_xattr_handler_set, 3285 }; 3286 3287 static const struct xattr_handler shmem_trusted_xattr_handler = { 3288 .prefix = XATTR_TRUSTED_PREFIX, 3289 .get = shmem_xattr_handler_get, 3290 .set = shmem_xattr_handler_set, 3291 }; 3292 3293 static const struct xattr_handler *shmem_xattr_handlers[] = { 3294 #ifdef CONFIG_TMPFS_POSIX_ACL 3295 &posix_acl_access_xattr_handler, 3296 &posix_acl_default_xattr_handler, 3297 #endif 3298 &shmem_security_xattr_handler, 3299 &shmem_trusted_xattr_handler, 3300 NULL 3301 }; 3302 3303 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3304 { 3305 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3306 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3307 } 3308 #endif /* CONFIG_TMPFS_XATTR */ 3309 3310 static const struct inode_operations shmem_short_symlink_operations = { 3311 .get_link = simple_get_link, 3312 #ifdef CONFIG_TMPFS_XATTR 3313 .listxattr = shmem_listxattr, 3314 #endif 3315 }; 3316 3317 static const struct inode_operations shmem_symlink_inode_operations = { 3318 .get_link = shmem_get_link, 3319 #ifdef CONFIG_TMPFS_XATTR 3320 .listxattr = shmem_listxattr, 3321 #endif 3322 }; 3323 3324 static struct dentry *shmem_get_parent(struct dentry *child) 3325 { 3326 return ERR_PTR(-ESTALE); 3327 } 3328 3329 static int shmem_match(struct inode *ino, void *vfh) 3330 { 3331 __u32 *fh = vfh; 3332 __u64 inum = fh[2]; 3333 inum = (inum << 32) | fh[1]; 3334 return ino->i_ino == inum && fh[0] == ino->i_generation; 3335 } 3336 3337 /* Find any alias of inode, but prefer a hashed alias */ 3338 static struct dentry *shmem_find_alias(struct inode *inode) 3339 { 3340 struct dentry *alias = d_find_alias(inode); 3341 3342 return alias ?: d_find_any_alias(inode); 3343 } 3344 3345 3346 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3347 struct fid *fid, int fh_len, int fh_type) 3348 { 3349 struct inode *inode; 3350 struct dentry *dentry = NULL; 3351 u64 inum; 3352 3353 if (fh_len < 3) 3354 return NULL; 3355 3356 inum = fid->raw[2]; 3357 inum = (inum << 32) | fid->raw[1]; 3358 3359 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3360 shmem_match, fid->raw); 3361 if (inode) { 3362 dentry = shmem_find_alias(inode); 3363 iput(inode); 3364 } 3365 3366 return dentry; 3367 } 3368 3369 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3370 struct inode *parent) 3371 { 3372 if (*len < 3) { 3373 *len = 3; 3374 return FILEID_INVALID; 3375 } 3376 3377 if (inode_unhashed(inode)) { 3378 /* Unfortunately insert_inode_hash is not idempotent, 3379 * so as we hash inodes here rather than at creation 3380 * time, we need a lock to ensure we only try 3381 * to do it once 3382 */ 3383 static DEFINE_SPINLOCK(lock); 3384 spin_lock(&lock); 3385 if (inode_unhashed(inode)) 3386 __insert_inode_hash(inode, 3387 inode->i_ino + inode->i_generation); 3388 spin_unlock(&lock); 3389 } 3390 3391 fh[0] = inode->i_generation; 3392 fh[1] = inode->i_ino; 3393 fh[2] = ((__u64)inode->i_ino) >> 32; 3394 3395 *len = 3; 3396 return 1; 3397 } 3398 3399 static const struct export_operations shmem_export_ops = { 3400 .get_parent = shmem_get_parent, 3401 .encode_fh = shmem_encode_fh, 3402 .fh_to_dentry = shmem_fh_to_dentry, 3403 }; 3404 3405 enum shmem_param { 3406 Opt_gid, 3407 Opt_huge, 3408 Opt_mode, 3409 Opt_mpol, 3410 Opt_nr_blocks, 3411 Opt_nr_inodes, 3412 Opt_size, 3413 Opt_uid, 3414 Opt_inode32, 3415 Opt_inode64, 3416 }; 3417 3418 static const struct constant_table shmem_param_enums_huge[] = { 3419 {"never", SHMEM_HUGE_NEVER }, 3420 {"always", SHMEM_HUGE_ALWAYS }, 3421 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3422 {"advise", SHMEM_HUGE_ADVISE }, 3423 {} 3424 }; 3425 3426 const struct fs_parameter_spec shmem_fs_parameters[] = { 3427 fsparam_u32 ("gid", Opt_gid), 3428 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3429 fsparam_u32oct("mode", Opt_mode), 3430 fsparam_string("mpol", Opt_mpol), 3431 fsparam_string("nr_blocks", Opt_nr_blocks), 3432 fsparam_string("nr_inodes", Opt_nr_inodes), 3433 fsparam_string("size", Opt_size), 3434 fsparam_u32 ("uid", Opt_uid), 3435 fsparam_flag ("inode32", Opt_inode32), 3436 fsparam_flag ("inode64", Opt_inode64), 3437 {} 3438 }; 3439 3440 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3441 { 3442 struct shmem_options *ctx = fc->fs_private; 3443 struct fs_parse_result result; 3444 unsigned long long size; 3445 char *rest; 3446 int opt; 3447 3448 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3449 if (opt < 0) 3450 return opt; 3451 3452 switch (opt) { 3453 case Opt_size: 3454 size = memparse(param->string, &rest); 3455 if (*rest == '%') { 3456 size <<= PAGE_SHIFT; 3457 size *= totalram_pages(); 3458 do_div(size, 100); 3459 rest++; 3460 } 3461 if (*rest) 3462 goto bad_value; 3463 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3464 ctx->seen |= SHMEM_SEEN_BLOCKS; 3465 break; 3466 case Opt_nr_blocks: 3467 ctx->blocks = memparse(param->string, &rest); 3468 if (*rest) 3469 goto bad_value; 3470 ctx->seen |= SHMEM_SEEN_BLOCKS; 3471 break; 3472 case Opt_nr_inodes: 3473 ctx->inodes = memparse(param->string, &rest); 3474 if (*rest) 3475 goto bad_value; 3476 ctx->seen |= SHMEM_SEEN_INODES; 3477 break; 3478 case Opt_mode: 3479 ctx->mode = result.uint_32 & 07777; 3480 break; 3481 case Opt_uid: 3482 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 3483 if (!uid_valid(ctx->uid)) 3484 goto bad_value; 3485 break; 3486 case Opt_gid: 3487 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 3488 if (!gid_valid(ctx->gid)) 3489 goto bad_value; 3490 break; 3491 case Opt_huge: 3492 ctx->huge = result.uint_32; 3493 if (ctx->huge != SHMEM_HUGE_NEVER && 3494 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3495 has_transparent_hugepage())) 3496 goto unsupported_parameter; 3497 ctx->seen |= SHMEM_SEEN_HUGE; 3498 break; 3499 case Opt_mpol: 3500 if (IS_ENABLED(CONFIG_NUMA)) { 3501 mpol_put(ctx->mpol); 3502 ctx->mpol = NULL; 3503 if (mpol_parse_str(param->string, &ctx->mpol)) 3504 goto bad_value; 3505 break; 3506 } 3507 goto unsupported_parameter; 3508 case Opt_inode32: 3509 ctx->full_inums = false; 3510 ctx->seen |= SHMEM_SEEN_INUMS; 3511 break; 3512 case Opt_inode64: 3513 if (sizeof(ino_t) < 8) { 3514 return invalfc(fc, 3515 "Cannot use inode64 with <64bit inums in kernel\n"); 3516 } 3517 ctx->full_inums = true; 3518 ctx->seen |= SHMEM_SEEN_INUMS; 3519 break; 3520 } 3521 return 0; 3522 3523 unsupported_parameter: 3524 return invalfc(fc, "Unsupported parameter '%s'", param->key); 3525 bad_value: 3526 return invalfc(fc, "Bad value for '%s'", param->key); 3527 } 3528 3529 static int shmem_parse_options(struct fs_context *fc, void *data) 3530 { 3531 char *options = data; 3532 3533 if (options) { 3534 int err = security_sb_eat_lsm_opts(options, &fc->security); 3535 if (err) 3536 return err; 3537 } 3538 3539 while (options != NULL) { 3540 char *this_char = options; 3541 for (;;) { 3542 /* 3543 * NUL-terminate this option: unfortunately, 3544 * mount options form a comma-separated list, 3545 * but mpol's nodelist may also contain commas. 3546 */ 3547 options = strchr(options, ','); 3548 if (options == NULL) 3549 break; 3550 options++; 3551 if (!isdigit(*options)) { 3552 options[-1] = '\0'; 3553 break; 3554 } 3555 } 3556 if (*this_char) { 3557 char *value = strchr(this_char,'='); 3558 size_t len = 0; 3559 int err; 3560 3561 if (value) { 3562 *value++ = '\0'; 3563 len = strlen(value); 3564 } 3565 err = vfs_parse_fs_string(fc, this_char, value, len); 3566 if (err < 0) 3567 return err; 3568 } 3569 } 3570 return 0; 3571 } 3572 3573 /* 3574 * Reconfigure a shmem filesystem. 3575 * 3576 * Note that we disallow change from limited->unlimited blocks/inodes while any 3577 * are in use; but we must separately disallow unlimited->limited, because in 3578 * that case we have no record of how much is already in use. 3579 */ 3580 static int shmem_reconfigure(struct fs_context *fc) 3581 { 3582 struct shmem_options *ctx = fc->fs_private; 3583 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 3584 unsigned long inodes; 3585 const char *err; 3586 3587 spin_lock(&sbinfo->stat_lock); 3588 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3589 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 3590 if (!sbinfo->max_blocks) { 3591 err = "Cannot retroactively limit size"; 3592 goto out; 3593 } 3594 if (percpu_counter_compare(&sbinfo->used_blocks, 3595 ctx->blocks) > 0) { 3596 err = "Too small a size for current use"; 3597 goto out; 3598 } 3599 } 3600 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 3601 if (!sbinfo->max_inodes) { 3602 err = "Cannot retroactively limit inodes"; 3603 goto out; 3604 } 3605 if (ctx->inodes < inodes) { 3606 err = "Too few inodes for current use"; 3607 goto out; 3608 } 3609 } 3610 3611 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 3612 sbinfo->next_ino > UINT_MAX) { 3613 err = "Current inum too high to switch to 32-bit inums"; 3614 goto out; 3615 } 3616 3617 if (ctx->seen & SHMEM_SEEN_HUGE) 3618 sbinfo->huge = ctx->huge; 3619 if (ctx->seen & SHMEM_SEEN_INUMS) 3620 sbinfo->full_inums = ctx->full_inums; 3621 if (ctx->seen & SHMEM_SEEN_BLOCKS) 3622 sbinfo->max_blocks = ctx->blocks; 3623 if (ctx->seen & SHMEM_SEEN_INODES) { 3624 sbinfo->max_inodes = ctx->inodes; 3625 sbinfo->free_inodes = ctx->inodes - inodes; 3626 } 3627 3628 /* 3629 * Preserve previous mempolicy unless mpol remount option was specified. 3630 */ 3631 if (ctx->mpol) { 3632 mpol_put(sbinfo->mpol); 3633 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 3634 ctx->mpol = NULL; 3635 } 3636 spin_unlock(&sbinfo->stat_lock); 3637 return 0; 3638 out: 3639 spin_unlock(&sbinfo->stat_lock); 3640 return invalfc(fc, "%s", err); 3641 } 3642 3643 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3644 { 3645 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3646 3647 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3648 seq_printf(seq, ",size=%luk", 3649 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3650 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3651 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3652 if (sbinfo->mode != (0777 | S_ISVTX)) 3653 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3654 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3655 seq_printf(seq, ",uid=%u", 3656 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3657 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3658 seq_printf(seq, ",gid=%u", 3659 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3660 3661 /* 3662 * Showing inode{64,32} might be useful even if it's the system default, 3663 * since then people don't have to resort to checking both here and 3664 * /proc/config.gz to confirm 64-bit inums were successfully applied 3665 * (which may not even exist if IKCONFIG_PROC isn't enabled). 3666 * 3667 * We hide it when inode64 isn't the default and we are using 32-bit 3668 * inodes, since that probably just means the feature isn't even under 3669 * consideration. 3670 * 3671 * As such: 3672 * 3673 * +-----------------+-----------------+ 3674 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 3675 * +------------------+-----------------+-----------------+ 3676 * | full_inums=true | show | show | 3677 * | full_inums=false | show | hide | 3678 * +------------------+-----------------+-----------------+ 3679 * 3680 */ 3681 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 3682 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 3683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3684 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3685 if (sbinfo->huge) 3686 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3687 #endif 3688 shmem_show_mpol(seq, sbinfo->mpol); 3689 return 0; 3690 } 3691 3692 #endif /* CONFIG_TMPFS */ 3693 3694 static void shmem_put_super(struct super_block *sb) 3695 { 3696 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3697 3698 free_percpu(sbinfo->ino_batch); 3699 percpu_counter_destroy(&sbinfo->used_blocks); 3700 mpol_put(sbinfo->mpol); 3701 kfree(sbinfo); 3702 sb->s_fs_info = NULL; 3703 } 3704 3705 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 3706 { 3707 struct shmem_options *ctx = fc->fs_private; 3708 struct inode *inode; 3709 struct shmem_sb_info *sbinfo; 3710 int err = -ENOMEM; 3711 3712 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3713 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3714 L1_CACHE_BYTES), GFP_KERNEL); 3715 if (!sbinfo) 3716 return -ENOMEM; 3717 3718 sb->s_fs_info = sbinfo; 3719 3720 #ifdef CONFIG_TMPFS 3721 /* 3722 * Per default we only allow half of the physical ram per 3723 * tmpfs instance, limiting inodes to one per page of lowmem; 3724 * but the internal instance is left unlimited. 3725 */ 3726 if (!(sb->s_flags & SB_KERNMOUNT)) { 3727 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 3728 ctx->blocks = shmem_default_max_blocks(); 3729 if (!(ctx->seen & SHMEM_SEEN_INODES)) 3730 ctx->inodes = shmem_default_max_inodes(); 3731 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 3732 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 3733 } else { 3734 sb->s_flags |= SB_NOUSER; 3735 } 3736 sb->s_export_op = &shmem_export_ops; 3737 sb->s_flags |= SB_NOSEC; 3738 #else 3739 sb->s_flags |= SB_NOUSER; 3740 #endif 3741 sbinfo->max_blocks = ctx->blocks; 3742 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes; 3743 if (sb->s_flags & SB_KERNMOUNT) { 3744 sbinfo->ino_batch = alloc_percpu(ino_t); 3745 if (!sbinfo->ino_batch) 3746 goto failed; 3747 } 3748 sbinfo->uid = ctx->uid; 3749 sbinfo->gid = ctx->gid; 3750 sbinfo->full_inums = ctx->full_inums; 3751 sbinfo->mode = ctx->mode; 3752 sbinfo->huge = ctx->huge; 3753 sbinfo->mpol = ctx->mpol; 3754 ctx->mpol = NULL; 3755 3756 spin_lock_init(&sbinfo->stat_lock); 3757 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3758 goto failed; 3759 spin_lock_init(&sbinfo->shrinklist_lock); 3760 INIT_LIST_HEAD(&sbinfo->shrinklist); 3761 3762 sb->s_maxbytes = MAX_LFS_FILESIZE; 3763 sb->s_blocksize = PAGE_SIZE; 3764 sb->s_blocksize_bits = PAGE_SHIFT; 3765 sb->s_magic = TMPFS_MAGIC; 3766 sb->s_op = &shmem_ops; 3767 sb->s_time_gran = 1; 3768 #ifdef CONFIG_TMPFS_XATTR 3769 sb->s_xattr = shmem_xattr_handlers; 3770 #endif 3771 #ifdef CONFIG_TMPFS_POSIX_ACL 3772 sb->s_flags |= SB_POSIXACL; 3773 #endif 3774 uuid_gen(&sb->s_uuid); 3775 3776 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3777 if (!inode) 3778 goto failed; 3779 inode->i_uid = sbinfo->uid; 3780 inode->i_gid = sbinfo->gid; 3781 sb->s_root = d_make_root(inode); 3782 if (!sb->s_root) 3783 goto failed; 3784 return 0; 3785 3786 failed: 3787 shmem_put_super(sb); 3788 return err; 3789 } 3790 3791 static int shmem_get_tree(struct fs_context *fc) 3792 { 3793 return get_tree_nodev(fc, shmem_fill_super); 3794 } 3795 3796 static void shmem_free_fc(struct fs_context *fc) 3797 { 3798 struct shmem_options *ctx = fc->fs_private; 3799 3800 if (ctx) { 3801 mpol_put(ctx->mpol); 3802 kfree(ctx); 3803 } 3804 } 3805 3806 static const struct fs_context_operations shmem_fs_context_ops = { 3807 .free = shmem_free_fc, 3808 .get_tree = shmem_get_tree, 3809 #ifdef CONFIG_TMPFS 3810 .parse_monolithic = shmem_parse_options, 3811 .parse_param = shmem_parse_one, 3812 .reconfigure = shmem_reconfigure, 3813 #endif 3814 }; 3815 3816 static struct kmem_cache *shmem_inode_cachep; 3817 3818 static struct inode *shmem_alloc_inode(struct super_block *sb) 3819 { 3820 struct shmem_inode_info *info; 3821 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3822 if (!info) 3823 return NULL; 3824 return &info->vfs_inode; 3825 } 3826 3827 static void shmem_free_in_core_inode(struct inode *inode) 3828 { 3829 if (S_ISLNK(inode->i_mode)) 3830 kfree(inode->i_link); 3831 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3832 } 3833 3834 static void shmem_destroy_inode(struct inode *inode) 3835 { 3836 if (S_ISREG(inode->i_mode)) 3837 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3838 } 3839 3840 static void shmem_init_inode(void *foo) 3841 { 3842 struct shmem_inode_info *info = foo; 3843 inode_init_once(&info->vfs_inode); 3844 } 3845 3846 static void shmem_init_inodecache(void) 3847 { 3848 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3849 sizeof(struct shmem_inode_info), 3850 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3851 } 3852 3853 static void shmem_destroy_inodecache(void) 3854 { 3855 kmem_cache_destroy(shmem_inode_cachep); 3856 } 3857 3858 static const struct address_space_operations shmem_aops = { 3859 .writepage = shmem_writepage, 3860 .set_page_dirty = __set_page_dirty_no_writeback, 3861 #ifdef CONFIG_TMPFS 3862 .write_begin = shmem_write_begin, 3863 .write_end = shmem_write_end, 3864 #endif 3865 #ifdef CONFIG_MIGRATION 3866 .migratepage = migrate_page, 3867 #endif 3868 .error_remove_page = generic_error_remove_page, 3869 }; 3870 3871 static const struct file_operations shmem_file_operations = { 3872 .mmap = shmem_mmap, 3873 .get_unmapped_area = shmem_get_unmapped_area, 3874 #ifdef CONFIG_TMPFS 3875 .llseek = shmem_file_llseek, 3876 .read_iter = shmem_file_read_iter, 3877 .write_iter = generic_file_write_iter, 3878 .fsync = noop_fsync, 3879 .splice_read = generic_file_splice_read, 3880 .splice_write = iter_file_splice_write, 3881 .fallocate = shmem_fallocate, 3882 #endif 3883 }; 3884 3885 static const struct inode_operations shmem_inode_operations = { 3886 .getattr = shmem_getattr, 3887 .setattr = shmem_setattr, 3888 #ifdef CONFIG_TMPFS_XATTR 3889 .listxattr = shmem_listxattr, 3890 .set_acl = simple_set_acl, 3891 #endif 3892 }; 3893 3894 static const struct inode_operations shmem_dir_inode_operations = { 3895 #ifdef CONFIG_TMPFS 3896 .create = shmem_create, 3897 .lookup = simple_lookup, 3898 .link = shmem_link, 3899 .unlink = shmem_unlink, 3900 .symlink = shmem_symlink, 3901 .mkdir = shmem_mkdir, 3902 .rmdir = shmem_rmdir, 3903 .mknod = shmem_mknod, 3904 .rename = shmem_rename2, 3905 .tmpfile = shmem_tmpfile, 3906 #endif 3907 #ifdef CONFIG_TMPFS_XATTR 3908 .listxattr = shmem_listxattr, 3909 #endif 3910 #ifdef CONFIG_TMPFS_POSIX_ACL 3911 .setattr = shmem_setattr, 3912 .set_acl = simple_set_acl, 3913 #endif 3914 }; 3915 3916 static const struct inode_operations shmem_special_inode_operations = { 3917 #ifdef CONFIG_TMPFS_XATTR 3918 .listxattr = shmem_listxattr, 3919 #endif 3920 #ifdef CONFIG_TMPFS_POSIX_ACL 3921 .setattr = shmem_setattr, 3922 .set_acl = simple_set_acl, 3923 #endif 3924 }; 3925 3926 static const struct super_operations shmem_ops = { 3927 .alloc_inode = shmem_alloc_inode, 3928 .free_inode = shmem_free_in_core_inode, 3929 .destroy_inode = shmem_destroy_inode, 3930 #ifdef CONFIG_TMPFS 3931 .statfs = shmem_statfs, 3932 .show_options = shmem_show_options, 3933 #endif 3934 .evict_inode = shmem_evict_inode, 3935 .drop_inode = generic_delete_inode, 3936 .put_super = shmem_put_super, 3937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3938 .nr_cached_objects = shmem_unused_huge_count, 3939 .free_cached_objects = shmem_unused_huge_scan, 3940 #endif 3941 }; 3942 3943 static const struct vm_operations_struct shmem_vm_ops = { 3944 .fault = shmem_fault, 3945 .map_pages = filemap_map_pages, 3946 #ifdef CONFIG_NUMA 3947 .set_policy = shmem_set_policy, 3948 .get_policy = shmem_get_policy, 3949 #endif 3950 }; 3951 3952 int shmem_init_fs_context(struct fs_context *fc) 3953 { 3954 struct shmem_options *ctx; 3955 3956 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 3957 if (!ctx) 3958 return -ENOMEM; 3959 3960 ctx->mode = 0777 | S_ISVTX; 3961 ctx->uid = current_fsuid(); 3962 ctx->gid = current_fsgid(); 3963 3964 fc->fs_private = ctx; 3965 fc->ops = &shmem_fs_context_ops; 3966 return 0; 3967 } 3968 3969 static struct file_system_type shmem_fs_type = { 3970 .owner = THIS_MODULE, 3971 .name = "tmpfs", 3972 .init_fs_context = shmem_init_fs_context, 3973 #ifdef CONFIG_TMPFS 3974 .parameters = shmem_fs_parameters, 3975 #endif 3976 .kill_sb = kill_litter_super, 3977 .fs_flags = FS_USERNS_MOUNT, 3978 }; 3979 3980 int __init shmem_init(void) 3981 { 3982 int error; 3983 3984 shmem_init_inodecache(); 3985 3986 error = register_filesystem(&shmem_fs_type); 3987 if (error) { 3988 pr_err("Could not register tmpfs\n"); 3989 goto out2; 3990 } 3991 3992 shm_mnt = kern_mount(&shmem_fs_type); 3993 if (IS_ERR(shm_mnt)) { 3994 error = PTR_ERR(shm_mnt); 3995 pr_err("Could not kern_mount tmpfs\n"); 3996 goto out1; 3997 } 3998 3999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4000 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4001 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4002 else 4003 shmem_huge = 0; /* just in case it was patched */ 4004 #endif 4005 return 0; 4006 4007 out1: 4008 unregister_filesystem(&shmem_fs_type); 4009 out2: 4010 shmem_destroy_inodecache(); 4011 shm_mnt = ERR_PTR(error); 4012 return error; 4013 } 4014 4015 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4016 static ssize_t shmem_enabled_show(struct kobject *kobj, 4017 struct kobj_attribute *attr, char *buf) 4018 { 4019 static const int values[] = { 4020 SHMEM_HUGE_ALWAYS, 4021 SHMEM_HUGE_WITHIN_SIZE, 4022 SHMEM_HUGE_ADVISE, 4023 SHMEM_HUGE_NEVER, 4024 SHMEM_HUGE_DENY, 4025 SHMEM_HUGE_FORCE, 4026 }; 4027 int i, count; 4028 4029 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 4030 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 4031 4032 count += sprintf(buf + count, fmt, 4033 shmem_format_huge(values[i])); 4034 } 4035 buf[count - 1] = '\n'; 4036 return count; 4037 } 4038 4039 static ssize_t shmem_enabled_store(struct kobject *kobj, 4040 struct kobj_attribute *attr, const char *buf, size_t count) 4041 { 4042 char tmp[16]; 4043 int huge; 4044 4045 if (count + 1 > sizeof(tmp)) 4046 return -EINVAL; 4047 memcpy(tmp, buf, count); 4048 tmp[count] = '\0'; 4049 if (count && tmp[count - 1] == '\n') 4050 tmp[count - 1] = '\0'; 4051 4052 huge = shmem_parse_huge(tmp); 4053 if (huge == -EINVAL) 4054 return -EINVAL; 4055 if (!has_transparent_hugepage() && 4056 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4057 return -EINVAL; 4058 4059 shmem_huge = huge; 4060 if (shmem_huge > SHMEM_HUGE_DENY) 4061 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4062 return count; 4063 } 4064 4065 struct kobj_attribute shmem_enabled_attr = 4066 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 4067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4068 4069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4070 bool shmem_huge_enabled(struct vm_area_struct *vma) 4071 { 4072 struct inode *inode = file_inode(vma->vm_file); 4073 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 4074 loff_t i_size; 4075 pgoff_t off; 4076 4077 if ((vma->vm_flags & VM_NOHUGEPAGE) || 4078 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 4079 return false; 4080 if (shmem_huge == SHMEM_HUGE_FORCE) 4081 return true; 4082 if (shmem_huge == SHMEM_HUGE_DENY) 4083 return false; 4084 switch (sbinfo->huge) { 4085 case SHMEM_HUGE_NEVER: 4086 return false; 4087 case SHMEM_HUGE_ALWAYS: 4088 return true; 4089 case SHMEM_HUGE_WITHIN_SIZE: 4090 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 4091 i_size = round_up(i_size_read(inode), PAGE_SIZE); 4092 if (i_size >= HPAGE_PMD_SIZE && 4093 i_size >> PAGE_SHIFT >= off) 4094 return true; 4095 fallthrough; 4096 case SHMEM_HUGE_ADVISE: 4097 /* TODO: implement fadvise() hints */ 4098 return (vma->vm_flags & VM_HUGEPAGE); 4099 default: 4100 VM_BUG_ON(1); 4101 return false; 4102 } 4103 } 4104 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4105 4106 #else /* !CONFIG_SHMEM */ 4107 4108 /* 4109 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4110 * 4111 * This is intended for small system where the benefits of the full 4112 * shmem code (swap-backed and resource-limited) are outweighed by 4113 * their complexity. On systems without swap this code should be 4114 * effectively equivalent, but much lighter weight. 4115 */ 4116 4117 static struct file_system_type shmem_fs_type = { 4118 .name = "tmpfs", 4119 .init_fs_context = ramfs_init_fs_context, 4120 .parameters = ramfs_fs_parameters, 4121 .kill_sb = kill_litter_super, 4122 .fs_flags = FS_USERNS_MOUNT, 4123 }; 4124 4125 int __init shmem_init(void) 4126 { 4127 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4128 4129 shm_mnt = kern_mount(&shmem_fs_type); 4130 BUG_ON(IS_ERR(shm_mnt)); 4131 4132 return 0; 4133 } 4134 4135 int shmem_unuse(unsigned int type, bool frontswap, 4136 unsigned long *fs_pages_to_unuse) 4137 { 4138 return 0; 4139 } 4140 4141 int shmem_lock(struct file *file, int lock, struct user_struct *user) 4142 { 4143 return 0; 4144 } 4145 4146 void shmem_unlock_mapping(struct address_space *mapping) 4147 { 4148 } 4149 4150 #ifdef CONFIG_MMU 4151 unsigned long shmem_get_unmapped_area(struct file *file, 4152 unsigned long addr, unsigned long len, 4153 unsigned long pgoff, unsigned long flags) 4154 { 4155 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4156 } 4157 #endif 4158 4159 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4160 { 4161 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4162 } 4163 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4164 4165 #define shmem_vm_ops generic_file_vm_ops 4166 #define shmem_file_operations ramfs_file_operations 4167 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 4168 #define shmem_acct_size(flags, size) 0 4169 #define shmem_unacct_size(flags, size) do {} while (0) 4170 4171 #endif /* CONFIG_SHMEM */ 4172 4173 /* common code */ 4174 4175 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4176 unsigned long flags, unsigned int i_flags) 4177 { 4178 struct inode *inode; 4179 struct file *res; 4180 4181 if (IS_ERR(mnt)) 4182 return ERR_CAST(mnt); 4183 4184 if (size < 0 || size > MAX_LFS_FILESIZE) 4185 return ERR_PTR(-EINVAL); 4186 4187 if (shmem_acct_size(flags, size)) 4188 return ERR_PTR(-ENOMEM); 4189 4190 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 4191 flags); 4192 if (unlikely(!inode)) { 4193 shmem_unacct_size(flags, size); 4194 return ERR_PTR(-ENOSPC); 4195 } 4196 inode->i_flags |= i_flags; 4197 inode->i_size = size; 4198 clear_nlink(inode); /* It is unlinked */ 4199 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4200 if (!IS_ERR(res)) 4201 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4202 &shmem_file_operations); 4203 if (IS_ERR(res)) 4204 iput(inode); 4205 return res; 4206 } 4207 4208 /** 4209 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4210 * kernel internal. There will be NO LSM permission checks against the 4211 * underlying inode. So users of this interface must do LSM checks at a 4212 * higher layer. The users are the big_key and shm implementations. LSM 4213 * checks are provided at the key or shm level rather than the inode. 4214 * @name: name for dentry (to be seen in /proc/<pid>/maps 4215 * @size: size to be set for the file 4216 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4217 */ 4218 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4219 { 4220 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4221 } 4222 4223 /** 4224 * shmem_file_setup - get an unlinked file living in tmpfs 4225 * @name: name for dentry (to be seen in /proc/<pid>/maps 4226 * @size: size to be set for the file 4227 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4228 */ 4229 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4230 { 4231 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4232 } 4233 EXPORT_SYMBOL_GPL(shmem_file_setup); 4234 4235 /** 4236 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4237 * @mnt: the tmpfs mount where the file will be created 4238 * @name: name for dentry (to be seen in /proc/<pid>/maps 4239 * @size: size to be set for the file 4240 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4241 */ 4242 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4243 loff_t size, unsigned long flags) 4244 { 4245 return __shmem_file_setup(mnt, name, size, flags, 0); 4246 } 4247 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4248 4249 /** 4250 * shmem_zero_setup - setup a shared anonymous mapping 4251 * @vma: the vma to be mmapped is prepared by do_mmap 4252 */ 4253 int shmem_zero_setup(struct vm_area_struct *vma) 4254 { 4255 struct file *file; 4256 loff_t size = vma->vm_end - vma->vm_start; 4257 4258 /* 4259 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4260 * between XFS directory reading and selinux: since this file is only 4261 * accessible to the user through its mapping, use S_PRIVATE flag to 4262 * bypass file security, in the same way as shmem_kernel_file_setup(). 4263 */ 4264 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4265 if (IS_ERR(file)) 4266 return PTR_ERR(file); 4267 4268 if (vma->vm_file) 4269 fput(vma->vm_file); 4270 vma->vm_file = file; 4271 vma->vm_ops = &shmem_vm_ops; 4272 4273 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 4274 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4275 (vma->vm_end & HPAGE_PMD_MASK)) { 4276 khugepaged_enter(vma, vma->vm_flags); 4277 } 4278 4279 return 0; 4280 } 4281 4282 /** 4283 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4284 * @mapping: the page's address_space 4285 * @index: the page index 4286 * @gfp: the page allocator flags to use if allocating 4287 * 4288 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4289 * with any new page allocations done using the specified allocation flags. 4290 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4291 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4292 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4293 * 4294 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4295 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4296 */ 4297 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4298 pgoff_t index, gfp_t gfp) 4299 { 4300 #ifdef CONFIG_SHMEM 4301 struct inode *inode = mapping->host; 4302 struct page *page; 4303 int error; 4304 4305 BUG_ON(mapping->a_ops != &shmem_aops); 4306 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4307 gfp, NULL, NULL, NULL); 4308 if (error) 4309 page = ERR_PTR(error); 4310 else 4311 unlock_page(page); 4312 return page; 4313 #else 4314 /* 4315 * The tiny !SHMEM case uses ramfs without swap 4316 */ 4317 return read_cache_page_gfp(mapping, index, gfp); 4318 #endif 4319 } 4320 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4321