1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/mm.h> 32 #include <linux/random.h> 33 #include <linux/sched/signal.h> 34 #include <linux/export.h> 35 #include <linux/swap.h> 36 #include <linux/uio.h> 37 #include <linux/khugepaged.h> 38 #include <linux/hugetlb.h> 39 #include <linux/frontswap.h> 40 41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */ 42 43 static struct vfsmount *shm_mnt; 44 45 #ifdef CONFIG_SHMEM 46 /* 47 * This virtual memory filesystem is heavily based on the ramfs. It 48 * extends ramfs by the ability to use swap and honor resource limits 49 * which makes it a completely usable filesystem. 50 */ 51 52 #include <linux/xattr.h> 53 #include <linux/exportfs.h> 54 #include <linux/posix_acl.h> 55 #include <linux/posix_acl_xattr.h> 56 #include <linux/mman.h> 57 #include <linux/string.h> 58 #include <linux/slab.h> 59 #include <linux/backing-dev.h> 60 #include <linux/shmem_fs.h> 61 #include <linux/writeback.h> 62 #include <linux/blkdev.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/userfaultfd_k.h> 80 #include <linux/rmap.h> 81 #include <linux/uuid.h> 82 83 #include <linux/uaccess.h> 84 #include <asm/pgtable.h> 85 86 #include "internal.h" 87 88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 90 91 /* Pretend that each entry is of this size in directory's i_size */ 92 #define BOGO_DIRENT_SIZE 20 93 94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 95 #define SHORT_SYMLINK_LEN 128 96 97 /* 98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 99 * inode->i_private (with i_mutex making sure that it has only one user at 100 * a time): we would prefer not to enlarge the shmem inode just for that. 101 */ 102 struct shmem_falloc { 103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 104 pgoff_t start; /* start of range currently being fallocated */ 105 pgoff_t next; /* the next page offset to be fallocated */ 106 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 108 }; 109 110 #ifdef CONFIG_TMPFS 111 static unsigned long shmem_default_max_blocks(void) 112 { 113 return totalram_pages() / 2; 114 } 115 116 static unsigned long shmem_default_max_inodes(void) 117 { 118 unsigned long nr_pages = totalram_pages(); 119 120 return min(nr_pages - totalhigh_pages(), nr_pages / 2); 121 } 122 #endif 123 124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp); 125 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 126 struct shmem_inode_info *info, pgoff_t index); 127 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 128 struct page **pagep, enum sgp_type sgp, 129 gfp_t gfp, struct vm_area_struct *vma, 130 vm_fault_t *fault_type); 131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 132 struct page **pagep, enum sgp_type sgp, 133 gfp_t gfp, struct vm_area_struct *vma, 134 struct vm_fault *vmf, vm_fault_t *fault_type); 135 136 int shmem_getpage(struct inode *inode, pgoff_t index, 137 struct page **pagep, enum sgp_type sgp) 138 { 139 return shmem_getpage_gfp(inode, index, pagep, sgp, 140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 141 } 142 143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 144 { 145 return sb->s_fs_info; 146 } 147 148 /* 149 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 150 * for shared memory and for shared anonymous (/dev/zero) mappings 151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 152 * consistent with the pre-accounting of private mappings ... 153 */ 154 static inline int shmem_acct_size(unsigned long flags, loff_t size) 155 { 156 return (flags & VM_NORESERVE) ? 157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 158 } 159 160 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 161 { 162 if (!(flags & VM_NORESERVE)) 163 vm_unacct_memory(VM_ACCT(size)); 164 } 165 166 static inline int shmem_reacct_size(unsigned long flags, 167 loff_t oldsize, loff_t newsize) 168 { 169 if (!(flags & VM_NORESERVE)) { 170 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 171 return security_vm_enough_memory_mm(current->mm, 172 VM_ACCT(newsize) - VM_ACCT(oldsize)); 173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 175 } 176 return 0; 177 } 178 179 /* 180 * ... whereas tmpfs objects are accounted incrementally as 181 * pages are allocated, in order to allow large sparse files. 182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 184 */ 185 static inline int shmem_acct_block(unsigned long flags, long pages) 186 { 187 if (!(flags & VM_NORESERVE)) 188 return 0; 189 190 return security_vm_enough_memory_mm(current->mm, 191 pages * VM_ACCT(PAGE_SIZE)); 192 } 193 194 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 195 { 196 if (flags & VM_NORESERVE) 197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 198 } 199 200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages) 201 { 202 struct shmem_inode_info *info = SHMEM_I(inode); 203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 204 205 if (shmem_acct_block(info->flags, pages)) 206 return false; 207 208 if (sbinfo->max_blocks) { 209 if (percpu_counter_compare(&sbinfo->used_blocks, 210 sbinfo->max_blocks - pages) > 0) 211 goto unacct; 212 percpu_counter_add(&sbinfo->used_blocks, pages); 213 } 214 215 return true; 216 217 unacct: 218 shmem_unacct_blocks(info->flags, pages); 219 return false; 220 } 221 222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages) 223 { 224 struct shmem_inode_info *info = SHMEM_I(inode); 225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 226 227 if (sbinfo->max_blocks) 228 percpu_counter_sub(&sbinfo->used_blocks, pages); 229 shmem_unacct_blocks(info->flags, pages); 230 } 231 232 static const struct super_operations shmem_ops; 233 static const struct address_space_operations shmem_aops; 234 static const struct file_operations shmem_file_operations; 235 static const struct inode_operations shmem_inode_operations; 236 static const struct inode_operations shmem_dir_inode_operations; 237 static const struct inode_operations shmem_special_inode_operations; 238 static const struct vm_operations_struct shmem_vm_ops; 239 static struct file_system_type shmem_fs_type; 240 241 bool vma_is_shmem(struct vm_area_struct *vma) 242 { 243 return vma->vm_ops == &shmem_vm_ops; 244 } 245 246 static LIST_HEAD(shmem_swaplist); 247 static DEFINE_MUTEX(shmem_swaplist_mutex); 248 249 static int shmem_reserve_inode(struct super_block *sb) 250 { 251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 252 if (sbinfo->max_inodes) { 253 spin_lock(&sbinfo->stat_lock); 254 if (!sbinfo->free_inodes) { 255 spin_unlock(&sbinfo->stat_lock); 256 return -ENOSPC; 257 } 258 sbinfo->free_inodes--; 259 spin_unlock(&sbinfo->stat_lock); 260 } 261 return 0; 262 } 263 264 static void shmem_free_inode(struct super_block *sb) 265 { 266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 267 if (sbinfo->max_inodes) { 268 spin_lock(&sbinfo->stat_lock); 269 sbinfo->free_inodes++; 270 spin_unlock(&sbinfo->stat_lock); 271 } 272 } 273 274 /** 275 * shmem_recalc_inode - recalculate the block usage of an inode 276 * @inode: inode to recalc 277 * 278 * We have to calculate the free blocks since the mm can drop 279 * undirtied hole pages behind our back. 280 * 281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 283 * 284 * It has to be called with the spinlock held. 285 */ 286 static void shmem_recalc_inode(struct inode *inode) 287 { 288 struct shmem_inode_info *info = SHMEM_I(inode); 289 long freed; 290 291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages; 292 if (freed > 0) { 293 info->alloced -= freed; 294 inode->i_blocks -= freed * BLOCKS_PER_PAGE; 295 shmem_inode_unacct_blocks(inode, freed); 296 } 297 } 298 299 bool shmem_charge(struct inode *inode, long pages) 300 { 301 struct shmem_inode_info *info = SHMEM_I(inode); 302 unsigned long flags; 303 304 if (!shmem_inode_acct_block(inode, pages)) 305 return false; 306 307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 308 inode->i_mapping->nrpages += pages; 309 310 spin_lock_irqsave(&info->lock, flags); 311 info->alloced += pages; 312 inode->i_blocks += pages * BLOCKS_PER_PAGE; 313 shmem_recalc_inode(inode); 314 spin_unlock_irqrestore(&info->lock, flags); 315 316 return true; 317 } 318 319 void shmem_uncharge(struct inode *inode, long pages) 320 { 321 struct shmem_inode_info *info = SHMEM_I(inode); 322 unsigned long flags; 323 324 /* nrpages adjustment done by __delete_from_page_cache() or caller */ 325 326 spin_lock_irqsave(&info->lock, flags); 327 info->alloced -= pages; 328 inode->i_blocks -= pages * BLOCKS_PER_PAGE; 329 shmem_recalc_inode(inode); 330 spin_unlock_irqrestore(&info->lock, flags); 331 332 shmem_inode_unacct_blocks(inode, pages); 333 } 334 335 /* 336 * Replace item expected in xarray by a new item, while holding xa_lock. 337 */ 338 static int shmem_replace_entry(struct address_space *mapping, 339 pgoff_t index, void *expected, void *replacement) 340 { 341 XA_STATE(xas, &mapping->i_pages, index); 342 void *item; 343 344 VM_BUG_ON(!expected); 345 VM_BUG_ON(!replacement); 346 item = xas_load(&xas); 347 if (item != expected) 348 return -ENOENT; 349 xas_store(&xas, replacement); 350 return 0; 351 } 352 353 /* 354 * Sometimes, before we decide whether to proceed or to fail, we must check 355 * that an entry was not already brought back from swap by a racing thread. 356 * 357 * Checking page is not enough: by the time a SwapCache page is locked, it 358 * might be reused, and again be SwapCache, using the same swap as before. 359 */ 360 static bool shmem_confirm_swap(struct address_space *mapping, 361 pgoff_t index, swp_entry_t swap) 362 { 363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 364 } 365 366 /* 367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 368 * 369 * SHMEM_HUGE_NEVER: 370 * disables huge pages for the mount; 371 * SHMEM_HUGE_ALWAYS: 372 * enables huge pages for the mount; 373 * SHMEM_HUGE_WITHIN_SIZE: 374 * only allocate huge pages if the page will be fully within i_size, 375 * also respect fadvise()/madvise() hints; 376 * SHMEM_HUGE_ADVISE: 377 * only allocate huge pages if requested with fadvise()/madvise(); 378 */ 379 380 #define SHMEM_HUGE_NEVER 0 381 #define SHMEM_HUGE_ALWAYS 1 382 #define SHMEM_HUGE_WITHIN_SIZE 2 383 #define SHMEM_HUGE_ADVISE 3 384 385 /* 386 * Special values. 387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 388 * 389 * SHMEM_HUGE_DENY: 390 * disables huge on shm_mnt and all mounts, for emergency use; 391 * SHMEM_HUGE_FORCE: 392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 393 * 394 */ 395 #define SHMEM_HUGE_DENY (-1) 396 #define SHMEM_HUGE_FORCE (-2) 397 398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 399 /* ifdef here to avoid bloating shmem.o when not necessary */ 400 401 static int shmem_huge __read_mostly; 402 403 #if defined(CONFIG_SYSFS) 404 static int shmem_parse_huge(const char *str) 405 { 406 if (!strcmp(str, "never")) 407 return SHMEM_HUGE_NEVER; 408 if (!strcmp(str, "always")) 409 return SHMEM_HUGE_ALWAYS; 410 if (!strcmp(str, "within_size")) 411 return SHMEM_HUGE_WITHIN_SIZE; 412 if (!strcmp(str, "advise")) 413 return SHMEM_HUGE_ADVISE; 414 if (!strcmp(str, "deny")) 415 return SHMEM_HUGE_DENY; 416 if (!strcmp(str, "force")) 417 return SHMEM_HUGE_FORCE; 418 return -EINVAL; 419 } 420 #endif 421 422 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 423 static const char *shmem_format_huge(int huge) 424 { 425 switch (huge) { 426 case SHMEM_HUGE_NEVER: 427 return "never"; 428 case SHMEM_HUGE_ALWAYS: 429 return "always"; 430 case SHMEM_HUGE_WITHIN_SIZE: 431 return "within_size"; 432 case SHMEM_HUGE_ADVISE: 433 return "advise"; 434 case SHMEM_HUGE_DENY: 435 return "deny"; 436 case SHMEM_HUGE_FORCE: 437 return "force"; 438 default: 439 VM_BUG_ON(1); 440 return "bad_val"; 441 } 442 } 443 #endif 444 445 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 446 struct shrink_control *sc, unsigned long nr_to_split) 447 { 448 LIST_HEAD(list), *pos, *next; 449 LIST_HEAD(to_remove); 450 struct inode *inode; 451 struct shmem_inode_info *info; 452 struct page *page; 453 unsigned long batch = sc ? sc->nr_to_scan : 128; 454 int removed = 0, split = 0; 455 456 if (list_empty(&sbinfo->shrinklist)) 457 return SHRINK_STOP; 458 459 spin_lock(&sbinfo->shrinklist_lock); 460 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 461 info = list_entry(pos, struct shmem_inode_info, shrinklist); 462 463 /* pin the inode */ 464 inode = igrab(&info->vfs_inode); 465 466 /* inode is about to be evicted */ 467 if (!inode) { 468 list_del_init(&info->shrinklist); 469 removed++; 470 goto next; 471 } 472 473 /* Check if there's anything to gain */ 474 if (round_up(inode->i_size, PAGE_SIZE) == 475 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 476 list_move(&info->shrinklist, &to_remove); 477 removed++; 478 goto next; 479 } 480 481 list_move(&info->shrinklist, &list); 482 next: 483 if (!--batch) 484 break; 485 } 486 spin_unlock(&sbinfo->shrinklist_lock); 487 488 list_for_each_safe(pos, next, &to_remove) { 489 info = list_entry(pos, struct shmem_inode_info, shrinklist); 490 inode = &info->vfs_inode; 491 list_del_init(&info->shrinklist); 492 iput(inode); 493 } 494 495 list_for_each_safe(pos, next, &list) { 496 int ret; 497 498 info = list_entry(pos, struct shmem_inode_info, shrinklist); 499 inode = &info->vfs_inode; 500 501 if (nr_to_split && split >= nr_to_split) 502 goto leave; 503 504 page = find_get_page(inode->i_mapping, 505 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT); 506 if (!page) 507 goto drop; 508 509 /* No huge page at the end of the file: nothing to split */ 510 if (!PageTransHuge(page)) { 511 put_page(page); 512 goto drop; 513 } 514 515 /* 516 * Leave the inode on the list if we failed to lock 517 * the page at this time. 518 * 519 * Waiting for the lock may lead to deadlock in the 520 * reclaim path. 521 */ 522 if (!trylock_page(page)) { 523 put_page(page); 524 goto leave; 525 } 526 527 ret = split_huge_page(page); 528 unlock_page(page); 529 put_page(page); 530 531 /* If split failed leave the inode on the list */ 532 if (ret) 533 goto leave; 534 535 split++; 536 drop: 537 list_del_init(&info->shrinklist); 538 removed++; 539 leave: 540 iput(inode); 541 } 542 543 spin_lock(&sbinfo->shrinklist_lock); 544 list_splice_tail(&list, &sbinfo->shrinklist); 545 sbinfo->shrinklist_len -= removed; 546 spin_unlock(&sbinfo->shrinklist_lock); 547 548 return split; 549 } 550 551 static long shmem_unused_huge_scan(struct super_block *sb, 552 struct shrink_control *sc) 553 { 554 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 555 556 if (!READ_ONCE(sbinfo->shrinklist_len)) 557 return SHRINK_STOP; 558 559 return shmem_unused_huge_shrink(sbinfo, sc, 0); 560 } 561 562 static long shmem_unused_huge_count(struct super_block *sb, 563 struct shrink_control *sc) 564 { 565 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 566 return READ_ONCE(sbinfo->shrinklist_len); 567 } 568 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 569 570 #define shmem_huge SHMEM_HUGE_DENY 571 572 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 573 struct shrink_control *sc, unsigned long nr_to_split) 574 { 575 return 0; 576 } 577 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 578 579 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo) 580 { 581 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 582 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) && 583 shmem_huge != SHMEM_HUGE_DENY) 584 return true; 585 return false; 586 } 587 588 /* 589 * Like add_to_page_cache_locked, but error if expected item has gone. 590 */ 591 static int shmem_add_to_page_cache(struct page *page, 592 struct address_space *mapping, 593 pgoff_t index, void *expected, gfp_t gfp) 594 { 595 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page)); 596 unsigned long i = 0; 597 unsigned long nr = 1UL << compound_order(page); 598 599 VM_BUG_ON_PAGE(PageTail(page), page); 600 VM_BUG_ON_PAGE(index != round_down(index, nr), page); 601 VM_BUG_ON_PAGE(!PageLocked(page), page); 602 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 603 VM_BUG_ON(expected && PageTransHuge(page)); 604 605 page_ref_add(page, nr); 606 page->mapping = mapping; 607 page->index = index; 608 609 do { 610 void *entry; 611 xas_lock_irq(&xas); 612 entry = xas_find_conflict(&xas); 613 if (entry != expected) 614 xas_set_err(&xas, -EEXIST); 615 xas_create_range(&xas); 616 if (xas_error(&xas)) 617 goto unlock; 618 next: 619 xas_store(&xas, page + i); 620 if (++i < nr) { 621 xas_next(&xas); 622 goto next; 623 } 624 if (PageTransHuge(page)) { 625 count_vm_event(THP_FILE_ALLOC); 626 __inc_node_page_state(page, NR_SHMEM_THPS); 627 } 628 mapping->nrpages += nr; 629 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 630 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr); 631 unlock: 632 xas_unlock_irq(&xas); 633 } while (xas_nomem(&xas, gfp)); 634 635 if (xas_error(&xas)) { 636 page->mapping = NULL; 637 page_ref_sub(page, nr); 638 return xas_error(&xas); 639 } 640 641 return 0; 642 } 643 644 /* 645 * Like delete_from_page_cache, but substitutes swap for page. 646 */ 647 static void shmem_delete_from_page_cache(struct page *page, void *radswap) 648 { 649 struct address_space *mapping = page->mapping; 650 int error; 651 652 VM_BUG_ON_PAGE(PageCompound(page), page); 653 654 xa_lock_irq(&mapping->i_pages); 655 error = shmem_replace_entry(mapping, page->index, page, radswap); 656 page->mapping = NULL; 657 mapping->nrpages--; 658 __dec_node_page_state(page, NR_FILE_PAGES); 659 __dec_node_page_state(page, NR_SHMEM); 660 xa_unlock_irq(&mapping->i_pages); 661 put_page(page); 662 BUG_ON(error); 663 } 664 665 /* 666 * Remove swap entry from page cache, free the swap and its page cache. 667 */ 668 static int shmem_free_swap(struct address_space *mapping, 669 pgoff_t index, void *radswap) 670 { 671 void *old; 672 673 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 674 if (old != radswap) 675 return -ENOENT; 676 free_swap_and_cache(radix_to_swp_entry(radswap)); 677 return 0; 678 } 679 680 /* 681 * Determine (in bytes) how many of the shmem object's pages mapped by the 682 * given offsets are swapped out. 683 * 684 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 685 * as long as the inode doesn't go away and racy results are not a problem. 686 */ 687 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 688 pgoff_t start, pgoff_t end) 689 { 690 XA_STATE(xas, &mapping->i_pages, start); 691 struct page *page; 692 unsigned long swapped = 0; 693 694 rcu_read_lock(); 695 xas_for_each(&xas, page, end - 1) { 696 if (xas_retry(&xas, page)) 697 continue; 698 if (xa_is_value(page)) 699 swapped++; 700 701 if (need_resched()) { 702 xas_pause(&xas); 703 cond_resched_rcu(); 704 } 705 } 706 707 rcu_read_unlock(); 708 709 return swapped << PAGE_SHIFT; 710 } 711 712 /* 713 * Determine (in bytes) how many of the shmem object's pages mapped by the 714 * given vma is swapped out. 715 * 716 * This is safe to call without i_mutex or the i_pages lock thanks to RCU, 717 * as long as the inode doesn't go away and racy results are not a problem. 718 */ 719 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 720 { 721 struct inode *inode = file_inode(vma->vm_file); 722 struct shmem_inode_info *info = SHMEM_I(inode); 723 struct address_space *mapping = inode->i_mapping; 724 unsigned long swapped; 725 726 /* Be careful as we don't hold info->lock */ 727 swapped = READ_ONCE(info->swapped); 728 729 /* 730 * The easier cases are when the shmem object has nothing in swap, or 731 * the vma maps it whole. Then we can simply use the stats that we 732 * already track. 733 */ 734 if (!swapped) 735 return 0; 736 737 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 738 return swapped << PAGE_SHIFT; 739 740 /* Here comes the more involved part */ 741 return shmem_partial_swap_usage(mapping, 742 linear_page_index(vma, vma->vm_start), 743 linear_page_index(vma, vma->vm_end)); 744 } 745 746 /* 747 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 748 */ 749 void shmem_unlock_mapping(struct address_space *mapping) 750 { 751 struct pagevec pvec; 752 pgoff_t indices[PAGEVEC_SIZE]; 753 pgoff_t index = 0; 754 755 pagevec_init(&pvec); 756 /* 757 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 758 */ 759 while (!mapping_unevictable(mapping)) { 760 /* 761 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it 762 * has finished, if it hits a row of PAGEVEC_SIZE swap entries. 763 */ 764 pvec.nr = find_get_entries(mapping, index, 765 PAGEVEC_SIZE, pvec.pages, indices); 766 if (!pvec.nr) 767 break; 768 index = indices[pvec.nr - 1] + 1; 769 pagevec_remove_exceptionals(&pvec); 770 check_move_unevictable_pages(&pvec); 771 pagevec_release(&pvec); 772 cond_resched(); 773 } 774 } 775 776 /* 777 * Remove range of pages and swap entries from page cache, and free them. 778 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 779 */ 780 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 781 bool unfalloc) 782 { 783 struct address_space *mapping = inode->i_mapping; 784 struct shmem_inode_info *info = SHMEM_I(inode); 785 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 786 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 787 unsigned int partial_start = lstart & (PAGE_SIZE - 1); 788 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1); 789 struct pagevec pvec; 790 pgoff_t indices[PAGEVEC_SIZE]; 791 long nr_swaps_freed = 0; 792 pgoff_t index; 793 int i; 794 795 if (lend == -1) 796 end = -1; /* unsigned, so actually very big */ 797 798 pagevec_init(&pvec); 799 index = start; 800 while (index < end) { 801 pvec.nr = find_get_entries(mapping, index, 802 min(end - index, (pgoff_t)PAGEVEC_SIZE), 803 pvec.pages, indices); 804 if (!pvec.nr) 805 break; 806 for (i = 0; i < pagevec_count(&pvec); i++) { 807 struct page *page = pvec.pages[i]; 808 809 index = indices[i]; 810 if (index >= end) 811 break; 812 813 if (xa_is_value(page)) { 814 if (unfalloc) 815 continue; 816 nr_swaps_freed += !shmem_free_swap(mapping, 817 index, page); 818 continue; 819 } 820 821 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page); 822 823 if (!trylock_page(page)) 824 continue; 825 826 if (PageTransTail(page)) { 827 /* Middle of THP: zero out the page */ 828 clear_highpage(page); 829 unlock_page(page); 830 continue; 831 } else if (PageTransHuge(page)) { 832 if (index == round_down(end, HPAGE_PMD_NR)) { 833 /* 834 * Range ends in the middle of THP: 835 * zero out the page 836 */ 837 clear_highpage(page); 838 unlock_page(page); 839 continue; 840 } 841 index += HPAGE_PMD_NR - 1; 842 i += HPAGE_PMD_NR - 1; 843 } 844 845 if (!unfalloc || !PageUptodate(page)) { 846 VM_BUG_ON_PAGE(PageTail(page), page); 847 if (page_mapping(page) == mapping) { 848 VM_BUG_ON_PAGE(PageWriteback(page), page); 849 truncate_inode_page(mapping, page); 850 } 851 } 852 unlock_page(page); 853 } 854 pagevec_remove_exceptionals(&pvec); 855 pagevec_release(&pvec); 856 cond_resched(); 857 index++; 858 } 859 860 if (partial_start) { 861 struct page *page = NULL; 862 shmem_getpage(inode, start - 1, &page, SGP_READ); 863 if (page) { 864 unsigned int top = PAGE_SIZE; 865 if (start > end) { 866 top = partial_end; 867 partial_end = 0; 868 } 869 zero_user_segment(page, partial_start, top); 870 set_page_dirty(page); 871 unlock_page(page); 872 put_page(page); 873 } 874 } 875 if (partial_end) { 876 struct page *page = NULL; 877 shmem_getpage(inode, end, &page, SGP_READ); 878 if (page) { 879 zero_user_segment(page, 0, partial_end); 880 set_page_dirty(page); 881 unlock_page(page); 882 put_page(page); 883 } 884 } 885 if (start >= end) 886 return; 887 888 index = start; 889 while (index < end) { 890 cond_resched(); 891 892 pvec.nr = find_get_entries(mapping, index, 893 min(end - index, (pgoff_t)PAGEVEC_SIZE), 894 pvec.pages, indices); 895 if (!pvec.nr) { 896 /* If all gone or hole-punch or unfalloc, we're done */ 897 if (index == start || end != -1) 898 break; 899 /* But if truncating, restart to make sure all gone */ 900 index = start; 901 continue; 902 } 903 for (i = 0; i < pagevec_count(&pvec); i++) { 904 struct page *page = pvec.pages[i]; 905 906 index = indices[i]; 907 if (index >= end) 908 break; 909 910 if (xa_is_value(page)) { 911 if (unfalloc) 912 continue; 913 if (shmem_free_swap(mapping, index, page)) { 914 /* Swap was replaced by page: retry */ 915 index--; 916 break; 917 } 918 nr_swaps_freed++; 919 continue; 920 } 921 922 lock_page(page); 923 924 if (PageTransTail(page)) { 925 /* Middle of THP: zero out the page */ 926 clear_highpage(page); 927 unlock_page(page); 928 /* 929 * Partial thp truncate due 'start' in middle 930 * of THP: don't need to look on these pages 931 * again on !pvec.nr restart. 932 */ 933 if (index != round_down(end, HPAGE_PMD_NR)) 934 start++; 935 continue; 936 } else if (PageTransHuge(page)) { 937 if (index == round_down(end, HPAGE_PMD_NR)) { 938 /* 939 * Range ends in the middle of THP: 940 * zero out the page 941 */ 942 clear_highpage(page); 943 unlock_page(page); 944 continue; 945 } 946 index += HPAGE_PMD_NR - 1; 947 i += HPAGE_PMD_NR - 1; 948 } 949 950 if (!unfalloc || !PageUptodate(page)) { 951 VM_BUG_ON_PAGE(PageTail(page), page); 952 if (page_mapping(page) == mapping) { 953 VM_BUG_ON_PAGE(PageWriteback(page), page); 954 truncate_inode_page(mapping, page); 955 } else { 956 /* Page was replaced by swap: retry */ 957 unlock_page(page); 958 index--; 959 break; 960 } 961 } 962 unlock_page(page); 963 } 964 pagevec_remove_exceptionals(&pvec); 965 pagevec_release(&pvec); 966 index++; 967 } 968 969 spin_lock_irq(&info->lock); 970 info->swapped -= nr_swaps_freed; 971 shmem_recalc_inode(inode); 972 spin_unlock_irq(&info->lock); 973 } 974 975 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 976 { 977 shmem_undo_range(inode, lstart, lend, false); 978 inode->i_ctime = inode->i_mtime = current_time(inode); 979 } 980 EXPORT_SYMBOL_GPL(shmem_truncate_range); 981 982 static int shmem_getattr(const struct path *path, struct kstat *stat, 983 u32 request_mask, unsigned int query_flags) 984 { 985 struct inode *inode = path->dentry->d_inode; 986 struct shmem_inode_info *info = SHMEM_I(inode); 987 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb); 988 989 if (info->alloced - info->swapped != inode->i_mapping->nrpages) { 990 spin_lock_irq(&info->lock); 991 shmem_recalc_inode(inode); 992 spin_unlock_irq(&info->lock); 993 } 994 generic_fillattr(inode, stat); 995 996 if (is_huge_enabled(sb_info)) 997 stat->blksize = HPAGE_PMD_SIZE; 998 999 return 0; 1000 } 1001 1002 static int shmem_setattr(struct dentry *dentry, struct iattr *attr) 1003 { 1004 struct inode *inode = d_inode(dentry); 1005 struct shmem_inode_info *info = SHMEM_I(inode); 1006 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1007 int error; 1008 1009 error = setattr_prepare(dentry, attr); 1010 if (error) 1011 return error; 1012 1013 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1014 loff_t oldsize = inode->i_size; 1015 loff_t newsize = attr->ia_size; 1016 1017 /* protected by i_mutex */ 1018 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1019 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1020 return -EPERM; 1021 1022 if (newsize != oldsize) { 1023 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1024 oldsize, newsize); 1025 if (error) 1026 return error; 1027 i_size_write(inode, newsize); 1028 inode->i_ctime = inode->i_mtime = current_time(inode); 1029 } 1030 if (newsize <= oldsize) { 1031 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1032 if (oldsize > holebegin) 1033 unmap_mapping_range(inode->i_mapping, 1034 holebegin, 0, 1); 1035 if (info->alloced) 1036 shmem_truncate_range(inode, 1037 newsize, (loff_t)-1); 1038 /* unmap again to remove racily COWed private pages */ 1039 if (oldsize > holebegin) 1040 unmap_mapping_range(inode->i_mapping, 1041 holebegin, 0, 1); 1042 1043 /* 1044 * Part of the huge page can be beyond i_size: subject 1045 * to shrink under memory pressure. 1046 */ 1047 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 1048 spin_lock(&sbinfo->shrinklist_lock); 1049 /* 1050 * _careful to defend against unlocked access to 1051 * ->shrink_list in shmem_unused_huge_shrink() 1052 */ 1053 if (list_empty_careful(&info->shrinklist)) { 1054 list_add_tail(&info->shrinklist, 1055 &sbinfo->shrinklist); 1056 sbinfo->shrinklist_len++; 1057 } 1058 spin_unlock(&sbinfo->shrinklist_lock); 1059 } 1060 } 1061 } 1062 1063 setattr_copy(inode, attr); 1064 if (attr->ia_valid & ATTR_MODE) 1065 error = posix_acl_chmod(inode, inode->i_mode); 1066 return error; 1067 } 1068 1069 static void shmem_evict_inode(struct inode *inode) 1070 { 1071 struct shmem_inode_info *info = SHMEM_I(inode); 1072 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1073 1074 if (inode->i_mapping->a_ops == &shmem_aops) { 1075 shmem_unacct_size(info->flags, inode->i_size); 1076 inode->i_size = 0; 1077 shmem_truncate_range(inode, 0, (loff_t)-1); 1078 if (!list_empty(&info->shrinklist)) { 1079 spin_lock(&sbinfo->shrinklist_lock); 1080 if (!list_empty(&info->shrinklist)) { 1081 list_del_init(&info->shrinklist); 1082 sbinfo->shrinklist_len--; 1083 } 1084 spin_unlock(&sbinfo->shrinklist_lock); 1085 } 1086 while (!list_empty(&info->swaplist)) { 1087 /* Wait while shmem_unuse() is scanning this inode... */ 1088 wait_var_event(&info->stop_eviction, 1089 !atomic_read(&info->stop_eviction)); 1090 mutex_lock(&shmem_swaplist_mutex); 1091 /* ...but beware of the race if we peeked too early */ 1092 if (!atomic_read(&info->stop_eviction)) 1093 list_del_init(&info->swaplist); 1094 mutex_unlock(&shmem_swaplist_mutex); 1095 } 1096 } 1097 1098 simple_xattrs_free(&info->xattrs); 1099 WARN_ON(inode->i_blocks); 1100 shmem_free_inode(inode->i_sb); 1101 clear_inode(inode); 1102 } 1103 1104 extern struct swap_info_struct *swap_info[]; 1105 1106 static int shmem_find_swap_entries(struct address_space *mapping, 1107 pgoff_t start, unsigned int nr_entries, 1108 struct page **entries, pgoff_t *indices, 1109 unsigned int type, bool frontswap) 1110 { 1111 XA_STATE(xas, &mapping->i_pages, start); 1112 struct page *page; 1113 swp_entry_t entry; 1114 unsigned int ret = 0; 1115 1116 if (!nr_entries) 1117 return 0; 1118 1119 rcu_read_lock(); 1120 xas_for_each(&xas, page, ULONG_MAX) { 1121 if (xas_retry(&xas, page)) 1122 continue; 1123 1124 if (!xa_is_value(page)) 1125 continue; 1126 1127 entry = radix_to_swp_entry(page); 1128 if (swp_type(entry) != type) 1129 continue; 1130 if (frontswap && 1131 !frontswap_test(swap_info[type], swp_offset(entry))) 1132 continue; 1133 1134 indices[ret] = xas.xa_index; 1135 entries[ret] = page; 1136 1137 if (need_resched()) { 1138 xas_pause(&xas); 1139 cond_resched_rcu(); 1140 } 1141 if (++ret == nr_entries) 1142 break; 1143 } 1144 rcu_read_unlock(); 1145 1146 return ret; 1147 } 1148 1149 /* 1150 * Move the swapped pages for an inode to page cache. Returns the count 1151 * of pages swapped in, or the error in case of failure. 1152 */ 1153 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec, 1154 pgoff_t *indices) 1155 { 1156 int i = 0; 1157 int ret = 0; 1158 int error = 0; 1159 struct address_space *mapping = inode->i_mapping; 1160 1161 for (i = 0; i < pvec.nr; i++) { 1162 struct page *page = pvec.pages[i]; 1163 1164 if (!xa_is_value(page)) 1165 continue; 1166 error = shmem_swapin_page(inode, indices[i], 1167 &page, SGP_CACHE, 1168 mapping_gfp_mask(mapping), 1169 NULL, NULL); 1170 if (error == 0) { 1171 unlock_page(page); 1172 put_page(page); 1173 ret++; 1174 } 1175 if (error == -ENOMEM) 1176 break; 1177 error = 0; 1178 } 1179 return error ? error : ret; 1180 } 1181 1182 /* 1183 * If swap found in inode, free it and move page from swapcache to filecache. 1184 */ 1185 static int shmem_unuse_inode(struct inode *inode, unsigned int type, 1186 bool frontswap, unsigned long *fs_pages_to_unuse) 1187 { 1188 struct address_space *mapping = inode->i_mapping; 1189 pgoff_t start = 0; 1190 struct pagevec pvec; 1191 pgoff_t indices[PAGEVEC_SIZE]; 1192 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0); 1193 int ret = 0; 1194 1195 pagevec_init(&pvec); 1196 do { 1197 unsigned int nr_entries = PAGEVEC_SIZE; 1198 1199 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE) 1200 nr_entries = *fs_pages_to_unuse; 1201 1202 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries, 1203 pvec.pages, indices, 1204 type, frontswap); 1205 if (pvec.nr == 0) { 1206 ret = 0; 1207 break; 1208 } 1209 1210 ret = shmem_unuse_swap_entries(inode, pvec, indices); 1211 if (ret < 0) 1212 break; 1213 1214 if (frontswap_partial) { 1215 *fs_pages_to_unuse -= ret; 1216 if (*fs_pages_to_unuse == 0) { 1217 ret = FRONTSWAP_PAGES_UNUSED; 1218 break; 1219 } 1220 } 1221 1222 start = indices[pvec.nr - 1]; 1223 } while (true); 1224 1225 return ret; 1226 } 1227 1228 /* 1229 * Read all the shared memory data that resides in the swap 1230 * device 'type' back into memory, so the swap device can be 1231 * unused. 1232 */ 1233 int shmem_unuse(unsigned int type, bool frontswap, 1234 unsigned long *fs_pages_to_unuse) 1235 { 1236 struct shmem_inode_info *info, *next; 1237 int error = 0; 1238 1239 if (list_empty(&shmem_swaplist)) 1240 return 0; 1241 1242 mutex_lock(&shmem_swaplist_mutex); 1243 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1244 if (!info->swapped) { 1245 list_del_init(&info->swaplist); 1246 continue; 1247 } 1248 /* 1249 * Drop the swaplist mutex while searching the inode for swap; 1250 * but before doing so, make sure shmem_evict_inode() will not 1251 * remove placeholder inode from swaplist, nor let it be freed 1252 * (igrab() would protect from unlink, but not from unmount). 1253 */ 1254 atomic_inc(&info->stop_eviction); 1255 mutex_unlock(&shmem_swaplist_mutex); 1256 1257 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap, 1258 fs_pages_to_unuse); 1259 cond_resched(); 1260 1261 mutex_lock(&shmem_swaplist_mutex); 1262 next = list_next_entry(info, swaplist); 1263 if (!info->swapped) 1264 list_del_init(&info->swaplist); 1265 if (atomic_dec_and_test(&info->stop_eviction)) 1266 wake_up_var(&info->stop_eviction); 1267 if (error) 1268 break; 1269 } 1270 mutex_unlock(&shmem_swaplist_mutex); 1271 1272 return error; 1273 } 1274 1275 /* 1276 * Move the page from the page cache to the swap cache. 1277 */ 1278 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1279 { 1280 struct shmem_inode_info *info; 1281 struct address_space *mapping; 1282 struct inode *inode; 1283 swp_entry_t swap; 1284 pgoff_t index; 1285 1286 VM_BUG_ON_PAGE(PageCompound(page), page); 1287 BUG_ON(!PageLocked(page)); 1288 mapping = page->mapping; 1289 index = page->index; 1290 inode = mapping->host; 1291 info = SHMEM_I(inode); 1292 if (info->flags & VM_LOCKED) 1293 goto redirty; 1294 if (!total_swap_pages) 1295 goto redirty; 1296 1297 /* 1298 * Our capabilities prevent regular writeback or sync from ever calling 1299 * shmem_writepage; but a stacking filesystem might use ->writepage of 1300 * its underlying filesystem, in which case tmpfs should write out to 1301 * swap only in response to memory pressure, and not for the writeback 1302 * threads or sync. 1303 */ 1304 if (!wbc->for_reclaim) { 1305 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */ 1306 goto redirty; 1307 } 1308 1309 /* 1310 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1311 * value into swapfile.c, the only way we can correctly account for a 1312 * fallocated page arriving here is now to initialize it and write it. 1313 * 1314 * That's okay for a page already fallocated earlier, but if we have 1315 * not yet completed the fallocation, then (a) we want to keep track 1316 * of this page in case we have to undo it, and (b) it may not be a 1317 * good idea to continue anyway, once we're pushing into swap. So 1318 * reactivate the page, and let shmem_fallocate() quit when too many. 1319 */ 1320 if (!PageUptodate(page)) { 1321 if (inode->i_private) { 1322 struct shmem_falloc *shmem_falloc; 1323 spin_lock(&inode->i_lock); 1324 shmem_falloc = inode->i_private; 1325 if (shmem_falloc && 1326 !shmem_falloc->waitq && 1327 index >= shmem_falloc->start && 1328 index < shmem_falloc->next) 1329 shmem_falloc->nr_unswapped++; 1330 else 1331 shmem_falloc = NULL; 1332 spin_unlock(&inode->i_lock); 1333 if (shmem_falloc) 1334 goto redirty; 1335 } 1336 clear_highpage(page); 1337 flush_dcache_page(page); 1338 SetPageUptodate(page); 1339 } 1340 1341 swap = get_swap_page(page); 1342 if (!swap.val) 1343 goto redirty; 1344 1345 /* 1346 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1347 * if it's not already there. Do it now before the page is 1348 * moved to swap cache, when its pagelock no longer protects 1349 * the inode from eviction. But don't unlock the mutex until 1350 * we've incremented swapped, because shmem_unuse_inode() will 1351 * prune a !swapped inode from the swaplist under this mutex. 1352 */ 1353 mutex_lock(&shmem_swaplist_mutex); 1354 if (list_empty(&info->swaplist)) 1355 list_add(&info->swaplist, &shmem_swaplist); 1356 1357 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) { 1358 spin_lock_irq(&info->lock); 1359 shmem_recalc_inode(inode); 1360 info->swapped++; 1361 spin_unlock_irq(&info->lock); 1362 1363 swap_shmem_alloc(swap); 1364 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap)); 1365 1366 mutex_unlock(&shmem_swaplist_mutex); 1367 BUG_ON(page_mapped(page)); 1368 swap_writepage(page, wbc); 1369 return 0; 1370 } 1371 1372 mutex_unlock(&shmem_swaplist_mutex); 1373 put_swap_page(page, swap); 1374 redirty: 1375 set_page_dirty(page); 1376 if (wbc->for_reclaim) 1377 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */ 1378 unlock_page(page); 1379 return 0; 1380 } 1381 1382 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1383 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1384 { 1385 char buffer[64]; 1386 1387 if (!mpol || mpol->mode == MPOL_DEFAULT) 1388 return; /* show nothing */ 1389 1390 mpol_to_str(buffer, sizeof(buffer), mpol); 1391 1392 seq_printf(seq, ",mpol=%s", buffer); 1393 } 1394 1395 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1396 { 1397 struct mempolicy *mpol = NULL; 1398 if (sbinfo->mpol) { 1399 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1400 mpol = sbinfo->mpol; 1401 mpol_get(mpol); 1402 spin_unlock(&sbinfo->stat_lock); 1403 } 1404 return mpol; 1405 } 1406 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1407 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1408 { 1409 } 1410 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1411 { 1412 return NULL; 1413 } 1414 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1415 #ifndef CONFIG_NUMA 1416 #define vm_policy vm_private_data 1417 #endif 1418 1419 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1420 struct shmem_inode_info *info, pgoff_t index) 1421 { 1422 /* Create a pseudo vma that just contains the policy */ 1423 vma_init(vma, NULL); 1424 /* Bias interleave by inode number to distribute better across nodes */ 1425 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1426 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1427 } 1428 1429 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1430 { 1431 /* Drop reference taken by mpol_shared_policy_lookup() */ 1432 mpol_cond_put(vma->vm_policy); 1433 } 1434 1435 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1436 struct shmem_inode_info *info, pgoff_t index) 1437 { 1438 struct vm_area_struct pvma; 1439 struct page *page; 1440 struct vm_fault vmf; 1441 1442 shmem_pseudo_vma_init(&pvma, info, index); 1443 vmf.vma = &pvma; 1444 vmf.address = 0; 1445 page = swap_cluster_readahead(swap, gfp, &vmf); 1446 shmem_pseudo_vma_destroy(&pvma); 1447 1448 return page; 1449 } 1450 1451 static struct page *shmem_alloc_hugepage(gfp_t gfp, 1452 struct shmem_inode_info *info, pgoff_t index) 1453 { 1454 struct vm_area_struct pvma; 1455 struct address_space *mapping = info->vfs_inode.i_mapping; 1456 pgoff_t hindex; 1457 struct page *page; 1458 1459 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1460 return NULL; 1461 1462 hindex = round_down(index, HPAGE_PMD_NR); 1463 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1464 XA_PRESENT)) 1465 return NULL; 1466 1467 shmem_pseudo_vma_init(&pvma, info, hindex); 1468 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN, 1469 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true); 1470 shmem_pseudo_vma_destroy(&pvma); 1471 if (page) 1472 prep_transhuge_page(page); 1473 return page; 1474 } 1475 1476 static struct page *shmem_alloc_page(gfp_t gfp, 1477 struct shmem_inode_info *info, pgoff_t index) 1478 { 1479 struct vm_area_struct pvma; 1480 struct page *page; 1481 1482 shmem_pseudo_vma_init(&pvma, info, index); 1483 page = alloc_page_vma(gfp, &pvma, 0); 1484 shmem_pseudo_vma_destroy(&pvma); 1485 1486 return page; 1487 } 1488 1489 static struct page *shmem_alloc_and_acct_page(gfp_t gfp, 1490 struct inode *inode, 1491 pgoff_t index, bool huge) 1492 { 1493 struct shmem_inode_info *info = SHMEM_I(inode); 1494 struct page *page; 1495 int nr; 1496 int err = -ENOSPC; 1497 1498 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 1499 huge = false; 1500 nr = huge ? HPAGE_PMD_NR : 1; 1501 1502 if (!shmem_inode_acct_block(inode, nr)) 1503 goto failed; 1504 1505 if (huge) 1506 page = shmem_alloc_hugepage(gfp, info, index); 1507 else 1508 page = shmem_alloc_page(gfp, info, index); 1509 if (page) { 1510 __SetPageLocked(page); 1511 __SetPageSwapBacked(page); 1512 return page; 1513 } 1514 1515 err = -ENOMEM; 1516 shmem_inode_unacct_blocks(inode, nr); 1517 failed: 1518 return ERR_PTR(err); 1519 } 1520 1521 /* 1522 * When a page is moved from swapcache to shmem filecache (either by the 1523 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of 1524 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1525 * ignorance of the mapping it belongs to. If that mapping has special 1526 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1527 * we may need to copy to a suitable page before moving to filecache. 1528 * 1529 * In a future release, this may well be extended to respect cpuset and 1530 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1531 * but for now it is a simple matter of zone. 1532 */ 1533 static bool shmem_should_replace_page(struct page *page, gfp_t gfp) 1534 { 1535 return page_zonenum(page) > gfp_zone(gfp); 1536 } 1537 1538 static int shmem_replace_page(struct page **pagep, gfp_t gfp, 1539 struct shmem_inode_info *info, pgoff_t index) 1540 { 1541 struct page *oldpage, *newpage; 1542 struct address_space *swap_mapping; 1543 swp_entry_t entry; 1544 pgoff_t swap_index; 1545 int error; 1546 1547 oldpage = *pagep; 1548 entry.val = page_private(oldpage); 1549 swap_index = swp_offset(entry); 1550 swap_mapping = page_mapping(oldpage); 1551 1552 /* 1553 * We have arrived here because our zones are constrained, so don't 1554 * limit chance of success by further cpuset and node constraints. 1555 */ 1556 gfp &= ~GFP_CONSTRAINT_MASK; 1557 newpage = shmem_alloc_page(gfp, info, index); 1558 if (!newpage) 1559 return -ENOMEM; 1560 1561 get_page(newpage); 1562 copy_highpage(newpage, oldpage); 1563 flush_dcache_page(newpage); 1564 1565 __SetPageLocked(newpage); 1566 __SetPageSwapBacked(newpage); 1567 SetPageUptodate(newpage); 1568 set_page_private(newpage, entry.val); 1569 SetPageSwapCache(newpage); 1570 1571 /* 1572 * Our caller will very soon move newpage out of swapcache, but it's 1573 * a nice clean interface for us to replace oldpage by newpage there. 1574 */ 1575 xa_lock_irq(&swap_mapping->i_pages); 1576 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage); 1577 if (!error) { 1578 __inc_node_page_state(newpage, NR_FILE_PAGES); 1579 __dec_node_page_state(oldpage, NR_FILE_PAGES); 1580 } 1581 xa_unlock_irq(&swap_mapping->i_pages); 1582 1583 if (unlikely(error)) { 1584 /* 1585 * Is this possible? I think not, now that our callers check 1586 * both PageSwapCache and page_private after getting page lock; 1587 * but be defensive. Reverse old to newpage for clear and free. 1588 */ 1589 oldpage = newpage; 1590 } else { 1591 mem_cgroup_migrate(oldpage, newpage); 1592 lru_cache_add_anon(newpage); 1593 *pagep = newpage; 1594 } 1595 1596 ClearPageSwapCache(oldpage); 1597 set_page_private(oldpage, 0); 1598 1599 unlock_page(oldpage); 1600 put_page(oldpage); 1601 put_page(oldpage); 1602 return error; 1603 } 1604 1605 /* 1606 * Swap in the page pointed to by *pagep. 1607 * Caller has to make sure that *pagep contains a valid swapped page. 1608 * Returns 0 and the page in pagep if success. On failure, returns the 1609 * the error code and NULL in *pagep. 1610 */ 1611 static int shmem_swapin_page(struct inode *inode, pgoff_t index, 1612 struct page **pagep, enum sgp_type sgp, 1613 gfp_t gfp, struct vm_area_struct *vma, 1614 vm_fault_t *fault_type) 1615 { 1616 struct address_space *mapping = inode->i_mapping; 1617 struct shmem_inode_info *info = SHMEM_I(inode); 1618 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm; 1619 struct mem_cgroup *memcg; 1620 struct page *page; 1621 swp_entry_t swap; 1622 int error; 1623 1624 VM_BUG_ON(!*pagep || !xa_is_value(*pagep)); 1625 swap = radix_to_swp_entry(*pagep); 1626 *pagep = NULL; 1627 1628 /* Look it up and read it in.. */ 1629 page = lookup_swap_cache(swap, NULL, 0); 1630 if (!page) { 1631 /* Or update major stats only when swapin succeeds?? */ 1632 if (fault_type) { 1633 *fault_type |= VM_FAULT_MAJOR; 1634 count_vm_event(PGMAJFAULT); 1635 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1636 } 1637 /* Here we actually start the io */ 1638 page = shmem_swapin(swap, gfp, info, index); 1639 if (!page) { 1640 error = -ENOMEM; 1641 goto failed; 1642 } 1643 } 1644 1645 /* We have to do this with page locked to prevent races */ 1646 lock_page(page); 1647 if (!PageSwapCache(page) || page_private(page) != swap.val || 1648 !shmem_confirm_swap(mapping, index, swap)) { 1649 error = -EEXIST; 1650 goto unlock; 1651 } 1652 if (!PageUptodate(page)) { 1653 error = -EIO; 1654 goto failed; 1655 } 1656 wait_on_page_writeback(page); 1657 1658 if (shmem_should_replace_page(page, gfp)) { 1659 error = shmem_replace_page(&page, gfp, info, index); 1660 if (error) 1661 goto failed; 1662 } 1663 1664 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1665 false); 1666 if (!error) { 1667 error = shmem_add_to_page_cache(page, mapping, index, 1668 swp_to_radix_entry(swap), gfp); 1669 /* 1670 * We already confirmed swap under page lock, and make 1671 * no memory allocation here, so usually no possibility 1672 * of error; but free_swap_and_cache() only trylocks a 1673 * page, so it is just possible that the entry has been 1674 * truncated or holepunched since swap was confirmed. 1675 * shmem_undo_range() will have done some of the 1676 * unaccounting, now delete_from_swap_cache() will do 1677 * the rest. 1678 */ 1679 if (error) { 1680 mem_cgroup_cancel_charge(page, memcg, false); 1681 delete_from_swap_cache(page); 1682 } 1683 } 1684 if (error) 1685 goto failed; 1686 1687 mem_cgroup_commit_charge(page, memcg, true, false); 1688 1689 spin_lock_irq(&info->lock); 1690 info->swapped--; 1691 shmem_recalc_inode(inode); 1692 spin_unlock_irq(&info->lock); 1693 1694 if (sgp == SGP_WRITE) 1695 mark_page_accessed(page); 1696 1697 delete_from_swap_cache(page); 1698 set_page_dirty(page); 1699 swap_free(swap); 1700 1701 *pagep = page; 1702 return 0; 1703 failed: 1704 if (!shmem_confirm_swap(mapping, index, swap)) 1705 error = -EEXIST; 1706 unlock: 1707 if (page) { 1708 unlock_page(page); 1709 put_page(page); 1710 } 1711 1712 return error; 1713 } 1714 1715 /* 1716 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate 1717 * 1718 * If we allocate a new one we do not mark it dirty. That's up to the 1719 * vm. If we swap it in we mark it dirty since we also free the swap 1720 * entry since a page cannot live in both the swap and page cache. 1721 * 1722 * fault_mm and fault_type are only supplied by shmem_fault: 1723 * otherwise they are NULL. 1724 */ 1725 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index, 1726 struct page **pagep, enum sgp_type sgp, gfp_t gfp, 1727 struct vm_area_struct *vma, struct vm_fault *vmf, 1728 vm_fault_t *fault_type) 1729 { 1730 struct address_space *mapping = inode->i_mapping; 1731 struct shmem_inode_info *info = SHMEM_I(inode); 1732 struct shmem_sb_info *sbinfo; 1733 struct mm_struct *charge_mm; 1734 struct mem_cgroup *memcg; 1735 struct page *page; 1736 enum sgp_type sgp_huge = sgp; 1737 pgoff_t hindex = index; 1738 int error; 1739 int once = 0; 1740 int alloced = 0; 1741 1742 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1743 return -EFBIG; 1744 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE) 1745 sgp = SGP_CACHE; 1746 repeat: 1747 if (sgp <= SGP_CACHE && 1748 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1749 return -EINVAL; 1750 } 1751 1752 sbinfo = SHMEM_SB(inode->i_sb); 1753 charge_mm = vma ? vma->vm_mm : current->mm; 1754 1755 page = find_lock_entry(mapping, index); 1756 if (xa_is_value(page)) { 1757 error = shmem_swapin_page(inode, index, &page, 1758 sgp, gfp, vma, fault_type); 1759 if (error == -EEXIST) 1760 goto repeat; 1761 1762 *pagep = page; 1763 return error; 1764 } 1765 1766 if (page && sgp == SGP_WRITE) 1767 mark_page_accessed(page); 1768 1769 /* fallocated page? */ 1770 if (page && !PageUptodate(page)) { 1771 if (sgp != SGP_READ) 1772 goto clear; 1773 unlock_page(page); 1774 put_page(page); 1775 page = NULL; 1776 } 1777 if (page || sgp == SGP_READ) { 1778 *pagep = page; 1779 return 0; 1780 } 1781 1782 /* 1783 * Fast cache lookup did not find it: 1784 * bring it back from swap or allocate. 1785 */ 1786 1787 if (vma && userfaultfd_missing(vma)) { 1788 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 1789 return 0; 1790 } 1791 1792 /* shmem_symlink() */ 1793 if (mapping->a_ops != &shmem_aops) 1794 goto alloc_nohuge; 1795 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE) 1796 goto alloc_nohuge; 1797 if (shmem_huge == SHMEM_HUGE_FORCE) 1798 goto alloc_huge; 1799 switch (sbinfo->huge) { 1800 loff_t i_size; 1801 pgoff_t off; 1802 case SHMEM_HUGE_NEVER: 1803 goto alloc_nohuge; 1804 case SHMEM_HUGE_WITHIN_SIZE: 1805 off = round_up(index, HPAGE_PMD_NR); 1806 i_size = round_up(i_size_read(inode), PAGE_SIZE); 1807 if (i_size >= HPAGE_PMD_SIZE && 1808 i_size >> PAGE_SHIFT >= off) 1809 goto alloc_huge; 1810 /* fallthrough */ 1811 case SHMEM_HUGE_ADVISE: 1812 if (sgp_huge == SGP_HUGE) 1813 goto alloc_huge; 1814 /* TODO: implement fadvise() hints */ 1815 goto alloc_nohuge; 1816 } 1817 1818 alloc_huge: 1819 page = shmem_alloc_and_acct_page(gfp, inode, index, true); 1820 if (IS_ERR(page)) { 1821 alloc_nohuge: 1822 page = shmem_alloc_and_acct_page(gfp, inode, 1823 index, false); 1824 } 1825 if (IS_ERR(page)) { 1826 int retry = 5; 1827 1828 error = PTR_ERR(page); 1829 page = NULL; 1830 if (error != -ENOSPC) 1831 goto unlock; 1832 /* 1833 * Try to reclaim some space by splitting a huge page 1834 * beyond i_size on the filesystem. 1835 */ 1836 while (retry--) { 1837 int ret; 1838 1839 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 1840 if (ret == SHRINK_STOP) 1841 break; 1842 if (ret) 1843 goto alloc_nohuge; 1844 } 1845 goto unlock; 1846 } 1847 1848 if (PageTransHuge(page)) 1849 hindex = round_down(index, HPAGE_PMD_NR); 1850 else 1851 hindex = index; 1852 1853 if (sgp == SGP_WRITE) 1854 __SetPageReferenced(page); 1855 1856 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg, 1857 PageTransHuge(page)); 1858 if (error) 1859 goto unacct; 1860 error = shmem_add_to_page_cache(page, mapping, hindex, 1861 NULL, gfp & GFP_RECLAIM_MASK); 1862 if (error) { 1863 mem_cgroup_cancel_charge(page, memcg, 1864 PageTransHuge(page)); 1865 goto unacct; 1866 } 1867 mem_cgroup_commit_charge(page, memcg, false, 1868 PageTransHuge(page)); 1869 lru_cache_add_anon(page); 1870 1871 spin_lock_irq(&info->lock); 1872 info->alloced += 1 << compound_order(page); 1873 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page); 1874 shmem_recalc_inode(inode); 1875 spin_unlock_irq(&info->lock); 1876 alloced = true; 1877 1878 if (PageTransHuge(page) && 1879 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 1880 hindex + HPAGE_PMD_NR - 1) { 1881 /* 1882 * Part of the huge page is beyond i_size: subject 1883 * to shrink under memory pressure. 1884 */ 1885 spin_lock(&sbinfo->shrinklist_lock); 1886 /* 1887 * _careful to defend against unlocked access to 1888 * ->shrink_list in shmem_unused_huge_shrink() 1889 */ 1890 if (list_empty_careful(&info->shrinklist)) { 1891 list_add_tail(&info->shrinklist, 1892 &sbinfo->shrinklist); 1893 sbinfo->shrinklist_len++; 1894 } 1895 spin_unlock(&sbinfo->shrinklist_lock); 1896 } 1897 1898 /* 1899 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page. 1900 */ 1901 if (sgp == SGP_FALLOC) 1902 sgp = SGP_WRITE; 1903 clear: 1904 /* 1905 * Let SGP_WRITE caller clear ends if write does not fill page; 1906 * but SGP_FALLOC on a page fallocated earlier must initialize 1907 * it now, lest undo on failure cancel our earlier guarantee. 1908 */ 1909 if (sgp != SGP_WRITE && !PageUptodate(page)) { 1910 struct page *head = compound_head(page); 1911 int i; 1912 1913 for (i = 0; i < (1 << compound_order(head)); i++) { 1914 clear_highpage(head + i); 1915 flush_dcache_page(head + i); 1916 } 1917 SetPageUptodate(head); 1918 } 1919 1920 /* Perhaps the file has been truncated since we checked */ 1921 if (sgp <= SGP_CACHE && 1922 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1923 if (alloced) { 1924 ClearPageDirty(page); 1925 delete_from_page_cache(page); 1926 spin_lock_irq(&info->lock); 1927 shmem_recalc_inode(inode); 1928 spin_unlock_irq(&info->lock); 1929 } 1930 error = -EINVAL; 1931 goto unlock; 1932 } 1933 *pagep = page + index - hindex; 1934 return 0; 1935 1936 /* 1937 * Error recovery. 1938 */ 1939 unacct: 1940 shmem_inode_unacct_blocks(inode, 1 << compound_order(page)); 1941 1942 if (PageTransHuge(page)) { 1943 unlock_page(page); 1944 put_page(page); 1945 goto alloc_nohuge; 1946 } 1947 unlock: 1948 if (page) { 1949 unlock_page(page); 1950 put_page(page); 1951 } 1952 if (error == -ENOSPC && !once++) { 1953 spin_lock_irq(&info->lock); 1954 shmem_recalc_inode(inode); 1955 spin_unlock_irq(&info->lock); 1956 goto repeat; 1957 } 1958 if (error == -EEXIST) 1959 goto repeat; 1960 return error; 1961 } 1962 1963 /* 1964 * This is like autoremove_wake_function, but it removes the wait queue 1965 * entry unconditionally - even if something else had already woken the 1966 * target. 1967 */ 1968 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1969 { 1970 int ret = default_wake_function(wait, mode, sync, key); 1971 list_del_init(&wait->entry); 1972 return ret; 1973 } 1974 1975 static vm_fault_t shmem_fault(struct vm_fault *vmf) 1976 { 1977 struct vm_area_struct *vma = vmf->vma; 1978 struct inode *inode = file_inode(vma->vm_file); 1979 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 1980 enum sgp_type sgp; 1981 int err; 1982 vm_fault_t ret = VM_FAULT_LOCKED; 1983 1984 /* 1985 * Trinity finds that probing a hole which tmpfs is punching can 1986 * prevent the hole-punch from ever completing: which in turn 1987 * locks writers out with its hold on i_mutex. So refrain from 1988 * faulting pages into the hole while it's being punched. Although 1989 * shmem_undo_range() does remove the additions, it may be unable to 1990 * keep up, as each new page needs its own unmap_mapping_range() call, 1991 * and the i_mmap tree grows ever slower to scan if new vmas are added. 1992 * 1993 * It does not matter if we sometimes reach this check just before the 1994 * hole-punch begins, so that one fault then races with the punch: 1995 * we just need to make racing faults a rare case. 1996 * 1997 * The implementation below would be much simpler if we just used a 1998 * standard mutex or completion: but we cannot take i_mutex in fault, 1999 * and bloating every shmem inode for this unlikely case would be sad. 2000 */ 2001 if (unlikely(inode->i_private)) { 2002 struct shmem_falloc *shmem_falloc; 2003 2004 spin_lock(&inode->i_lock); 2005 shmem_falloc = inode->i_private; 2006 if (shmem_falloc && 2007 shmem_falloc->waitq && 2008 vmf->pgoff >= shmem_falloc->start && 2009 vmf->pgoff < shmem_falloc->next) { 2010 wait_queue_head_t *shmem_falloc_waitq; 2011 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2012 2013 ret = VM_FAULT_NOPAGE; 2014 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) && 2015 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) { 2016 /* It's polite to up mmap_sem if we can */ 2017 up_read(&vma->vm_mm->mmap_sem); 2018 ret = VM_FAULT_RETRY; 2019 } 2020 2021 shmem_falloc_waitq = shmem_falloc->waitq; 2022 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2023 TASK_UNINTERRUPTIBLE); 2024 spin_unlock(&inode->i_lock); 2025 schedule(); 2026 2027 /* 2028 * shmem_falloc_waitq points into the shmem_fallocate() 2029 * stack of the hole-punching task: shmem_falloc_waitq 2030 * is usually invalid by the time we reach here, but 2031 * finish_wait() does not dereference it in that case; 2032 * though i_lock needed lest racing with wake_up_all(). 2033 */ 2034 spin_lock(&inode->i_lock); 2035 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2036 spin_unlock(&inode->i_lock); 2037 return ret; 2038 } 2039 spin_unlock(&inode->i_lock); 2040 } 2041 2042 sgp = SGP_CACHE; 2043 2044 if ((vma->vm_flags & VM_NOHUGEPAGE) || 2045 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 2046 sgp = SGP_NOHUGE; 2047 else if (vma->vm_flags & VM_HUGEPAGE) 2048 sgp = SGP_HUGE; 2049 2050 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp, 2051 gfp, vma, vmf, &ret); 2052 if (err) 2053 return vmf_error(err); 2054 return ret; 2055 } 2056 2057 unsigned long shmem_get_unmapped_area(struct file *file, 2058 unsigned long uaddr, unsigned long len, 2059 unsigned long pgoff, unsigned long flags) 2060 { 2061 unsigned long (*get_area)(struct file *, 2062 unsigned long, unsigned long, unsigned long, unsigned long); 2063 unsigned long addr; 2064 unsigned long offset; 2065 unsigned long inflated_len; 2066 unsigned long inflated_addr; 2067 unsigned long inflated_offset; 2068 2069 if (len > TASK_SIZE) 2070 return -ENOMEM; 2071 2072 get_area = current->mm->get_unmapped_area; 2073 addr = get_area(file, uaddr, len, pgoff, flags); 2074 2075 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) 2076 return addr; 2077 if (IS_ERR_VALUE(addr)) 2078 return addr; 2079 if (addr & ~PAGE_MASK) 2080 return addr; 2081 if (addr > TASK_SIZE - len) 2082 return addr; 2083 2084 if (shmem_huge == SHMEM_HUGE_DENY) 2085 return addr; 2086 if (len < HPAGE_PMD_SIZE) 2087 return addr; 2088 if (flags & MAP_FIXED) 2089 return addr; 2090 /* 2091 * Our priority is to support MAP_SHARED mapped hugely; 2092 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2093 * But if caller specified an address hint, respect that as before. 2094 */ 2095 if (uaddr) 2096 return addr; 2097 2098 if (shmem_huge != SHMEM_HUGE_FORCE) { 2099 struct super_block *sb; 2100 2101 if (file) { 2102 VM_BUG_ON(file->f_op != &shmem_file_operations); 2103 sb = file_inode(file)->i_sb; 2104 } else { 2105 /* 2106 * Called directly from mm/mmap.c, or drivers/char/mem.c 2107 * for "/dev/zero", to create a shared anonymous object. 2108 */ 2109 if (IS_ERR(shm_mnt)) 2110 return addr; 2111 sb = shm_mnt->mnt_sb; 2112 } 2113 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2114 return addr; 2115 } 2116 2117 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2118 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2119 return addr; 2120 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2121 return addr; 2122 2123 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2124 if (inflated_len > TASK_SIZE) 2125 return addr; 2126 if (inflated_len < len) 2127 return addr; 2128 2129 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags); 2130 if (IS_ERR_VALUE(inflated_addr)) 2131 return addr; 2132 if (inflated_addr & ~PAGE_MASK) 2133 return addr; 2134 2135 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2136 inflated_addr += offset - inflated_offset; 2137 if (inflated_offset > offset) 2138 inflated_addr += HPAGE_PMD_SIZE; 2139 2140 if (inflated_addr > TASK_SIZE - len) 2141 return addr; 2142 return inflated_addr; 2143 } 2144 2145 #ifdef CONFIG_NUMA 2146 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2147 { 2148 struct inode *inode = file_inode(vma->vm_file); 2149 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2150 } 2151 2152 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2153 unsigned long addr) 2154 { 2155 struct inode *inode = file_inode(vma->vm_file); 2156 pgoff_t index; 2157 2158 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2159 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2160 } 2161 #endif 2162 2163 int shmem_lock(struct file *file, int lock, struct user_struct *user) 2164 { 2165 struct inode *inode = file_inode(file); 2166 struct shmem_inode_info *info = SHMEM_I(inode); 2167 int retval = -ENOMEM; 2168 2169 spin_lock_irq(&info->lock); 2170 if (lock && !(info->flags & VM_LOCKED)) { 2171 if (!user_shm_lock(inode->i_size, user)) 2172 goto out_nomem; 2173 info->flags |= VM_LOCKED; 2174 mapping_set_unevictable(file->f_mapping); 2175 } 2176 if (!lock && (info->flags & VM_LOCKED) && user) { 2177 user_shm_unlock(inode->i_size, user); 2178 info->flags &= ~VM_LOCKED; 2179 mapping_clear_unevictable(file->f_mapping); 2180 } 2181 retval = 0; 2182 2183 out_nomem: 2184 spin_unlock_irq(&info->lock); 2185 return retval; 2186 } 2187 2188 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2189 { 2190 struct shmem_inode_info *info = SHMEM_I(file_inode(file)); 2191 2192 if (info->seals & F_SEAL_FUTURE_WRITE) { 2193 /* 2194 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 2195 * "future write" seal active. 2196 */ 2197 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 2198 return -EPERM; 2199 2200 /* 2201 * Since the F_SEAL_FUTURE_WRITE seals allow for a MAP_SHARED 2202 * read-only mapping, take care to not allow mprotect to revert 2203 * protections. 2204 */ 2205 vma->vm_flags &= ~(VM_MAYWRITE); 2206 } 2207 2208 file_accessed(file); 2209 vma->vm_ops = &shmem_vm_ops; 2210 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 2211 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 2212 (vma->vm_end & HPAGE_PMD_MASK)) { 2213 khugepaged_enter(vma, vma->vm_flags); 2214 } 2215 return 0; 2216 } 2217 2218 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir, 2219 umode_t mode, dev_t dev, unsigned long flags) 2220 { 2221 struct inode *inode; 2222 struct shmem_inode_info *info; 2223 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2224 2225 if (shmem_reserve_inode(sb)) 2226 return NULL; 2227 2228 inode = new_inode(sb); 2229 if (inode) { 2230 inode->i_ino = get_next_ino(); 2231 inode_init_owner(inode, dir, mode); 2232 inode->i_blocks = 0; 2233 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 2234 inode->i_generation = prandom_u32(); 2235 info = SHMEM_I(inode); 2236 memset(info, 0, (char *)inode - (char *)info); 2237 spin_lock_init(&info->lock); 2238 atomic_set(&info->stop_eviction, 0); 2239 info->seals = F_SEAL_SEAL; 2240 info->flags = flags & VM_NORESERVE; 2241 INIT_LIST_HEAD(&info->shrinklist); 2242 INIT_LIST_HEAD(&info->swaplist); 2243 simple_xattrs_init(&info->xattrs); 2244 cache_no_acl(inode); 2245 2246 switch (mode & S_IFMT) { 2247 default: 2248 inode->i_op = &shmem_special_inode_operations; 2249 init_special_inode(inode, mode, dev); 2250 break; 2251 case S_IFREG: 2252 inode->i_mapping->a_ops = &shmem_aops; 2253 inode->i_op = &shmem_inode_operations; 2254 inode->i_fop = &shmem_file_operations; 2255 mpol_shared_policy_init(&info->policy, 2256 shmem_get_sbmpol(sbinfo)); 2257 break; 2258 case S_IFDIR: 2259 inc_nlink(inode); 2260 /* Some things misbehave if size == 0 on a directory */ 2261 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2262 inode->i_op = &shmem_dir_inode_operations; 2263 inode->i_fop = &simple_dir_operations; 2264 break; 2265 case S_IFLNK: 2266 /* 2267 * Must not load anything in the rbtree, 2268 * mpol_free_shared_policy will not be called. 2269 */ 2270 mpol_shared_policy_init(&info->policy, NULL); 2271 break; 2272 } 2273 2274 lockdep_annotate_inode_mutex_key(inode); 2275 } else 2276 shmem_free_inode(sb); 2277 return inode; 2278 } 2279 2280 bool shmem_mapping(struct address_space *mapping) 2281 { 2282 return mapping->a_ops == &shmem_aops; 2283 } 2284 2285 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm, 2286 pmd_t *dst_pmd, 2287 struct vm_area_struct *dst_vma, 2288 unsigned long dst_addr, 2289 unsigned long src_addr, 2290 bool zeropage, 2291 struct page **pagep) 2292 { 2293 struct inode *inode = file_inode(dst_vma->vm_file); 2294 struct shmem_inode_info *info = SHMEM_I(inode); 2295 struct address_space *mapping = inode->i_mapping; 2296 gfp_t gfp = mapping_gfp_mask(mapping); 2297 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2298 struct mem_cgroup *memcg; 2299 spinlock_t *ptl; 2300 void *page_kaddr; 2301 struct page *page; 2302 pte_t _dst_pte, *dst_pte; 2303 int ret; 2304 pgoff_t offset, max_off; 2305 2306 ret = -ENOMEM; 2307 if (!shmem_inode_acct_block(inode, 1)) 2308 goto out; 2309 2310 if (!*pagep) { 2311 page = shmem_alloc_page(gfp, info, pgoff); 2312 if (!page) 2313 goto out_unacct_blocks; 2314 2315 if (!zeropage) { /* mcopy_atomic */ 2316 page_kaddr = kmap_atomic(page); 2317 ret = copy_from_user(page_kaddr, 2318 (const void __user *)src_addr, 2319 PAGE_SIZE); 2320 kunmap_atomic(page_kaddr); 2321 2322 /* fallback to copy_from_user outside mmap_sem */ 2323 if (unlikely(ret)) { 2324 *pagep = page; 2325 shmem_inode_unacct_blocks(inode, 1); 2326 /* don't free the page */ 2327 return -ENOENT; 2328 } 2329 } else { /* mfill_zeropage_atomic */ 2330 clear_highpage(page); 2331 } 2332 } else { 2333 page = *pagep; 2334 *pagep = NULL; 2335 } 2336 2337 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page)); 2338 __SetPageLocked(page); 2339 __SetPageSwapBacked(page); 2340 __SetPageUptodate(page); 2341 2342 ret = -EFAULT; 2343 offset = linear_page_index(dst_vma, dst_addr); 2344 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2345 if (unlikely(offset >= max_off)) 2346 goto out_release; 2347 2348 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false); 2349 if (ret) 2350 goto out_release; 2351 2352 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL, 2353 gfp & GFP_RECLAIM_MASK); 2354 if (ret) 2355 goto out_release_uncharge; 2356 2357 mem_cgroup_commit_charge(page, memcg, false, false); 2358 2359 _dst_pte = mk_pte(page, dst_vma->vm_page_prot); 2360 if (dst_vma->vm_flags & VM_WRITE) 2361 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte)); 2362 else { 2363 /* 2364 * We don't set the pte dirty if the vma has no 2365 * VM_WRITE permission, so mark the page dirty or it 2366 * could be freed from under us. We could do it 2367 * unconditionally before unlock_page(), but doing it 2368 * only if VM_WRITE is not set is faster. 2369 */ 2370 set_page_dirty(page); 2371 } 2372 2373 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); 2374 2375 ret = -EFAULT; 2376 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2377 if (unlikely(offset >= max_off)) 2378 goto out_release_uncharge_unlock; 2379 2380 ret = -EEXIST; 2381 if (!pte_none(*dst_pte)) 2382 goto out_release_uncharge_unlock; 2383 2384 lru_cache_add_anon(page); 2385 2386 spin_lock(&info->lock); 2387 info->alloced++; 2388 inode->i_blocks += BLOCKS_PER_PAGE; 2389 shmem_recalc_inode(inode); 2390 spin_unlock(&info->lock); 2391 2392 inc_mm_counter(dst_mm, mm_counter_file(page)); 2393 page_add_file_rmap(page, false); 2394 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); 2395 2396 /* No need to invalidate - it was non-present before */ 2397 update_mmu_cache(dst_vma, dst_addr, dst_pte); 2398 pte_unmap_unlock(dst_pte, ptl); 2399 unlock_page(page); 2400 ret = 0; 2401 out: 2402 return ret; 2403 out_release_uncharge_unlock: 2404 pte_unmap_unlock(dst_pte, ptl); 2405 ClearPageDirty(page); 2406 delete_from_page_cache(page); 2407 out_release_uncharge: 2408 mem_cgroup_cancel_charge(page, memcg, false); 2409 out_release: 2410 unlock_page(page); 2411 put_page(page); 2412 out_unacct_blocks: 2413 shmem_inode_unacct_blocks(inode, 1); 2414 goto out; 2415 } 2416 2417 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm, 2418 pmd_t *dst_pmd, 2419 struct vm_area_struct *dst_vma, 2420 unsigned long dst_addr, 2421 unsigned long src_addr, 2422 struct page **pagep) 2423 { 2424 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2425 dst_addr, src_addr, false, pagep); 2426 } 2427 2428 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm, 2429 pmd_t *dst_pmd, 2430 struct vm_area_struct *dst_vma, 2431 unsigned long dst_addr) 2432 { 2433 struct page *page = NULL; 2434 2435 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma, 2436 dst_addr, 0, true, &page); 2437 } 2438 2439 #ifdef CONFIG_TMPFS 2440 static const struct inode_operations shmem_symlink_inode_operations; 2441 static const struct inode_operations shmem_short_symlink_operations; 2442 2443 #ifdef CONFIG_TMPFS_XATTR 2444 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2445 #else 2446 #define shmem_initxattrs NULL 2447 #endif 2448 2449 static int 2450 shmem_write_begin(struct file *file, struct address_space *mapping, 2451 loff_t pos, unsigned len, unsigned flags, 2452 struct page **pagep, void **fsdata) 2453 { 2454 struct inode *inode = mapping->host; 2455 struct shmem_inode_info *info = SHMEM_I(inode); 2456 pgoff_t index = pos >> PAGE_SHIFT; 2457 2458 /* i_mutex is held by caller */ 2459 if (unlikely(info->seals & (F_SEAL_GROW | 2460 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2461 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2462 return -EPERM; 2463 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2464 return -EPERM; 2465 } 2466 2467 return shmem_getpage(inode, index, pagep, SGP_WRITE); 2468 } 2469 2470 static int 2471 shmem_write_end(struct file *file, struct address_space *mapping, 2472 loff_t pos, unsigned len, unsigned copied, 2473 struct page *page, void *fsdata) 2474 { 2475 struct inode *inode = mapping->host; 2476 2477 if (pos + copied > inode->i_size) 2478 i_size_write(inode, pos + copied); 2479 2480 if (!PageUptodate(page)) { 2481 struct page *head = compound_head(page); 2482 if (PageTransCompound(page)) { 2483 int i; 2484 2485 for (i = 0; i < HPAGE_PMD_NR; i++) { 2486 if (head + i == page) 2487 continue; 2488 clear_highpage(head + i); 2489 flush_dcache_page(head + i); 2490 } 2491 } 2492 if (copied < PAGE_SIZE) { 2493 unsigned from = pos & (PAGE_SIZE - 1); 2494 zero_user_segments(page, 0, from, 2495 from + copied, PAGE_SIZE); 2496 } 2497 SetPageUptodate(head); 2498 } 2499 set_page_dirty(page); 2500 unlock_page(page); 2501 put_page(page); 2502 2503 return copied; 2504 } 2505 2506 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2507 { 2508 struct file *file = iocb->ki_filp; 2509 struct inode *inode = file_inode(file); 2510 struct address_space *mapping = inode->i_mapping; 2511 pgoff_t index; 2512 unsigned long offset; 2513 enum sgp_type sgp = SGP_READ; 2514 int error = 0; 2515 ssize_t retval = 0; 2516 loff_t *ppos = &iocb->ki_pos; 2517 2518 /* 2519 * Might this read be for a stacking filesystem? Then when reading 2520 * holes of a sparse file, we actually need to allocate those pages, 2521 * and even mark them dirty, so it cannot exceed the max_blocks limit. 2522 */ 2523 if (!iter_is_iovec(to)) 2524 sgp = SGP_CACHE; 2525 2526 index = *ppos >> PAGE_SHIFT; 2527 offset = *ppos & ~PAGE_MASK; 2528 2529 for (;;) { 2530 struct page *page = NULL; 2531 pgoff_t end_index; 2532 unsigned long nr, ret; 2533 loff_t i_size = i_size_read(inode); 2534 2535 end_index = i_size >> PAGE_SHIFT; 2536 if (index > end_index) 2537 break; 2538 if (index == end_index) { 2539 nr = i_size & ~PAGE_MASK; 2540 if (nr <= offset) 2541 break; 2542 } 2543 2544 error = shmem_getpage(inode, index, &page, sgp); 2545 if (error) { 2546 if (error == -EINVAL) 2547 error = 0; 2548 break; 2549 } 2550 if (page) { 2551 if (sgp == SGP_CACHE) 2552 set_page_dirty(page); 2553 unlock_page(page); 2554 } 2555 2556 /* 2557 * We must evaluate after, since reads (unlike writes) 2558 * are called without i_mutex protection against truncate 2559 */ 2560 nr = PAGE_SIZE; 2561 i_size = i_size_read(inode); 2562 end_index = i_size >> PAGE_SHIFT; 2563 if (index == end_index) { 2564 nr = i_size & ~PAGE_MASK; 2565 if (nr <= offset) { 2566 if (page) 2567 put_page(page); 2568 break; 2569 } 2570 } 2571 nr -= offset; 2572 2573 if (page) { 2574 /* 2575 * If users can be writing to this page using arbitrary 2576 * virtual addresses, take care about potential aliasing 2577 * before reading the page on the kernel side. 2578 */ 2579 if (mapping_writably_mapped(mapping)) 2580 flush_dcache_page(page); 2581 /* 2582 * Mark the page accessed if we read the beginning. 2583 */ 2584 if (!offset) 2585 mark_page_accessed(page); 2586 } else { 2587 page = ZERO_PAGE(0); 2588 get_page(page); 2589 } 2590 2591 /* 2592 * Ok, we have the page, and it's up-to-date, so 2593 * now we can copy it to user space... 2594 */ 2595 ret = copy_page_to_iter(page, offset, nr, to); 2596 retval += ret; 2597 offset += ret; 2598 index += offset >> PAGE_SHIFT; 2599 offset &= ~PAGE_MASK; 2600 2601 put_page(page); 2602 if (!iov_iter_count(to)) 2603 break; 2604 if (ret < nr) { 2605 error = -EFAULT; 2606 break; 2607 } 2608 cond_resched(); 2609 } 2610 2611 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2612 file_accessed(file); 2613 return retval ? retval : error; 2614 } 2615 2616 /* 2617 * llseek SEEK_DATA or SEEK_HOLE through the page cache. 2618 */ 2619 static pgoff_t shmem_seek_hole_data(struct address_space *mapping, 2620 pgoff_t index, pgoff_t end, int whence) 2621 { 2622 struct page *page; 2623 struct pagevec pvec; 2624 pgoff_t indices[PAGEVEC_SIZE]; 2625 bool done = false; 2626 int i; 2627 2628 pagevec_init(&pvec); 2629 pvec.nr = 1; /* start small: we may be there already */ 2630 while (!done) { 2631 pvec.nr = find_get_entries(mapping, index, 2632 pvec.nr, pvec.pages, indices); 2633 if (!pvec.nr) { 2634 if (whence == SEEK_DATA) 2635 index = end; 2636 break; 2637 } 2638 for (i = 0; i < pvec.nr; i++, index++) { 2639 if (index < indices[i]) { 2640 if (whence == SEEK_HOLE) { 2641 done = true; 2642 break; 2643 } 2644 index = indices[i]; 2645 } 2646 page = pvec.pages[i]; 2647 if (page && !xa_is_value(page)) { 2648 if (!PageUptodate(page)) 2649 page = NULL; 2650 } 2651 if (index >= end || 2652 (page && whence == SEEK_DATA) || 2653 (!page && whence == SEEK_HOLE)) { 2654 done = true; 2655 break; 2656 } 2657 } 2658 pagevec_remove_exceptionals(&pvec); 2659 pagevec_release(&pvec); 2660 pvec.nr = PAGEVEC_SIZE; 2661 cond_resched(); 2662 } 2663 return index; 2664 } 2665 2666 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 2667 { 2668 struct address_space *mapping = file->f_mapping; 2669 struct inode *inode = mapping->host; 2670 pgoff_t start, end; 2671 loff_t new_offset; 2672 2673 if (whence != SEEK_DATA && whence != SEEK_HOLE) 2674 return generic_file_llseek_size(file, offset, whence, 2675 MAX_LFS_FILESIZE, i_size_read(inode)); 2676 inode_lock(inode); 2677 /* We're holding i_mutex so we can access i_size directly */ 2678 2679 if (offset < 0 || offset >= inode->i_size) 2680 offset = -ENXIO; 2681 else { 2682 start = offset >> PAGE_SHIFT; 2683 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; 2684 new_offset = shmem_seek_hole_data(mapping, start, end, whence); 2685 new_offset <<= PAGE_SHIFT; 2686 if (new_offset > offset) { 2687 if (new_offset < inode->i_size) 2688 offset = new_offset; 2689 else if (whence == SEEK_DATA) 2690 offset = -ENXIO; 2691 else 2692 offset = inode->i_size; 2693 } 2694 } 2695 2696 if (offset >= 0) 2697 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 2698 inode_unlock(inode); 2699 return offset; 2700 } 2701 2702 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 2703 loff_t len) 2704 { 2705 struct inode *inode = file_inode(file); 2706 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 2707 struct shmem_inode_info *info = SHMEM_I(inode); 2708 struct shmem_falloc shmem_falloc; 2709 pgoff_t start, index, end; 2710 int error; 2711 2712 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2713 return -EOPNOTSUPP; 2714 2715 inode_lock(inode); 2716 2717 if (mode & FALLOC_FL_PUNCH_HOLE) { 2718 struct address_space *mapping = file->f_mapping; 2719 loff_t unmap_start = round_up(offset, PAGE_SIZE); 2720 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 2721 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 2722 2723 /* protected by i_mutex */ 2724 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 2725 error = -EPERM; 2726 goto out; 2727 } 2728 2729 shmem_falloc.waitq = &shmem_falloc_waitq; 2730 shmem_falloc.start = unmap_start >> PAGE_SHIFT; 2731 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 2732 spin_lock(&inode->i_lock); 2733 inode->i_private = &shmem_falloc; 2734 spin_unlock(&inode->i_lock); 2735 2736 if ((u64)unmap_end > (u64)unmap_start) 2737 unmap_mapping_range(mapping, unmap_start, 2738 1 + unmap_end - unmap_start, 0); 2739 shmem_truncate_range(inode, offset, offset + len - 1); 2740 /* No need to unmap again: hole-punching leaves COWed pages */ 2741 2742 spin_lock(&inode->i_lock); 2743 inode->i_private = NULL; 2744 wake_up_all(&shmem_falloc_waitq); 2745 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 2746 spin_unlock(&inode->i_lock); 2747 error = 0; 2748 goto out; 2749 } 2750 2751 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 2752 error = inode_newsize_ok(inode, offset + len); 2753 if (error) 2754 goto out; 2755 2756 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 2757 error = -EPERM; 2758 goto out; 2759 } 2760 2761 start = offset >> PAGE_SHIFT; 2762 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 2763 /* Try to avoid a swapstorm if len is impossible to satisfy */ 2764 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 2765 error = -ENOSPC; 2766 goto out; 2767 } 2768 2769 shmem_falloc.waitq = NULL; 2770 shmem_falloc.start = start; 2771 shmem_falloc.next = start; 2772 shmem_falloc.nr_falloced = 0; 2773 shmem_falloc.nr_unswapped = 0; 2774 spin_lock(&inode->i_lock); 2775 inode->i_private = &shmem_falloc; 2776 spin_unlock(&inode->i_lock); 2777 2778 for (index = start; index < end; index++) { 2779 struct page *page; 2780 2781 /* 2782 * Good, the fallocate(2) manpage permits EINTR: we may have 2783 * been interrupted because we are using up too much memory. 2784 */ 2785 if (signal_pending(current)) 2786 error = -EINTR; 2787 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 2788 error = -ENOMEM; 2789 else 2790 error = shmem_getpage(inode, index, &page, SGP_FALLOC); 2791 if (error) { 2792 /* Remove the !PageUptodate pages we added */ 2793 if (index > start) { 2794 shmem_undo_range(inode, 2795 (loff_t)start << PAGE_SHIFT, 2796 ((loff_t)index << PAGE_SHIFT) - 1, true); 2797 } 2798 goto undone; 2799 } 2800 2801 /* 2802 * Inform shmem_writepage() how far we have reached. 2803 * No need for lock or barrier: we have the page lock. 2804 */ 2805 shmem_falloc.next++; 2806 if (!PageUptodate(page)) 2807 shmem_falloc.nr_falloced++; 2808 2809 /* 2810 * If !PageUptodate, leave it that way so that freeable pages 2811 * can be recognized if we need to rollback on error later. 2812 * But set_page_dirty so that memory pressure will swap rather 2813 * than free the pages we are allocating (and SGP_CACHE pages 2814 * might still be clean: we now need to mark those dirty too). 2815 */ 2816 set_page_dirty(page); 2817 unlock_page(page); 2818 put_page(page); 2819 cond_resched(); 2820 } 2821 2822 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 2823 i_size_write(inode, offset + len); 2824 inode->i_ctime = current_time(inode); 2825 undone: 2826 spin_lock(&inode->i_lock); 2827 inode->i_private = NULL; 2828 spin_unlock(&inode->i_lock); 2829 out: 2830 inode_unlock(inode); 2831 return error; 2832 } 2833 2834 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 2835 { 2836 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 2837 2838 buf->f_type = TMPFS_MAGIC; 2839 buf->f_bsize = PAGE_SIZE; 2840 buf->f_namelen = NAME_MAX; 2841 if (sbinfo->max_blocks) { 2842 buf->f_blocks = sbinfo->max_blocks; 2843 buf->f_bavail = 2844 buf->f_bfree = sbinfo->max_blocks - 2845 percpu_counter_sum(&sbinfo->used_blocks); 2846 } 2847 if (sbinfo->max_inodes) { 2848 buf->f_files = sbinfo->max_inodes; 2849 buf->f_ffree = sbinfo->free_inodes; 2850 } 2851 /* else leave those fields 0 like simple_statfs */ 2852 return 0; 2853 } 2854 2855 /* 2856 * File creation. Allocate an inode, and we're done.. 2857 */ 2858 static int 2859 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2860 { 2861 struct inode *inode; 2862 int error = -ENOSPC; 2863 2864 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE); 2865 if (inode) { 2866 error = simple_acl_create(dir, inode); 2867 if (error) 2868 goto out_iput; 2869 error = security_inode_init_security(inode, dir, 2870 &dentry->d_name, 2871 shmem_initxattrs, NULL); 2872 if (error && error != -EOPNOTSUPP) 2873 goto out_iput; 2874 2875 error = 0; 2876 dir->i_size += BOGO_DIRENT_SIZE; 2877 dir->i_ctime = dir->i_mtime = current_time(dir); 2878 d_instantiate(dentry, inode); 2879 dget(dentry); /* Extra count - pin the dentry in core */ 2880 } 2881 return error; 2882 out_iput: 2883 iput(inode); 2884 return error; 2885 } 2886 2887 static int 2888 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 2889 { 2890 struct inode *inode; 2891 int error = -ENOSPC; 2892 2893 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE); 2894 if (inode) { 2895 error = security_inode_init_security(inode, dir, 2896 NULL, 2897 shmem_initxattrs, NULL); 2898 if (error && error != -EOPNOTSUPP) 2899 goto out_iput; 2900 error = simple_acl_create(dir, inode); 2901 if (error) 2902 goto out_iput; 2903 d_tmpfile(dentry, inode); 2904 } 2905 return error; 2906 out_iput: 2907 iput(inode); 2908 return error; 2909 } 2910 2911 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2912 { 2913 int error; 2914 2915 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0))) 2916 return error; 2917 inc_nlink(dir); 2918 return 0; 2919 } 2920 2921 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2922 bool excl) 2923 { 2924 return shmem_mknod(dir, dentry, mode | S_IFREG, 0); 2925 } 2926 2927 /* 2928 * Link a file.. 2929 */ 2930 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2931 { 2932 struct inode *inode = d_inode(old_dentry); 2933 int ret = 0; 2934 2935 /* 2936 * No ordinary (disk based) filesystem counts links as inodes; 2937 * but each new link needs a new dentry, pinning lowmem, and 2938 * tmpfs dentries cannot be pruned until they are unlinked. 2939 * But if an O_TMPFILE file is linked into the tmpfs, the 2940 * first link must skip that, to get the accounting right. 2941 */ 2942 if (inode->i_nlink) { 2943 ret = shmem_reserve_inode(inode->i_sb); 2944 if (ret) 2945 goto out; 2946 } 2947 2948 dir->i_size += BOGO_DIRENT_SIZE; 2949 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2950 inc_nlink(inode); 2951 ihold(inode); /* New dentry reference */ 2952 dget(dentry); /* Extra pinning count for the created dentry */ 2953 d_instantiate(dentry, inode); 2954 out: 2955 return ret; 2956 } 2957 2958 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 2959 { 2960 struct inode *inode = d_inode(dentry); 2961 2962 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 2963 shmem_free_inode(inode->i_sb); 2964 2965 dir->i_size -= BOGO_DIRENT_SIZE; 2966 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 2967 drop_nlink(inode); 2968 dput(dentry); /* Undo the count from "create" - this does all the work */ 2969 return 0; 2970 } 2971 2972 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 2973 { 2974 if (!simple_empty(dentry)) 2975 return -ENOTEMPTY; 2976 2977 drop_nlink(d_inode(dentry)); 2978 drop_nlink(dir); 2979 return shmem_unlink(dir, dentry); 2980 } 2981 2982 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry) 2983 { 2984 bool old_is_dir = d_is_dir(old_dentry); 2985 bool new_is_dir = d_is_dir(new_dentry); 2986 2987 if (old_dir != new_dir && old_is_dir != new_is_dir) { 2988 if (old_is_dir) { 2989 drop_nlink(old_dir); 2990 inc_nlink(new_dir); 2991 } else { 2992 drop_nlink(new_dir); 2993 inc_nlink(old_dir); 2994 } 2995 } 2996 old_dir->i_ctime = old_dir->i_mtime = 2997 new_dir->i_ctime = new_dir->i_mtime = 2998 d_inode(old_dentry)->i_ctime = 2999 d_inode(new_dentry)->i_ctime = current_time(old_dir); 3000 3001 return 0; 3002 } 3003 3004 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry) 3005 { 3006 struct dentry *whiteout; 3007 int error; 3008 3009 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3010 if (!whiteout) 3011 return -ENOMEM; 3012 3013 error = shmem_mknod(old_dir, whiteout, 3014 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3015 dput(whiteout); 3016 if (error) 3017 return error; 3018 3019 /* 3020 * Cheat and hash the whiteout while the old dentry is still in 3021 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3022 * 3023 * d_lookup() will consistently find one of them at this point, 3024 * not sure which one, but that isn't even important. 3025 */ 3026 d_rehash(whiteout); 3027 return 0; 3028 } 3029 3030 /* 3031 * The VFS layer already does all the dentry stuff for rename, 3032 * we just have to decrement the usage count for the target if 3033 * it exists so that the VFS layer correctly free's it when it 3034 * gets overwritten. 3035 */ 3036 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags) 3037 { 3038 struct inode *inode = d_inode(old_dentry); 3039 int they_are_dirs = S_ISDIR(inode->i_mode); 3040 3041 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3042 return -EINVAL; 3043 3044 if (flags & RENAME_EXCHANGE) 3045 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry); 3046 3047 if (!simple_empty(new_dentry)) 3048 return -ENOTEMPTY; 3049 3050 if (flags & RENAME_WHITEOUT) { 3051 int error; 3052 3053 error = shmem_whiteout(old_dir, old_dentry); 3054 if (error) 3055 return error; 3056 } 3057 3058 if (d_really_is_positive(new_dentry)) { 3059 (void) shmem_unlink(new_dir, new_dentry); 3060 if (they_are_dirs) { 3061 drop_nlink(d_inode(new_dentry)); 3062 drop_nlink(old_dir); 3063 } 3064 } else if (they_are_dirs) { 3065 drop_nlink(old_dir); 3066 inc_nlink(new_dir); 3067 } 3068 3069 old_dir->i_size -= BOGO_DIRENT_SIZE; 3070 new_dir->i_size += BOGO_DIRENT_SIZE; 3071 old_dir->i_ctime = old_dir->i_mtime = 3072 new_dir->i_ctime = new_dir->i_mtime = 3073 inode->i_ctime = current_time(old_dir); 3074 return 0; 3075 } 3076 3077 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 3078 { 3079 int error; 3080 int len; 3081 struct inode *inode; 3082 struct page *page; 3083 3084 len = strlen(symname) + 1; 3085 if (len > PAGE_SIZE) 3086 return -ENAMETOOLONG; 3087 3088 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0, 3089 VM_NORESERVE); 3090 if (!inode) 3091 return -ENOSPC; 3092 3093 error = security_inode_init_security(inode, dir, &dentry->d_name, 3094 shmem_initxattrs, NULL); 3095 if (error) { 3096 if (error != -EOPNOTSUPP) { 3097 iput(inode); 3098 return error; 3099 } 3100 error = 0; 3101 } 3102 3103 inode->i_size = len-1; 3104 if (len <= SHORT_SYMLINK_LEN) { 3105 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3106 if (!inode->i_link) { 3107 iput(inode); 3108 return -ENOMEM; 3109 } 3110 inode->i_op = &shmem_short_symlink_operations; 3111 } else { 3112 inode_nohighmem(inode); 3113 error = shmem_getpage(inode, 0, &page, SGP_WRITE); 3114 if (error) { 3115 iput(inode); 3116 return error; 3117 } 3118 inode->i_mapping->a_ops = &shmem_aops; 3119 inode->i_op = &shmem_symlink_inode_operations; 3120 memcpy(page_address(page), symname, len); 3121 SetPageUptodate(page); 3122 set_page_dirty(page); 3123 unlock_page(page); 3124 put_page(page); 3125 } 3126 dir->i_size += BOGO_DIRENT_SIZE; 3127 dir->i_ctime = dir->i_mtime = current_time(dir); 3128 d_instantiate(dentry, inode); 3129 dget(dentry); 3130 return 0; 3131 } 3132 3133 static void shmem_put_link(void *arg) 3134 { 3135 mark_page_accessed(arg); 3136 put_page(arg); 3137 } 3138 3139 static const char *shmem_get_link(struct dentry *dentry, 3140 struct inode *inode, 3141 struct delayed_call *done) 3142 { 3143 struct page *page = NULL; 3144 int error; 3145 if (!dentry) { 3146 page = find_get_page(inode->i_mapping, 0); 3147 if (!page) 3148 return ERR_PTR(-ECHILD); 3149 if (!PageUptodate(page)) { 3150 put_page(page); 3151 return ERR_PTR(-ECHILD); 3152 } 3153 } else { 3154 error = shmem_getpage(inode, 0, &page, SGP_READ); 3155 if (error) 3156 return ERR_PTR(error); 3157 unlock_page(page); 3158 } 3159 set_delayed_call(done, shmem_put_link, page); 3160 return page_address(page); 3161 } 3162 3163 #ifdef CONFIG_TMPFS_XATTR 3164 /* 3165 * Superblocks without xattr inode operations may get some security.* xattr 3166 * support from the LSM "for free". As soon as we have any other xattrs 3167 * like ACLs, we also need to implement the security.* handlers at 3168 * filesystem level, though. 3169 */ 3170 3171 /* 3172 * Callback for security_inode_init_security() for acquiring xattrs. 3173 */ 3174 static int shmem_initxattrs(struct inode *inode, 3175 const struct xattr *xattr_array, 3176 void *fs_info) 3177 { 3178 struct shmem_inode_info *info = SHMEM_I(inode); 3179 const struct xattr *xattr; 3180 struct simple_xattr *new_xattr; 3181 size_t len; 3182 3183 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3184 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3185 if (!new_xattr) 3186 return -ENOMEM; 3187 3188 len = strlen(xattr->name) + 1; 3189 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3190 GFP_KERNEL); 3191 if (!new_xattr->name) { 3192 kfree(new_xattr); 3193 return -ENOMEM; 3194 } 3195 3196 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3197 XATTR_SECURITY_PREFIX_LEN); 3198 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3199 xattr->name, len); 3200 3201 simple_xattr_list_add(&info->xattrs, new_xattr); 3202 } 3203 3204 return 0; 3205 } 3206 3207 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3208 struct dentry *unused, struct inode *inode, 3209 const char *name, void *buffer, size_t size) 3210 { 3211 struct shmem_inode_info *info = SHMEM_I(inode); 3212 3213 name = xattr_full_name(handler, name); 3214 return simple_xattr_get(&info->xattrs, name, buffer, size); 3215 } 3216 3217 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3218 struct dentry *unused, struct inode *inode, 3219 const char *name, const void *value, 3220 size_t size, int flags) 3221 { 3222 struct shmem_inode_info *info = SHMEM_I(inode); 3223 3224 name = xattr_full_name(handler, name); 3225 return simple_xattr_set(&info->xattrs, name, value, size, flags); 3226 } 3227 3228 static const struct xattr_handler shmem_security_xattr_handler = { 3229 .prefix = XATTR_SECURITY_PREFIX, 3230 .get = shmem_xattr_handler_get, 3231 .set = shmem_xattr_handler_set, 3232 }; 3233 3234 static const struct xattr_handler shmem_trusted_xattr_handler = { 3235 .prefix = XATTR_TRUSTED_PREFIX, 3236 .get = shmem_xattr_handler_get, 3237 .set = shmem_xattr_handler_set, 3238 }; 3239 3240 static const struct xattr_handler *shmem_xattr_handlers[] = { 3241 #ifdef CONFIG_TMPFS_POSIX_ACL 3242 &posix_acl_access_xattr_handler, 3243 &posix_acl_default_xattr_handler, 3244 #endif 3245 &shmem_security_xattr_handler, 3246 &shmem_trusted_xattr_handler, 3247 NULL 3248 }; 3249 3250 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3251 { 3252 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3253 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3254 } 3255 #endif /* CONFIG_TMPFS_XATTR */ 3256 3257 static const struct inode_operations shmem_short_symlink_operations = { 3258 .get_link = simple_get_link, 3259 #ifdef CONFIG_TMPFS_XATTR 3260 .listxattr = shmem_listxattr, 3261 #endif 3262 }; 3263 3264 static const struct inode_operations shmem_symlink_inode_operations = { 3265 .get_link = shmem_get_link, 3266 #ifdef CONFIG_TMPFS_XATTR 3267 .listxattr = shmem_listxattr, 3268 #endif 3269 }; 3270 3271 static struct dentry *shmem_get_parent(struct dentry *child) 3272 { 3273 return ERR_PTR(-ESTALE); 3274 } 3275 3276 static int shmem_match(struct inode *ino, void *vfh) 3277 { 3278 __u32 *fh = vfh; 3279 __u64 inum = fh[2]; 3280 inum = (inum << 32) | fh[1]; 3281 return ino->i_ino == inum && fh[0] == ino->i_generation; 3282 } 3283 3284 /* Find any alias of inode, but prefer a hashed alias */ 3285 static struct dentry *shmem_find_alias(struct inode *inode) 3286 { 3287 struct dentry *alias = d_find_alias(inode); 3288 3289 return alias ?: d_find_any_alias(inode); 3290 } 3291 3292 3293 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3294 struct fid *fid, int fh_len, int fh_type) 3295 { 3296 struct inode *inode; 3297 struct dentry *dentry = NULL; 3298 u64 inum; 3299 3300 if (fh_len < 3) 3301 return NULL; 3302 3303 inum = fid->raw[2]; 3304 inum = (inum << 32) | fid->raw[1]; 3305 3306 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3307 shmem_match, fid->raw); 3308 if (inode) { 3309 dentry = shmem_find_alias(inode); 3310 iput(inode); 3311 } 3312 3313 return dentry; 3314 } 3315 3316 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3317 struct inode *parent) 3318 { 3319 if (*len < 3) { 3320 *len = 3; 3321 return FILEID_INVALID; 3322 } 3323 3324 if (inode_unhashed(inode)) { 3325 /* Unfortunately insert_inode_hash is not idempotent, 3326 * so as we hash inodes here rather than at creation 3327 * time, we need a lock to ensure we only try 3328 * to do it once 3329 */ 3330 static DEFINE_SPINLOCK(lock); 3331 spin_lock(&lock); 3332 if (inode_unhashed(inode)) 3333 __insert_inode_hash(inode, 3334 inode->i_ino + inode->i_generation); 3335 spin_unlock(&lock); 3336 } 3337 3338 fh[0] = inode->i_generation; 3339 fh[1] = inode->i_ino; 3340 fh[2] = ((__u64)inode->i_ino) >> 32; 3341 3342 *len = 3; 3343 return 1; 3344 } 3345 3346 static const struct export_operations shmem_export_ops = { 3347 .get_parent = shmem_get_parent, 3348 .encode_fh = shmem_encode_fh, 3349 .fh_to_dentry = shmem_fh_to_dentry, 3350 }; 3351 3352 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo, 3353 bool remount) 3354 { 3355 char *this_char, *value, *rest; 3356 struct mempolicy *mpol = NULL; 3357 uid_t uid; 3358 gid_t gid; 3359 3360 while (options != NULL) { 3361 this_char = options; 3362 for (;;) { 3363 /* 3364 * NUL-terminate this option: unfortunately, 3365 * mount options form a comma-separated list, 3366 * but mpol's nodelist may also contain commas. 3367 */ 3368 options = strchr(options, ','); 3369 if (options == NULL) 3370 break; 3371 options++; 3372 if (!isdigit(*options)) { 3373 options[-1] = '\0'; 3374 break; 3375 } 3376 } 3377 if (!*this_char) 3378 continue; 3379 if ((value = strchr(this_char,'=')) != NULL) { 3380 *value++ = 0; 3381 } else { 3382 pr_err("tmpfs: No value for mount option '%s'\n", 3383 this_char); 3384 goto error; 3385 } 3386 3387 if (!strcmp(this_char,"size")) { 3388 unsigned long long size; 3389 size = memparse(value,&rest); 3390 if (*rest == '%') { 3391 size <<= PAGE_SHIFT; 3392 size *= totalram_pages(); 3393 do_div(size, 100); 3394 rest++; 3395 } 3396 if (*rest) 3397 goto bad_val; 3398 sbinfo->max_blocks = 3399 DIV_ROUND_UP(size, PAGE_SIZE); 3400 } else if (!strcmp(this_char,"nr_blocks")) { 3401 sbinfo->max_blocks = memparse(value, &rest); 3402 if (*rest) 3403 goto bad_val; 3404 } else if (!strcmp(this_char,"nr_inodes")) { 3405 sbinfo->max_inodes = memparse(value, &rest); 3406 if (*rest) 3407 goto bad_val; 3408 } else if (!strcmp(this_char,"mode")) { 3409 if (remount) 3410 continue; 3411 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777; 3412 if (*rest) 3413 goto bad_val; 3414 } else if (!strcmp(this_char,"uid")) { 3415 if (remount) 3416 continue; 3417 uid = simple_strtoul(value, &rest, 0); 3418 if (*rest) 3419 goto bad_val; 3420 sbinfo->uid = make_kuid(current_user_ns(), uid); 3421 if (!uid_valid(sbinfo->uid)) 3422 goto bad_val; 3423 } else if (!strcmp(this_char,"gid")) { 3424 if (remount) 3425 continue; 3426 gid = simple_strtoul(value, &rest, 0); 3427 if (*rest) 3428 goto bad_val; 3429 sbinfo->gid = make_kgid(current_user_ns(), gid); 3430 if (!gid_valid(sbinfo->gid)) 3431 goto bad_val; 3432 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3433 } else if (!strcmp(this_char, "huge")) { 3434 int huge; 3435 huge = shmem_parse_huge(value); 3436 if (huge < 0) 3437 goto bad_val; 3438 if (!has_transparent_hugepage() && 3439 huge != SHMEM_HUGE_NEVER) 3440 goto bad_val; 3441 sbinfo->huge = huge; 3442 #endif 3443 #ifdef CONFIG_NUMA 3444 } else if (!strcmp(this_char,"mpol")) { 3445 mpol_put(mpol); 3446 mpol = NULL; 3447 if (mpol_parse_str(value, &mpol)) 3448 goto bad_val; 3449 #endif 3450 } else { 3451 pr_err("tmpfs: Bad mount option %s\n", this_char); 3452 goto error; 3453 } 3454 } 3455 sbinfo->mpol = mpol; 3456 return 0; 3457 3458 bad_val: 3459 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n", 3460 value, this_char); 3461 error: 3462 mpol_put(mpol); 3463 return 1; 3464 3465 } 3466 3467 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) 3468 { 3469 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3470 struct shmem_sb_info config = *sbinfo; 3471 unsigned long inodes; 3472 int error = -EINVAL; 3473 3474 config.mpol = NULL; 3475 if (shmem_parse_options(data, &config, true)) 3476 return error; 3477 3478 spin_lock(&sbinfo->stat_lock); 3479 inodes = sbinfo->max_inodes - sbinfo->free_inodes; 3480 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) 3481 goto out; 3482 if (config.max_inodes < inodes) 3483 goto out; 3484 /* 3485 * Those tests disallow limited->unlimited while any are in use; 3486 * but we must separately disallow unlimited->limited, because 3487 * in that case we have no record of how much is already in use. 3488 */ 3489 if (config.max_blocks && !sbinfo->max_blocks) 3490 goto out; 3491 if (config.max_inodes && !sbinfo->max_inodes) 3492 goto out; 3493 3494 error = 0; 3495 sbinfo->huge = config.huge; 3496 sbinfo->max_blocks = config.max_blocks; 3497 sbinfo->max_inodes = config.max_inodes; 3498 sbinfo->free_inodes = config.max_inodes - inodes; 3499 3500 /* 3501 * Preserve previous mempolicy unless mpol remount option was specified. 3502 */ 3503 if (config.mpol) { 3504 mpol_put(sbinfo->mpol); 3505 sbinfo->mpol = config.mpol; /* transfers initial ref */ 3506 } 3507 out: 3508 spin_unlock(&sbinfo->stat_lock); 3509 return error; 3510 } 3511 3512 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 3513 { 3514 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 3515 3516 if (sbinfo->max_blocks != shmem_default_max_blocks()) 3517 seq_printf(seq, ",size=%luk", 3518 sbinfo->max_blocks << (PAGE_SHIFT - 10)); 3519 if (sbinfo->max_inodes != shmem_default_max_inodes()) 3520 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 3521 if (sbinfo->mode != (0777 | S_ISVTX)) 3522 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 3523 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 3524 seq_printf(seq, ",uid=%u", 3525 from_kuid_munged(&init_user_ns, sbinfo->uid)); 3526 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 3527 seq_printf(seq, ",gid=%u", 3528 from_kgid_munged(&init_user_ns, sbinfo->gid)); 3529 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3530 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 3531 if (sbinfo->huge) 3532 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 3533 #endif 3534 shmem_show_mpol(seq, sbinfo->mpol); 3535 return 0; 3536 } 3537 3538 #endif /* CONFIG_TMPFS */ 3539 3540 static void shmem_put_super(struct super_block *sb) 3541 { 3542 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 3543 3544 percpu_counter_destroy(&sbinfo->used_blocks); 3545 mpol_put(sbinfo->mpol); 3546 kfree(sbinfo); 3547 sb->s_fs_info = NULL; 3548 } 3549 3550 int shmem_fill_super(struct super_block *sb, void *data, int silent) 3551 { 3552 struct inode *inode; 3553 struct shmem_sb_info *sbinfo; 3554 int err = -ENOMEM; 3555 3556 /* Round up to L1_CACHE_BYTES to resist false sharing */ 3557 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 3558 L1_CACHE_BYTES), GFP_KERNEL); 3559 if (!sbinfo) 3560 return -ENOMEM; 3561 3562 sbinfo->mode = 0777 | S_ISVTX; 3563 sbinfo->uid = current_fsuid(); 3564 sbinfo->gid = current_fsgid(); 3565 sb->s_fs_info = sbinfo; 3566 3567 #ifdef CONFIG_TMPFS 3568 /* 3569 * Per default we only allow half of the physical ram per 3570 * tmpfs instance, limiting inodes to one per page of lowmem; 3571 * but the internal instance is left unlimited. 3572 */ 3573 if (!(sb->s_flags & SB_KERNMOUNT)) { 3574 sbinfo->max_blocks = shmem_default_max_blocks(); 3575 sbinfo->max_inodes = shmem_default_max_inodes(); 3576 if (shmem_parse_options(data, sbinfo, false)) { 3577 err = -EINVAL; 3578 goto failed; 3579 } 3580 } else { 3581 sb->s_flags |= SB_NOUSER; 3582 } 3583 sb->s_export_op = &shmem_export_ops; 3584 sb->s_flags |= SB_NOSEC; 3585 #else 3586 sb->s_flags |= SB_NOUSER; 3587 #endif 3588 3589 spin_lock_init(&sbinfo->stat_lock); 3590 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 3591 goto failed; 3592 sbinfo->free_inodes = sbinfo->max_inodes; 3593 spin_lock_init(&sbinfo->shrinklist_lock); 3594 INIT_LIST_HEAD(&sbinfo->shrinklist); 3595 3596 sb->s_maxbytes = MAX_LFS_FILESIZE; 3597 sb->s_blocksize = PAGE_SIZE; 3598 sb->s_blocksize_bits = PAGE_SHIFT; 3599 sb->s_magic = TMPFS_MAGIC; 3600 sb->s_op = &shmem_ops; 3601 sb->s_time_gran = 1; 3602 #ifdef CONFIG_TMPFS_XATTR 3603 sb->s_xattr = shmem_xattr_handlers; 3604 #endif 3605 #ifdef CONFIG_TMPFS_POSIX_ACL 3606 sb->s_flags |= SB_POSIXACL; 3607 #endif 3608 uuid_gen(&sb->s_uuid); 3609 3610 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE); 3611 if (!inode) 3612 goto failed; 3613 inode->i_uid = sbinfo->uid; 3614 inode->i_gid = sbinfo->gid; 3615 sb->s_root = d_make_root(inode); 3616 if (!sb->s_root) 3617 goto failed; 3618 return 0; 3619 3620 failed: 3621 shmem_put_super(sb); 3622 return err; 3623 } 3624 3625 static struct kmem_cache *shmem_inode_cachep; 3626 3627 static struct inode *shmem_alloc_inode(struct super_block *sb) 3628 { 3629 struct shmem_inode_info *info; 3630 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL); 3631 if (!info) 3632 return NULL; 3633 return &info->vfs_inode; 3634 } 3635 3636 static void shmem_free_in_core_inode(struct inode *inode) 3637 { 3638 if (S_ISLNK(inode->i_mode)) 3639 kfree(inode->i_link); 3640 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 3641 } 3642 3643 static void shmem_destroy_inode(struct inode *inode) 3644 { 3645 if (S_ISREG(inode->i_mode)) 3646 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 3647 } 3648 3649 static void shmem_init_inode(void *foo) 3650 { 3651 struct shmem_inode_info *info = foo; 3652 inode_init_once(&info->vfs_inode); 3653 } 3654 3655 static void shmem_init_inodecache(void) 3656 { 3657 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 3658 sizeof(struct shmem_inode_info), 3659 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 3660 } 3661 3662 static void shmem_destroy_inodecache(void) 3663 { 3664 kmem_cache_destroy(shmem_inode_cachep); 3665 } 3666 3667 static const struct address_space_operations shmem_aops = { 3668 .writepage = shmem_writepage, 3669 .set_page_dirty = __set_page_dirty_no_writeback, 3670 #ifdef CONFIG_TMPFS 3671 .write_begin = shmem_write_begin, 3672 .write_end = shmem_write_end, 3673 #endif 3674 #ifdef CONFIG_MIGRATION 3675 .migratepage = migrate_page, 3676 #endif 3677 .error_remove_page = generic_error_remove_page, 3678 }; 3679 3680 static const struct file_operations shmem_file_operations = { 3681 .mmap = shmem_mmap, 3682 .get_unmapped_area = shmem_get_unmapped_area, 3683 #ifdef CONFIG_TMPFS 3684 .llseek = shmem_file_llseek, 3685 .read_iter = shmem_file_read_iter, 3686 .write_iter = generic_file_write_iter, 3687 .fsync = noop_fsync, 3688 .splice_read = generic_file_splice_read, 3689 .splice_write = iter_file_splice_write, 3690 .fallocate = shmem_fallocate, 3691 #endif 3692 }; 3693 3694 static const struct inode_operations shmem_inode_operations = { 3695 .getattr = shmem_getattr, 3696 .setattr = shmem_setattr, 3697 #ifdef CONFIG_TMPFS_XATTR 3698 .listxattr = shmem_listxattr, 3699 .set_acl = simple_set_acl, 3700 #endif 3701 }; 3702 3703 static const struct inode_operations shmem_dir_inode_operations = { 3704 #ifdef CONFIG_TMPFS 3705 .create = shmem_create, 3706 .lookup = simple_lookup, 3707 .link = shmem_link, 3708 .unlink = shmem_unlink, 3709 .symlink = shmem_symlink, 3710 .mkdir = shmem_mkdir, 3711 .rmdir = shmem_rmdir, 3712 .mknod = shmem_mknod, 3713 .rename = shmem_rename2, 3714 .tmpfile = shmem_tmpfile, 3715 #endif 3716 #ifdef CONFIG_TMPFS_XATTR 3717 .listxattr = shmem_listxattr, 3718 #endif 3719 #ifdef CONFIG_TMPFS_POSIX_ACL 3720 .setattr = shmem_setattr, 3721 .set_acl = simple_set_acl, 3722 #endif 3723 }; 3724 3725 static const struct inode_operations shmem_special_inode_operations = { 3726 #ifdef CONFIG_TMPFS_XATTR 3727 .listxattr = shmem_listxattr, 3728 #endif 3729 #ifdef CONFIG_TMPFS_POSIX_ACL 3730 .setattr = shmem_setattr, 3731 .set_acl = simple_set_acl, 3732 #endif 3733 }; 3734 3735 static const struct super_operations shmem_ops = { 3736 .alloc_inode = shmem_alloc_inode, 3737 .free_inode = shmem_free_in_core_inode, 3738 .destroy_inode = shmem_destroy_inode, 3739 #ifdef CONFIG_TMPFS 3740 .statfs = shmem_statfs, 3741 .remount_fs = shmem_remount_fs, 3742 .show_options = shmem_show_options, 3743 #endif 3744 .evict_inode = shmem_evict_inode, 3745 .drop_inode = generic_delete_inode, 3746 .put_super = shmem_put_super, 3747 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3748 .nr_cached_objects = shmem_unused_huge_count, 3749 .free_cached_objects = shmem_unused_huge_scan, 3750 #endif 3751 }; 3752 3753 static const struct vm_operations_struct shmem_vm_ops = { 3754 .fault = shmem_fault, 3755 .map_pages = filemap_map_pages, 3756 #ifdef CONFIG_NUMA 3757 .set_policy = shmem_set_policy, 3758 .get_policy = shmem_get_policy, 3759 #endif 3760 }; 3761 3762 static struct dentry *shmem_mount(struct file_system_type *fs_type, 3763 int flags, const char *dev_name, void *data) 3764 { 3765 return mount_nodev(fs_type, flags, data, shmem_fill_super); 3766 } 3767 3768 static struct file_system_type shmem_fs_type = { 3769 .owner = THIS_MODULE, 3770 .name = "tmpfs", 3771 .mount = shmem_mount, 3772 .kill_sb = kill_litter_super, 3773 .fs_flags = FS_USERNS_MOUNT, 3774 }; 3775 3776 int __init shmem_init(void) 3777 { 3778 int error; 3779 3780 shmem_init_inodecache(); 3781 3782 error = register_filesystem(&shmem_fs_type); 3783 if (error) { 3784 pr_err("Could not register tmpfs\n"); 3785 goto out2; 3786 } 3787 3788 shm_mnt = kern_mount(&shmem_fs_type); 3789 if (IS_ERR(shm_mnt)) { 3790 error = PTR_ERR(shm_mnt); 3791 pr_err("Could not kern_mount tmpfs\n"); 3792 goto out1; 3793 } 3794 3795 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3796 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 3797 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3798 else 3799 shmem_huge = 0; /* just in case it was patched */ 3800 #endif 3801 return 0; 3802 3803 out1: 3804 unregister_filesystem(&shmem_fs_type); 3805 out2: 3806 shmem_destroy_inodecache(); 3807 shm_mnt = ERR_PTR(error); 3808 return error; 3809 } 3810 3811 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS) 3812 static ssize_t shmem_enabled_show(struct kobject *kobj, 3813 struct kobj_attribute *attr, char *buf) 3814 { 3815 int values[] = { 3816 SHMEM_HUGE_ALWAYS, 3817 SHMEM_HUGE_WITHIN_SIZE, 3818 SHMEM_HUGE_ADVISE, 3819 SHMEM_HUGE_NEVER, 3820 SHMEM_HUGE_DENY, 3821 SHMEM_HUGE_FORCE, 3822 }; 3823 int i, count; 3824 3825 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) { 3826 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s "; 3827 3828 count += sprintf(buf + count, fmt, 3829 shmem_format_huge(values[i])); 3830 } 3831 buf[count - 1] = '\n'; 3832 return count; 3833 } 3834 3835 static ssize_t shmem_enabled_store(struct kobject *kobj, 3836 struct kobj_attribute *attr, const char *buf, size_t count) 3837 { 3838 char tmp[16]; 3839 int huge; 3840 3841 if (count + 1 > sizeof(tmp)) 3842 return -EINVAL; 3843 memcpy(tmp, buf, count); 3844 tmp[count] = '\0'; 3845 if (count && tmp[count - 1] == '\n') 3846 tmp[count - 1] = '\0'; 3847 3848 huge = shmem_parse_huge(tmp); 3849 if (huge == -EINVAL) 3850 return -EINVAL; 3851 if (!has_transparent_hugepage() && 3852 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 3853 return -EINVAL; 3854 3855 shmem_huge = huge; 3856 if (shmem_huge > SHMEM_HUGE_DENY) 3857 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 3858 return count; 3859 } 3860 3861 struct kobj_attribute shmem_enabled_attr = 3862 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store); 3863 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */ 3864 3865 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3866 bool shmem_huge_enabled(struct vm_area_struct *vma) 3867 { 3868 struct inode *inode = file_inode(vma->vm_file); 3869 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3870 loff_t i_size; 3871 pgoff_t off; 3872 3873 if ((vma->vm_flags & VM_NOHUGEPAGE) || 3874 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 3875 return false; 3876 if (shmem_huge == SHMEM_HUGE_FORCE) 3877 return true; 3878 if (shmem_huge == SHMEM_HUGE_DENY) 3879 return false; 3880 switch (sbinfo->huge) { 3881 case SHMEM_HUGE_NEVER: 3882 return false; 3883 case SHMEM_HUGE_ALWAYS: 3884 return true; 3885 case SHMEM_HUGE_WITHIN_SIZE: 3886 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR); 3887 i_size = round_up(i_size_read(inode), PAGE_SIZE); 3888 if (i_size >= HPAGE_PMD_SIZE && 3889 i_size >> PAGE_SHIFT >= off) 3890 return true; 3891 /* fall through */ 3892 case SHMEM_HUGE_ADVISE: 3893 /* TODO: implement fadvise() hints */ 3894 return (vma->vm_flags & VM_HUGEPAGE); 3895 default: 3896 VM_BUG_ON(1); 3897 return false; 3898 } 3899 } 3900 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */ 3901 3902 #else /* !CONFIG_SHMEM */ 3903 3904 /* 3905 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 3906 * 3907 * This is intended for small system where the benefits of the full 3908 * shmem code (swap-backed and resource-limited) are outweighed by 3909 * their complexity. On systems without swap this code should be 3910 * effectively equivalent, but much lighter weight. 3911 */ 3912 3913 static struct file_system_type shmem_fs_type = { 3914 .name = "tmpfs", 3915 .mount = ramfs_mount, 3916 .kill_sb = kill_litter_super, 3917 .fs_flags = FS_USERNS_MOUNT, 3918 }; 3919 3920 int __init shmem_init(void) 3921 { 3922 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 3923 3924 shm_mnt = kern_mount(&shmem_fs_type); 3925 BUG_ON(IS_ERR(shm_mnt)); 3926 3927 return 0; 3928 } 3929 3930 int shmem_unuse(unsigned int type, bool frontswap, 3931 unsigned long *fs_pages_to_unuse) 3932 { 3933 return 0; 3934 } 3935 3936 int shmem_lock(struct file *file, int lock, struct user_struct *user) 3937 { 3938 return 0; 3939 } 3940 3941 void shmem_unlock_mapping(struct address_space *mapping) 3942 { 3943 } 3944 3945 #ifdef CONFIG_MMU 3946 unsigned long shmem_get_unmapped_area(struct file *file, 3947 unsigned long addr, unsigned long len, 3948 unsigned long pgoff, unsigned long flags) 3949 { 3950 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 3951 } 3952 #endif 3953 3954 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 3955 { 3956 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 3957 } 3958 EXPORT_SYMBOL_GPL(shmem_truncate_range); 3959 3960 #define shmem_vm_ops generic_file_vm_ops 3961 #define shmem_file_operations ramfs_file_operations 3962 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev) 3963 #define shmem_acct_size(flags, size) 0 3964 #define shmem_unacct_size(flags, size) do {} while (0) 3965 3966 #endif /* CONFIG_SHMEM */ 3967 3968 /* common code */ 3969 3970 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 3971 unsigned long flags, unsigned int i_flags) 3972 { 3973 struct inode *inode; 3974 struct file *res; 3975 3976 if (IS_ERR(mnt)) 3977 return ERR_CAST(mnt); 3978 3979 if (size < 0 || size > MAX_LFS_FILESIZE) 3980 return ERR_PTR(-EINVAL); 3981 3982 if (shmem_acct_size(flags, size)) 3983 return ERR_PTR(-ENOMEM); 3984 3985 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0, 3986 flags); 3987 if (unlikely(!inode)) { 3988 shmem_unacct_size(flags, size); 3989 return ERR_PTR(-ENOSPC); 3990 } 3991 inode->i_flags |= i_flags; 3992 inode->i_size = size; 3993 clear_nlink(inode); /* It is unlinked */ 3994 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 3995 if (!IS_ERR(res)) 3996 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 3997 &shmem_file_operations); 3998 if (IS_ERR(res)) 3999 iput(inode); 4000 return res; 4001 } 4002 4003 /** 4004 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4005 * kernel internal. There will be NO LSM permission checks against the 4006 * underlying inode. So users of this interface must do LSM checks at a 4007 * higher layer. The users are the big_key and shm implementations. LSM 4008 * checks are provided at the key or shm level rather than the inode. 4009 * @name: name for dentry (to be seen in /proc/<pid>/maps 4010 * @size: size to be set for the file 4011 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4012 */ 4013 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4014 { 4015 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4016 } 4017 4018 /** 4019 * shmem_file_setup - get an unlinked file living in tmpfs 4020 * @name: name for dentry (to be seen in /proc/<pid>/maps 4021 * @size: size to be set for the file 4022 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4023 */ 4024 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4025 { 4026 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4027 } 4028 EXPORT_SYMBOL_GPL(shmem_file_setup); 4029 4030 /** 4031 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4032 * @mnt: the tmpfs mount where the file will be created 4033 * @name: name for dentry (to be seen in /proc/<pid>/maps 4034 * @size: size to be set for the file 4035 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4036 */ 4037 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4038 loff_t size, unsigned long flags) 4039 { 4040 return __shmem_file_setup(mnt, name, size, flags, 0); 4041 } 4042 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4043 4044 /** 4045 * shmem_zero_setup - setup a shared anonymous mapping 4046 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff 4047 */ 4048 int shmem_zero_setup(struct vm_area_struct *vma) 4049 { 4050 struct file *file; 4051 loff_t size = vma->vm_end - vma->vm_start; 4052 4053 /* 4054 * Cloning a new file under mmap_sem leads to a lock ordering conflict 4055 * between XFS directory reading and selinux: since this file is only 4056 * accessible to the user through its mapping, use S_PRIVATE flag to 4057 * bypass file security, in the same way as shmem_kernel_file_setup(). 4058 */ 4059 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4060 if (IS_ERR(file)) 4061 return PTR_ERR(file); 4062 4063 if (vma->vm_file) 4064 fput(vma->vm_file); 4065 vma->vm_file = file; 4066 vma->vm_ops = &shmem_vm_ops; 4067 4068 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && 4069 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 4070 (vma->vm_end & HPAGE_PMD_MASK)) { 4071 khugepaged_enter(vma, vma->vm_flags); 4072 } 4073 4074 return 0; 4075 } 4076 4077 /** 4078 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags. 4079 * @mapping: the page's address_space 4080 * @index: the page index 4081 * @gfp: the page allocator flags to use if allocating 4082 * 4083 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4084 * with any new page allocations done using the specified allocation flags. 4085 * But read_cache_page_gfp() uses the ->readpage() method: which does not 4086 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4087 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4088 * 4089 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4090 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4091 */ 4092 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4093 pgoff_t index, gfp_t gfp) 4094 { 4095 #ifdef CONFIG_SHMEM 4096 struct inode *inode = mapping->host; 4097 struct page *page; 4098 int error; 4099 4100 BUG_ON(mapping->a_ops != &shmem_aops); 4101 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, 4102 gfp, NULL, NULL, NULL); 4103 if (error) 4104 page = ERR_PTR(error); 4105 else 4106 unlock_page(page); 4107 return page; 4108 #else 4109 /* 4110 * The tiny !SHMEM case uses ramfs without swap 4111 */ 4112 return read_cache_page_gfp(mapping, index, gfp); 4113 #endif 4114 } 4115 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4116