xref: /linux/mm/shmem.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35 
36 static struct vfsmount *shm_mnt;
37 
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44 
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72 
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75 
76 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
77 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
78 
79 /* Pretend that each entry is of this size in directory's i_size */
80 #define BOGO_DIRENT_SIZE 20
81 
82 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
83 #define SHORT_SYMLINK_LEN 128
84 
85 /*
86  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
87  * inode->i_private (with i_mutex making sure that it has only one user at
88  * a time): we would prefer not to enlarge the shmem inode just for that.
89  */
90 struct shmem_falloc {
91 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
92 	pgoff_t start;		/* start of range currently being fallocated */
93 	pgoff_t next;		/* the next page offset to be fallocated */
94 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
95 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
96 };
97 
98 /* Flag allocation requirements to shmem_getpage */
99 enum sgp_type {
100 	SGP_READ,	/* don't exceed i_size, don't allocate page */
101 	SGP_CACHE,	/* don't exceed i_size, may allocate page */
102 	SGP_DIRTY,	/* like SGP_CACHE, but set new page dirty */
103 	SGP_WRITE,	/* may exceed i_size, may allocate !Uptodate page */
104 	SGP_FALLOC,	/* like SGP_WRITE, but make existing page Uptodate */
105 };
106 
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110 	return totalram_pages / 2;
111 }
112 
113 static unsigned long shmem_default_max_inodes(void)
114 {
115 	return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118 
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121 				struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
124 
125 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
126 	struct page **pagep, enum sgp_type sgp, int *fault_type)
127 {
128 	return shmem_getpage_gfp(inode, index, pagep, sgp,
129 			mapping_gfp_mask(inode->i_mapping), fault_type);
130 }
131 
132 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
133 {
134 	return sb->s_fs_info;
135 }
136 
137 /*
138  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
139  * for shared memory and for shared anonymous (/dev/zero) mappings
140  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
141  * consistent with the pre-accounting of private mappings ...
142  */
143 static inline int shmem_acct_size(unsigned long flags, loff_t size)
144 {
145 	return (flags & VM_NORESERVE) ?
146 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
147 }
148 
149 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
150 {
151 	if (!(flags & VM_NORESERVE))
152 		vm_unacct_memory(VM_ACCT(size));
153 }
154 
155 static inline int shmem_reacct_size(unsigned long flags,
156 		loff_t oldsize, loff_t newsize)
157 {
158 	if (!(flags & VM_NORESERVE)) {
159 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
160 			return security_vm_enough_memory_mm(current->mm,
161 					VM_ACCT(newsize) - VM_ACCT(oldsize));
162 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
163 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
164 	}
165 	return 0;
166 }
167 
168 /*
169  * ... whereas tmpfs objects are accounted incrementally as
170  * pages are allocated, in order to allow huge sparse files.
171  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
172  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
173  */
174 static inline int shmem_acct_block(unsigned long flags)
175 {
176 	return (flags & VM_NORESERVE) ?
177 		security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
178 }
179 
180 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
181 {
182 	if (flags & VM_NORESERVE)
183 		vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
184 }
185 
186 static const struct super_operations shmem_ops;
187 static const struct address_space_operations shmem_aops;
188 static const struct file_operations shmem_file_operations;
189 static const struct inode_operations shmem_inode_operations;
190 static const struct inode_operations shmem_dir_inode_operations;
191 static const struct inode_operations shmem_special_inode_operations;
192 static const struct vm_operations_struct shmem_vm_ops;
193 
194 static LIST_HEAD(shmem_swaplist);
195 static DEFINE_MUTEX(shmem_swaplist_mutex);
196 
197 static int shmem_reserve_inode(struct super_block *sb)
198 {
199 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
200 	if (sbinfo->max_inodes) {
201 		spin_lock(&sbinfo->stat_lock);
202 		if (!sbinfo->free_inodes) {
203 			spin_unlock(&sbinfo->stat_lock);
204 			return -ENOSPC;
205 		}
206 		sbinfo->free_inodes--;
207 		spin_unlock(&sbinfo->stat_lock);
208 	}
209 	return 0;
210 }
211 
212 static void shmem_free_inode(struct super_block *sb)
213 {
214 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
215 	if (sbinfo->max_inodes) {
216 		spin_lock(&sbinfo->stat_lock);
217 		sbinfo->free_inodes++;
218 		spin_unlock(&sbinfo->stat_lock);
219 	}
220 }
221 
222 /**
223  * shmem_recalc_inode - recalculate the block usage of an inode
224  * @inode: inode to recalc
225  *
226  * We have to calculate the free blocks since the mm can drop
227  * undirtied hole pages behind our back.
228  *
229  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
230  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
231  *
232  * It has to be called with the spinlock held.
233  */
234 static void shmem_recalc_inode(struct inode *inode)
235 {
236 	struct shmem_inode_info *info = SHMEM_I(inode);
237 	long freed;
238 
239 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
240 	if (freed > 0) {
241 		struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
242 		if (sbinfo->max_blocks)
243 			percpu_counter_add(&sbinfo->used_blocks, -freed);
244 		info->alloced -= freed;
245 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
246 		shmem_unacct_blocks(info->flags, freed);
247 	}
248 }
249 
250 /*
251  * Replace item expected in radix tree by a new item, while holding tree lock.
252  */
253 static int shmem_radix_tree_replace(struct address_space *mapping,
254 			pgoff_t index, void *expected, void *replacement)
255 {
256 	void **pslot;
257 	void *item;
258 
259 	VM_BUG_ON(!expected);
260 	VM_BUG_ON(!replacement);
261 	pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
262 	if (!pslot)
263 		return -ENOENT;
264 	item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
265 	if (item != expected)
266 		return -ENOENT;
267 	radix_tree_replace_slot(pslot, replacement);
268 	return 0;
269 }
270 
271 /*
272  * Sometimes, before we decide whether to proceed or to fail, we must check
273  * that an entry was not already brought back from swap by a racing thread.
274  *
275  * Checking page is not enough: by the time a SwapCache page is locked, it
276  * might be reused, and again be SwapCache, using the same swap as before.
277  */
278 static bool shmem_confirm_swap(struct address_space *mapping,
279 			       pgoff_t index, swp_entry_t swap)
280 {
281 	void *item;
282 
283 	rcu_read_lock();
284 	item = radix_tree_lookup(&mapping->page_tree, index);
285 	rcu_read_unlock();
286 	return item == swp_to_radix_entry(swap);
287 }
288 
289 /*
290  * Like add_to_page_cache_locked, but error if expected item has gone.
291  */
292 static int shmem_add_to_page_cache(struct page *page,
293 				   struct address_space *mapping,
294 				   pgoff_t index, void *expected)
295 {
296 	int error;
297 
298 	VM_BUG_ON_PAGE(!PageLocked(page), page);
299 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
300 
301 	page_cache_get(page);
302 	page->mapping = mapping;
303 	page->index = index;
304 
305 	spin_lock_irq(&mapping->tree_lock);
306 	if (!expected)
307 		error = radix_tree_insert(&mapping->page_tree, index, page);
308 	else
309 		error = shmem_radix_tree_replace(mapping, index, expected,
310 								 page);
311 	if (!error) {
312 		mapping->nrpages++;
313 		__inc_zone_page_state(page, NR_FILE_PAGES);
314 		__inc_zone_page_state(page, NR_SHMEM);
315 		spin_unlock_irq(&mapping->tree_lock);
316 	} else {
317 		page->mapping = NULL;
318 		spin_unlock_irq(&mapping->tree_lock);
319 		page_cache_release(page);
320 	}
321 	return error;
322 }
323 
324 /*
325  * Like delete_from_page_cache, but substitutes swap for page.
326  */
327 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
328 {
329 	struct address_space *mapping = page->mapping;
330 	int error;
331 
332 	spin_lock_irq(&mapping->tree_lock);
333 	error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
334 	page->mapping = NULL;
335 	mapping->nrpages--;
336 	__dec_zone_page_state(page, NR_FILE_PAGES);
337 	__dec_zone_page_state(page, NR_SHMEM);
338 	spin_unlock_irq(&mapping->tree_lock);
339 	page_cache_release(page);
340 	BUG_ON(error);
341 }
342 
343 /*
344  * Remove swap entry from radix tree, free the swap and its page cache.
345  */
346 static int shmem_free_swap(struct address_space *mapping,
347 			   pgoff_t index, void *radswap)
348 {
349 	void *old;
350 
351 	spin_lock_irq(&mapping->tree_lock);
352 	old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
353 	spin_unlock_irq(&mapping->tree_lock);
354 	if (old != radswap)
355 		return -ENOENT;
356 	free_swap_and_cache(radix_to_swp_entry(radswap));
357 	return 0;
358 }
359 
360 /*
361  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
362  */
363 void shmem_unlock_mapping(struct address_space *mapping)
364 {
365 	struct pagevec pvec;
366 	pgoff_t indices[PAGEVEC_SIZE];
367 	pgoff_t index = 0;
368 
369 	pagevec_init(&pvec, 0);
370 	/*
371 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
372 	 */
373 	while (!mapping_unevictable(mapping)) {
374 		/*
375 		 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
376 		 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
377 		 */
378 		pvec.nr = find_get_entries(mapping, index,
379 					   PAGEVEC_SIZE, pvec.pages, indices);
380 		if (!pvec.nr)
381 			break;
382 		index = indices[pvec.nr - 1] + 1;
383 		pagevec_remove_exceptionals(&pvec);
384 		check_move_unevictable_pages(pvec.pages, pvec.nr);
385 		pagevec_release(&pvec);
386 		cond_resched();
387 	}
388 }
389 
390 /*
391  * Remove range of pages and swap entries from radix tree, and free them.
392  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
393  */
394 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
395 								 bool unfalloc)
396 {
397 	struct address_space *mapping = inode->i_mapping;
398 	struct shmem_inode_info *info = SHMEM_I(inode);
399 	pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
400 	pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
401 	unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
402 	unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
403 	struct pagevec pvec;
404 	pgoff_t indices[PAGEVEC_SIZE];
405 	long nr_swaps_freed = 0;
406 	pgoff_t index;
407 	int i;
408 
409 	if (lend == -1)
410 		end = -1;	/* unsigned, so actually very big */
411 
412 	pagevec_init(&pvec, 0);
413 	index = start;
414 	while (index < end) {
415 		pvec.nr = find_get_entries(mapping, index,
416 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
417 			pvec.pages, indices);
418 		if (!pvec.nr)
419 			break;
420 		for (i = 0; i < pagevec_count(&pvec); i++) {
421 			struct page *page = pvec.pages[i];
422 
423 			index = indices[i];
424 			if (index >= end)
425 				break;
426 
427 			if (radix_tree_exceptional_entry(page)) {
428 				if (unfalloc)
429 					continue;
430 				nr_swaps_freed += !shmem_free_swap(mapping,
431 								index, page);
432 				continue;
433 			}
434 
435 			if (!trylock_page(page))
436 				continue;
437 			if (!unfalloc || !PageUptodate(page)) {
438 				if (page->mapping == mapping) {
439 					VM_BUG_ON_PAGE(PageWriteback(page), page);
440 					truncate_inode_page(mapping, page);
441 				}
442 			}
443 			unlock_page(page);
444 		}
445 		pagevec_remove_exceptionals(&pvec);
446 		pagevec_release(&pvec);
447 		cond_resched();
448 		index++;
449 	}
450 
451 	if (partial_start) {
452 		struct page *page = NULL;
453 		shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
454 		if (page) {
455 			unsigned int top = PAGE_CACHE_SIZE;
456 			if (start > end) {
457 				top = partial_end;
458 				partial_end = 0;
459 			}
460 			zero_user_segment(page, partial_start, top);
461 			set_page_dirty(page);
462 			unlock_page(page);
463 			page_cache_release(page);
464 		}
465 	}
466 	if (partial_end) {
467 		struct page *page = NULL;
468 		shmem_getpage(inode, end, &page, SGP_READ, NULL);
469 		if (page) {
470 			zero_user_segment(page, 0, partial_end);
471 			set_page_dirty(page);
472 			unlock_page(page);
473 			page_cache_release(page);
474 		}
475 	}
476 	if (start >= end)
477 		return;
478 
479 	index = start;
480 	while (index < end) {
481 		cond_resched();
482 
483 		pvec.nr = find_get_entries(mapping, index,
484 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
485 				pvec.pages, indices);
486 		if (!pvec.nr) {
487 			/* If all gone or hole-punch or unfalloc, we're done */
488 			if (index == start || end != -1)
489 				break;
490 			/* But if truncating, restart to make sure all gone */
491 			index = start;
492 			continue;
493 		}
494 		for (i = 0; i < pagevec_count(&pvec); i++) {
495 			struct page *page = pvec.pages[i];
496 
497 			index = indices[i];
498 			if (index >= end)
499 				break;
500 
501 			if (radix_tree_exceptional_entry(page)) {
502 				if (unfalloc)
503 					continue;
504 				if (shmem_free_swap(mapping, index, page)) {
505 					/* Swap was replaced by page: retry */
506 					index--;
507 					break;
508 				}
509 				nr_swaps_freed++;
510 				continue;
511 			}
512 
513 			lock_page(page);
514 			if (!unfalloc || !PageUptodate(page)) {
515 				if (page->mapping == mapping) {
516 					VM_BUG_ON_PAGE(PageWriteback(page), page);
517 					truncate_inode_page(mapping, page);
518 				} else {
519 					/* Page was replaced by swap: retry */
520 					unlock_page(page);
521 					index--;
522 					break;
523 				}
524 			}
525 			unlock_page(page);
526 		}
527 		pagevec_remove_exceptionals(&pvec);
528 		pagevec_release(&pvec);
529 		index++;
530 	}
531 
532 	spin_lock(&info->lock);
533 	info->swapped -= nr_swaps_freed;
534 	shmem_recalc_inode(inode);
535 	spin_unlock(&info->lock);
536 }
537 
538 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
539 {
540 	shmem_undo_range(inode, lstart, lend, false);
541 	inode->i_ctime = inode->i_mtime = CURRENT_TIME;
542 }
543 EXPORT_SYMBOL_GPL(shmem_truncate_range);
544 
545 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
546 {
547 	struct inode *inode = d_inode(dentry);
548 	struct shmem_inode_info *info = SHMEM_I(inode);
549 	int error;
550 
551 	error = inode_change_ok(inode, attr);
552 	if (error)
553 		return error;
554 
555 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
556 		loff_t oldsize = inode->i_size;
557 		loff_t newsize = attr->ia_size;
558 
559 		/* protected by i_mutex */
560 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
561 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
562 			return -EPERM;
563 
564 		if (newsize != oldsize) {
565 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
566 					oldsize, newsize);
567 			if (error)
568 				return error;
569 			i_size_write(inode, newsize);
570 			inode->i_ctime = inode->i_mtime = CURRENT_TIME;
571 		}
572 		if (newsize <= oldsize) {
573 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
574 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
575 			shmem_truncate_range(inode, newsize, (loff_t)-1);
576 			/* unmap again to remove racily COWed private pages */
577 			unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
578 		}
579 	}
580 
581 	setattr_copy(inode, attr);
582 	if (attr->ia_valid & ATTR_MODE)
583 		error = posix_acl_chmod(inode, inode->i_mode);
584 	return error;
585 }
586 
587 static void shmem_evict_inode(struct inode *inode)
588 {
589 	struct shmem_inode_info *info = SHMEM_I(inode);
590 
591 	if (inode->i_mapping->a_ops == &shmem_aops) {
592 		shmem_unacct_size(info->flags, inode->i_size);
593 		inode->i_size = 0;
594 		shmem_truncate_range(inode, 0, (loff_t)-1);
595 		if (!list_empty(&info->swaplist)) {
596 			mutex_lock(&shmem_swaplist_mutex);
597 			list_del_init(&info->swaplist);
598 			mutex_unlock(&shmem_swaplist_mutex);
599 		}
600 	} else
601 		kfree(info->symlink);
602 
603 	simple_xattrs_free(&info->xattrs);
604 	WARN_ON(inode->i_blocks);
605 	shmem_free_inode(inode->i_sb);
606 	clear_inode(inode);
607 }
608 
609 /*
610  * If swap found in inode, free it and move page from swapcache to filecache.
611  */
612 static int shmem_unuse_inode(struct shmem_inode_info *info,
613 			     swp_entry_t swap, struct page **pagep)
614 {
615 	struct address_space *mapping = info->vfs_inode.i_mapping;
616 	void *radswap;
617 	pgoff_t index;
618 	gfp_t gfp;
619 	int error = 0;
620 
621 	radswap = swp_to_radix_entry(swap);
622 	index = radix_tree_locate_item(&mapping->page_tree, radswap);
623 	if (index == -1)
624 		return -EAGAIN;	/* tell shmem_unuse we found nothing */
625 
626 	/*
627 	 * Move _head_ to start search for next from here.
628 	 * But be careful: shmem_evict_inode checks list_empty without taking
629 	 * mutex, and there's an instant in list_move_tail when info->swaplist
630 	 * would appear empty, if it were the only one on shmem_swaplist.
631 	 */
632 	if (shmem_swaplist.next != &info->swaplist)
633 		list_move_tail(&shmem_swaplist, &info->swaplist);
634 
635 	gfp = mapping_gfp_mask(mapping);
636 	if (shmem_should_replace_page(*pagep, gfp)) {
637 		mutex_unlock(&shmem_swaplist_mutex);
638 		error = shmem_replace_page(pagep, gfp, info, index);
639 		mutex_lock(&shmem_swaplist_mutex);
640 		/*
641 		 * We needed to drop mutex to make that restrictive page
642 		 * allocation, but the inode might have been freed while we
643 		 * dropped it: although a racing shmem_evict_inode() cannot
644 		 * complete without emptying the radix_tree, our page lock
645 		 * on this swapcache page is not enough to prevent that -
646 		 * free_swap_and_cache() of our swap entry will only
647 		 * trylock_page(), removing swap from radix_tree whatever.
648 		 *
649 		 * We must not proceed to shmem_add_to_page_cache() if the
650 		 * inode has been freed, but of course we cannot rely on
651 		 * inode or mapping or info to check that.  However, we can
652 		 * safely check if our swap entry is still in use (and here
653 		 * it can't have got reused for another page): if it's still
654 		 * in use, then the inode cannot have been freed yet, and we
655 		 * can safely proceed (if it's no longer in use, that tells
656 		 * nothing about the inode, but we don't need to unuse swap).
657 		 */
658 		if (!page_swapcount(*pagep))
659 			error = -ENOENT;
660 	}
661 
662 	/*
663 	 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
664 	 * but also to hold up shmem_evict_inode(): so inode cannot be freed
665 	 * beneath us (pagelock doesn't help until the page is in pagecache).
666 	 */
667 	if (!error)
668 		error = shmem_add_to_page_cache(*pagep, mapping, index,
669 						radswap);
670 	if (error != -ENOMEM) {
671 		/*
672 		 * Truncation and eviction use free_swap_and_cache(), which
673 		 * only does trylock page: if we raced, best clean up here.
674 		 */
675 		delete_from_swap_cache(*pagep);
676 		set_page_dirty(*pagep);
677 		if (!error) {
678 			spin_lock(&info->lock);
679 			info->swapped--;
680 			spin_unlock(&info->lock);
681 			swap_free(swap);
682 		}
683 	}
684 	return error;
685 }
686 
687 /*
688  * Search through swapped inodes to find and replace swap by page.
689  */
690 int shmem_unuse(swp_entry_t swap, struct page *page)
691 {
692 	struct list_head *this, *next;
693 	struct shmem_inode_info *info;
694 	struct mem_cgroup *memcg;
695 	int error = 0;
696 
697 	/*
698 	 * There's a faint possibility that swap page was replaced before
699 	 * caller locked it: caller will come back later with the right page.
700 	 */
701 	if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
702 		goto out;
703 
704 	/*
705 	 * Charge page using GFP_KERNEL while we can wait, before taking
706 	 * the shmem_swaplist_mutex which might hold up shmem_writepage().
707 	 * Charged back to the user (not to caller) when swap account is used.
708 	 */
709 	error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg);
710 	if (error)
711 		goto out;
712 	/* No radix_tree_preload: swap entry keeps a place for page in tree */
713 	error = -EAGAIN;
714 
715 	mutex_lock(&shmem_swaplist_mutex);
716 	list_for_each_safe(this, next, &shmem_swaplist) {
717 		info = list_entry(this, struct shmem_inode_info, swaplist);
718 		if (info->swapped)
719 			error = shmem_unuse_inode(info, swap, &page);
720 		else
721 			list_del_init(&info->swaplist);
722 		cond_resched();
723 		if (error != -EAGAIN)
724 			break;
725 		/* found nothing in this: move on to search the next */
726 	}
727 	mutex_unlock(&shmem_swaplist_mutex);
728 
729 	if (error) {
730 		if (error != -ENOMEM)
731 			error = 0;
732 		mem_cgroup_cancel_charge(page, memcg);
733 	} else
734 		mem_cgroup_commit_charge(page, memcg, true);
735 out:
736 	unlock_page(page);
737 	page_cache_release(page);
738 	return error;
739 }
740 
741 /*
742  * Move the page from the page cache to the swap cache.
743  */
744 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
745 {
746 	struct shmem_inode_info *info;
747 	struct address_space *mapping;
748 	struct inode *inode;
749 	swp_entry_t swap;
750 	pgoff_t index;
751 
752 	BUG_ON(!PageLocked(page));
753 	mapping = page->mapping;
754 	index = page->index;
755 	inode = mapping->host;
756 	info = SHMEM_I(inode);
757 	if (info->flags & VM_LOCKED)
758 		goto redirty;
759 	if (!total_swap_pages)
760 		goto redirty;
761 
762 	/*
763 	 * Our capabilities prevent regular writeback or sync from ever calling
764 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
765 	 * its underlying filesystem, in which case tmpfs should write out to
766 	 * swap only in response to memory pressure, and not for the writeback
767 	 * threads or sync.
768 	 */
769 	if (!wbc->for_reclaim) {
770 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
771 		goto redirty;
772 	}
773 
774 	/*
775 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
776 	 * value into swapfile.c, the only way we can correctly account for a
777 	 * fallocated page arriving here is now to initialize it and write it.
778 	 *
779 	 * That's okay for a page already fallocated earlier, but if we have
780 	 * not yet completed the fallocation, then (a) we want to keep track
781 	 * of this page in case we have to undo it, and (b) it may not be a
782 	 * good idea to continue anyway, once we're pushing into swap.  So
783 	 * reactivate the page, and let shmem_fallocate() quit when too many.
784 	 */
785 	if (!PageUptodate(page)) {
786 		if (inode->i_private) {
787 			struct shmem_falloc *shmem_falloc;
788 			spin_lock(&inode->i_lock);
789 			shmem_falloc = inode->i_private;
790 			if (shmem_falloc &&
791 			    !shmem_falloc->waitq &&
792 			    index >= shmem_falloc->start &&
793 			    index < shmem_falloc->next)
794 				shmem_falloc->nr_unswapped++;
795 			else
796 				shmem_falloc = NULL;
797 			spin_unlock(&inode->i_lock);
798 			if (shmem_falloc)
799 				goto redirty;
800 		}
801 		clear_highpage(page);
802 		flush_dcache_page(page);
803 		SetPageUptodate(page);
804 	}
805 
806 	swap = get_swap_page();
807 	if (!swap.val)
808 		goto redirty;
809 
810 	/*
811 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
812 	 * if it's not already there.  Do it now before the page is
813 	 * moved to swap cache, when its pagelock no longer protects
814 	 * the inode from eviction.  But don't unlock the mutex until
815 	 * we've incremented swapped, because shmem_unuse_inode() will
816 	 * prune a !swapped inode from the swaplist under this mutex.
817 	 */
818 	mutex_lock(&shmem_swaplist_mutex);
819 	if (list_empty(&info->swaplist))
820 		list_add_tail(&info->swaplist, &shmem_swaplist);
821 
822 	if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
823 		swap_shmem_alloc(swap);
824 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
825 
826 		spin_lock(&info->lock);
827 		info->swapped++;
828 		shmem_recalc_inode(inode);
829 		spin_unlock(&info->lock);
830 
831 		mutex_unlock(&shmem_swaplist_mutex);
832 		BUG_ON(page_mapped(page));
833 		swap_writepage(page, wbc);
834 		return 0;
835 	}
836 
837 	mutex_unlock(&shmem_swaplist_mutex);
838 	swapcache_free(swap);
839 redirty:
840 	set_page_dirty(page);
841 	if (wbc->for_reclaim)
842 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
843 	unlock_page(page);
844 	return 0;
845 }
846 
847 #ifdef CONFIG_NUMA
848 #ifdef CONFIG_TMPFS
849 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
850 {
851 	char buffer[64];
852 
853 	if (!mpol || mpol->mode == MPOL_DEFAULT)
854 		return;		/* show nothing */
855 
856 	mpol_to_str(buffer, sizeof(buffer), mpol);
857 
858 	seq_printf(seq, ",mpol=%s", buffer);
859 }
860 
861 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
862 {
863 	struct mempolicy *mpol = NULL;
864 	if (sbinfo->mpol) {
865 		spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
866 		mpol = sbinfo->mpol;
867 		mpol_get(mpol);
868 		spin_unlock(&sbinfo->stat_lock);
869 	}
870 	return mpol;
871 }
872 #endif /* CONFIG_TMPFS */
873 
874 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
875 			struct shmem_inode_info *info, pgoff_t index)
876 {
877 	struct vm_area_struct pvma;
878 	struct page *page;
879 
880 	/* Create a pseudo vma that just contains the policy */
881 	pvma.vm_start = 0;
882 	/* Bias interleave by inode number to distribute better across nodes */
883 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
884 	pvma.vm_ops = NULL;
885 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
886 
887 	page = swapin_readahead(swap, gfp, &pvma, 0);
888 
889 	/* Drop reference taken by mpol_shared_policy_lookup() */
890 	mpol_cond_put(pvma.vm_policy);
891 
892 	return page;
893 }
894 
895 static struct page *shmem_alloc_page(gfp_t gfp,
896 			struct shmem_inode_info *info, pgoff_t index)
897 {
898 	struct vm_area_struct pvma;
899 	struct page *page;
900 
901 	/* Create a pseudo vma that just contains the policy */
902 	pvma.vm_start = 0;
903 	/* Bias interleave by inode number to distribute better across nodes */
904 	pvma.vm_pgoff = index + info->vfs_inode.i_ino;
905 	pvma.vm_ops = NULL;
906 	pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
907 
908 	page = alloc_page_vma(gfp, &pvma, 0);
909 
910 	/* Drop reference taken by mpol_shared_policy_lookup() */
911 	mpol_cond_put(pvma.vm_policy);
912 
913 	return page;
914 }
915 #else /* !CONFIG_NUMA */
916 #ifdef CONFIG_TMPFS
917 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
918 {
919 }
920 #endif /* CONFIG_TMPFS */
921 
922 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
923 			struct shmem_inode_info *info, pgoff_t index)
924 {
925 	return swapin_readahead(swap, gfp, NULL, 0);
926 }
927 
928 static inline struct page *shmem_alloc_page(gfp_t gfp,
929 			struct shmem_inode_info *info, pgoff_t index)
930 {
931 	return alloc_page(gfp);
932 }
933 #endif /* CONFIG_NUMA */
934 
935 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
936 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
937 {
938 	return NULL;
939 }
940 #endif
941 
942 /*
943  * When a page is moved from swapcache to shmem filecache (either by the
944  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
945  * shmem_unuse_inode()), it may have been read in earlier from swap, in
946  * ignorance of the mapping it belongs to.  If that mapping has special
947  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
948  * we may need to copy to a suitable page before moving to filecache.
949  *
950  * In a future release, this may well be extended to respect cpuset and
951  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
952  * but for now it is a simple matter of zone.
953  */
954 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
955 {
956 	return page_zonenum(page) > gfp_zone(gfp);
957 }
958 
959 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
960 				struct shmem_inode_info *info, pgoff_t index)
961 {
962 	struct page *oldpage, *newpage;
963 	struct address_space *swap_mapping;
964 	pgoff_t swap_index;
965 	int error;
966 
967 	oldpage = *pagep;
968 	swap_index = page_private(oldpage);
969 	swap_mapping = page_mapping(oldpage);
970 
971 	/*
972 	 * We have arrived here because our zones are constrained, so don't
973 	 * limit chance of success by further cpuset and node constraints.
974 	 */
975 	gfp &= ~GFP_CONSTRAINT_MASK;
976 	newpage = shmem_alloc_page(gfp, info, index);
977 	if (!newpage)
978 		return -ENOMEM;
979 
980 	page_cache_get(newpage);
981 	copy_highpage(newpage, oldpage);
982 	flush_dcache_page(newpage);
983 
984 	__set_page_locked(newpage);
985 	SetPageUptodate(newpage);
986 	SetPageSwapBacked(newpage);
987 	set_page_private(newpage, swap_index);
988 	SetPageSwapCache(newpage);
989 
990 	/*
991 	 * Our caller will very soon move newpage out of swapcache, but it's
992 	 * a nice clean interface for us to replace oldpage by newpage there.
993 	 */
994 	spin_lock_irq(&swap_mapping->tree_lock);
995 	error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
996 								   newpage);
997 	if (!error) {
998 		__inc_zone_page_state(newpage, NR_FILE_PAGES);
999 		__dec_zone_page_state(oldpage, NR_FILE_PAGES);
1000 	}
1001 	spin_unlock_irq(&swap_mapping->tree_lock);
1002 
1003 	if (unlikely(error)) {
1004 		/*
1005 		 * Is this possible?  I think not, now that our callers check
1006 		 * both PageSwapCache and page_private after getting page lock;
1007 		 * but be defensive.  Reverse old to newpage for clear and free.
1008 		 */
1009 		oldpage = newpage;
1010 	} else {
1011 		mem_cgroup_migrate(oldpage, newpage, true);
1012 		lru_cache_add_anon(newpage);
1013 		*pagep = newpage;
1014 	}
1015 
1016 	ClearPageSwapCache(oldpage);
1017 	set_page_private(oldpage, 0);
1018 
1019 	unlock_page(oldpage);
1020 	page_cache_release(oldpage);
1021 	page_cache_release(oldpage);
1022 	return error;
1023 }
1024 
1025 /*
1026  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1027  *
1028  * If we allocate a new one we do not mark it dirty. That's up to the
1029  * vm. If we swap it in we mark it dirty since we also free the swap
1030  * entry since a page cannot live in both the swap and page cache
1031  */
1032 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1033 	struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1034 {
1035 	struct address_space *mapping = inode->i_mapping;
1036 	struct shmem_inode_info *info;
1037 	struct shmem_sb_info *sbinfo;
1038 	struct mem_cgroup *memcg;
1039 	struct page *page;
1040 	swp_entry_t swap;
1041 	int error;
1042 	int once = 0;
1043 	int alloced = 0;
1044 
1045 	if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1046 		return -EFBIG;
1047 repeat:
1048 	swap.val = 0;
1049 	page = find_lock_entry(mapping, index);
1050 	if (radix_tree_exceptional_entry(page)) {
1051 		swap = radix_to_swp_entry(page);
1052 		page = NULL;
1053 	}
1054 
1055 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1056 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1057 		error = -EINVAL;
1058 		goto failed;
1059 	}
1060 
1061 	if (page && sgp == SGP_WRITE)
1062 		mark_page_accessed(page);
1063 
1064 	/* fallocated page? */
1065 	if (page && !PageUptodate(page)) {
1066 		if (sgp != SGP_READ)
1067 			goto clear;
1068 		unlock_page(page);
1069 		page_cache_release(page);
1070 		page = NULL;
1071 	}
1072 	if (page || (sgp == SGP_READ && !swap.val)) {
1073 		*pagep = page;
1074 		return 0;
1075 	}
1076 
1077 	/*
1078 	 * Fast cache lookup did not find it:
1079 	 * bring it back from swap or allocate.
1080 	 */
1081 	info = SHMEM_I(inode);
1082 	sbinfo = SHMEM_SB(inode->i_sb);
1083 
1084 	if (swap.val) {
1085 		/* Look it up and read it in.. */
1086 		page = lookup_swap_cache(swap);
1087 		if (!page) {
1088 			/* here we actually do the io */
1089 			if (fault_type)
1090 				*fault_type |= VM_FAULT_MAJOR;
1091 			page = shmem_swapin(swap, gfp, info, index);
1092 			if (!page) {
1093 				error = -ENOMEM;
1094 				goto failed;
1095 			}
1096 		}
1097 
1098 		/* We have to do this with page locked to prevent races */
1099 		lock_page(page);
1100 		if (!PageSwapCache(page) || page_private(page) != swap.val ||
1101 		    !shmem_confirm_swap(mapping, index, swap)) {
1102 			error = -EEXIST;	/* try again */
1103 			goto unlock;
1104 		}
1105 		if (!PageUptodate(page)) {
1106 			error = -EIO;
1107 			goto failed;
1108 		}
1109 		wait_on_page_writeback(page);
1110 
1111 		if (shmem_should_replace_page(page, gfp)) {
1112 			error = shmem_replace_page(&page, gfp, info, index);
1113 			if (error)
1114 				goto failed;
1115 		}
1116 
1117 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1118 		if (!error) {
1119 			error = shmem_add_to_page_cache(page, mapping, index,
1120 						swp_to_radix_entry(swap));
1121 			/*
1122 			 * We already confirmed swap under page lock, and make
1123 			 * no memory allocation here, so usually no possibility
1124 			 * of error; but free_swap_and_cache() only trylocks a
1125 			 * page, so it is just possible that the entry has been
1126 			 * truncated or holepunched since swap was confirmed.
1127 			 * shmem_undo_range() will have done some of the
1128 			 * unaccounting, now delete_from_swap_cache() will do
1129 			 * the rest.
1130 			 * Reset swap.val? No, leave it so "failed" goes back to
1131 			 * "repeat": reading a hole and writing should succeed.
1132 			 */
1133 			if (error) {
1134 				mem_cgroup_cancel_charge(page, memcg);
1135 				delete_from_swap_cache(page);
1136 			}
1137 		}
1138 		if (error)
1139 			goto failed;
1140 
1141 		mem_cgroup_commit_charge(page, memcg, true);
1142 
1143 		spin_lock(&info->lock);
1144 		info->swapped--;
1145 		shmem_recalc_inode(inode);
1146 		spin_unlock(&info->lock);
1147 
1148 		if (sgp == SGP_WRITE)
1149 			mark_page_accessed(page);
1150 
1151 		delete_from_swap_cache(page);
1152 		set_page_dirty(page);
1153 		swap_free(swap);
1154 
1155 	} else {
1156 		if (shmem_acct_block(info->flags)) {
1157 			error = -ENOSPC;
1158 			goto failed;
1159 		}
1160 		if (sbinfo->max_blocks) {
1161 			if (percpu_counter_compare(&sbinfo->used_blocks,
1162 						sbinfo->max_blocks) >= 0) {
1163 				error = -ENOSPC;
1164 				goto unacct;
1165 			}
1166 			percpu_counter_inc(&sbinfo->used_blocks);
1167 		}
1168 
1169 		page = shmem_alloc_page(gfp, info, index);
1170 		if (!page) {
1171 			error = -ENOMEM;
1172 			goto decused;
1173 		}
1174 
1175 		__SetPageSwapBacked(page);
1176 		__set_page_locked(page);
1177 		if (sgp == SGP_WRITE)
1178 			__SetPageReferenced(page);
1179 
1180 		error = mem_cgroup_try_charge(page, current->mm, gfp, &memcg);
1181 		if (error)
1182 			goto decused;
1183 		error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1184 		if (!error) {
1185 			error = shmem_add_to_page_cache(page, mapping, index,
1186 							NULL);
1187 			radix_tree_preload_end();
1188 		}
1189 		if (error) {
1190 			mem_cgroup_cancel_charge(page, memcg);
1191 			goto decused;
1192 		}
1193 		mem_cgroup_commit_charge(page, memcg, false);
1194 		lru_cache_add_anon(page);
1195 
1196 		spin_lock(&info->lock);
1197 		info->alloced++;
1198 		inode->i_blocks += BLOCKS_PER_PAGE;
1199 		shmem_recalc_inode(inode);
1200 		spin_unlock(&info->lock);
1201 		alloced = true;
1202 
1203 		/*
1204 		 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1205 		 */
1206 		if (sgp == SGP_FALLOC)
1207 			sgp = SGP_WRITE;
1208 clear:
1209 		/*
1210 		 * Let SGP_WRITE caller clear ends if write does not fill page;
1211 		 * but SGP_FALLOC on a page fallocated earlier must initialize
1212 		 * it now, lest undo on failure cancel our earlier guarantee.
1213 		 */
1214 		if (sgp != SGP_WRITE) {
1215 			clear_highpage(page);
1216 			flush_dcache_page(page);
1217 			SetPageUptodate(page);
1218 		}
1219 		if (sgp == SGP_DIRTY)
1220 			set_page_dirty(page);
1221 	}
1222 
1223 	/* Perhaps the file has been truncated since we checked */
1224 	if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1225 	    ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1226 		error = -EINVAL;
1227 		if (alloced)
1228 			goto trunc;
1229 		else
1230 			goto failed;
1231 	}
1232 	*pagep = page;
1233 	return 0;
1234 
1235 	/*
1236 	 * Error recovery.
1237 	 */
1238 trunc:
1239 	info = SHMEM_I(inode);
1240 	ClearPageDirty(page);
1241 	delete_from_page_cache(page);
1242 	spin_lock(&info->lock);
1243 	info->alloced--;
1244 	inode->i_blocks -= BLOCKS_PER_PAGE;
1245 	spin_unlock(&info->lock);
1246 decused:
1247 	sbinfo = SHMEM_SB(inode->i_sb);
1248 	if (sbinfo->max_blocks)
1249 		percpu_counter_add(&sbinfo->used_blocks, -1);
1250 unacct:
1251 	shmem_unacct_blocks(info->flags, 1);
1252 failed:
1253 	if (swap.val && error != -EINVAL &&
1254 	    !shmem_confirm_swap(mapping, index, swap))
1255 		error = -EEXIST;
1256 unlock:
1257 	if (page) {
1258 		unlock_page(page);
1259 		page_cache_release(page);
1260 	}
1261 	if (error == -ENOSPC && !once++) {
1262 		info = SHMEM_I(inode);
1263 		spin_lock(&info->lock);
1264 		shmem_recalc_inode(inode);
1265 		spin_unlock(&info->lock);
1266 		goto repeat;
1267 	}
1268 	if (error == -EEXIST)	/* from above or from radix_tree_insert */
1269 		goto repeat;
1270 	return error;
1271 }
1272 
1273 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1274 {
1275 	struct inode *inode = file_inode(vma->vm_file);
1276 	int error;
1277 	int ret = VM_FAULT_LOCKED;
1278 
1279 	/*
1280 	 * Trinity finds that probing a hole which tmpfs is punching can
1281 	 * prevent the hole-punch from ever completing: which in turn
1282 	 * locks writers out with its hold on i_mutex.  So refrain from
1283 	 * faulting pages into the hole while it's being punched.  Although
1284 	 * shmem_undo_range() does remove the additions, it may be unable to
1285 	 * keep up, as each new page needs its own unmap_mapping_range() call,
1286 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1287 	 *
1288 	 * It does not matter if we sometimes reach this check just before the
1289 	 * hole-punch begins, so that one fault then races with the punch:
1290 	 * we just need to make racing faults a rare case.
1291 	 *
1292 	 * The implementation below would be much simpler if we just used a
1293 	 * standard mutex or completion: but we cannot take i_mutex in fault,
1294 	 * and bloating every shmem inode for this unlikely case would be sad.
1295 	 */
1296 	if (unlikely(inode->i_private)) {
1297 		struct shmem_falloc *shmem_falloc;
1298 
1299 		spin_lock(&inode->i_lock);
1300 		shmem_falloc = inode->i_private;
1301 		if (shmem_falloc &&
1302 		    shmem_falloc->waitq &&
1303 		    vmf->pgoff >= shmem_falloc->start &&
1304 		    vmf->pgoff < shmem_falloc->next) {
1305 			wait_queue_head_t *shmem_falloc_waitq;
1306 			DEFINE_WAIT(shmem_fault_wait);
1307 
1308 			ret = VM_FAULT_NOPAGE;
1309 			if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1310 			   !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1311 				/* It's polite to up mmap_sem if we can */
1312 				up_read(&vma->vm_mm->mmap_sem);
1313 				ret = VM_FAULT_RETRY;
1314 			}
1315 
1316 			shmem_falloc_waitq = shmem_falloc->waitq;
1317 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1318 					TASK_UNINTERRUPTIBLE);
1319 			spin_unlock(&inode->i_lock);
1320 			schedule();
1321 
1322 			/*
1323 			 * shmem_falloc_waitq points into the shmem_fallocate()
1324 			 * stack of the hole-punching task: shmem_falloc_waitq
1325 			 * is usually invalid by the time we reach here, but
1326 			 * finish_wait() does not dereference it in that case;
1327 			 * though i_lock needed lest racing with wake_up_all().
1328 			 */
1329 			spin_lock(&inode->i_lock);
1330 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1331 			spin_unlock(&inode->i_lock);
1332 			return ret;
1333 		}
1334 		spin_unlock(&inode->i_lock);
1335 	}
1336 
1337 	error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1338 	if (error)
1339 		return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1340 
1341 	if (ret & VM_FAULT_MAJOR) {
1342 		count_vm_event(PGMAJFAULT);
1343 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1344 	}
1345 	return ret;
1346 }
1347 
1348 #ifdef CONFIG_NUMA
1349 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1350 {
1351 	struct inode *inode = file_inode(vma->vm_file);
1352 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1353 }
1354 
1355 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1356 					  unsigned long addr)
1357 {
1358 	struct inode *inode = file_inode(vma->vm_file);
1359 	pgoff_t index;
1360 
1361 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1362 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1363 }
1364 #endif
1365 
1366 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1367 {
1368 	struct inode *inode = file_inode(file);
1369 	struct shmem_inode_info *info = SHMEM_I(inode);
1370 	int retval = -ENOMEM;
1371 
1372 	spin_lock(&info->lock);
1373 	if (lock && !(info->flags & VM_LOCKED)) {
1374 		if (!user_shm_lock(inode->i_size, user))
1375 			goto out_nomem;
1376 		info->flags |= VM_LOCKED;
1377 		mapping_set_unevictable(file->f_mapping);
1378 	}
1379 	if (!lock && (info->flags & VM_LOCKED) && user) {
1380 		user_shm_unlock(inode->i_size, user);
1381 		info->flags &= ~VM_LOCKED;
1382 		mapping_clear_unevictable(file->f_mapping);
1383 	}
1384 	retval = 0;
1385 
1386 out_nomem:
1387 	spin_unlock(&info->lock);
1388 	return retval;
1389 }
1390 
1391 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1392 {
1393 	file_accessed(file);
1394 	vma->vm_ops = &shmem_vm_ops;
1395 	return 0;
1396 }
1397 
1398 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1399 				     umode_t mode, dev_t dev, unsigned long flags)
1400 {
1401 	struct inode *inode;
1402 	struct shmem_inode_info *info;
1403 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1404 
1405 	if (shmem_reserve_inode(sb))
1406 		return NULL;
1407 
1408 	inode = new_inode(sb);
1409 	if (inode) {
1410 		inode->i_ino = get_next_ino();
1411 		inode_init_owner(inode, dir, mode);
1412 		inode->i_blocks = 0;
1413 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1414 		inode->i_generation = get_seconds();
1415 		info = SHMEM_I(inode);
1416 		memset(info, 0, (char *)inode - (char *)info);
1417 		spin_lock_init(&info->lock);
1418 		info->seals = F_SEAL_SEAL;
1419 		info->flags = flags & VM_NORESERVE;
1420 		INIT_LIST_HEAD(&info->swaplist);
1421 		simple_xattrs_init(&info->xattrs);
1422 		cache_no_acl(inode);
1423 
1424 		switch (mode & S_IFMT) {
1425 		default:
1426 			inode->i_op = &shmem_special_inode_operations;
1427 			init_special_inode(inode, mode, dev);
1428 			break;
1429 		case S_IFREG:
1430 			inode->i_mapping->a_ops = &shmem_aops;
1431 			inode->i_op = &shmem_inode_operations;
1432 			inode->i_fop = &shmem_file_operations;
1433 			mpol_shared_policy_init(&info->policy,
1434 						 shmem_get_sbmpol(sbinfo));
1435 			break;
1436 		case S_IFDIR:
1437 			inc_nlink(inode);
1438 			/* Some things misbehave if size == 0 on a directory */
1439 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
1440 			inode->i_op = &shmem_dir_inode_operations;
1441 			inode->i_fop = &simple_dir_operations;
1442 			break;
1443 		case S_IFLNK:
1444 			/*
1445 			 * Must not load anything in the rbtree,
1446 			 * mpol_free_shared_policy will not be called.
1447 			 */
1448 			mpol_shared_policy_init(&info->policy, NULL);
1449 			break;
1450 		}
1451 	} else
1452 		shmem_free_inode(sb);
1453 	return inode;
1454 }
1455 
1456 bool shmem_mapping(struct address_space *mapping)
1457 {
1458 	if (!mapping->host)
1459 		return false;
1460 
1461 	return mapping->host->i_sb->s_op == &shmem_ops;
1462 }
1463 
1464 #ifdef CONFIG_TMPFS
1465 static const struct inode_operations shmem_symlink_inode_operations;
1466 static const struct inode_operations shmem_short_symlink_operations;
1467 
1468 #ifdef CONFIG_TMPFS_XATTR
1469 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1470 #else
1471 #define shmem_initxattrs NULL
1472 #endif
1473 
1474 static int
1475 shmem_write_begin(struct file *file, struct address_space *mapping,
1476 			loff_t pos, unsigned len, unsigned flags,
1477 			struct page **pagep, void **fsdata)
1478 {
1479 	struct inode *inode = mapping->host;
1480 	struct shmem_inode_info *info = SHMEM_I(inode);
1481 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1482 
1483 	/* i_mutex is held by caller */
1484 	if (unlikely(info->seals)) {
1485 		if (info->seals & F_SEAL_WRITE)
1486 			return -EPERM;
1487 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1488 			return -EPERM;
1489 	}
1490 
1491 	return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1492 }
1493 
1494 static int
1495 shmem_write_end(struct file *file, struct address_space *mapping,
1496 			loff_t pos, unsigned len, unsigned copied,
1497 			struct page *page, void *fsdata)
1498 {
1499 	struct inode *inode = mapping->host;
1500 
1501 	if (pos + copied > inode->i_size)
1502 		i_size_write(inode, pos + copied);
1503 
1504 	if (!PageUptodate(page)) {
1505 		if (copied < PAGE_CACHE_SIZE) {
1506 			unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1507 			zero_user_segments(page, 0, from,
1508 					from + copied, PAGE_CACHE_SIZE);
1509 		}
1510 		SetPageUptodate(page);
1511 	}
1512 	set_page_dirty(page);
1513 	unlock_page(page);
1514 	page_cache_release(page);
1515 
1516 	return copied;
1517 }
1518 
1519 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1520 {
1521 	struct file *file = iocb->ki_filp;
1522 	struct inode *inode = file_inode(file);
1523 	struct address_space *mapping = inode->i_mapping;
1524 	pgoff_t index;
1525 	unsigned long offset;
1526 	enum sgp_type sgp = SGP_READ;
1527 	int error = 0;
1528 	ssize_t retval = 0;
1529 	loff_t *ppos = &iocb->ki_pos;
1530 
1531 	/*
1532 	 * Might this read be for a stacking filesystem?  Then when reading
1533 	 * holes of a sparse file, we actually need to allocate those pages,
1534 	 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1535 	 */
1536 	if (!iter_is_iovec(to))
1537 		sgp = SGP_DIRTY;
1538 
1539 	index = *ppos >> PAGE_CACHE_SHIFT;
1540 	offset = *ppos & ~PAGE_CACHE_MASK;
1541 
1542 	for (;;) {
1543 		struct page *page = NULL;
1544 		pgoff_t end_index;
1545 		unsigned long nr, ret;
1546 		loff_t i_size = i_size_read(inode);
1547 
1548 		end_index = i_size >> PAGE_CACHE_SHIFT;
1549 		if (index > end_index)
1550 			break;
1551 		if (index == end_index) {
1552 			nr = i_size & ~PAGE_CACHE_MASK;
1553 			if (nr <= offset)
1554 				break;
1555 		}
1556 
1557 		error = shmem_getpage(inode, index, &page, sgp, NULL);
1558 		if (error) {
1559 			if (error == -EINVAL)
1560 				error = 0;
1561 			break;
1562 		}
1563 		if (page)
1564 			unlock_page(page);
1565 
1566 		/*
1567 		 * We must evaluate after, since reads (unlike writes)
1568 		 * are called without i_mutex protection against truncate
1569 		 */
1570 		nr = PAGE_CACHE_SIZE;
1571 		i_size = i_size_read(inode);
1572 		end_index = i_size >> PAGE_CACHE_SHIFT;
1573 		if (index == end_index) {
1574 			nr = i_size & ~PAGE_CACHE_MASK;
1575 			if (nr <= offset) {
1576 				if (page)
1577 					page_cache_release(page);
1578 				break;
1579 			}
1580 		}
1581 		nr -= offset;
1582 
1583 		if (page) {
1584 			/*
1585 			 * If users can be writing to this page using arbitrary
1586 			 * virtual addresses, take care about potential aliasing
1587 			 * before reading the page on the kernel side.
1588 			 */
1589 			if (mapping_writably_mapped(mapping))
1590 				flush_dcache_page(page);
1591 			/*
1592 			 * Mark the page accessed if we read the beginning.
1593 			 */
1594 			if (!offset)
1595 				mark_page_accessed(page);
1596 		} else {
1597 			page = ZERO_PAGE(0);
1598 			page_cache_get(page);
1599 		}
1600 
1601 		/*
1602 		 * Ok, we have the page, and it's up-to-date, so
1603 		 * now we can copy it to user space...
1604 		 */
1605 		ret = copy_page_to_iter(page, offset, nr, to);
1606 		retval += ret;
1607 		offset += ret;
1608 		index += offset >> PAGE_CACHE_SHIFT;
1609 		offset &= ~PAGE_CACHE_MASK;
1610 
1611 		page_cache_release(page);
1612 		if (!iov_iter_count(to))
1613 			break;
1614 		if (ret < nr) {
1615 			error = -EFAULT;
1616 			break;
1617 		}
1618 		cond_resched();
1619 	}
1620 
1621 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1622 	file_accessed(file);
1623 	return retval ? retval : error;
1624 }
1625 
1626 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1627 				struct pipe_inode_info *pipe, size_t len,
1628 				unsigned int flags)
1629 {
1630 	struct address_space *mapping = in->f_mapping;
1631 	struct inode *inode = mapping->host;
1632 	unsigned int loff, nr_pages, req_pages;
1633 	struct page *pages[PIPE_DEF_BUFFERS];
1634 	struct partial_page partial[PIPE_DEF_BUFFERS];
1635 	struct page *page;
1636 	pgoff_t index, end_index;
1637 	loff_t isize, left;
1638 	int error, page_nr;
1639 	struct splice_pipe_desc spd = {
1640 		.pages = pages,
1641 		.partial = partial,
1642 		.nr_pages_max = PIPE_DEF_BUFFERS,
1643 		.flags = flags,
1644 		.ops = &page_cache_pipe_buf_ops,
1645 		.spd_release = spd_release_page,
1646 	};
1647 
1648 	isize = i_size_read(inode);
1649 	if (unlikely(*ppos >= isize))
1650 		return 0;
1651 
1652 	left = isize - *ppos;
1653 	if (unlikely(left < len))
1654 		len = left;
1655 
1656 	if (splice_grow_spd(pipe, &spd))
1657 		return -ENOMEM;
1658 
1659 	index = *ppos >> PAGE_CACHE_SHIFT;
1660 	loff = *ppos & ~PAGE_CACHE_MASK;
1661 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1662 	nr_pages = min(req_pages, spd.nr_pages_max);
1663 
1664 	spd.nr_pages = find_get_pages_contig(mapping, index,
1665 						nr_pages, spd.pages);
1666 	index += spd.nr_pages;
1667 	error = 0;
1668 
1669 	while (spd.nr_pages < nr_pages) {
1670 		error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1671 		if (error)
1672 			break;
1673 		unlock_page(page);
1674 		spd.pages[spd.nr_pages++] = page;
1675 		index++;
1676 	}
1677 
1678 	index = *ppos >> PAGE_CACHE_SHIFT;
1679 	nr_pages = spd.nr_pages;
1680 	spd.nr_pages = 0;
1681 
1682 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1683 		unsigned int this_len;
1684 
1685 		if (!len)
1686 			break;
1687 
1688 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1689 		page = spd.pages[page_nr];
1690 
1691 		if (!PageUptodate(page) || page->mapping != mapping) {
1692 			error = shmem_getpage(inode, index, &page,
1693 							SGP_CACHE, NULL);
1694 			if (error)
1695 				break;
1696 			unlock_page(page);
1697 			page_cache_release(spd.pages[page_nr]);
1698 			spd.pages[page_nr] = page;
1699 		}
1700 
1701 		isize = i_size_read(inode);
1702 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1703 		if (unlikely(!isize || index > end_index))
1704 			break;
1705 
1706 		if (end_index == index) {
1707 			unsigned int plen;
1708 
1709 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1710 			if (plen <= loff)
1711 				break;
1712 
1713 			this_len = min(this_len, plen - loff);
1714 			len = this_len;
1715 		}
1716 
1717 		spd.partial[page_nr].offset = loff;
1718 		spd.partial[page_nr].len = this_len;
1719 		len -= this_len;
1720 		loff = 0;
1721 		spd.nr_pages++;
1722 		index++;
1723 	}
1724 
1725 	while (page_nr < nr_pages)
1726 		page_cache_release(spd.pages[page_nr++]);
1727 
1728 	if (spd.nr_pages)
1729 		error = splice_to_pipe(pipe, &spd);
1730 
1731 	splice_shrink_spd(&spd);
1732 
1733 	if (error > 0) {
1734 		*ppos += error;
1735 		file_accessed(in);
1736 	}
1737 	return error;
1738 }
1739 
1740 /*
1741  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1742  */
1743 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1744 				    pgoff_t index, pgoff_t end, int whence)
1745 {
1746 	struct page *page;
1747 	struct pagevec pvec;
1748 	pgoff_t indices[PAGEVEC_SIZE];
1749 	bool done = false;
1750 	int i;
1751 
1752 	pagevec_init(&pvec, 0);
1753 	pvec.nr = 1;		/* start small: we may be there already */
1754 	while (!done) {
1755 		pvec.nr = find_get_entries(mapping, index,
1756 					pvec.nr, pvec.pages, indices);
1757 		if (!pvec.nr) {
1758 			if (whence == SEEK_DATA)
1759 				index = end;
1760 			break;
1761 		}
1762 		for (i = 0; i < pvec.nr; i++, index++) {
1763 			if (index < indices[i]) {
1764 				if (whence == SEEK_HOLE) {
1765 					done = true;
1766 					break;
1767 				}
1768 				index = indices[i];
1769 			}
1770 			page = pvec.pages[i];
1771 			if (page && !radix_tree_exceptional_entry(page)) {
1772 				if (!PageUptodate(page))
1773 					page = NULL;
1774 			}
1775 			if (index >= end ||
1776 			    (page && whence == SEEK_DATA) ||
1777 			    (!page && whence == SEEK_HOLE)) {
1778 				done = true;
1779 				break;
1780 			}
1781 		}
1782 		pagevec_remove_exceptionals(&pvec);
1783 		pagevec_release(&pvec);
1784 		pvec.nr = PAGEVEC_SIZE;
1785 		cond_resched();
1786 	}
1787 	return index;
1788 }
1789 
1790 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1791 {
1792 	struct address_space *mapping = file->f_mapping;
1793 	struct inode *inode = mapping->host;
1794 	pgoff_t start, end;
1795 	loff_t new_offset;
1796 
1797 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
1798 		return generic_file_llseek_size(file, offset, whence,
1799 					MAX_LFS_FILESIZE, i_size_read(inode));
1800 	mutex_lock(&inode->i_mutex);
1801 	/* We're holding i_mutex so we can access i_size directly */
1802 
1803 	if (offset < 0)
1804 		offset = -EINVAL;
1805 	else if (offset >= inode->i_size)
1806 		offset = -ENXIO;
1807 	else {
1808 		start = offset >> PAGE_CACHE_SHIFT;
1809 		end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1810 		new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1811 		new_offset <<= PAGE_CACHE_SHIFT;
1812 		if (new_offset > offset) {
1813 			if (new_offset < inode->i_size)
1814 				offset = new_offset;
1815 			else if (whence == SEEK_DATA)
1816 				offset = -ENXIO;
1817 			else
1818 				offset = inode->i_size;
1819 		}
1820 	}
1821 
1822 	if (offset >= 0)
1823 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1824 	mutex_unlock(&inode->i_mutex);
1825 	return offset;
1826 }
1827 
1828 /*
1829  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
1830  * so reuse a tag which we firmly believe is never set or cleared on shmem.
1831  */
1832 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
1833 #define LAST_SCAN               4       /* about 150ms max */
1834 
1835 static void shmem_tag_pins(struct address_space *mapping)
1836 {
1837 	struct radix_tree_iter iter;
1838 	void **slot;
1839 	pgoff_t start;
1840 	struct page *page;
1841 
1842 	lru_add_drain();
1843 	start = 0;
1844 	rcu_read_lock();
1845 
1846 restart:
1847 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1848 		page = radix_tree_deref_slot(slot);
1849 		if (!page || radix_tree_exception(page)) {
1850 			if (radix_tree_deref_retry(page))
1851 				goto restart;
1852 		} else if (page_count(page) - page_mapcount(page) > 1) {
1853 			spin_lock_irq(&mapping->tree_lock);
1854 			radix_tree_tag_set(&mapping->page_tree, iter.index,
1855 					   SHMEM_TAG_PINNED);
1856 			spin_unlock_irq(&mapping->tree_lock);
1857 		}
1858 
1859 		if (need_resched()) {
1860 			cond_resched_rcu();
1861 			start = iter.index + 1;
1862 			goto restart;
1863 		}
1864 	}
1865 	rcu_read_unlock();
1866 }
1867 
1868 /*
1869  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
1870  * via get_user_pages(), drivers might have some pending I/O without any active
1871  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
1872  * and see whether it has an elevated ref-count. If so, we tag them and wait for
1873  * them to be dropped.
1874  * The caller must guarantee that no new user will acquire writable references
1875  * to those pages to avoid races.
1876  */
1877 static int shmem_wait_for_pins(struct address_space *mapping)
1878 {
1879 	struct radix_tree_iter iter;
1880 	void **slot;
1881 	pgoff_t start;
1882 	struct page *page;
1883 	int error, scan;
1884 
1885 	shmem_tag_pins(mapping);
1886 
1887 	error = 0;
1888 	for (scan = 0; scan <= LAST_SCAN; scan++) {
1889 		if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
1890 			break;
1891 
1892 		if (!scan)
1893 			lru_add_drain_all();
1894 		else if (schedule_timeout_killable((HZ << scan) / 200))
1895 			scan = LAST_SCAN;
1896 
1897 		start = 0;
1898 		rcu_read_lock();
1899 restart:
1900 		radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
1901 					   start, SHMEM_TAG_PINNED) {
1902 
1903 			page = radix_tree_deref_slot(slot);
1904 			if (radix_tree_exception(page)) {
1905 				if (radix_tree_deref_retry(page))
1906 					goto restart;
1907 
1908 				page = NULL;
1909 			}
1910 
1911 			if (page &&
1912 			    page_count(page) - page_mapcount(page) != 1) {
1913 				if (scan < LAST_SCAN)
1914 					goto continue_resched;
1915 
1916 				/*
1917 				 * On the last scan, we clean up all those tags
1918 				 * we inserted; but make a note that we still
1919 				 * found pages pinned.
1920 				 */
1921 				error = -EBUSY;
1922 			}
1923 
1924 			spin_lock_irq(&mapping->tree_lock);
1925 			radix_tree_tag_clear(&mapping->page_tree,
1926 					     iter.index, SHMEM_TAG_PINNED);
1927 			spin_unlock_irq(&mapping->tree_lock);
1928 continue_resched:
1929 			if (need_resched()) {
1930 				cond_resched_rcu();
1931 				start = iter.index + 1;
1932 				goto restart;
1933 			}
1934 		}
1935 		rcu_read_unlock();
1936 	}
1937 
1938 	return error;
1939 }
1940 
1941 #define F_ALL_SEALS (F_SEAL_SEAL | \
1942 		     F_SEAL_SHRINK | \
1943 		     F_SEAL_GROW | \
1944 		     F_SEAL_WRITE)
1945 
1946 int shmem_add_seals(struct file *file, unsigned int seals)
1947 {
1948 	struct inode *inode = file_inode(file);
1949 	struct shmem_inode_info *info = SHMEM_I(inode);
1950 	int error;
1951 
1952 	/*
1953 	 * SEALING
1954 	 * Sealing allows multiple parties to share a shmem-file but restrict
1955 	 * access to a specific subset of file operations. Seals can only be
1956 	 * added, but never removed. This way, mutually untrusted parties can
1957 	 * share common memory regions with a well-defined policy. A malicious
1958 	 * peer can thus never perform unwanted operations on a shared object.
1959 	 *
1960 	 * Seals are only supported on special shmem-files and always affect
1961 	 * the whole underlying inode. Once a seal is set, it may prevent some
1962 	 * kinds of access to the file. Currently, the following seals are
1963 	 * defined:
1964 	 *   SEAL_SEAL: Prevent further seals from being set on this file
1965 	 *   SEAL_SHRINK: Prevent the file from shrinking
1966 	 *   SEAL_GROW: Prevent the file from growing
1967 	 *   SEAL_WRITE: Prevent write access to the file
1968 	 *
1969 	 * As we don't require any trust relationship between two parties, we
1970 	 * must prevent seals from being removed. Therefore, sealing a file
1971 	 * only adds a given set of seals to the file, it never touches
1972 	 * existing seals. Furthermore, the "setting seals"-operation can be
1973 	 * sealed itself, which basically prevents any further seal from being
1974 	 * added.
1975 	 *
1976 	 * Semantics of sealing are only defined on volatile files. Only
1977 	 * anonymous shmem files support sealing. More importantly, seals are
1978 	 * never written to disk. Therefore, there's no plan to support it on
1979 	 * other file types.
1980 	 */
1981 
1982 	if (file->f_op != &shmem_file_operations)
1983 		return -EINVAL;
1984 	if (!(file->f_mode & FMODE_WRITE))
1985 		return -EPERM;
1986 	if (seals & ~(unsigned int)F_ALL_SEALS)
1987 		return -EINVAL;
1988 
1989 	mutex_lock(&inode->i_mutex);
1990 
1991 	if (info->seals & F_SEAL_SEAL) {
1992 		error = -EPERM;
1993 		goto unlock;
1994 	}
1995 
1996 	if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
1997 		error = mapping_deny_writable(file->f_mapping);
1998 		if (error)
1999 			goto unlock;
2000 
2001 		error = shmem_wait_for_pins(file->f_mapping);
2002 		if (error) {
2003 			mapping_allow_writable(file->f_mapping);
2004 			goto unlock;
2005 		}
2006 	}
2007 
2008 	info->seals |= seals;
2009 	error = 0;
2010 
2011 unlock:
2012 	mutex_unlock(&inode->i_mutex);
2013 	return error;
2014 }
2015 EXPORT_SYMBOL_GPL(shmem_add_seals);
2016 
2017 int shmem_get_seals(struct file *file)
2018 {
2019 	if (file->f_op != &shmem_file_operations)
2020 		return -EINVAL;
2021 
2022 	return SHMEM_I(file_inode(file))->seals;
2023 }
2024 EXPORT_SYMBOL_GPL(shmem_get_seals);
2025 
2026 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2027 {
2028 	long error;
2029 
2030 	switch (cmd) {
2031 	case F_ADD_SEALS:
2032 		/* disallow upper 32bit */
2033 		if (arg > UINT_MAX)
2034 			return -EINVAL;
2035 
2036 		error = shmem_add_seals(file, arg);
2037 		break;
2038 	case F_GET_SEALS:
2039 		error = shmem_get_seals(file);
2040 		break;
2041 	default:
2042 		error = -EINVAL;
2043 		break;
2044 	}
2045 
2046 	return error;
2047 }
2048 
2049 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2050 							 loff_t len)
2051 {
2052 	struct inode *inode = file_inode(file);
2053 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2054 	struct shmem_inode_info *info = SHMEM_I(inode);
2055 	struct shmem_falloc shmem_falloc;
2056 	pgoff_t start, index, end;
2057 	int error;
2058 
2059 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2060 		return -EOPNOTSUPP;
2061 
2062 	mutex_lock(&inode->i_mutex);
2063 
2064 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2065 		struct address_space *mapping = file->f_mapping;
2066 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2067 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2068 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2069 
2070 		/* protected by i_mutex */
2071 		if (info->seals & F_SEAL_WRITE) {
2072 			error = -EPERM;
2073 			goto out;
2074 		}
2075 
2076 		shmem_falloc.waitq = &shmem_falloc_waitq;
2077 		shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2078 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2079 		spin_lock(&inode->i_lock);
2080 		inode->i_private = &shmem_falloc;
2081 		spin_unlock(&inode->i_lock);
2082 
2083 		if ((u64)unmap_end > (u64)unmap_start)
2084 			unmap_mapping_range(mapping, unmap_start,
2085 					    1 + unmap_end - unmap_start, 0);
2086 		shmem_truncate_range(inode, offset, offset + len - 1);
2087 		/* No need to unmap again: hole-punching leaves COWed pages */
2088 
2089 		spin_lock(&inode->i_lock);
2090 		inode->i_private = NULL;
2091 		wake_up_all(&shmem_falloc_waitq);
2092 		spin_unlock(&inode->i_lock);
2093 		error = 0;
2094 		goto out;
2095 	}
2096 
2097 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2098 	error = inode_newsize_ok(inode, offset + len);
2099 	if (error)
2100 		goto out;
2101 
2102 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2103 		error = -EPERM;
2104 		goto out;
2105 	}
2106 
2107 	start = offset >> PAGE_CACHE_SHIFT;
2108 	end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2109 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2110 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2111 		error = -ENOSPC;
2112 		goto out;
2113 	}
2114 
2115 	shmem_falloc.waitq = NULL;
2116 	shmem_falloc.start = start;
2117 	shmem_falloc.next  = start;
2118 	shmem_falloc.nr_falloced = 0;
2119 	shmem_falloc.nr_unswapped = 0;
2120 	spin_lock(&inode->i_lock);
2121 	inode->i_private = &shmem_falloc;
2122 	spin_unlock(&inode->i_lock);
2123 
2124 	for (index = start; index < end; index++) {
2125 		struct page *page;
2126 
2127 		/*
2128 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2129 		 * been interrupted because we are using up too much memory.
2130 		 */
2131 		if (signal_pending(current))
2132 			error = -EINTR;
2133 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2134 			error = -ENOMEM;
2135 		else
2136 			error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2137 									NULL);
2138 		if (error) {
2139 			/* Remove the !PageUptodate pages we added */
2140 			shmem_undo_range(inode,
2141 				(loff_t)start << PAGE_CACHE_SHIFT,
2142 				(loff_t)index << PAGE_CACHE_SHIFT, true);
2143 			goto undone;
2144 		}
2145 
2146 		/*
2147 		 * Inform shmem_writepage() how far we have reached.
2148 		 * No need for lock or barrier: we have the page lock.
2149 		 */
2150 		shmem_falloc.next++;
2151 		if (!PageUptodate(page))
2152 			shmem_falloc.nr_falloced++;
2153 
2154 		/*
2155 		 * If !PageUptodate, leave it that way so that freeable pages
2156 		 * can be recognized if we need to rollback on error later.
2157 		 * But set_page_dirty so that memory pressure will swap rather
2158 		 * than free the pages we are allocating (and SGP_CACHE pages
2159 		 * might still be clean: we now need to mark those dirty too).
2160 		 */
2161 		set_page_dirty(page);
2162 		unlock_page(page);
2163 		page_cache_release(page);
2164 		cond_resched();
2165 	}
2166 
2167 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2168 		i_size_write(inode, offset + len);
2169 	inode->i_ctime = CURRENT_TIME;
2170 undone:
2171 	spin_lock(&inode->i_lock);
2172 	inode->i_private = NULL;
2173 	spin_unlock(&inode->i_lock);
2174 out:
2175 	mutex_unlock(&inode->i_mutex);
2176 	return error;
2177 }
2178 
2179 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2180 {
2181 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2182 
2183 	buf->f_type = TMPFS_MAGIC;
2184 	buf->f_bsize = PAGE_CACHE_SIZE;
2185 	buf->f_namelen = NAME_MAX;
2186 	if (sbinfo->max_blocks) {
2187 		buf->f_blocks = sbinfo->max_blocks;
2188 		buf->f_bavail =
2189 		buf->f_bfree  = sbinfo->max_blocks -
2190 				percpu_counter_sum(&sbinfo->used_blocks);
2191 	}
2192 	if (sbinfo->max_inodes) {
2193 		buf->f_files = sbinfo->max_inodes;
2194 		buf->f_ffree = sbinfo->free_inodes;
2195 	}
2196 	/* else leave those fields 0 like simple_statfs */
2197 	return 0;
2198 }
2199 
2200 /*
2201  * File creation. Allocate an inode, and we're done..
2202  */
2203 static int
2204 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2205 {
2206 	struct inode *inode;
2207 	int error = -ENOSPC;
2208 
2209 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2210 	if (inode) {
2211 		error = simple_acl_create(dir, inode);
2212 		if (error)
2213 			goto out_iput;
2214 		error = security_inode_init_security(inode, dir,
2215 						     &dentry->d_name,
2216 						     shmem_initxattrs, NULL);
2217 		if (error && error != -EOPNOTSUPP)
2218 			goto out_iput;
2219 
2220 		error = 0;
2221 		dir->i_size += BOGO_DIRENT_SIZE;
2222 		dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2223 		d_instantiate(dentry, inode);
2224 		dget(dentry); /* Extra count - pin the dentry in core */
2225 	}
2226 	return error;
2227 out_iput:
2228 	iput(inode);
2229 	return error;
2230 }
2231 
2232 static int
2233 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2234 {
2235 	struct inode *inode;
2236 	int error = -ENOSPC;
2237 
2238 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2239 	if (inode) {
2240 		error = security_inode_init_security(inode, dir,
2241 						     NULL,
2242 						     shmem_initxattrs, NULL);
2243 		if (error && error != -EOPNOTSUPP)
2244 			goto out_iput;
2245 		error = simple_acl_create(dir, inode);
2246 		if (error)
2247 			goto out_iput;
2248 		d_tmpfile(dentry, inode);
2249 	}
2250 	return error;
2251 out_iput:
2252 	iput(inode);
2253 	return error;
2254 }
2255 
2256 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2257 {
2258 	int error;
2259 
2260 	if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2261 		return error;
2262 	inc_nlink(dir);
2263 	return 0;
2264 }
2265 
2266 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2267 		bool excl)
2268 {
2269 	return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2270 }
2271 
2272 /*
2273  * Link a file..
2274  */
2275 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2276 {
2277 	struct inode *inode = d_inode(old_dentry);
2278 	int ret;
2279 
2280 	/*
2281 	 * No ordinary (disk based) filesystem counts links as inodes;
2282 	 * but each new link needs a new dentry, pinning lowmem, and
2283 	 * tmpfs dentries cannot be pruned until they are unlinked.
2284 	 */
2285 	ret = shmem_reserve_inode(inode->i_sb);
2286 	if (ret)
2287 		goto out;
2288 
2289 	dir->i_size += BOGO_DIRENT_SIZE;
2290 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2291 	inc_nlink(inode);
2292 	ihold(inode);	/* New dentry reference */
2293 	dget(dentry);		/* Extra pinning count for the created dentry */
2294 	d_instantiate(dentry, inode);
2295 out:
2296 	return ret;
2297 }
2298 
2299 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2300 {
2301 	struct inode *inode = d_inode(dentry);
2302 
2303 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2304 		shmem_free_inode(inode->i_sb);
2305 
2306 	dir->i_size -= BOGO_DIRENT_SIZE;
2307 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2308 	drop_nlink(inode);
2309 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2310 	return 0;
2311 }
2312 
2313 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2314 {
2315 	if (!simple_empty(dentry))
2316 		return -ENOTEMPTY;
2317 
2318 	drop_nlink(d_inode(dentry));
2319 	drop_nlink(dir);
2320 	return shmem_unlink(dir, dentry);
2321 }
2322 
2323 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2324 {
2325 	bool old_is_dir = d_is_dir(old_dentry);
2326 	bool new_is_dir = d_is_dir(new_dentry);
2327 
2328 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
2329 		if (old_is_dir) {
2330 			drop_nlink(old_dir);
2331 			inc_nlink(new_dir);
2332 		} else {
2333 			drop_nlink(new_dir);
2334 			inc_nlink(old_dir);
2335 		}
2336 	}
2337 	old_dir->i_ctime = old_dir->i_mtime =
2338 	new_dir->i_ctime = new_dir->i_mtime =
2339 	d_inode(old_dentry)->i_ctime =
2340 	d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2341 
2342 	return 0;
2343 }
2344 
2345 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2346 {
2347 	struct dentry *whiteout;
2348 	int error;
2349 
2350 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2351 	if (!whiteout)
2352 		return -ENOMEM;
2353 
2354 	error = shmem_mknod(old_dir, whiteout,
2355 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2356 	dput(whiteout);
2357 	if (error)
2358 		return error;
2359 
2360 	/*
2361 	 * Cheat and hash the whiteout while the old dentry is still in
2362 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2363 	 *
2364 	 * d_lookup() will consistently find one of them at this point,
2365 	 * not sure which one, but that isn't even important.
2366 	 */
2367 	d_rehash(whiteout);
2368 	return 0;
2369 }
2370 
2371 /*
2372  * The VFS layer already does all the dentry stuff for rename,
2373  * we just have to decrement the usage count for the target if
2374  * it exists so that the VFS layer correctly free's it when it
2375  * gets overwritten.
2376  */
2377 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2378 {
2379 	struct inode *inode = d_inode(old_dentry);
2380 	int they_are_dirs = S_ISDIR(inode->i_mode);
2381 
2382 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2383 		return -EINVAL;
2384 
2385 	if (flags & RENAME_EXCHANGE)
2386 		return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2387 
2388 	if (!simple_empty(new_dentry))
2389 		return -ENOTEMPTY;
2390 
2391 	if (flags & RENAME_WHITEOUT) {
2392 		int error;
2393 
2394 		error = shmem_whiteout(old_dir, old_dentry);
2395 		if (error)
2396 			return error;
2397 	}
2398 
2399 	if (d_really_is_positive(new_dentry)) {
2400 		(void) shmem_unlink(new_dir, new_dentry);
2401 		if (they_are_dirs) {
2402 			drop_nlink(d_inode(new_dentry));
2403 			drop_nlink(old_dir);
2404 		}
2405 	} else if (they_are_dirs) {
2406 		drop_nlink(old_dir);
2407 		inc_nlink(new_dir);
2408 	}
2409 
2410 	old_dir->i_size -= BOGO_DIRENT_SIZE;
2411 	new_dir->i_size += BOGO_DIRENT_SIZE;
2412 	old_dir->i_ctime = old_dir->i_mtime =
2413 	new_dir->i_ctime = new_dir->i_mtime =
2414 	inode->i_ctime = CURRENT_TIME;
2415 	return 0;
2416 }
2417 
2418 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2419 {
2420 	int error;
2421 	int len;
2422 	struct inode *inode;
2423 	struct page *page;
2424 	char *kaddr;
2425 	struct shmem_inode_info *info;
2426 
2427 	len = strlen(symname) + 1;
2428 	if (len > PAGE_CACHE_SIZE)
2429 		return -ENAMETOOLONG;
2430 
2431 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2432 	if (!inode)
2433 		return -ENOSPC;
2434 
2435 	error = security_inode_init_security(inode, dir, &dentry->d_name,
2436 					     shmem_initxattrs, NULL);
2437 	if (error) {
2438 		if (error != -EOPNOTSUPP) {
2439 			iput(inode);
2440 			return error;
2441 		}
2442 		error = 0;
2443 	}
2444 
2445 	info = SHMEM_I(inode);
2446 	inode->i_size = len-1;
2447 	if (len <= SHORT_SYMLINK_LEN) {
2448 		info->symlink = kmemdup(symname, len, GFP_KERNEL);
2449 		if (!info->symlink) {
2450 			iput(inode);
2451 			return -ENOMEM;
2452 		}
2453 		inode->i_op = &shmem_short_symlink_operations;
2454 		inode->i_link = info->symlink;
2455 	} else {
2456 		error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2457 		if (error) {
2458 			iput(inode);
2459 			return error;
2460 		}
2461 		inode->i_mapping->a_ops = &shmem_aops;
2462 		inode->i_op = &shmem_symlink_inode_operations;
2463 		kaddr = kmap_atomic(page);
2464 		memcpy(kaddr, symname, len);
2465 		kunmap_atomic(kaddr);
2466 		SetPageUptodate(page);
2467 		set_page_dirty(page);
2468 		unlock_page(page);
2469 		page_cache_release(page);
2470 	}
2471 	dir->i_size += BOGO_DIRENT_SIZE;
2472 	dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2473 	d_instantiate(dentry, inode);
2474 	dget(dentry);
2475 	return 0;
2476 }
2477 
2478 static const char *shmem_follow_link(struct dentry *dentry, void **cookie)
2479 {
2480 	struct page *page = NULL;
2481 	int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
2482 	if (error)
2483 		return ERR_PTR(error);
2484 	unlock_page(page);
2485 	*cookie = page;
2486 	return kmap(page);
2487 }
2488 
2489 static void shmem_put_link(struct inode *unused, void *cookie)
2490 {
2491 	struct page *page = cookie;
2492 	kunmap(page);
2493 	mark_page_accessed(page);
2494 	page_cache_release(page);
2495 }
2496 
2497 #ifdef CONFIG_TMPFS_XATTR
2498 /*
2499  * Superblocks without xattr inode operations may get some security.* xattr
2500  * support from the LSM "for free". As soon as we have any other xattrs
2501  * like ACLs, we also need to implement the security.* handlers at
2502  * filesystem level, though.
2503  */
2504 
2505 /*
2506  * Callback for security_inode_init_security() for acquiring xattrs.
2507  */
2508 static int shmem_initxattrs(struct inode *inode,
2509 			    const struct xattr *xattr_array,
2510 			    void *fs_info)
2511 {
2512 	struct shmem_inode_info *info = SHMEM_I(inode);
2513 	const struct xattr *xattr;
2514 	struct simple_xattr *new_xattr;
2515 	size_t len;
2516 
2517 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2518 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2519 		if (!new_xattr)
2520 			return -ENOMEM;
2521 
2522 		len = strlen(xattr->name) + 1;
2523 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2524 					  GFP_KERNEL);
2525 		if (!new_xattr->name) {
2526 			kfree(new_xattr);
2527 			return -ENOMEM;
2528 		}
2529 
2530 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2531 		       XATTR_SECURITY_PREFIX_LEN);
2532 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2533 		       xattr->name, len);
2534 
2535 		simple_xattr_list_add(&info->xattrs, new_xattr);
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 static const struct xattr_handler *shmem_xattr_handlers[] = {
2542 #ifdef CONFIG_TMPFS_POSIX_ACL
2543 	&posix_acl_access_xattr_handler,
2544 	&posix_acl_default_xattr_handler,
2545 #endif
2546 	NULL
2547 };
2548 
2549 static int shmem_xattr_validate(const char *name)
2550 {
2551 	struct { const char *prefix; size_t len; } arr[] = {
2552 		{ XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2553 		{ XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2554 	};
2555 	int i;
2556 
2557 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2558 		size_t preflen = arr[i].len;
2559 		if (strncmp(name, arr[i].prefix, preflen) == 0) {
2560 			if (!name[preflen])
2561 				return -EINVAL;
2562 			return 0;
2563 		}
2564 	}
2565 	return -EOPNOTSUPP;
2566 }
2567 
2568 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2569 			      void *buffer, size_t size)
2570 {
2571 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2572 	int err;
2573 
2574 	/*
2575 	 * If this is a request for a synthetic attribute in the system.*
2576 	 * namespace use the generic infrastructure to resolve a handler
2577 	 * for it via sb->s_xattr.
2578 	 */
2579 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2580 		return generic_getxattr(dentry, name, buffer, size);
2581 
2582 	err = shmem_xattr_validate(name);
2583 	if (err)
2584 		return err;
2585 
2586 	return simple_xattr_get(&info->xattrs, name, buffer, size);
2587 }
2588 
2589 static int shmem_setxattr(struct dentry *dentry, const char *name,
2590 			  const void *value, size_t size, int flags)
2591 {
2592 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2593 	int err;
2594 
2595 	/*
2596 	 * If this is a request for a synthetic attribute in the system.*
2597 	 * namespace use the generic infrastructure to resolve a handler
2598 	 * for it via sb->s_xattr.
2599 	 */
2600 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2601 		return generic_setxattr(dentry, name, value, size, flags);
2602 
2603 	err = shmem_xattr_validate(name);
2604 	if (err)
2605 		return err;
2606 
2607 	return simple_xattr_set(&info->xattrs, name, value, size, flags);
2608 }
2609 
2610 static int shmem_removexattr(struct dentry *dentry, const char *name)
2611 {
2612 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2613 	int err;
2614 
2615 	/*
2616 	 * If this is a request for a synthetic attribute in the system.*
2617 	 * namespace use the generic infrastructure to resolve a handler
2618 	 * for it via sb->s_xattr.
2619 	 */
2620 	if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2621 		return generic_removexattr(dentry, name);
2622 
2623 	err = shmem_xattr_validate(name);
2624 	if (err)
2625 		return err;
2626 
2627 	return simple_xattr_remove(&info->xattrs, name);
2628 }
2629 
2630 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2631 {
2632 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2633 	return simple_xattr_list(&info->xattrs, buffer, size);
2634 }
2635 #endif /* CONFIG_TMPFS_XATTR */
2636 
2637 static const struct inode_operations shmem_short_symlink_operations = {
2638 	.readlink	= generic_readlink,
2639 	.follow_link	= simple_follow_link,
2640 #ifdef CONFIG_TMPFS_XATTR
2641 	.setxattr	= shmem_setxattr,
2642 	.getxattr	= shmem_getxattr,
2643 	.listxattr	= shmem_listxattr,
2644 	.removexattr	= shmem_removexattr,
2645 #endif
2646 };
2647 
2648 static const struct inode_operations shmem_symlink_inode_operations = {
2649 	.readlink	= generic_readlink,
2650 	.follow_link	= shmem_follow_link,
2651 	.put_link	= shmem_put_link,
2652 #ifdef CONFIG_TMPFS_XATTR
2653 	.setxattr	= shmem_setxattr,
2654 	.getxattr	= shmem_getxattr,
2655 	.listxattr	= shmem_listxattr,
2656 	.removexattr	= shmem_removexattr,
2657 #endif
2658 };
2659 
2660 static struct dentry *shmem_get_parent(struct dentry *child)
2661 {
2662 	return ERR_PTR(-ESTALE);
2663 }
2664 
2665 static int shmem_match(struct inode *ino, void *vfh)
2666 {
2667 	__u32 *fh = vfh;
2668 	__u64 inum = fh[2];
2669 	inum = (inum << 32) | fh[1];
2670 	return ino->i_ino == inum && fh[0] == ino->i_generation;
2671 }
2672 
2673 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2674 		struct fid *fid, int fh_len, int fh_type)
2675 {
2676 	struct inode *inode;
2677 	struct dentry *dentry = NULL;
2678 	u64 inum;
2679 
2680 	if (fh_len < 3)
2681 		return NULL;
2682 
2683 	inum = fid->raw[2];
2684 	inum = (inum << 32) | fid->raw[1];
2685 
2686 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2687 			shmem_match, fid->raw);
2688 	if (inode) {
2689 		dentry = d_find_alias(inode);
2690 		iput(inode);
2691 	}
2692 
2693 	return dentry;
2694 }
2695 
2696 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2697 				struct inode *parent)
2698 {
2699 	if (*len < 3) {
2700 		*len = 3;
2701 		return FILEID_INVALID;
2702 	}
2703 
2704 	if (inode_unhashed(inode)) {
2705 		/* Unfortunately insert_inode_hash is not idempotent,
2706 		 * so as we hash inodes here rather than at creation
2707 		 * time, we need a lock to ensure we only try
2708 		 * to do it once
2709 		 */
2710 		static DEFINE_SPINLOCK(lock);
2711 		spin_lock(&lock);
2712 		if (inode_unhashed(inode))
2713 			__insert_inode_hash(inode,
2714 					    inode->i_ino + inode->i_generation);
2715 		spin_unlock(&lock);
2716 	}
2717 
2718 	fh[0] = inode->i_generation;
2719 	fh[1] = inode->i_ino;
2720 	fh[2] = ((__u64)inode->i_ino) >> 32;
2721 
2722 	*len = 3;
2723 	return 1;
2724 }
2725 
2726 static const struct export_operations shmem_export_ops = {
2727 	.get_parent     = shmem_get_parent,
2728 	.encode_fh      = shmem_encode_fh,
2729 	.fh_to_dentry	= shmem_fh_to_dentry,
2730 };
2731 
2732 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2733 			       bool remount)
2734 {
2735 	char *this_char, *value, *rest;
2736 	struct mempolicy *mpol = NULL;
2737 	uid_t uid;
2738 	gid_t gid;
2739 
2740 	while (options != NULL) {
2741 		this_char = options;
2742 		for (;;) {
2743 			/*
2744 			 * NUL-terminate this option: unfortunately,
2745 			 * mount options form a comma-separated list,
2746 			 * but mpol's nodelist may also contain commas.
2747 			 */
2748 			options = strchr(options, ',');
2749 			if (options == NULL)
2750 				break;
2751 			options++;
2752 			if (!isdigit(*options)) {
2753 				options[-1] = '\0';
2754 				break;
2755 			}
2756 		}
2757 		if (!*this_char)
2758 			continue;
2759 		if ((value = strchr(this_char,'=')) != NULL) {
2760 			*value++ = 0;
2761 		} else {
2762 			printk(KERN_ERR
2763 			    "tmpfs: No value for mount option '%s'\n",
2764 			    this_char);
2765 			goto error;
2766 		}
2767 
2768 		if (!strcmp(this_char,"size")) {
2769 			unsigned long long size;
2770 			size = memparse(value,&rest);
2771 			if (*rest == '%') {
2772 				size <<= PAGE_SHIFT;
2773 				size *= totalram_pages;
2774 				do_div(size, 100);
2775 				rest++;
2776 			}
2777 			if (*rest)
2778 				goto bad_val;
2779 			sbinfo->max_blocks =
2780 				DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2781 		} else if (!strcmp(this_char,"nr_blocks")) {
2782 			sbinfo->max_blocks = memparse(value, &rest);
2783 			if (*rest)
2784 				goto bad_val;
2785 		} else if (!strcmp(this_char,"nr_inodes")) {
2786 			sbinfo->max_inodes = memparse(value, &rest);
2787 			if (*rest)
2788 				goto bad_val;
2789 		} else if (!strcmp(this_char,"mode")) {
2790 			if (remount)
2791 				continue;
2792 			sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2793 			if (*rest)
2794 				goto bad_val;
2795 		} else if (!strcmp(this_char,"uid")) {
2796 			if (remount)
2797 				continue;
2798 			uid = simple_strtoul(value, &rest, 0);
2799 			if (*rest)
2800 				goto bad_val;
2801 			sbinfo->uid = make_kuid(current_user_ns(), uid);
2802 			if (!uid_valid(sbinfo->uid))
2803 				goto bad_val;
2804 		} else if (!strcmp(this_char,"gid")) {
2805 			if (remount)
2806 				continue;
2807 			gid = simple_strtoul(value, &rest, 0);
2808 			if (*rest)
2809 				goto bad_val;
2810 			sbinfo->gid = make_kgid(current_user_ns(), gid);
2811 			if (!gid_valid(sbinfo->gid))
2812 				goto bad_val;
2813 		} else if (!strcmp(this_char,"mpol")) {
2814 			mpol_put(mpol);
2815 			mpol = NULL;
2816 			if (mpol_parse_str(value, &mpol))
2817 				goto bad_val;
2818 		} else {
2819 			printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2820 			       this_char);
2821 			goto error;
2822 		}
2823 	}
2824 	sbinfo->mpol = mpol;
2825 	return 0;
2826 
2827 bad_val:
2828 	printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2829 	       value, this_char);
2830 error:
2831 	mpol_put(mpol);
2832 	return 1;
2833 
2834 }
2835 
2836 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2837 {
2838 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2839 	struct shmem_sb_info config = *sbinfo;
2840 	unsigned long inodes;
2841 	int error = -EINVAL;
2842 
2843 	config.mpol = NULL;
2844 	if (shmem_parse_options(data, &config, true))
2845 		return error;
2846 
2847 	spin_lock(&sbinfo->stat_lock);
2848 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2849 	if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2850 		goto out;
2851 	if (config.max_inodes < inodes)
2852 		goto out;
2853 	/*
2854 	 * Those tests disallow limited->unlimited while any are in use;
2855 	 * but we must separately disallow unlimited->limited, because
2856 	 * in that case we have no record of how much is already in use.
2857 	 */
2858 	if (config.max_blocks && !sbinfo->max_blocks)
2859 		goto out;
2860 	if (config.max_inodes && !sbinfo->max_inodes)
2861 		goto out;
2862 
2863 	error = 0;
2864 	sbinfo->max_blocks  = config.max_blocks;
2865 	sbinfo->max_inodes  = config.max_inodes;
2866 	sbinfo->free_inodes = config.max_inodes - inodes;
2867 
2868 	/*
2869 	 * Preserve previous mempolicy unless mpol remount option was specified.
2870 	 */
2871 	if (config.mpol) {
2872 		mpol_put(sbinfo->mpol);
2873 		sbinfo->mpol = config.mpol;	/* transfers initial ref */
2874 	}
2875 out:
2876 	spin_unlock(&sbinfo->stat_lock);
2877 	return error;
2878 }
2879 
2880 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2881 {
2882 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2883 
2884 	if (sbinfo->max_blocks != shmem_default_max_blocks())
2885 		seq_printf(seq, ",size=%luk",
2886 			sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2887 	if (sbinfo->max_inodes != shmem_default_max_inodes())
2888 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2889 	if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2890 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2891 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2892 		seq_printf(seq, ",uid=%u",
2893 				from_kuid_munged(&init_user_ns, sbinfo->uid));
2894 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2895 		seq_printf(seq, ",gid=%u",
2896 				from_kgid_munged(&init_user_ns, sbinfo->gid));
2897 	shmem_show_mpol(seq, sbinfo->mpol);
2898 	return 0;
2899 }
2900 
2901 #define MFD_NAME_PREFIX "memfd:"
2902 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
2903 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
2904 
2905 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
2906 
2907 SYSCALL_DEFINE2(memfd_create,
2908 		const char __user *, uname,
2909 		unsigned int, flags)
2910 {
2911 	struct shmem_inode_info *info;
2912 	struct file *file;
2913 	int fd, error;
2914 	char *name;
2915 	long len;
2916 
2917 	if (flags & ~(unsigned int)MFD_ALL_FLAGS)
2918 		return -EINVAL;
2919 
2920 	/* length includes terminating zero */
2921 	len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
2922 	if (len <= 0)
2923 		return -EFAULT;
2924 	if (len > MFD_NAME_MAX_LEN + 1)
2925 		return -EINVAL;
2926 
2927 	name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
2928 	if (!name)
2929 		return -ENOMEM;
2930 
2931 	strcpy(name, MFD_NAME_PREFIX);
2932 	if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
2933 		error = -EFAULT;
2934 		goto err_name;
2935 	}
2936 
2937 	/* terminating-zero may have changed after strnlen_user() returned */
2938 	if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
2939 		error = -EFAULT;
2940 		goto err_name;
2941 	}
2942 
2943 	fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
2944 	if (fd < 0) {
2945 		error = fd;
2946 		goto err_name;
2947 	}
2948 
2949 	file = shmem_file_setup(name, 0, VM_NORESERVE);
2950 	if (IS_ERR(file)) {
2951 		error = PTR_ERR(file);
2952 		goto err_fd;
2953 	}
2954 	info = SHMEM_I(file_inode(file));
2955 	file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
2956 	file->f_flags |= O_RDWR | O_LARGEFILE;
2957 	if (flags & MFD_ALLOW_SEALING)
2958 		info->seals &= ~F_SEAL_SEAL;
2959 
2960 	fd_install(fd, file);
2961 	kfree(name);
2962 	return fd;
2963 
2964 err_fd:
2965 	put_unused_fd(fd);
2966 err_name:
2967 	kfree(name);
2968 	return error;
2969 }
2970 
2971 #endif /* CONFIG_TMPFS */
2972 
2973 static void shmem_put_super(struct super_block *sb)
2974 {
2975 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2976 
2977 	percpu_counter_destroy(&sbinfo->used_blocks);
2978 	mpol_put(sbinfo->mpol);
2979 	kfree(sbinfo);
2980 	sb->s_fs_info = NULL;
2981 }
2982 
2983 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2984 {
2985 	struct inode *inode;
2986 	struct shmem_sb_info *sbinfo;
2987 	int err = -ENOMEM;
2988 
2989 	/* Round up to L1_CACHE_BYTES to resist false sharing */
2990 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2991 				L1_CACHE_BYTES), GFP_KERNEL);
2992 	if (!sbinfo)
2993 		return -ENOMEM;
2994 
2995 	sbinfo->mode = S_IRWXUGO | S_ISVTX;
2996 	sbinfo->uid = current_fsuid();
2997 	sbinfo->gid = current_fsgid();
2998 	sb->s_fs_info = sbinfo;
2999 
3000 #ifdef CONFIG_TMPFS
3001 	/*
3002 	 * Per default we only allow half of the physical ram per
3003 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3004 	 * but the internal instance is left unlimited.
3005 	 */
3006 	if (!(sb->s_flags & MS_KERNMOUNT)) {
3007 		sbinfo->max_blocks = shmem_default_max_blocks();
3008 		sbinfo->max_inodes = shmem_default_max_inodes();
3009 		if (shmem_parse_options(data, sbinfo, false)) {
3010 			err = -EINVAL;
3011 			goto failed;
3012 		}
3013 	} else {
3014 		sb->s_flags |= MS_NOUSER;
3015 	}
3016 	sb->s_export_op = &shmem_export_ops;
3017 	sb->s_flags |= MS_NOSEC;
3018 #else
3019 	sb->s_flags |= MS_NOUSER;
3020 #endif
3021 
3022 	spin_lock_init(&sbinfo->stat_lock);
3023 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3024 		goto failed;
3025 	sbinfo->free_inodes = sbinfo->max_inodes;
3026 
3027 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3028 	sb->s_blocksize = PAGE_CACHE_SIZE;
3029 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3030 	sb->s_magic = TMPFS_MAGIC;
3031 	sb->s_op = &shmem_ops;
3032 	sb->s_time_gran = 1;
3033 #ifdef CONFIG_TMPFS_XATTR
3034 	sb->s_xattr = shmem_xattr_handlers;
3035 #endif
3036 #ifdef CONFIG_TMPFS_POSIX_ACL
3037 	sb->s_flags |= MS_POSIXACL;
3038 #endif
3039 
3040 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3041 	if (!inode)
3042 		goto failed;
3043 	inode->i_uid = sbinfo->uid;
3044 	inode->i_gid = sbinfo->gid;
3045 	sb->s_root = d_make_root(inode);
3046 	if (!sb->s_root)
3047 		goto failed;
3048 	return 0;
3049 
3050 failed:
3051 	shmem_put_super(sb);
3052 	return err;
3053 }
3054 
3055 static struct kmem_cache *shmem_inode_cachep;
3056 
3057 static struct inode *shmem_alloc_inode(struct super_block *sb)
3058 {
3059 	struct shmem_inode_info *info;
3060 	info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3061 	if (!info)
3062 		return NULL;
3063 	return &info->vfs_inode;
3064 }
3065 
3066 static void shmem_destroy_callback(struct rcu_head *head)
3067 {
3068 	struct inode *inode = container_of(head, struct inode, i_rcu);
3069 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3070 }
3071 
3072 static void shmem_destroy_inode(struct inode *inode)
3073 {
3074 	if (S_ISREG(inode->i_mode))
3075 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3076 	call_rcu(&inode->i_rcu, shmem_destroy_callback);
3077 }
3078 
3079 static void shmem_init_inode(void *foo)
3080 {
3081 	struct shmem_inode_info *info = foo;
3082 	inode_init_once(&info->vfs_inode);
3083 }
3084 
3085 static int shmem_init_inodecache(void)
3086 {
3087 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3088 				sizeof(struct shmem_inode_info),
3089 				0, SLAB_PANIC, shmem_init_inode);
3090 	return 0;
3091 }
3092 
3093 static void shmem_destroy_inodecache(void)
3094 {
3095 	kmem_cache_destroy(shmem_inode_cachep);
3096 }
3097 
3098 static const struct address_space_operations shmem_aops = {
3099 	.writepage	= shmem_writepage,
3100 	.set_page_dirty	= __set_page_dirty_no_writeback,
3101 #ifdef CONFIG_TMPFS
3102 	.write_begin	= shmem_write_begin,
3103 	.write_end	= shmem_write_end,
3104 #endif
3105 #ifdef CONFIG_MIGRATION
3106 	.migratepage	= migrate_page,
3107 #endif
3108 	.error_remove_page = generic_error_remove_page,
3109 };
3110 
3111 static const struct file_operations shmem_file_operations = {
3112 	.mmap		= shmem_mmap,
3113 #ifdef CONFIG_TMPFS
3114 	.llseek		= shmem_file_llseek,
3115 	.read_iter	= shmem_file_read_iter,
3116 	.write_iter	= generic_file_write_iter,
3117 	.fsync		= noop_fsync,
3118 	.splice_read	= shmem_file_splice_read,
3119 	.splice_write	= iter_file_splice_write,
3120 	.fallocate	= shmem_fallocate,
3121 #endif
3122 };
3123 
3124 static const struct inode_operations shmem_inode_operations = {
3125 	.setattr	= shmem_setattr,
3126 #ifdef CONFIG_TMPFS_XATTR
3127 	.setxattr	= shmem_setxattr,
3128 	.getxattr	= shmem_getxattr,
3129 	.listxattr	= shmem_listxattr,
3130 	.removexattr	= shmem_removexattr,
3131 	.set_acl	= simple_set_acl,
3132 #endif
3133 };
3134 
3135 static const struct inode_operations shmem_dir_inode_operations = {
3136 #ifdef CONFIG_TMPFS
3137 	.create		= shmem_create,
3138 	.lookup		= simple_lookup,
3139 	.link		= shmem_link,
3140 	.unlink		= shmem_unlink,
3141 	.symlink	= shmem_symlink,
3142 	.mkdir		= shmem_mkdir,
3143 	.rmdir		= shmem_rmdir,
3144 	.mknod		= shmem_mknod,
3145 	.rename2	= shmem_rename2,
3146 	.tmpfile	= shmem_tmpfile,
3147 #endif
3148 #ifdef CONFIG_TMPFS_XATTR
3149 	.setxattr	= shmem_setxattr,
3150 	.getxattr	= shmem_getxattr,
3151 	.listxattr	= shmem_listxattr,
3152 	.removexattr	= shmem_removexattr,
3153 #endif
3154 #ifdef CONFIG_TMPFS_POSIX_ACL
3155 	.setattr	= shmem_setattr,
3156 	.set_acl	= simple_set_acl,
3157 #endif
3158 };
3159 
3160 static const struct inode_operations shmem_special_inode_operations = {
3161 #ifdef CONFIG_TMPFS_XATTR
3162 	.setxattr	= shmem_setxattr,
3163 	.getxattr	= shmem_getxattr,
3164 	.listxattr	= shmem_listxattr,
3165 	.removexattr	= shmem_removexattr,
3166 #endif
3167 #ifdef CONFIG_TMPFS_POSIX_ACL
3168 	.setattr	= shmem_setattr,
3169 	.set_acl	= simple_set_acl,
3170 #endif
3171 };
3172 
3173 static const struct super_operations shmem_ops = {
3174 	.alloc_inode	= shmem_alloc_inode,
3175 	.destroy_inode	= shmem_destroy_inode,
3176 #ifdef CONFIG_TMPFS
3177 	.statfs		= shmem_statfs,
3178 	.remount_fs	= shmem_remount_fs,
3179 	.show_options	= shmem_show_options,
3180 #endif
3181 	.evict_inode	= shmem_evict_inode,
3182 	.drop_inode	= generic_delete_inode,
3183 	.put_super	= shmem_put_super,
3184 };
3185 
3186 static const struct vm_operations_struct shmem_vm_ops = {
3187 	.fault		= shmem_fault,
3188 	.map_pages	= filemap_map_pages,
3189 #ifdef CONFIG_NUMA
3190 	.set_policy     = shmem_set_policy,
3191 	.get_policy     = shmem_get_policy,
3192 #endif
3193 };
3194 
3195 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3196 	int flags, const char *dev_name, void *data)
3197 {
3198 	return mount_nodev(fs_type, flags, data, shmem_fill_super);
3199 }
3200 
3201 static struct file_system_type shmem_fs_type = {
3202 	.owner		= THIS_MODULE,
3203 	.name		= "tmpfs",
3204 	.mount		= shmem_mount,
3205 	.kill_sb	= kill_litter_super,
3206 	.fs_flags	= FS_USERNS_MOUNT,
3207 };
3208 
3209 int __init shmem_init(void)
3210 {
3211 	int error;
3212 
3213 	/* If rootfs called this, don't re-init */
3214 	if (shmem_inode_cachep)
3215 		return 0;
3216 
3217 	error = shmem_init_inodecache();
3218 	if (error)
3219 		goto out3;
3220 
3221 	error = register_filesystem(&shmem_fs_type);
3222 	if (error) {
3223 		printk(KERN_ERR "Could not register tmpfs\n");
3224 		goto out2;
3225 	}
3226 
3227 	shm_mnt = kern_mount(&shmem_fs_type);
3228 	if (IS_ERR(shm_mnt)) {
3229 		error = PTR_ERR(shm_mnt);
3230 		printk(KERN_ERR "Could not kern_mount tmpfs\n");
3231 		goto out1;
3232 	}
3233 	return 0;
3234 
3235 out1:
3236 	unregister_filesystem(&shmem_fs_type);
3237 out2:
3238 	shmem_destroy_inodecache();
3239 out3:
3240 	shm_mnt = ERR_PTR(error);
3241 	return error;
3242 }
3243 
3244 #else /* !CONFIG_SHMEM */
3245 
3246 /*
3247  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3248  *
3249  * This is intended for small system where the benefits of the full
3250  * shmem code (swap-backed and resource-limited) are outweighed by
3251  * their complexity. On systems without swap this code should be
3252  * effectively equivalent, but much lighter weight.
3253  */
3254 
3255 static struct file_system_type shmem_fs_type = {
3256 	.name		= "tmpfs",
3257 	.mount		= ramfs_mount,
3258 	.kill_sb	= kill_litter_super,
3259 	.fs_flags	= FS_USERNS_MOUNT,
3260 };
3261 
3262 int __init shmem_init(void)
3263 {
3264 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3265 
3266 	shm_mnt = kern_mount(&shmem_fs_type);
3267 	BUG_ON(IS_ERR(shm_mnt));
3268 
3269 	return 0;
3270 }
3271 
3272 int shmem_unuse(swp_entry_t swap, struct page *page)
3273 {
3274 	return 0;
3275 }
3276 
3277 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3278 {
3279 	return 0;
3280 }
3281 
3282 void shmem_unlock_mapping(struct address_space *mapping)
3283 {
3284 }
3285 
3286 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3287 {
3288 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3289 }
3290 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3291 
3292 #define shmem_vm_ops				generic_file_vm_ops
3293 #define shmem_file_operations			ramfs_file_operations
3294 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
3295 #define shmem_acct_size(flags, size)		0
3296 #define shmem_unacct_size(flags, size)		do {} while (0)
3297 
3298 #endif /* CONFIG_SHMEM */
3299 
3300 /* common code */
3301 
3302 static struct dentry_operations anon_ops = {
3303 	.d_dname = simple_dname
3304 };
3305 
3306 static struct file *__shmem_file_setup(const char *name, loff_t size,
3307 				       unsigned long flags, unsigned int i_flags)
3308 {
3309 	struct file *res;
3310 	struct inode *inode;
3311 	struct path path;
3312 	struct super_block *sb;
3313 	struct qstr this;
3314 
3315 	if (IS_ERR(shm_mnt))
3316 		return ERR_CAST(shm_mnt);
3317 
3318 	if (size < 0 || size > MAX_LFS_FILESIZE)
3319 		return ERR_PTR(-EINVAL);
3320 
3321 	if (shmem_acct_size(flags, size))
3322 		return ERR_PTR(-ENOMEM);
3323 
3324 	res = ERR_PTR(-ENOMEM);
3325 	this.name = name;
3326 	this.len = strlen(name);
3327 	this.hash = 0; /* will go */
3328 	sb = shm_mnt->mnt_sb;
3329 	path.mnt = mntget(shm_mnt);
3330 	path.dentry = d_alloc_pseudo(sb, &this);
3331 	if (!path.dentry)
3332 		goto put_memory;
3333 	d_set_d_op(path.dentry, &anon_ops);
3334 
3335 	res = ERR_PTR(-ENOSPC);
3336 	inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3337 	if (!inode)
3338 		goto put_memory;
3339 
3340 	inode->i_flags |= i_flags;
3341 	d_instantiate(path.dentry, inode);
3342 	inode->i_size = size;
3343 	clear_nlink(inode);	/* It is unlinked */
3344 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3345 	if (IS_ERR(res))
3346 		goto put_path;
3347 
3348 	res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3349 		  &shmem_file_operations);
3350 	if (IS_ERR(res))
3351 		goto put_path;
3352 
3353 	return res;
3354 
3355 put_memory:
3356 	shmem_unacct_size(flags, size);
3357 put_path:
3358 	path_put(&path);
3359 	return res;
3360 }
3361 
3362 /**
3363  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3364  * 	kernel internal.  There will be NO LSM permission checks against the
3365  * 	underlying inode.  So users of this interface must do LSM checks at a
3366  * 	higher layer.  The one user is the big_key implementation.  LSM checks
3367  * 	are provided at the key level rather than the inode level.
3368  * @name: name for dentry (to be seen in /proc/<pid>/maps
3369  * @size: size to be set for the file
3370  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3371  */
3372 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3373 {
3374 	return __shmem_file_setup(name, size, flags, S_PRIVATE);
3375 }
3376 
3377 /**
3378  * shmem_file_setup - get an unlinked file living in tmpfs
3379  * @name: name for dentry (to be seen in /proc/<pid>/maps
3380  * @size: size to be set for the file
3381  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3382  */
3383 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3384 {
3385 	return __shmem_file_setup(name, size, flags, 0);
3386 }
3387 EXPORT_SYMBOL_GPL(shmem_file_setup);
3388 
3389 /**
3390  * shmem_zero_setup - setup a shared anonymous mapping
3391  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3392  */
3393 int shmem_zero_setup(struct vm_area_struct *vma)
3394 {
3395 	struct file *file;
3396 	loff_t size = vma->vm_end - vma->vm_start;
3397 
3398 	/*
3399 	 * Cloning a new file under mmap_sem leads to a lock ordering conflict
3400 	 * between XFS directory reading and selinux: since this file is only
3401 	 * accessible to the user through its mapping, use S_PRIVATE flag to
3402 	 * bypass file security, in the same way as shmem_kernel_file_setup().
3403 	 */
3404 	file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3405 	if (IS_ERR(file))
3406 		return PTR_ERR(file);
3407 
3408 	if (vma->vm_file)
3409 		fput(vma->vm_file);
3410 	vma->vm_file = file;
3411 	vma->vm_ops = &shmem_vm_ops;
3412 	return 0;
3413 }
3414 
3415 /**
3416  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3417  * @mapping:	the page's address_space
3418  * @index:	the page index
3419  * @gfp:	the page allocator flags to use if allocating
3420  *
3421  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3422  * with any new page allocations done using the specified allocation flags.
3423  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3424  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3425  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3426  *
3427  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3428  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3429  */
3430 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3431 					 pgoff_t index, gfp_t gfp)
3432 {
3433 #ifdef CONFIG_SHMEM
3434 	struct inode *inode = mapping->host;
3435 	struct page *page;
3436 	int error;
3437 
3438 	BUG_ON(mapping->a_ops != &shmem_aops);
3439 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3440 	if (error)
3441 		page = ERR_PTR(error);
3442 	else
3443 		unlock_page(page);
3444 	return page;
3445 #else
3446 	/*
3447 	 * The tiny !SHMEM case uses ramfs without swap
3448 	 */
3449 	return read_cache_page_gfp(mapping, index, gfp);
3450 #endif
3451 }
3452 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3453