1 /* 2 * Resizable virtual memory filesystem for Linux. 3 * 4 * Copyright (C) 2000 Linus Torvalds. 5 * 2000 Transmeta Corp. 6 * 2000-2001 Christoph Rohland 7 * 2000-2001 SAP AG 8 * 2002 Red Hat Inc. 9 * Copyright (C) 2002-2011 Hugh Dickins. 10 * Copyright (C) 2011 Google Inc. 11 * Copyright (C) 2002-2005 VERITAS Software Corporation. 12 * Copyright (C) 2004 Andi Kleen, SuSE Labs 13 * 14 * Extended attribute support for tmpfs: 15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net> 16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> 17 * 18 * tiny-shmem: 19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com> 20 * 21 * This file is released under the GPL. 22 */ 23 24 #include <linux/fs.h> 25 #include <linux/init.h> 26 #include <linux/vfs.h> 27 #include <linux/mount.h> 28 #include <linux/ramfs.h> 29 #include <linux/pagemap.h> 30 #include <linux/file.h> 31 #include <linux/fileattr.h> 32 #include <linux/mm.h> 33 #include <linux/random.h> 34 #include <linux/sched/signal.h> 35 #include <linux/export.h> 36 #include <linux/shmem_fs.h> 37 #include <linux/swap.h> 38 #include <linux/uio.h> 39 #include <linux/hugetlb.h> 40 #include <linux/fs_parser.h> 41 #include <linux/swapfile.h> 42 #include <linux/iversion.h> 43 #include "swap.h" 44 45 static struct vfsmount *shm_mnt; 46 47 #ifdef CONFIG_SHMEM 48 /* 49 * This virtual memory filesystem is heavily based on the ramfs. It 50 * extends ramfs by the ability to use swap and honor resource limits 51 * which makes it a completely usable filesystem. 52 */ 53 54 #include <linux/xattr.h> 55 #include <linux/exportfs.h> 56 #include <linux/posix_acl.h> 57 #include <linux/posix_acl_xattr.h> 58 #include <linux/mman.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/backing-dev.h> 62 #include <linux/writeback.h> 63 #include <linux/pagevec.h> 64 #include <linux/percpu_counter.h> 65 #include <linux/falloc.h> 66 #include <linux/splice.h> 67 #include <linux/security.h> 68 #include <linux/swapops.h> 69 #include <linux/mempolicy.h> 70 #include <linux/namei.h> 71 #include <linux/ctype.h> 72 #include <linux/migrate.h> 73 #include <linux/highmem.h> 74 #include <linux/seq_file.h> 75 #include <linux/magic.h> 76 #include <linux/syscalls.h> 77 #include <linux/fcntl.h> 78 #include <uapi/linux/memfd.h> 79 #include <linux/rmap.h> 80 #include <linux/uuid.h> 81 #include <linux/quotaops.h> 82 83 #include <linux/uaccess.h> 84 85 #include "internal.h" 86 87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512) 88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT) 89 90 /* Pretend that each entry is of this size in directory's i_size */ 91 #define BOGO_DIRENT_SIZE 20 92 93 /* Pretend that one inode + its dentry occupy this much memory */ 94 #define BOGO_INODE_SIZE 1024 95 96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */ 97 #define SHORT_SYMLINK_LEN 128 98 99 /* 100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via 101 * inode->i_private (with i_rwsem making sure that it has only one user at 102 * a time): we would prefer not to enlarge the shmem inode just for that. 103 */ 104 struct shmem_falloc { 105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */ 106 pgoff_t start; /* start of range currently being fallocated */ 107 pgoff_t next; /* the next page offset to be fallocated */ 108 pgoff_t nr_falloced; /* how many new pages have been fallocated */ 109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */ 110 }; 111 112 struct shmem_options { 113 unsigned long long blocks; 114 unsigned long long inodes; 115 struct mempolicy *mpol; 116 kuid_t uid; 117 kgid_t gid; 118 umode_t mode; 119 bool full_inums; 120 int huge; 121 int seen; 122 bool noswap; 123 unsigned short quota_types; 124 struct shmem_quota_limits qlimits; 125 #define SHMEM_SEEN_BLOCKS 1 126 #define SHMEM_SEEN_INODES 2 127 #define SHMEM_SEEN_HUGE 4 128 #define SHMEM_SEEN_INUMS 8 129 #define SHMEM_SEEN_NOSWAP 16 130 #define SHMEM_SEEN_QUOTA 32 131 }; 132 133 #ifdef CONFIG_TMPFS 134 static unsigned long shmem_default_max_blocks(void) 135 { 136 return totalram_pages() / 2; 137 } 138 139 static unsigned long shmem_default_max_inodes(void) 140 { 141 unsigned long nr_pages = totalram_pages(); 142 143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2, 144 ULONG_MAX / BOGO_INODE_SIZE); 145 } 146 #endif 147 148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 149 struct folio **foliop, enum sgp_type sgp, 150 gfp_t gfp, struct vm_area_struct *vma, 151 vm_fault_t *fault_type); 152 153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb) 154 { 155 return sb->s_fs_info; 156 } 157 158 /* 159 * shmem_file_setup pre-accounts the whole fixed size of a VM object, 160 * for shared memory and for shared anonymous (/dev/zero) mappings 161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1), 162 * consistent with the pre-accounting of private mappings ... 163 */ 164 static inline int shmem_acct_size(unsigned long flags, loff_t size) 165 { 166 return (flags & VM_NORESERVE) ? 167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size)); 168 } 169 170 static inline void shmem_unacct_size(unsigned long flags, loff_t size) 171 { 172 if (!(flags & VM_NORESERVE)) 173 vm_unacct_memory(VM_ACCT(size)); 174 } 175 176 static inline int shmem_reacct_size(unsigned long flags, 177 loff_t oldsize, loff_t newsize) 178 { 179 if (!(flags & VM_NORESERVE)) { 180 if (VM_ACCT(newsize) > VM_ACCT(oldsize)) 181 return security_vm_enough_memory_mm(current->mm, 182 VM_ACCT(newsize) - VM_ACCT(oldsize)); 183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize)) 184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize)); 185 } 186 return 0; 187 } 188 189 /* 190 * ... whereas tmpfs objects are accounted incrementally as 191 * pages are allocated, in order to allow large sparse files. 192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM, 193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM. 194 */ 195 static inline int shmem_acct_block(unsigned long flags, long pages) 196 { 197 if (!(flags & VM_NORESERVE)) 198 return 0; 199 200 return security_vm_enough_memory_mm(current->mm, 201 pages * VM_ACCT(PAGE_SIZE)); 202 } 203 204 static inline void shmem_unacct_blocks(unsigned long flags, long pages) 205 { 206 if (flags & VM_NORESERVE) 207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE)); 208 } 209 210 static int shmem_inode_acct_block(struct inode *inode, long pages) 211 { 212 struct shmem_inode_info *info = SHMEM_I(inode); 213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 214 int err = -ENOSPC; 215 216 if (shmem_acct_block(info->flags, pages)) 217 return err; 218 219 might_sleep(); /* when quotas */ 220 if (sbinfo->max_blocks) { 221 if (percpu_counter_compare(&sbinfo->used_blocks, 222 sbinfo->max_blocks - pages) > 0) 223 goto unacct; 224 225 err = dquot_alloc_block_nodirty(inode, pages); 226 if (err) 227 goto unacct; 228 229 percpu_counter_add(&sbinfo->used_blocks, pages); 230 } else { 231 err = dquot_alloc_block_nodirty(inode, pages); 232 if (err) 233 goto unacct; 234 } 235 236 return 0; 237 238 unacct: 239 shmem_unacct_blocks(info->flags, pages); 240 return err; 241 } 242 243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages) 244 { 245 struct shmem_inode_info *info = SHMEM_I(inode); 246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 247 248 might_sleep(); /* when quotas */ 249 dquot_free_block_nodirty(inode, pages); 250 251 if (sbinfo->max_blocks) 252 percpu_counter_sub(&sbinfo->used_blocks, pages); 253 shmem_unacct_blocks(info->flags, pages); 254 } 255 256 static const struct super_operations shmem_ops; 257 const struct address_space_operations shmem_aops; 258 static const struct file_operations shmem_file_operations; 259 static const struct inode_operations shmem_inode_operations; 260 static const struct inode_operations shmem_dir_inode_operations; 261 static const struct inode_operations shmem_special_inode_operations; 262 static const struct vm_operations_struct shmem_vm_ops; 263 static const struct vm_operations_struct shmem_anon_vm_ops; 264 static struct file_system_type shmem_fs_type; 265 266 bool vma_is_anon_shmem(struct vm_area_struct *vma) 267 { 268 return vma->vm_ops == &shmem_anon_vm_ops; 269 } 270 271 bool vma_is_shmem(struct vm_area_struct *vma) 272 { 273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops; 274 } 275 276 static LIST_HEAD(shmem_swaplist); 277 static DEFINE_MUTEX(shmem_swaplist_mutex); 278 279 #ifdef CONFIG_TMPFS_QUOTA 280 281 static int shmem_enable_quotas(struct super_block *sb, 282 unsigned short quota_types) 283 { 284 int type, err = 0; 285 286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) { 288 if (!(quota_types & (1 << type))) 289 continue; 290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM, 291 DQUOT_USAGE_ENABLED | 292 DQUOT_LIMITS_ENABLED); 293 if (err) 294 goto out_err; 295 } 296 return 0; 297 298 out_err: 299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n", 300 type, err); 301 for (type--; type >= 0; type--) 302 dquot_quota_off(sb, type); 303 return err; 304 } 305 306 static void shmem_disable_quotas(struct super_block *sb) 307 { 308 int type; 309 310 for (type = 0; type < SHMEM_MAXQUOTAS; type++) 311 dquot_quota_off(sb, type); 312 } 313 314 static struct dquot **shmem_get_dquots(struct inode *inode) 315 { 316 return SHMEM_I(inode)->i_dquot; 317 } 318 #endif /* CONFIG_TMPFS_QUOTA */ 319 320 /* 321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and 322 * produces a novel ino for the newly allocated inode. 323 * 324 * It may also be called when making a hard link to permit the space needed by 325 * each dentry. However, in that case, no new inode number is needed since that 326 * internally draws from another pool of inode numbers (currently global 327 * get_next_ino()). This case is indicated by passing NULL as inop. 328 */ 329 #define SHMEM_INO_BATCH 1024 330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop) 331 { 332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 333 ino_t ino; 334 335 if (!(sb->s_flags & SB_KERNMOUNT)) { 336 raw_spin_lock(&sbinfo->stat_lock); 337 if (sbinfo->max_inodes) { 338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) { 339 raw_spin_unlock(&sbinfo->stat_lock); 340 return -ENOSPC; 341 } 342 sbinfo->free_ispace -= BOGO_INODE_SIZE; 343 } 344 if (inop) { 345 ino = sbinfo->next_ino++; 346 if (unlikely(is_zero_ino(ino))) 347 ino = sbinfo->next_ino++; 348 if (unlikely(!sbinfo->full_inums && 349 ino > UINT_MAX)) { 350 /* 351 * Emulate get_next_ino uint wraparound for 352 * compatibility 353 */ 354 if (IS_ENABLED(CONFIG_64BIT)) 355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n", 356 __func__, MINOR(sb->s_dev)); 357 sbinfo->next_ino = 1; 358 ino = sbinfo->next_ino++; 359 } 360 *inop = ino; 361 } 362 raw_spin_unlock(&sbinfo->stat_lock); 363 } else if (inop) { 364 /* 365 * __shmem_file_setup, one of our callers, is lock-free: it 366 * doesn't hold stat_lock in shmem_reserve_inode since 367 * max_inodes is always 0, and is called from potentially 368 * unknown contexts. As such, use a per-cpu batched allocator 369 * which doesn't require the per-sb stat_lock unless we are at 370 * the batch boundary. 371 * 372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT 373 * shmem mounts are not exposed to userspace, so we don't need 374 * to worry about things like glibc compatibility. 375 */ 376 ino_t *next_ino; 377 378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu()); 379 ino = *next_ino; 380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) { 381 raw_spin_lock(&sbinfo->stat_lock); 382 ino = sbinfo->next_ino; 383 sbinfo->next_ino += SHMEM_INO_BATCH; 384 raw_spin_unlock(&sbinfo->stat_lock); 385 if (unlikely(is_zero_ino(ino))) 386 ino++; 387 } 388 *inop = ino; 389 *next_ino = ++ino; 390 put_cpu(); 391 } 392 393 return 0; 394 } 395 396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace) 397 { 398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 399 if (sbinfo->max_inodes) { 400 raw_spin_lock(&sbinfo->stat_lock); 401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace; 402 raw_spin_unlock(&sbinfo->stat_lock); 403 } 404 } 405 406 /** 407 * shmem_recalc_inode - recalculate the block usage of an inode 408 * @inode: inode to recalc 409 * @alloced: the change in number of pages allocated to inode 410 * @swapped: the change in number of pages swapped from inode 411 * 412 * We have to calculate the free blocks since the mm can drop 413 * undirtied hole pages behind our back. 414 * 415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped 416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped) 417 */ 418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped) 419 { 420 struct shmem_inode_info *info = SHMEM_I(inode); 421 long freed; 422 423 spin_lock(&info->lock); 424 info->alloced += alloced; 425 info->swapped += swapped; 426 freed = info->alloced - info->swapped - 427 READ_ONCE(inode->i_mapping->nrpages); 428 /* 429 * Special case: whereas normally shmem_recalc_inode() is called 430 * after i_mapping->nrpages has already been adjusted (up or down), 431 * shmem_writepage() has to raise swapped before nrpages is lowered - 432 * to stop a racing shmem_recalc_inode() from thinking that a page has 433 * been freed. Compensate here, to avoid the need for a followup call. 434 */ 435 if (swapped > 0) 436 freed += swapped; 437 if (freed > 0) 438 info->alloced -= freed; 439 spin_unlock(&info->lock); 440 441 /* The quota case may block */ 442 if (freed > 0) 443 shmem_inode_unacct_blocks(inode, freed); 444 } 445 446 bool shmem_charge(struct inode *inode, long pages) 447 { 448 struct address_space *mapping = inode->i_mapping; 449 450 if (shmem_inode_acct_block(inode, pages)) 451 return false; 452 453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */ 454 xa_lock_irq(&mapping->i_pages); 455 mapping->nrpages += pages; 456 xa_unlock_irq(&mapping->i_pages); 457 458 shmem_recalc_inode(inode, pages, 0); 459 return true; 460 } 461 462 void shmem_uncharge(struct inode *inode, long pages) 463 { 464 /* pages argument is currently unused: keep it to help debugging */ 465 /* nrpages adjustment done by __filemap_remove_folio() or caller */ 466 467 shmem_recalc_inode(inode, 0, 0); 468 } 469 470 /* 471 * Replace item expected in xarray by a new item, while holding xa_lock. 472 */ 473 static int shmem_replace_entry(struct address_space *mapping, 474 pgoff_t index, void *expected, void *replacement) 475 { 476 XA_STATE(xas, &mapping->i_pages, index); 477 void *item; 478 479 VM_BUG_ON(!expected); 480 VM_BUG_ON(!replacement); 481 item = xas_load(&xas); 482 if (item != expected) 483 return -ENOENT; 484 xas_store(&xas, replacement); 485 return 0; 486 } 487 488 /* 489 * Sometimes, before we decide whether to proceed or to fail, we must check 490 * that an entry was not already brought back from swap by a racing thread. 491 * 492 * Checking page is not enough: by the time a SwapCache page is locked, it 493 * might be reused, and again be SwapCache, using the same swap as before. 494 */ 495 static bool shmem_confirm_swap(struct address_space *mapping, 496 pgoff_t index, swp_entry_t swap) 497 { 498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap); 499 } 500 501 /* 502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option 503 * 504 * SHMEM_HUGE_NEVER: 505 * disables huge pages for the mount; 506 * SHMEM_HUGE_ALWAYS: 507 * enables huge pages for the mount; 508 * SHMEM_HUGE_WITHIN_SIZE: 509 * only allocate huge pages if the page will be fully within i_size, 510 * also respect fadvise()/madvise() hints; 511 * SHMEM_HUGE_ADVISE: 512 * only allocate huge pages if requested with fadvise()/madvise(); 513 */ 514 515 #define SHMEM_HUGE_NEVER 0 516 #define SHMEM_HUGE_ALWAYS 1 517 #define SHMEM_HUGE_WITHIN_SIZE 2 518 #define SHMEM_HUGE_ADVISE 3 519 520 /* 521 * Special values. 522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled: 523 * 524 * SHMEM_HUGE_DENY: 525 * disables huge on shm_mnt and all mounts, for emergency use; 526 * SHMEM_HUGE_FORCE: 527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing; 528 * 529 */ 530 #define SHMEM_HUGE_DENY (-1) 531 #define SHMEM_HUGE_FORCE (-2) 532 533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 534 /* ifdef here to avoid bloating shmem.o when not necessary */ 535 536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER; 537 538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 539 struct mm_struct *mm, unsigned long vm_flags) 540 { 541 loff_t i_size; 542 543 if (!S_ISREG(inode->i_mode)) 544 return false; 545 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags))) 546 return false; 547 if (shmem_huge == SHMEM_HUGE_DENY) 548 return false; 549 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE) 550 return true; 551 552 switch (SHMEM_SB(inode->i_sb)->huge) { 553 case SHMEM_HUGE_ALWAYS: 554 return true; 555 case SHMEM_HUGE_WITHIN_SIZE: 556 index = round_up(index + 1, HPAGE_PMD_NR); 557 i_size = round_up(i_size_read(inode), PAGE_SIZE); 558 if (i_size >> PAGE_SHIFT >= index) 559 return true; 560 fallthrough; 561 case SHMEM_HUGE_ADVISE: 562 if (mm && (vm_flags & VM_HUGEPAGE)) 563 return true; 564 fallthrough; 565 default: 566 return false; 567 } 568 } 569 570 #if defined(CONFIG_SYSFS) 571 static int shmem_parse_huge(const char *str) 572 { 573 if (!strcmp(str, "never")) 574 return SHMEM_HUGE_NEVER; 575 if (!strcmp(str, "always")) 576 return SHMEM_HUGE_ALWAYS; 577 if (!strcmp(str, "within_size")) 578 return SHMEM_HUGE_WITHIN_SIZE; 579 if (!strcmp(str, "advise")) 580 return SHMEM_HUGE_ADVISE; 581 if (!strcmp(str, "deny")) 582 return SHMEM_HUGE_DENY; 583 if (!strcmp(str, "force")) 584 return SHMEM_HUGE_FORCE; 585 return -EINVAL; 586 } 587 #endif 588 589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS) 590 static const char *shmem_format_huge(int huge) 591 { 592 switch (huge) { 593 case SHMEM_HUGE_NEVER: 594 return "never"; 595 case SHMEM_HUGE_ALWAYS: 596 return "always"; 597 case SHMEM_HUGE_WITHIN_SIZE: 598 return "within_size"; 599 case SHMEM_HUGE_ADVISE: 600 return "advise"; 601 case SHMEM_HUGE_DENY: 602 return "deny"; 603 case SHMEM_HUGE_FORCE: 604 return "force"; 605 default: 606 VM_BUG_ON(1); 607 return "bad_val"; 608 } 609 } 610 #endif 611 612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 613 struct shrink_control *sc, unsigned long nr_to_split) 614 { 615 LIST_HEAD(list), *pos, *next; 616 LIST_HEAD(to_remove); 617 struct inode *inode; 618 struct shmem_inode_info *info; 619 struct folio *folio; 620 unsigned long batch = sc ? sc->nr_to_scan : 128; 621 int split = 0; 622 623 if (list_empty(&sbinfo->shrinklist)) 624 return SHRINK_STOP; 625 626 spin_lock(&sbinfo->shrinklist_lock); 627 list_for_each_safe(pos, next, &sbinfo->shrinklist) { 628 info = list_entry(pos, struct shmem_inode_info, shrinklist); 629 630 /* pin the inode */ 631 inode = igrab(&info->vfs_inode); 632 633 /* inode is about to be evicted */ 634 if (!inode) { 635 list_del_init(&info->shrinklist); 636 goto next; 637 } 638 639 /* Check if there's anything to gain */ 640 if (round_up(inode->i_size, PAGE_SIZE) == 641 round_up(inode->i_size, HPAGE_PMD_SIZE)) { 642 list_move(&info->shrinklist, &to_remove); 643 goto next; 644 } 645 646 list_move(&info->shrinklist, &list); 647 next: 648 sbinfo->shrinklist_len--; 649 if (!--batch) 650 break; 651 } 652 spin_unlock(&sbinfo->shrinklist_lock); 653 654 list_for_each_safe(pos, next, &to_remove) { 655 info = list_entry(pos, struct shmem_inode_info, shrinklist); 656 inode = &info->vfs_inode; 657 list_del_init(&info->shrinklist); 658 iput(inode); 659 } 660 661 list_for_each_safe(pos, next, &list) { 662 int ret; 663 pgoff_t index; 664 665 info = list_entry(pos, struct shmem_inode_info, shrinklist); 666 inode = &info->vfs_inode; 667 668 if (nr_to_split && split >= nr_to_split) 669 goto move_back; 670 671 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT; 672 folio = filemap_get_folio(inode->i_mapping, index); 673 if (IS_ERR(folio)) 674 goto drop; 675 676 /* No huge page at the end of the file: nothing to split */ 677 if (!folio_test_large(folio)) { 678 folio_put(folio); 679 goto drop; 680 } 681 682 /* 683 * Move the inode on the list back to shrinklist if we failed 684 * to lock the page at this time. 685 * 686 * Waiting for the lock may lead to deadlock in the 687 * reclaim path. 688 */ 689 if (!folio_trylock(folio)) { 690 folio_put(folio); 691 goto move_back; 692 } 693 694 ret = split_folio(folio); 695 folio_unlock(folio); 696 folio_put(folio); 697 698 /* If split failed move the inode on the list back to shrinklist */ 699 if (ret) 700 goto move_back; 701 702 split++; 703 drop: 704 list_del_init(&info->shrinklist); 705 goto put; 706 move_back: 707 /* 708 * Make sure the inode is either on the global list or deleted 709 * from any local list before iput() since it could be deleted 710 * in another thread once we put the inode (then the local list 711 * is corrupted). 712 */ 713 spin_lock(&sbinfo->shrinklist_lock); 714 list_move(&info->shrinklist, &sbinfo->shrinklist); 715 sbinfo->shrinklist_len++; 716 spin_unlock(&sbinfo->shrinklist_lock); 717 put: 718 iput(inode); 719 } 720 721 return split; 722 } 723 724 static long shmem_unused_huge_scan(struct super_block *sb, 725 struct shrink_control *sc) 726 { 727 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 728 729 if (!READ_ONCE(sbinfo->shrinklist_len)) 730 return SHRINK_STOP; 731 732 return shmem_unused_huge_shrink(sbinfo, sc, 0); 733 } 734 735 static long shmem_unused_huge_count(struct super_block *sb, 736 struct shrink_control *sc) 737 { 738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 739 return READ_ONCE(sbinfo->shrinklist_len); 740 } 741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 742 743 #define shmem_huge SHMEM_HUGE_DENY 744 745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force, 746 struct mm_struct *mm, unsigned long vm_flags) 747 { 748 return false; 749 } 750 751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo, 752 struct shrink_control *sc, unsigned long nr_to_split) 753 { 754 return 0; 755 } 756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 757 758 /* 759 * Like filemap_add_folio, but error if expected item has gone. 760 */ 761 static int shmem_add_to_page_cache(struct folio *folio, 762 struct address_space *mapping, 763 pgoff_t index, void *expected, gfp_t gfp, 764 struct mm_struct *charge_mm) 765 { 766 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 767 long nr = folio_nr_pages(folio); 768 int error; 769 770 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio); 771 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 772 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 773 VM_BUG_ON(expected && folio_test_large(folio)); 774 775 folio_ref_add(folio, nr); 776 folio->mapping = mapping; 777 folio->index = index; 778 779 if (!folio_test_swapcache(folio)) { 780 error = mem_cgroup_charge(folio, charge_mm, gfp); 781 if (error) { 782 if (folio_test_pmd_mappable(folio)) { 783 count_vm_event(THP_FILE_FALLBACK); 784 count_vm_event(THP_FILE_FALLBACK_CHARGE); 785 } 786 goto error; 787 } 788 } 789 folio_throttle_swaprate(folio, gfp); 790 791 do { 792 xas_lock_irq(&xas); 793 if (expected != xas_find_conflict(&xas)) { 794 xas_set_err(&xas, -EEXIST); 795 goto unlock; 796 } 797 if (expected && xas_find_conflict(&xas)) { 798 xas_set_err(&xas, -EEXIST); 799 goto unlock; 800 } 801 xas_store(&xas, folio); 802 if (xas_error(&xas)) 803 goto unlock; 804 if (folio_test_pmd_mappable(folio)) { 805 count_vm_event(THP_FILE_ALLOC); 806 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 807 } 808 mapping->nrpages += nr; 809 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 810 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr); 811 unlock: 812 xas_unlock_irq(&xas); 813 } while (xas_nomem(&xas, gfp)); 814 815 if (xas_error(&xas)) { 816 error = xas_error(&xas); 817 goto error; 818 } 819 820 return 0; 821 error: 822 folio->mapping = NULL; 823 folio_ref_sub(folio, nr); 824 return error; 825 } 826 827 /* 828 * Like delete_from_page_cache, but substitutes swap for @folio. 829 */ 830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap) 831 { 832 struct address_space *mapping = folio->mapping; 833 long nr = folio_nr_pages(folio); 834 int error; 835 836 xa_lock_irq(&mapping->i_pages); 837 error = shmem_replace_entry(mapping, folio->index, folio, radswap); 838 folio->mapping = NULL; 839 mapping->nrpages -= nr; 840 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 841 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 842 xa_unlock_irq(&mapping->i_pages); 843 folio_put(folio); 844 BUG_ON(error); 845 } 846 847 /* 848 * Remove swap entry from page cache, free the swap and its page cache. 849 */ 850 static int shmem_free_swap(struct address_space *mapping, 851 pgoff_t index, void *radswap) 852 { 853 void *old; 854 855 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0); 856 if (old != radswap) 857 return -ENOENT; 858 free_swap_and_cache(radix_to_swp_entry(radswap)); 859 return 0; 860 } 861 862 /* 863 * Determine (in bytes) how many of the shmem object's pages mapped by the 864 * given offsets are swapped out. 865 * 866 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 867 * as long as the inode doesn't go away and racy results are not a problem. 868 */ 869 unsigned long shmem_partial_swap_usage(struct address_space *mapping, 870 pgoff_t start, pgoff_t end) 871 { 872 XA_STATE(xas, &mapping->i_pages, start); 873 struct page *page; 874 unsigned long swapped = 0; 875 unsigned long max = end - 1; 876 877 rcu_read_lock(); 878 xas_for_each(&xas, page, max) { 879 if (xas_retry(&xas, page)) 880 continue; 881 if (xa_is_value(page)) 882 swapped++; 883 if (xas.xa_index == max) 884 break; 885 if (need_resched()) { 886 xas_pause(&xas); 887 cond_resched_rcu(); 888 } 889 } 890 891 rcu_read_unlock(); 892 893 return swapped << PAGE_SHIFT; 894 } 895 896 /* 897 * Determine (in bytes) how many of the shmem object's pages mapped by the 898 * given vma is swapped out. 899 * 900 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU, 901 * as long as the inode doesn't go away and racy results are not a problem. 902 */ 903 unsigned long shmem_swap_usage(struct vm_area_struct *vma) 904 { 905 struct inode *inode = file_inode(vma->vm_file); 906 struct shmem_inode_info *info = SHMEM_I(inode); 907 struct address_space *mapping = inode->i_mapping; 908 unsigned long swapped; 909 910 /* Be careful as we don't hold info->lock */ 911 swapped = READ_ONCE(info->swapped); 912 913 /* 914 * The easier cases are when the shmem object has nothing in swap, or 915 * the vma maps it whole. Then we can simply use the stats that we 916 * already track. 917 */ 918 if (!swapped) 919 return 0; 920 921 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size) 922 return swapped << PAGE_SHIFT; 923 924 /* Here comes the more involved part */ 925 return shmem_partial_swap_usage(mapping, vma->vm_pgoff, 926 vma->vm_pgoff + vma_pages(vma)); 927 } 928 929 /* 930 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists. 931 */ 932 void shmem_unlock_mapping(struct address_space *mapping) 933 { 934 struct folio_batch fbatch; 935 pgoff_t index = 0; 936 937 folio_batch_init(&fbatch); 938 /* 939 * Minor point, but we might as well stop if someone else SHM_LOCKs it. 940 */ 941 while (!mapping_unevictable(mapping) && 942 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) { 943 check_move_unevictable_folios(&fbatch); 944 folio_batch_release(&fbatch); 945 cond_resched(); 946 } 947 } 948 949 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index) 950 { 951 struct folio *folio; 952 953 /* 954 * At first avoid shmem_get_folio(,,,SGP_READ): that fails 955 * beyond i_size, and reports fallocated folios as holes. 956 */ 957 folio = filemap_get_entry(inode->i_mapping, index); 958 if (!folio) 959 return folio; 960 if (!xa_is_value(folio)) { 961 folio_lock(folio); 962 if (folio->mapping == inode->i_mapping) 963 return folio; 964 /* The folio has been swapped out */ 965 folio_unlock(folio); 966 folio_put(folio); 967 } 968 /* 969 * But read a folio back from swap if any of it is within i_size 970 * (although in some cases this is just a waste of time). 971 */ 972 folio = NULL; 973 shmem_get_folio(inode, index, &folio, SGP_READ); 974 return folio; 975 } 976 977 /* 978 * Remove range of pages and swap entries from page cache, and free them. 979 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate. 980 */ 981 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend, 982 bool unfalloc) 983 { 984 struct address_space *mapping = inode->i_mapping; 985 struct shmem_inode_info *info = SHMEM_I(inode); 986 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 987 pgoff_t end = (lend + 1) >> PAGE_SHIFT; 988 struct folio_batch fbatch; 989 pgoff_t indices[PAGEVEC_SIZE]; 990 struct folio *folio; 991 bool same_folio; 992 long nr_swaps_freed = 0; 993 pgoff_t index; 994 int i; 995 996 if (lend == -1) 997 end = -1; /* unsigned, so actually very big */ 998 999 if (info->fallocend > start && info->fallocend <= end && !unfalloc) 1000 info->fallocend = start; 1001 1002 folio_batch_init(&fbatch); 1003 index = start; 1004 while (index < end && find_lock_entries(mapping, &index, end - 1, 1005 &fbatch, indices)) { 1006 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1007 folio = fbatch.folios[i]; 1008 1009 if (xa_is_value(folio)) { 1010 if (unfalloc) 1011 continue; 1012 nr_swaps_freed += !shmem_free_swap(mapping, 1013 indices[i], folio); 1014 continue; 1015 } 1016 1017 if (!unfalloc || !folio_test_uptodate(folio)) 1018 truncate_inode_folio(mapping, folio); 1019 folio_unlock(folio); 1020 } 1021 folio_batch_remove_exceptionals(&fbatch); 1022 folio_batch_release(&fbatch); 1023 cond_resched(); 1024 } 1025 1026 /* 1027 * When undoing a failed fallocate, we want none of the partial folio 1028 * zeroing and splitting below, but shall want to truncate the whole 1029 * folio when !uptodate indicates that it was added by this fallocate, 1030 * even when [lstart, lend] covers only a part of the folio. 1031 */ 1032 if (unfalloc) 1033 goto whole_folios; 1034 1035 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT); 1036 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT); 1037 if (folio) { 1038 same_folio = lend < folio_pos(folio) + folio_size(folio); 1039 folio_mark_dirty(folio); 1040 if (!truncate_inode_partial_folio(folio, lstart, lend)) { 1041 start = folio_next_index(folio); 1042 if (same_folio) 1043 end = folio->index; 1044 } 1045 folio_unlock(folio); 1046 folio_put(folio); 1047 folio = NULL; 1048 } 1049 1050 if (!same_folio) 1051 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT); 1052 if (folio) { 1053 folio_mark_dirty(folio); 1054 if (!truncate_inode_partial_folio(folio, lstart, lend)) 1055 end = folio->index; 1056 folio_unlock(folio); 1057 folio_put(folio); 1058 } 1059 1060 whole_folios: 1061 1062 index = start; 1063 while (index < end) { 1064 cond_resched(); 1065 1066 if (!find_get_entries(mapping, &index, end - 1, &fbatch, 1067 indices)) { 1068 /* If all gone or hole-punch or unfalloc, we're done */ 1069 if (index == start || end != -1) 1070 break; 1071 /* But if truncating, restart to make sure all gone */ 1072 index = start; 1073 continue; 1074 } 1075 for (i = 0; i < folio_batch_count(&fbatch); i++) { 1076 folio = fbatch.folios[i]; 1077 1078 if (xa_is_value(folio)) { 1079 if (unfalloc) 1080 continue; 1081 if (shmem_free_swap(mapping, indices[i], folio)) { 1082 /* Swap was replaced by page: retry */ 1083 index = indices[i]; 1084 break; 1085 } 1086 nr_swaps_freed++; 1087 continue; 1088 } 1089 1090 folio_lock(folio); 1091 1092 if (!unfalloc || !folio_test_uptodate(folio)) { 1093 if (folio_mapping(folio) != mapping) { 1094 /* Page was replaced by swap: retry */ 1095 folio_unlock(folio); 1096 index = indices[i]; 1097 break; 1098 } 1099 VM_BUG_ON_FOLIO(folio_test_writeback(folio), 1100 folio); 1101 truncate_inode_folio(mapping, folio); 1102 } 1103 folio_unlock(folio); 1104 } 1105 folio_batch_remove_exceptionals(&fbatch); 1106 folio_batch_release(&fbatch); 1107 } 1108 1109 shmem_recalc_inode(inode, 0, -nr_swaps_freed); 1110 } 1111 1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 1113 { 1114 shmem_undo_range(inode, lstart, lend, false); 1115 inode->i_mtime = inode_set_ctime_current(inode); 1116 inode_inc_iversion(inode); 1117 } 1118 EXPORT_SYMBOL_GPL(shmem_truncate_range); 1119 1120 static int shmem_getattr(struct mnt_idmap *idmap, 1121 const struct path *path, struct kstat *stat, 1122 u32 request_mask, unsigned int query_flags) 1123 { 1124 struct inode *inode = path->dentry->d_inode; 1125 struct shmem_inode_info *info = SHMEM_I(inode); 1126 1127 if (info->alloced - info->swapped != inode->i_mapping->nrpages) 1128 shmem_recalc_inode(inode, 0, 0); 1129 1130 if (info->fsflags & FS_APPEND_FL) 1131 stat->attributes |= STATX_ATTR_APPEND; 1132 if (info->fsflags & FS_IMMUTABLE_FL) 1133 stat->attributes |= STATX_ATTR_IMMUTABLE; 1134 if (info->fsflags & FS_NODUMP_FL) 1135 stat->attributes |= STATX_ATTR_NODUMP; 1136 stat->attributes_mask |= (STATX_ATTR_APPEND | 1137 STATX_ATTR_IMMUTABLE | 1138 STATX_ATTR_NODUMP); 1139 generic_fillattr(idmap, request_mask, inode, stat); 1140 1141 if (shmem_is_huge(inode, 0, false, NULL, 0)) 1142 stat->blksize = HPAGE_PMD_SIZE; 1143 1144 if (request_mask & STATX_BTIME) { 1145 stat->result_mask |= STATX_BTIME; 1146 stat->btime.tv_sec = info->i_crtime.tv_sec; 1147 stat->btime.tv_nsec = info->i_crtime.tv_nsec; 1148 } 1149 1150 return 0; 1151 } 1152 1153 static int shmem_setattr(struct mnt_idmap *idmap, 1154 struct dentry *dentry, struct iattr *attr) 1155 { 1156 struct inode *inode = d_inode(dentry); 1157 struct shmem_inode_info *info = SHMEM_I(inode); 1158 int error; 1159 bool update_mtime = false; 1160 bool update_ctime = true; 1161 1162 error = setattr_prepare(idmap, dentry, attr); 1163 if (error) 1164 return error; 1165 1166 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) { 1167 if ((inode->i_mode ^ attr->ia_mode) & 0111) { 1168 return -EPERM; 1169 } 1170 } 1171 1172 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 1173 loff_t oldsize = inode->i_size; 1174 loff_t newsize = attr->ia_size; 1175 1176 /* protected by i_rwsem */ 1177 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 1178 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 1179 return -EPERM; 1180 1181 if (newsize != oldsize) { 1182 error = shmem_reacct_size(SHMEM_I(inode)->flags, 1183 oldsize, newsize); 1184 if (error) 1185 return error; 1186 i_size_write(inode, newsize); 1187 update_mtime = true; 1188 } else { 1189 update_ctime = false; 1190 } 1191 if (newsize <= oldsize) { 1192 loff_t holebegin = round_up(newsize, PAGE_SIZE); 1193 if (oldsize > holebegin) 1194 unmap_mapping_range(inode->i_mapping, 1195 holebegin, 0, 1); 1196 if (info->alloced) 1197 shmem_truncate_range(inode, 1198 newsize, (loff_t)-1); 1199 /* unmap again to remove racily COWed private pages */ 1200 if (oldsize > holebegin) 1201 unmap_mapping_range(inode->i_mapping, 1202 holebegin, 0, 1); 1203 } 1204 } 1205 1206 if (is_quota_modification(idmap, inode, attr)) { 1207 error = dquot_initialize(inode); 1208 if (error) 1209 return error; 1210 } 1211 1212 /* Transfer quota accounting */ 1213 if (i_uid_needs_update(idmap, attr, inode) || 1214 i_gid_needs_update(idmap, attr, inode)) { 1215 error = dquot_transfer(idmap, inode, attr); 1216 1217 if (error) 1218 return error; 1219 } 1220 1221 setattr_copy(idmap, inode, attr); 1222 if (attr->ia_valid & ATTR_MODE) 1223 error = posix_acl_chmod(idmap, dentry, inode->i_mode); 1224 if (!error && update_ctime) { 1225 inode_set_ctime_current(inode); 1226 if (update_mtime) 1227 inode->i_mtime = inode_get_ctime(inode); 1228 inode_inc_iversion(inode); 1229 } 1230 return error; 1231 } 1232 1233 static void shmem_evict_inode(struct inode *inode) 1234 { 1235 struct shmem_inode_info *info = SHMEM_I(inode); 1236 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1237 size_t freed = 0; 1238 1239 if (shmem_mapping(inode->i_mapping)) { 1240 shmem_unacct_size(info->flags, inode->i_size); 1241 inode->i_size = 0; 1242 mapping_set_exiting(inode->i_mapping); 1243 shmem_truncate_range(inode, 0, (loff_t)-1); 1244 if (!list_empty(&info->shrinklist)) { 1245 spin_lock(&sbinfo->shrinklist_lock); 1246 if (!list_empty(&info->shrinklist)) { 1247 list_del_init(&info->shrinklist); 1248 sbinfo->shrinklist_len--; 1249 } 1250 spin_unlock(&sbinfo->shrinklist_lock); 1251 } 1252 while (!list_empty(&info->swaplist)) { 1253 /* Wait while shmem_unuse() is scanning this inode... */ 1254 wait_var_event(&info->stop_eviction, 1255 !atomic_read(&info->stop_eviction)); 1256 mutex_lock(&shmem_swaplist_mutex); 1257 /* ...but beware of the race if we peeked too early */ 1258 if (!atomic_read(&info->stop_eviction)) 1259 list_del_init(&info->swaplist); 1260 mutex_unlock(&shmem_swaplist_mutex); 1261 } 1262 } 1263 1264 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL); 1265 shmem_free_inode(inode->i_sb, freed); 1266 WARN_ON(inode->i_blocks); 1267 clear_inode(inode); 1268 #ifdef CONFIG_TMPFS_QUOTA 1269 dquot_free_inode(inode); 1270 dquot_drop(inode); 1271 #endif 1272 } 1273 1274 static int shmem_find_swap_entries(struct address_space *mapping, 1275 pgoff_t start, struct folio_batch *fbatch, 1276 pgoff_t *indices, unsigned int type) 1277 { 1278 XA_STATE(xas, &mapping->i_pages, start); 1279 struct folio *folio; 1280 swp_entry_t entry; 1281 1282 rcu_read_lock(); 1283 xas_for_each(&xas, folio, ULONG_MAX) { 1284 if (xas_retry(&xas, folio)) 1285 continue; 1286 1287 if (!xa_is_value(folio)) 1288 continue; 1289 1290 entry = radix_to_swp_entry(folio); 1291 /* 1292 * swapin error entries can be found in the mapping. But they're 1293 * deliberately ignored here as we've done everything we can do. 1294 */ 1295 if (swp_type(entry) != type) 1296 continue; 1297 1298 indices[folio_batch_count(fbatch)] = xas.xa_index; 1299 if (!folio_batch_add(fbatch, folio)) 1300 break; 1301 1302 if (need_resched()) { 1303 xas_pause(&xas); 1304 cond_resched_rcu(); 1305 } 1306 } 1307 rcu_read_unlock(); 1308 1309 return xas.xa_index; 1310 } 1311 1312 /* 1313 * Move the swapped pages for an inode to page cache. Returns the count 1314 * of pages swapped in, or the error in case of failure. 1315 */ 1316 static int shmem_unuse_swap_entries(struct inode *inode, 1317 struct folio_batch *fbatch, pgoff_t *indices) 1318 { 1319 int i = 0; 1320 int ret = 0; 1321 int error = 0; 1322 struct address_space *mapping = inode->i_mapping; 1323 1324 for (i = 0; i < folio_batch_count(fbatch); i++) { 1325 struct folio *folio = fbatch->folios[i]; 1326 1327 if (!xa_is_value(folio)) 1328 continue; 1329 error = shmem_swapin_folio(inode, indices[i], 1330 &folio, SGP_CACHE, 1331 mapping_gfp_mask(mapping), 1332 NULL, NULL); 1333 if (error == 0) { 1334 folio_unlock(folio); 1335 folio_put(folio); 1336 ret++; 1337 } 1338 if (error == -ENOMEM) 1339 break; 1340 error = 0; 1341 } 1342 return error ? error : ret; 1343 } 1344 1345 /* 1346 * If swap found in inode, free it and move page from swapcache to filecache. 1347 */ 1348 static int shmem_unuse_inode(struct inode *inode, unsigned int type) 1349 { 1350 struct address_space *mapping = inode->i_mapping; 1351 pgoff_t start = 0; 1352 struct folio_batch fbatch; 1353 pgoff_t indices[PAGEVEC_SIZE]; 1354 int ret = 0; 1355 1356 do { 1357 folio_batch_init(&fbatch); 1358 shmem_find_swap_entries(mapping, start, &fbatch, indices, type); 1359 if (folio_batch_count(&fbatch) == 0) { 1360 ret = 0; 1361 break; 1362 } 1363 1364 ret = shmem_unuse_swap_entries(inode, &fbatch, indices); 1365 if (ret < 0) 1366 break; 1367 1368 start = indices[folio_batch_count(&fbatch) - 1]; 1369 } while (true); 1370 1371 return ret; 1372 } 1373 1374 /* 1375 * Read all the shared memory data that resides in the swap 1376 * device 'type' back into memory, so the swap device can be 1377 * unused. 1378 */ 1379 int shmem_unuse(unsigned int type) 1380 { 1381 struct shmem_inode_info *info, *next; 1382 int error = 0; 1383 1384 if (list_empty(&shmem_swaplist)) 1385 return 0; 1386 1387 mutex_lock(&shmem_swaplist_mutex); 1388 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) { 1389 if (!info->swapped) { 1390 list_del_init(&info->swaplist); 1391 continue; 1392 } 1393 /* 1394 * Drop the swaplist mutex while searching the inode for swap; 1395 * but before doing so, make sure shmem_evict_inode() will not 1396 * remove placeholder inode from swaplist, nor let it be freed 1397 * (igrab() would protect from unlink, but not from unmount). 1398 */ 1399 atomic_inc(&info->stop_eviction); 1400 mutex_unlock(&shmem_swaplist_mutex); 1401 1402 error = shmem_unuse_inode(&info->vfs_inode, type); 1403 cond_resched(); 1404 1405 mutex_lock(&shmem_swaplist_mutex); 1406 next = list_next_entry(info, swaplist); 1407 if (!info->swapped) 1408 list_del_init(&info->swaplist); 1409 if (atomic_dec_and_test(&info->stop_eviction)) 1410 wake_up_var(&info->stop_eviction); 1411 if (error) 1412 break; 1413 } 1414 mutex_unlock(&shmem_swaplist_mutex); 1415 1416 return error; 1417 } 1418 1419 /* 1420 * Move the page from the page cache to the swap cache. 1421 */ 1422 static int shmem_writepage(struct page *page, struct writeback_control *wbc) 1423 { 1424 struct folio *folio = page_folio(page); 1425 struct address_space *mapping = folio->mapping; 1426 struct inode *inode = mapping->host; 1427 struct shmem_inode_info *info = SHMEM_I(inode); 1428 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 1429 swp_entry_t swap; 1430 pgoff_t index; 1431 1432 /* 1433 * Our capabilities prevent regular writeback or sync from ever calling 1434 * shmem_writepage; but a stacking filesystem might use ->writepage of 1435 * its underlying filesystem, in which case tmpfs should write out to 1436 * swap only in response to memory pressure, and not for the writeback 1437 * threads or sync. 1438 */ 1439 if (WARN_ON_ONCE(!wbc->for_reclaim)) 1440 goto redirty; 1441 1442 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap)) 1443 goto redirty; 1444 1445 if (!total_swap_pages) 1446 goto redirty; 1447 1448 /* 1449 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or 1450 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages, 1451 * and its shmem_writeback() needs them to be split when swapping. 1452 */ 1453 if (folio_test_large(folio)) { 1454 /* Ensure the subpages are still dirty */ 1455 folio_test_set_dirty(folio); 1456 if (split_huge_page(page) < 0) 1457 goto redirty; 1458 folio = page_folio(page); 1459 folio_clear_dirty(folio); 1460 } 1461 1462 index = folio->index; 1463 1464 /* 1465 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC 1466 * value into swapfile.c, the only way we can correctly account for a 1467 * fallocated folio arriving here is now to initialize it and write it. 1468 * 1469 * That's okay for a folio already fallocated earlier, but if we have 1470 * not yet completed the fallocation, then (a) we want to keep track 1471 * of this folio in case we have to undo it, and (b) it may not be a 1472 * good idea to continue anyway, once we're pushing into swap. So 1473 * reactivate the folio, and let shmem_fallocate() quit when too many. 1474 */ 1475 if (!folio_test_uptodate(folio)) { 1476 if (inode->i_private) { 1477 struct shmem_falloc *shmem_falloc; 1478 spin_lock(&inode->i_lock); 1479 shmem_falloc = inode->i_private; 1480 if (shmem_falloc && 1481 !shmem_falloc->waitq && 1482 index >= shmem_falloc->start && 1483 index < shmem_falloc->next) 1484 shmem_falloc->nr_unswapped++; 1485 else 1486 shmem_falloc = NULL; 1487 spin_unlock(&inode->i_lock); 1488 if (shmem_falloc) 1489 goto redirty; 1490 } 1491 folio_zero_range(folio, 0, folio_size(folio)); 1492 flush_dcache_folio(folio); 1493 folio_mark_uptodate(folio); 1494 } 1495 1496 swap = folio_alloc_swap(folio); 1497 if (!swap.val) 1498 goto redirty; 1499 1500 /* 1501 * Add inode to shmem_unuse()'s list of swapped-out inodes, 1502 * if it's not already there. Do it now before the folio is 1503 * moved to swap cache, when its pagelock no longer protects 1504 * the inode from eviction. But don't unlock the mutex until 1505 * we've incremented swapped, because shmem_unuse_inode() will 1506 * prune a !swapped inode from the swaplist under this mutex. 1507 */ 1508 mutex_lock(&shmem_swaplist_mutex); 1509 if (list_empty(&info->swaplist)) 1510 list_add(&info->swaplist, &shmem_swaplist); 1511 1512 if (add_to_swap_cache(folio, swap, 1513 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN, 1514 NULL) == 0) { 1515 shmem_recalc_inode(inode, 0, 1); 1516 swap_shmem_alloc(swap); 1517 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap)); 1518 1519 mutex_unlock(&shmem_swaplist_mutex); 1520 BUG_ON(folio_mapped(folio)); 1521 swap_writepage(&folio->page, wbc); 1522 return 0; 1523 } 1524 1525 mutex_unlock(&shmem_swaplist_mutex); 1526 put_swap_folio(folio, swap); 1527 redirty: 1528 folio_mark_dirty(folio); 1529 if (wbc->for_reclaim) 1530 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */ 1531 folio_unlock(folio); 1532 return 0; 1533 } 1534 1535 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS) 1536 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1537 { 1538 char buffer[64]; 1539 1540 if (!mpol || mpol->mode == MPOL_DEFAULT) 1541 return; /* show nothing */ 1542 1543 mpol_to_str(buffer, sizeof(buffer), mpol); 1544 1545 seq_printf(seq, ",mpol=%s", buffer); 1546 } 1547 1548 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1549 { 1550 struct mempolicy *mpol = NULL; 1551 if (sbinfo->mpol) { 1552 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */ 1553 mpol = sbinfo->mpol; 1554 mpol_get(mpol); 1555 raw_spin_unlock(&sbinfo->stat_lock); 1556 } 1557 return mpol; 1558 } 1559 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */ 1560 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol) 1561 { 1562 } 1563 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo) 1564 { 1565 return NULL; 1566 } 1567 #endif /* CONFIG_NUMA && CONFIG_TMPFS */ 1568 #ifndef CONFIG_NUMA 1569 #define vm_policy vm_private_data 1570 #endif 1571 1572 static void shmem_pseudo_vma_init(struct vm_area_struct *vma, 1573 struct shmem_inode_info *info, pgoff_t index) 1574 { 1575 /* Create a pseudo vma that just contains the policy */ 1576 vma_init(vma, NULL); 1577 /* Bias interleave by inode number to distribute better across nodes */ 1578 vma->vm_pgoff = index + info->vfs_inode.i_ino; 1579 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index); 1580 } 1581 1582 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma) 1583 { 1584 /* Drop reference taken by mpol_shared_policy_lookup() */ 1585 mpol_cond_put(vma->vm_policy); 1586 } 1587 1588 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp, 1589 struct shmem_inode_info *info, pgoff_t index) 1590 { 1591 struct vm_area_struct pvma; 1592 struct page *page; 1593 struct vm_fault vmf = { 1594 .vma = &pvma, 1595 }; 1596 1597 shmem_pseudo_vma_init(&pvma, info, index); 1598 page = swap_cluster_readahead(swap, gfp, &vmf); 1599 shmem_pseudo_vma_destroy(&pvma); 1600 1601 if (!page) 1602 return NULL; 1603 return page_folio(page); 1604 } 1605 1606 /* 1607 * Make sure huge_gfp is always more limited than limit_gfp. 1608 * Some of the flags set permissions, while others set limitations. 1609 */ 1610 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp) 1611 { 1612 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 1613 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY; 1614 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK; 1615 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK); 1616 1617 /* Allow allocations only from the originally specified zones. */ 1618 result |= zoneflags; 1619 1620 /* 1621 * Minimize the result gfp by taking the union with the deny flags, 1622 * and the intersection of the allow flags. 1623 */ 1624 result |= (limit_gfp & denyflags); 1625 result |= (huge_gfp & limit_gfp) & allowflags; 1626 1627 return result; 1628 } 1629 1630 static struct folio *shmem_alloc_hugefolio(gfp_t gfp, 1631 struct shmem_inode_info *info, pgoff_t index) 1632 { 1633 struct vm_area_struct pvma; 1634 struct address_space *mapping = info->vfs_inode.i_mapping; 1635 pgoff_t hindex; 1636 struct folio *folio; 1637 1638 hindex = round_down(index, HPAGE_PMD_NR); 1639 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1, 1640 XA_PRESENT)) 1641 return NULL; 1642 1643 shmem_pseudo_vma_init(&pvma, info, hindex); 1644 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true); 1645 shmem_pseudo_vma_destroy(&pvma); 1646 if (!folio) 1647 count_vm_event(THP_FILE_FALLBACK); 1648 return folio; 1649 } 1650 1651 static struct folio *shmem_alloc_folio(gfp_t gfp, 1652 struct shmem_inode_info *info, pgoff_t index) 1653 { 1654 struct vm_area_struct pvma; 1655 struct folio *folio; 1656 1657 shmem_pseudo_vma_init(&pvma, info, index); 1658 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false); 1659 shmem_pseudo_vma_destroy(&pvma); 1660 1661 return folio; 1662 } 1663 1664 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode, 1665 pgoff_t index, bool huge) 1666 { 1667 struct shmem_inode_info *info = SHMEM_I(inode); 1668 struct folio *folio; 1669 int nr; 1670 int err; 1671 1672 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1673 huge = false; 1674 nr = huge ? HPAGE_PMD_NR : 1; 1675 1676 err = shmem_inode_acct_block(inode, nr); 1677 if (err) 1678 goto failed; 1679 1680 if (huge) 1681 folio = shmem_alloc_hugefolio(gfp, info, index); 1682 else 1683 folio = shmem_alloc_folio(gfp, info, index); 1684 if (folio) { 1685 __folio_set_locked(folio); 1686 __folio_set_swapbacked(folio); 1687 return folio; 1688 } 1689 1690 err = -ENOMEM; 1691 shmem_inode_unacct_blocks(inode, nr); 1692 failed: 1693 return ERR_PTR(err); 1694 } 1695 1696 /* 1697 * When a page is moved from swapcache to shmem filecache (either by the 1698 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of 1699 * shmem_unuse_inode()), it may have been read in earlier from swap, in 1700 * ignorance of the mapping it belongs to. If that mapping has special 1701 * constraints (like the gma500 GEM driver, which requires RAM below 4GB), 1702 * we may need to copy to a suitable page before moving to filecache. 1703 * 1704 * In a future release, this may well be extended to respect cpuset and 1705 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page(); 1706 * but for now it is a simple matter of zone. 1707 */ 1708 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp) 1709 { 1710 return folio_zonenum(folio) > gfp_zone(gfp); 1711 } 1712 1713 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp, 1714 struct shmem_inode_info *info, pgoff_t index) 1715 { 1716 struct folio *old, *new; 1717 struct address_space *swap_mapping; 1718 swp_entry_t entry; 1719 pgoff_t swap_index; 1720 int error; 1721 1722 old = *foliop; 1723 entry = old->swap; 1724 swap_index = swp_offset(entry); 1725 swap_mapping = swap_address_space(entry); 1726 1727 /* 1728 * We have arrived here because our zones are constrained, so don't 1729 * limit chance of success by further cpuset and node constraints. 1730 */ 1731 gfp &= ~GFP_CONSTRAINT_MASK; 1732 VM_BUG_ON_FOLIO(folio_test_large(old), old); 1733 new = shmem_alloc_folio(gfp, info, index); 1734 if (!new) 1735 return -ENOMEM; 1736 1737 folio_get(new); 1738 folio_copy(new, old); 1739 flush_dcache_folio(new); 1740 1741 __folio_set_locked(new); 1742 __folio_set_swapbacked(new); 1743 folio_mark_uptodate(new); 1744 new->swap = entry; 1745 folio_set_swapcache(new); 1746 1747 /* 1748 * Our caller will very soon move newpage out of swapcache, but it's 1749 * a nice clean interface for us to replace oldpage by newpage there. 1750 */ 1751 xa_lock_irq(&swap_mapping->i_pages); 1752 error = shmem_replace_entry(swap_mapping, swap_index, old, new); 1753 if (!error) { 1754 mem_cgroup_migrate(old, new); 1755 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1); 1756 __lruvec_stat_mod_folio(new, NR_SHMEM, 1); 1757 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1); 1758 __lruvec_stat_mod_folio(old, NR_SHMEM, -1); 1759 } 1760 xa_unlock_irq(&swap_mapping->i_pages); 1761 1762 if (unlikely(error)) { 1763 /* 1764 * Is this possible? I think not, now that our callers check 1765 * both PageSwapCache and page_private after getting page lock; 1766 * but be defensive. Reverse old to newpage for clear and free. 1767 */ 1768 old = new; 1769 } else { 1770 folio_add_lru(new); 1771 *foliop = new; 1772 } 1773 1774 folio_clear_swapcache(old); 1775 old->private = NULL; 1776 1777 folio_unlock(old); 1778 folio_put_refs(old, 2); 1779 return error; 1780 } 1781 1782 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index, 1783 struct folio *folio, swp_entry_t swap) 1784 { 1785 struct address_space *mapping = inode->i_mapping; 1786 swp_entry_t swapin_error; 1787 void *old; 1788 1789 swapin_error = make_poisoned_swp_entry(); 1790 old = xa_cmpxchg_irq(&mapping->i_pages, index, 1791 swp_to_radix_entry(swap), 1792 swp_to_radix_entry(swapin_error), 0); 1793 if (old != swp_to_radix_entry(swap)) 1794 return; 1795 1796 folio_wait_writeback(folio); 1797 delete_from_swap_cache(folio); 1798 /* 1799 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks 1800 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks) 1801 * in shmem_evict_inode(). 1802 */ 1803 shmem_recalc_inode(inode, -1, -1); 1804 swap_free(swap); 1805 } 1806 1807 /* 1808 * Swap in the folio pointed to by *foliop. 1809 * Caller has to make sure that *foliop contains a valid swapped folio. 1810 * Returns 0 and the folio in foliop if success. On failure, returns the 1811 * error code and NULL in *foliop. 1812 */ 1813 static int shmem_swapin_folio(struct inode *inode, pgoff_t index, 1814 struct folio **foliop, enum sgp_type sgp, 1815 gfp_t gfp, struct vm_area_struct *vma, 1816 vm_fault_t *fault_type) 1817 { 1818 struct address_space *mapping = inode->i_mapping; 1819 struct shmem_inode_info *info = SHMEM_I(inode); 1820 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL; 1821 struct swap_info_struct *si; 1822 struct folio *folio = NULL; 1823 swp_entry_t swap; 1824 int error; 1825 1826 VM_BUG_ON(!*foliop || !xa_is_value(*foliop)); 1827 swap = radix_to_swp_entry(*foliop); 1828 *foliop = NULL; 1829 1830 if (is_poisoned_swp_entry(swap)) 1831 return -EIO; 1832 1833 si = get_swap_device(swap); 1834 if (!si) { 1835 if (!shmem_confirm_swap(mapping, index, swap)) 1836 return -EEXIST; 1837 else 1838 return -EINVAL; 1839 } 1840 1841 /* Look it up and read it in.. */ 1842 folio = swap_cache_get_folio(swap, NULL, 0); 1843 if (!folio) { 1844 /* Or update major stats only when swapin succeeds?? */ 1845 if (fault_type) { 1846 *fault_type |= VM_FAULT_MAJOR; 1847 count_vm_event(PGMAJFAULT); 1848 count_memcg_event_mm(charge_mm, PGMAJFAULT); 1849 } 1850 /* Here we actually start the io */ 1851 folio = shmem_swapin(swap, gfp, info, index); 1852 if (!folio) { 1853 error = -ENOMEM; 1854 goto failed; 1855 } 1856 } 1857 1858 /* We have to do this with folio locked to prevent races */ 1859 folio_lock(folio); 1860 if (!folio_test_swapcache(folio) || 1861 folio->swap.val != swap.val || 1862 !shmem_confirm_swap(mapping, index, swap)) { 1863 error = -EEXIST; 1864 goto unlock; 1865 } 1866 if (!folio_test_uptodate(folio)) { 1867 error = -EIO; 1868 goto failed; 1869 } 1870 folio_wait_writeback(folio); 1871 1872 /* 1873 * Some architectures may have to restore extra metadata to the 1874 * folio after reading from swap. 1875 */ 1876 arch_swap_restore(swap, folio); 1877 1878 if (shmem_should_replace_folio(folio, gfp)) { 1879 error = shmem_replace_folio(&folio, gfp, info, index); 1880 if (error) 1881 goto failed; 1882 } 1883 1884 error = shmem_add_to_page_cache(folio, mapping, index, 1885 swp_to_radix_entry(swap), gfp, 1886 charge_mm); 1887 if (error) 1888 goto failed; 1889 1890 shmem_recalc_inode(inode, 0, -1); 1891 1892 if (sgp == SGP_WRITE) 1893 folio_mark_accessed(folio); 1894 1895 delete_from_swap_cache(folio); 1896 folio_mark_dirty(folio); 1897 swap_free(swap); 1898 put_swap_device(si); 1899 1900 *foliop = folio; 1901 return 0; 1902 failed: 1903 if (!shmem_confirm_swap(mapping, index, swap)) 1904 error = -EEXIST; 1905 if (error == -EIO) 1906 shmem_set_folio_swapin_error(inode, index, folio, swap); 1907 unlock: 1908 if (folio) { 1909 folio_unlock(folio); 1910 folio_put(folio); 1911 } 1912 put_swap_device(si); 1913 1914 return error; 1915 } 1916 1917 /* 1918 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate 1919 * 1920 * If we allocate a new one we do not mark it dirty. That's up to the 1921 * vm. If we swap it in we mark it dirty since we also free the swap 1922 * entry since a page cannot live in both the swap and page cache. 1923 * 1924 * vma, vmf, and fault_type are only supplied by shmem_fault: 1925 * otherwise they are NULL. 1926 */ 1927 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index, 1928 struct folio **foliop, enum sgp_type sgp, gfp_t gfp, 1929 struct vm_area_struct *vma, struct vm_fault *vmf, 1930 vm_fault_t *fault_type) 1931 { 1932 struct address_space *mapping = inode->i_mapping; 1933 struct shmem_inode_info *info = SHMEM_I(inode); 1934 struct shmem_sb_info *sbinfo; 1935 struct mm_struct *charge_mm; 1936 struct folio *folio; 1937 pgoff_t hindex; 1938 gfp_t huge_gfp; 1939 int error; 1940 int once = 0; 1941 int alloced = 0; 1942 1943 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT)) 1944 return -EFBIG; 1945 repeat: 1946 if (sgp <= SGP_CACHE && 1947 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 1948 return -EINVAL; 1949 } 1950 1951 sbinfo = SHMEM_SB(inode->i_sb); 1952 charge_mm = vma ? vma->vm_mm : NULL; 1953 1954 folio = filemap_get_entry(mapping, index); 1955 if (folio && vma && userfaultfd_minor(vma)) { 1956 if (!xa_is_value(folio)) 1957 folio_put(folio); 1958 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR); 1959 return 0; 1960 } 1961 1962 if (xa_is_value(folio)) { 1963 error = shmem_swapin_folio(inode, index, &folio, 1964 sgp, gfp, vma, fault_type); 1965 if (error == -EEXIST) 1966 goto repeat; 1967 1968 *foliop = folio; 1969 return error; 1970 } 1971 1972 if (folio) { 1973 folio_lock(folio); 1974 1975 /* Has the folio been truncated or swapped out? */ 1976 if (unlikely(folio->mapping != mapping)) { 1977 folio_unlock(folio); 1978 folio_put(folio); 1979 goto repeat; 1980 } 1981 if (sgp == SGP_WRITE) 1982 folio_mark_accessed(folio); 1983 if (folio_test_uptodate(folio)) 1984 goto out; 1985 /* fallocated folio */ 1986 if (sgp != SGP_READ) 1987 goto clear; 1988 folio_unlock(folio); 1989 folio_put(folio); 1990 } 1991 1992 /* 1993 * SGP_READ: succeed on hole, with NULL folio, letting caller zero. 1994 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail. 1995 */ 1996 *foliop = NULL; 1997 if (sgp == SGP_READ) 1998 return 0; 1999 if (sgp == SGP_NOALLOC) 2000 return -ENOENT; 2001 2002 /* 2003 * Fast cache lookup and swap lookup did not find it: allocate. 2004 */ 2005 2006 if (vma && userfaultfd_missing(vma)) { 2007 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING); 2008 return 0; 2009 } 2010 2011 if (!shmem_is_huge(inode, index, false, 2012 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0)) 2013 goto alloc_nohuge; 2014 2015 huge_gfp = vma_thp_gfp_mask(vma); 2016 huge_gfp = limit_gfp_mask(huge_gfp, gfp); 2017 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true); 2018 if (IS_ERR(folio)) { 2019 alloc_nohuge: 2020 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false); 2021 } 2022 if (IS_ERR(folio)) { 2023 int retry = 5; 2024 2025 error = PTR_ERR(folio); 2026 folio = NULL; 2027 if (error != -ENOSPC) 2028 goto unlock; 2029 /* 2030 * Try to reclaim some space by splitting a large folio 2031 * beyond i_size on the filesystem. 2032 */ 2033 while (retry--) { 2034 int ret; 2035 2036 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1); 2037 if (ret == SHRINK_STOP) 2038 break; 2039 if (ret) 2040 goto alloc_nohuge; 2041 } 2042 goto unlock; 2043 } 2044 2045 hindex = round_down(index, folio_nr_pages(folio)); 2046 2047 if (sgp == SGP_WRITE) 2048 __folio_set_referenced(folio); 2049 2050 error = shmem_add_to_page_cache(folio, mapping, hindex, 2051 NULL, gfp & GFP_RECLAIM_MASK, 2052 charge_mm); 2053 if (error) 2054 goto unacct; 2055 2056 folio_add_lru(folio); 2057 shmem_recalc_inode(inode, folio_nr_pages(folio), 0); 2058 alloced = true; 2059 2060 if (folio_test_pmd_mappable(folio) && 2061 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) < 2062 folio_next_index(folio) - 1) { 2063 /* 2064 * Part of the large folio is beyond i_size: subject 2065 * to shrink under memory pressure. 2066 */ 2067 spin_lock(&sbinfo->shrinklist_lock); 2068 /* 2069 * _careful to defend against unlocked access to 2070 * ->shrink_list in shmem_unused_huge_shrink() 2071 */ 2072 if (list_empty_careful(&info->shrinklist)) { 2073 list_add_tail(&info->shrinklist, 2074 &sbinfo->shrinklist); 2075 sbinfo->shrinklist_len++; 2076 } 2077 spin_unlock(&sbinfo->shrinklist_lock); 2078 } 2079 2080 /* 2081 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio. 2082 */ 2083 if (sgp == SGP_FALLOC) 2084 sgp = SGP_WRITE; 2085 clear: 2086 /* 2087 * Let SGP_WRITE caller clear ends if write does not fill folio; 2088 * but SGP_FALLOC on a folio fallocated earlier must initialize 2089 * it now, lest undo on failure cancel our earlier guarantee. 2090 */ 2091 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) { 2092 long i, n = folio_nr_pages(folio); 2093 2094 for (i = 0; i < n; i++) 2095 clear_highpage(folio_page(folio, i)); 2096 flush_dcache_folio(folio); 2097 folio_mark_uptodate(folio); 2098 } 2099 2100 /* Perhaps the file has been truncated since we checked */ 2101 if (sgp <= SGP_CACHE && 2102 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) { 2103 if (alloced) { 2104 folio_clear_dirty(folio); 2105 filemap_remove_folio(folio); 2106 shmem_recalc_inode(inode, 0, 0); 2107 } 2108 error = -EINVAL; 2109 goto unlock; 2110 } 2111 out: 2112 *foliop = folio; 2113 return 0; 2114 2115 /* 2116 * Error recovery. 2117 */ 2118 unacct: 2119 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio)); 2120 2121 if (folio_test_large(folio)) { 2122 folio_unlock(folio); 2123 folio_put(folio); 2124 goto alloc_nohuge; 2125 } 2126 unlock: 2127 if (folio) { 2128 folio_unlock(folio); 2129 folio_put(folio); 2130 } 2131 if (error == -ENOSPC && !once++) { 2132 shmem_recalc_inode(inode, 0, 0); 2133 goto repeat; 2134 } 2135 if (error == -EEXIST) 2136 goto repeat; 2137 return error; 2138 } 2139 2140 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop, 2141 enum sgp_type sgp) 2142 { 2143 return shmem_get_folio_gfp(inode, index, foliop, sgp, 2144 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL); 2145 } 2146 2147 /* 2148 * This is like autoremove_wake_function, but it removes the wait queue 2149 * entry unconditionally - even if something else had already woken the 2150 * target. 2151 */ 2152 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2153 { 2154 int ret = default_wake_function(wait, mode, sync, key); 2155 list_del_init(&wait->entry); 2156 return ret; 2157 } 2158 2159 static vm_fault_t shmem_fault(struct vm_fault *vmf) 2160 { 2161 struct vm_area_struct *vma = vmf->vma; 2162 struct inode *inode = file_inode(vma->vm_file); 2163 gfp_t gfp = mapping_gfp_mask(inode->i_mapping); 2164 struct folio *folio = NULL; 2165 int err; 2166 vm_fault_t ret = VM_FAULT_LOCKED; 2167 2168 /* 2169 * Trinity finds that probing a hole which tmpfs is punching can 2170 * prevent the hole-punch from ever completing: which in turn 2171 * locks writers out with its hold on i_rwsem. So refrain from 2172 * faulting pages into the hole while it's being punched. Although 2173 * shmem_undo_range() does remove the additions, it may be unable to 2174 * keep up, as each new page needs its own unmap_mapping_range() call, 2175 * and the i_mmap tree grows ever slower to scan if new vmas are added. 2176 * 2177 * It does not matter if we sometimes reach this check just before the 2178 * hole-punch begins, so that one fault then races with the punch: 2179 * we just need to make racing faults a rare case. 2180 * 2181 * The implementation below would be much simpler if we just used a 2182 * standard mutex or completion: but we cannot take i_rwsem in fault, 2183 * and bloating every shmem inode for this unlikely case would be sad. 2184 */ 2185 if (unlikely(inode->i_private)) { 2186 struct shmem_falloc *shmem_falloc; 2187 2188 spin_lock(&inode->i_lock); 2189 shmem_falloc = inode->i_private; 2190 if (shmem_falloc && 2191 shmem_falloc->waitq && 2192 vmf->pgoff >= shmem_falloc->start && 2193 vmf->pgoff < shmem_falloc->next) { 2194 struct file *fpin; 2195 wait_queue_head_t *shmem_falloc_waitq; 2196 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function); 2197 2198 ret = VM_FAULT_NOPAGE; 2199 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2200 if (fpin) 2201 ret = VM_FAULT_RETRY; 2202 2203 shmem_falloc_waitq = shmem_falloc->waitq; 2204 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait, 2205 TASK_UNINTERRUPTIBLE); 2206 spin_unlock(&inode->i_lock); 2207 schedule(); 2208 2209 /* 2210 * shmem_falloc_waitq points into the shmem_fallocate() 2211 * stack of the hole-punching task: shmem_falloc_waitq 2212 * is usually invalid by the time we reach here, but 2213 * finish_wait() does not dereference it in that case; 2214 * though i_lock needed lest racing with wake_up_all(). 2215 */ 2216 spin_lock(&inode->i_lock); 2217 finish_wait(shmem_falloc_waitq, &shmem_fault_wait); 2218 spin_unlock(&inode->i_lock); 2219 2220 if (fpin) 2221 fput(fpin); 2222 return ret; 2223 } 2224 spin_unlock(&inode->i_lock); 2225 } 2226 2227 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE, 2228 gfp, vma, vmf, &ret); 2229 if (err) 2230 return vmf_error(err); 2231 if (folio) 2232 vmf->page = folio_file_page(folio, vmf->pgoff); 2233 return ret; 2234 } 2235 2236 unsigned long shmem_get_unmapped_area(struct file *file, 2237 unsigned long uaddr, unsigned long len, 2238 unsigned long pgoff, unsigned long flags) 2239 { 2240 unsigned long (*get_area)(struct file *, 2241 unsigned long, unsigned long, unsigned long, unsigned long); 2242 unsigned long addr; 2243 unsigned long offset; 2244 unsigned long inflated_len; 2245 unsigned long inflated_addr; 2246 unsigned long inflated_offset; 2247 2248 if (len > TASK_SIZE) 2249 return -ENOMEM; 2250 2251 get_area = current->mm->get_unmapped_area; 2252 addr = get_area(file, uaddr, len, pgoff, flags); 2253 2254 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 2255 return addr; 2256 if (IS_ERR_VALUE(addr)) 2257 return addr; 2258 if (addr & ~PAGE_MASK) 2259 return addr; 2260 if (addr > TASK_SIZE - len) 2261 return addr; 2262 2263 if (shmem_huge == SHMEM_HUGE_DENY) 2264 return addr; 2265 if (len < HPAGE_PMD_SIZE) 2266 return addr; 2267 if (flags & MAP_FIXED) 2268 return addr; 2269 /* 2270 * Our priority is to support MAP_SHARED mapped hugely; 2271 * and support MAP_PRIVATE mapped hugely too, until it is COWed. 2272 * But if caller specified an address hint and we allocated area there 2273 * successfully, respect that as before. 2274 */ 2275 if (uaddr == addr) 2276 return addr; 2277 2278 if (shmem_huge != SHMEM_HUGE_FORCE) { 2279 struct super_block *sb; 2280 2281 if (file) { 2282 VM_BUG_ON(file->f_op != &shmem_file_operations); 2283 sb = file_inode(file)->i_sb; 2284 } else { 2285 /* 2286 * Called directly from mm/mmap.c, or drivers/char/mem.c 2287 * for "/dev/zero", to create a shared anonymous object. 2288 */ 2289 if (IS_ERR(shm_mnt)) 2290 return addr; 2291 sb = shm_mnt->mnt_sb; 2292 } 2293 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER) 2294 return addr; 2295 } 2296 2297 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1); 2298 if (offset && offset + len < 2 * HPAGE_PMD_SIZE) 2299 return addr; 2300 if ((addr & (HPAGE_PMD_SIZE-1)) == offset) 2301 return addr; 2302 2303 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE; 2304 if (inflated_len > TASK_SIZE) 2305 return addr; 2306 if (inflated_len < len) 2307 return addr; 2308 2309 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags); 2310 if (IS_ERR_VALUE(inflated_addr)) 2311 return addr; 2312 if (inflated_addr & ~PAGE_MASK) 2313 return addr; 2314 2315 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1); 2316 inflated_addr += offset - inflated_offset; 2317 if (inflated_offset > offset) 2318 inflated_addr += HPAGE_PMD_SIZE; 2319 2320 if (inflated_addr > TASK_SIZE - len) 2321 return addr; 2322 return inflated_addr; 2323 } 2324 2325 #ifdef CONFIG_NUMA 2326 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol) 2327 { 2328 struct inode *inode = file_inode(vma->vm_file); 2329 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol); 2330 } 2331 2332 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 2333 unsigned long addr) 2334 { 2335 struct inode *inode = file_inode(vma->vm_file); 2336 pgoff_t index; 2337 2338 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2339 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index); 2340 } 2341 #endif 2342 2343 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 2344 { 2345 struct inode *inode = file_inode(file); 2346 struct shmem_inode_info *info = SHMEM_I(inode); 2347 int retval = -ENOMEM; 2348 2349 /* 2350 * What serializes the accesses to info->flags? 2351 * ipc_lock_object() when called from shmctl_do_lock(), 2352 * no serialization needed when called from shm_destroy(). 2353 */ 2354 if (lock && !(info->flags & VM_LOCKED)) { 2355 if (!user_shm_lock(inode->i_size, ucounts)) 2356 goto out_nomem; 2357 info->flags |= VM_LOCKED; 2358 mapping_set_unevictable(file->f_mapping); 2359 } 2360 if (!lock && (info->flags & VM_LOCKED) && ucounts) { 2361 user_shm_unlock(inode->i_size, ucounts); 2362 info->flags &= ~VM_LOCKED; 2363 mapping_clear_unevictable(file->f_mapping); 2364 } 2365 retval = 0; 2366 2367 out_nomem: 2368 return retval; 2369 } 2370 2371 static int shmem_mmap(struct file *file, struct vm_area_struct *vma) 2372 { 2373 struct inode *inode = file_inode(file); 2374 struct shmem_inode_info *info = SHMEM_I(inode); 2375 int ret; 2376 2377 ret = seal_check_future_write(info->seals, vma); 2378 if (ret) 2379 return ret; 2380 2381 /* arm64 - allow memory tagging on RAM-based files */ 2382 vm_flags_set(vma, VM_MTE_ALLOWED); 2383 2384 file_accessed(file); 2385 /* This is anonymous shared memory if it is unlinked at the time of mmap */ 2386 if (inode->i_nlink) 2387 vma->vm_ops = &shmem_vm_ops; 2388 else 2389 vma->vm_ops = &shmem_anon_vm_ops; 2390 return 0; 2391 } 2392 2393 static int shmem_file_open(struct inode *inode, struct file *file) 2394 { 2395 file->f_mode |= FMODE_CAN_ODIRECT; 2396 return generic_file_open(inode, file); 2397 } 2398 2399 #ifdef CONFIG_TMPFS_XATTR 2400 static int shmem_initxattrs(struct inode *, const struct xattr *, void *); 2401 2402 /* 2403 * chattr's fsflags are unrelated to extended attributes, 2404 * but tmpfs has chosen to enable them under the same config option. 2405 */ 2406 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2407 { 2408 unsigned int i_flags = 0; 2409 2410 if (fsflags & FS_NOATIME_FL) 2411 i_flags |= S_NOATIME; 2412 if (fsflags & FS_APPEND_FL) 2413 i_flags |= S_APPEND; 2414 if (fsflags & FS_IMMUTABLE_FL) 2415 i_flags |= S_IMMUTABLE; 2416 /* 2417 * But FS_NODUMP_FL does not require any action in i_flags. 2418 */ 2419 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE); 2420 } 2421 #else 2422 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags) 2423 { 2424 } 2425 #define shmem_initxattrs NULL 2426 #endif 2427 2428 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode) 2429 { 2430 return &SHMEM_I(inode)->dir_offsets; 2431 } 2432 2433 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap, 2434 struct super_block *sb, 2435 struct inode *dir, umode_t mode, 2436 dev_t dev, unsigned long flags) 2437 { 2438 struct inode *inode; 2439 struct shmem_inode_info *info; 2440 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 2441 ino_t ino; 2442 int err; 2443 2444 err = shmem_reserve_inode(sb, &ino); 2445 if (err) 2446 return ERR_PTR(err); 2447 2448 2449 inode = new_inode(sb); 2450 if (!inode) { 2451 shmem_free_inode(sb, 0); 2452 return ERR_PTR(-ENOSPC); 2453 } 2454 2455 inode->i_ino = ino; 2456 inode_init_owner(idmap, inode, dir, mode); 2457 inode->i_blocks = 0; 2458 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 2459 inode->i_generation = get_random_u32(); 2460 info = SHMEM_I(inode); 2461 memset(info, 0, (char *)inode - (char *)info); 2462 spin_lock_init(&info->lock); 2463 atomic_set(&info->stop_eviction, 0); 2464 info->seals = F_SEAL_SEAL; 2465 info->flags = flags & VM_NORESERVE; 2466 info->i_crtime = inode->i_mtime; 2467 info->fsflags = (dir == NULL) ? 0 : 2468 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED; 2469 if (info->fsflags) 2470 shmem_set_inode_flags(inode, info->fsflags); 2471 INIT_LIST_HEAD(&info->shrinklist); 2472 INIT_LIST_HEAD(&info->swaplist); 2473 INIT_LIST_HEAD(&info->swaplist); 2474 if (sbinfo->noswap) 2475 mapping_set_unevictable(inode->i_mapping); 2476 simple_xattrs_init(&info->xattrs); 2477 cache_no_acl(inode); 2478 mapping_set_large_folios(inode->i_mapping); 2479 2480 switch (mode & S_IFMT) { 2481 default: 2482 inode->i_op = &shmem_special_inode_operations; 2483 init_special_inode(inode, mode, dev); 2484 break; 2485 case S_IFREG: 2486 inode->i_mapping->a_ops = &shmem_aops; 2487 inode->i_op = &shmem_inode_operations; 2488 inode->i_fop = &shmem_file_operations; 2489 mpol_shared_policy_init(&info->policy, 2490 shmem_get_sbmpol(sbinfo)); 2491 break; 2492 case S_IFDIR: 2493 inc_nlink(inode); 2494 /* Some things misbehave if size == 0 on a directory */ 2495 inode->i_size = 2 * BOGO_DIRENT_SIZE; 2496 inode->i_op = &shmem_dir_inode_operations; 2497 inode->i_fop = &simple_offset_dir_operations; 2498 simple_offset_init(shmem_get_offset_ctx(inode)); 2499 break; 2500 case S_IFLNK: 2501 /* 2502 * Must not load anything in the rbtree, 2503 * mpol_free_shared_policy will not be called. 2504 */ 2505 mpol_shared_policy_init(&info->policy, NULL); 2506 break; 2507 } 2508 2509 lockdep_annotate_inode_mutex_key(inode); 2510 return inode; 2511 } 2512 2513 #ifdef CONFIG_TMPFS_QUOTA 2514 static struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2515 struct super_block *sb, struct inode *dir, 2516 umode_t mode, dev_t dev, unsigned long flags) 2517 { 2518 int err; 2519 struct inode *inode; 2520 2521 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2522 if (IS_ERR(inode)) 2523 return inode; 2524 2525 err = dquot_initialize(inode); 2526 if (err) 2527 goto errout; 2528 2529 err = dquot_alloc_inode(inode); 2530 if (err) { 2531 dquot_drop(inode); 2532 goto errout; 2533 } 2534 return inode; 2535 2536 errout: 2537 inode->i_flags |= S_NOQUOTA; 2538 iput(inode); 2539 return ERR_PTR(err); 2540 } 2541 #else 2542 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, 2543 struct super_block *sb, struct inode *dir, 2544 umode_t mode, dev_t dev, unsigned long flags) 2545 { 2546 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags); 2547 } 2548 #endif /* CONFIG_TMPFS_QUOTA */ 2549 2550 #ifdef CONFIG_USERFAULTFD 2551 int shmem_mfill_atomic_pte(pmd_t *dst_pmd, 2552 struct vm_area_struct *dst_vma, 2553 unsigned long dst_addr, 2554 unsigned long src_addr, 2555 uffd_flags_t flags, 2556 struct folio **foliop) 2557 { 2558 struct inode *inode = file_inode(dst_vma->vm_file); 2559 struct shmem_inode_info *info = SHMEM_I(inode); 2560 struct address_space *mapping = inode->i_mapping; 2561 gfp_t gfp = mapping_gfp_mask(mapping); 2562 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); 2563 void *page_kaddr; 2564 struct folio *folio; 2565 int ret; 2566 pgoff_t max_off; 2567 2568 if (shmem_inode_acct_block(inode, 1)) { 2569 /* 2570 * We may have got a page, returned -ENOENT triggering a retry, 2571 * and now we find ourselves with -ENOMEM. Release the page, to 2572 * avoid a BUG_ON in our caller. 2573 */ 2574 if (unlikely(*foliop)) { 2575 folio_put(*foliop); 2576 *foliop = NULL; 2577 } 2578 return -ENOMEM; 2579 } 2580 2581 if (!*foliop) { 2582 ret = -ENOMEM; 2583 folio = shmem_alloc_folio(gfp, info, pgoff); 2584 if (!folio) 2585 goto out_unacct_blocks; 2586 2587 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) { 2588 page_kaddr = kmap_local_folio(folio, 0); 2589 /* 2590 * The read mmap_lock is held here. Despite the 2591 * mmap_lock being read recursive a deadlock is still 2592 * possible if a writer has taken a lock. For example: 2593 * 2594 * process A thread 1 takes read lock on own mmap_lock 2595 * process A thread 2 calls mmap, blocks taking write lock 2596 * process B thread 1 takes page fault, read lock on own mmap lock 2597 * process B thread 2 calls mmap, blocks taking write lock 2598 * process A thread 1 blocks taking read lock on process B 2599 * process B thread 1 blocks taking read lock on process A 2600 * 2601 * Disable page faults to prevent potential deadlock 2602 * and retry the copy outside the mmap_lock. 2603 */ 2604 pagefault_disable(); 2605 ret = copy_from_user(page_kaddr, 2606 (const void __user *)src_addr, 2607 PAGE_SIZE); 2608 pagefault_enable(); 2609 kunmap_local(page_kaddr); 2610 2611 /* fallback to copy_from_user outside mmap_lock */ 2612 if (unlikely(ret)) { 2613 *foliop = folio; 2614 ret = -ENOENT; 2615 /* don't free the page */ 2616 goto out_unacct_blocks; 2617 } 2618 2619 flush_dcache_folio(folio); 2620 } else { /* ZEROPAGE */ 2621 clear_user_highpage(&folio->page, dst_addr); 2622 } 2623 } else { 2624 folio = *foliop; 2625 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2626 *foliop = NULL; 2627 } 2628 2629 VM_BUG_ON(folio_test_locked(folio)); 2630 VM_BUG_ON(folio_test_swapbacked(folio)); 2631 __folio_set_locked(folio); 2632 __folio_set_swapbacked(folio); 2633 __folio_mark_uptodate(folio); 2634 2635 ret = -EFAULT; 2636 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2637 if (unlikely(pgoff >= max_off)) 2638 goto out_release; 2639 2640 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, 2641 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm); 2642 if (ret) 2643 goto out_release; 2644 2645 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, 2646 &folio->page, true, flags); 2647 if (ret) 2648 goto out_delete_from_cache; 2649 2650 shmem_recalc_inode(inode, 1, 0); 2651 folio_unlock(folio); 2652 return 0; 2653 out_delete_from_cache: 2654 filemap_remove_folio(folio); 2655 out_release: 2656 folio_unlock(folio); 2657 folio_put(folio); 2658 out_unacct_blocks: 2659 shmem_inode_unacct_blocks(inode, 1); 2660 return ret; 2661 } 2662 #endif /* CONFIG_USERFAULTFD */ 2663 2664 #ifdef CONFIG_TMPFS 2665 static const struct inode_operations shmem_symlink_inode_operations; 2666 static const struct inode_operations shmem_short_symlink_operations; 2667 2668 static int 2669 shmem_write_begin(struct file *file, struct address_space *mapping, 2670 loff_t pos, unsigned len, 2671 struct page **pagep, void **fsdata) 2672 { 2673 struct inode *inode = mapping->host; 2674 struct shmem_inode_info *info = SHMEM_I(inode); 2675 pgoff_t index = pos >> PAGE_SHIFT; 2676 struct folio *folio; 2677 int ret = 0; 2678 2679 /* i_rwsem is held by caller */ 2680 if (unlikely(info->seals & (F_SEAL_GROW | 2681 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) { 2682 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) 2683 return -EPERM; 2684 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size) 2685 return -EPERM; 2686 } 2687 2688 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE); 2689 2690 if (ret) 2691 return ret; 2692 2693 *pagep = folio_file_page(folio, index); 2694 if (PageHWPoison(*pagep)) { 2695 folio_unlock(folio); 2696 folio_put(folio); 2697 *pagep = NULL; 2698 return -EIO; 2699 } 2700 2701 return 0; 2702 } 2703 2704 static int 2705 shmem_write_end(struct file *file, struct address_space *mapping, 2706 loff_t pos, unsigned len, unsigned copied, 2707 struct page *page, void *fsdata) 2708 { 2709 struct folio *folio = page_folio(page); 2710 struct inode *inode = mapping->host; 2711 2712 if (pos + copied > inode->i_size) 2713 i_size_write(inode, pos + copied); 2714 2715 if (!folio_test_uptodate(folio)) { 2716 if (copied < folio_size(folio)) { 2717 size_t from = offset_in_folio(folio, pos); 2718 folio_zero_segments(folio, 0, from, 2719 from + copied, folio_size(folio)); 2720 } 2721 folio_mark_uptodate(folio); 2722 } 2723 folio_mark_dirty(folio); 2724 folio_unlock(folio); 2725 folio_put(folio); 2726 2727 return copied; 2728 } 2729 2730 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 2731 { 2732 struct file *file = iocb->ki_filp; 2733 struct inode *inode = file_inode(file); 2734 struct address_space *mapping = inode->i_mapping; 2735 pgoff_t index; 2736 unsigned long offset; 2737 int error = 0; 2738 ssize_t retval = 0; 2739 loff_t *ppos = &iocb->ki_pos; 2740 2741 index = *ppos >> PAGE_SHIFT; 2742 offset = *ppos & ~PAGE_MASK; 2743 2744 for (;;) { 2745 struct folio *folio = NULL; 2746 struct page *page = NULL; 2747 pgoff_t end_index; 2748 unsigned long nr, ret; 2749 loff_t i_size = i_size_read(inode); 2750 2751 end_index = i_size >> PAGE_SHIFT; 2752 if (index > end_index) 2753 break; 2754 if (index == end_index) { 2755 nr = i_size & ~PAGE_MASK; 2756 if (nr <= offset) 2757 break; 2758 } 2759 2760 error = shmem_get_folio(inode, index, &folio, SGP_READ); 2761 if (error) { 2762 if (error == -EINVAL) 2763 error = 0; 2764 break; 2765 } 2766 if (folio) { 2767 folio_unlock(folio); 2768 2769 page = folio_file_page(folio, index); 2770 if (PageHWPoison(page)) { 2771 folio_put(folio); 2772 error = -EIO; 2773 break; 2774 } 2775 } 2776 2777 /* 2778 * We must evaluate after, since reads (unlike writes) 2779 * are called without i_rwsem protection against truncate 2780 */ 2781 nr = PAGE_SIZE; 2782 i_size = i_size_read(inode); 2783 end_index = i_size >> PAGE_SHIFT; 2784 if (index == end_index) { 2785 nr = i_size & ~PAGE_MASK; 2786 if (nr <= offset) { 2787 if (folio) 2788 folio_put(folio); 2789 break; 2790 } 2791 } 2792 nr -= offset; 2793 2794 if (folio) { 2795 /* 2796 * If users can be writing to this page using arbitrary 2797 * virtual addresses, take care about potential aliasing 2798 * before reading the page on the kernel side. 2799 */ 2800 if (mapping_writably_mapped(mapping)) 2801 flush_dcache_page(page); 2802 /* 2803 * Mark the page accessed if we read the beginning. 2804 */ 2805 if (!offset) 2806 folio_mark_accessed(folio); 2807 /* 2808 * Ok, we have the page, and it's up-to-date, so 2809 * now we can copy it to user space... 2810 */ 2811 ret = copy_page_to_iter(page, offset, nr, to); 2812 folio_put(folio); 2813 2814 } else if (user_backed_iter(to)) { 2815 /* 2816 * Copy to user tends to be so well optimized, but 2817 * clear_user() not so much, that it is noticeably 2818 * faster to copy the zero page instead of clearing. 2819 */ 2820 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to); 2821 } else { 2822 /* 2823 * But submitting the same page twice in a row to 2824 * splice() - or others? - can result in confusion: 2825 * so don't attempt that optimization on pipes etc. 2826 */ 2827 ret = iov_iter_zero(nr, to); 2828 } 2829 2830 retval += ret; 2831 offset += ret; 2832 index += offset >> PAGE_SHIFT; 2833 offset &= ~PAGE_MASK; 2834 2835 if (!iov_iter_count(to)) 2836 break; 2837 if (ret < nr) { 2838 error = -EFAULT; 2839 break; 2840 } 2841 cond_resched(); 2842 } 2843 2844 *ppos = ((loff_t) index << PAGE_SHIFT) + offset; 2845 file_accessed(file); 2846 return retval ? retval : error; 2847 } 2848 2849 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2850 { 2851 struct file *file = iocb->ki_filp; 2852 struct inode *inode = file->f_mapping->host; 2853 ssize_t ret; 2854 2855 inode_lock(inode); 2856 ret = generic_write_checks(iocb, from); 2857 if (ret <= 0) 2858 goto unlock; 2859 ret = file_remove_privs(file); 2860 if (ret) 2861 goto unlock; 2862 ret = file_update_time(file); 2863 if (ret) 2864 goto unlock; 2865 ret = generic_perform_write(iocb, from); 2866 unlock: 2867 inode_unlock(inode); 2868 return ret; 2869 } 2870 2871 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe, 2872 struct pipe_buffer *buf) 2873 { 2874 return true; 2875 } 2876 2877 static void zero_pipe_buf_release(struct pipe_inode_info *pipe, 2878 struct pipe_buffer *buf) 2879 { 2880 } 2881 2882 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe, 2883 struct pipe_buffer *buf) 2884 { 2885 return false; 2886 } 2887 2888 static const struct pipe_buf_operations zero_pipe_buf_ops = { 2889 .release = zero_pipe_buf_release, 2890 .try_steal = zero_pipe_buf_try_steal, 2891 .get = zero_pipe_buf_get, 2892 }; 2893 2894 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe, 2895 loff_t fpos, size_t size) 2896 { 2897 size_t offset = fpos & ~PAGE_MASK; 2898 2899 size = min_t(size_t, size, PAGE_SIZE - offset); 2900 2901 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2902 struct pipe_buffer *buf = pipe_head_buf(pipe); 2903 2904 *buf = (struct pipe_buffer) { 2905 .ops = &zero_pipe_buf_ops, 2906 .page = ZERO_PAGE(0), 2907 .offset = offset, 2908 .len = size, 2909 }; 2910 pipe->head++; 2911 } 2912 2913 return size; 2914 } 2915 2916 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos, 2917 struct pipe_inode_info *pipe, 2918 size_t len, unsigned int flags) 2919 { 2920 struct inode *inode = file_inode(in); 2921 struct address_space *mapping = inode->i_mapping; 2922 struct folio *folio = NULL; 2923 size_t total_spliced = 0, used, npages, n, part; 2924 loff_t isize; 2925 int error = 0; 2926 2927 /* Work out how much data we can actually add into the pipe */ 2928 used = pipe_occupancy(pipe->head, pipe->tail); 2929 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2930 len = min_t(size_t, len, npages * PAGE_SIZE); 2931 2932 do { 2933 if (*ppos >= i_size_read(inode)) 2934 break; 2935 2936 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio, 2937 SGP_READ); 2938 if (error) { 2939 if (error == -EINVAL) 2940 error = 0; 2941 break; 2942 } 2943 if (folio) { 2944 folio_unlock(folio); 2945 2946 if (folio_test_hwpoison(folio) || 2947 (folio_test_large(folio) && 2948 folio_test_has_hwpoisoned(folio))) { 2949 error = -EIO; 2950 break; 2951 } 2952 } 2953 2954 /* 2955 * i_size must be checked after we know the pages are Uptodate. 2956 * 2957 * Checking i_size after the check allows us to calculate 2958 * the correct value for "nr", which means the zero-filled 2959 * part of the page is not copied back to userspace (unless 2960 * another truncate extends the file - this is desired though). 2961 */ 2962 isize = i_size_read(inode); 2963 if (unlikely(*ppos >= isize)) 2964 break; 2965 part = min_t(loff_t, isize - *ppos, len); 2966 2967 if (folio) { 2968 /* 2969 * If users can be writing to this page using arbitrary 2970 * virtual addresses, take care about potential aliasing 2971 * before reading the page on the kernel side. 2972 */ 2973 if (mapping_writably_mapped(mapping)) 2974 flush_dcache_folio(folio); 2975 folio_mark_accessed(folio); 2976 /* 2977 * Ok, we have the page, and it's up-to-date, so we can 2978 * now splice it into the pipe. 2979 */ 2980 n = splice_folio_into_pipe(pipe, folio, *ppos, part); 2981 folio_put(folio); 2982 folio = NULL; 2983 } else { 2984 n = splice_zeropage_into_pipe(pipe, *ppos, part); 2985 } 2986 2987 if (!n) 2988 break; 2989 len -= n; 2990 total_spliced += n; 2991 *ppos += n; 2992 in->f_ra.prev_pos = *ppos; 2993 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2994 break; 2995 2996 cond_resched(); 2997 } while (len); 2998 2999 if (folio) 3000 folio_put(folio); 3001 3002 file_accessed(in); 3003 return total_spliced ? total_spliced : error; 3004 } 3005 3006 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) 3007 { 3008 struct address_space *mapping = file->f_mapping; 3009 struct inode *inode = mapping->host; 3010 3011 if (whence != SEEK_DATA && whence != SEEK_HOLE) 3012 return generic_file_llseek_size(file, offset, whence, 3013 MAX_LFS_FILESIZE, i_size_read(inode)); 3014 if (offset < 0) 3015 return -ENXIO; 3016 3017 inode_lock(inode); 3018 /* We're holding i_rwsem so we can access i_size directly */ 3019 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence); 3020 if (offset >= 0) 3021 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); 3022 inode_unlock(inode); 3023 return offset; 3024 } 3025 3026 static long shmem_fallocate(struct file *file, int mode, loff_t offset, 3027 loff_t len) 3028 { 3029 struct inode *inode = file_inode(file); 3030 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3031 struct shmem_inode_info *info = SHMEM_I(inode); 3032 struct shmem_falloc shmem_falloc; 3033 pgoff_t start, index, end, undo_fallocend; 3034 int error; 3035 3036 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3037 return -EOPNOTSUPP; 3038 3039 inode_lock(inode); 3040 3041 if (mode & FALLOC_FL_PUNCH_HOLE) { 3042 struct address_space *mapping = file->f_mapping; 3043 loff_t unmap_start = round_up(offset, PAGE_SIZE); 3044 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1; 3045 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq); 3046 3047 /* protected by i_rwsem */ 3048 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 3049 error = -EPERM; 3050 goto out; 3051 } 3052 3053 shmem_falloc.waitq = &shmem_falloc_waitq; 3054 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT; 3055 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT; 3056 spin_lock(&inode->i_lock); 3057 inode->i_private = &shmem_falloc; 3058 spin_unlock(&inode->i_lock); 3059 3060 if ((u64)unmap_end > (u64)unmap_start) 3061 unmap_mapping_range(mapping, unmap_start, 3062 1 + unmap_end - unmap_start, 0); 3063 shmem_truncate_range(inode, offset, offset + len - 1); 3064 /* No need to unmap again: hole-punching leaves COWed pages */ 3065 3066 spin_lock(&inode->i_lock); 3067 inode->i_private = NULL; 3068 wake_up_all(&shmem_falloc_waitq); 3069 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head)); 3070 spin_unlock(&inode->i_lock); 3071 error = 0; 3072 goto out; 3073 } 3074 3075 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 3076 error = inode_newsize_ok(inode, offset + len); 3077 if (error) 3078 goto out; 3079 3080 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 3081 error = -EPERM; 3082 goto out; 3083 } 3084 3085 start = offset >> PAGE_SHIFT; 3086 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 3087 /* Try to avoid a swapstorm if len is impossible to satisfy */ 3088 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) { 3089 error = -ENOSPC; 3090 goto out; 3091 } 3092 3093 shmem_falloc.waitq = NULL; 3094 shmem_falloc.start = start; 3095 shmem_falloc.next = start; 3096 shmem_falloc.nr_falloced = 0; 3097 shmem_falloc.nr_unswapped = 0; 3098 spin_lock(&inode->i_lock); 3099 inode->i_private = &shmem_falloc; 3100 spin_unlock(&inode->i_lock); 3101 3102 /* 3103 * info->fallocend is only relevant when huge pages might be 3104 * involved: to prevent split_huge_page() freeing fallocated 3105 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size. 3106 */ 3107 undo_fallocend = info->fallocend; 3108 if (info->fallocend < end) 3109 info->fallocend = end; 3110 3111 for (index = start; index < end; ) { 3112 struct folio *folio; 3113 3114 /* 3115 * Good, the fallocate(2) manpage permits EINTR: we may have 3116 * been interrupted because we are using up too much memory. 3117 */ 3118 if (signal_pending(current)) 3119 error = -EINTR; 3120 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced) 3121 error = -ENOMEM; 3122 else 3123 error = shmem_get_folio(inode, index, &folio, 3124 SGP_FALLOC); 3125 if (error) { 3126 info->fallocend = undo_fallocend; 3127 /* Remove the !uptodate folios we added */ 3128 if (index > start) { 3129 shmem_undo_range(inode, 3130 (loff_t)start << PAGE_SHIFT, 3131 ((loff_t)index << PAGE_SHIFT) - 1, true); 3132 } 3133 goto undone; 3134 } 3135 3136 /* 3137 * Here is a more important optimization than it appears: 3138 * a second SGP_FALLOC on the same large folio will clear it, 3139 * making it uptodate and un-undoable if we fail later. 3140 */ 3141 index = folio_next_index(folio); 3142 /* Beware 32-bit wraparound */ 3143 if (!index) 3144 index--; 3145 3146 /* 3147 * Inform shmem_writepage() how far we have reached. 3148 * No need for lock or barrier: we have the page lock. 3149 */ 3150 if (!folio_test_uptodate(folio)) 3151 shmem_falloc.nr_falloced += index - shmem_falloc.next; 3152 shmem_falloc.next = index; 3153 3154 /* 3155 * If !uptodate, leave it that way so that freeable folios 3156 * can be recognized if we need to rollback on error later. 3157 * But mark it dirty so that memory pressure will swap rather 3158 * than free the folios we are allocating (and SGP_CACHE folios 3159 * might still be clean: we now need to mark those dirty too). 3160 */ 3161 folio_mark_dirty(folio); 3162 folio_unlock(folio); 3163 folio_put(folio); 3164 cond_resched(); 3165 } 3166 3167 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 3168 i_size_write(inode, offset + len); 3169 undone: 3170 spin_lock(&inode->i_lock); 3171 inode->i_private = NULL; 3172 spin_unlock(&inode->i_lock); 3173 out: 3174 if (!error) 3175 file_modified(file); 3176 inode_unlock(inode); 3177 return error; 3178 } 3179 3180 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) 3181 { 3182 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb); 3183 3184 buf->f_type = TMPFS_MAGIC; 3185 buf->f_bsize = PAGE_SIZE; 3186 buf->f_namelen = NAME_MAX; 3187 if (sbinfo->max_blocks) { 3188 buf->f_blocks = sbinfo->max_blocks; 3189 buf->f_bavail = 3190 buf->f_bfree = sbinfo->max_blocks - 3191 percpu_counter_sum(&sbinfo->used_blocks); 3192 } 3193 if (sbinfo->max_inodes) { 3194 buf->f_files = sbinfo->max_inodes; 3195 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE; 3196 } 3197 /* else leave those fields 0 like simple_statfs */ 3198 3199 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 3200 3201 return 0; 3202 } 3203 3204 /* 3205 * File creation. Allocate an inode, and we're done.. 3206 */ 3207 static int 3208 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir, 3209 struct dentry *dentry, umode_t mode, dev_t dev) 3210 { 3211 struct inode *inode; 3212 int error; 3213 3214 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE); 3215 if (IS_ERR(inode)) 3216 return PTR_ERR(inode); 3217 3218 error = simple_acl_create(dir, inode); 3219 if (error) 3220 goto out_iput; 3221 error = security_inode_init_security(inode, dir, 3222 &dentry->d_name, 3223 shmem_initxattrs, NULL); 3224 if (error && error != -EOPNOTSUPP) 3225 goto out_iput; 3226 3227 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3228 if (error) 3229 goto out_iput; 3230 3231 dir->i_size += BOGO_DIRENT_SIZE; 3232 dir->i_mtime = inode_set_ctime_current(dir); 3233 inode_inc_iversion(dir); 3234 d_instantiate(dentry, inode); 3235 dget(dentry); /* Extra count - pin the dentry in core */ 3236 return error; 3237 3238 out_iput: 3239 iput(inode); 3240 return error; 3241 } 3242 3243 static int 3244 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3245 struct file *file, umode_t mode) 3246 { 3247 struct inode *inode; 3248 int error; 3249 3250 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE); 3251 3252 if (IS_ERR(inode)) { 3253 error = PTR_ERR(inode); 3254 goto err_out; 3255 } 3256 3257 error = security_inode_init_security(inode, dir, 3258 NULL, 3259 shmem_initxattrs, NULL); 3260 if (error && error != -EOPNOTSUPP) 3261 goto out_iput; 3262 error = simple_acl_create(dir, inode); 3263 if (error) 3264 goto out_iput; 3265 d_tmpfile(file, inode); 3266 3267 err_out: 3268 return finish_open_simple(file, error); 3269 out_iput: 3270 iput(inode); 3271 return error; 3272 } 3273 3274 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir, 3275 struct dentry *dentry, umode_t mode) 3276 { 3277 int error; 3278 3279 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0); 3280 if (error) 3281 return error; 3282 inc_nlink(dir); 3283 return 0; 3284 } 3285 3286 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir, 3287 struct dentry *dentry, umode_t mode, bool excl) 3288 { 3289 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0); 3290 } 3291 3292 /* 3293 * Link a file.. 3294 */ 3295 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 3296 { 3297 struct inode *inode = d_inode(old_dentry); 3298 int ret = 0; 3299 3300 /* 3301 * No ordinary (disk based) filesystem counts links as inodes; 3302 * but each new link needs a new dentry, pinning lowmem, and 3303 * tmpfs dentries cannot be pruned until they are unlinked. 3304 * But if an O_TMPFILE file is linked into the tmpfs, the 3305 * first link must skip that, to get the accounting right. 3306 */ 3307 if (inode->i_nlink) { 3308 ret = shmem_reserve_inode(inode->i_sb, NULL); 3309 if (ret) 3310 goto out; 3311 } 3312 3313 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3314 if (ret) { 3315 if (inode->i_nlink) 3316 shmem_free_inode(inode->i_sb, 0); 3317 goto out; 3318 } 3319 3320 dir->i_size += BOGO_DIRENT_SIZE; 3321 dir->i_mtime = inode_set_ctime_to_ts(dir, 3322 inode_set_ctime_current(inode)); 3323 inode_inc_iversion(dir); 3324 inc_nlink(inode); 3325 ihold(inode); /* New dentry reference */ 3326 dget(dentry); /* Extra pinning count for the created dentry */ 3327 d_instantiate(dentry, inode); 3328 out: 3329 return ret; 3330 } 3331 3332 static int shmem_unlink(struct inode *dir, struct dentry *dentry) 3333 { 3334 struct inode *inode = d_inode(dentry); 3335 3336 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode)) 3337 shmem_free_inode(inode->i_sb, 0); 3338 3339 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3340 3341 dir->i_size -= BOGO_DIRENT_SIZE; 3342 dir->i_mtime = inode_set_ctime_to_ts(dir, 3343 inode_set_ctime_current(inode)); 3344 inode_inc_iversion(dir); 3345 drop_nlink(inode); 3346 dput(dentry); /* Undo the count from "create" - this does all the work */ 3347 return 0; 3348 } 3349 3350 static int shmem_rmdir(struct inode *dir, struct dentry *dentry) 3351 { 3352 if (!simple_empty(dentry)) 3353 return -ENOTEMPTY; 3354 3355 drop_nlink(d_inode(dentry)); 3356 drop_nlink(dir); 3357 return shmem_unlink(dir, dentry); 3358 } 3359 3360 static int shmem_whiteout(struct mnt_idmap *idmap, 3361 struct inode *old_dir, struct dentry *old_dentry) 3362 { 3363 struct dentry *whiteout; 3364 int error; 3365 3366 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name); 3367 if (!whiteout) 3368 return -ENOMEM; 3369 3370 error = shmem_mknod(idmap, old_dir, whiteout, 3371 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 3372 dput(whiteout); 3373 if (error) 3374 return error; 3375 3376 /* 3377 * Cheat and hash the whiteout while the old dentry is still in 3378 * place, instead of playing games with FS_RENAME_DOES_D_MOVE. 3379 * 3380 * d_lookup() will consistently find one of them at this point, 3381 * not sure which one, but that isn't even important. 3382 */ 3383 d_rehash(whiteout); 3384 return 0; 3385 } 3386 3387 /* 3388 * The VFS layer already does all the dentry stuff for rename, 3389 * we just have to decrement the usage count for the target if 3390 * it exists so that the VFS layer correctly free's it when it 3391 * gets overwritten. 3392 */ 3393 static int shmem_rename2(struct mnt_idmap *idmap, 3394 struct inode *old_dir, struct dentry *old_dentry, 3395 struct inode *new_dir, struct dentry *new_dentry, 3396 unsigned int flags) 3397 { 3398 struct inode *inode = d_inode(old_dentry); 3399 int they_are_dirs = S_ISDIR(inode->i_mode); 3400 int error; 3401 3402 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 3403 return -EINVAL; 3404 3405 if (flags & RENAME_EXCHANGE) 3406 return simple_offset_rename_exchange(old_dir, old_dentry, 3407 new_dir, new_dentry); 3408 3409 if (!simple_empty(new_dentry)) 3410 return -ENOTEMPTY; 3411 3412 if (flags & RENAME_WHITEOUT) { 3413 error = shmem_whiteout(idmap, old_dir, old_dentry); 3414 if (error) 3415 return error; 3416 } 3417 3418 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry); 3419 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry); 3420 if (error) 3421 return error; 3422 3423 if (d_really_is_positive(new_dentry)) { 3424 (void) shmem_unlink(new_dir, new_dentry); 3425 if (they_are_dirs) { 3426 drop_nlink(d_inode(new_dentry)); 3427 drop_nlink(old_dir); 3428 } 3429 } else if (they_are_dirs) { 3430 drop_nlink(old_dir); 3431 inc_nlink(new_dir); 3432 } 3433 3434 old_dir->i_size -= BOGO_DIRENT_SIZE; 3435 new_dir->i_size += BOGO_DIRENT_SIZE; 3436 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 3437 inode_inc_iversion(old_dir); 3438 inode_inc_iversion(new_dir); 3439 return 0; 3440 } 3441 3442 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir, 3443 struct dentry *dentry, const char *symname) 3444 { 3445 int error; 3446 int len; 3447 struct inode *inode; 3448 struct folio *folio; 3449 3450 len = strlen(symname) + 1; 3451 if (len > PAGE_SIZE) 3452 return -ENAMETOOLONG; 3453 3454 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0, 3455 VM_NORESERVE); 3456 3457 if (IS_ERR(inode)) 3458 return PTR_ERR(inode); 3459 3460 error = security_inode_init_security(inode, dir, &dentry->d_name, 3461 shmem_initxattrs, NULL); 3462 if (error && error != -EOPNOTSUPP) 3463 goto out_iput; 3464 3465 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry); 3466 if (error) 3467 goto out_iput; 3468 3469 inode->i_size = len-1; 3470 if (len <= SHORT_SYMLINK_LEN) { 3471 inode->i_link = kmemdup(symname, len, GFP_KERNEL); 3472 if (!inode->i_link) { 3473 error = -ENOMEM; 3474 goto out_remove_offset; 3475 } 3476 inode->i_op = &shmem_short_symlink_operations; 3477 } else { 3478 inode_nohighmem(inode); 3479 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE); 3480 if (error) 3481 goto out_remove_offset; 3482 inode->i_mapping->a_ops = &shmem_aops; 3483 inode->i_op = &shmem_symlink_inode_operations; 3484 memcpy(folio_address(folio), symname, len); 3485 folio_mark_uptodate(folio); 3486 folio_mark_dirty(folio); 3487 folio_unlock(folio); 3488 folio_put(folio); 3489 } 3490 dir->i_size += BOGO_DIRENT_SIZE; 3491 dir->i_mtime = inode_set_ctime_current(dir); 3492 inode_inc_iversion(dir); 3493 d_instantiate(dentry, inode); 3494 dget(dentry); 3495 return 0; 3496 3497 out_remove_offset: 3498 simple_offset_remove(shmem_get_offset_ctx(dir), dentry); 3499 out_iput: 3500 iput(inode); 3501 return error; 3502 } 3503 3504 static void shmem_put_link(void *arg) 3505 { 3506 folio_mark_accessed(arg); 3507 folio_put(arg); 3508 } 3509 3510 static const char *shmem_get_link(struct dentry *dentry, 3511 struct inode *inode, 3512 struct delayed_call *done) 3513 { 3514 struct folio *folio = NULL; 3515 int error; 3516 3517 if (!dentry) { 3518 folio = filemap_get_folio(inode->i_mapping, 0); 3519 if (IS_ERR(folio)) 3520 return ERR_PTR(-ECHILD); 3521 if (PageHWPoison(folio_page(folio, 0)) || 3522 !folio_test_uptodate(folio)) { 3523 folio_put(folio); 3524 return ERR_PTR(-ECHILD); 3525 } 3526 } else { 3527 error = shmem_get_folio(inode, 0, &folio, SGP_READ); 3528 if (error) 3529 return ERR_PTR(error); 3530 if (!folio) 3531 return ERR_PTR(-ECHILD); 3532 if (PageHWPoison(folio_page(folio, 0))) { 3533 folio_unlock(folio); 3534 folio_put(folio); 3535 return ERR_PTR(-ECHILD); 3536 } 3537 folio_unlock(folio); 3538 } 3539 set_delayed_call(done, shmem_put_link, folio); 3540 return folio_address(folio); 3541 } 3542 3543 #ifdef CONFIG_TMPFS_XATTR 3544 3545 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3546 { 3547 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3548 3549 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE); 3550 3551 return 0; 3552 } 3553 3554 static int shmem_fileattr_set(struct mnt_idmap *idmap, 3555 struct dentry *dentry, struct fileattr *fa) 3556 { 3557 struct inode *inode = d_inode(dentry); 3558 struct shmem_inode_info *info = SHMEM_I(inode); 3559 3560 if (fileattr_has_fsx(fa)) 3561 return -EOPNOTSUPP; 3562 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE) 3563 return -EOPNOTSUPP; 3564 3565 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) | 3566 (fa->flags & SHMEM_FL_USER_MODIFIABLE); 3567 3568 shmem_set_inode_flags(inode, info->fsflags); 3569 inode_set_ctime_current(inode); 3570 inode_inc_iversion(inode); 3571 return 0; 3572 } 3573 3574 /* 3575 * Superblocks without xattr inode operations may get some security.* xattr 3576 * support from the LSM "for free". As soon as we have any other xattrs 3577 * like ACLs, we also need to implement the security.* handlers at 3578 * filesystem level, though. 3579 */ 3580 3581 /* 3582 * Callback for security_inode_init_security() for acquiring xattrs. 3583 */ 3584 static int shmem_initxattrs(struct inode *inode, 3585 const struct xattr *xattr_array, 3586 void *fs_info) 3587 { 3588 struct shmem_inode_info *info = SHMEM_I(inode); 3589 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3590 const struct xattr *xattr; 3591 struct simple_xattr *new_xattr; 3592 size_t ispace = 0; 3593 size_t len; 3594 3595 if (sbinfo->max_inodes) { 3596 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3597 ispace += simple_xattr_space(xattr->name, 3598 xattr->value_len + XATTR_SECURITY_PREFIX_LEN); 3599 } 3600 if (ispace) { 3601 raw_spin_lock(&sbinfo->stat_lock); 3602 if (sbinfo->free_ispace < ispace) 3603 ispace = 0; 3604 else 3605 sbinfo->free_ispace -= ispace; 3606 raw_spin_unlock(&sbinfo->stat_lock); 3607 if (!ispace) 3608 return -ENOSPC; 3609 } 3610 } 3611 3612 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 3613 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len); 3614 if (!new_xattr) 3615 break; 3616 3617 len = strlen(xattr->name) + 1; 3618 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len, 3619 GFP_KERNEL_ACCOUNT); 3620 if (!new_xattr->name) { 3621 kvfree(new_xattr); 3622 break; 3623 } 3624 3625 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX, 3626 XATTR_SECURITY_PREFIX_LEN); 3627 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN, 3628 xattr->name, len); 3629 3630 simple_xattr_add(&info->xattrs, new_xattr); 3631 } 3632 3633 if (xattr->name != NULL) { 3634 if (ispace) { 3635 raw_spin_lock(&sbinfo->stat_lock); 3636 sbinfo->free_ispace += ispace; 3637 raw_spin_unlock(&sbinfo->stat_lock); 3638 } 3639 simple_xattrs_free(&info->xattrs, NULL); 3640 return -ENOMEM; 3641 } 3642 3643 return 0; 3644 } 3645 3646 static int shmem_xattr_handler_get(const struct xattr_handler *handler, 3647 struct dentry *unused, struct inode *inode, 3648 const char *name, void *buffer, size_t size) 3649 { 3650 struct shmem_inode_info *info = SHMEM_I(inode); 3651 3652 name = xattr_full_name(handler, name); 3653 return simple_xattr_get(&info->xattrs, name, buffer, size); 3654 } 3655 3656 static int shmem_xattr_handler_set(const struct xattr_handler *handler, 3657 struct mnt_idmap *idmap, 3658 struct dentry *unused, struct inode *inode, 3659 const char *name, const void *value, 3660 size_t size, int flags) 3661 { 3662 struct shmem_inode_info *info = SHMEM_I(inode); 3663 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); 3664 struct simple_xattr *old_xattr; 3665 size_t ispace = 0; 3666 3667 name = xattr_full_name(handler, name); 3668 if (value && sbinfo->max_inodes) { 3669 ispace = simple_xattr_space(name, size); 3670 raw_spin_lock(&sbinfo->stat_lock); 3671 if (sbinfo->free_ispace < ispace) 3672 ispace = 0; 3673 else 3674 sbinfo->free_ispace -= ispace; 3675 raw_spin_unlock(&sbinfo->stat_lock); 3676 if (!ispace) 3677 return -ENOSPC; 3678 } 3679 3680 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags); 3681 if (!IS_ERR(old_xattr)) { 3682 ispace = 0; 3683 if (old_xattr && sbinfo->max_inodes) 3684 ispace = simple_xattr_space(old_xattr->name, 3685 old_xattr->size); 3686 simple_xattr_free(old_xattr); 3687 old_xattr = NULL; 3688 inode_set_ctime_current(inode); 3689 inode_inc_iversion(inode); 3690 } 3691 if (ispace) { 3692 raw_spin_lock(&sbinfo->stat_lock); 3693 sbinfo->free_ispace += ispace; 3694 raw_spin_unlock(&sbinfo->stat_lock); 3695 } 3696 return PTR_ERR(old_xattr); 3697 } 3698 3699 static const struct xattr_handler shmem_security_xattr_handler = { 3700 .prefix = XATTR_SECURITY_PREFIX, 3701 .get = shmem_xattr_handler_get, 3702 .set = shmem_xattr_handler_set, 3703 }; 3704 3705 static const struct xattr_handler shmem_trusted_xattr_handler = { 3706 .prefix = XATTR_TRUSTED_PREFIX, 3707 .get = shmem_xattr_handler_get, 3708 .set = shmem_xattr_handler_set, 3709 }; 3710 3711 static const struct xattr_handler shmem_user_xattr_handler = { 3712 .prefix = XATTR_USER_PREFIX, 3713 .get = shmem_xattr_handler_get, 3714 .set = shmem_xattr_handler_set, 3715 }; 3716 3717 static const struct xattr_handler *shmem_xattr_handlers[] = { 3718 &shmem_security_xattr_handler, 3719 &shmem_trusted_xattr_handler, 3720 &shmem_user_xattr_handler, 3721 NULL 3722 }; 3723 3724 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size) 3725 { 3726 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry)); 3727 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size); 3728 } 3729 #endif /* CONFIG_TMPFS_XATTR */ 3730 3731 static const struct inode_operations shmem_short_symlink_operations = { 3732 .getattr = shmem_getattr, 3733 .setattr = shmem_setattr, 3734 .get_link = simple_get_link, 3735 #ifdef CONFIG_TMPFS_XATTR 3736 .listxattr = shmem_listxattr, 3737 #endif 3738 }; 3739 3740 static const struct inode_operations shmem_symlink_inode_operations = { 3741 .getattr = shmem_getattr, 3742 .setattr = shmem_setattr, 3743 .get_link = shmem_get_link, 3744 #ifdef CONFIG_TMPFS_XATTR 3745 .listxattr = shmem_listxattr, 3746 #endif 3747 }; 3748 3749 static struct dentry *shmem_get_parent(struct dentry *child) 3750 { 3751 return ERR_PTR(-ESTALE); 3752 } 3753 3754 static int shmem_match(struct inode *ino, void *vfh) 3755 { 3756 __u32 *fh = vfh; 3757 __u64 inum = fh[2]; 3758 inum = (inum << 32) | fh[1]; 3759 return ino->i_ino == inum && fh[0] == ino->i_generation; 3760 } 3761 3762 /* Find any alias of inode, but prefer a hashed alias */ 3763 static struct dentry *shmem_find_alias(struct inode *inode) 3764 { 3765 struct dentry *alias = d_find_alias(inode); 3766 3767 return alias ?: d_find_any_alias(inode); 3768 } 3769 3770 3771 static struct dentry *shmem_fh_to_dentry(struct super_block *sb, 3772 struct fid *fid, int fh_len, int fh_type) 3773 { 3774 struct inode *inode; 3775 struct dentry *dentry = NULL; 3776 u64 inum; 3777 3778 if (fh_len < 3) 3779 return NULL; 3780 3781 inum = fid->raw[2]; 3782 inum = (inum << 32) | fid->raw[1]; 3783 3784 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), 3785 shmem_match, fid->raw); 3786 if (inode) { 3787 dentry = shmem_find_alias(inode); 3788 iput(inode); 3789 } 3790 3791 return dentry; 3792 } 3793 3794 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len, 3795 struct inode *parent) 3796 { 3797 if (*len < 3) { 3798 *len = 3; 3799 return FILEID_INVALID; 3800 } 3801 3802 if (inode_unhashed(inode)) { 3803 /* Unfortunately insert_inode_hash is not idempotent, 3804 * so as we hash inodes here rather than at creation 3805 * time, we need a lock to ensure we only try 3806 * to do it once 3807 */ 3808 static DEFINE_SPINLOCK(lock); 3809 spin_lock(&lock); 3810 if (inode_unhashed(inode)) 3811 __insert_inode_hash(inode, 3812 inode->i_ino + inode->i_generation); 3813 spin_unlock(&lock); 3814 } 3815 3816 fh[0] = inode->i_generation; 3817 fh[1] = inode->i_ino; 3818 fh[2] = ((__u64)inode->i_ino) >> 32; 3819 3820 *len = 3; 3821 return 1; 3822 } 3823 3824 static const struct export_operations shmem_export_ops = { 3825 .get_parent = shmem_get_parent, 3826 .encode_fh = shmem_encode_fh, 3827 .fh_to_dentry = shmem_fh_to_dentry, 3828 }; 3829 3830 enum shmem_param { 3831 Opt_gid, 3832 Opt_huge, 3833 Opt_mode, 3834 Opt_mpol, 3835 Opt_nr_blocks, 3836 Opt_nr_inodes, 3837 Opt_size, 3838 Opt_uid, 3839 Opt_inode32, 3840 Opt_inode64, 3841 Opt_noswap, 3842 Opt_quota, 3843 Opt_usrquota, 3844 Opt_grpquota, 3845 Opt_usrquota_block_hardlimit, 3846 Opt_usrquota_inode_hardlimit, 3847 Opt_grpquota_block_hardlimit, 3848 Opt_grpquota_inode_hardlimit, 3849 }; 3850 3851 static const struct constant_table shmem_param_enums_huge[] = { 3852 {"never", SHMEM_HUGE_NEVER }, 3853 {"always", SHMEM_HUGE_ALWAYS }, 3854 {"within_size", SHMEM_HUGE_WITHIN_SIZE }, 3855 {"advise", SHMEM_HUGE_ADVISE }, 3856 {} 3857 }; 3858 3859 const struct fs_parameter_spec shmem_fs_parameters[] = { 3860 fsparam_u32 ("gid", Opt_gid), 3861 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge), 3862 fsparam_u32oct("mode", Opt_mode), 3863 fsparam_string("mpol", Opt_mpol), 3864 fsparam_string("nr_blocks", Opt_nr_blocks), 3865 fsparam_string("nr_inodes", Opt_nr_inodes), 3866 fsparam_string("size", Opt_size), 3867 fsparam_u32 ("uid", Opt_uid), 3868 fsparam_flag ("inode32", Opt_inode32), 3869 fsparam_flag ("inode64", Opt_inode64), 3870 fsparam_flag ("noswap", Opt_noswap), 3871 #ifdef CONFIG_TMPFS_QUOTA 3872 fsparam_flag ("quota", Opt_quota), 3873 fsparam_flag ("usrquota", Opt_usrquota), 3874 fsparam_flag ("grpquota", Opt_grpquota), 3875 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit), 3876 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit), 3877 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit), 3878 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit), 3879 #endif 3880 {} 3881 }; 3882 3883 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param) 3884 { 3885 struct shmem_options *ctx = fc->fs_private; 3886 struct fs_parse_result result; 3887 unsigned long long size; 3888 char *rest; 3889 int opt; 3890 kuid_t kuid; 3891 kgid_t kgid; 3892 3893 opt = fs_parse(fc, shmem_fs_parameters, param, &result); 3894 if (opt < 0) 3895 return opt; 3896 3897 switch (opt) { 3898 case Opt_size: 3899 size = memparse(param->string, &rest); 3900 if (*rest == '%') { 3901 size <<= PAGE_SHIFT; 3902 size *= totalram_pages(); 3903 do_div(size, 100); 3904 rest++; 3905 } 3906 if (*rest) 3907 goto bad_value; 3908 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE); 3909 ctx->seen |= SHMEM_SEEN_BLOCKS; 3910 break; 3911 case Opt_nr_blocks: 3912 ctx->blocks = memparse(param->string, &rest); 3913 if (*rest || ctx->blocks > LONG_MAX) 3914 goto bad_value; 3915 ctx->seen |= SHMEM_SEEN_BLOCKS; 3916 break; 3917 case Opt_nr_inodes: 3918 ctx->inodes = memparse(param->string, &rest); 3919 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE) 3920 goto bad_value; 3921 ctx->seen |= SHMEM_SEEN_INODES; 3922 break; 3923 case Opt_mode: 3924 ctx->mode = result.uint_32 & 07777; 3925 break; 3926 case Opt_uid: 3927 kuid = make_kuid(current_user_ns(), result.uint_32); 3928 if (!uid_valid(kuid)) 3929 goto bad_value; 3930 3931 /* 3932 * The requested uid must be representable in the 3933 * filesystem's idmapping. 3934 */ 3935 if (!kuid_has_mapping(fc->user_ns, kuid)) 3936 goto bad_value; 3937 3938 ctx->uid = kuid; 3939 break; 3940 case Opt_gid: 3941 kgid = make_kgid(current_user_ns(), result.uint_32); 3942 if (!gid_valid(kgid)) 3943 goto bad_value; 3944 3945 /* 3946 * The requested gid must be representable in the 3947 * filesystem's idmapping. 3948 */ 3949 if (!kgid_has_mapping(fc->user_ns, kgid)) 3950 goto bad_value; 3951 3952 ctx->gid = kgid; 3953 break; 3954 case Opt_huge: 3955 ctx->huge = result.uint_32; 3956 if (ctx->huge != SHMEM_HUGE_NEVER && 3957 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 3958 has_transparent_hugepage())) 3959 goto unsupported_parameter; 3960 ctx->seen |= SHMEM_SEEN_HUGE; 3961 break; 3962 case Opt_mpol: 3963 if (IS_ENABLED(CONFIG_NUMA)) { 3964 mpol_put(ctx->mpol); 3965 ctx->mpol = NULL; 3966 if (mpol_parse_str(param->string, &ctx->mpol)) 3967 goto bad_value; 3968 break; 3969 } 3970 goto unsupported_parameter; 3971 case Opt_inode32: 3972 ctx->full_inums = false; 3973 ctx->seen |= SHMEM_SEEN_INUMS; 3974 break; 3975 case Opt_inode64: 3976 if (sizeof(ino_t) < 8) { 3977 return invalfc(fc, 3978 "Cannot use inode64 with <64bit inums in kernel\n"); 3979 } 3980 ctx->full_inums = true; 3981 ctx->seen |= SHMEM_SEEN_INUMS; 3982 break; 3983 case Opt_noswap: 3984 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) { 3985 return invalfc(fc, 3986 "Turning off swap in unprivileged tmpfs mounts unsupported"); 3987 } 3988 ctx->noswap = true; 3989 ctx->seen |= SHMEM_SEEN_NOSWAP; 3990 break; 3991 case Opt_quota: 3992 if (fc->user_ns != &init_user_ns) 3993 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 3994 ctx->seen |= SHMEM_SEEN_QUOTA; 3995 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP); 3996 break; 3997 case Opt_usrquota: 3998 if (fc->user_ns != &init_user_ns) 3999 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4000 ctx->seen |= SHMEM_SEEN_QUOTA; 4001 ctx->quota_types |= QTYPE_MASK_USR; 4002 break; 4003 case Opt_grpquota: 4004 if (fc->user_ns != &init_user_ns) 4005 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported"); 4006 ctx->seen |= SHMEM_SEEN_QUOTA; 4007 ctx->quota_types |= QTYPE_MASK_GRP; 4008 break; 4009 case Opt_usrquota_block_hardlimit: 4010 size = memparse(param->string, &rest); 4011 if (*rest || !size) 4012 goto bad_value; 4013 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4014 return invalfc(fc, 4015 "User quota block hardlimit too large."); 4016 ctx->qlimits.usrquota_bhardlimit = size; 4017 break; 4018 case Opt_grpquota_block_hardlimit: 4019 size = memparse(param->string, &rest); 4020 if (*rest || !size) 4021 goto bad_value; 4022 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT) 4023 return invalfc(fc, 4024 "Group quota block hardlimit too large."); 4025 ctx->qlimits.grpquota_bhardlimit = size; 4026 break; 4027 case Opt_usrquota_inode_hardlimit: 4028 size = memparse(param->string, &rest); 4029 if (*rest || !size) 4030 goto bad_value; 4031 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4032 return invalfc(fc, 4033 "User quota inode hardlimit too large."); 4034 ctx->qlimits.usrquota_ihardlimit = size; 4035 break; 4036 case Opt_grpquota_inode_hardlimit: 4037 size = memparse(param->string, &rest); 4038 if (*rest || !size) 4039 goto bad_value; 4040 if (size > SHMEM_QUOTA_MAX_INO_LIMIT) 4041 return invalfc(fc, 4042 "Group quota inode hardlimit too large."); 4043 ctx->qlimits.grpquota_ihardlimit = size; 4044 break; 4045 } 4046 return 0; 4047 4048 unsupported_parameter: 4049 return invalfc(fc, "Unsupported parameter '%s'", param->key); 4050 bad_value: 4051 return invalfc(fc, "Bad value for '%s'", param->key); 4052 } 4053 4054 static int shmem_parse_options(struct fs_context *fc, void *data) 4055 { 4056 char *options = data; 4057 4058 if (options) { 4059 int err = security_sb_eat_lsm_opts(options, &fc->security); 4060 if (err) 4061 return err; 4062 } 4063 4064 while (options != NULL) { 4065 char *this_char = options; 4066 for (;;) { 4067 /* 4068 * NUL-terminate this option: unfortunately, 4069 * mount options form a comma-separated list, 4070 * but mpol's nodelist may also contain commas. 4071 */ 4072 options = strchr(options, ','); 4073 if (options == NULL) 4074 break; 4075 options++; 4076 if (!isdigit(*options)) { 4077 options[-1] = '\0'; 4078 break; 4079 } 4080 } 4081 if (*this_char) { 4082 char *value = strchr(this_char, '='); 4083 size_t len = 0; 4084 int err; 4085 4086 if (value) { 4087 *value++ = '\0'; 4088 len = strlen(value); 4089 } 4090 err = vfs_parse_fs_string(fc, this_char, value, len); 4091 if (err < 0) 4092 return err; 4093 } 4094 } 4095 return 0; 4096 } 4097 4098 /* 4099 * Reconfigure a shmem filesystem. 4100 */ 4101 static int shmem_reconfigure(struct fs_context *fc) 4102 { 4103 struct shmem_options *ctx = fc->fs_private; 4104 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb); 4105 unsigned long used_isp; 4106 struct mempolicy *mpol = NULL; 4107 const char *err; 4108 4109 raw_spin_lock(&sbinfo->stat_lock); 4110 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace; 4111 4112 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) { 4113 if (!sbinfo->max_blocks) { 4114 err = "Cannot retroactively limit size"; 4115 goto out; 4116 } 4117 if (percpu_counter_compare(&sbinfo->used_blocks, 4118 ctx->blocks) > 0) { 4119 err = "Too small a size for current use"; 4120 goto out; 4121 } 4122 } 4123 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) { 4124 if (!sbinfo->max_inodes) { 4125 err = "Cannot retroactively limit inodes"; 4126 goto out; 4127 } 4128 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) { 4129 err = "Too few inodes for current use"; 4130 goto out; 4131 } 4132 } 4133 4134 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums && 4135 sbinfo->next_ino > UINT_MAX) { 4136 err = "Current inum too high to switch to 32-bit inums"; 4137 goto out; 4138 } 4139 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) { 4140 err = "Cannot disable swap on remount"; 4141 goto out; 4142 } 4143 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) { 4144 err = "Cannot enable swap on remount if it was disabled on first mount"; 4145 goto out; 4146 } 4147 4148 if (ctx->seen & SHMEM_SEEN_QUOTA && 4149 !sb_any_quota_loaded(fc->root->d_sb)) { 4150 err = "Cannot enable quota on remount"; 4151 goto out; 4152 } 4153 4154 #ifdef CONFIG_TMPFS_QUOTA 4155 #define CHANGED_LIMIT(name) \ 4156 (ctx->qlimits.name## hardlimit && \ 4157 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit)) 4158 4159 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) || 4160 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) { 4161 err = "Cannot change global quota limit on remount"; 4162 goto out; 4163 } 4164 #endif /* CONFIG_TMPFS_QUOTA */ 4165 4166 if (ctx->seen & SHMEM_SEEN_HUGE) 4167 sbinfo->huge = ctx->huge; 4168 if (ctx->seen & SHMEM_SEEN_INUMS) 4169 sbinfo->full_inums = ctx->full_inums; 4170 if (ctx->seen & SHMEM_SEEN_BLOCKS) 4171 sbinfo->max_blocks = ctx->blocks; 4172 if (ctx->seen & SHMEM_SEEN_INODES) { 4173 sbinfo->max_inodes = ctx->inodes; 4174 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp; 4175 } 4176 4177 /* 4178 * Preserve previous mempolicy unless mpol remount option was specified. 4179 */ 4180 if (ctx->mpol) { 4181 mpol = sbinfo->mpol; 4182 sbinfo->mpol = ctx->mpol; /* transfers initial ref */ 4183 ctx->mpol = NULL; 4184 } 4185 4186 if (ctx->noswap) 4187 sbinfo->noswap = true; 4188 4189 raw_spin_unlock(&sbinfo->stat_lock); 4190 mpol_put(mpol); 4191 return 0; 4192 out: 4193 raw_spin_unlock(&sbinfo->stat_lock); 4194 return invalfc(fc, "%s", err); 4195 } 4196 4197 static int shmem_show_options(struct seq_file *seq, struct dentry *root) 4198 { 4199 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb); 4200 struct mempolicy *mpol; 4201 4202 if (sbinfo->max_blocks != shmem_default_max_blocks()) 4203 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks)); 4204 if (sbinfo->max_inodes != shmem_default_max_inodes()) 4205 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes); 4206 if (sbinfo->mode != (0777 | S_ISVTX)) 4207 seq_printf(seq, ",mode=%03ho", sbinfo->mode); 4208 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 4209 seq_printf(seq, ",uid=%u", 4210 from_kuid_munged(&init_user_ns, sbinfo->uid)); 4211 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 4212 seq_printf(seq, ",gid=%u", 4213 from_kgid_munged(&init_user_ns, sbinfo->gid)); 4214 4215 /* 4216 * Showing inode{64,32} might be useful even if it's the system default, 4217 * since then people don't have to resort to checking both here and 4218 * /proc/config.gz to confirm 64-bit inums were successfully applied 4219 * (which may not even exist if IKCONFIG_PROC isn't enabled). 4220 * 4221 * We hide it when inode64 isn't the default and we are using 32-bit 4222 * inodes, since that probably just means the feature isn't even under 4223 * consideration. 4224 * 4225 * As such: 4226 * 4227 * +-----------------+-----------------+ 4228 * | TMPFS_INODE64=y | TMPFS_INODE64=n | 4229 * +------------------+-----------------+-----------------+ 4230 * | full_inums=true | show | show | 4231 * | full_inums=false | show | hide | 4232 * +------------------+-----------------+-----------------+ 4233 * 4234 */ 4235 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums) 4236 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32)); 4237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4238 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */ 4239 if (sbinfo->huge) 4240 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge)); 4241 #endif 4242 mpol = shmem_get_sbmpol(sbinfo); 4243 shmem_show_mpol(seq, mpol); 4244 mpol_put(mpol); 4245 if (sbinfo->noswap) 4246 seq_printf(seq, ",noswap"); 4247 return 0; 4248 } 4249 4250 #endif /* CONFIG_TMPFS */ 4251 4252 static void shmem_put_super(struct super_block *sb) 4253 { 4254 struct shmem_sb_info *sbinfo = SHMEM_SB(sb); 4255 4256 #ifdef CONFIG_TMPFS_QUOTA 4257 shmem_disable_quotas(sb); 4258 #endif 4259 free_percpu(sbinfo->ino_batch); 4260 percpu_counter_destroy(&sbinfo->used_blocks); 4261 mpol_put(sbinfo->mpol); 4262 kfree(sbinfo); 4263 sb->s_fs_info = NULL; 4264 } 4265 4266 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc) 4267 { 4268 struct shmem_options *ctx = fc->fs_private; 4269 struct inode *inode; 4270 struct shmem_sb_info *sbinfo; 4271 int error = -ENOMEM; 4272 4273 /* Round up to L1_CACHE_BYTES to resist false sharing */ 4274 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info), 4275 L1_CACHE_BYTES), GFP_KERNEL); 4276 if (!sbinfo) 4277 return error; 4278 4279 sb->s_fs_info = sbinfo; 4280 4281 #ifdef CONFIG_TMPFS 4282 /* 4283 * Per default we only allow half of the physical ram per 4284 * tmpfs instance, limiting inodes to one per page of lowmem; 4285 * but the internal instance is left unlimited. 4286 */ 4287 if (!(sb->s_flags & SB_KERNMOUNT)) { 4288 if (!(ctx->seen & SHMEM_SEEN_BLOCKS)) 4289 ctx->blocks = shmem_default_max_blocks(); 4290 if (!(ctx->seen & SHMEM_SEEN_INODES)) 4291 ctx->inodes = shmem_default_max_inodes(); 4292 if (!(ctx->seen & SHMEM_SEEN_INUMS)) 4293 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64); 4294 sbinfo->noswap = ctx->noswap; 4295 } else { 4296 sb->s_flags |= SB_NOUSER; 4297 } 4298 sb->s_export_op = &shmem_export_ops; 4299 sb->s_flags |= SB_NOSEC | SB_I_VERSION; 4300 #else 4301 sb->s_flags |= SB_NOUSER; 4302 #endif 4303 sbinfo->max_blocks = ctx->blocks; 4304 sbinfo->max_inodes = ctx->inodes; 4305 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE; 4306 if (sb->s_flags & SB_KERNMOUNT) { 4307 sbinfo->ino_batch = alloc_percpu(ino_t); 4308 if (!sbinfo->ino_batch) 4309 goto failed; 4310 } 4311 sbinfo->uid = ctx->uid; 4312 sbinfo->gid = ctx->gid; 4313 sbinfo->full_inums = ctx->full_inums; 4314 sbinfo->mode = ctx->mode; 4315 sbinfo->huge = ctx->huge; 4316 sbinfo->mpol = ctx->mpol; 4317 ctx->mpol = NULL; 4318 4319 raw_spin_lock_init(&sbinfo->stat_lock); 4320 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL)) 4321 goto failed; 4322 spin_lock_init(&sbinfo->shrinklist_lock); 4323 INIT_LIST_HEAD(&sbinfo->shrinklist); 4324 4325 sb->s_maxbytes = MAX_LFS_FILESIZE; 4326 sb->s_blocksize = PAGE_SIZE; 4327 sb->s_blocksize_bits = PAGE_SHIFT; 4328 sb->s_magic = TMPFS_MAGIC; 4329 sb->s_op = &shmem_ops; 4330 sb->s_time_gran = 1; 4331 #ifdef CONFIG_TMPFS_XATTR 4332 sb->s_xattr = shmem_xattr_handlers; 4333 #endif 4334 #ifdef CONFIG_TMPFS_POSIX_ACL 4335 sb->s_flags |= SB_POSIXACL; 4336 #endif 4337 uuid_gen(&sb->s_uuid); 4338 4339 #ifdef CONFIG_TMPFS_QUOTA 4340 if (ctx->seen & SHMEM_SEEN_QUOTA) { 4341 sb->dq_op = &shmem_quota_operations; 4342 sb->s_qcop = &dquot_quotactl_sysfile_ops; 4343 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 4344 4345 /* Copy the default limits from ctx into sbinfo */ 4346 memcpy(&sbinfo->qlimits, &ctx->qlimits, 4347 sizeof(struct shmem_quota_limits)); 4348 4349 if (shmem_enable_quotas(sb, ctx->quota_types)) 4350 goto failed; 4351 } 4352 #endif /* CONFIG_TMPFS_QUOTA */ 4353 4354 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0, 4355 VM_NORESERVE); 4356 if (IS_ERR(inode)) { 4357 error = PTR_ERR(inode); 4358 goto failed; 4359 } 4360 inode->i_uid = sbinfo->uid; 4361 inode->i_gid = sbinfo->gid; 4362 sb->s_root = d_make_root(inode); 4363 if (!sb->s_root) 4364 goto failed; 4365 return 0; 4366 4367 failed: 4368 shmem_put_super(sb); 4369 return error; 4370 } 4371 4372 static int shmem_get_tree(struct fs_context *fc) 4373 { 4374 return get_tree_nodev(fc, shmem_fill_super); 4375 } 4376 4377 static void shmem_free_fc(struct fs_context *fc) 4378 { 4379 struct shmem_options *ctx = fc->fs_private; 4380 4381 if (ctx) { 4382 mpol_put(ctx->mpol); 4383 kfree(ctx); 4384 } 4385 } 4386 4387 static const struct fs_context_operations shmem_fs_context_ops = { 4388 .free = shmem_free_fc, 4389 .get_tree = shmem_get_tree, 4390 #ifdef CONFIG_TMPFS 4391 .parse_monolithic = shmem_parse_options, 4392 .parse_param = shmem_parse_one, 4393 .reconfigure = shmem_reconfigure, 4394 #endif 4395 }; 4396 4397 static struct kmem_cache *shmem_inode_cachep; 4398 4399 static struct inode *shmem_alloc_inode(struct super_block *sb) 4400 { 4401 struct shmem_inode_info *info; 4402 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL); 4403 if (!info) 4404 return NULL; 4405 return &info->vfs_inode; 4406 } 4407 4408 static void shmem_free_in_core_inode(struct inode *inode) 4409 { 4410 if (S_ISLNK(inode->i_mode)) 4411 kfree(inode->i_link); 4412 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode)); 4413 } 4414 4415 static void shmem_destroy_inode(struct inode *inode) 4416 { 4417 if (S_ISREG(inode->i_mode)) 4418 mpol_free_shared_policy(&SHMEM_I(inode)->policy); 4419 if (S_ISDIR(inode->i_mode)) 4420 simple_offset_destroy(shmem_get_offset_ctx(inode)); 4421 } 4422 4423 static void shmem_init_inode(void *foo) 4424 { 4425 struct shmem_inode_info *info = foo; 4426 inode_init_once(&info->vfs_inode); 4427 } 4428 4429 static void shmem_init_inodecache(void) 4430 { 4431 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache", 4432 sizeof(struct shmem_inode_info), 4433 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode); 4434 } 4435 4436 static void shmem_destroy_inodecache(void) 4437 { 4438 kmem_cache_destroy(shmem_inode_cachep); 4439 } 4440 4441 /* Keep the page in page cache instead of truncating it */ 4442 static int shmem_error_remove_page(struct address_space *mapping, 4443 struct page *page) 4444 { 4445 return 0; 4446 } 4447 4448 const struct address_space_operations shmem_aops = { 4449 .writepage = shmem_writepage, 4450 .dirty_folio = noop_dirty_folio, 4451 #ifdef CONFIG_TMPFS 4452 .write_begin = shmem_write_begin, 4453 .write_end = shmem_write_end, 4454 #endif 4455 #ifdef CONFIG_MIGRATION 4456 .migrate_folio = migrate_folio, 4457 #endif 4458 .error_remove_page = shmem_error_remove_page, 4459 }; 4460 EXPORT_SYMBOL(shmem_aops); 4461 4462 static const struct file_operations shmem_file_operations = { 4463 .mmap = shmem_mmap, 4464 .open = shmem_file_open, 4465 .get_unmapped_area = shmem_get_unmapped_area, 4466 #ifdef CONFIG_TMPFS 4467 .llseek = shmem_file_llseek, 4468 .read_iter = shmem_file_read_iter, 4469 .write_iter = shmem_file_write_iter, 4470 .fsync = noop_fsync, 4471 .splice_read = shmem_file_splice_read, 4472 .splice_write = iter_file_splice_write, 4473 .fallocate = shmem_fallocate, 4474 #endif 4475 }; 4476 4477 static const struct inode_operations shmem_inode_operations = { 4478 .getattr = shmem_getattr, 4479 .setattr = shmem_setattr, 4480 #ifdef CONFIG_TMPFS_XATTR 4481 .listxattr = shmem_listxattr, 4482 .set_acl = simple_set_acl, 4483 .fileattr_get = shmem_fileattr_get, 4484 .fileattr_set = shmem_fileattr_set, 4485 #endif 4486 }; 4487 4488 static const struct inode_operations shmem_dir_inode_operations = { 4489 #ifdef CONFIG_TMPFS 4490 .getattr = shmem_getattr, 4491 .create = shmem_create, 4492 .lookup = simple_lookup, 4493 .link = shmem_link, 4494 .unlink = shmem_unlink, 4495 .symlink = shmem_symlink, 4496 .mkdir = shmem_mkdir, 4497 .rmdir = shmem_rmdir, 4498 .mknod = shmem_mknod, 4499 .rename = shmem_rename2, 4500 .tmpfile = shmem_tmpfile, 4501 .get_offset_ctx = shmem_get_offset_ctx, 4502 #endif 4503 #ifdef CONFIG_TMPFS_XATTR 4504 .listxattr = shmem_listxattr, 4505 .fileattr_get = shmem_fileattr_get, 4506 .fileattr_set = shmem_fileattr_set, 4507 #endif 4508 #ifdef CONFIG_TMPFS_POSIX_ACL 4509 .setattr = shmem_setattr, 4510 .set_acl = simple_set_acl, 4511 #endif 4512 }; 4513 4514 static const struct inode_operations shmem_special_inode_operations = { 4515 .getattr = shmem_getattr, 4516 #ifdef CONFIG_TMPFS_XATTR 4517 .listxattr = shmem_listxattr, 4518 #endif 4519 #ifdef CONFIG_TMPFS_POSIX_ACL 4520 .setattr = shmem_setattr, 4521 .set_acl = simple_set_acl, 4522 #endif 4523 }; 4524 4525 static const struct super_operations shmem_ops = { 4526 .alloc_inode = shmem_alloc_inode, 4527 .free_inode = shmem_free_in_core_inode, 4528 .destroy_inode = shmem_destroy_inode, 4529 #ifdef CONFIG_TMPFS 4530 .statfs = shmem_statfs, 4531 .show_options = shmem_show_options, 4532 #endif 4533 #ifdef CONFIG_TMPFS_QUOTA 4534 .get_dquots = shmem_get_dquots, 4535 #endif 4536 .evict_inode = shmem_evict_inode, 4537 .drop_inode = generic_delete_inode, 4538 .put_super = shmem_put_super, 4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4540 .nr_cached_objects = shmem_unused_huge_count, 4541 .free_cached_objects = shmem_unused_huge_scan, 4542 #endif 4543 }; 4544 4545 static const struct vm_operations_struct shmem_vm_ops = { 4546 .fault = shmem_fault, 4547 .map_pages = filemap_map_pages, 4548 #ifdef CONFIG_NUMA 4549 .set_policy = shmem_set_policy, 4550 .get_policy = shmem_get_policy, 4551 #endif 4552 }; 4553 4554 static const struct vm_operations_struct shmem_anon_vm_ops = { 4555 .fault = shmem_fault, 4556 .map_pages = filemap_map_pages, 4557 #ifdef CONFIG_NUMA 4558 .set_policy = shmem_set_policy, 4559 .get_policy = shmem_get_policy, 4560 #endif 4561 }; 4562 4563 int shmem_init_fs_context(struct fs_context *fc) 4564 { 4565 struct shmem_options *ctx; 4566 4567 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL); 4568 if (!ctx) 4569 return -ENOMEM; 4570 4571 ctx->mode = 0777 | S_ISVTX; 4572 ctx->uid = current_fsuid(); 4573 ctx->gid = current_fsgid(); 4574 4575 fc->fs_private = ctx; 4576 fc->ops = &shmem_fs_context_ops; 4577 return 0; 4578 } 4579 4580 static struct file_system_type shmem_fs_type = { 4581 .owner = THIS_MODULE, 4582 .name = "tmpfs", 4583 .init_fs_context = shmem_init_fs_context, 4584 #ifdef CONFIG_TMPFS 4585 .parameters = shmem_fs_parameters, 4586 #endif 4587 .kill_sb = kill_litter_super, 4588 #ifdef CONFIG_SHMEM 4589 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME, 4590 #else 4591 .fs_flags = FS_USERNS_MOUNT, 4592 #endif 4593 }; 4594 4595 void __init shmem_init(void) 4596 { 4597 int error; 4598 4599 shmem_init_inodecache(); 4600 4601 #ifdef CONFIG_TMPFS_QUOTA 4602 error = register_quota_format(&shmem_quota_format); 4603 if (error < 0) { 4604 pr_err("Could not register quota format\n"); 4605 goto out3; 4606 } 4607 #endif 4608 4609 error = register_filesystem(&shmem_fs_type); 4610 if (error) { 4611 pr_err("Could not register tmpfs\n"); 4612 goto out2; 4613 } 4614 4615 shm_mnt = kern_mount(&shmem_fs_type); 4616 if (IS_ERR(shm_mnt)) { 4617 error = PTR_ERR(shm_mnt); 4618 pr_err("Could not kern_mount tmpfs\n"); 4619 goto out1; 4620 } 4621 4622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4623 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY) 4624 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4625 else 4626 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */ 4627 #endif 4628 return; 4629 4630 out1: 4631 unregister_filesystem(&shmem_fs_type); 4632 out2: 4633 #ifdef CONFIG_TMPFS_QUOTA 4634 unregister_quota_format(&shmem_quota_format); 4635 out3: 4636 #endif 4637 shmem_destroy_inodecache(); 4638 shm_mnt = ERR_PTR(error); 4639 } 4640 4641 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS) 4642 static ssize_t shmem_enabled_show(struct kobject *kobj, 4643 struct kobj_attribute *attr, char *buf) 4644 { 4645 static const int values[] = { 4646 SHMEM_HUGE_ALWAYS, 4647 SHMEM_HUGE_WITHIN_SIZE, 4648 SHMEM_HUGE_ADVISE, 4649 SHMEM_HUGE_NEVER, 4650 SHMEM_HUGE_DENY, 4651 SHMEM_HUGE_FORCE, 4652 }; 4653 int len = 0; 4654 int i; 4655 4656 for (i = 0; i < ARRAY_SIZE(values); i++) { 4657 len += sysfs_emit_at(buf, len, 4658 shmem_huge == values[i] ? "%s[%s]" : "%s%s", 4659 i ? " " : "", 4660 shmem_format_huge(values[i])); 4661 } 4662 4663 len += sysfs_emit_at(buf, len, "\n"); 4664 4665 return len; 4666 } 4667 4668 static ssize_t shmem_enabled_store(struct kobject *kobj, 4669 struct kobj_attribute *attr, const char *buf, size_t count) 4670 { 4671 char tmp[16]; 4672 int huge; 4673 4674 if (count + 1 > sizeof(tmp)) 4675 return -EINVAL; 4676 memcpy(tmp, buf, count); 4677 tmp[count] = '\0'; 4678 if (count && tmp[count - 1] == '\n') 4679 tmp[count - 1] = '\0'; 4680 4681 huge = shmem_parse_huge(tmp); 4682 if (huge == -EINVAL) 4683 return -EINVAL; 4684 if (!has_transparent_hugepage() && 4685 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY) 4686 return -EINVAL; 4687 4688 shmem_huge = huge; 4689 if (shmem_huge > SHMEM_HUGE_DENY) 4690 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge; 4691 return count; 4692 } 4693 4694 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled); 4695 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */ 4696 4697 #else /* !CONFIG_SHMEM */ 4698 4699 /* 4700 * tiny-shmem: simple shmemfs and tmpfs using ramfs code 4701 * 4702 * This is intended for small system where the benefits of the full 4703 * shmem code (swap-backed and resource-limited) are outweighed by 4704 * their complexity. On systems without swap this code should be 4705 * effectively equivalent, but much lighter weight. 4706 */ 4707 4708 static struct file_system_type shmem_fs_type = { 4709 .name = "tmpfs", 4710 .init_fs_context = ramfs_init_fs_context, 4711 .parameters = ramfs_fs_parameters, 4712 .kill_sb = ramfs_kill_sb, 4713 .fs_flags = FS_USERNS_MOUNT, 4714 }; 4715 4716 void __init shmem_init(void) 4717 { 4718 BUG_ON(register_filesystem(&shmem_fs_type) != 0); 4719 4720 shm_mnt = kern_mount(&shmem_fs_type); 4721 BUG_ON(IS_ERR(shm_mnt)); 4722 } 4723 4724 int shmem_unuse(unsigned int type) 4725 { 4726 return 0; 4727 } 4728 4729 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts) 4730 { 4731 return 0; 4732 } 4733 4734 void shmem_unlock_mapping(struct address_space *mapping) 4735 { 4736 } 4737 4738 #ifdef CONFIG_MMU 4739 unsigned long shmem_get_unmapped_area(struct file *file, 4740 unsigned long addr, unsigned long len, 4741 unsigned long pgoff, unsigned long flags) 4742 { 4743 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 4744 } 4745 #endif 4746 4747 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend) 4748 { 4749 truncate_inode_pages_range(inode->i_mapping, lstart, lend); 4750 } 4751 EXPORT_SYMBOL_GPL(shmem_truncate_range); 4752 4753 #define shmem_vm_ops generic_file_vm_ops 4754 #define shmem_anon_vm_ops generic_file_vm_ops 4755 #define shmem_file_operations ramfs_file_operations 4756 #define shmem_acct_size(flags, size) 0 4757 #define shmem_unacct_size(flags, size) do {} while (0) 4758 4759 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir, 4760 umode_t mode, dev_t dev, unsigned long flags) 4761 { 4762 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev); 4763 return inode ? inode : ERR_PTR(-ENOSPC); 4764 } 4765 4766 #endif /* CONFIG_SHMEM */ 4767 4768 /* common code */ 4769 4770 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size, 4771 unsigned long flags, unsigned int i_flags) 4772 { 4773 struct inode *inode; 4774 struct file *res; 4775 4776 if (IS_ERR(mnt)) 4777 return ERR_CAST(mnt); 4778 4779 if (size < 0 || size > MAX_LFS_FILESIZE) 4780 return ERR_PTR(-EINVAL); 4781 4782 if (shmem_acct_size(flags, size)) 4783 return ERR_PTR(-ENOMEM); 4784 4785 if (is_idmapped_mnt(mnt)) 4786 return ERR_PTR(-EINVAL); 4787 4788 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL, 4789 S_IFREG | S_IRWXUGO, 0, flags); 4790 4791 if (IS_ERR(inode)) { 4792 shmem_unacct_size(flags, size); 4793 return ERR_CAST(inode); 4794 } 4795 inode->i_flags |= i_flags; 4796 inode->i_size = size; 4797 clear_nlink(inode); /* It is unlinked */ 4798 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size)); 4799 if (!IS_ERR(res)) 4800 res = alloc_file_pseudo(inode, mnt, name, O_RDWR, 4801 &shmem_file_operations); 4802 if (IS_ERR(res)) 4803 iput(inode); 4804 return res; 4805 } 4806 4807 /** 4808 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be 4809 * kernel internal. There will be NO LSM permission checks against the 4810 * underlying inode. So users of this interface must do LSM checks at a 4811 * higher layer. The users are the big_key and shm implementations. LSM 4812 * checks are provided at the key or shm level rather than the inode. 4813 * @name: name for dentry (to be seen in /proc/<pid>/maps 4814 * @size: size to be set for the file 4815 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4816 */ 4817 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags) 4818 { 4819 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE); 4820 } 4821 4822 /** 4823 * shmem_file_setup - get an unlinked file living in tmpfs 4824 * @name: name for dentry (to be seen in /proc/<pid>/maps 4825 * @size: size to be set for the file 4826 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4827 */ 4828 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags) 4829 { 4830 return __shmem_file_setup(shm_mnt, name, size, flags, 0); 4831 } 4832 EXPORT_SYMBOL_GPL(shmem_file_setup); 4833 4834 /** 4835 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs 4836 * @mnt: the tmpfs mount where the file will be created 4837 * @name: name for dentry (to be seen in /proc/<pid>/maps 4838 * @size: size to be set for the file 4839 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size 4840 */ 4841 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name, 4842 loff_t size, unsigned long flags) 4843 { 4844 return __shmem_file_setup(mnt, name, size, flags, 0); 4845 } 4846 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt); 4847 4848 /** 4849 * shmem_zero_setup - setup a shared anonymous mapping 4850 * @vma: the vma to be mmapped is prepared by do_mmap 4851 */ 4852 int shmem_zero_setup(struct vm_area_struct *vma) 4853 { 4854 struct file *file; 4855 loff_t size = vma->vm_end - vma->vm_start; 4856 4857 /* 4858 * Cloning a new file under mmap_lock leads to a lock ordering conflict 4859 * between XFS directory reading and selinux: since this file is only 4860 * accessible to the user through its mapping, use S_PRIVATE flag to 4861 * bypass file security, in the same way as shmem_kernel_file_setup(). 4862 */ 4863 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags); 4864 if (IS_ERR(file)) 4865 return PTR_ERR(file); 4866 4867 if (vma->vm_file) 4868 fput(vma->vm_file); 4869 vma->vm_file = file; 4870 vma->vm_ops = &shmem_anon_vm_ops; 4871 4872 return 0; 4873 } 4874 4875 /** 4876 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags. 4877 * @mapping: the folio's address_space 4878 * @index: the folio index 4879 * @gfp: the page allocator flags to use if allocating 4880 * 4881 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)", 4882 * with any new page allocations done using the specified allocation flags. 4883 * But read_cache_page_gfp() uses the ->read_folio() method: which does not 4884 * suit tmpfs, since it may have pages in swapcache, and needs to find those 4885 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support. 4886 * 4887 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in 4888 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily. 4889 */ 4890 struct folio *shmem_read_folio_gfp(struct address_space *mapping, 4891 pgoff_t index, gfp_t gfp) 4892 { 4893 #ifdef CONFIG_SHMEM 4894 struct inode *inode = mapping->host; 4895 struct folio *folio; 4896 int error; 4897 4898 BUG_ON(!shmem_mapping(mapping)); 4899 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE, 4900 gfp, NULL, NULL, NULL); 4901 if (error) 4902 return ERR_PTR(error); 4903 4904 folio_unlock(folio); 4905 return folio; 4906 #else 4907 /* 4908 * The tiny !SHMEM case uses ramfs without swap 4909 */ 4910 return mapping_read_folio_gfp(mapping, index, gfp); 4911 #endif 4912 } 4913 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp); 4914 4915 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping, 4916 pgoff_t index, gfp_t gfp) 4917 { 4918 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp); 4919 struct page *page; 4920 4921 if (IS_ERR(folio)) 4922 return &folio->page; 4923 4924 page = folio_file_page(folio, index); 4925 if (PageHWPoison(page)) { 4926 folio_put(folio); 4927 return ERR_PTR(-EIO); 4928 } 4929 4930 return page; 4931 } 4932 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp); 4933