xref: /linux/mm/rmap.c (revision fe1136b4ccbfac9b8e72d4551d1ce788a67d59cb)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 				      unsigned long uaddr)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 				      unsigned long uaddr)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /**
771  * page_address_in_vma - The virtual address of a page in this VMA.
772  * @folio: The folio containing the page.
773  * @page: The page within the folio.
774  * @vma: The VMA we need to know the address in.
775  *
776  * Calculates the user virtual address of this page in the specified VMA.
777  * It is the caller's responsibililty to check the page is actually
778  * within the VMA.  There may not currently be a PTE pointing at this
779  * page, but if a page fault occurs at this address, this is the page
780  * which will be accessed.
781  *
782  * Context: Caller should hold a reference to the folio.  Caller should
783  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784  * VMA from being altered.
785  *
786  * Return: The virtual address corresponding to this page in the VMA.
787  */
788 unsigned long page_address_in_vma(const struct folio *folio,
789 		const struct page *page, const struct vm_area_struct *vma)
790 {
791 	if (folio_test_anon(folio)) {
792 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
793 		/*
794 		 * Note: swapoff's unuse_vma() is more efficient with this
795 		 * check, and needs it to match anon_vma when KSM is active.
796 		 */
797 		if (!vma->anon_vma || !page__anon_vma ||
798 		    vma->anon_vma->root != page__anon_vma->root)
799 			return -EFAULT;
800 	} else if (!vma->vm_file) {
801 		return -EFAULT;
802 	} else if (vma->vm_file->f_mapping != folio->mapping) {
803 		return -EFAULT;
804 	}
805 
806 	/* KSM folios don't reach here because of the !page__anon_vma check */
807 	return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809 
810 /*
811  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
813  * represents.
814  */
815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 	pgd_t *pgd;
818 	p4d_t *p4d;
819 	pud_t *pud;
820 	pmd_t *pmd = NULL;
821 
822 	pgd = pgd_offset(mm, address);
823 	if (!pgd_present(*pgd))
824 		goto out;
825 
826 	p4d = p4d_offset(pgd, address);
827 	if (!p4d_present(*p4d))
828 		goto out;
829 
830 	pud = pud_offset(p4d, address);
831 	if (!pud_present(*pud))
832 		goto out;
833 
834 	pmd = pmd_offset(pud, address);
835 out:
836 	return pmd;
837 }
838 
839 struct folio_referenced_arg {
840 	int mapcount;
841 	int referenced;
842 	unsigned long vm_flags;
843 	struct mem_cgroup *memcg;
844 };
845 
846 /*
847  * arg: folio_referenced_arg will be passed
848  */
849 static bool folio_referenced_one(struct folio *folio,
850 		struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 	struct folio_referenced_arg *pra = arg;
853 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 	int referenced = 0;
855 	unsigned long start = address, ptes = 0;
856 
857 	while (page_vma_mapped_walk(&pvmw)) {
858 		address = pvmw.address;
859 
860 		if (vma->vm_flags & VM_LOCKED) {
861 			if (!folio_test_large(folio) || !pvmw.pte) {
862 				/* Restore the mlock which got missed */
863 				mlock_vma_folio(folio, vma);
864 				page_vma_mapped_walk_done(&pvmw);
865 				pra->vm_flags |= VM_LOCKED;
866 				return false; /* To break the loop */
867 			}
868 			/*
869 			 * For large folio fully mapped to VMA, will
870 			 * be handled after the pvmw loop.
871 			 *
872 			 * For large folio cross VMA boundaries, it's
873 			 * expected to be picked  by page reclaim. But
874 			 * should skip reference of pages which are in
875 			 * the range of VM_LOCKED vma. As page reclaim
876 			 * should just count the reference of pages out
877 			 * the range of VM_LOCKED vma.
878 			 */
879 			ptes++;
880 			pra->mapcount--;
881 			continue;
882 		}
883 
884 		/*
885 		 * Skip the non-shared swapbacked folio mapped solely by
886 		 * the exiting or OOM-reaped process. This avoids redundant
887 		 * swap-out followed by an immediate unmap.
888 		 */
889 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 		    check_stable_address_space(vma->vm_mm)) &&
891 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 		    !folio_likely_mapped_shared(folio)) {
893 			pra->referenced = -1;
894 			page_vma_mapped_walk_done(&pvmw);
895 			return false;
896 		}
897 
898 		if (lru_gen_enabled() && pvmw.pte) {
899 			if (lru_gen_look_around(&pvmw))
900 				referenced++;
901 		} else if (pvmw.pte) {
902 			if (ptep_clear_flush_young_notify(vma, address,
903 						pvmw.pte))
904 				referenced++;
905 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 			if (pmdp_clear_flush_young_notify(vma, address,
907 						pvmw.pmd))
908 				referenced++;
909 		} else {
910 			/* unexpected pmd-mapped folio? */
911 			WARN_ON_ONCE(1);
912 		}
913 
914 		pra->mapcount--;
915 	}
916 
917 	if ((vma->vm_flags & VM_LOCKED) &&
918 			folio_test_large(folio) &&
919 			folio_within_vma(folio, vma)) {
920 		unsigned long s_align, e_align;
921 
922 		s_align = ALIGN_DOWN(start, PMD_SIZE);
923 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924 
925 		/* folio doesn't cross page table boundary and fully mapped */
926 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 			/* Restore the mlock which got missed */
928 			mlock_vma_folio(folio, vma);
929 			pra->vm_flags |= VM_LOCKED;
930 			return false; /* To break the loop */
931 		}
932 	}
933 
934 	if (referenced)
935 		folio_clear_idle(folio);
936 	if (folio_test_clear_young(folio))
937 		referenced++;
938 
939 	if (referenced) {
940 		pra->referenced++;
941 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 	}
943 
944 	if (!pra->mapcount)
945 		return false; /* To break the loop */
946 
947 	return true;
948 }
949 
950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 	struct folio_referenced_arg *pra = arg;
953 	struct mem_cgroup *memcg = pra->memcg;
954 
955 	/*
956 	 * Ignore references from this mapping if it has no recency. If the
957 	 * folio has been used in another mapping, we will catch it; if this
958 	 * other mapping is already gone, the unmap path will have set the
959 	 * referenced flag or activated the folio in zap_pte_range().
960 	 */
961 	if (!vma_has_recency(vma))
962 		return true;
963 
964 	/*
965 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 	 * of references from different cgroups.
967 	 */
968 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 		return true;
970 
971 	return false;
972 }
973 
974 /**
975  * folio_referenced() - Test if the folio was referenced.
976  * @folio: The folio to test.
977  * @is_locked: Caller holds lock on the folio.
978  * @memcg: target memory cgroup
979  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980  *
981  * Quick test_and_clear_referenced for all mappings of a folio,
982  *
983  * Return: The number of mappings which referenced the folio. Return -1 if
984  * the function bailed out due to rmap lock contention.
985  */
986 int folio_referenced(struct folio *folio, int is_locked,
987 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
988 {
989 	bool we_locked = false;
990 	struct folio_referenced_arg pra = {
991 		.mapcount = folio_mapcount(folio),
992 		.memcg = memcg,
993 	};
994 	struct rmap_walk_control rwc = {
995 		.rmap_one = folio_referenced_one,
996 		.arg = (void *)&pra,
997 		.anon_lock = folio_lock_anon_vma_read,
998 		.try_lock = true,
999 		.invalid_vma = invalid_folio_referenced_vma,
1000 	};
1001 
1002 	*vm_flags = 0;
1003 	if (!pra.mapcount)
1004 		return 0;
1005 
1006 	if (!folio_raw_mapping(folio))
1007 		return 0;
1008 
1009 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 		we_locked = folio_trylock(folio);
1011 		if (!we_locked)
1012 			return 1;
1013 	}
1014 
1015 	rmap_walk(folio, &rwc);
1016 	*vm_flags = pra.vm_flags;
1017 
1018 	if (we_locked)
1019 		folio_unlock(folio);
1020 
1021 	return rwc.contended ? -1 : pra.referenced;
1022 }
1023 
1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 	int cleaned = 0;
1027 	struct vm_area_struct *vma = pvmw->vma;
1028 	struct mmu_notifier_range range;
1029 	unsigned long address = pvmw->address;
1030 
1031 	/*
1032 	 * We have to assume the worse case ie pmd for invalidation. Note that
1033 	 * the folio can not be freed from this function.
1034 	 */
1035 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 				vma->vm_mm, address, vma_address_end(pvmw));
1037 	mmu_notifier_invalidate_range_start(&range);
1038 
1039 	while (page_vma_mapped_walk(pvmw)) {
1040 		int ret = 0;
1041 
1042 		address = pvmw->address;
1043 		if (pvmw->pte) {
1044 			pte_t *pte = pvmw->pte;
1045 			pte_t entry = ptep_get(pte);
1046 
1047 			/*
1048 			 * PFN swap PTEs, such as device-exclusive ones, that
1049 			 * actually map pages are clean and not writable from a
1050 			 * CPU perspective. The MMU notifier takes care of any
1051 			 * device aspects.
1052 			 */
1053 			if (!pte_present(entry))
1054 				continue;
1055 			if (!pte_dirty(entry) && !pte_write(entry))
1056 				continue;
1057 
1058 			flush_cache_page(vma, address, pte_pfn(entry));
1059 			entry = ptep_clear_flush(vma, address, pte);
1060 			entry = pte_wrprotect(entry);
1061 			entry = pte_mkclean(entry);
1062 			set_pte_at(vma->vm_mm, address, pte, entry);
1063 			ret = 1;
1064 		} else {
1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1066 			pmd_t *pmd = pvmw->pmd;
1067 			pmd_t entry;
1068 
1069 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1070 				continue;
1071 
1072 			flush_cache_range(vma, address,
1073 					  address + HPAGE_PMD_SIZE);
1074 			entry = pmdp_invalidate(vma, address, pmd);
1075 			entry = pmd_wrprotect(entry);
1076 			entry = pmd_mkclean(entry);
1077 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1078 			ret = 1;
1079 #else
1080 			/* unexpected pmd-mapped folio? */
1081 			WARN_ON_ONCE(1);
1082 #endif
1083 		}
1084 
1085 		if (ret)
1086 			cleaned++;
1087 	}
1088 
1089 	mmu_notifier_invalidate_range_end(&range);
1090 
1091 	return cleaned;
1092 }
1093 
1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1095 			     unsigned long address, void *arg)
1096 {
1097 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1098 	int *cleaned = arg;
1099 
1100 	*cleaned += page_vma_mkclean_one(&pvmw);
1101 
1102 	return true;
1103 }
1104 
1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1106 {
1107 	if (vma->vm_flags & VM_SHARED)
1108 		return false;
1109 
1110 	return true;
1111 }
1112 
1113 int folio_mkclean(struct folio *folio)
1114 {
1115 	int cleaned = 0;
1116 	struct address_space *mapping;
1117 	struct rmap_walk_control rwc = {
1118 		.arg = (void *)&cleaned,
1119 		.rmap_one = page_mkclean_one,
1120 		.invalid_vma = invalid_mkclean_vma,
1121 	};
1122 
1123 	BUG_ON(!folio_test_locked(folio));
1124 
1125 	if (!folio_mapped(folio))
1126 		return 0;
1127 
1128 	mapping = folio_mapping(folio);
1129 	if (!mapping)
1130 		return 0;
1131 
1132 	rmap_walk(folio, &rwc);
1133 
1134 	return cleaned;
1135 }
1136 EXPORT_SYMBOL_GPL(folio_mkclean);
1137 
1138 /**
1139  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1140  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1141  *                     within the @vma of shared mappings. And since clean PTEs
1142  *                     should also be readonly, write protects them too.
1143  * @pfn: start pfn.
1144  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1145  * @pgoff: page offset that the @pfn mapped with.
1146  * @vma: vma that @pfn mapped within.
1147  *
1148  * Returns the number of cleaned PTEs (including PMDs).
1149  */
1150 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1151 		      struct vm_area_struct *vma)
1152 {
1153 	struct page_vma_mapped_walk pvmw = {
1154 		.pfn		= pfn,
1155 		.nr_pages	= nr_pages,
1156 		.pgoff		= pgoff,
1157 		.vma		= vma,
1158 		.flags		= PVMW_SYNC,
1159 	};
1160 
1161 	if (invalid_mkclean_vma(vma, NULL))
1162 		return 0;
1163 
1164 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1165 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1166 
1167 	return page_vma_mkclean_one(&pvmw);
1168 }
1169 
1170 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1171 		struct page *page, int nr_pages, enum rmap_level level,
1172 		int *nr_pmdmapped)
1173 {
1174 	atomic_t *mapped = &folio->_nr_pages_mapped;
1175 	const int orig_nr_pages = nr_pages;
1176 	int first = 0, nr = 0;
1177 
1178 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1179 
1180 	switch (level) {
1181 	case RMAP_LEVEL_PTE:
1182 		if (!folio_test_large(folio)) {
1183 			nr = atomic_inc_and_test(&folio->_mapcount);
1184 			break;
1185 		}
1186 
1187 		do {
1188 			first += atomic_inc_and_test(&page->_mapcount);
1189 		} while (page++, --nr_pages > 0);
1190 
1191 		if (first &&
1192 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1193 			nr = first;
1194 
1195 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1196 		break;
1197 	case RMAP_LEVEL_PMD:
1198 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1199 		if (first) {
1200 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1201 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1202 				*nr_pmdmapped = folio_nr_pages(folio);
1203 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1204 				/* Raced ahead of a remove and another add? */
1205 				if (unlikely(nr < 0))
1206 					nr = 0;
1207 			} else {
1208 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1209 				nr = 0;
1210 			}
1211 		}
1212 		atomic_inc(&folio->_large_mapcount);
1213 		break;
1214 	}
1215 	return nr;
1216 }
1217 
1218 /**
1219  * folio_move_anon_rmap - move a folio to our anon_vma
1220  * @folio:	The folio to move to our anon_vma
1221  * @vma:	The vma the folio belongs to
1222  *
1223  * When a folio belongs exclusively to one process after a COW event,
1224  * that folio can be moved into the anon_vma that belongs to just that
1225  * process, so the rmap code will not search the parent or sibling processes.
1226  */
1227 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1228 {
1229 	void *anon_vma = vma->anon_vma;
1230 
1231 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1232 	VM_BUG_ON_VMA(!anon_vma, vma);
1233 
1234 	anon_vma += PAGE_MAPPING_ANON;
1235 	/*
1236 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1237 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1238 	 * folio_test_anon()) will not see one without the other.
1239 	 */
1240 	WRITE_ONCE(folio->mapping, anon_vma);
1241 }
1242 
1243 /**
1244  * __folio_set_anon - set up a new anonymous rmap for a folio
1245  * @folio:	The folio to set up the new anonymous rmap for.
1246  * @vma:	VM area to add the folio to.
1247  * @address:	User virtual address of the mapping
1248  * @exclusive:	Whether the folio is exclusive to the process.
1249  */
1250 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1251 			     unsigned long address, bool exclusive)
1252 {
1253 	struct anon_vma *anon_vma = vma->anon_vma;
1254 
1255 	BUG_ON(!anon_vma);
1256 
1257 	/*
1258 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1259 	 * possible anon_vma for the folio mapping!
1260 	 */
1261 	if (!exclusive)
1262 		anon_vma = anon_vma->root;
1263 
1264 	/*
1265 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1266 	 * Make sure the compiler doesn't split the stores of anon_vma and
1267 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1268 	 * could mistake the mapping for a struct address_space and crash.
1269 	 */
1270 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1271 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1272 	folio->index = linear_page_index(vma, address);
1273 }
1274 
1275 /**
1276  * __page_check_anon_rmap - sanity check anonymous rmap addition
1277  * @folio:	The folio containing @page.
1278  * @page:	the page to check the mapping of
1279  * @vma:	the vm area in which the mapping is added
1280  * @address:	the user virtual address mapped
1281  */
1282 static void __page_check_anon_rmap(const struct folio *folio,
1283 		const struct page *page, struct vm_area_struct *vma,
1284 		unsigned long address)
1285 {
1286 	/*
1287 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1288 	 * be set up correctly at this point.
1289 	 *
1290 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1291 	 * always holds the page locked.
1292 	 *
1293 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1294 	 * are initially only visible via the pagetables, and the pte is locked
1295 	 * over the call to folio_add_new_anon_rmap.
1296 	 */
1297 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1298 			folio);
1299 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1300 		       page);
1301 }
1302 
1303 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1304 {
1305 	int idx;
1306 
1307 	if (nr) {
1308 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1309 		__lruvec_stat_mod_folio(folio, idx, nr);
1310 	}
1311 	if (nr_pmdmapped) {
1312 		if (folio_test_anon(folio)) {
1313 			idx = NR_ANON_THPS;
1314 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1315 		} else {
1316 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1317 			idx = folio_test_swapbacked(folio) ?
1318 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1319 			__mod_node_page_state(folio_pgdat(folio), idx,
1320 					      nr_pmdmapped);
1321 		}
1322 	}
1323 }
1324 
1325 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1326 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1327 		unsigned long address, rmap_t flags, enum rmap_level level)
1328 {
1329 	int i, nr, nr_pmdmapped = 0;
1330 
1331 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1332 
1333 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1334 
1335 	if (likely(!folio_test_ksm(folio)))
1336 		__page_check_anon_rmap(folio, page, vma, address);
1337 
1338 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1339 
1340 	if (flags & RMAP_EXCLUSIVE) {
1341 		switch (level) {
1342 		case RMAP_LEVEL_PTE:
1343 			for (i = 0; i < nr_pages; i++)
1344 				SetPageAnonExclusive(page + i);
1345 			break;
1346 		case RMAP_LEVEL_PMD:
1347 			SetPageAnonExclusive(page);
1348 			break;
1349 		}
1350 	}
1351 	for (i = 0; i < nr_pages; i++) {
1352 		struct page *cur_page = page + i;
1353 
1354 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1355 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1356 				  (folio_test_large(folio) &&
1357 				   folio_entire_mapcount(folio) > 1)) &&
1358 				 PageAnonExclusive(cur_page), folio);
1359 	}
1360 
1361 	/*
1362 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1363 	 * not easy to check whether the large folio is fully mapped to VMA
1364 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1365 	 * large folio.
1366 	 */
1367 	if (!folio_test_large(folio))
1368 		mlock_vma_folio(folio, vma);
1369 }
1370 
1371 /**
1372  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1373  * @folio:	The folio to add the mappings to
1374  * @page:	The first page to add
1375  * @nr_pages:	The number of pages which will be mapped
1376  * @vma:	The vm area in which the mappings are added
1377  * @address:	The user virtual address of the first page to map
1378  * @flags:	The rmap flags
1379  *
1380  * The page range of folio is defined by [first_page, first_page + nr_pages)
1381  *
1382  * The caller needs to hold the page table lock, and the page must be locked in
1383  * the anon_vma case: to serialize mapping,index checking after setting,
1384  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1385  * (but KSM folios are never downgraded).
1386  */
1387 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1388 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1389 		rmap_t flags)
1390 {
1391 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1392 			      RMAP_LEVEL_PTE);
1393 }
1394 
1395 /**
1396  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1397  * @folio:	The folio to add the mapping to
1398  * @page:	The first page to add
1399  * @vma:	The vm area in which the mapping is added
1400  * @address:	The user virtual address of the first page to map
1401  * @flags:	The rmap flags
1402  *
1403  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1404  *
1405  * The caller needs to hold the page table lock, and the page must be locked in
1406  * the anon_vma case: to serialize mapping,index checking after setting.
1407  */
1408 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1409 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1410 {
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1413 			      RMAP_LEVEL_PMD);
1414 #else
1415 	WARN_ON_ONCE(true);
1416 #endif
1417 }
1418 
1419 /**
1420  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1421  * @folio:	The folio to add the mapping to.
1422  * @vma:	the vm area in which the mapping is added
1423  * @address:	the user virtual address mapped
1424  * @flags:	The rmap flags
1425  *
1426  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1427  * This means the inc-and-test can be bypassed.
1428  * The folio doesn't necessarily need to be locked while it's exclusive
1429  * unless two threads map it concurrently. However, the folio must be
1430  * locked if it's shared.
1431  *
1432  * If the folio is pmd-mappable, it is accounted as a THP.
1433  */
1434 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1435 		unsigned long address, rmap_t flags)
1436 {
1437 	const int nr = folio_nr_pages(folio);
1438 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1439 	int nr_pmdmapped = 0;
1440 
1441 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1442 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1443 	VM_BUG_ON_VMA(address < vma->vm_start ||
1444 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1445 
1446 	/*
1447 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1448 	 * under memory pressure.
1449 	 */
1450 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1451 		__folio_set_swapbacked(folio);
1452 	__folio_set_anon(folio, vma, address, exclusive);
1453 
1454 	if (likely(!folio_test_large(folio))) {
1455 		/* increment count (starts at -1) */
1456 		atomic_set(&folio->_mapcount, 0);
1457 		if (exclusive)
1458 			SetPageAnonExclusive(&folio->page);
1459 	} else if (!folio_test_pmd_mappable(folio)) {
1460 		int i;
1461 
1462 		for (i = 0; i < nr; i++) {
1463 			struct page *page = folio_page(folio, i);
1464 
1465 			/* increment count (starts at -1) */
1466 			atomic_set(&page->_mapcount, 0);
1467 			if (exclusive)
1468 				SetPageAnonExclusive(page);
1469 		}
1470 
1471 		/* increment count (starts at -1) */
1472 		atomic_set(&folio->_large_mapcount, nr - 1);
1473 		atomic_set(&folio->_nr_pages_mapped, nr);
1474 	} else {
1475 		/* increment count (starts at -1) */
1476 		atomic_set(&folio->_entire_mapcount, 0);
1477 		/* increment count (starts at -1) */
1478 		atomic_set(&folio->_large_mapcount, 0);
1479 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1480 		if (exclusive)
1481 			SetPageAnonExclusive(&folio->page);
1482 		nr_pmdmapped = nr;
1483 	}
1484 
1485 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1486 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1487 }
1488 
1489 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1490 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1491 		enum rmap_level level)
1492 {
1493 	int nr, nr_pmdmapped = 0;
1494 
1495 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1496 
1497 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1498 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1499 
1500 	/* See comments in folio_add_anon_rmap_*() */
1501 	if (!folio_test_large(folio))
1502 		mlock_vma_folio(folio, vma);
1503 }
1504 
1505 /**
1506  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1507  * @folio:	The folio to add the mappings to
1508  * @page:	The first page to add
1509  * @nr_pages:	The number of pages that will be mapped using PTEs
1510  * @vma:	The vm area in which the mappings are added
1511  *
1512  * The page range of the folio is defined by [page, page + nr_pages)
1513  *
1514  * The caller needs to hold the page table lock.
1515  */
1516 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1517 		int nr_pages, struct vm_area_struct *vma)
1518 {
1519 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1520 }
1521 
1522 /**
1523  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1524  * @folio:	The folio to add the mapping to
1525  * @page:	The first page to add
1526  * @vma:	The vm area in which the mapping is added
1527  *
1528  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1529  *
1530  * The caller needs to hold the page table lock.
1531  */
1532 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1533 		struct vm_area_struct *vma)
1534 {
1535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1536 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1537 #else
1538 	WARN_ON_ONCE(true);
1539 #endif
1540 }
1541 
1542 static __always_inline void __folio_remove_rmap(struct folio *folio,
1543 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1544 		enum rmap_level level)
1545 {
1546 	atomic_t *mapped = &folio->_nr_pages_mapped;
1547 	int last = 0, nr = 0, nr_pmdmapped = 0;
1548 	bool partially_mapped = false;
1549 
1550 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1551 
1552 	switch (level) {
1553 	case RMAP_LEVEL_PTE:
1554 		if (!folio_test_large(folio)) {
1555 			nr = atomic_add_negative(-1, &folio->_mapcount);
1556 			break;
1557 		}
1558 
1559 		atomic_sub(nr_pages, &folio->_large_mapcount);
1560 		do {
1561 			last += atomic_add_negative(-1, &page->_mapcount);
1562 		} while (page++, --nr_pages > 0);
1563 
1564 		if (last &&
1565 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1566 			nr = last;
1567 
1568 		partially_mapped = nr && atomic_read(mapped);
1569 		break;
1570 	case RMAP_LEVEL_PMD:
1571 		atomic_dec(&folio->_large_mapcount);
1572 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1573 		if (last) {
1574 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1575 			if (likely(nr < ENTIRELY_MAPPED)) {
1576 				nr_pmdmapped = folio_nr_pages(folio);
1577 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1578 				/* Raced ahead of another remove and an add? */
1579 				if (unlikely(nr < 0))
1580 					nr = 0;
1581 			} else {
1582 				/* An add of ENTIRELY_MAPPED raced ahead */
1583 				nr = 0;
1584 			}
1585 		}
1586 
1587 		partially_mapped = nr && nr < nr_pmdmapped;
1588 		break;
1589 	}
1590 
1591 	/*
1592 	 * Queue anon large folio for deferred split if at least one page of
1593 	 * the folio is unmapped and at least one page is still mapped.
1594 	 *
1595 	 * Check partially_mapped first to ensure it is a large folio.
1596 	 */
1597 	if (partially_mapped && folio_test_anon(folio) &&
1598 	    !folio_test_partially_mapped(folio))
1599 		deferred_split_folio(folio, true);
1600 
1601 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1602 
1603 	/*
1604 	 * It would be tidy to reset folio_test_anon mapping when fully
1605 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1606 	 * which increments mapcount after us but sets mapping before us:
1607 	 * so leave the reset to free_pages_prepare, and remember that
1608 	 * it's only reliable while mapped.
1609 	 */
1610 
1611 	munlock_vma_folio(folio, vma);
1612 }
1613 
1614 /**
1615  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1616  * @folio:	The folio to remove the mappings from
1617  * @page:	The first page to remove
1618  * @nr_pages:	The number of pages that will be removed from the mapping
1619  * @vma:	The vm area from which the mappings are removed
1620  *
1621  * The page range of the folio is defined by [page, page + nr_pages)
1622  *
1623  * The caller needs to hold the page table lock.
1624  */
1625 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1626 		int nr_pages, struct vm_area_struct *vma)
1627 {
1628 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1629 }
1630 
1631 /**
1632  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1633  * @folio:	The folio to remove the mapping from
1634  * @page:	The first page to remove
1635  * @vma:	The vm area from which the mapping is removed
1636  *
1637  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1638  *
1639  * The caller needs to hold the page table lock.
1640  */
1641 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1642 		struct vm_area_struct *vma)
1643 {
1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1645 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1646 #else
1647 	WARN_ON_ONCE(true);
1648 #endif
1649 }
1650 
1651 /*
1652  * @arg: enum ttu_flags will be passed to this argument
1653  */
1654 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1655 		     unsigned long address, void *arg)
1656 {
1657 	struct mm_struct *mm = vma->vm_mm;
1658 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1659 	bool anon_exclusive, ret = true;
1660 	pte_t pteval;
1661 	struct page *subpage;
1662 	struct mmu_notifier_range range;
1663 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1664 	unsigned long pfn;
1665 	unsigned long hsz = 0;
1666 
1667 	/*
1668 	 * When racing against e.g. zap_pte_range() on another cpu,
1669 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1670 	 * try_to_unmap() may return before page_mapped() has become false,
1671 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1672 	 */
1673 	if (flags & TTU_SYNC)
1674 		pvmw.flags = PVMW_SYNC;
1675 
1676 	/*
1677 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1678 	 * For hugetlb, it could be much worse if we need to do pud
1679 	 * invalidation in the case of pmd sharing.
1680 	 *
1681 	 * Note that the folio can not be freed in this function as call of
1682 	 * try_to_unmap() must hold a reference on the folio.
1683 	 */
1684 	range.end = vma_address_end(&pvmw);
1685 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1686 				address, range.end);
1687 	if (folio_test_hugetlb(folio)) {
1688 		/*
1689 		 * If sharing is possible, start and end will be adjusted
1690 		 * accordingly.
1691 		 */
1692 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1693 						     &range.end);
1694 
1695 		/* We need the huge page size for set_huge_pte_at() */
1696 		hsz = huge_page_size(hstate_vma(vma));
1697 	}
1698 	mmu_notifier_invalidate_range_start(&range);
1699 
1700 	while (page_vma_mapped_walk(&pvmw)) {
1701 		/*
1702 		 * If the folio is in an mlock()d vma, we must not swap it out.
1703 		 */
1704 		if (!(flags & TTU_IGNORE_MLOCK) &&
1705 		    (vma->vm_flags & VM_LOCKED)) {
1706 			/* Restore the mlock which got missed */
1707 			if (!folio_test_large(folio))
1708 				mlock_vma_folio(folio, vma);
1709 			goto walk_abort;
1710 		}
1711 
1712 		if (!pvmw.pte) {
1713 			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1714 						  folio))
1715 				goto walk_done;
1716 
1717 			if (flags & TTU_SPLIT_HUGE_PMD) {
1718 				/*
1719 				 * We temporarily have to drop the PTL and
1720 				 * restart so we can process the PTE-mapped THP.
1721 				 */
1722 				split_huge_pmd_locked(vma, pvmw.address,
1723 						      pvmw.pmd, false, folio);
1724 				flags &= ~TTU_SPLIT_HUGE_PMD;
1725 				page_vma_mapped_walk_restart(&pvmw);
1726 				continue;
1727 			}
1728 		}
1729 
1730 		/* Unexpected PMD-mapped THP? */
1731 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1732 
1733 		/*
1734 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
1735 		 * actually map pages.
1736 		 */
1737 		pteval = ptep_get(pvmw.pte);
1738 		if (likely(pte_present(pteval))) {
1739 			pfn = pte_pfn(pteval);
1740 		} else {
1741 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
1742 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1743 		}
1744 
1745 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1746 		address = pvmw.address;
1747 		anon_exclusive = folio_test_anon(folio) &&
1748 				 PageAnonExclusive(subpage);
1749 
1750 		if (folio_test_hugetlb(folio)) {
1751 			bool anon = folio_test_anon(folio);
1752 
1753 			/*
1754 			 * The try_to_unmap() is only passed a hugetlb page
1755 			 * in the case where the hugetlb page is poisoned.
1756 			 */
1757 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1758 			/*
1759 			 * huge_pmd_unshare may unmap an entire PMD page.
1760 			 * There is no way of knowing exactly which PMDs may
1761 			 * be cached for this mm, so we must flush them all.
1762 			 * start/end were already adjusted above to cover this
1763 			 * range.
1764 			 */
1765 			flush_cache_range(vma, range.start, range.end);
1766 
1767 			/*
1768 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1769 			 * held in write mode.  Caller needs to explicitly
1770 			 * do this outside rmap routines.
1771 			 *
1772 			 * We also must hold hugetlb vma_lock in write mode.
1773 			 * Lock order dictates acquiring vma_lock BEFORE
1774 			 * i_mmap_rwsem.  We can only try lock here and fail
1775 			 * if unsuccessful.
1776 			 */
1777 			if (!anon) {
1778 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1779 				if (!hugetlb_vma_trylock_write(vma))
1780 					goto walk_abort;
1781 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1782 					hugetlb_vma_unlock_write(vma);
1783 					flush_tlb_range(vma,
1784 						range.start, range.end);
1785 					/*
1786 					 * The ref count of the PMD page was
1787 					 * dropped which is part of the way map
1788 					 * counting is done for shared PMDs.
1789 					 * Return 'true' here.  When there is
1790 					 * no other sharing, huge_pmd_unshare
1791 					 * returns false and we will unmap the
1792 					 * actual page and drop map count
1793 					 * to zero.
1794 					 */
1795 					goto walk_done;
1796 				}
1797 				hugetlb_vma_unlock_write(vma);
1798 			}
1799 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1800 			if (pte_dirty(pteval))
1801 				folio_mark_dirty(folio);
1802 		} else if (likely(pte_present(pteval))) {
1803 			flush_cache_page(vma, address, pfn);
1804 			/* Nuke the page table entry. */
1805 			if (should_defer_flush(mm, flags)) {
1806 				/*
1807 				 * We clear the PTE but do not flush so potentially
1808 				 * a remote CPU could still be writing to the folio.
1809 				 * If the entry was previously clean then the
1810 				 * architecture must guarantee that a clear->dirty
1811 				 * transition on a cached TLB entry is written through
1812 				 * and traps if the PTE is unmapped.
1813 				 */
1814 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1815 
1816 				set_tlb_ubc_flush_pending(mm, pteval, address);
1817 			} else {
1818 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1819 			}
1820 			if (pte_dirty(pteval))
1821 				folio_mark_dirty(folio);
1822 		} else {
1823 			pte_clear(mm, address, pvmw.pte);
1824 		}
1825 
1826 		/*
1827 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1828 		 * we may want to replace a none pte with a marker pte if
1829 		 * it's file-backed, so we don't lose the tracking info.
1830 		 */
1831 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1832 
1833 		/* Update high watermark before we lower rss */
1834 		update_hiwater_rss(mm);
1835 
1836 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1837 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1838 			if (folio_test_hugetlb(folio)) {
1839 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1840 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1841 						hsz);
1842 			} else {
1843 				dec_mm_counter(mm, mm_counter(folio));
1844 				set_pte_at(mm, address, pvmw.pte, pteval);
1845 			}
1846 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
1847 			   !userfaultfd_armed(vma)) {
1848 			/*
1849 			 * The guest indicated that the page content is of no
1850 			 * interest anymore. Simply discard the pte, vmscan
1851 			 * will take care of the rest.
1852 			 * A future reference will then fault in a new zero
1853 			 * page. When userfaultfd is active, we must not drop
1854 			 * this page though, as its main user (postcopy
1855 			 * migration) will not expect userfaults on already
1856 			 * copied pages.
1857 			 */
1858 			dec_mm_counter(mm, mm_counter(folio));
1859 		} else if (folio_test_anon(folio)) {
1860 			swp_entry_t entry = page_swap_entry(subpage);
1861 			pte_t swp_pte;
1862 			/*
1863 			 * Store the swap location in the pte.
1864 			 * See handle_pte_fault() ...
1865 			 */
1866 			if (unlikely(folio_test_swapbacked(folio) !=
1867 					folio_test_swapcache(folio))) {
1868 				WARN_ON_ONCE(1);
1869 				goto walk_abort;
1870 			}
1871 
1872 			/* MADV_FREE page check */
1873 			if (!folio_test_swapbacked(folio)) {
1874 				int ref_count, map_count;
1875 
1876 				/*
1877 				 * Synchronize with gup_pte_range():
1878 				 * - clear PTE; barrier; read refcount
1879 				 * - inc refcount; barrier; read PTE
1880 				 */
1881 				smp_mb();
1882 
1883 				ref_count = folio_ref_count(folio);
1884 				map_count = folio_mapcount(folio);
1885 
1886 				/*
1887 				 * Order reads for page refcount and dirty flag
1888 				 * (see comments in __remove_mapping()).
1889 				 */
1890 				smp_rmb();
1891 
1892 				/*
1893 				 * The only page refs must be one from isolation
1894 				 * plus the rmap(s) (dropped by discard:).
1895 				 */
1896 				if (ref_count == 1 + map_count &&
1897 				    (!folio_test_dirty(folio) ||
1898 				     /*
1899 				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1900 				      * ones can be dropped even if they've
1901 				      * been dirtied.
1902 				      */
1903 				     (vma->vm_flags & VM_DROPPABLE))) {
1904 					dec_mm_counter(mm, MM_ANONPAGES);
1905 					goto discard;
1906 				}
1907 
1908 				/*
1909 				 * If the folio was redirtied, it cannot be
1910 				 * discarded. Remap the page to page table.
1911 				 */
1912 				set_pte_at(mm, address, pvmw.pte, pteval);
1913 				/*
1914 				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1915 				 * never get swap backed on failure to drop.
1916 				 */
1917 				if (!(vma->vm_flags & VM_DROPPABLE))
1918 					folio_set_swapbacked(folio);
1919 				goto walk_abort;
1920 			}
1921 
1922 			if (swap_duplicate(entry) < 0) {
1923 				set_pte_at(mm, address, pvmw.pte, pteval);
1924 				goto walk_abort;
1925 			}
1926 
1927 			/*
1928 			 * arch_unmap_one() is expected to be a NOP on
1929 			 * architectures where we could have PFN swap PTEs,
1930 			 * so we'll not check/care.
1931 			 */
1932 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1933 				swap_free(entry);
1934 				set_pte_at(mm, address, pvmw.pte, pteval);
1935 				goto walk_abort;
1936 			}
1937 
1938 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1939 			if (anon_exclusive &&
1940 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1941 				swap_free(entry);
1942 				set_pte_at(mm, address, pvmw.pte, pteval);
1943 				goto walk_abort;
1944 			}
1945 			if (list_empty(&mm->mmlist)) {
1946 				spin_lock(&mmlist_lock);
1947 				if (list_empty(&mm->mmlist))
1948 					list_add(&mm->mmlist, &init_mm.mmlist);
1949 				spin_unlock(&mmlist_lock);
1950 			}
1951 			dec_mm_counter(mm, MM_ANONPAGES);
1952 			inc_mm_counter(mm, MM_SWAPENTS);
1953 			swp_pte = swp_entry_to_pte(entry);
1954 			if (anon_exclusive)
1955 				swp_pte = pte_swp_mkexclusive(swp_pte);
1956 			if (likely(pte_present(pteval))) {
1957 				if (pte_soft_dirty(pteval))
1958 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
1959 				if (pte_uffd_wp(pteval))
1960 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
1961 			} else {
1962 				if (pte_swp_soft_dirty(pteval))
1963 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
1964 				if (pte_swp_uffd_wp(pteval))
1965 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
1966 			}
1967 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1968 		} else {
1969 			/*
1970 			 * This is a locked file-backed folio,
1971 			 * so it cannot be removed from the page
1972 			 * cache and replaced by a new folio before
1973 			 * mmu_notifier_invalidate_range_end, so no
1974 			 * concurrent thread might update its page table
1975 			 * to point at a new folio while a device is
1976 			 * still using this folio.
1977 			 *
1978 			 * See Documentation/mm/mmu_notifier.rst
1979 			 */
1980 			dec_mm_counter(mm, mm_counter_file(folio));
1981 		}
1982 discard:
1983 		if (unlikely(folio_test_hugetlb(folio)))
1984 			hugetlb_remove_rmap(folio);
1985 		else
1986 			folio_remove_rmap_pte(folio, subpage, vma);
1987 		if (vma->vm_flags & VM_LOCKED)
1988 			mlock_drain_local();
1989 		folio_put(folio);
1990 		continue;
1991 walk_abort:
1992 		ret = false;
1993 walk_done:
1994 		page_vma_mapped_walk_done(&pvmw);
1995 		break;
1996 	}
1997 
1998 	mmu_notifier_invalidate_range_end(&range);
1999 
2000 	return ret;
2001 }
2002 
2003 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
2004 {
2005 	return vma_is_temporary_stack(vma);
2006 }
2007 
2008 static int folio_not_mapped(struct folio *folio)
2009 {
2010 	return !folio_mapped(folio);
2011 }
2012 
2013 /**
2014  * try_to_unmap - Try to remove all page table mappings to a folio.
2015  * @folio: The folio to unmap.
2016  * @flags: action and flags
2017  *
2018  * Tries to remove all the page table entries which are mapping this
2019  * folio.  It is the caller's responsibility to check if the folio is
2020  * still mapped if needed (use TTU_SYNC to prevent accounting races).
2021  *
2022  * Context: Caller must hold the folio lock.
2023  */
2024 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
2025 {
2026 	struct rmap_walk_control rwc = {
2027 		.rmap_one = try_to_unmap_one,
2028 		.arg = (void *)flags,
2029 		.done = folio_not_mapped,
2030 		.anon_lock = folio_lock_anon_vma_read,
2031 	};
2032 
2033 	if (flags & TTU_RMAP_LOCKED)
2034 		rmap_walk_locked(folio, &rwc);
2035 	else
2036 		rmap_walk(folio, &rwc);
2037 }
2038 
2039 /*
2040  * @arg: enum ttu_flags will be passed to this argument.
2041  *
2042  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2043  * containing migration entries.
2044  */
2045 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2046 		     unsigned long address, void *arg)
2047 {
2048 	struct mm_struct *mm = vma->vm_mm;
2049 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2050 	bool anon_exclusive, writable, ret = true;
2051 	pte_t pteval;
2052 	struct page *subpage;
2053 	struct mmu_notifier_range range;
2054 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2055 	unsigned long pfn;
2056 	unsigned long hsz = 0;
2057 
2058 	/*
2059 	 * When racing against e.g. zap_pte_range() on another cpu,
2060 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2061 	 * try_to_migrate() may return before page_mapped() has become false,
2062 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2063 	 */
2064 	if (flags & TTU_SYNC)
2065 		pvmw.flags = PVMW_SYNC;
2066 
2067 	/*
2068 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2069 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2070 	 */
2071 	if (flags & TTU_SPLIT_HUGE_PMD)
2072 		split_huge_pmd_address(vma, address, true, folio);
2073 
2074 	/*
2075 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2076 	 * For hugetlb, it could be much worse if we need to do pud
2077 	 * invalidation in the case of pmd sharing.
2078 	 *
2079 	 * Note that the page can not be free in this function as call of
2080 	 * try_to_unmap() must hold a reference on the page.
2081 	 */
2082 	range.end = vma_address_end(&pvmw);
2083 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2084 				address, range.end);
2085 	if (folio_test_hugetlb(folio)) {
2086 		/*
2087 		 * If sharing is possible, start and end will be adjusted
2088 		 * accordingly.
2089 		 */
2090 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2091 						     &range.end);
2092 
2093 		/* We need the huge page size for set_huge_pte_at() */
2094 		hsz = huge_page_size(hstate_vma(vma));
2095 	}
2096 	mmu_notifier_invalidate_range_start(&range);
2097 
2098 	while (page_vma_mapped_walk(&pvmw)) {
2099 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2100 		/* PMD-mapped THP migration entry */
2101 		if (!pvmw.pte) {
2102 			subpage = folio_page(folio,
2103 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2104 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2105 					!folio_test_pmd_mappable(folio), folio);
2106 
2107 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2108 				ret = false;
2109 				page_vma_mapped_walk_done(&pvmw);
2110 				break;
2111 			}
2112 			continue;
2113 		}
2114 #endif
2115 
2116 		/* Unexpected PMD-mapped THP? */
2117 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2118 
2119 		/*
2120 		 * Handle PFN swap PTEs, such as device-exclusive ones, that
2121 		 * actually map pages.
2122 		 */
2123 		pteval = ptep_get(pvmw.pte);
2124 		if (likely(pte_present(pteval))) {
2125 			pfn = pte_pfn(pteval);
2126 		} else {
2127 			pfn = swp_offset_pfn(pte_to_swp_entry(pteval));
2128 			VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
2129 		}
2130 
2131 		subpage = folio_page(folio, pfn - folio_pfn(folio));
2132 		address = pvmw.address;
2133 		anon_exclusive = folio_test_anon(folio) &&
2134 				 PageAnonExclusive(subpage);
2135 
2136 		if (folio_test_hugetlb(folio)) {
2137 			bool anon = folio_test_anon(folio);
2138 
2139 			/*
2140 			 * huge_pmd_unshare may unmap an entire PMD page.
2141 			 * There is no way of knowing exactly which PMDs may
2142 			 * be cached for this mm, so we must flush them all.
2143 			 * start/end were already adjusted above to cover this
2144 			 * range.
2145 			 */
2146 			flush_cache_range(vma, range.start, range.end);
2147 
2148 			/*
2149 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2150 			 * held in write mode.  Caller needs to explicitly
2151 			 * do this outside rmap routines.
2152 			 *
2153 			 * We also must hold hugetlb vma_lock in write mode.
2154 			 * Lock order dictates acquiring vma_lock BEFORE
2155 			 * i_mmap_rwsem.  We can only try lock here and
2156 			 * fail if unsuccessful.
2157 			 */
2158 			if (!anon) {
2159 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2160 				if (!hugetlb_vma_trylock_write(vma)) {
2161 					page_vma_mapped_walk_done(&pvmw);
2162 					ret = false;
2163 					break;
2164 				}
2165 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2166 					hugetlb_vma_unlock_write(vma);
2167 					flush_tlb_range(vma,
2168 						range.start, range.end);
2169 
2170 					/*
2171 					 * The ref count of the PMD page was
2172 					 * dropped which is part of the way map
2173 					 * counting is done for shared PMDs.
2174 					 * Return 'true' here.  When there is
2175 					 * no other sharing, huge_pmd_unshare
2176 					 * returns false and we will unmap the
2177 					 * actual page and drop map count
2178 					 * to zero.
2179 					 */
2180 					page_vma_mapped_walk_done(&pvmw);
2181 					break;
2182 				}
2183 				hugetlb_vma_unlock_write(vma);
2184 			}
2185 			/* Nuke the hugetlb page table entry */
2186 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2187 			if (pte_dirty(pteval))
2188 				folio_mark_dirty(folio);
2189 			writable = pte_write(pteval);
2190 		} else if (likely(pte_present(pteval))) {
2191 			flush_cache_page(vma, address, pfn);
2192 			/* Nuke the page table entry. */
2193 			if (should_defer_flush(mm, flags)) {
2194 				/*
2195 				 * We clear the PTE but do not flush so potentially
2196 				 * a remote CPU could still be writing to the folio.
2197 				 * If the entry was previously clean then the
2198 				 * architecture must guarantee that a clear->dirty
2199 				 * transition on a cached TLB entry is written through
2200 				 * and traps if the PTE is unmapped.
2201 				 */
2202 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2203 
2204 				set_tlb_ubc_flush_pending(mm, pteval, address);
2205 			} else {
2206 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2207 			}
2208 			if (pte_dirty(pteval))
2209 				folio_mark_dirty(folio);
2210 			writable = pte_write(pteval);
2211 		} else {
2212 			pte_clear(mm, address, pvmw.pte);
2213 			writable = is_writable_device_private_entry(pte_to_swp_entry(pteval));
2214 		}
2215 
2216 		VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) &&
2217 				!anon_exclusive, folio);
2218 
2219 		/* Update high watermark before we lower rss */
2220 		update_hiwater_rss(mm);
2221 
2222 		if (PageHWPoison(subpage)) {
2223 			VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio);
2224 
2225 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2226 			if (folio_test_hugetlb(folio)) {
2227 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2228 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2229 						hsz);
2230 			} else {
2231 				dec_mm_counter(mm, mm_counter(folio));
2232 				set_pte_at(mm, address, pvmw.pte, pteval);
2233 			}
2234 		} else if (likely(pte_present(pteval)) && pte_unused(pteval) &&
2235 			   !userfaultfd_armed(vma)) {
2236 			/*
2237 			 * The guest indicated that the page content is of no
2238 			 * interest anymore. Simply discard the pte, vmscan
2239 			 * will take care of the rest.
2240 			 * A future reference will then fault in a new zero
2241 			 * page. When userfaultfd is active, we must not drop
2242 			 * this page though, as its main user (postcopy
2243 			 * migration) will not expect userfaults on already
2244 			 * copied pages.
2245 			 */
2246 			dec_mm_counter(mm, mm_counter(folio));
2247 		} else {
2248 			swp_entry_t entry;
2249 			pte_t swp_pte;
2250 
2251 			/*
2252 			 * arch_unmap_one() is expected to be a NOP on
2253 			 * architectures where we could have PFN swap PTEs,
2254 			 * so we'll not check/care.
2255 			 */
2256 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2257 				if (folio_test_hugetlb(folio))
2258 					set_huge_pte_at(mm, address, pvmw.pte,
2259 							pteval, hsz);
2260 				else
2261 					set_pte_at(mm, address, pvmw.pte, pteval);
2262 				ret = false;
2263 				page_vma_mapped_walk_done(&pvmw);
2264 				break;
2265 			}
2266 
2267 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2268 			if (folio_test_hugetlb(folio)) {
2269 				if (anon_exclusive &&
2270 				    hugetlb_try_share_anon_rmap(folio)) {
2271 					set_huge_pte_at(mm, address, pvmw.pte,
2272 							pteval, hsz);
2273 					ret = false;
2274 					page_vma_mapped_walk_done(&pvmw);
2275 					break;
2276 				}
2277 			} else if (anon_exclusive &&
2278 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2279 				set_pte_at(mm, address, pvmw.pte, pteval);
2280 				ret = false;
2281 				page_vma_mapped_walk_done(&pvmw);
2282 				break;
2283 			}
2284 
2285 			/*
2286 			 * Store the pfn of the page in a special migration
2287 			 * pte. do_swap_page() will wait until the migration
2288 			 * pte is removed and then restart fault handling.
2289 			 */
2290 			if (writable)
2291 				entry = make_writable_migration_entry(
2292 							page_to_pfn(subpage));
2293 			else if (anon_exclusive)
2294 				entry = make_readable_exclusive_migration_entry(
2295 							page_to_pfn(subpage));
2296 			else
2297 				entry = make_readable_migration_entry(
2298 							page_to_pfn(subpage));
2299 			if (likely(pte_present(pteval))) {
2300 				if (pte_young(pteval))
2301 					entry = make_migration_entry_young(entry);
2302 				if (pte_dirty(pteval))
2303 					entry = make_migration_entry_dirty(entry);
2304 				swp_pte = swp_entry_to_pte(entry);
2305 				if (pte_soft_dirty(pteval))
2306 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2307 				if (pte_uffd_wp(pteval))
2308 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2309 			} else {
2310 				swp_pte = swp_entry_to_pte(entry);
2311 				if (pte_swp_soft_dirty(pteval))
2312 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
2313 				if (pte_swp_uffd_wp(pteval))
2314 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
2315 			}
2316 			if (folio_test_hugetlb(folio))
2317 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2318 						hsz);
2319 			else
2320 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2321 			trace_set_migration_pte(address, pte_val(swp_pte),
2322 						folio_order(folio));
2323 			/*
2324 			 * No need to invalidate here it will synchronize on
2325 			 * against the special swap migration pte.
2326 			 */
2327 		}
2328 
2329 		if (unlikely(folio_test_hugetlb(folio)))
2330 			hugetlb_remove_rmap(folio);
2331 		else
2332 			folio_remove_rmap_pte(folio, subpage, vma);
2333 		if (vma->vm_flags & VM_LOCKED)
2334 			mlock_drain_local();
2335 		folio_put(folio);
2336 	}
2337 
2338 	mmu_notifier_invalidate_range_end(&range);
2339 
2340 	return ret;
2341 }
2342 
2343 /**
2344  * try_to_migrate - try to replace all page table mappings with swap entries
2345  * @folio: the folio to replace page table entries for
2346  * @flags: action and flags
2347  *
2348  * Tries to remove all the page table entries which are mapping this folio and
2349  * replace them with special swap entries. Caller must hold the folio lock.
2350  */
2351 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2352 {
2353 	struct rmap_walk_control rwc = {
2354 		.rmap_one = try_to_migrate_one,
2355 		.arg = (void *)flags,
2356 		.done = folio_not_mapped,
2357 		.anon_lock = folio_lock_anon_vma_read,
2358 	};
2359 
2360 	/*
2361 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2362 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2363 	 */
2364 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2365 					TTU_SYNC | TTU_BATCH_FLUSH)))
2366 		return;
2367 
2368 	if (folio_is_zone_device(folio) &&
2369 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2370 		return;
2371 
2372 	/*
2373 	 * During exec, a temporary VMA is setup and later moved.
2374 	 * The VMA is moved under the anon_vma lock but not the
2375 	 * page tables leading to a race where migration cannot
2376 	 * find the migration ptes. Rather than increasing the
2377 	 * locking requirements of exec(), migration skips
2378 	 * temporary VMAs until after exec() completes.
2379 	 */
2380 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2381 		rwc.invalid_vma = invalid_migration_vma;
2382 
2383 	if (flags & TTU_RMAP_LOCKED)
2384 		rmap_walk_locked(folio, &rwc);
2385 	else
2386 		rmap_walk(folio, &rwc);
2387 }
2388 
2389 #ifdef CONFIG_DEVICE_PRIVATE
2390 /**
2391  * make_device_exclusive() - Mark a page for exclusive use by a device
2392  * @mm: mm_struct of associated target process
2393  * @addr: the virtual address to mark for exclusive device access
2394  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2395  * @foliop: folio pointer will be stored here on success.
2396  *
2397  * This function looks up the page mapped at the given address, grabs a
2398  * folio reference, locks the folio and replaces the PTE with special
2399  * device-exclusive PFN swap entry, preventing access through the process
2400  * page tables. The function will return with the folio locked and referenced.
2401  *
2402  * On fault, the device-exclusive entries are replaced with the original PTE
2403  * under folio lock, after calling MMU notifiers.
2404  *
2405  * Only anonymous non-hugetlb folios are supported and the VMA must have
2406  * write permissions such that we can fault in the anonymous page writable
2407  * in order to mark it exclusive. The caller must hold the mmap_lock in read
2408  * mode.
2409  *
2410  * A driver using this to program access from a device must use a mmu notifier
2411  * critical section to hold a device specific lock during programming. Once
2412  * programming is complete it should drop the folio lock and reference after
2413  * which point CPU access to the page will revoke the exclusive access.
2414  *
2415  * Notes:
2416  *   #. This function always operates on individual PTEs mapping individual
2417  *      pages. PMD-sized THPs are first remapped to be mapped by PTEs before
2418  *      the conversion happens on a single PTE corresponding to @addr.
2419  *   #. While concurrent access through the process page tables is prevented,
2420  *      concurrent access through other page references (e.g., earlier GUP
2421  *      invocation) is not handled and not supported.
2422  *   #. device-exclusive entries are considered "clean" and "old" by core-mm.
2423  *      Device drivers must update the folio state when informed by MMU
2424  *      notifiers.
2425  *
2426  * Returns: pointer to mapped page on success, otherwise a negative error.
2427  */
2428 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr,
2429 		void *owner, struct folio **foliop)
2430 {
2431 	struct mmu_notifier_range range;
2432 	struct folio *folio, *fw_folio;
2433 	struct vm_area_struct *vma;
2434 	struct folio_walk fw;
2435 	struct page *page;
2436 	swp_entry_t entry;
2437 	pte_t swp_pte;
2438 	int ret;
2439 
2440 	mmap_assert_locked(mm);
2441 	addr = PAGE_ALIGN_DOWN(addr);
2442 
2443 	/*
2444 	 * Fault in the page writable and try to lock it; note that if the
2445 	 * address would already be marked for exclusive use by a device,
2446 	 * the GUP call would undo that first by triggering a fault.
2447 	 *
2448 	 * If any other device would already map this page exclusively, the
2449 	 * fault will trigger a conversion to an ordinary
2450 	 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE.
2451 	 */
2452 retry:
2453 	page = get_user_page_vma_remote(mm, addr,
2454 					FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2455 					&vma);
2456 	if (IS_ERR(page))
2457 		return page;
2458 	folio = page_folio(page);
2459 
2460 	if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) {
2461 		folio_put(folio);
2462 		return ERR_PTR(-EOPNOTSUPP);
2463 	}
2464 
2465 	ret = folio_lock_killable(folio);
2466 	if (ret) {
2467 		folio_put(folio);
2468 		return ERR_PTR(ret);
2469 	}
2470 
2471 	/*
2472 	 * Inform secondary MMUs that we are going to convert this PTE to
2473 	 * device-exclusive, such that they unmap it now. Note that the
2474 	 * caller must filter this event out to prevent livelocks.
2475 	 */
2476 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2477 				      mm, addr, addr + PAGE_SIZE, owner);
2478 	mmu_notifier_invalidate_range_start(&range);
2479 
2480 	/*
2481 	 * Let's do a second walk and make sure we still find the same page
2482 	 * mapped writable. Note that any page of an anonymous folio can
2483 	 * only be mapped writable using exactly one PTE ("exclusive"), so
2484 	 * there cannot be other mappings.
2485 	 */
2486 	fw_folio = folio_walk_start(&fw, vma, addr, 0);
2487 	if (fw_folio != folio || fw.page != page ||
2488 	    fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) {
2489 		if (fw_folio)
2490 			folio_walk_end(&fw, vma);
2491 		mmu_notifier_invalidate_range_end(&range);
2492 		folio_unlock(folio);
2493 		folio_put(folio);
2494 		goto retry;
2495 	}
2496 
2497 	/* Nuke the page table entry so we get the uptodate dirty bit. */
2498 	flush_cache_page(vma, addr, page_to_pfn(page));
2499 	fw.pte = ptep_clear_flush(vma, addr, fw.ptep);
2500 
2501 	/* Set the dirty flag on the folio now the PTE is gone. */
2502 	if (pte_dirty(fw.pte))
2503 		folio_mark_dirty(folio);
2504 
2505 	/*
2506 	 * Store the pfn of the page in a special device-exclusive PFN swap PTE.
2507 	 * do_swap_page() will trigger the conversion back while holding the
2508 	 * folio lock.
2509 	 */
2510 	entry = make_device_exclusive_entry(page_to_pfn(page));
2511 	swp_pte = swp_entry_to_pte(entry);
2512 	if (pte_soft_dirty(fw.pte))
2513 		swp_pte = pte_swp_mksoft_dirty(swp_pte);
2514 	/* The pte is writable, uffd-wp does not apply. */
2515 	set_pte_at(mm, addr, fw.ptep, swp_pte);
2516 
2517 	folio_walk_end(&fw, vma);
2518 	mmu_notifier_invalidate_range_end(&range);
2519 	*foliop = folio;
2520 	return page;
2521 }
2522 EXPORT_SYMBOL_GPL(make_device_exclusive);
2523 #endif
2524 
2525 void __put_anon_vma(struct anon_vma *anon_vma)
2526 {
2527 	struct anon_vma *root = anon_vma->root;
2528 
2529 	anon_vma_free(anon_vma);
2530 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2531 		anon_vma_free(root);
2532 }
2533 
2534 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2535 					    struct rmap_walk_control *rwc)
2536 {
2537 	struct anon_vma *anon_vma;
2538 
2539 	if (rwc->anon_lock)
2540 		return rwc->anon_lock(folio, rwc);
2541 
2542 	/*
2543 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2544 	 * because that depends on page_mapped(); but not all its usages
2545 	 * are holding mmap_lock. Users without mmap_lock are required to
2546 	 * take a reference count to prevent the anon_vma disappearing
2547 	 */
2548 	anon_vma = folio_anon_vma(folio);
2549 	if (!anon_vma)
2550 		return NULL;
2551 
2552 	if (anon_vma_trylock_read(anon_vma))
2553 		goto out;
2554 
2555 	if (rwc->try_lock) {
2556 		anon_vma = NULL;
2557 		rwc->contended = true;
2558 		goto out;
2559 	}
2560 
2561 	anon_vma_lock_read(anon_vma);
2562 out:
2563 	return anon_vma;
2564 }
2565 
2566 /*
2567  * rmap_walk_anon - do something to anonymous page using the object-based
2568  * rmap method
2569  * @folio: the folio to be handled
2570  * @rwc: control variable according to each walk type
2571  * @locked: caller holds relevant rmap lock
2572  *
2573  * Find all the mappings of a folio using the mapping pointer and the vma
2574  * chains contained in the anon_vma struct it points to.
2575  */
2576 static void rmap_walk_anon(struct folio *folio,
2577 		struct rmap_walk_control *rwc, bool locked)
2578 {
2579 	struct anon_vma *anon_vma;
2580 	pgoff_t pgoff_start, pgoff_end;
2581 	struct anon_vma_chain *avc;
2582 
2583 	if (locked) {
2584 		anon_vma = folio_anon_vma(folio);
2585 		/* anon_vma disappear under us? */
2586 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2587 	} else {
2588 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2589 	}
2590 	if (!anon_vma)
2591 		return;
2592 
2593 	pgoff_start = folio_pgoff(folio);
2594 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2595 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2596 			pgoff_start, pgoff_end) {
2597 		struct vm_area_struct *vma = avc->vma;
2598 		unsigned long address = vma_address(vma, pgoff_start,
2599 				folio_nr_pages(folio));
2600 
2601 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2602 		cond_resched();
2603 
2604 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2605 			continue;
2606 
2607 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2608 			break;
2609 		if (rwc->done && rwc->done(folio))
2610 			break;
2611 	}
2612 
2613 	if (!locked)
2614 		anon_vma_unlock_read(anon_vma);
2615 }
2616 
2617 /*
2618  * rmap_walk_file - do something to file page using the object-based rmap method
2619  * @folio: the folio to be handled
2620  * @rwc: control variable according to each walk type
2621  * @locked: caller holds relevant rmap lock
2622  *
2623  * Find all the mappings of a folio using the mapping pointer and the vma chains
2624  * contained in the address_space struct it points to.
2625  */
2626 static void rmap_walk_file(struct folio *folio,
2627 		struct rmap_walk_control *rwc, bool locked)
2628 {
2629 	struct address_space *mapping = folio_mapping(folio);
2630 	pgoff_t pgoff_start, pgoff_end;
2631 	struct vm_area_struct *vma;
2632 
2633 	/*
2634 	 * The page lock not only makes sure that page->mapping cannot
2635 	 * suddenly be NULLified by truncation, it makes sure that the
2636 	 * structure at mapping cannot be freed and reused yet,
2637 	 * so we can safely take mapping->i_mmap_rwsem.
2638 	 */
2639 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2640 
2641 	if (!mapping)
2642 		return;
2643 
2644 	pgoff_start = folio_pgoff(folio);
2645 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2646 	if (!locked) {
2647 		if (i_mmap_trylock_read(mapping))
2648 			goto lookup;
2649 
2650 		if (rwc->try_lock) {
2651 			rwc->contended = true;
2652 			return;
2653 		}
2654 
2655 		i_mmap_lock_read(mapping);
2656 	}
2657 lookup:
2658 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2659 			pgoff_start, pgoff_end) {
2660 		unsigned long address = vma_address(vma, pgoff_start,
2661 			       folio_nr_pages(folio));
2662 
2663 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2664 		cond_resched();
2665 
2666 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2667 			continue;
2668 
2669 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2670 			goto done;
2671 		if (rwc->done && rwc->done(folio))
2672 			goto done;
2673 	}
2674 
2675 done:
2676 	if (!locked)
2677 		i_mmap_unlock_read(mapping);
2678 }
2679 
2680 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2681 {
2682 	if (unlikely(folio_test_ksm(folio)))
2683 		rmap_walk_ksm(folio, rwc);
2684 	else if (folio_test_anon(folio))
2685 		rmap_walk_anon(folio, rwc, false);
2686 	else
2687 		rmap_walk_file(folio, rwc, false);
2688 }
2689 
2690 /* Like rmap_walk, but caller holds relevant rmap lock */
2691 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2692 {
2693 	/* no ksm support for now */
2694 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2695 	if (folio_test_anon(folio))
2696 		rmap_walk_anon(folio, rwc, true);
2697 	else
2698 		rmap_walk_file(folio, rwc, true);
2699 }
2700 
2701 #ifdef CONFIG_HUGETLB_PAGE
2702 /*
2703  * The following two functions are for anonymous (private mapped) hugepages.
2704  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2705  * and no lru code, because we handle hugepages differently from common pages.
2706  */
2707 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2708 		unsigned long address, rmap_t flags)
2709 {
2710 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2711 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2712 
2713 	atomic_inc(&folio->_entire_mapcount);
2714 	atomic_inc(&folio->_large_mapcount);
2715 	if (flags & RMAP_EXCLUSIVE)
2716 		SetPageAnonExclusive(&folio->page);
2717 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2718 			 PageAnonExclusive(&folio->page), folio);
2719 }
2720 
2721 void hugetlb_add_new_anon_rmap(struct folio *folio,
2722 		struct vm_area_struct *vma, unsigned long address)
2723 {
2724 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2725 
2726 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2727 	/* increment count (starts at -1) */
2728 	atomic_set(&folio->_entire_mapcount, 0);
2729 	atomic_set(&folio->_large_mapcount, 0);
2730 	folio_clear_hugetlb_restore_reserve(folio);
2731 	__folio_set_anon(folio, vma, address, true);
2732 	SetPageAnonExclusive(&folio->page);
2733 }
2734 #endif /* CONFIG_HUGETLB_PAGE */
2735