xref: /linux/mm/shmem.c (revision 019b383d1132e4051de0d2e43254454b86538cf4)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44 
45 static struct vfsmount *shm_mnt;
46 
47 #ifdef CONFIG_SHMEM
48 /*
49  * This virtual memory filesystem is heavily based on the ramfs. It
50  * extends ramfs by the ability to use swap and honor resource limits
51  * which makes it a completely usable filesystem.
52  */
53 
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82 
83 #include <linux/uaccess.h>
84 
85 #include "internal.h"
86 
87 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
88 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92 
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95 
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98 
99 /*
100  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101  * inode->i_private (with i_rwsem making sure that it has only one user at
102  * a time): we would prefer not to enlarge the shmem inode just for that.
103  */
104 struct shmem_falloc {
105 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 	pgoff_t start;		/* start of range currently being fallocated */
107 	pgoff_t next;		/* the next page offset to be fallocated */
108 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
109 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
110 };
111 
112 struct shmem_options {
113 	unsigned long long blocks;
114 	unsigned long long inodes;
115 	struct mempolicy *mpol;
116 	kuid_t uid;
117 	kgid_t gid;
118 	umode_t mode;
119 	bool full_inums;
120 	int huge;
121 	int seen;
122 	bool noswap;
123 	unsigned short quota_types;
124 	struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132 
133 #ifdef CONFIG_TMPFS
134 static unsigned long shmem_default_max_blocks(void)
135 {
136 	return totalram_pages() / 2;
137 }
138 
139 static unsigned long shmem_default_max_inodes(void)
140 {
141 	unsigned long nr_pages = totalram_pages();
142 
143 	return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 			ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147 
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 			     struct folio **foliop, enum sgp_type sgp,
150 			     gfp_t gfp, struct vm_area_struct *vma,
151 			     vm_fault_t *fault_type);
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 	int err = -ENOSPC;
215 
216 	if (shmem_acct_block(info->flags, pages))
217 		return err;
218 
219 	might_sleep();	/* when quotas */
220 	if (sbinfo->max_blocks) {
221 		if (percpu_counter_compare(&sbinfo->used_blocks,
222 					   sbinfo->max_blocks - pages) > 0)
223 			goto unacct;
224 
225 		err = dquot_alloc_block_nodirty(inode, pages);
226 		if (err)
227 			goto unacct;
228 
229 		percpu_counter_add(&sbinfo->used_blocks, pages);
230 	} else {
231 		err = dquot_alloc_block_nodirty(inode, pages);
232 		if (err)
233 			goto unacct;
234 	}
235 
236 	return 0;
237 
238 unacct:
239 	shmem_unacct_blocks(info->flags, pages);
240 	return err;
241 }
242 
243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 	struct shmem_inode_info *info = SHMEM_I(inode);
246 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247 
248 	might_sleep();	/* when quotas */
249 	dquot_free_block_nodirty(inode, pages);
250 
251 	if (sbinfo->max_blocks)
252 		percpu_counter_sub(&sbinfo->used_blocks, pages);
253 	shmem_unacct_blocks(info->flags, pages);
254 }
255 
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265 
266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 	return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270 
271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 	return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275 
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278 
279 #ifdef CONFIG_TMPFS_QUOTA
280 
281 static int shmem_enable_quotas(struct super_block *sb,
282 			       unsigned short quota_types)
283 {
284 	int type, err = 0;
285 
286 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 	for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 		if (!(quota_types & (1 << type)))
289 			continue;
290 		err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 					  DQUOT_USAGE_ENABLED |
292 					  DQUOT_LIMITS_ENABLED);
293 		if (err)
294 			goto out_err;
295 	}
296 	return 0;
297 
298 out_err:
299 	pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 		type, err);
301 	for (type--; type >= 0; type--)
302 		dquot_quota_off(sb, type);
303 	return err;
304 }
305 
306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 	int type;
309 
310 	for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 		dquot_quota_off(sb, type);
312 }
313 
314 static struct dquot **shmem_get_dquots(struct inode *inode)
315 {
316 	return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319 
320 /*
321  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322  * produces a novel ino for the newly allocated inode.
323  *
324  * It may also be called when making a hard link to permit the space needed by
325  * each dentry. However, in that case, no new inode number is needed since that
326  * internally draws from another pool of inode numbers (currently global
327  * get_next_ino()). This case is indicated by passing NULL as inop.
328  */
329 #define SHMEM_INO_BATCH 1024
330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 	ino_t ino;
334 
335 	if (!(sb->s_flags & SB_KERNMOUNT)) {
336 		raw_spin_lock(&sbinfo->stat_lock);
337 		if (sbinfo->max_inodes) {
338 			if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 				raw_spin_unlock(&sbinfo->stat_lock);
340 				return -ENOSPC;
341 			}
342 			sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 		}
344 		if (inop) {
345 			ino = sbinfo->next_ino++;
346 			if (unlikely(is_zero_ino(ino)))
347 				ino = sbinfo->next_ino++;
348 			if (unlikely(!sbinfo->full_inums &&
349 				     ino > UINT_MAX)) {
350 				/*
351 				 * Emulate get_next_ino uint wraparound for
352 				 * compatibility
353 				 */
354 				if (IS_ENABLED(CONFIG_64BIT))
355 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 						__func__, MINOR(sb->s_dev));
357 				sbinfo->next_ino = 1;
358 				ino = sbinfo->next_ino++;
359 			}
360 			*inop = ino;
361 		}
362 		raw_spin_unlock(&sbinfo->stat_lock);
363 	} else if (inop) {
364 		/*
365 		 * __shmem_file_setup, one of our callers, is lock-free: it
366 		 * doesn't hold stat_lock in shmem_reserve_inode since
367 		 * max_inodes is always 0, and is called from potentially
368 		 * unknown contexts. As such, use a per-cpu batched allocator
369 		 * which doesn't require the per-sb stat_lock unless we are at
370 		 * the batch boundary.
371 		 *
372 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 		 * shmem mounts are not exposed to userspace, so we don't need
374 		 * to worry about things like glibc compatibility.
375 		 */
376 		ino_t *next_ino;
377 
378 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 		ino = *next_ino;
380 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 			raw_spin_lock(&sbinfo->stat_lock);
382 			ino = sbinfo->next_ino;
383 			sbinfo->next_ino += SHMEM_INO_BATCH;
384 			raw_spin_unlock(&sbinfo->stat_lock);
385 			if (unlikely(is_zero_ino(ino)))
386 				ino++;
387 		}
388 		*inop = ino;
389 		*next_ino = ++ino;
390 		put_cpu();
391 	}
392 
393 	return 0;
394 }
395 
396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 	if (sbinfo->max_inodes) {
400 		raw_spin_lock(&sbinfo->stat_lock);
401 		sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 		raw_spin_unlock(&sbinfo->stat_lock);
403 	}
404 }
405 
406 /**
407  * shmem_recalc_inode - recalculate the block usage of an inode
408  * @inode: inode to recalc
409  * @alloced: the change in number of pages allocated to inode
410  * @swapped: the change in number of pages swapped from inode
411  *
412  * We have to calculate the free blocks since the mm can drop
413  * undirtied hole pages behind our back.
414  *
415  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
416  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417  */
418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 	struct shmem_inode_info *info = SHMEM_I(inode);
421 	long freed;
422 
423 	spin_lock(&info->lock);
424 	info->alloced += alloced;
425 	info->swapped += swapped;
426 	freed = info->alloced - info->swapped -
427 		READ_ONCE(inode->i_mapping->nrpages);
428 	/*
429 	 * Special case: whereas normally shmem_recalc_inode() is called
430 	 * after i_mapping->nrpages has already been adjusted (up or down),
431 	 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 	 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 	 * been freed.  Compensate here, to avoid the need for a followup call.
434 	 */
435 	if (swapped > 0)
436 		freed += swapped;
437 	if (freed > 0)
438 		info->alloced -= freed;
439 	spin_unlock(&info->lock);
440 
441 	/* The quota case may block */
442 	if (freed > 0)
443 		shmem_inode_unacct_blocks(inode, freed);
444 }
445 
446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 	struct address_space *mapping = inode->i_mapping;
449 
450 	if (shmem_inode_acct_block(inode, pages))
451 		return false;
452 
453 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 	xa_lock_irq(&mapping->i_pages);
455 	mapping->nrpages += pages;
456 	xa_unlock_irq(&mapping->i_pages);
457 
458 	shmem_recalc_inode(inode, pages, 0);
459 	return true;
460 }
461 
462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 	/* pages argument is currently unused: keep it to help debugging */
465 	/* nrpages adjustment done by __filemap_remove_folio() or caller */
466 
467 	shmem_recalc_inode(inode, 0, 0);
468 }
469 
470 /*
471  * Replace item expected in xarray by a new item, while holding xa_lock.
472  */
473 static int shmem_replace_entry(struct address_space *mapping,
474 			pgoff_t index, void *expected, void *replacement)
475 {
476 	XA_STATE(xas, &mapping->i_pages, index);
477 	void *item;
478 
479 	VM_BUG_ON(!expected);
480 	VM_BUG_ON(!replacement);
481 	item = xas_load(&xas);
482 	if (item != expected)
483 		return -ENOENT;
484 	xas_store(&xas, replacement);
485 	return 0;
486 }
487 
488 /*
489  * Sometimes, before we decide whether to proceed or to fail, we must check
490  * that an entry was not already brought back from swap by a racing thread.
491  *
492  * Checking page is not enough: by the time a SwapCache page is locked, it
493  * might be reused, and again be SwapCache, using the same swap as before.
494  */
495 static bool shmem_confirm_swap(struct address_space *mapping,
496 			       pgoff_t index, swp_entry_t swap)
497 {
498 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500 
501 /*
502  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503  *
504  * SHMEM_HUGE_NEVER:
505  *	disables huge pages for the mount;
506  * SHMEM_HUGE_ALWAYS:
507  *	enables huge pages for the mount;
508  * SHMEM_HUGE_WITHIN_SIZE:
509  *	only allocate huge pages if the page will be fully within i_size,
510  *	also respect fadvise()/madvise() hints;
511  * SHMEM_HUGE_ADVISE:
512  *	only allocate huge pages if requested with fadvise()/madvise();
513  */
514 
515 #define SHMEM_HUGE_NEVER	0
516 #define SHMEM_HUGE_ALWAYS	1
517 #define SHMEM_HUGE_WITHIN_SIZE	2
518 #define SHMEM_HUGE_ADVISE	3
519 
520 /*
521  * Special values.
522  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523  *
524  * SHMEM_HUGE_DENY:
525  *	disables huge on shm_mnt and all mounts, for emergency use;
526  * SHMEM_HUGE_FORCE:
527  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528  *
529  */
530 #define SHMEM_HUGE_DENY		(-1)
531 #define SHMEM_HUGE_FORCE	(-2)
532 
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535 
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537 
538 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
539 		   struct mm_struct *mm, unsigned long vm_flags)
540 {
541 	loff_t i_size;
542 
543 	if (!S_ISREG(inode->i_mode))
544 		return false;
545 	if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
546 		return false;
547 	if (shmem_huge == SHMEM_HUGE_DENY)
548 		return false;
549 	if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
550 		return true;
551 
552 	switch (SHMEM_SB(inode->i_sb)->huge) {
553 	case SHMEM_HUGE_ALWAYS:
554 		return true;
555 	case SHMEM_HUGE_WITHIN_SIZE:
556 		index = round_up(index + 1, HPAGE_PMD_NR);
557 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
558 		if (i_size >> PAGE_SHIFT >= index)
559 			return true;
560 		fallthrough;
561 	case SHMEM_HUGE_ADVISE:
562 		if (mm && (vm_flags & VM_HUGEPAGE))
563 			return true;
564 		fallthrough;
565 	default:
566 		return false;
567 	}
568 }
569 
570 #if defined(CONFIG_SYSFS)
571 static int shmem_parse_huge(const char *str)
572 {
573 	if (!strcmp(str, "never"))
574 		return SHMEM_HUGE_NEVER;
575 	if (!strcmp(str, "always"))
576 		return SHMEM_HUGE_ALWAYS;
577 	if (!strcmp(str, "within_size"))
578 		return SHMEM_HUGE_WITHIN_SIZE;
579 	if (!strcmp(str, "advise"))
580 		return SHMEM_HUGE_ADVISE;
581 	if (!strcmp(str, "deny"))
582 		return SHMEM_HUGE_DENY;
583 	if (!strcmp(str, "force"))
584 		return SHMEM_HUGE_FORCE;
585 	return -EINVAL;
586 }
587 #endif
588 
589 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
590 static const char *shmem_format_huge(int huge)
591 {
592 	switch (huge) {
593 	case SHMEM_HUGE_NEVER:
594 		return "never";
595 	case SHMEM_HUGE_ALWAYS:
596 		return "always";
597 	case SHMEM_HUGE_WITHIN_SIZE:
598 		return "within_size";
599 	case SHMEM_HUGE_ADVISE:
600 		return "advise";
601 	case SHMEM_HUGE_DENY:
602 		return "deny";
603 	case SHMEM_HUGE_FORCE:
604 		return "force";
605 	default:
606 		VM_BUG_ON(1);
607 		return "bad_val";
608 	}
609 }
610 #endif
611 
612 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
613 		struct shrink_control *sc, unsigned long nr_to_split)
614 {
615 	LIST_HEAD(list), *pos, *next;
616 	LIST_HEAD(to_remove);
617 	struct inode *inode;
618 	struct shmem_inode_info *info;
619 	struct folio *folio;
620 	unsigned long batch = sc ? sc->nr_to_scan : 128;
621 	int split = 0;
622 
623 	if (list_empty(&sbinfo->shrinklist))
624 		return SHRINK_STOP;
625 
626 	spin_lock(&sbinfo->shrinklist_lock);
627 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
628 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
629 
630 		/* pin the inode */
631 		inode = igrab(&info->vfs_inode);
632 
633 		/* inode is about to be evicted */
634 		if (!inode) {
635 			list_del_init(&info->shrinklist);
636 			goto next;
637 		}
638 
639 		/* Check if there's anything to gain */
640 		if (round_up(inode->i_size, PAGE_SIZE) ==
641 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
642 			list_move(&info->shrinklist, &to_remove);
643 			goto next;
644 		}
645 
646 		list_move(&info->shrinklist, &list);
647 next:
648 		sbinfo->shrinklist_len--;
649 		if (!--batch)
650 			break;
651 	}
652 	spin_unlock(&sbinfo->shrinklist_lock);
653 
654 	list_for_each_safe(pos, next, &to_remove) {
655 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
656 		inode = &info->vfs_inode;
657 		list_del_init(&info->shrinklist);
658 		iput(inode);
659 	}
660 
661 	list_for_each_safe(pos, next, &list) {
662 		int ret;
663 		pgoff_t index;
664 
665 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
666 		inode = &info->vfs_inode;
667 
668 		if (nr_to_split && split >= nr_to_split)
669 			goto move_back;
670 
671 		index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
672 		folio = filemap_get_folio(inode->i_mapping, index);
673 		if (IS_ERR(folio))
674 			goto drop;
675 
676 		/* No huge page at the end of the file: nothing to split */
677 		if (!folio_test_large(folio)) {
678 			folio_put(folio);
679 			goto drop;
680 		}
681 
682 		/*
683 		 * Move the inode on the list back to shrinklist if we failed
684 		 * to lock the page at this time.
685 		 *
686 		 * Waiting for the lock may lead to deadlock in the
687 		 * reclaim path.
688 		 */
689 		if (!folio_trylock(folio)) {
690 			folio_put(folio);
691 			goto move_back;
692 		}
693 
694 		ret = split_folio(folio);
695 		folio_unlock(folio);
696 		folio_put(folio);
697 
698 		/* If split failed move the inode on the list back to shrinklist */
699 		if (ret)
700 			goto move_back;
701 
702 		split++;
703 drop:
704 		list_del_init(&info->shrinklist);
705 		goto put;
706 move_back:
707 		/*
708 		 * Make sure the inode is either on the global list or deleted
709 		 * from any local list before iput() since it could be deleted
710 		 * in another thread once we put the inode (then the local list
711 		 * is corrupted).
712 		 */
713 		spin_lock(&sbinfo->shrinklist_lock);
714 		list_move(&info->shrinklist, &sbinfo->shrinklist);
715 		sbinfo->shrinklist_len++;
716 		spin_unlock(&sbinfo->shrinklist_lock);
717 put:
718 		iput(inode);
719 	}
720 
721 	return split;
722 }
723 
724 static long shmem_unused_huge_scan(struct super_block *sb,
725 		struct shrink_control *sc)
726 {
727 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
728 
729 	if (!READ_ONCE(sbinfo->shrinklist_len))
730 		return SHRINK_STOP;
731 
732 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
733 }
734 
735 static long shmem_unused_huge_count(struct super_block *sb,
736 		struct shrink_control *sc)
737 {
738 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739 	return READ_ONCE(sbinfo->shrinklist_len);
740 }
741 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
742 
743 #define shmem_huge SHMEM_HUGE_DENY
744 
745 bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
746 		   struct mm_struct *mm, unsigned long vm_flags)
747 {
748 	return false;
749 }
750 
751 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
752 		struct shrink_control *sc, unsigned long nr_to_split)
753 {
754 	return 0;
755 }
756 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
757 
758 /*
759  * Like filemap_add_folio, but error if expected item has gone.
760  */
761 static int shmem_add_to_page_cache(struct folio *folio,
762 				   struct address_space *mapping,
763 				   pgoff_t index, void *expected, gfp_t gfp,
764 				   struct mm_struct *charge_mm)
765 {
766 	XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
767 	long nr = folio_nr_pages(folio);
768 	int error;
769 
770 	VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
771 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
772 	VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
773 	VM_BUG_ON(expected && folio_test_large(folio));
774 
775 	folio_ref_add(folio, nr);
776 	folio->mapping = mapping;
777 	folio->index = index;
778 
779 	if (!folio_test_swapcache(folio)) {
780 		error = mem_cgroup_charge(folio, charge_mm, gfp);
781 		if (error) {
782 			if (folio_test_pmd_mappable(folio)) {
783 				count_vm_event(THP_FILE_FALLBACK);
784 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
785 			}
786 			goto error;
787 		}
788 	}
789 	folio_throttle_swaprate(folio, gfp);
790 
791 	do {
792 		xas_lock_irq(&xas);
793 		if (expected != xas_find_conflict(&xas)) {
794 			xas_set_err(&xas, -EEXIST);
795 			goto unlock;
796 		}
797 		if (expected && xas_find_conflict(&xas)) {
798 			xas_set_err(&xas, -EEXIST);
799 			goto unlock;
800 		}
801 		xas_store(&xas, folio);
802 		if (xas_error(&xas))
803 			goto unlock;
804 		if (folio_test_pmd_mappable(folio)) {
805 			count_vm_event(THP_FILE_ALLOC);
806 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
807 		}
808 		mapping->nrpages += nr;
809 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
810 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
811 unlock:
812 		xas_unlock_irq(&xas);
813 	} while (xas_nomem(&xas, gfp));
814 
815 	if (xas_error(&xas)) {
816 		error = xas_error(&xas);
817 		goto error;
818 	}
819 
820 	return 0;
821 error:
822 	folio->mapping = NULL;
823 	folio_ref_sub(folio, nr);
824 	return error;
825 }
826 
827 /*
828  * Like delete_from_page_cache, but substitutes swap for @folio.
829  */
830 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
831 {
832 	struct address_space *mapping = folio->mapping;
833 	long nr = folio_nr_pages(folio);
834 	int error;
835 
836 	xa_lock_irq(&mapping->i_pages);
837 	error = shmem_replace_entry(mapping, folio->index, folio, radswap);
838 	folio->mapping = NULL;
839 	mapping->nrpages -= nr;
840 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
841 	__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
842 	xa_unlock_irq(&mapping->i_pages);
843 	folio_put(folio);
844 	BUG_ON(error);
845 }
846 
847 /*
848  * Remove swap entry from page cache, free the swap and its page cache.
849  */
850 static int shmem_free_swap(struct address_space *mapping,
851 			   pgoff_t index, void *radswap)
852 {
853 	void *old;
854 
855 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
856 	if (old != radswap)
857 		return -ENOENT;
858 	free_swap_and_cache(radix_to_swp_entry(radswap));
859 	return 0;
860 }
861 
862 /*
863  * Determine (in bytes) how many of the shmem object's pages mapped by the
864  * given offsets are swapped out.
865  *
866  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
867  * as long as the inode doesn't go away and racy results are not a problem.
868  */
869 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
870 						pgoff_t start, pgoff_t end)
871 {
872 	XA_STATE(xas, &mapping->i_pages, start);
873 	struct page *page;
874 	unsigned long swapped = 0;
875 	unsigned long max = end - 1;
876 
877 	rcu_read_lock();
878 	xas_for_each(&xas, page, max) {
879 		if (xas_retry(&xas, page))
880 			continue;
881 		if (xa_is_value(page))
882 			swapped++;
883 		if (xas.xa_index == max)
884 			break;
885 		if (need_resched()) {
886 			xas_pause(&xas);
887 			cond_resched_rcu();
888 		}
889 	}
890 
891 	rcu_read_unlock();
892 
893 	return swapped << PAGE_SHIFT;
894 }
895 
896 /*
897  * Determine (in bytes) how many of the shmem object's pages mapped by the
898  * given vma is swapped out.
899  *
900  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
901  * as long as the inode doesn't go away and racy results are not a problem.
902  */
903 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
904 {
905 	struct inode *inode = file_inode(vma->vm_file);
906 	struct shmem_inode_info *info = SHMEM_I(inode);
907 	struct address_space *mapping = inode->i_mapping;
908 	unsigned long swapped;
909 
910 	/* Be careful as we don't hold info->lock */
911 	swapped = READ_ONCE(info->swapped);
912 
913 	/*
914 	 * The easier cases are when the shmem object has nothing in swap, or
915 	 * the vma maps it whole. Then we can simply use the stats that we
916 	 * already track.
917 	 */
918 	if (!swapped)
919 		return 0;
920 
921 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
922 		return swapped << PAGE_SHIFT;
923 
924 	/* Here comes the more involved part */
925 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
926 					vma->vm_pgoff + vma_pages(vma));
927 }
928 
929 /*
930  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
931  */
932 void shmem_unlock_mapping(struct address_space *mapping)
933 {
934 	struct folio_batch fbatch;
935 	pgoff_t index = 0;
936 
937 	folio_batch_init(&fbatch);
938 	/*
939 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
940 	 */
941 	while (!mapping_unevictable(mapping) &&
942 	       filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
943 		check_move_unevictable_folios(&fbatch);
944 		folio_batch_release(&fbatch);
945 		cond_resched();
946 	}
947 }
948 
949 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
950 {
951 	struct folio *folio;
952 
953 	/*
954 	 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
955 	 * beyond i_size, and reports fallocated folios as holes.
956 	 */
957 	folio = filemap_get_entry(inode->i_mapping, index);
958 	if (!folio)
959 		return folio;
960 	if (!xa_is_value(folio)) {
961 		folio_lock(folio);
962 		if (folio->mapping == inode->i_mapping)
963 			return folio;
964 		/* The folio has been swapped out */
965 		folio_unlock(folio);
966 		folio_put(folio);
967 	}
968 	/*
969 	 * But read a folio back from swap if any of it is within i_size
970 	 * (although in some cases this is just a waste of time).
971 	 */
972 	folio = NULL;
973 	shmem_get_folio(inode, index, &folio, SGP_READ);
974 	return folio;
975 }
976 
977 /*
978  * Remove range of pages and swap entries from page cache, and free them.
979  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
980  */
981 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
982 								 bool unfalloc)
983 {
984 	struct address_space *mapping = inode->i_mapping;
985 	struct shmem_inode_info *info = SHMEM_I(inode);
986 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
987 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
988 	struct folio_batch fbatch;
989 	pgoff_t indices[PAGEVEC_SIZE];
990 	struct folio *folio;
991 	bool same_folio;
992 	long nr_swaps_freed = 0;
993 	pgoff_t index;
994 	int i;
995 
996 	if (lend == -1)
997 		end = -1;	/* unsigned, so actually very big */
998 
999 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1000 		info->fallocend = start;
1001 
1002 	folio_batch_init(&fbatch);
1003 	index = start;
1004 	while (index < end && find_lock_entries(mapping, &index, end - 1,
1005 			&fbatch, indices)) {
1006 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1007 			folio = fbatch.folios[i];
1008 
1009 			if (xa_is_value(folio)) {
1010 				if (unfalloc)
1011 					continue;
1012 				nr_swaps_freed += !shmem_free_swap(mapping,
1013 							indices[i], folio);
1014 				continue;
1015 			}
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio))
1018 				truncate_inode_folio(mapping, folio);
1019 			folio_unlock(folio);
1020 		}
1021 		folio_batch_remove_exceptionals(&fbatch);
1022 		folio_batch_release(&fbatch);
1023 		cond_resched();
1024 	}
1025 
1026 	/*
1027 	 * When undoing a failed fallocate, we want none of the partial folio
1028 	 * zeroing and splitting below, but shall want to truncate the whole
1029 	 * folio when !uptodate indicates that it was added by this fallocate,
1030 	 * even when [lstart, lend] covers only a part of the folio.
1031 	 */
1032 	if (unfalloc)
1033 		goto whole_folios;
1034 
1035 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1036 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1037 	if (folio) {
1038 		same_folio = lend < folio_pos(folio) + folio_size(folio);
1039 		folio_mark_dirty(folio);
1040 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1041 			start = folio_next_index(folio);
1042 			if (same_folio)
1043 				end = folio->index;
1044 		}
1045 		folio_unlock(folio);
1046 		folio_put(folio);
1047 		folio = NULL;
1048 	}
1049 
1050 	if (!same_folio)
1051 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1052 	if (folio) {
1053 		folio_mark_dirty(folio);
1054 		if (!truncate_inode_partial_folio(folio, lstart, lend))
1055 			end = folio->index;
1056 		folio_unlock(folio);
1057 		folio_put(folio);
1058 	}
1059 
1060 whole_folios:
1061 
1062 	index = start;
1063 	while (index < end) {
1064 		cond_resched();
1065 
1066 		if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1067 				indices)) {
1068 			/* If all gone or hole-punch or unfalloc, we're done */
1069 			if (index == start || end != -1)
1070 				break;
1071 			/* But if truncating, restart to make sure all gone */
1072 			index = start;
1073 			continue;
1074 		}
1075 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1076 			folio = fbatch.folios[i];
1077 
1078 			if (xa_is_value(folio)) {
1079 				if (unfalloc)
1080 					continue;
1081 				if (shmem_free_swap(mapping, indices[i], folio)) {
1082 					/* Swap was replaced by page: retry */
1083 					index = indices[i];
1084 					break;
1085 				}
1086 				nr_swaps_freed++;
1087 				continue;
1088 			}
1089 
1090 			folio_lock(folio);
1091 
1092 			if (!unfalloc || !folio_test_uptodate(folio)) {
1093 				if (folio_mapping(folio) != mapping) {
1094 					/* Page was replaced by swap: retry */
1095 					folio_unlock(folio);
1096 					index = indices[i];
1097 					break;
1098 				}
1099 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1100 						folio);
1101 				truncate_inode_folio(mapping, folio);
1102 			}
1103 			folio_unlock(folio);
1104 		}
1105 		folio_batch_remove_exceptionals(&fbatch);
1106 		folio_batch_release(&fbatch);
1107 	}
1108 
1109 	shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1110 }
1111 
1112 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1113 {
1114 	shmem_undo_range(inode, lstart, lend, false);
1115 	inode->i_mtime = inode_set_ctime_current(inode);
1116 	inode_inc_iversion(inode);
1117 }
1118 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1119 
1120 static int shmem_getattr(struct mnt_idmap *idmap,
1121 			 const struct path *path, struct kstat *stat,
1122 			 u32 request_mask, unsigned int query_flags)
1123 {
1124 	struct inode *inode = path->dentry->d_inode;
1125 	struct shmem_inode_info *info = SHMEM_I(inode);
1126 
1127 	if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1128 		shmem_recalc_inode(inode, 0, 0);
1129 
1130 	if (info->fsflags & FS_APPEND_FL)
1131 		stat->attributes |= STATX_ATTR_APPEND;
1132 	if (info->fsflags & FS_IMMUTABLE_FL)
1133 		stat->attributes |= STATX_ATTR_IMMUTABLE;
1134 	if (info->fsflags & FS_NODUMP_FL)
1135 		stat->attributes |= STATX_ATTR_NODUMP;
1136 	stat->attributes_mask |= (STATX_ATTR_APPEND |
1137 			STATX_ATTR_IMMUTABLE |
1138 			STATX_ATTR_NODUMP);
1139 	generic_fillattr(idmap, request_mask, inode, stat);
1140 
1141 	if (shmem_is_huge(inode, 0, false, NULL, 0))
1142 		stat->blksize = HPAGE_PMD_SIZE;
1143 
1144 	if (request_mask & STATX_BTIME) {
1145 		stat->result_mask |= STATX_BTIME;
1146 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1147 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static int shmem_setattr(struct mnt_idmap *idmap,
1154 			 struct dentry *dentry, struct iattr *attr)
1155 {
1156 	struct inode *inode = d_inode(dentry);
1157 	struct shmem_inode_info *info = SHMEM_I(inode);
1158 	int error;
1159 	bool update_mtime = false;
1160 	bool update_ctime = true;
1161 
1162 	error = setattr_prepare(idmap, dentry, attr);
1163 	if (error)
1164 		return error;
1165 
1166 	if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1167 		if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1168 			return -EPERM;
1169 		}
1170 	}
1171 
1172 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1173 		loff_t oldsize = inode->i_size;
1174 		loff_t newsize = attr->ia_size;
1175 
1176 		/* protected by i_rwsem */
1177 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1178 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1179 			return -EPERM;
1180 
1181 		if (newsize != oldsize) {
1182 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1183 					oldsize, newsize);
1184 			if (error)
1185 				return error;
1186 			i_size_write(inode, newsize);
1187 			update_mtime = true;
1188 		} else {
1189 			update_ctime = false;
1190 		}
1191 		if (newsize <= oldsize) {
1192 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1193 			if (oldsize > holebegin)
1194 				unmap_mapping_range(inode->i_mapping,
1195 							holebegin, 0, 1);
1196 			if (info->alloced)
1197 				shmem_truncate_range(inode,
1198 							newsize, (loff_t)-1);
1199 			/* unmap again to remove racily COWed private pages */
1200 			if (oldsize > holebegin)
1201 				unmap_mapping_range(inode->i_mapping,
1202 							holebegin, 0, 1);
1203 		}
1204 	}
1205 
1206 	if (is_quota_modification(idmap, inode, attr)) {
1207 		error = dquot_initialize(inode);
1208 		if (error)
1209 			return error;
1210 	}
1211 
1212 	/* Transfer quota accounting */
1213 	if (i_uid_needs_update(idmap, attr, inode) ||
1214 	    i_gid_needs_update(idmap, attr, inode)) {
1215 		error = dquot_transfer(idmap, inode, attr);
1216 
1217 		if (error)
1218 			return error;
1219 	}
1220 
1221 	setattr_copy(idmap, inode, attr);
1222 	if (attr->ia_valid & ATTR_MODE)
1223 		error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1224 	if (!error && update_ctime) {
1225 		inode_set_ctime_current(inode);
1226 		if (update_mtime)
1227 			inode->i_mtime = inode_get_ctime(inode);
1228 		inode_inc_iversion(inode);
1229 	}
1230 	return error;
1231 }
1232 
1233 static void shmem_evict_inode(struct inode *inode)
1234 {
1235 	struct shmem_inode_info *info = SHMEM_I(inode);
1236 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1237 	size_t freed = 0;
1238 
1239 	if (shmem_mapping(inode->i_mapping)) {
1240 		shmem_unacct_size(info->flags, inode->i_size);
1241 		inode->i_size = 0;
1242 		mapping_set_exiting(inode->i_mapping);
1243 		shmem_truncate_range(inode, 0, (loff_t)-1);
1244 		if (!list_empty(&info->shrinklist)) {
1245 			spin_lock(&sbinfo->shrinklist_lock);
1246 			if (!list_empty(&info->shrinklist)) {
1247 				list_del_init(&info->shrinklist);
1248 				sbinfo->shrinklist_len--;
1249 			}
1250 			spin_unlock(&sbinfo->shrinklist_lock);
1251 		}
1252 		while (!list_empty(&info->swaplist)) {
1253 			/* Wait while shmem_unuse() is scanning this inode... */
1254 			wait_var_event(&info->stop_eviction,
1255 				       !atomic_read(&info->stop_eviction));
1256 			mutex_lock(&shmem_swaplist_mutex);
1257 			/* ...but beware of the race if we peeked too early */
1258 			if (!atomic_read(&info->stop_eviction))
1259 				list_del_init(&info->swaplist);
1260 			mutex_unlock(&shmem_swaplist_mutex);
1261 		}
1262 	}
1263 
1264 	simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1265 	shmem_free_inode(inode->i_sb, freed);
1266 	WARN_ON(inode->i_blocks);
1267 	clear_inode(inode);
1268 #ifdef CONFIG_TMPFS_QUOTA
1269 	dquot_free_inode(inode);
1270 	dquot_drop(inode);
1271 #endif
1272 }
1273 
1274 static int shmem_find_swap_entries(struct address_space *mapping,
1275 				   pgoff_t start, struct folio_batch *fbatch,
1276 				   pgoff_t *indices, unsigned int type)
1277 {
1278 	XA_STATE(xas, &mapping->i_pages, start);
1279 	struct folio *folio;
1280 	swp_entry_t entry;
1281 
1282 	rcu_read_lock();
1283 	xas_for_each(&xas, folio, ULONG_MAX) {
1284 		if (xas_retry(&xas, folio))
1285 			continue;
1286 
1287 		if (!xa_is_value(folio))
1288 			continue;
1289 
1290 		entry = radix_to_swp_entry(folio);
1291 		/*
1292 		 * swapin error entries can be found in the mapping. But they're
1293 		 * deliberately ignored here as we've done everything we can do.
1294 		 */
1295 		if (swp_type(entry) != type)
1296 			continue;
1297 
1298 		indices[folio_batch_count(fbatch)] = xas.xa_index;
1299 		if (!folio_batch_add(fbatch, folio))
1300 			break;
1301 
1302 		if (need_resched()) {
1303 			xas_pause(&xas);
1304 			cond_resched_rcu();
1305 		}
1306 	}
1307 	rcu_read_unlock();
1308 
1309 	return xas.xa_index;
1310 }
1311 
1312 /*
1313  * Move the swapped pages for an inode to page cache. Returns the count
1314  * of pages swapped in, or the error in case of failure.
1315  */
1316 static int shmem_unuse_swap_entries(struct inode *inode,
1317 		struct folio_batch *fbatch, pgoff_t *indices)
1318 {
1319 	int i = 0;
1320 	int ret = 0;
1321 	int error = 0;
1322 	struct address_space *mapping = inode->i_mapping;
1323 
1324 	for (i = 0; i < folio_batch_count(fbatch); i++) {
1325 		struct folio *folio = fbatch->folios[i];
1326 
1327 		if (!xa_is_value(folio))
1328 			continue;
1329 		error = shmem_swapin_folio(inode, indices[i],
1330 					  &folio, SGP_CACHE,
1331 					  mapping_gfp_mask(mapping),
1332 					  NULL, NULL);
1333 		if (error == 0) {
1334 			folio_unlock(folio);
1335 			folio_put(folio);
1336 			ret++;
1337 		}
1338 		if (error == -ENOMEM)
1339 			break;
1340 		error = 0;
1341 	}
1342 	return error ? error : ret;
1343 }
1344 
1345 /*
1346  * If swap found in inode, free it and move page from swapcache to filecache.
1347  */
1348 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1349 {
1350 	struct address_space *mapping = inode->i_mapping;
1351 	pgoff_t start = 0;
1352 	struct folio_batch fbatch;
1353 	pgoff_t indices[PAGEVEC_SIZE];
1354 	int ret = 0;
1355 
1356 	do {
1357 		folio_batch_init(&fbatch);
1358 		shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1359 		if (folio_batch_count(&fbatch) == 0) {
1360 			ret = 0;
1361 			break;
1362 		}
1363 
1364 		ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1365 		if (ret < 0)
1366 			break;
1367 
1368 		start = indices[folio_batch_count(&fbatch) - 1];
1369 	} while (true);
1370 
1371 	return ret;
1372 }
1373 
1374 /*
1375  * Read all the shared memory data that resides in the swap
1376  * device 'type' back into memory, so the swap device can be
1377  * unused.
1378  */
1379 int shmem_unuse(unsigned int type)
1380 {
1381 	struct shmem_inode_info *info, *next;
1382 	int error = 0;
1383 
1384 	if (list_empty(&shmem_swaplist))
1385 		return 0;
1386 
1387 	mutex_lock(&shmem_swaplist_mutex);
1388 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1389 		if (!info->swapped) {
1390 			list_del_init(&info->swaplist);
1391 			continue;
1392 		}
1393 		/*
1394 		 * Drop the swaplist mutex while searching the inode for swap;
1395 		 * but before doing so, make sure shmem_evict_inode() will not
1396 		 * remove placeholder inode from swaplist, nor let it be freed
1397 		 * (igrab() would protect from unlink, but not from unmount).
1398 		 */
1399 		atomic_inc(&info->stop_eviction);
1400 		mutex_unlock(&shmem_swaplist_mutex);
1401 
1402 		error = shmem_unuse_inode(&info->vfs_inode, type);
1403 		cond_resched();
1404 
1405 		mutex_lock(&shmem_swaplist_mutex);
1406 		next = list_next_entry(info, swaplist);
1407 		if (!info->swapped)
1408 			list_del_init(&info->swaplist);
1409 		if (atomic_dec_and_test(&info->stop_eviction))
1410 			wake_up_var(&info->stop_eviction);
1411 		if (error)
1412 			break;
1413 	}
1414 	mutex_unlock(&shmem_swaplist_mutex);
1415 
1416 	return error;
1417 }
1418 
1419 /*
1420  * Move the page from the page cache to the swap cache.
1421  */
1422 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1423 {
1424 	struct folio *folio = page_folio(page);
1425 	struct address_space *mapping = folio->mapping;
1426 	struct inode *inode = mapping->host;
1427 	struct shmem_inode_info *info = SHMEM_I(inode);
1428 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1429 	swp_entry_t swap;
1430 	pgoff_t index;
1431 
1432 	/*
1433 	 * Our capabilities prevent regular writeback or sync from ever calling
1434 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1435 	 * its underlying filesystem, in which case tmpfs should write out to
1436 	 * swap only in response to memory pressure, and not for the writeback
1437 	 * threads or sync.
1438 	 */
1439 	if (WARN_ON_ONCE(!wbc->for_reclaim))
1440 		goto redirty;
1441 
1442 	if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1443 		goto redirty;
1444 
1445 	if (!total_swap_pages)
1446 		goto redirty;
1447 
1448 	/*
1449 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1450 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1451 	 * and its shmem_writeback() needs them to be split when swapping.
1452 	 */
1453 	if (folio_test_large(folio)) {
1454 		/* Ensure the subpages are still dirty */
1455 		folio_test_set_dirty(folio);
1456 		if (split_huge_page(page) < 0)
1457 			goto redirty;
1458 		folio = page_folio(page);
1459 		folio_clear_dirty(folio);
1460 	}
1461 
1462 	index = folio->index;
1463 
1464 	/*
1465 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1466 	 * value into swapfile.c, the only way we can correctly account for a
1467 	 * fallocated folio arriving here is now to initialize it and write it.
1468 	 *
1469 	 * That's okay for a folio already fallocated earlier, but if we have
1470 	 * not yet completed the fallocation, then (a) we want to keep track
1471 	 * of this folio in case we have to undo it, and (b) it may not be a
1472 	 * good idea to continue anyway, once we're pushing into swap.  So
1473 	 * reactivate the folio, and let shmem_fallocate() quit when too many.
1474 	 */
1475 	if (!folio_test_uptodate(folio)) {
1476 		if (inode->i_private) {
1477 			struct shmem_falloc *shmem_falloc;
1478 			spin_lock(&inode->i_lock);
1479 			shmem_falloc = inode->i_private;
1480 			if (shmem_falloc &&
1481 			    !shmem_falloc->waitq &&
1482 			    index >= shmem_falloc->start &&
1483 			    index < shmem_falloc->next)
1484 				shmem_falloc->nr_unswapped++;
1485 			else
1486 				shmem_falloc = NULL;
1487 			spin_unlock(&inode->i_lock);
1488 			if (shmem_falloc)
1489 				goto redirty;
1490 		}
1491 		folio_zero_range(folio, 0, folio_size(folio));
1492 		flush_dcache_folio(folio);
1493 		folio_mark_uptodate(folio);
1494 	}
1495 
1496 	swap = folio_alloc_swap(folio);
1497 	if (!swap.val)
1498 		goto redirty;
1499 
1500 	/*
1501 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1502 	 * if it's not already there.  Do it now before the folio is
1503 	 * moved to swap cache, when its pagelock no longer protects
1504 	 * the inode from eviction.  But don't unlock the mutex until
1505 	 * we've incremented swapped, because shmem_unuse_inode() will
1506 	 * prune a !swapped inode from the swaplist under this mutex.
1507 	 */
1508 	mutex_lock(&shmem_swaplist_mutex);
1509 	if (list_empty(&info->swaplist))
1510 		list_add(&info->swaplist, &shmem_swaplist);
1511 
1512 	if (add_to_swap_cache(folio, swap,
1513 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1514 			NULL) == 0) {
1515 		shmem_recalc_inode(inode, 0, 1);
1516 		swap_shmem_alloc(swap);
1517 		shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1518 
1519 		mutex_unlock(&shmem_swaplist_mutex);
1520 		BUG_ON(folio_mapped(folio));
1521 		swap_writepage(&folio->page, wbc);
1522 		return 0;
1523 	}
1524 
1525 	mutex_unlock(&shmem_swaplist_mutex);
1526 	put_swap_folio(folio, swap);
1527 redirty:
1528 	folio_mark_dirty(folio);
1529 	if (wbc->for_reclaim)
1530 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with folio locked */
1531 	folio_unlock(folio);
1532 	return 0;
1533 }
1534 
1535 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1536 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1537 {
1538 	char buffer[64];
1539 
1540 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1541 		return;		/* show nothing */
1542 
1543 	mpol_to_str(buffer, sizeof(buffer), mpol);
1544 
1545 	seq_printf(seq, ",mpol=%s", buffer);
1546 }
1547 
1548 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1549 {
1550 	struct mempolicy *mpol = NULL;
1551 	if (sbinfo->mpol) {
1552 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1553 		mpol = sbinfo->mpol;
1554 		mpol_get(mpol);
1555 		raw_spin_unlock(&sbinfo->stat_lock);
1556 	}
1557 	return mpol;
1558 }
1559 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1560 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1561 {
1562 }
1563 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1564 {
1565 	return NULL;
1566 }
1567 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1568 #ifndef CONFIG_NUMA
1569 #define vm_policy vm_private_data
1570 #endif
1571 
1572 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1573 		struct shmem_inode_info *info, pgoff_t index)
1574 {
1575 	/* Create a pseudo vma that just contains the policy */
1576 	vma_init(vma, NULL);
1577 	/* Bias interleave by inode number to distribute better across nodes */
1578 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1579 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1580 }
1581 
1582 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1583 {
1584 	/* Drop reference taken by mpol_shared_policy_lookup() */
1585 	mpol_cond_put(vma->vm_policy);
1586 }
1587 
1588 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1589 			struct shmem_inode_info *info, pgoff_t index)
1590 {
1591 	struct vm_area_struct pvma;
1592 	struct page *page;
1593 	struct vm_fault vmf = {
1594 		.vma = &pvma,
1595 	};
1596 
1597 	shmem_pseudo_vma_init(&pvma, info, index);
1598 	page = swap_cluster_readahead(swap, gfp, &vmf);
1599 	shmem_pseudo_vma_destroy(&pvma);
1600 
1601 	if (!page)
1602 		return NULL;
1603 	return page_folio(page);
1604 }
1605 
1606 /*
1607  * Make sure huge_gfp is always more limited than limit_gfp.
1608  * Some of the flags set permissions, while others set limitations.
1609  */
1610 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1611 {
1612 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1613 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1614 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1615 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1616 
1617 	/* Allow allocations only from the originally specified zones. */
1618 	result |= zoneflags;
1619 
1620 	/*
1621 	 * Minimize the result gfp by taking the union with the deny flags,
1622 	 * and the intersection of the allow flags.
1623 	 */
1624 	result |= (limit_gfp & denyflags);
1625 	result |= (huge_gfp & limit_gfp) & allowflags;
1626 
1627 	return result;
1628 }
1629 
1630 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1631 		struct shmem_inode_info *info, pgoff_t index)
1632 {
1633 	struct vm_area_struct pvma;
1634 	struct address_space *mapping = info->vfs_inode.i_mapping;
1635 	pgoff_t hindex;
1636 	struct folio *folio;
1637 
1638 	hindex = round_down(index, HPAGE_PMD_NR);
1639 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1640 								XA_PRESENT))
1641 		return NULL;
1642 
1643 	shmem_pseudo_vma_init(&pvma, info, hindex);
1644 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1645 	shmem_pseudo_vma_destroy(&pvma);
1646 	if (!folio)
1647 		count_vm_event(THP_FILE_FALLBACK);
1648 	return folio;
1649 }
1650 
1651 static struct folio *shmem_alloc_folio(gfp_t gfp,
1652 			struct shmem_inode_info *info, pgoff_t index)
1653 {
1654 	struct vm_area_struct pvma;
1655 	struct folio *folio;
1656 
1657 	shmem_pseudo_vma_init(&pvma, info, index);
1658 	folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1659 	shmem_pseudo_vma_destroy(&pvma);
1660 
1661 	return folio;
1662 }
1663 
1664 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1665 		pgoff_t index, bool huge)
1666 {
1667 	struct shmem_inode_info *info = SHMEM_I(inode);
1668 	struct folio *folio;
1669 	int nr;
1670 	int err;
1671 
1672 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1673 		huge = false;
1674 	nr = huge ? HPAGE_PMD_NR : 1;
1675 
1676 	err = shmem_inode_acct_block(inode, nr);
1677 	if (err)
1678 		goto failed;
1679 
1680 	if (huge)
1681 		folio = shmem_alloc_hugefolio(gfp, info, index);
1682 	else
1683 		folio = shmem_alloc_folio(gfp, info, index);
1684 	if (folio) {
1685 		__folio_set_locked(folio);
1686 		__folio_set_swapbacked(folio);
1687 		return folio;
1688 	}
1689 
1690 	err = -ENOMEM;
1691 	shmem_inode_unacct_blocks(inode, nr);
1692 failed:
1693 	return ERR_PTR(err);
1694 }
1695 
1696 /*
1697  * When a page is moved from swapcache to shmem filecache (either by the
1698  * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1699  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1700  * ignorance of the mapping it belongs to.  If that mapping has special
1701  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1702  * we may need to copy to a suitable page before moving to filecache.
1703  *
1704  * In a future release, this may well be extended to respect cpuset and
1705  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1706  * but for now it is a simple matter of zone.
1707  */
1708 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1709 {
1710 	return folio_zonenum(folio) > gfp_zone(gfp);
1711 }
1712 
1713 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1714 				struct shmem_inode_info *info, pgoff_t index)
1715 {
1716 	struct folio *old, *new;
1717 	struct address_space *swap_mapping;
1718 	swp_entry_t entry;
1719 	pgoff_t swap_index;
1720 	int error;
1721 
1722 	old = *foliop;
1723 	entry = old->swap;
1724 	swap_index = swp_offset(entry);
1725 	swap_mapping = swap_address_space(entry);
1726 
1727 	/*
1728 	 * We have arrived here because our zones are constrained, so don't
1729 	 * limit chance of success by further cpuset and node constraints.
1730 	 */
1731 	gfp &= ~GFP_CONSTRAINT_MASK;
1732 	VM_BUG_ON_FOLIO(folio_test_large(old), old);
1733 	new = shmem_alloc_folio(gfp, info, index);
1734 	if (!new)
1735 		return -ENOMEM;
1736 
1737 	folio_get(new);
1738 	folio_copy(new, old);
1739 	flush_dcache_folio(new);
1740 
1741 	__folio_set_locked(new);
1742 	__folio_set_swapbacked(new);
1743 	folio_mark_uptodate(new);
1744 	new->swap = entry;
1745 	folio_set_swapcache(new);
1746 
1747 	/*
1748 	 * Our caller will very soon move newpage out of swapcache, but it's
1749 	 * a nice clean interface for us to replace oldpage by newpage there.
1750 	 */
1751 	xa_lock_irq(&swap_mapping->i_pages);
1752 	error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1753 	if (!error) {
1754 		mem_cgroup_migrate(old, new);
1755 		__lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1756 		__lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1757 		__lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1758 		__lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1759 	}
1760 	xa_unlock_irq(&swap_mapping->i_pages);
1761 
1762 	if (unlikely(error)) {
1763 		/*
1764 		 * Is this possible?  I think not, now that our callers check
1765 		 * both PageSwapCache and page_private after getting page lock;
1766 		 * but be defensive.  Reverse old to newpage for clear and free.
1767 		 */
1768 		old = new;
1769 	} else {
1770 		folio_add_lru(new);
1771 		*foliop = new;
1772 	}
1773 
1774 	folio_clear_swapcache(old);
1775 	old->private = NULL;
1776 
1777 	folio_unlock(old);
1778 	folio_put_refs(old, 2);
1779 	return error;
1780 }
1781 
1782 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1783 					 struct folio *folio, swp_entry_t swap)
1784 {
1785 	struct address_space *mapping = inode->i_mapping;
1786 	swp_entry_t swapin_error;
1787 	void *old;
1788 
1789 	swapin_error = make_poisoned_swp_entry();
1790 	old = xa_cmpxchg_irq(&mapping->i_pages, index,
1791 			     swp_to_radix_entry(swap),
1792 			     swp_to_radix_entry(swapin_error), 0);
1793 	if (old != swp_to_radix_entry(swap))
1794 		return;
1795 
1796 	folio_wait_writeback(folio);
1797 	delete_from_swap_cache(folio);
1798 	/*
1799 	 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1800 	 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1801 	 * in shmem_evict_inode().
1802 	 */
1803 	shmem_recalc_inode(inode, -1, -1);
1804 	swap_free(swap);
1805 }
1806 
1807 /*
1808  * Swap in the folio pointed to by *foliop.
1809  * Caller has to make sure that *foliop contains a valid swapped folio.
1810  * Returns 0 and the folio in foliop if success. On failure, returns the
1811  * error code and NULL in *foliop.
1812  */
1813 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1814 			     struct folio **foliop, enum sgp_type sgp,
1815 			     gfp_t gfp, struct vm_area_struct *vma,
1816 			     vm_fault_t *fault_type)
1817 {
1818 	struct address_space *mapping = inode->i_mapping;
1819 	struct shmem_inode_info *info = SHMEM_I(inode);
1820 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1821 	struct swap_info_struct *si;
1822 	struct folio *folio = NULL;
1823 	swp_entry_t swap;
1824 	int error;
1825 
1826 	VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1827 	swap = radix_to_swp_entry(*foliop);
1828 	*foliop = NULL;
1829 
1830 	if (is_poisoned_swp_entry(swap))
1831 		return -EIO;
1832 
1833 	si = get_swap_device(swap);
1834 	if (!si) {
1835 		if (!shmem_confirm_swap(mapping, index, swap))
1836 			return -EEXIST;
1837 		else
1838 			return -EINVAL;
1839 	}
1840 
1841 	/* Look it up and read it in.. */
1842 	folio = swap_cache_get_folio(swap, NULL, 0);
1843 	if (!folio) {
1844 		/* Or update major stats only when swapin succeeds?? */
1845 		if (fault_type) {
1846 			*fault_type |= VM_FAULT_MAJOR;
1847 			count_vm_event(PGMAJFAULT);
1848 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1849 		}
1850 		/* Here we actually start the io */
1851 		folio = shmem_swapin(swap, gfp, info, index);
1852 		if (!folio) {
1853 			error = -ENOMEM;
1854 			goto failed;
1855 		}
1856 	}
1857 
1858 	/* We have to do this with folio locked to prevent races */
1859 	folio_lock(folio);
1860 	if (!folio_test_swapcache(folio) ||
1861 	    folio->swap.val != swap.val ||
1862 	    !shmem_confirm_swap(mapping, index, swap)) {
1863 		error = -EEXIST;
1864 		goto unlock;
1865 	}
1866 	if (!folio_test_uptodate(folio)) {
1867 		error = -EIO;
1868 		goto failed;
1869 	}
1870 	folio_wait_writeback(folio);
1871 
1872 	/*
1873 	 * Some architectures may have to restore extra metadata to the
1874 	 * folio after reading from swap.
1875 	 */
1876 	arch_swap_restore(swap, folio);
1877 
1878 	if (shmem_should_replace_folio(folio, gfp)) {
1879 		error = shmem_replace_folio(&folio, gfp, info, index);
1880 		if (error)
1881 			goto failed;
1882 	}
1883 
1884 	error = shmem_add_to_page_cache(folio, mapping, index,
1885 					swp_to_radix_entry(swap), gfp,
1886 					charge_mm);
1887 	if (error)
1888 		goto failed;
1889 
1890 	shmem_recalc_inode(inode, 0, -1);
1891 
1892 	if (sgp == SGP_WRITE)
1893 		folio_mark_accessed(folio);
1894 
1895 	delete_from_swap_cache(folio);
1896 	folio_mark_dirty(folio);
1897 	swap_free(swap);
1898 	put_swap_device(si);
1899 
1900 	*foliop = folio;
1901 	return 0;
1902 failed:
1903 	if (!shmem_confirm_swap(mapping, index, swap))
1904 		error = -EEXIST;
1905 	if (error == -EIO)
1906 		shmem_set_folio_swapin_error(inode, index, folio, swap);
1907 unlock:
1908 	if (folio) {
1909 		folio_unlock(folio);
1910 		folio_put(folio);
1911 	}
1912 	put_swap_device(si);
1913 
1914 	return error;
1915 }
1916 
1917 /*
1918  * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1919  *
1920  * If we allocate a new one we do not mark it dirty. That's up to the
1921  * vm. If we swap it in we mark it dirty since we also free the swap
1922  * entry since a page cannot live in both the swap and page cache.
1923  *
1924  * vma, vmf, and fault_type are only supplied by shmem_fault:
1925  * otherwise they are NULL.
1926  */
1927 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1928 		struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1929 		struct vm_area_struct *vma, struct vm_fault *vmf,
1930 		vm_fault_t *fault_type)
1931 {
1932 	struct address_space *mapping = inode->i_mapping;
1933 	struct shmem_inode_info *info = SHMEM_I(inode);
1934 	struct shmem_sb_info *sbinfo;
1935 	struct mm_struct *charge_mm;
1936 	struct folio *folio;
1937 	pgoff_t hindex;
1938 	gfp_t huge_gfp;
1939 	int error;
1940 	int once = 0;
1941 	int alloced = 0;
1942 
1943 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1944 		return -EFBIG;
1945 repeat:
1946 	if (sgp <= SGP_CACHE &&
1947 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1948 		return -EINVAL;
1949 	}
1950 
1951 	sbinfo = SHMEM_SB(inode->i_sb);
1952 	charge_mm = vma ? vma->vm_mm : NULL;
1953 
1954 	folio = filemap_get_entry(mapping, index);
1955 	if (folio && vma && userfaultfd_minor(vma)) {
1956 		if (!xa_is_value(folio))
1957 			folio_put(folio);
1958 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1959 		return 0;
1960 	}
1961 
1962 	if (xa_is_value(folio)) {
1963 		error = shmem_swapin_folio(inode, index, &folio,
1964 					  sgp, gfp, vma, fault_type);
1965 		if (error == -EEXIST)
1966 			goto repeat;
1967 
1968 		*foliop = folio;
1969 		return error;
1970 	}
1971 
1972 	if (folio) {
1973 		folio_lock(folio);
1974 
1975 		/* Has the folio been truncated or swapped out? */
1976 		if (unlikely(folio->mapping != mapping)) {
1977 			folio_unlock(folio);
1978 			folio_put(folio);
1979 			goto repeat;
1980 		}
1981 		if (sgp == SGP_WRITE)
1982 			folio_mark_accessed(folio);
1983 		if (folio_test_uptodate(folio))
1984 			goto out;
1985 		/* fallocated folio */
1986 		if (sgp != SGP_READ)
1987 			goto clear;
1988 		folio_unlock(folio);
1989 		folio_put(folio);
1990 	}
1991 
1992 	/*
1993 	 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1994 	 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1995 	 */
1996 	*foliop = NULL;
1997 	if (sgp == SGP_READ)
1998 		return 0;
1999 	if (sgp == SGP_NOALLOC)
2000 		return -ENOENT;
2001 
2002 	/*
2003 	 * Fast cache lookup and swap lookup did not find it: allocate.
2004 	 */
2005 
2006 	if (vma && userfaultfd_missing(vma)) {
2007 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2008 		return 0;
2009 	}
2010 
2011 	if (!shmem_is_huge(inode, index, false,
2012 			   vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2013 		goto alloc_nohuge;
2014 
2015 	huge_gfp = vma_thp_gfp_mask(vma);
2016 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2017 	folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2018 	if (IS_ERR(folio)) {
2019 alloc_nohuge:
2020 		folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2021 	}
2022 	if (IS_ERR(folio)) {
2023 		int retry = 5;
2024 
2025 		error = PTR_ERR(folio);
2026 		folio = NULL;
2027 		if (error != -ENOSPC)
2028 			goto unlock;
2029 		/*
2030 		 * Try to reclaim some space by splitting a large folio
2031 		 * beyond i_size on the filesystem.
2032 		 */
2033 		while (retry--) {
2034 			int ret;
2035 
2036 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2037 			if (ret == SHRINK_STOP)
2038 				break;
2039 			if (ret)
2040 				goto alloc_nohuge;
2041 		}
2042 		goto unlock;
2043 	}
2044 
2045 	hindex = round_down(index, folio_nr_pages(folio));
2046 
2047 	if (sgp == SGP_WRITE)
2048 		__folio_set_referenced(folio);
2049 
2050 	error = shmem_add_to_page_cache(folio, mapping, hindex,
2051 					NULL, gfp & GFP_RECLAIM_MASK,
2052 					charge_mm);
2053 	if (error)
2054 		goto unacct;
2055 
2056 	folio_add_lru(folio);
2057 	shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2058 	alloced = true;
2059 
2060 	if (folio_test_pmd_mappable(folio) &&
2061 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2062 					folio_next_index(folio) - 1) {
2063 		/*
2064 		 * Part of the large folio is beyond i_size: subject
2065 		 * to shrink under memory pressure.
2066 		 */
2067 		spin_lock(&sbinfo->shrinklist_lock);
2068 		/*
2069 		 * _careful to defend against unlocked access to
2070 		 * ->shrink_list in shmem_unused_huge_shrink()
2071 		 */
2072 		if (list_empty_careful(&info->shrinklist)) {
2073 			list_add_tail(&info->shrinklist,
2074 				      &sbinfo->shrinklist);
2075 			sbinfo->shrinklist_len++;
2076 		}
2077 		spin_unlock(&sbinfo->shrinklist_lock);
2078 	}
2079 
2080 	/*
2081 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2082 	 */
2083 	if (sgp == SGP_FALLOC)
2084 		sgp = SGP_WRITE;
2085 clear:
2086 	/*
2087 	 * Let SGP_WRITE caller clear ends if write does not fill folio;
2088 	 * but SGP_FALLOC on a folio fallocated earlier must initialize
2089 	 * it now, lest undo on failure cancel our earlier guarantee.
2090 	 */
2091 	if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2092 		long i, n = folio_nr_pages(folio);
2093 
2094 		for (i = 0; i < n; i++)
2095 			clear_highpage(folio_page(folio, i));
2096 		flush_dcache_folio(folio);
2097 		folio_mark_uptodate(folio);
2098 	}
2099 
2100 	/* Perhaps the file has been truncated since we checked */
2101 	if (sgp <= SGP_CACHE &&
2102 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2103 		if (alloced) {
2104 			folio_clear_dirty(folio);
2105 			filemap_remove_folio(folio);
2106 			shmem_recalc_inode(inode, 0, 0);
2107 		}
2108 		error = -EINVAL;
2109 		goto unlock;
2110 	}
2111 out:
2112 	*foliop = folio;
2113 	return 0;
2114 
2115 	/*
2116 	 * Error recovery.
2117 	 */
2118 unacct:
2119 	shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2120 
2121 	if (folio_test_large(folio)) {
2122 		folio_unlock(folio);
2123 		folio_put(folio);
2124 		goto alloc_nohuge;
2125 	}
2126 unlock:
2127 	if (folio) {
2128 		folio_unlock(folio);
2129 		folio_put(folio);
2130 	}
2131 	if (error == -ENOSPC && !once++) {
2132 		shmem_recalc_inode(inode, 0, 0);
2133 		goto repeat;
2134 	}
2135 	if (error == -EEXIST)
2136 		goto repeat;
2137 	return error;
2138 }
2139 
2140 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2141 		enum sgp_type sgp)
2142 {
2143 	return shmem_get_folio_gfp(inode, index, foliop, sgp,
2144 			mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2145 }
2146 
2147 /*
2148  * This is like autoremove_wake_function, but it removes the wait queue
2149  * entry unconditionally - even if something else had already woken the
2150  * target.
2151  */
2152 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2153 {
2154 	int ret = default_wake_function(wait, mode, sync, key);
2155 	list_del_init(&wait->entry);
2156 	return ret;
2157 }
2158 
2159 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2160 {
2161 	struct vm_area_struct *vma = vmf->vma;
2162 	struct inode *inode = file_inode(vma->vm_file);
2163 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2164 	struct folio *folio = NULL;
2165 	int err;
2166 	vm_fault_t ret = VM_FAULT_LOCKED;
2167 
2168 	/*
2169 	 * Trinity finds that probing a hole which tmpfs is punching can
2170 	 * prevent the hole-punch from ever completing: which in turn
2171 	 * locks writers out with its hold on i_rwsem.  So refrain from
2172 	 * faulting pages into the hole while it's being punched.  Although
2173 	 * shmem_undo_range() does remove the additions, it may be unable to
2174 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2175 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2176 	 *
2177 	 * It does not matter if we sometimes reach this check just before the
2178 	 * hole-punch begins, so that one fault then races with the punch:
2179 	 * we just need to make racing faults a rare case.
2180 	 *
2181 	 * The implementation below would be much simpler if we just used a
2182 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2183 	 * and bloating every shmem inode for this unlikely case would be sad.
2184 	 */
2185 	if (unlikely(inode->i_private)) {
2186 		struct shmem_falloc *shmem_falloc;
2187 
2188 		spin_lock(&inode->i_lock);
2189 		shmem_falloc = inode->i_private;
2190 		if (shmem_falloc &&
2191 		    shmem_falloc->waitq &&
2192 		    vmf->pgoff >= shmem_falloc->start &&
2193 		    vmf->pgoff < shmem_falloc->next) {
2194 			struct file *fpin;
2195 			wait_queue_head_t *shmem_falloc_waitq;
2196 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2197 
2198 			ret = VM_FAULT_NOPAGE;
2199 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2200 			if (fpin)
2201 				ret = VM_FAULT_RETRY;
2202 
2203 			shmem_falloc_waitq = shmem_falloc->waitq;
2204 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2205 					TASK_UNINTERRUPTIBLE);
2206 			spin_unlock(&inode->i_lock);
2207 			schedule();
2208 
2209 			/*
2210 			 * shmem_falloc_waitq points into the shmem_fallocate()
2211 			 * stack of the hole-punching task: shmem_falloc_waitq
2212 			 * is usually invalid by the time we reach here, but
2213 			 * finish_wait() does not dereference it in that case;
2214 			 * though i_lock needed lest racing with wake_up_all().
2215 			 */
2216 			spin_lock(&inode->i_lock);
2217 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2218 			spin_unlock(&inode->i_lock);
2219 
2220 			if (fpin)
2221 				fput(fpin);
2222 			return ret;
2223 		}
2224 		spin_unlock(&inode->i_lock);
2225 	}
2226 
2227 	err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2228 				  gfp, vma, vmf, &ret);
2229 	if (err)
2230 		return vmf_error(err);
2231 	if (folio)
2232 		vmf->page = folio_file_page(folio, vmf->pgoff);
2233 	return ret;
2234 }
2235 
2236 unsigned long shmem_get_unmapped_area(struct file *file,
2237 				      unsigned long uaddr, unsigned long len,
2238 				      unsigned long pgoff, unsigned long flags)
2239 {
2240 	unsigned long (*get_area)(struct file *,
2241 		unsigned long, unsigned long, unsigned long, unsigned long);
2242 	unsigned long addr;
2243 	unsigned long offset;
2244 	unsigned long inflated_len;
2245 	unsigned long inflated_addr;
2246 	unsigned long inflated_offset;
2247 
2248 	if (len > TASK_SIZE)
2249 		return -ENOMEM;
2250 
2251 	get_area = current->mm->get_unmapped_area;
2252 	addr = get_area(file, uaddr, len, pgoff, flags);
2253 
2254 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2255 		return addr;
2256 	if (IS_ERR_VALUE(addr))
2257 		return addr;
2258 	if (addr & ~PAGE_MASK)
2259 		return addr;
2260 	if (addr > TASK_SIZE - len)
2261 		return addr;
2262 
2263 	if (shmem_huge == SHMEM_HUGE_DENY)
2264 		return addr;
2265 	if (len < HPAGE_PMD_SIZE)
2266 		return addr;
2267 	if (flags & MAP_FIXED)
2268 		return addr;
2269 	/*
2270 	 * Our priority is to support MAP_SHARED mapped hugely;
2271 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2272 	 * But if caller specified an address hint and we allocated area there
2273 	 * successfully, respect that as before.
2274 	 */
2275 	if (uaddr == addr)
2276 		return addr;
2277 
2278 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2279 		struct super_block *sb;
2280 
2281 		if (file) {
2282 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2283 			sb = file_inode(file)->i_sb;
2284 		} else {
2285 			/*
2286 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2287 			 * for "/dev/zero", to create a shared anonymous object.
2288 			 */
2289 			if (IS_ERR(shm_mnt))
2290 				return addr;
2291 			sb = shm_mnt->mnt_sb;
2292 		}
2293 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2294 			return addr;
2295 	}
2296 
2297 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2298 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2299 		return addr;
2300 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2301 		return addr;
2302 
2303 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2304 	if (inflated_len > TASK_SIZE)
2305 		return addr;
2306 	if (inflated_len < len)
2307 		return addr;
2308 
2309 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2310 	if (IS_ERR_VALUE(inflated_addr))
2311 		return addr;
2312 	if (inflated_addr & ~PAGE_MASK)
2313 		return addr;
2314 
2315 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2316 	inflated_addr += offset - inflated_offset;
2317 	if (inflated_offset > offset)
2318 		inflated_addr += HPAGE_PMD_SIZE;
2319 
2320 	if (inflated_addr > TASK_SIZE - len)
2321 		return addr;
2322 	return inflated_addr;
2323 }
2324 
2325 #ifdef CONFIG_NUMA
2326 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2327 {
2328 	struct inode *inode = file_inode(vma->vm_file);
2329 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2330 }
2331 
2332 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2333 					  unsigned long addr)
2334 {
2335 	struct inode *inode = file_inode(vma->vm_file);
2336 	pgoff_t index;
2337 
2338 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2339 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2340 }
2341 #endif
2342 
2343 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2344 {
2345 	struct inode *inode = file_inode(file);
2346 	struct shmem_inode_info *info = SHMEM_I(inode);
2347 	int retval = -ENOMEM;
2348 
2349 	/*
2350 	 * What serializes the accesses to info->flags?
2351 	 * ipc_lock_object() when called from shmctl_do_lock(),
2352 	 * no serialization needed when called from shm_destroy().
2353 	 */
2354 	if (lock && !(info->flags & VM_LOCKED)) {
2355 		if (!user_shm_lock(inode->i_size, ucounts))
2356 			goto out_nomem;
2357 		info->flags |= VM_LOCKED;
2358 		mapping_set_unevictable(file->f_mapping);
2359 	}
2360 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2361 		user_shm_unlock(inode->i_size, ucounts);
2362 		info->flags &= ~VM_LOCKED;
2363 		mapping_clear_unevictable(file->f_mapping);
2364 	}
2365 	retval = 0;
2366 
2367 out_nomem:
2368 	return retval;
2369 }
2370 
2371 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2372 {
2373 	struct inode *inode = file_inode(file);
2374 	struct shmem_inode_info *info = SHMEM_I(inode);
2375 	int ret;
2376 
2377 	ret = seal_check_future_write(info->seals, vma);
2378 	if (ret)
2379 		return ret;
2380 
2381 	/* arm64 - allow memory tagging on RAM-based files */
2382 	vm_flags_set(vma, VM_MTE_ALLOWED);
2383 
2384 	file_accessed(file);
2385 	/* This is anonymous shared memory if it is unlinked at the time of mmap */
2386 	if (inode->i_nlink)
2387 		vma->vm_ops = &shmem_vm_ops;
2388 	else
2389 		vma->vm_ops = &shmem_anon_vm_ops;
2390 	return 0;
2391 }
2392 
2393 static int shmem_file_open(struct inode *inode, struct file *file)
2394 {
2395 	file->f_mode |= FMODE_CAN_ODIRECT;
2396 	return generic_file_open(inode, file);
2397 }
2398 
2399 #ifdef CONFIG_TMPFS_XATTR
2400 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2401 
2402 /*
2403  * chattr's fsflags are unrelated to extended attributes,
2404  * but tmpfs has chosen to enable them under the same config option.
2405  */
2406 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2407 {
2408 	unsigned int i_flags = 0;
2409 
2410 	if (fsflags & FS_NOATIME_FL)
2411 		i_flags |= S_NOATIME;
2412 	if (fsflags & FS_APPEND_FL)
2413 		i_flags |= S_APPEND;
2414 	if (fsflags & FS_IMMUTABLE_FL)
2415 		i_flags |= S_IMMUTABLE;
2416 	/*
2417 	 * But FS_NODUMP_FL does not require any action in i_flags.
2418 	 */
2419 	inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2420 }
2421 #else
2422 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2423 {
2424 }
2425 #define shmem_initxattrs NULL
2426 #endif
2427 
2428 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2429 {
2430 	return &SHMEM_I(inode)->dir_offsets;
2431 }
2432 
2433 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2434 					     struct super_block *sb,
2435 					     struct inode *dir, umode_t mode,
2436 					     dev_t dev, unsigned long flags)
2437 {
2438 	struct inode *inode;
2439 	struct shmem_inode_info *info;
2440 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2441 	ino_t ino;
2442 	int err;
2443 
2444 	err = shmem_reserve_inode(sb, &ino);
2445 	if (err)
2446 		return ERR_PTR(err);
2447 
2448 
2449 	inode = new_inode(sb);
2450 	if (!inode) {
2451 		shmem_free_inode(sb, 0);
2452 		return ERR_PTR(-ENOSPC);
2453 	}
2454 
2455 	inode->i_ino = ino;
2456 	inode_init_owner(idmap, inode, dir, mode);
2457 	inode->i_blocks = 0;
2458 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2459 	inode->i_generation = get_random_u32();
2460 	info = SHMEM_I(inode);
2461 	memset(info, 0, (char *)inode - (char *)info);
2462 	spin_lock_init(&info->lock);
2463 	atomic_set(&info->stop_eviction, 0);
2464 	info->seals = F_SEAL_SEAL;
2465 	info->flags = flags & VM_NORESERVE;
2466 	info->i_crtime = inode->i_mtime;
2467 	info->fsflags = (dir == NULL) ? 0 :
2468 		SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2469 	if (info->fsflags)
2470 		shmem_set_inode_flags(inode, info->fsflags);
2471 	INIT_LIST_HEAD(&info->shrinklist);
2472 	INIT_LIST_HEAD(&info->swaplist);
2473 	INIT_LIST_HEAD(&info->swaplist);
2474 	if (sbinfo->noswap)
2475 		mapping_set_unevictable(inode->i_mapping);
2476 	simple_xattrs_init(&info->xattrs);
2477 	cache_no_acl(inode);
2478 	mapping_set_large_folios(inode->i_mapping);
2479 
2480 	switch (mode & S_IFMT) {
2481 	default:
2482 		inode->i_op = &shmem_special_inode_operations;
2483 		init_special_inode(inode, mode, dev);
2484 		break;
2485 	case S_IFREG:
2486 		inode->i_mapping->a_ops = &shmem_aops;
2487 		inode->i_op = &shmem_inode_operations;
2488 		inode->i_fop = &shmem_file_operations;
2489 		mpol_shared_policy_init(&info->policy,
2490 					 shmem_get_sbmpol(sbinfo));
2491 		break;
2492 	case S_IFDIR:
2493 		inc_nlink(inode);
2494 		/* Some things misbehave if size == 0 on a directory */
2495 		inode->i_size = 2 * BOGO_DIRENT_SIZE;
2496 		inode->i_op = &shmem_dir_inode_operations;
2497 		inode->i_fop = &simple_offset_dir_operations;
2498 		simple_offset_init(shmem_get_offset_ctx(inode));
2499 		break;
2500 	case S_IFLNK:
2501 		/*
2502 		 * Must not load anything in the rbtree,
2503 		 * mpol_free_shared_policy will not be called.
2504 		 */
2505 		mpol_shared_policy_init(&info->policy, NULL);
2506 		break;
2507 	}
2508 
2509 	lockdep_annotate_inode_mutex_key(inode);
2510 	return inode;
2511 }
2512 
2513 #ifdef CONFIG_TMPFS_QUOTA
2514 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2515 				     struct super_block *sb, struct inode *dir,
2516 				     umode_t mode, dev_t dev, unsigned long flags)
2517 {
2518 	int err;
2519 	struct inode *inode;
2520 
2521 	inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2522 	if (IS_ERR(inode))
2523 		return inode;
2524 
2525 	err = dquot_initialize(inode);
2526 	if (err)
2527 		goto errout;
2528 
2529 	err = dquot_alloc_inode(inode);
2530 	if (err) {
2531 		dquot_drop(inode);
2532 		goto errout;
2533 	}
2534 	return inode;
2535 
2536 errout:
2537 	inode->i_flags |= S_NOQUOTA;
2538 	iput(inode);
2539 	return ERR_PTR(err);
2540 }
2541 #else
2542 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2543 				     struct super_block *sb, struct inode *dir,
2544 				     umode_t mode, dev_t dev, unsigned long flags)
2545 {
2546 	return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2547 }
2548 #endif /* CONFIG_TMPFS_QUOTA */
2549 
2550 #ifdef CONFIG_USERFAULTFD
2551 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2552 			   struct vm_area_struct *dst_vma,
2553 			   unsigned long dst_addr,
2554 			   unsigned long src_addr,
2555 			   uffd_flags_t flags,
2556 			   struct folio **foliop)
2557 {
2558 	struct inode *inode = file_inode(dst_vma->vm_file);
2559 	struct shmem_inode_info *info = SHMEM_I(inode);
2560 	struct address_space *mapping = inode->i_mapping;
2561 	gfp_t gfp = mapping_gfp_mask(mapping);
2562 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2563 	void *page_kaddr;
2564 	struct folio *folio;
2565 	int ret;
2566 	pgoff_t max_off;
2567 
2568 	if (shmem_inode_acct_block(inode, 1)) {
2569 		/*
2570 		 * We may have got a page, returned -ENOENT triggering a retry,
2571 		 * and now we find ourselves with -ENOMEM. Release the page, to
2572 		 * avoid a BUG_ON in our caller.
2573 		 */
2574 		if (unlikely(*foliop)) {
2575 			folio_put(*foliop);
2576 			*foliop = NULL;
2577 		}
2578 		return -ENOMEM;
2579 	}
2580 
2581 	if (!*foliop) {
2582 		ret = -ENOMEM;
2583 		folio = shmem_alloc_folio(gfp, info, pgoff);
2584 		if (!folio)
2585 			goto out_unacct_blocks;
2586 
2587 		if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2588 			page_kaddr = kmap_local_folio(folio, 0);
2589 			/*
2590 			 * The read mmap_lock is held here.  Despite the
2591 			 * mmap_lock being read recursive a deadlock is still
2592 			 * possible if a writer has taken a lock.  For example:
2593 			 *
2594 			 * process A thread 1 takes read lock on own mmap_lock
2595 			 * process A thread 2 calls mmap, blocks taking write lock
2596 			 * process B thread 1 takes page fault, read lock on own mmap lock
2597 			 * process B thread 2 calls mmap, blocks taking write lock
2598 			 * process A thread 1 blocks taking read lock on process B
2599 			 * process B thread 1 blocks taking read lock on process A
2600 			 *
2601 			 * Disable page faults to prevent potential deadlock
2602 			 * and retry the copy outside the mmap_lock.
2603 			 */
2604 			pagefault_disable();
2605 			ret = copy_from_user(page_kaddr,
2606 					     (const void __user *)src_addr,
2607 					     PAGE_SIZE);
2608 			pagefault_enable();
2609 			kunmap_local(page_kaddr);
2610 
2611 			/* fallback to copy_from_user outside mmap_lock */
2612 			if (unlikely(ret)) {
2613 				*foliop = folio;
2614 				ret = -ENOENT;
2615 				/* don't free the page */
2616 				goto out_unacct_blocks;
2617 			}
2618 
2619 			flush_dcache_folio(folio);
2620 		} else {		/* ZEROPAGE */
2621 			clear_user_highpage(&folio->page, dst_addr);
2622 		}
2623 	} else {
2624 		folio = *foliop;
2625 		VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2626 		*foliop = NULL;
2627 	}
2628 
2629 	VM_BUG_ON(folio_test_locked(folio));
2630 	VM_BUG_ON(folio_test_swapbacked(folio));
2631 	__folio_set_locked(folio);
2632 	__folio_set_swapbacked(folio);
2633 	__folio_mark_uptodate(folio);
2634 
2635 	ret = -EFAULT;
2636 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2637 	if (unlikely(pgoff >= max_off))
2638 		goto out_release;
2639 
2640 	ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2641 				      gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2642 	if (ret)
2643 		goto out_release;
2644 
2645 	ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2646 				       &folio->page, true, flags);
2647 	if (ret)
2648 		goto out_delete_from_cache;
2649 
2650 	shmem_recalc_inode(inode, 1, 0);
2651 	folio_unlock(folio);
2652 	return 0;
2653 out_delete_from_cache:
2654 	filemap_remove_folio(folio);
2655 out_release:
2656 	folio_unlock(folio);
2657 	folio_put(folio);
2658 out_unacct_blocks:
2659 	shmem_inode_unacct_blocks(inode, 1);
2660 	return ret;
2661 }
2662 #endif /* CONFIG_USERFAULTFD */
2663 
2664 #ifdef CONFIG_TMPFS
2665 static const struct inode_operations shmem_symlink_inode_operations;
2666 static const struct inode_operations shmem_short_symlink_operations;
2667 
2668 static int
2669 shmem_write_begin(struct file *file, struct address_space *mapping,
2670 			loff_t pos, unsigned len,
2671 			struct page **pagep, void **fsdata)
2672 {
2673 	struct inode *inode = mapping->host;
2674 	struct shmem_inode_info *info = SHMEM_I(inode);
2675 	pgoff_t index = pos >> PAGE_SHIFT;
2676 	struct folio *folio;
2677 	int ret = 0;
2678 
2679 	/* i_rwsem is held by caller */
2680 	if (unlikely(info->seals & (F_SEAL_GROW |
2681 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2682 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2683 			return -EPERM;
2684 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2685 			return -EPERM;
2686 	}
2687 
2688 	ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2689 
2690 	if (ret)
2691 		return ret;
2692 
2693 	*pagep = folio_file_page(folio, index);
2694 	if (PageHWPoison(*pagep)) {
2695 		folio_unlock(folio);
2696 		folio_put(folio);
2697 		*pagep = NULL;
2698 		return -EIO;
2699 	}
2700 
2701 	return 0;
2702 }
2703 
2704 static int
2705 shmem_write_end(struct file *file, struct address_space *mapping,
2706 			loff_t pos, unsigned len, unsigned copied,
2707 			struct page *page, void *fsdata)
2708 {
2709 	struct folio *folio = page_folio(page);
2710 	struct inode *inode = mapping->host;
2711 
2712 	if (pos + copied > inode->i_size)
2713 		i_size_write(inode, pos + copied);
2714 
2715 	if (!folio_test_uptodate(folio)) {
2716 		if (copied < folio_size(folio)) {
2717 			size_t from = offset_in_folio(folio, pos);
2718 			folio_zero_segments(folio, 0, from,
2719 					from + copied, folio_size(folio));
2720 		}
2721 		folio_mark_uptodate(folio);
2722 	}
2723 	folio_mark_dirty(folio);
2724 	folio_unlock(folio);
2725 	folio_put(folio);
2726 
2727 	return copied;
2728 }
2729 
2730 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2731 {
2732 	struct file *file = iocb->ki_filp;
2733 	struct inode *inode = file_inode(file);
2734 	struct address_space *mapping = inode->i_mapping;
2735 	pgoff_t index;
2736 	unsigned long offset;
2737 	int error = 0;
2738 	ssize_t retval = 0;
2739 	loff_t *ppos = &iocb->ki_pos;
2740 
2741 	index = *ppos >> PAGE_SHIFT;
2742 	offset = *ppos & ~PAGE_MASK;
2743 
2744 	for (;;) {
2745 		struct folio *folio = NULL;
2746 		struct page *page = NULL;
2747 		pgoff_t end_index;
2748 		unsigned long nr, ret;
2749 		loff_t i_size = i_size_read(inode);
2750 
2751 		end_index = i_size >> PAGE_SHIFT;
2752 		if (index > end_index)
2753 			break;
2754 		if (index == end_index) {
2755 			nr = i_size & ~PAGE_MASK;
2756 			if (nr <= offset)
2757 				break;
2758 		}
2759 
2760 		error = shmem_get_folio(inode, index, &folio, SGP_READ);
2761 		if (error) {
2762 			if (error == -EINVAL)
2763 				error = 0;
2764 			break;
2765 		}
2766 		if (folio) {
2767 			folio_unlock(folio);
2768 
2769 			page = folio_file_page(folio, index);
2770 			if (PageHWPoison(page)) {
2771 				folio_put(folio);
2772 				error = -EIO;
2773 				break;
2774 			}
2775 		}
2776 
2777 		/*
2778 		 * We must evaluate after, since reads (unlike writes)
2779 		 * are called without i_rwsem protection against truncate
2780 		 */
2781 		nr = PAGE_SIZE;
2782 		i_size = i_size_read(inode);
2783 		end_index = i_size >> PAGE_SHIFT;
2784 		if (index == end_index) {
2785 			nr = i_size & ~PAGE_MASK;
2786 			if (nr <= offset) {
2787 				if (folio)
2788 					folio_put(folio);
2789 				break;
2790 			}
2791 		}
2792 		nr -= offset;
2793 
2794 		if (folio) {
2795 			/*
2796 			 * If users can be writing to this page using arbitrary
2797 			 * virtual addresses, take care about potential aliasing
2798 			 * before reading the page on the kernel side.
2799 			 */
2800 			if (mapping_writably_mapped(mapping))
2801 				flush_dcache_page(page);
2802 			/*
2803 			 * Mark the page accessed if we read the beginning.
2804 			 */
2805 			if (!offset)
2806 				folio_mark_accessed(folio);
2807 			/*
2808 			 * Ok, we have the page, and it's up-to-date, so
2809 			 * now we can copy it to user space...
2810 			 */
2811 			ret = copy_page_to_iter(page, offset, nr, to);
2812 			folio_put(folio);
2813 
2814 		} else if (user_backed_iter(to)) {
2815 			/*
2816 			 * Copy to user tends to be so well optimized, but
2817 			 * clear_user() not so much, that it is noticeably
2818 			 * faster to copy the zero page instead of clearing.
2819 			 */
2820 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2821 		} else {
2822 			/*
2823 			 * But submitting the same page twice in a row to
2824 			 * splice() - or others? - can result in confusion:
2825 			 * so don't attempt that optimization on pipes etc.
2826 			 */
2827 			ret = iov_iter_zero(nr, to);
2828 		}
2829 
2830 		retval += ret;
2831 		offset += ret;
2832 		index += offset >> PAGE_SHIFT;
2833 		offset &= ~PAGE_MASK;
2834 
2835 		if (!iov_iter_count(to))
2836 			break;
2837 		if (ret < nr) {
2838 			error = -EFAULT;
2839 			break;
2840 		}
2841 		cond_resched();
2842 	}
2843 
2844 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2845 	file_accessed(file);
2846 	return retval ? retval : error;
2847 }
2848 
2849 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2850 {
2851 	struct file *file = iocb->ki_filp;
2852 	struct inode *inode = file->f_mapping->host;
2853 	ssize_t ret;
2854 
2855 	inode_lock(inode);
2856 	ret = generic_write_checks(iocb, from);
2857 	if (ret <= 0)
2858 		goto unlock;
2859 	ret = file_remove_privs(file);
2860 	if (ret)
2861 		goto unlock;
2862 	ret = file_update_time(file);
2863 	if (ret)
2864 		goto unlock;
2865 	ret = generic_perform_write(iocb, from);
2866 unlock:
2867 	inode_unlock(inode);
2868 	return ret;
2869 }
2870 
2871 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2872 			      struct pipe_buffer *buf)
2873 {
2874 	return true;
2875 }
2876 
2877 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2878 				  struct pipe_buffer *buf)
2879 {
2880 }
2881 
2882 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2883 				    struct pipe_buffer *buf)
2884 {
2885 	return false;
2886 }
2887 
2888 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2889 	.release	= zero_pipe_buf_release,
2890 	.try_steal	= zero_pipe_buf_try_steal,
2891 	.get		= zero_pipe_buf_get,
2892 };
2893 
2894 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2895 					loff_t fpos, size_t size)
2896 {
2897 	size_t offset = fpos & ~PAGE_MASK;
2898 
2899 	size = min_t(size_t, size, PAGE_SIZE - offset);
2900 
2901 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2902 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2903 
2904 		*buf = (struct pipe_buffer) {
2905 			.ops	= &zero_pipe_buf_ops,
2906 			.page	= ZERO_PAGE(0),
2907 			.offset	= offset,
2908 			.len	= size,
2909 		};
2910 		pipe->head++;
2911 	}
2912 
2913 	return size;
2914 }
2915 
2916 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2917 				      struct pipe_inode_info *pipe,
2918 				      size_t len, unsigned int flags)
2919 {
2920 	struct inode *inode = file_inode(in);
2921 	struct address_space *mapping = inode->i_mapping;
2922 	struct folio *folio = NULL;
2923 	size_t total_spliced = 0, used, npages, n, part;
2924 	loff_t isize;
2925 	int error = 0;
2926 
2927 	/* Work out how much data we can actually add into the pipe */
2928 	used = pipe_occupancy(pipe->head, pipe->tail);
2929 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2930 	len = min_t(size_t, len, npages * PAGE_SIZE);
2931 
2932 	do {
2933 		if (*ppos >= i_size_read(inode))
2934 			break;
2935 
2936 		error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2937 					SGP_READ);
2938 		if (error) {
2939 			if (error == -EINVAL)
2940 				error = 0;
2941 			break;
2942 		}
2943 		if (folio) {
2944 			folio_unlock(folio);
2945 
2946 			if (folio_test_hwpoison(folio) ||
2947 			    (folio_test_large(folio) &&
2948 			     folio_test_has_hwpoisoned(folio))) {
2949 				error = -EIO;
2950 				break;
2951 			}
2952 		}
2953 
2954 		/*
2955 		 * i_size must be checked after we know the pages are Uptodate.
2956 		 *
2957 		 * Checking i_size after the check allows us to calculate
2958 		 * the correct value for "nr", which means the zero-filled
2959 		 * part of the page is not copied back to userspace (unless
2960 		 * another truncate extends the file - this is desired though).
2961 		 */
2962 		isize = i_size_read(inode);
2963 		if (unlikely(*ppos >= isize))
2964 			break;
2965 		part = min_t(loff_t, isize - *ppos, len);
2966 
2967 		if (folio) {
2968 			/*
2969 			 * If users can be writing to this page using arbitrary
2970 			 * virtual addresses, take care about potential aliasing
2971 			 * before reading the page on the kernel side.
2972 			 */
2973 			if (mapping_writably_mapped(mapping))
2974 				flush_dcache_folio(folio);
2975 			folio_mark_accessed(folio);
2976 			/*
2977 			 * Ok, we have the page, and it's up-to-date, so we can
2978 			 * now splice it into the pipe.
2979 			 */
2980 			n = splice_folio_into_pipe(pipe, folio, *ppos, part);
2981 			folio_put(folio);
2982 			folio = NULL;
2983 		} else {
2984 			n = splice_zeropage_into_pipe(pipe, *ppos, part);
2985 		}
2986 
2987 		if (!n)
2988 			break;
2989 		len -= n;
2990 		total_spliced += n;
2991 		*ppos += n;
2992 		in->f_ra.prev_pos = *ppos;
2993 		if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2994 			break;
2995 
2996 		cond_resched();
2997 	} while (len);
2998 
2999 	if (folio)
3000 		folio_put(folio);
3001 
3002 	file_accessed(in);
3003 	return total_spliced ? total_spliced : error;
3004 }
3005 
3006 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3007 {
3008 	struct address_space *mapping = file->f_mapping;
3009 	struct inode *inode = mapping->host;
3010 
3011 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
3012 		return generic_file_llseek_size(file, offset, whence,
3013 					MAX_LFS_FILESIZE, i_size_read(inode));
3014 	if (offset < 0)
3015 		return -ENXIO;
3016 
3017 	inode_lock(inode);
3018 	/* We're holding i_rwsem so we can access i_size directly */
3019 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3020 	if (offset >= 0)
3021 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3022 	inode_unlock(inode);
3023 	return offset;
3024 }
3025 
3026 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3027 							 loff_t len)
3028 {
3029 	struct inode *inode = file_inode(file);
3030 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3031 	struct shmem_inode_info *info = SHMEM_I(inode);
3032 	struct shmem_falloc shmem_falloc;
3033 	pgoff_t start, index, end, undo_fallocend;
3034 	int error;
3035 
3036 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3037 		return -EOPNOTSUPP;
3038 
3039 	inode_lock(inode);
3040 
3041 	if (mode & FALLOC_FL_PUNCH_HOLE) {
3042 		struct address_space *mapping = file->f_mapping;
3043 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
3044 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3045 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3046 
3047 		/* protected by i_rwsem */
3048 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3049 			error = -EPERM;
3050 			goto out;
3051 		}
3052 
3053 		shmem_falloc.waitq = &shmem_falloc_waitq;
3054 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3055 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3056 		spin_lock(&inode->i_lock);
3057 		inode->i_private = &shmem_falloc;
3058 		spin_unlock(&inode->i_lock);
3059 
3060 		if ((u64)unmap_end > (u64)unmap_start)
3061 			unmap_mapping_range(mapping, unmap_start,
3062 					    1 + unmap_end - unmap_start, 0);
3063 		shmem_truncate_range(inode, offset, offset + len - 1);
3064 		/* No need to unmap again: hole-punching leaves COWed pages */
3065 
3066 		spin_lock(&inode->i_lock);
3067 		inode->i_private = NULL;
3068 		wake_up_all(&shmem_falloc_waitq);
3069 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3070 		spin_unlock(&inode->i_lock);
3071 		error = 0;
3072 		goto out;
3073 	}
3074 
3075 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3076 	error = inode_newsize_ok(inode, offset + len);
3077 	if (error)
3078 		goto out;
3079 
3080 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3081 		error = -EPERM;
3082 		goto out;
3083 	}
3084 
3085 	start = offset >> PAGE_SHIFT;
3086 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3087 	/* Try to avoid a swapstorm if len is impossible to satisfy */
3088 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3089 		error = -ENOSPC;
3090 		goto out;
3091 	}
3092 
3093 	shmem_falloc.waitq = NULL;
3094 	shmem_falloc.start = start;
3095 	shmem_falloc.next  = start;
3096 	shmem_falloc.nr_falloced = 0;
3097 	shmem_falloc.nr_unswapped = 0;
3098 	spin_lock(&inode->i_lock);
3099 	inode->i_private = &shmem_falloc;
3100 	spin_unlock(&inode->i_lock);
3101 
3102 	/*
3103 	 * info->fallocend is only relevant when huge pages might be
3104 	 * involved: to prevent split_huge_page() freeing fallocated
3105 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3106 	 */
3107 	undo_fallocend = info->fallocend;
3108 	if (info->fallocend < end)
3109 		info->fallocend = end;
3110 
3111 	for (index = start; index < end; ) {
3112 		struct folio *folio;
3113 
3114 		/*
3115 		 * Good, the fallocate(2) manpage permits EINTR: we may have
3116 		 * been interrupted because we are using up too much memory.
3117 		 */
3118 		if (signal_pending(current))
3119 			error = -EINTR;
3120 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3121 			error = -ENOMEM;
3122 		else
3123 			error = shmem_get_folio(inode, index, &folio,
3124 						SGP_FALLOC);
3125 		if (error) {
3126 			info->fallocend = undo_fallocend;
3127 			/* Remove the !uptodate folios we added */
3128 			if (index > start) {
3129 				shmem_undo_range(inode,
3130 				    (loff_t)start << PAGE_SHIFT,
3131 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
3132 			}
3133 			goto undone;
3134 		}
3135 
3136 		/*
3137 		 * Here is a more important optimization than it appears:
3138 		 * a second SGP_FALLOC on the same large folio will clear it,
3139 		 * making it uptodate and un-undoable if we fail later.
3140 		 */
3141 		index = folio_next_index(folio);
3142 		/* Beware 32-bit wraparound */
3143 		if (!index)
3144 			index--;
3145 
3146 		/*
3147 		 * Inform shmem_writepage() how far we have reached.
3148 		 * No need for lock or barrier: we have the page lock.
3149 		 */
3150 		if (!folio_test_uptodate(folio))
3151 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
3152 		shmem_falloc.next = index;
3153 
3154 		/*
3155 		 * If !uptodate, leave it that way so that freeable folios
3156 		 * can be recognized if we need to rollback on error later.
3157 		 * But mark it dirty so that memory pressure will swap rather
3158 		 * than free the folios we are allocating (and SGP_CACHE folios
3159 		 * might still be clean: we now need to mark those dirty too).
3160 		 */
3161 		folio_mark_dirty(folio);
3162 		folio_unlock(folio);
3163 		folio_put(folio);
3164 		cond_resched();
3165 	}
3166 
3167 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3168 		i_size_write(inode, offset + len);
3169 undone:
3170 	spin_lock(&inode->i_lock);
3171 	inode->i_private = NULL;
3172 	spin_unlock(&inode->i_lock);
3173 out:
3174 	if (!error)
3175 		file_modified(file);
3176 	inode_unlock(inode);
3177 	return error;
3178 }
3179 
3180 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3181 {
3182 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3183 
3184 	buf->f_type = TMPFS_MAGIC;
3185 	buf->f_bsize = PAGE_SIZE;
3186 	buf->f_namelen = NAME_MAX;
3187 	if (sbinfo->max_blocks) {
3188 		buf->f_blocks = sbinfo->max_blocks;
3189 		buf->f_bavail =
3190 		buf->f_bfree  = sbinfo->max_blocks -
3191 				percpu_counter_sum(&sbinfo->used_blocks);
3192 	}
3193 	if (sbinfo->max_inodes) {
3194 		buf->f_files = sbinfo->max_inodes;
3195 		buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3196 	}
3197 	/* else leave those fields 0 like simple_statfs */
3198 
3199 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3200 
3201 	return 0;
3202 }
3203 
3204 /*
3205  * File creation. Allocate an inode, and we're done..
3206  */
3207 static int
3208 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3209 	    struct dentry *dentry, umode_t mode, dev_t dev)
3210 {
3211 	struct inode *inode;
3212 	int error;
3213 
3214 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3215 	if (IS_ERR(inode))
3216 		return PTR_ERR(inode);
3217 
3218 	error = simple_acl_create(dir, inode);
3219 	if (error)
3220 		goto out_iput;
3221 	error = security_inode_init_security(inode, dir,
3222 					     &dentry->d_name,
3223 					     shmem_initxattrs, NULL);
3224 	if (error && error != -EOPNOTSUPP)
3225 		goto out_iput;
3226 
3227 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3228 	if (error)
3229 		goto out_iput;
3230 
3231 	dir->i_size += BOGO_DIRENT_SIZE;
3232 	dir->i_mtime = inode_set_ctime_current(dir);
3233 	inode_inc_iversion(dir);
3234 	d_instantiate(dentry, inode);
3235 	dget(dentry); /* Extra count - pin the dentry in core */
3236 	return error;
3237 
3238 out_iput:
3239 	iput(inode);
3240 	return error;
3241 }
3242 
3243 static int
3244 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3245 	      struct file *file, umode_t mode)
3246 {
3247 	struct inode *inode;
3248 	int error;
3249 
3250 	inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3251 
3252 	if (IS_ERR(inode)) {
3253 		error = PTR_ERR(inode);
3254 		goto err_out;
3255 	}
3256 
3257 	error = security_inode_init_security(inode, dir,
3258 					     NULL,
3259 					     shmem_initxattrs, NULL);
3260 	if (error && error != -EOPNOTSUPP)
3261 		goto out_iput;
3262 	error = simple_acl_create(dir, inode);
3263 	if (error)
3264 		goto out_iput;
3265 	d_tmpfile(file, inode);
3266 
3267 err_out:
3268 	return finish_open_simple(file, error);
3269 out_iput:
3270 	iput(inode);
3271 	return error;
3272 }
3273 
3274 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3275 		       struct dentry *dentry, umode_t mode)
3276 {
3277 	int error;
3278 
3279 	error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3280 	if (error)
3281 		return error;
3282 	inc_nlink(dir);
3283 	return 0;
3284 }
3285 
3286 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3287 			struct dentry *dentry, umode_t mode, bool excl)
3288 {
3289 	return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3290 }
3291 
3292 /*
3293  * Link a file..
3294  */
3295 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3296 {
3297 	struct inode *inode = d_inode(old_dentry);
3298 	int ret = 0;
3299 
3300 	/*
3301 	 * No ordinary (disk based) filesystem counts links as inodes;
3302 	 * but each new link needs a new dentry, pinning lowmem, and
3303 	 * tmpfs dentries cannot be pruned until they are unlinked.
3304 	 * But if an O_TMPFILE file is linked into the tmpfs, the
3305 	 * first link must skip that, to get the accounting right.
3306 	 */
3307 	if (inode->i_nlink) {
3308 		ret = shmem_reserve_inode(inode->i_sb, NULL);
3309 		if (ret)
3310 			goto out;
3311 	}
3312 
3313 	ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3314 	if (ret) {
3315 		if (inode->i_nlink)
3316 			shmem_free_inode(inode->i_sb, 0);
3317 		goto out;
3318 	}
3319 
3320 	dir->i_size += BOGO_DIRENT_SIZE;
3321 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3322 					     inode_set_ctime_current(inode));
3323 	inode_inc_iversion(dir);
3324 	inc_nlink(inode);
3325 	ihold(inode);	/* New dentry reference */
3326 	dget(dentry);		/* Extra pinning count for the created dentry */
3327 	d_instantiate(dentry, inode);
3328 out:
3329 	return ret;
3330 }
3331 
3332 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3333 {
3334 	struct inode *inode = d_inode(dentry);
3335 
3336 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3337 		shmem_free_inode(inode->i_sb, 0);
3338 
3339 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3340 
3341 	dir->i_size -= BOGO_DIRENT_SIZE;
3342 	dir->i_mtime = inode_set_ctime_to_ts(dir,
3343 					     inode_set_ctime_current(inode));
3344 	inode_inc_iversion(dir);
3345 	drop_nlink(inode);
3346 	dput(dentry);	/* Undo the count from "create" - this does all the work */
3347 	return 0;
3348 }
3349 
3350 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3351 {
3352 	if (!simple_empty(dentry))
3353 		return -ENOTEMPTY;
3354 
3355 	drop_nlink(d_inode(dentry));
3356 	drop_nlink(dir);
3357 	return shmem_unlink(dir, dentry);
3358 }
3359 
3360 static int shmem_whiteout(struct mnt_idmap *idmap,
3361 			  struct inode *old_dir, struct dentry *old_dentry)
3362 {
3363 	struct dentry *whiteout;
3364 	int error;
3365 
3366 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3367 	if (!whiteout)
3368 		return -ENOMEM;
3369 
3370 	error = shmem_mknod(idmap, old_dir, whiteout,
3371 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3372 	dput(whiteout);
3373 	if (error)
3374 		return error;
3375 
3376 	/*
3377 	 * Cheat and hash the whiteout while the old dentry is still in
3378 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3379 	 *
3380 	 * d_lookup() will consistently find one of them at this point,
3381 	 * not sure which one, but that isn't even important.
3382 	 */
3383 	d_rehash(whiteout);
3384 	return 0;
3385 }
3386 
3387 /*
3388  * The VFS layer already does all the dentry stuff for rename,
3389  * we just have to decrement the usage count for the target if
3390  * it exists so that the VFS layer correctly free's it when it
3391  * gets overwritten.
3392  */
3393 static int shmem_rename2(struct mnt_idmap *idmap,
3394 			 struct inode *old_dir, struct dentry *old_dentry,
3395 			 struct inode *new_dir, struct dentry *new_dentry,
3396 			 unsigned int flags)
3397 {
3398 	struct inode *inode = d_inode(old_dentry);
3399 	int they_are_dirs = S_ISDIR(inode->i_mode);
3400 	int error;
3401 
3402 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3403 		return -EINVAL;
3404 
3405 	if (flags & RENAME_EXCHANGE)
3406 		return simple_offset_rename_exchange(old_dir, old_dentry,
3407 						     new_dir, new_dentry);
3408 
3409 	if (!simple_empty(new_dentry))
3410 		return -ENOTEMPTY;
3411 
3412 	if (flags & RENAME_WHITEOUT) {
3413 		error = shmem_whiteout(idmap, old_dir, old_dentry);
3414 		if (error)
3415 			return error;
3416 	}
3417 
3418 	simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3419 	error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3420 	if (error)
3421 		return error;
3422 
3423 	if (d_really_is_positive(new_dentry)) {
3424 		(void) shmem_unlink(new_dir, new_dentry);
3425 		if (they_are_dirs) {
3426 			drop_nlink(d_inode(new_dentry));
3427 			drop_nlink(old_dir);
3428 		}
3429 	} else if (they_are_dirs) {
3430 		drop_nlink(old_dir);
3431 		inc_nlink(new_dir);
3432 	}
3433 
3434 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3435 	new_dir->i_size += BOGO_DIRENT_SIZE;
3436 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3437 	inode_inc_iversion(old_dir);
3438 	inode_inc_iversion(new_dir);
3439 	return 0;
3440 }
3441 
3442 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3443 			 struct dentry *dentry, const char *symname)
3444 {
3445 	int error;
3446 	int len;
3447 	struct inode *inode;
3448 	struct folio *folio;
3449 
3450 	len = strlen(symname) + 1;
3451 	if (len > PAGE_SIZE)
3452 		return -ENAMETOOLONG;
3453 
3454 	inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3455 				VM_NORESERVE);
3456 
3457 	if (IS_ERR(inode))
3458 		return PTR_ERR(inode);
3459 
3460 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3461 					     shmem_initxattrs, NULL);
3462 	if (error && error != -EOPNOTSUPP)
3463 		goto out_iput;
3464 
3465 	error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3466 	if (error)
3467 		goto out_iput;
3468 
3469 	inode->i_size = len-1;
3470 	if (len <= SHORT_SYMLINK_LEN) {
3471 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3472 		if (!inode->i_link) {
3473 			error = -ENOMEM;
3474 			goto out_remove_offset;
3475 		}
3476 		inode->i_op = &shmem_short_symlink_operations;
3477 	} else {
3478 		inode_nohighmem(inode);
3479 		error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3480 		if (error)
3481 			goto out_remove_offset;
3482 		inode->i_mapping->a_ops = &shmem_aops;
3483 		inode->i_op = &shmem_symlink_inode_operations;
3484 		memcpy(folio_address(folio), symname, len);
3485 		folio_mark_uptodate(folio);
3486 		folio_mark_dirty(folio);
3487 		folio_unlock(folio);
3488 		folio_put(folio);
3489 	}
3490 	dir->i_size += BOGO_DIRENT_SIZE;
3491 	dir->i_mtime = inode_set_ctime_current(dir);
3492 	inode_inc_iversion(dir);
3493 	d_instantiate(dentry, inode);
3494 	dget(dentry);
3495 	return 0;
3496 
3497 out_remove_offset:
3498 	simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3499 out_iput:
3500 	iput(inode);
3501 	return error;
3502 }
3503 
3504 static void shmem_put_link(void *arg)
3505 {
3506 	folio_mark_accessed(arg);
3507 	folio_put(arg);
3508 }
3509 
3510 static const char *shmem_get_link(struct dentry *dentry,
3511 				  struct inode *inode,
3512 				  struct delayed_call *done)
3513 {
3514 	struct folio *folio = NULL;
3515 	int error;
3516 
3517 	if (!dentry) {
3518 		folio = filemap_get_folio(inode->i_mapping, 0);
3519 		if (IS_ERR(folio))
3520 			return ERR_PTR(-ECHILD);
3521 		if (PageHWPoison(folio_page(folio, 0)) ||
3522 		    !folio_test_uptodate(folio)) {
3523 			folio_put(folio);
3524 			return ERR_PTR(-ECHILD);
3525 		}
3526 	} else {
3527 		error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3528 		if (error)
3529 			return ERR_PTR(error);
3530 		if (!folio)
3531 			return ERR_PTR(-ECHILD);
3532 		if (PageHWPoison(folio_page(folio, 0))) {
3533 			folio_unlock(folio);
3534 			folio_put(folio);
3535 			return ERR_PTR(-ECHILD);
3536 		}
3537 		folio_unlock(folio);
3538 	}
3539 	set_delayed_call(done, shmem_put_link, folio);
3540 	return folio_address(folio);
3541 }
3542 
3543 #ifdef CONFIG_TMPFS_XATTR
3544 
3545 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3546 {
3547 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3548 
3549 	fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3550 
3551 	return 0;
3552 }
3553 
3554 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3555 			      struct dentry *dentry, struct fileattr *fa)
3556 {
3557 	struct inode *inode = d_inode(dentry);
3558 	struct shmem_inode_info *info = SHMEM_I(inode);
3559 
3560 	if (fileattr_has_fsx(fa))
3561 		return -EOPNOTSUPP;
3562 	if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3563 		return -EOPNOTSUPP;
3564 
3565 	info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3566 		(fa->flags & SHMEM_FL_USER_MODIFIABLE);
3567 
3568 	shmem_set_inode_flags(inode, info->fsflags);
3569 	inode_set_ctime_current(inode);
3570 	inode_inc_iversion(inode);
3571 	return 0;
3572 }
3573 
3574 /*
3575  * Superblocks without xattr inode operations may get some security.* xattr
3576  * support from the LSM "for free". As soon as we have any other xattrs
3577  * like ACLs, we also need to implement the security.* handlers at
3578  * filesystem level, though.
3579  */
3580 
3581 /*
3582  * Callback for security_inode_init_security() for acquiring xattrs.
3583  */
3584 static int shmem_initxattrs(struct inode *inode,
3585 			    const struct xattr *xattr_array,
3586 			    void *fs_info)
3587 {
3588 	struct shmem_inode_info *info = SHMEM_I(inode);
3589 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3590 	const struct xattr *xattr;
3591 	struct simple_xattr *new_xattr;
3592 	size_t ispace = 0;
3593 	size_t len;
3594 
3595 	if (sbinfo->max_inodes) {
3596 		for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3597 			ispace += simple_xattr_space(xattr->name,
3598 				xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3599 		}
3600 		if (ispace) {
3601 			raw_spin_lock(&sbinfo->stat_lock);
3602 			if (sbinfo->free_ispace < ispace)
3603 				ispace = 0;
3604 			else
3605 				sbinfo->free_ispace -= ispace;
3606 			raw_spin_unlock(&sbinfo->stat_lock);
3607 			if (!ispace)
3608 				return -ENOSPC;
3609 		}
3610 	}
3611 
3612 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3613 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3614 		if (!new_xattr)
3615 			break;
3616 
3617 		len = strlen(xattr->name) + 1;
3618 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3619 					  GFP_KERNEL_ACCOUNT);
3620 		if (!new_xattr->name) {
3621 			kvfree(new_xattr);
3622 			break;
3623 		}
3624 
3625 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3626 		       XATTR_SECURITY_PREFIX_LEN);
3627 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3628 		       xattr->name, len);
3629 
3630 		simple_xattr_add(&info->xattrs, new_xattr);
3631 	}
3632 
3633 	if (xattr->name != NULL) {
3634 		if (ispace) {
3635 			raw_spin_lock(&sbinfo->stat_lock);
3636 			sbinfo->free_ispace += ispace;
3637 			raw_spin_unlock(&sbinfo->stat_lock);
3638 		}
3639 		simple_xattrs_free(&info->xattrs, NULL);
3640 		return -ENOMEM;
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3647 				   struct dentry *unused, struct inode *inode,
3648 				   const char *name, void *buffer, size_t size)
3649 {
3650 	struct shmem_inode_info *info = SHMEM_I(inode);
3651 
3652 	name = xattr_full_name(handler, name);
3653 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3654 }
3655 
3656 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3657 				   struct mnt_idmap *idmap,
3658 				   struct dentry *unused, struct inode *inode,
3659 				   const char *name, const void *value,
3660 				   size_t size, int flags)
3661 {
3662 	struct shmem_inode_info *info = SHMEM_I(inode);
3663 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3664 	struct simple_xattr *old_xattr;
3665 	size_t ispace = 0;
3666 
3667 	name = xattr_full_name(handler, name);
3668 	if (value && sbinfo->max_inodes) {
3669 		ispace = simple_xattr_space(name, size);
3670 		raw_spin_lock(&sbinfo->stat_lock);
3671 		if (sbinfo->free_ispace < ispace)
3672 			ispace = 0;
3673 		else
3674 			sbinfo->free_ispace -= ispace;
3675 		raw_spin_unlock(&sbinfo->stat_lock);
3676 		if (!ispace)
3677 			return -ENOSPC;
3678 	}
3679 
3680 	old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3681 	if (!IS_ERR(old_xattr)) {
3682 		ispace = 0;
3683 		if (old_xattr && sbinfo->max_inodes)
3684 			ispace = simple_xattr_space(old_xattr->name,
3685 						    old_xattr->size);
3686 		simple_xattr_free(old_xattr);
3687 		old_xattr = NULL;
3688 		inode_set_ctime_current(inode);
3689 		inode_inc_iversion(inode);
3690 	}
3691 	if (ispace) {
3692 		raw_spin_lock(&sbinfo->stat_lock);
3693 		sbinfo->free_ispace += ispace;
3694 		raw_spin_unlock(&sbinfo->stat_lock);
3695 	}
3696 	return PTR_ERR(old_xattr);
3697 }
3698 
3699 static const struct xattr_handler shmem_security_xattr_handler = {
3700 	.prefix = XATTR_SECURITY_PREFIX,
3701 	.get = shmem_xattr_handler_get,
3702 	.set = shmem_xattr_handler_set,
3703 };
3704 
3705 static const struct xattr_handler shmem_trusted_xattr_handler = {
3706 	.prefix = XATTR_TRUSTED_PREFIX,
3707 	.get = shmem_xattr_handler_get,
3708 	.set = shmem_xattr_handler_set,
3709 };
3710 
3711 static const struct xattr_handler shmem_user_xattr_handler = {
3712 	.prefix = XATTR_USER_PREFIX,
3713 	.get = shmem_xattr_handler_get,
3714 	.set = shmem_xattr_handler_set,
3715 };
3716 
3717 static const struct xattr_handler *shmem_xattr_handlers[] = {
3718 	&shmem_security_xattr_handler,
3719 	&shmem_trusted_xattr_handler,
3720 	&shmem_user_xattr_handler,
3721 	NULL
3722 };
3723 
3724 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3725 {
3726 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3727 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3728 }
3729 #endif /* CONFIG_TMPFS_XATTR */
3730 
3731 static const struct inode_operations shmem_short_symlink_operations = {
3732 	.getattr	= shmem_getattr,
3733 	.setattr	= shmem_setattr,
3734 	.get_link	= simple_get_link,
3735 #ifdef CONFIG_TMPFS_XATTR
3736 	.listxattr	= shmem_listxattr,
3737 #endif
3738 };
3739 
3740 static const struct inode_operations shmem_symlink_inode_operations = {
3741 	.getattr	= shmem_getattr,
3742 	.setattr	= shmem_setattr,
3743 	.get_link	= shmem_get_link,
3744 #ifdef CONFIG_TMPFS_XATTR
3745 	.listxattr	= shmem_listxattr,
3746 #endif
3747 };
3748 
3749 static struct dentry *shmem_get_parent(struct dentry *child)
3750 {
3751 	return ERR_PTR(-ESTALE);
3752 }
3753 
3754 static int shmem_match(struct inode *ino, void *vfh)
3755 {
3756 	__u32 *fh = vfh;
3757 	__u64 inum = fh[2];
3758 	inum = (inum << 32) | fh[1];
3759 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3760 }
3761 
3762 /* Find any alias of inode, but prefer a hashed alias */
3763 static struct dentry *shmem_find_alias(struct inode *inode)
3764 {
3765 	struct dentry *alias = d_find_alias(inode);
3766 
3767 	return alias ?: d_find_any_alias(inode);
3768 }
3769 
3770 
3771 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3772 		struct fid *fid, int fh_len, int fh_type)
3773 {
3774 	struct inode *inode;
3775 	struct dentry *dentry = NULL;
3776 	u64 inum;
3777 
3778 	if (fh_len < 3)
3779 		return NULL;
3780 
3781 	inum = fid->raw[2];
3782 	inum = (inum << 32) | fid->raw[1];
3783 
3784 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3785 			shmem_match, fid->raw);
3786 	if (inode) {
3787 		dentry = shmem_find_alias(inode);
3788 		iput(inode);
3789 	}
3790 
3791 	return dentry;
3792 }
3793 
3794 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3795 				struct inode *parent)
3796 {
3797 	if (*len < 3) {
3798 		*len = 3;
3799 		return FILEID_INVALID;
3800 	}
3801 
3802 	if (inode_unhashed(inode)) {
3803 		/* Unfortunately insert_inode_hash is not idempotent,
3804 		 * so as we hash inodes here rather than at creation
3805 		 * time, we need a lock to ensure we only try
3806 		 * to do it once
3807 		 */
3808 		static DEFINE_SPINLOCK(lock);
3809 		spin_lock(&lock);
3810 		if (inode_unhashed(inode))
3811 			__insert_inode_hash(inode,
3812 					    inode->i_ino + inode->i_generation);
3813 		spin_unlock(&lock);
3814 	}
3815 
3816 	fh[0] = inode->i_generation;
3817 	fh[1] = inode->i_ino;
3818 	fh[2] = ((__u64)inode->i_ino) >> 32;
3819 
3820 	*len = 3;
3821 	return 1;
3822 }
3823 
3824 static const struct export_operations shmem_export_ops = {
3825 	.get_parent     = shmem_get_parent,
3826 	.encode_fh      = shmem_encode_fh,
3827 	.fh_to_dentry	= shmem_fh_to_dentry,
3828 };
3829 
3830 enum shmem_param {
3831 	Opt_gid,
3832 	Opt_huge,
3833 	Opt_mode,
3834 	Opt_mpol,
3835 	Opt_nr_blocks,
3836 	Opt_nr_inodes,
3837 	Opt_size,
3838 	Opt_uid,
3839 	Opt_inode32,
3840 	Opt_inode64,
3841 	Opt_noswap,
3842 	Opt_quota,
3843 	Opt_usrquota,
3844 	Opt_grpquota,
3845 	Opt_usrquota_block_hardlimit,
3846 	Opt_usrquota_inode_hardlimit,
3847 	Opt_grpquota_block_hardlimit,
3848 	Opt_grpquota_inode_hardlimit,
3849 };
3850 
3851 static const struct constant_table shmem_param_enums_huge[] = {
3852 	{"never",	SHMEM_HUGE_NEVER },
3853 	{"always",	SHMEM_HUGE_ALWAYS },
3854 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3855 	{"advise",	SHMEM_HUGE_ADVISE },
3856 	{}
3857 };
3858 
3859 const struct fs_parameter_spec shmem_fs_parameters[] = {
3860 	fsparam_u32   ("gid",		Opt_gid),
3861 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3862 	fsparam_u32oct("mode",		Opt_mode),
3863 	fsparam_string("mpol",		Opt_mpol),
3864 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3865 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3866 	fsparam_string("size",		Opt_size),
3867 	fsparam_u32   ("uid",		Opt_uid),
3868 	fsparam_flag  ("inode32",	Opt_inode32),
3869 	fsparam_flag  ("inode64",	Opt_inode64),
3870 	fsparam_flag  ("noswap",	Opt_noswap),
3871 #ifdef CONFIG_TMPFS_QUOTA
3872 	fsparam_flag  ("quota",		Opt_quota),
3873 	fsparam_flag  ("usrquota",	Opt_usrquota),
3874 	fsparam_flag  ("grpquota",	Opt_grpquota),
3875 	fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3876 	fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3877 	fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3878 	fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3879 #endif
3880 	{}
3881 };
3882 
3883 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3884 {
3885 	struct shmem_options *ctx = fc->fs_private;
3886 	struct fs_parse_result result;
3887 	unsigned long long size;
3888 	char *rest;
3889 	int opt;
3890 	kuid_t kuid;
3891 	kgid_t kgid;
3892 
3893 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3894 	if (opt < 0)
3895 		return opt;
3896 
3897 	switch (opt) {
3898 	case Opt_size:
3899 		size = memparse(param->string, &rest);
3900 		if (*rest == '%') {
3901 			size <<= PAGE_SHIFT;
3902 			size *= totalram_pages();
3903 			do_div(size, 100);
3904 			rest++;
3905 		}
3906 		if (*rest)
3907 			goto bad_value;
3908 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3909 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3910 		break;
3911 	case Opt_nr_blocks:
3912 		ctx->blocks = memparse(param->string, &rest);
3913 		if (*rest || ctx->blocks > LONG_MAX)
3914 			goto bad_value;
3915 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3916 		break;
3917 	case Opt_nr_inodes:
3918 		ctx->inodes = memparse(param->string, &rest);
3919 		if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3920 			goto bad_value;
3921 		ctx->seen |= SHMEM_SEEN_INODES;
3922 		break;
3923 	case Opt_mode:
3924 		ctx->mode = result.uint_32 & 07777;
3925 		break;
3926 	case Opt_uid:
3927 		kuid = make_kuid(current_user_ns(), result.uint_32);
3928 		if (!uid_valid(kuid))
3929 			goto bad_value;
3930 
3931 		/*
3932 		 * The requested uid must be representable in the
3933 		 * filesystem's idmapping.
3934 		 */
3935 		if (!kuid_has_mapping(fc->user_ns, kuid))
3936 			goto bad_value;
3937 
3938 		ctx->uid = kuid;
3939 		break;
3940 	case Opt_gid:
3941 		kgid = make_kgid(current_user_ns(), result.uint_32);
3942 		if (!gid_valid(kgid))
3943 			goto bad_value;
3944 
3945 		/*
3946 		 * The requested gid must be representable in the
3947 		 * filesystem's idmapping.
3948 		 */
3949 		if (!kgid_has_mapping(fc->user_ns, kgid))
3950 			goto bad_value;
3951 
3952 		ctx->gid = kgid;
3953 		break;
3954 	case Opt_huge:
3955 		ctx->huge = result.uint_32;
3956 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3957 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3958 		      has_transparent_hugepage()))
3959 			goto unsupported_parameter;
3960 		ctx->seen |= SHMEM_SEEN_HUGE;
3961 		break;
3962 	case Opt_mpol:
3963 		if (IS_ENABLED(CONFIG_NUMA)) {
3964 			mpol_put(ctx->mpol);
3965 			ctx->mpol = NULL;
3966 			if (mpol_parse_str(param->string, &ctx->mpol))
3967 				goto bad_value;
3968 			break;
3969 		}
3970 		goto unsupported_parameter;
3971 	case Opt_inode32:
3972 		ctx->full_inums = false;
3973 		ctx->seen |= SHMEM_SEEN_INUMS;
3974 		break;
3975 	case Opt_inode64:
3976 		if (sizeof(ino_t) < 8) {
3977 			return invalfc(fc,
3978 				       "Cannot use inode64 with <64bit inums in kernel\n");
3979 		}
3980 		ctx->full_inums = true;
3981 		ctx->seen |= SHMEM_SEEN_INUMS;
3982 		break;
3983 	case Opt_noswap:
3984 		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3985 			return invalfc(fc,
3986 				       "Turning off swap in unprivileged tmpfs mounts unsupported");
3987 		}
3988 		ctx->noswap = true;
3989 		ctx->seen |= SHMEM_SEEN_NOSWAP;
3990 		break;
3991 	case Opt_quota:
3992 		if (fc->user_ns != &init_user_ns)
3993 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
3994 		ctx->seen |= SHMEM_SEEN_QUOTA;
3995 		ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
3996 		break;
3997 	case Opt_usrquota:
3998 		if (fc->user_ns != &init_user_ns)
3999 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4000 		ctx->seen |= SHMEM_SEEN_QUOTA;
4001 		ctx->quota_types |= QTYPE_MASK_USR;
4002 		break;
4003 	case Opt_grpquota:
4004 		if (fc->user_ns != &init_user_ns)
4005 			return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4006 		ctx->seen |= SHMEM_SEEN_QUOTA;
4007 		ctx->quota_types |= QTYPE_MASK_GRP;
4008 		break;
4009 	case Opt_usrquota_block_hardlimit:
4010 		size = memparse(param->string, &rest);
4011 		if (*rest || !size)
4012 			goto bad_value;
4013 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4014 			return invalfc(fc,
4015 				       "User quota block hardlimit too large.");
4016 		ctx->qlimits.usrquota_bhardlimit = size;
4017 		break;
4018 	case Opt_grpquota_block_hardlimit:
4019 		size = memparse(param->string, &rest);
4020 		if (*rest || !size)
4021 			goto bad_value;
4022 		if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4023 			return invalfc(fc,
4024 				       "Group quota block hardlimit too large.");
4025 		ctx->qlimits.grpquota_bhardlimit = size;
4026 		break;
4027 	case Opt_usrquota_inode_hardlimit:
4028 		size = memparse(param->string, &rest);
4029 		if (*rest || !size)
4030 			goto bad_value;
4031 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4032 			return invalfc(fc,
4033 				       "User quota inode hardlimit too large.");
4034 		ctx->qlimits.usrquota_ihardlimit = size;
4035 		break;
4036 	case Opt_grpquota_inode_hardlimit:
4037 		size = memparse(param->string, &rest);
4038 		if (*rest || !size)
4039 			goto bad_value;
4040 		if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4041 			return invalfc(fc,
4042 				       "Group quota inode hardlimit too large.");
4043 		ctx->qlimits.grpquota_ihardlimit = size;
4044 		break;
4045 	}
4046 	return 0;
4047 
4048 unsupported_parameter:
4049 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
4050 bad_value:
4051 	return invalfc(fc, "Bad value for '%s'", param->key);
4052 }
4053 
4054 static int shmem_parse_options(struct fs_context *fc, void *data)
4055 {
4056 	char *options = data;
4057 
4058 	if (options) {
4059 		int err = security_sb_eat_lsm_opts(options, &fc->security);
4060 		if (err)
4061 			return err;
4062 	}
4063 
4064 	while (options != NULL) {
4065 		char *this_char = options;
4066 		for (;;) {
4067 			/*
4068 			 * NUL-terminate this option: unfortunately,
4069 			 * mount options form a comma-separated list,
4070 			 * but mpol's nodelist may also contain commas.
4071 			 */
4072 			options = strchr(options, ',');
4073 			if (options == NULL)
4074 				break;
4075 			options++;
4076 			if (!isdigit(*options)) {
4077 				options[-1] = '\0';
4078 				break;
4079 			}
4080 		}
4081 		if (*this_char) {
4082 			char *value = strchr(this_char, '=');
4083 			size_t len = 0;
4084 			int err;
4085 
4086 			if (value) {
4087 				*value++ = '\0';
4088 				len = strlen(value);
4089 			}
4090 			err = vfs_parse_fs_string(fc, this_char, value, len);
4091 			if (err < 0)
4092 				return err;
4093 		}
4094 	}
4095 	return 0;
4096 }
4097 
4098 /*
4099  * Reconfigure a shmem filesystem.
4100  */
4101 static int shmem_reconfigure(struct fs_context *fc)
4102 {
4103 	struct shmem_options *ctx = fc->fs_private;
4104 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4105 	unsigned long used_isp;
4106 	struct mempolicy *mpol = NULL;
4107 	const char *err;
4108 
4109 	raw_spin_lock(&sbinfo->stat_lock);
4110 	used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4111 
4112 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4113 		if (!sbinfo->max_blocks) {
4114 			err = "Cannot retroactively limit size";
4115 			goto out;
4116 		}
4117 		if (percpu_counter_compare(&sbinfo->used_blocks,
4118 					   ctx->blocks) > 0) {
4119 			err = "Too small a size for current use";
4120 			goto out;
4121 		}
4122 	}
4123 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4124 		if (!sbinfo->max_inodes) {
4125 			err = "Cannot retroactively limit inodes";
4126 			goto out;
4127 		}
4128 		if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4129 			err = "Too few inodes for current use";
4130 			goto out;
4131 		}
4132 	}
4133 
4134 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4135 	    sbinfo->next_ino > UINT_MAX) {
4136 		err = "Current inum too high to switch to 32-bit inums";
4137 		goto out;
4138 	}
4139 	if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4140 		err = "Cannot disable swap on remount";
4141 		goto out;
4142 	}
4143 	if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4144 		err = "Cannot enable swap on remount if it was disabled on first mount";
4145 		goto out;
4146 	}
4147 
4148 	if (ctx->seen & SHMEM_SEEN_QUOTA &&
4149 	    !sb_any_quota_loaded(fc->root->d_sb)) {
4150 		err = "Cannot enable quota on remount";
4151 		goto out;
4152 	}
4153 
4154 #ifdef CONFIG_TMPFS_QUOTA
4155 #define CHANGED_LIMIT(name)						\
4156 	(ctx->qlimits.name## hardlimit &&				\
4157 	(ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4158 
4159 	if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4160 	    CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4161 		err = "Cannot change global quota limit on remount";
4162 		goto out;
4163 	}
4164 #endif /* CONFIG_TMPFS_QUOTA */
4165 
4166 	if (ctx->seen & SHMEM_SEEN_HUGE)
4167 		sbinfo->huge = ctx->huge;
4168 	if (ctx->seen & SHMEM_SEEN_INUMS)
4169 		sbinfo->full_inums = ctx->full_inums;
4170 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
4171 		sbinfo->max_blocks  = ctx->blocks;
4172 	if (ctx->seen & SHMEM_SEEN_INODES) {
4173 		sbinfo->max_inodes  = ctx->inodes;
4174 		sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4175 	}
4176 
4177 	/*
4178 	 * Preserve previous mempolicy unless mpol remount option was specified.
4179 	 */
4180 	if (ctx->mpol) {
4181 		mpol = sbinfo->mpol;
4182 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
4183 		ctx->mpol = NULL;
4184 	}
4185 
4186 	if (ctx->noswap)
4187 		sbinfo->noswap = true;
4188 
4189 	raw_spin_unlock(&sbinfo->stat_lock);
4190 	mpol_put(mpol);
4191 	return 0;
4192 out:
4193 	raw_spin_unlock(&sbinfo->stat_lock);
4194 	return invalfc(fc, "%s", err);
4195 }
4196 
4197 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4198 {
4199 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4200 	struct mempolicy *mpol;
4201 
4202 	if (sbinfo->max_blocks != shmem_default_max_blocks())
4203 		seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4204 	if (sbinfo->max_inodes != shmem_default_max_inodes())
4205 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4206 	if (sbinfo->mode != (0777 | S_ISVTX))
4207 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4208 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4209 		seq_printf(seq, ",uid=%u",
4210 				from_kuid_munged(&init_user_ns, sbinfo->uid));
4211 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4212 		seq_printf(seq, ",gid=%u",
4213 				from_kgid_munged(&init_user_ns, sbinfo->gid));
4214 
4215 	/*
4216 	 * Showing inode{64,32} might be useful even if it's the system default,
4217 	 * since then people don't have to resort to checking both here and
4218 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
4219 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4220 	 *
4221 	 * We hide it when inode64 isn't the default and we are using 32-bit
4222 	 * inodes, since that probably just means the feature isn't even under
4223 	 * consideration.
4224 	 *
4225 	 * As such:
4226 	 *
4227 	 *                     +-----------------+-----------------+
4228 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
4229 	 *  +------------------+-----------------+-----------------+
4230 	 *  | full_inums=true  | show            | show            |
4231 	 *  | full_inums=false | show            | hide            |
4232 	 *  +------------------+-----------------+-----------------+
4233 	 *
4234 	 */
4235 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4236 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4238 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4239 	if (sbinfo->huge)
4240 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4241 #endif
4242 	mpol = shmem_get_sbmpol(sbinfo);
4243 	shmem_show_mpol(seq, mpol);
4244 	mpol_put(mpol);
4245 	if (sbinfo->noswap)
4246 		seq_printf(seq, ",noswap");
4247 	return 0;
4248 }
4249 
4250 #endif /* CONFIG_TMPFS */
4251 
4252 static void shmem_put_super(struct super_block *sb)
4253 {
4254 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4255 
4256 #ifdef CONFIG_TMPFS_QUOTA
4257 	shmem_disable_quotas(sb);
4258 #endif
4259 	free_percpu(sbinfo->ino_batch);
4260 	percpu_counter_destroy(&sbinfo->used_blocks);
4261 	mpol_put(sbinfo->mpol);
4262 	kfree(sbinfo);
4263 	sb->s_fs_info = NULL;
4264 }
4265 
4266 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4267 {
4268 	struct shmem_options *ctx = fc->fs_private;
4269 	struct inode *inode;
4270 	struct shmem_sb_info *sbinfo;
4271 	int error = -ENOMEM;
4272 
4273 	/* Round up to L1_CACHE_BYTES to resist false sharing */
4274 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4275 				L1_CACHE_BYTES), GFP_KERNEL);
4276 	if (!sbinfo)
4277 		return error;
4278 
4279 	sb->s_fs_info = sbinfo;
4280 
4281 #ifdef CONFIG_TMPFS
4282 	/*
4283 	 * Per default we only allow half of the physical ram per
4284 	 * tmpfs instance, limiting inodes to one per page of lowmem;
4285 	 * but the internal instance is left unlimited.
4286 	 */
4287 	if (!(sb->s_flags & SB_KERNMOUNT)) {
4288 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4289 			ctx->blocks = shmem_default_max_blocks();
4290 		if (!(ctx->seen & SHMEM_SEEN_INODES))
4291 			ctx->inodes = shmem_default_max_inodes();
4292 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
4293 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4294 		sbinfo->noswap = ctx->noswap;
4295 	} else {
4296 		sb->s_flags |= SB_NOUSER;
4297 	}
4298 	sb->s_export_op = &shmem_export_ops;
4299 	sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4300 #else
4301 	sb->s_flags |= SB_NOUSER;
4302 #endif
4303 	sbinfo->max_blocks = ctx->blocks;
4304 	sbinfo->max_inodes = ctx->inodes;
4305 	sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4306 	if (sb->s_flags & SB_KERNMOUNT) {
4307 		sbinfo->ino_batch = alloc_percpu(ino_t);
4308 		if (!sbinfo->ino_batch)
4309 			goto failed;
4310 	}
4311 	sbinfo->uid = ctx->uid;
4312 	sbinfo->gid = ctx->gid;
4313 	sbinfo->full_inums = ctx->full_inums;
4314 	sbinfo->mode = ctx->mode;
4315 	sbinfo->huge = ctx->huge;
4316 	sbinfo->mpol = ctx->mpol;
4317 	ctx->mpol = NULL;
4318 
4319 	raw_spin_lock_init(&sbinfo->stat_lock);
4320 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4321 		goto failed;
4322 	spin_lock_init(&sbinfo->shrinklist_lock);
4323 	INIT_LIST_HEAD(&sbinfo->shrinklist);
4324 
4325 	sb->s_maxbytes = MAX_LFS_FILESIZE;
4326 	sb->s_blocksize = PAGE_SIZE;
4327 	sb->s_blocksize_bits = PAGE_SHIFT;
4328 	sb->s_magic = TMPFS_MAGIC;
4329 	sb->s_op = &shmem_ops;
4330 	sb->s_time_gran = 1;
4331 #ifdef CONFIG_TMPFS_XATTR
4332 	sb->s_xattr = shmem_xattr_handlers;
4333 #endif
4334 #ifdef CONFIG_TMPFS_POSIX_ACL
4335 	sb->s_flags |= SB_POSIXACL;
4336 #endif
4337 	uuid_gen(&sb->s_uuid);
4338 
4339 #ifdef CONFIG_TMPFS_QUOTA
4340 	if (ctx->seen & SHMEM_SEEN_QUOTA) {
4341 		sb->dq_op = &shmem_quota_operations;
4342 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4343 		sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4344 
4345 		/* Copy the default limits from ctx into sbinfo */
4346 		memcpy(&sbinfo->qlimits, &ctx->qlimits,
4347 		       sizeof(struct shmem_quota_limits));
4348 
4349 		if (shmem_enable_quotas(sb, ctx->quota_types))
4350 			goto failed;
4351 	}
4352 #endif /* CONFIG_TMPFS_QUOTA */
4353 
4354 	inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4355 				VM_NORESERVE);
4356 	if (IS_ERR(inode)) {
4357 		error = PTR_ERR(inode);
4358 		goto failed;
4359 	}
4360 	inode->i_uid = sbinfo->uid;
4361 	inode->i_gid = sbinfo->gid;
4362 	sb->s_root = d_make_root(inode);
4363 	if (!sb->s_root)
4364 		goto failed;
4365 	return 0;
4366 
4367 failed:
4368 	shmem_put_super(sb);
4369 	return error;
4370 }
4371 
4372 static int shmem_get_tree(struct fs_context *fc)
4373 {
4374 	return get_tree_nodev(fc, shmem_fill_super);
4375 }
4376 
4377 static void shmem_free_fc(struct fs_context *fc)
4378 {
4379 	struct shmem_options *ctx = fc->fs_private;
4380 
4381 	if (ctx) {
4382 		mpol_put(ctx->mpol);
4383 		kfree(ctx);
4384 	}
4385 }
4386 
4387 static const struct fs_context_operations shmem_fs_context_ops = {
4388 	.free			= shmem_free_fc,
4389 	.get_tree		= shmem_get_tree,
4390 #ifdef CONFIG_TMPFS
4391 	.parse_monolithic	= shmem_parse_options,
4392 	.parse_param		= shmem_parse_one,
4393 	.reconfigure		= shmem_reconfigure,
4394 #endif
4395 };
4396 
4397 static struct kmem_cache *shmem_inode_cachep;
4398 
4399 static struct inode *shmem_alloc_inode(struct super_block *sb)
4400 {
4401 	struct shmem_inode_info *info;
4402 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4403 	if (!info)
4404 		return NULL;
4405 	return &info->vfs_inode;
4406 }
4407 
4408 static void shmem_free_in_core_inode(struct inode *inode)
4409 {
4410 	if (S_ISLNK(inode->i_mode))
4411 		kfree(inode->i_link);
4412 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4413 }
4414 
4415 static void shmem_destroy_inode(struct inode *inode)
4416 {
4417 	if (S_ISREG(inode->i_mode))
4418 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4419 	if (S_ISDIR(inode->i_mode))
4420 		simple_offset_destroy(shmem_get_offset_ctx(inode));
4421 }
4422 
4423 static void shmem_init_inode(void *foo)
4424 {
4425 	struct shmem_inode_info *info = foo;
4426 	inode_init_once(&info->vfs_inode);
4427 }
4428 
4429 static void shmem_init_inodecache(void)
4430 {
4431 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4432 				sizeof(struct shmem_inode_info),
4433 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4434 }
4435 
4436 static void shmem_destroy_inodecache(void)
4437 {
4438 	kmem_cache_destroy(shmem_inode_cachep);
4439 }
4440 
4441 /* Keep the page in page cache instead of truncating it */
4442 static int shmem_error_remove_page(struct address_space *mapping,
4443 				   struct page *page)
4444 {
4445 	return 0;
4446 }
4447 
4448 const struct address_space_operations shmem_aops = {
4449 	.writepage	= shmem_writepage,
4450 	.dirty_folio	= noop_dirty_folio,
4451 #ifdef CONFIG_TMPFS
4452 	.write_begin	= shmem_write_begin,
4453 	.write_end	= shmem_write_end,
4454 #endif
4455 #ifdef CONFIG_MIGRATION
4456 	.migrate_folio	= migrate_folio,
4457 #endif
4458 	.error_remove_page = shmem_error_remove_page,
4459 };
4460 EXPORT_SYMBOL(shmem_aops);
4461 
4462 static const struct file_operations shmem_file_operations = {
4463 	.mmap		= shmem_mmap,
4464 	.open		= shmem_file_open,
4465 	.get_unmapped_area = shmem_get_unmapped_area,
4466 #ifdef CONFIG_TMPFS
4467 	.llseek		= shmem_file_llseek,
4468 	.read_iter	= shmem_file_read_iter,
4469 	.write_iter	= shmem_file_write_iter,
4470 	.fsync		= noop_fsync,
4471 	.splice_read	= shmem_file_splice_read,
4472 	.splice_write	= iter_file_splice_write,
4473 	.fallocate	= shmem_fallocate,
4474 #endif
4475 };
4476 
4477 static const struct inode_operations shmem_inode_operations = {
4478 	.getattr	= shmem_getattr,
4479 	.setattr	= shmem_setattr,
4480 #ifdef CONFIG_TMPFS_XATTR
4481 	.listxattr	= shmem_listxattr,
4482 	.set_acl	= simple_set_acl,
4483 	.fileattr_get	= shmem_fileattr_get,
4484 	.fileattr_set	= shmem_fileattr_set,
4485 #endif
4486 };
4487 
4488 static const struct inode_operations shmem_dir_inode_operations = {
4489 #ifdef CONFIG_TMPFS
4490 	.getattr	= shmem_getattr,
4491 	.create		= shmem_create,
4492 	.lookup		= simple_lookup,
4493 	.link		= shmem_link,
4494 	.unlink		= shmem_unlink,
4495 	.symlink	= shmem_symlink,
4496 	.mkdir		= shmem_mkdir,
4497 	.rmdir		= shmem_rmdir,
4498 	.mknod		= shmem_mknod,
4499 	.rename		= shmem_rename2,
4500 	.tmpfile	= shmem_tmpfile,
4501 	.get_offset_ctx	= shmem_get_offset_ctx,
4502 #endif
4503 #ifdef CONFIG_TMPFS_XATTR
4504 	.listxattr	= shmem_listxattr,
4505 	.fileattr_get	= shmem_fileattr_get,
4506 	.fileattr_set	= shmem_fileattr_set,
4507 #endif
4508 #ifdef CONFIG_TMPFS_POSIX_ACL
4509 	.setattr	= shmem_setattr,
4510 	.set_acl	= simple_set_acl,
4511 #endif
4512 };
4513 
4514 static const struct inode_operations shmem_special_inode_operations = {
4515 	.getattr	= shmem_getattr,
4516 #ifdef CONFIG_TMPFS_XATTR
4517 	.listxattr	= shmem_listxattr,
4518 #endif
4519 #ifdef CONFIG_TMPFS_POSIX_ACL
4520 	.setattr	= shmem_setattr,
4521 	.set_acl	= simple_set_acl,
4522 #endif
4523 };
4524 
4525 static const struct super_operations shmem_ops = {
4526 	.alloc_inode	= shmem_alloc_inode,
4527 	.free_inode	= shmem_free_in_core_inode,
4528 	.destroy_inode	= shmem_destroy_inode,
4529 #ifdef CONFIG_TMPFS
4530 	.statfs		= shmem_statfs,
4531 	.show_options	= shmem_show_options,
4532 #endif
4533 #ifdef CONFIG_TMPFS_QUOTA
4534 	.get_dquots	= shmem_get_dquots,
4535 #endif
4536 	.evict_inode	= shmem_evict_inode,
4537 	.drop_inode	= generic_delete_inode,
4538 	.put_super	= shmem_put_super,
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540 	.nr_cached_objects	= shmem_unused_huge_count,
4541 	.free_cached_objects	= shmem_unused_huge_scan,
4542 #endif
4543 };
4544 
4545 static const struct vm_operations_struct shmem_vm_ops = {
4546 	.fault		= shmem_fault,
4547 	.map_pages	= filemap_map_pages,
4548 #ifdef CONFIG_NUMA
4549 	.set_policy     = shmem_set_policy,
4550 	.get_policy     = shmem_get_policy,
4551 #endif
4552 };
4553 
4554 static const struct vm_operations_struct shmem_anon_vm_ops = {
4555 	.fault		= shmem_fault,
4556 	.map_pages	= filemap_map_pages,
4557 #ifdef CONFIG_NUMA
4558 	.set_policy     = shmem_set_policy,
4559 	.get_policy     = shmem_get_policy,
4560 #endif
4561 };
4562 
4563 int shmem_init_fs_context(struct fs_context *fc)
4564 {
4565 	struct shmem_options *ctx;
4566 
4567 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4568 	if (!ctx)
4569 		return -ENOMEM;
4570 
4571 	ctx->mode = 0777 | S_ISVTX;
4572 	ctx->uid = current_fsuid();
4573 	ctx->gid = current_fsgid();
4574 
4575 	fc->fs_private = ctx;
4576 	fc->ops = &shmem_fs_context_ops;
4577 	return 0;
4578 }
4579 
4580 static struct file_system_type shmem_fs_type = {
4581 	.owner		= THIS_MODULE,
4582 	.name		= "tmpfs",
4583 	.init_fs_context = shmem_init_fs_context,
4584 #ifdef CONFIG_TMPFS
4585 	.parameters	= shmem_fs_parameters,
4586 #endif
4587 	.kill_sb	= kill_litter_super,
4588 #ifdef CONFIG_SHMEM
4589 	.fs_flags	= FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
4590 #else
4591 	.fs_flags	= FS_USERNS_MOUNT,
4592 #endif
4593 };
4594 
4595 void __init shmem_init(void)
4596 {
4597 	int error;
4598 
4599 	shmem_init_inodecache();
4600 
4601 #ifdef CONFIG_TMPFS_QUOTA
4602 	error = register_quota_format(&shmem_quota_format);
4603 	if (error < 0) {
4604 		pr_err("Could not register quota format\n");
4605 		goto out3;
4606 	}
4607 #endif
4608 
4609 	error = register_filesystem(&shmem_fs_type);
4610 	if (error) {
4611 		pr_err("Could not register tmpfs\n");
4612 		goto out2;
4613 	}
4614 
4615 	shm_mnt = kern_mount(&shmem_fs_type);
4616 	if (IS_ERR(shm_mnt)) {
4617 		error = PTR_ERR(shm_mnt);
4618 		pr_err("Could not kern_mount tmpfs\n");
4619 		goto out1;
4620 	}
4621 
4622 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4623 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4624 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4625 	else
4626 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4627 #endif
4628 	return;
4629 
4630 out1:
4631 	unregister_filesystem(&shmem_fs_type);
4632 out2:
4633 #ifdef CONFIG_TMPFS_QUOTA
4634 	unregister_quota_format(&shmem_quota_format);
4635 out3:
4636 #endif
4637 	shmem_destroy_inodecache();
4638 	shm_mnt = ERR_PTR(error);
4639 }
4640 
4641 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4642 static ssize_t shmem_enabled_show(struct kobject *kobj,
4643 				  struct kobj_attribute *attr, char *buf)
4644 {
4645 	static const int values[] = {
4646 		SHMEM_HUGE_ALWAYS,
4647 		SHMEM_HUGE_WITHIN_SIZE,
4648 		SHMEM_HUGE_ADVISE,
4649 		SHMEM_HUGE_NEVER,
4650 		SHMEM_HUGE_DENY,
4651 		SHMEM_HUGE_FORCE,
4652 	};
4653 	int len = 0;
4654 	int i;
4655 
4656 	for (i = 0; i < ARRAY_SIZE(values); i++) {
4657 		len += sysfs_emit_at(buf, len,
4658 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4659 				     i ? " " : "",
4660 				     shmem_format_huge(values[i]));
4661 	}
4662 
4663 	len += sysfs_emit_at(buf, len, "\n");
4664 
4665 	return len;
4666 }
4667 
4668 static ssize_t shmem_enabled_store(struct kobject *kobj,
4669 		struct kobj_attribute *attr, const char *buf, size_t count)
4670 {
4671 	char tmp[16];
4672 	int huge;
4673 
4674 	if (count + 1 > sizeof(tmp))
4675 		return -EINVAL;
4676 	memcpy(tmp, buf, count);
4677 	tmp[count] = '\0';
4678 	if (count && tmp[count - 1] == '\n')
4679 		tmp[count - 1] = '\0';
4680 
4681 	huge = shmem_parse_huge(tmp);
4682 	if (huge == -EINVAL)
4683 		return -EINVAL;
4684 	if (!has_transparent_hugepage() &&
4685 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4686 		return -EINVAL;
4687 
4688 	shmem_huge = huge;
4689 	if (shmem_huge > SHMEM_HUGE_DENY)
4690 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4691 	return count;
4692 }
4693 
4694 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4695 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4696 
4697 #else /* !CONFIG_SHMEM */
4698 
4699 /*
4700  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4701  *
4702  * This is intended for small system where the benefits of the full
4703  * shmem code (swap-backed and resource-limited) are outweighed by
4704  * their complexity. On systems without swap this code should be
4705  * effectively equivalent, but much lighter weight.
4706  */
4707 
4708 static struct file_system_type shmem_fs_type = {
4709 	.name		= "tmpfs",
4710 	.init_fs_context = ramfs_init_fs_context,
4711 	.parameters	= ramfs_fs_parameters,
4712 	.kill_sb	= ramfs_kill_sb,
4713 	.fs_flags	= FS_USERNS_MOUNT,
4714 };
4715 
4716 void __init shmem_init(void)
4717 {
4718 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4719 
4720 	shm_mnt = kern_mount(&shmem_fs_type);
4721 	BUG_ON(IS_ERR(shm_mnt));
4722 }
4723 
4724 int shmem_unuse(unsigned int type)
4725 {
4726 	return 0;
4727 }
4728 
4729 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4730 {
4731 	return 0;
4732 }
4733 
4734 void shmem_unlock_mapping(struct address_space *mapping)
4735 {
4736 }
4737 
4738 #ifdef CONFIG_MMU
4739 unsigned long shmem_get_unmapped_area(struct file *file,
4740 				      unsigned long addr, unsigned long len,
4741 				      unsigned long pgoff, unsigned long flags)
4742 {
4743 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4744 }
4745 #endif
4746 
4747 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4748 {
4749 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4750 }
4751 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4752 
4753 #define shmem_vm_ops				generic_file_vm_ops
4754 #define shmem_anon_vm_ops			generic_file_vm_ops
4755 #define shmem_file_operations			ramfs_file_operations
4756 #define shmem_acct_size(flags, size)		0
4757 #define shmem_unacct_size(flags, size)		do {} while (0)
4758 
4759 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4760 					    umode_t mode, dev_t dev, unsigned long flags)
4761 {
4762 	struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4763 	return inode ? inode : ERR_PTR(-ENOSPC);
4764 }
4765 
4766 #endif /* CONFIG_SHMEM */
4767 
4768 /* common code */
4769 
4770 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4771 				       unsigned long flags, unsigned int i_flags)
4772 {
4773 	struct inode *inode;
4774 	struct file *res;
4775 
4776 	if (IS_ERR(mnt))
4777 		return ERR_CAST(mnt);
4778 
4779 	if (size < 0 || size > MAX_LFS_FILESIZE)
4780 		return ERR_PTR(-EINVAL);
4781 
4782 	if (shmem_acct_size(flags, size))
4783 		return ERR_PTR(-ENOMEM);
4784 
4785 	if (is_idmapped_mnt(mnt))
4786 		return ERR_PTR(-EINVAL);
4787 
4788 	inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4789 				S_IFREG | S_IRWXUGO, 0, flags);
4790 
4791 	if (IS_ERR(inode)) {
4792 		shmem_unacct_size(flags, size);
4793 		return ERR_CAST(inode);
4794 	}
4795 	inode->i_flags |= i_flags;
4796 	inode->i_size = size;
4797 	clear_nlink(inode);	/* It is unlinked */
4798 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4799 	if (!IS_ERR(res))
4800 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4801 				&shmem_file_operations);
4802 	if (IS_ERR(res))
4803 		iput(inode);
4804 	return res;
4805 }
4806 
4807 /**
4808  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4809  * 	kernel internal.  There will be NO LSM permission checks against the
4810  * 	underlying inode.  So users of this interface must do LSM checks at a
4811  *	higher layer.  The users are the big_key and shm implementations.  LSM
4812  *	checks are provided at the key or shm level rather than the inode.
4813  * @name: name for dentry (to be seen in /proc/<pid>/maps
4814  * @size: size to be set for the file
4815  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4816  */
4817 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4818 {
4819 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4820 }
4821 
4822 /**
4823  * shmem_file_setup - get an unlinked file living in tmpfs
4824  * @name: name for dentry (to be seen in /proc/<pid>/maps
4825  * @size: size to be set for the file
4826  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4827  */
4828 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4829 {
4830 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4831 }
4832 EXPORT_SYMBOL_GPL(shmem_file_setup);
4833 
4834 /**
4835  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4836  * @mnt: the tmpfs mount where the file will be created
4837  * @name: name for dentry (to be seen in /proc/<pid>/maps
4838  * @size: size to be set for the file
4839  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4840  */
4841 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4842 				       loff_t size, unsigned long flags)
4843 {
4844 	return __shmem_file_setup(mnt, name, size, flags, 0);
4845 }
4846 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4847 
4848 /**
4849  * shmem_zero_setup - setup a shared anonymous mapping
4850  * @vma: the vma to be mmapped is prepared by do_mmap
4851  */
4852 int shmem_zero_setup(struct vm_area_struct *vma)
4853 {
4854 	struct file *file;
4855 	loff_t size = vma->vm_end - vma->vm_start;
4856 
4857 	/*
4858 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4859 	 * between XFS directory reading and selinux: since this file is only
4860 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4861 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4862 	 */
4863 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4864 	if (IS_ERR(file))
4865 		return PTR_ERR(file);
4866 
4867 	if (vma->vm_file)
4868 		fput(vma->vm_file);
4869 	vma->vm_file = file;
4870 	vma->vm_ops = &shmem_anon_vm_ops;
4871 
4872 	return 0;
4873 }
4874 
4875 /**
4876  * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4877  * @mapping:	the folio's address_space
4878  * @index:	the folio index
4879  * @gfp:	the page allocator flags to use if allocating
4880  *
4881  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4882  * with any new page allocations done using the specified allocation flags.
4883  * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4884  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4885  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4886  *
4887  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4888  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4889  */
4890 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4891 		pgoff_t index, gfp_t gfp)
4892 {
4893 #ifdef CONFIG_SHMEM
4894 	struct inode *inode = mapping->host;
4895 	struct folio *folio;
4896 	int error;
4897 
4898 	BUG_ON(!shmem_mapping(mapping));
4899 	error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4900 				  gfp, NULL, NULL, NULL);
4901 	if (error)
4902 		return ERR_PTR(error);
4903 
4904 	folio_unlock(folio);
4905 	return folio;
4906 #else
4907 	/*
4908 	 * The tiny !SHMEM case uses ramfs without swap
4909 	 */
4910 	return mapping_read_folio_gfp(mapping, index, gfp);
4911 #endif
4912 }
4913 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4914 
4915 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4916 					 pgoff_t index, gfp_t gfp)
4917 {
4918 	struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4919 	struct page *page;
4920 
4921 	if (IS_ERR(folio))
4922 		return &folio->page;
4923 
4924 	page = folio_file_page(folio, index);
4925 	if (PageHWPoison(page)) {
4926 		folio_put(folio);
4927 		return ERR_PTR(-EIO);
4928 	}
4929 
4930 	return page;
4931 }
4932 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4933