1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * i_pages lock (widely used) 36 * lruvec->lru_lock (in folio_lruvec_lock_irq) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * hugetlbfs PageHuge() take locks in this order: 49 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 50 * vma_lock (hugetlb specific lock for pmd_sharing) 51 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 52 * folio_lock 53 */ 54 55 #include <linux/mm.h> 56 #include <linux/sched/mm.h> 57 #include <linux/sched/task.h> 58 #include <linux/pagemap.h> 59 #include <linux/swap.h> 60 #include <linux/swapops.h> 61 #include <linux/slab.h> 62 #include <linux/init.h> 63 #include <linux/ksm.h> 64 #include <linux/rmap.h> 65 #include <linux/rcupdate.h> 66 #include <linux/export.h> 67 #include <linux/memcontrol.h> 68 #include <linux/mmu_notifier.h> 69 #include <linux/migrate.h> 70 #include <linux/hugetlb.h> 71 #include <linux/huge_mm.h> 72 #include <linux/backing-dev.h> 73 #include <linux/page_idle.h> 74 #include <linux/memremap.h> 75 #include <linux/userfaultfd_k.h> 76 #include <linux/mm_inline.h> 77 #include <linux/oom.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 */ 186 int __anon_vma_prepare(struct vm_area_struct *vma) 187 { 188 struct mm_struct *mm = vma->vm_mm; 189 struct anon_vma *anon_vma, *allocated; 190 struct anon_vma_chain *avc; 191 192 mmap_assert_locked(mm); 193 might_sleep(); 194 195 avc = anon_vma_chain_alloc(GFP_KERNEL); 196 if (!avc) 197 goto out_enomem; 198 199 anon_vma = find_mergeable_anon_vma(vma); 200 allocated = NULL; 201 if (!anon_vma) { 202 anon_vma = anon_vma_alloc(); 203 if (unlikely(!anon_vma)) 204 goto out_enomem_free_avc; 205 anon_vma->num_children++; /* self-parent link for new root */ 206 allocated = anon_vma; 207 } 208 209 anon_vma_lock_write(anon_vma); 210 /* page_table_lock to protect against threads */ 211 spin_lock(&mm->page_table_lock); 212 if (likely(!vma->anon_vma)) { 213 vma->anon_vma = anon_vma; 214 anon_vma_chain_link(vma, avc, anon_vma); 215 anon_vma->num_active_vmas++; 216 allocated = NULL; 217 avc = NULL; 218 } 219 spin_unlock(&mm->page_table_lock); 220 anon_vma_unlock_write(anon_vma); 221 222 if (unlikely(allocated)) 223 put_anon_vma(allocated); 224 if (unlikely(avc)) 225 anon_vma_chain_free(avc); 226 227 return 0; 228 229 out_enomem_free_avc: 230 anon_vma_chain_free(avc); 231 out_enomem: 232 return -ENOMEM; 233 } 234 235 /* 236 * This is a useful helper function for locking the anon_vma root as 237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 238 * have the same vma. 239 * 240 * Such anon_vma's should have the same root, so you'd expect to see 241 * just a single mutex_lock for the whole traversal. 242 */ 243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 244 { 245 struct anon_vma *new_root = anon_vma->root; 246 if (new_root != root) { 247 if (WARN_ON_ONCE(root)) 248 up_write(&root->rwsem); 249 root = new_root; 250 down_write(&root->rwsem); 251 } 252 return root; 253 } 254 255 static inline void unlock_anon_vma_root(struct anon_vma *root) 256 { 257 if (root) 258 up_write(&root->rwsem); 259 } 260 261 /* 262 * Attach the anon_vmas from src to dst. 263 * Returns 0 on success, -ENOMEM on failure. 264 * 265 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 266 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 267 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 268 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 269 * call, we can identify this case by checking (!dst->anon_vma && 270 * src->anon_vma). 271 * 272 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 273 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 274 * This prevents degradation of anon_vma hierarchy to endless linear chain in 275 * case of constantly forking task. On the other hand, an anon_vma with more 276 * than one child isn't reused even if there was no alive vma, thus rmap 277 * walker has a good chance of avoiding scanning the whole hierarchy when it 278 * searches where page is mapped. 279 */ 280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 281 { 282 struct anon_vma_chain *avc, *pavc; 283 struct anon_vma *root = NULL; 284 285 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 286 struct anon_vma *anon_vma; 287 288 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 289 if (unlikely(!avc)) { 290 unlock_anon_vma_root(root); 291 root = NULL; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto enomem_failure; 295 } 296 anon_vma = pavc->anon_vma; 297 root = lock_anon_vma_root(root, anon_vma); 298 anon_vma_chain_link(dst, avc, anon_vma); 299 300 /* 301 * Reuse existing anon_vma if it has no vma and only one 302 * anon_vma child. 303 * 304 * Root anon_vma is never reused: 305 * it has self-parent reference and at least one child. 306 */ 307 if (!dst->anon_vma && src->anon_vma && 308 anon_vma->num_children < 2 && 309 anon_vma->num_active_vmas == 0) 310 dst->anon_vma = anon_vma; 311 } 312 if (dst->anon_vma) 313 dst->anon_vma->num_active_vmas++; 314 unlock_anon_vma_root(root); 315 return 0; 316 317 enomem_failure: 318 /* 319 * dst->anon_vma is dropped here otherwise its num_active_vmas can 320 * be incorrectly decremented in unlink_anon_vmas(). 321 * We can safely do this because callers of anon_vma_clone() don't care 322 * about dst->anon_vma if anon_vma_clone() failed. 323 */ 324 dst->anon_vma = NULL; 325 unlink_anon_vmas(dst); 326 return -ENOMEM; 327 } 328 329 /* 330 * Attach vma to its own anon_vma, as well as to the anon_vmas that 331 * the corresponding VMA in the parent process is attached to. 332 * Returns 0 on success, non-zero on failure. 333 */ 334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 335 { 336 struct anon_vma_chain *avc; 337 struct anon_vma *anon_vma; 338 int error; 339 340 /* Don't bother if the parent process has no anon_vma here. */ 341 if (!pvma->anon_vma) 342 return 0; 343 344 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 345 vma->anon_vma = NULL; 346 347 /* 348 * First, attach the new VMA to the parent VMA's anon_vmas, 349 * so rmap can find non-COWed pages in child processes. 350 */ 351 error = anon_vma_clone(vma, pvma); 352 if (error) 353 return error; 354 355 /* An existing anon_vma has been reused, all done then. */ 356 if (vma->anon_vma) 357 return 0; 358 359 /* Then add our own anon_vma. */ 360 anon_vma = anon_vma_alloc(); 361 if (!anon_vma) 362 goto out_error; 363 anon_vma->num_active_vmas++; 364 avc = anon_vma_chain_alloc(GFP_KERNEL); 365 if (!avc) 366 goto out_error_free_anon_vma; 367 368 /* 369 * The root anon_vma's rwsem is the lock actually used when we 370 * lock any of the anon_vmas in this anon_vma tree. 371 */ 372 anon_vma->root = pvma->anon_vma->root; 373 anon_vma->parent = pvma->anon_vma; 374 /* 375 * With refcounts, an anon_vma can stay around longer than the 376 * process it belongs to. The root anon_vma needs to be pinned until 377 * this anon_vma is freed, because the lock lives in the root. 378 */ 379 get_anon_vma(anon_vma->root); 380 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 381 vma->anon_vma = anon_vma; 382 anon_vma_lock_write(anon_vma); 383 anon_vma_chain_link(vma, avc, anon_vma); 384 anon_vma->parent->num_children++; 385 anon_vma_unlock_write(anon_vma); 386 387 return 0; 388 389 out_error_free_anon_vma: 390 put_anon_vma(anon_vma); 391 out_error: 392 unlink_anon_vmas(vma); 393 return -ENOMEM; 394 } 395 396 void unlink_anon_vmas(struct vm_area_struct *vma) 397 { 398 struct anon_vma_chain *avc, *next; 399 struct anon_vma *root = NULL; 400 401 /* 402 * Unlink each anon_vma chained to the VMA. This list is ordered 403 * from newest to oldest, ensuring the root anon_vma gets freed last. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 root = lock_anon_vma_root(root, anon_vma); 409 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 410 411 /* 412 * Leave empty anon_vmas on the list - we'll need 413 * to free them outside the lock. 414 */ 415 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 416 anon_vma->parent->num_children--; 417 continue; 418 } 419 420 list_del(&avc->same_vma); 421 anon_vma_chain_free(avc); 422 } 423 if (vma->anon_vma) { 424 vma->anon_vma->num_active_vmas--; 425 426 /* 427 * vma would still be needed after unlink, and anon_vma will be prepared 428 * when handle fault. 429 */ 430 vma->anon_vma = NULL; 431 } 432 unlock_anon_vma_root(root); 433 434 /* 435 * Iterate the list once more, it now only contains empty and unlinked 436 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 437 * needing to write-acquire the anon_vma->root->rwsem. 438 */ 439 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 440 struct anon_vma *anon_vma = avc->anon_vma; 441 442 VM_WARN_ON(anon_vma->num_children); 443 VM_WARN_ON(anon_vma->num_active_vmas); 444 put_anon_vma(anon_vma); 445 446 list_del(&avc->same_vma); 447 anon_vma_chain_free(avc); 448 } 449 } 450 451 static void anon_vma_ctor(void *data) 452 { 453 struct anon_vma *anon_vma = data; 454 455 init_rwsem(&anon_vma->rwsem); 456 atomic_set(&anon_vma->refcount, 0); 457 anon_vma->rb_root = RB_ROOT_CACHED; 458 } 459 460 void __init anon_vma_init(void) 461 { 462 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 463 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 464 anon_vma_ctor); 465 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 466 SLAB_PANIC|SLAB_ACCOUNT); 467 } 468 469 /* 470 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 471 * 472 * Since there is no serialization what so ever against folio_remove_rmap_*() 473 * the best this function can do is return a refcount increased anon_vma 474 * that might have been relevant to this page. 475 * 476 * The page might have been remapped to a different anon_vma or the anon_vma 477 * returned may already be freed (and even reused). 478 * 479 * In case it was remapped to a different anon_vma, the new anon_vma will be a 480 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 481 * ensure that any anon_vma obtained from the page will still be valid for as 482 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 483 * 484 * All users of this function must be very careful when walking the anon_vma 485 * chain and verify that the page in question is indeed mapped in it 486 * [ something equivalent to page_mapped_in_vma() ]. 487 * 488 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 489 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 490 * if there is a mapcount, we can dereference the anon_vma after observing 491 * those. 492 * 493 * NOTE: the caller should normally hold folio lock when calling this. If 494 * not, the caller needs to double check the anon_vma didn't change after 495 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 496 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 497 * which has already covered that, and comment above remap_pages(). 498 */ 499 struct anon_vma *folio_get_anon_vma(const struct folio *folio) 500 { 501 struct anon_vma *anon_vma = NULL; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 507 goto out; 508 if (!folio_mapped(folio)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 512 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 513 anon_vma = NULL; 514 goto out; 515 } 516 517 /* 518 * If this folio is still mapped, then its anon_vma cannot have been 519 * freed. But if it has been unmapped, we have no security against the 520 * anon_vma structure being freed and reused (for another anon_vma: 521 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 522 * above cannot corrupt). 523 */ 524 if (!folio_mapped(folio)) { 525 rcu_read_unlock(); 526 put_anon_vma(anon_vma); 527 return NULL; 528 } 529 out: 530 rcu_read_unlock(); 531 532 return anon_vma; 533 } 534 535 /* 536 * Similar to folio_get_anon_vma() except it locks the anon_vma. 537 * 538 * Its a little more complex as it tries to keep the fast path to a single 539 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 540 * reference like with folio_get_anon_vma() and then block on the mutex 541 * on !rwc->try_lock case. 542 */ 543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio, 544 struct rmap_walk_control *rwc) 545 { 546 struct anon_vma *anon_vma = NULL; 547 struct anon_vma *root_anon_vma; 548 unsigned long anon_mapping; 549 550 retry: 551 rcu_read_lock(); 552 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 553 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 554 goto out; 555 if (!folio_mapped(folio)) 556 goto out; 557 558 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 559 root_anon_vma = READ_ONCE(anon_vma->root); 560 if (down_read_trylock(&root_anon_vma->rwsem)) { 561 /* 562 * folio_move_anon_rmap() might have changed the anon_vma as we 563 * might not hold the folio lock here. 564 */ 565 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 566 anon_mapping)) { 567 up_read(&root_anon_vma->rwsem); 568 rcu_read_unlock(); 569 goto retry; 570 } 571 572 /* 573 * If the folio is still mapped, then this anon_vma is still 574 * its anon_vma, and holding the mutex ensures that it will 575 * not go away, see anon_vma_free(). 576 */ 577 if (!folio_mapped(folio)) { 578 up_read(&root_anon_vma->rwsem); 579 anon_vma = NULL; 580 } 581 goto out; 582 } 583 584 if (rwc && rwc->try_lock) { 585 anon_vma = NULL; 586 rwc->contended = true; 587 goto out; 588 } 589 590 /* trylock failed, we got to sleep */ 591 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 592 anon_vma = NULL; 593 goto out; 594 } 595 596 if (!folio_mapped(folio)) { 597 rcu_read_unlock(); 598 put_anon_vma(anon_vma); 599 return NULL; 600 } 601 602 /* we pinned the anon_vma, its safe to sleep */ 603 rcu_read_unlock(); 604 anon_vma_lock_read(anon_vma); 605 606 /* 607 * folio_move_anon_rmap() might have changed the anon_vma as we might 608 * not hold the folio lock here. 609 */ 610 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 611 anon_mapping)) { 612 anon_vma_unlock_read(anon_vma); 613 put_anon_vma(anon_vma); 614 anon_vma = NULL; 615 goto retry; 616 } 617 618 if (atomic_dec_and_test(&anon_vma->refcount)) { 619 /* 620 * Oops, we held the last refcount, release the lock 621 * and bail -- can't simply use put_anon_vma() because 622 * we'll deadlock on the anon_vma_lock_write() recursion. 623 */ 624 anon_vma_unlock_read(anon_vma); 625 __put_anon_vma(anon_vma); 626 anon_vma = NULL; 627 } 628 629 return anon_vma; 630 631 out: 632 rcu_read_unlock(); 633 return anon_vma; 634 } 635 636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 637 /* 638 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 639 * important if a PTE was dirty when it was unmapped that it's flushed 640 * before any IO is initiated on the page to prevent lost writes. Similarly, 641 * it must be flushed before freeing to prevent data leakage. 642 */ 643 void try_to_unmap_flush(void) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 if (!tlb_ubc->flush_required) 648 return; 649 650 arch_tlbbatch_flush(&tlb_ubc->arch); 651 tlb_ubc->flush_required = false; 652 tlb_ubc->writable = false; 653 } 654 655 /* Flush iff there are potentially writable TLB entries that can race with IO */ 656 void try_to_unmap_flush_dirty(void) 657 { 658 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 659 660 if (tlb_ubc->writable) 661 try_to_unmap_flush(); 662 } 663 664 /* 665 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 666 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 667 */ 668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 669 #define TLB_FLUSH_BATCH_PENDING_MASK \ 670 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 671 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 672 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 673 674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 675 unsigned long uaddr) 676 { 677 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 678 int batch; 679 bool writable = pte_dirty(pteval); 680 681 if (!pte_accessible(mm, pteval)) 682 return; 683 684 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 685 tlb_ubc->flush_required = true; 686 687 /* 688 * Ensure compiler does not re-order the setting of tlb_flush_batched 689 * before the PTE is cleared. 690 */ 691 barrier(); 692 batch = atomic_read(&mm->tlb_flush_batched); 693 retry: 694 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 695 /* 696 * Prevent `pending' from catching up with `flushed' because of 697 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 698 * `pending' becomes large. 699 */ 700 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 701 goto retry; 702 } else { 703 atomic_inc(&mm->tlb_flush_batched); 704 } 705 706 /* 707 * If the PTE was dirty then it's best to assume it's writable. The 708 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 709 * before the page is queued for IO. 710 */ 711 if (writable) 712 tlb_ubc->writable = true; 713 } 714 715 /* 716 * Returns true if the TLB flush should be deferred to the end of a batch of 717 * unmap operations to reduce IPIs. 718 */ 719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 720 { 721 if (!(flags & TTU_BATCH_FLUSH)) 722 return false; 723 724 return arch_tlbbatch_should_defer(mm); 725 } 726 727 /* 728 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 729 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 730 * operation such as mprotect or munmap to race between reclaim unmapping 731 * the page and flushing the page. If this race occurs, it potentially allows 732 * access to data via a stale TLB entry. Tracking all mm's that have TLB 733 * batching in flight would be expensive during reclaim so instead track 734 * whether TLB batching occurred in the past and if so then do a flush here 735 * if required. This will cost one additional flush per reclaim cycle paid 736 * by the first operation at risk such as mprotect and mumap. 737 * 738 * This must be called under the PTL so that an access to tlb_flush_batched 739 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 740 * via the PTL. 741 */ 742 void flush_tlb_batched_pending(struct mm_struct *mm) 743 { 744 int batch = atomic_read(&mm->tlb_flush_batched); 745 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 746 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 747 748 if (pending != flushed) { 749 arch_flush_tlb_batched_pending(mm); 750 /* 751 * If the new TLB flushing is pending during flushing, leave 752 * mm->tlb_flush_batched as is, to avoid losing flushing. 753 */ 754 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 755 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 756 } 757 } 758 #else 759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 760 unsigned long uaddr) 761 { 762 } 763 764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 765 { 766 return false; 767 } 768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 769 770 /** 771 * page_address_in_vma - The virtual address of a page in this VMA. 772 * @folio: The folio containing the page. 773 * @page: The page within the folio. 774 * @vma: The VMA we need to know the address in. 775 * 776 * Calculates the user virtual address of this page in the specified VMA. 777 * It is the caller's responsibililty to check the page is actually 778 * within the VMA. There may not currently be a PTE pointing at this 779 * page, but if a page fault occurs at this address, this is the page 780 * which will be accessed. 781 * 782 * Context: Caller should hold a reference to the folio. Caller should 783 * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the 784 * VMA from being altered. 785 * 786 * Return: The virtual address corresponding to this page in the VMA. 787 */ 788 unsigned long page_address_in_vma(const struct folio *folio, 789 const struct page *page, const struct vm_area_struct *vma) 790 { 791 if (folio_test_anon(folio)) { 792 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 793 /* 794 * Note: swapoff's unuse_vma() is more efficient with this 795 * check, and needs it to match anon_vma when KSM is active. 796 */ 797 if (!vma->anon_vma || !page__anon_vma || 798 vma->anon_vma->root != page__anon_vma->root) 799 return -EFAULT; 800 } else if (!vma->vm_file) { 801 return -EFAULT; 802 } else if (vma->vm_file->f_mapping != folio->mapping) { 803 return -EFAULT; 804 } 805 806 /* KSM folios don't reach here because of the !page__anon_vma check */ 807 return vma_address(vma, page_pgoff(folio, page), 1); 808 } 809 810 /* 811 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 812 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 813 * represents. 814 */ 815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 816 { 817 pgd_t *pgd; 818 p4d_t *p4d; 819 pud_t *pud; 820 pmd_t *pmd = NULL; 821 822 pgd = pgd_offset(mm, address); 823 if (!pgd_present(*pgd)) 824 goto out; 825 826 p4d = p4d_offset(pgd, address); 827 if (!p4d_present(*p4d)) 828 goto out; 829 830 pud = pud_offset(p4d, address); 831 if (!pud_present(*pud)) 832 goto out; 833 834 pmd = pmd_offset(pud, address); 835 out: 836 return pmd; 837 } 838 839 struct folio_referenced_arg { 840 int mapcount; 841 int referenced; 842 unsigned long vm_flags; 843 struct mem_cgroup *memcg; 844 }; 845 846 /* 847 * arg: folio_referenced_arg will be passed 848 */ 849 static bool folio_referenced_one(struct folio *folio, 850 struct vm_area_struct *vma, unsigned long address, void *arg) 851 { 852 struct folio_referenced_arg *pra = arg; 853 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 854 int referenced = 0; 855 unsigned long start = address, ptes = 0; 856 857 while (page_vma_mapped_walk(&pvmw)) { 858 address = pvmw.address; 859 860 if (vma->vm_flags & VM_LOCKED) { 861 if (!folio_test_large(folio) || !pvmw.pte) { 862 /* Restore the mlock which got missed */ 863 mlock_vma_folio(folio, vma); 864 page_vma_mapped_walk_done(&pvmw); 865 pra->vm_flags |= VM_LOCKED; 866 return false; /* To break the loop */ 867 } 868 /* 869 * For large folio fully mapped to VMA, will 870 * be handled after the pvmw loop. 871 * 872 * For large folio cross VMA boundaries, it's 873 * expected to be picked by page reclaim. But 874 * should skip reference of pages which are in 875 * the range of VM_LOCKED vma. As page reclaim 876 * should just count the reference of pages out 877 * the range of VM_LOCKED vma. 878 */ 879 ptes++; 880 pra->mapcount--; 881 continue; 882 } 883 884 /* 885 * Skip the non-shared swapbacked folio mapped solely by 886 * the exiting or OOM-reaped process. This avoids redundant 887 * swap-out followed by an immediate unmap. 888 */ 889 if ((!atomic_read(&vma->vm_mm->mm_users) || 890 check_stable_address_space(vma->vm_mm)) && 891 folio_test_anon(folio) && folio_test_swapbacked(folio) && 892 !folio_likely_mapped_shared(folio)) { 893 pra->referenced = -1; 894 page_vma_mapped_walk_done(&pvmw); 895 return false; 896 } 897 898 if (lru_gen_enabled() && pvmw.pte) { 899 if (lru_gen_look_around(&pvmw)) 900 referenced++; 901 } else if (pvmw.pte) { 902 if (ptep_clear_flush_young_notify(vma, address, 903 pvmw.pte)) 904 referenced++; 905 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 906 if (pmdp_clear_flush_young_notify(vma, address, 907 pvmw.pmd)) 908 referenced++; 909 } else { 910 /* unexpected pmd-mapped folio? */ 911 WARN_ON_ONCE(1); 912 } 913 914 pra->mapcount--; 915 } 916 917 if ((vma->vm_flags & VM_LOCKED) && 918 folio_test_large(folio) && 919 folio_within_vma(folio, vma)) { 920 unsigned long s_align, e_align; 921 922 s_align = ALIGN_DOWN(start, PMD_SIZE); 923 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 924 925 /* folio doesn't cross page table boundary and fully mapped */ 926 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 927 /* Restore the mlock which got missed */ 928 mlock_vma_folio(folio, vma); 929 pra->vm_flags |= VM_LOCKED; 930 return false; /* To break the loop */ 931 } 932 } 933 934 if (referenced) 935 folio_clear_idle(folio); 936 if (folio_test_clear_young(folio)) 937 referenced++; 938 939 if (referenced) { 940 pra->referenced++; 941 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 942 } 943 944 if (!pra->mapcount) 945 return false; /* To break the loop */ 946 947 return true; 948 } 949 950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 951 { 952 struct folio_referenced_arg *pra = arg; 953 struct mem_cgroup *memcg = pra->memcg; 954 955 /* 956 * Ignore references from this mapping if it has no recency. If the 957 * folio has been used in another mapping, we will catch it; if this 958 * other mapping is already gone, the unmap path will have set the 959 * referenced flag or activated the folio in zap_pte_range(). 960 */ 961 if (!vma_has_recency(vma)) 962 return true; 963 964 /* 965 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 966 * of references from different cgroups. 967 */ 968 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 969 return true; 970 971 return false; 972 } 973 974 /** 975 * folio_referenced() - Test if the folio was referenced. 976 * @folio: The folio to test. 977 * @is_locked: Caller holds lock on the folio. 978 * @memcg: target memory cgroup 979 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 980 * 981 * Quick test_and_clear_referenced for all mappings of a folio, 982 * 983 * Return: The number of mappings which referenced the folio. Return -1 if 984 * the function bailed out due to rmap lock contention. 985 */ 986 int folio_referenced(struct folio *folio, int is_locked, 987 struct mem_cgroup *memcg, unsigned long *vm_flags) 988 { 989 bool we_locked = false; 990 struct folio_referenced_arg pra = { 991 .mapcount = folio_mapcount(folio), 992 .memcg = memcg, 993 }; 994 struct rmap_walk_control rwc = { 995 .rmap_one = folio_referenced_one, 996 .arg = (void *)&pra, 997 .anon_lock = folio_lock_anon_vma_read, 998 .try_lock = true, 999 .invalid_vma = invalid_folio_referenced_vma, 1000 }; 1001 1002 *vm_flags = 0; 1003 if (!pra.mapcount) 1004 return 0; 1005 1006 if (!folio_raw_mapping(folio)) 1007 return 0; 1008 1009 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1010 we_locked = folio_trylock(folio); 1011 if (!we_locked) 1012 return 1; 1013 } 1014 1015 rmap_walk(folio, &rwc); 1016 *vm_flags = pra.vm_flags; 1017 1018 if (we_locked) 1019 folio_unlock(folio); 1020 1021 return rwc.contended ? -1 : pra.referenced; 1022 } 1023 1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1025 { 1026 int cleaned = 0; 1027 struct vm_area_struct *vma = pvmw->vma; 1028 struct mmu_notifier_range range; 1029 unsigned long address = pvmw->address; 1030 1031 /* 1032 * We have to assume the worse case ie pmd for invalidation. Note that 1033 * the folio can not be freed from this function. 1034 */ 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1036 vma->vm_mm, address, vma_address_end(pvmw)); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 while (page_vma_mapped_walk(pvmw)) { 1040 int ret = 0; 1041 1042 address = pvmw->address; 1043 if (pvmw->pte) { 1044 pte_t *pte = pvmw->pte; 1045 pte_t entry = ptep_get(pte); 1046 1047 /* 1048 * PFN swap PTEs, such as device-exclusive ones, that 1049 * actually map pages are clean and not writable from a 1050 * CPU perspective. The MMU notifier takes care of any 1051 * device aspects. 1052 */ 1053 if (!pte_present(entry)) 1054 continue; 1055 if (!pte_dirty(entry) && !pte_write(entry)) 1056 continue; 1057 1058 flush_cache_page(vma, address, pte_pfn(entry)); 1059 entry = ptep_clear_flush(vma, address, pte); 1060 entry = pte_wrprotect(entry); 1061 entry = pte_mkclean(entry); 1062 set_pte_at(vma->vm_mm, address, pte, entry); 1063 ret = 1; 1064 } else { 1065 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1066 pmd_t *pmd = pvmw->pmd; 1067 pmd_t entry; 1068 1069 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1070 continue; 1071 1072 flush_cache_range(vma, address, 1073 address + HPAGE_PMD_SIZE); 1074 entry = pmdp_invalidate(vma, address, pmd); 1075 entry = pmd_wrprotect(entry); 1076 entry = pmd_mkclean(entry); 1077 set_pmd_at(vma->vm_mm, address, pmd, entry); 1078 ret = 1; 1079 #else 1080 /* unexpected pmd-mapped folio? */ 1081 WARN_ON_ONCE(1); 1082 #endif 1083 } 1084 1085 if (ret) 1086 cleaned++; 1087 } 1088 1089 mmu_notifier_invalidate_range_end(&range); 1090 1091 return cleaned; 1092 } 1093 1094 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1095 unsigned long address, void *arg) 1096 { 1097 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1098 int *cleaned = arg; 1099 1100 *cleaned += page_vma_mkclean_one(&pvmw); 1101 1102 return true; 1103 } 1104 1105 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1106 { 1107 if (vma->vm_flags & VM_SHARED) 1108 return false; 1109 1110 return true; 1111 } 1112 1113 int folio_mkclean(struct folio *folio) 1114 { 1115 int cleaned = 0; 1116 struct address_space *mapping; 1117 struct rmap_walk_control rwc = { 1118 .arg = (void *)&cleaned, 1119 .rmap_one = page_mkclean_one, 1120 .invalid_vma = invalid_mkclean_vma, 1121 }; 1122 1123 BUG_ON(!folio_test_locked(folio)); 1124 1125 if (!folio_mapped(folio)) 1126 return 0; 1127 1128 mapping = folio_mapping(folio); 1129 if (!mapping) 1130 return 0; 1131 1132 rmap_walk(folio, &rwc); 1133 1134 return cleaned; 1135 } 1136 EXPORT_SYMBOL_GPL(folio_mkclean); 1137 1138 /** 1139 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1140 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1141 * within the @vma of shared mappings. And since clean PTEs 1142 * should also be readonly, write protects them too. 1143 * @pfn: start pfn. 1144 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1145 * @pgoff: page offset that the @pfn mapped with. 1146 * @vma: vma that @pfn mapped within. 1147 * 1148 * Returns the number of cleaned PTEs (including PMDs). 1149 */ 1150 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1151 struct vm_area_struct *vma) 1152 { 1153 struct page_vma_mapped_walk pvmw = { 1154 .pfn = pfn, 1155 .nr_pages = nr_pages, 1156 .pgoff = pgoff, 1157 .vma = vma, 1158 .flags = PVMW_SYNC, 1159 }; 1160 1161 if (invalid_mkclean_vma(vma, NULL)) 1162 return 0; 1163 1164 pvmw.address = vma_address(vma, pgoff, nr_pages); 1165 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1166 1167 return page_vma_mkclean_one(&pvmw); 1168 } 1169 1170 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1171 struct page *page, int nr_pages, enum rmap_level level, 1172 int *nr_pmdmapped) 1173 { 1174 atomic_t *mapped = &folio->_nr_pages_mapped; 1175 const int orig_nr_pages = nr_pages; 1176 int first = 0, nr = 0; 1177 1178 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1179 1180 switch (level) { 1181 case RMAP_LEVEL_PTE: 1182 if (!folio_test_large(folio)) { 1183 nr = atomic_inc_and_test(&folio->_mapcount); 1184 break; 1185 } 1186 1187 do { 1188 first += atomic_inc_and_test(&page->_mapcount); 1189 } while (page++, --nr_pages > 0); 1190 1191 if (first && 1192 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1193 nr = first; 1194 1195 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1196 break; 1197 case RMAP_LEVEL_PMD: 1198 first = atomic_inc_and_test(&folio->_entire_mapcount); 1199 if (first) { 1200 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1201 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1202 *nr_pmdmapped = folio_nr_pages(folio); 1203 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1204 /* Raced ahead of a remove and another add? */ 1205 if (unlikely(nr < 0)) 1206 nr = 0; 1207 } else { 1208 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1209 nr = 0; 1210 } 1211 } 1212 atomic_inc(&folio->_large_mapcount); 1213 break; 1214 } 1215 return nr; 1216 } 1217 1218 /** 1219 * folio_move_anon_rmap - move a folio to our anon_vma 1220 * @folio: The folio to move to our anon_vma 1221 * @vma: The vma the folio belongs to 1222 * 1223 * When a folio belongs exclusively to one process after a COW event, 1224 * that folio can be moved into the anon_vma that belongs to just that 1225 * process, so the rmap code will not search the parent or sibling processes. 1226 */ 1227 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1228 { 1229 void *anon_vma = vma->anon_vma; 1230 1231 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1232 VM_BUG_ON_VMA(!anon_vma, vma); 1233 1234 anon_vma += PAGE_MAPPING_ANON; 1235 /* 1236 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1237 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1238 * folio_test_anon()) will not see one without the other. 1239 */ 1240 WRITE_ONCE(folio->mapping, anon_vma); 1241 } 1242 1243 /** 1244 * __folio_set_anon - set up a new anonymous rmap for a folio 1245 * @folio: The folio to set up the new anonymous rmap for. 1246 * @vma: VM area to add the folio to. 1247 * @address: User virtual address of the mapping 1248 * @exclusive: Whether the folio is exclusive to the process. 1249 */ 1250 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1251 unsigned long address, bool exclusive) 1252 { 1253 struct anon_vma *anon_vma = vma->anon_vma; 1254 1255 BUG_ON(!anon_vma); 1256 1257 /* 1258 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1259 * possible anon_vma for the folio mapping! 1260 */ 1261 if (!exclusive) 1262 anon_vma = anon_vma->root; 1263 1264 /* 1265 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1266 * Make sure the compiler doesn't split the stores of anon_vma and 1267 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1268 * could mistake the mapping for a struct address_space and crash. 1269 */ 1270 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1271 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1272 folio->index = linear_page_index(vma, address); 1273 } 1274 1275 /** 1276 * __page_check_anon_rmap - sanity check anonymous rmap addition 1277 * @folio: The folio containing @page. 1278 * @page: the page to check the mapping of 1279 * @vma: the vm area in which the mapping is added 1280 * @address: the user virtual address mapped 1281 */ 1282 static void __page_check_anon_rmap(const struct folio *folio, 1283 const struct page *page, struct vm_area_struct *vma, 1284 unsigned long address) 1285 { 1286 /* 1287 * The page's anon-rmap details (mapping and index) are guaranteed to 1288 * be set up correctly at this point. 1289 * 1290 * We have exclusion against folio_add_anon_rmap_*() because the caller 1291 * always holds the page locked. 1292 * 1293 * We have exclusion against folio_add_new_anon_rmap because those pages 1294 * are initially only visible via the pagetables, and the pte is locked 1295 * over the call to folio_add_new_anon_rmap. 1296 */ 1297 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1298 folio); 1299 VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address), 1300 page); 1301 } 1302 1303 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1304 { 1305 int idx; 1306 1307 if (nr) { 1308 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1309 __lruvec_stat_mod_folio(folio, idx, nr); 1310 } 1311 if (nr_pmdmapped) { 1312 if (folio_test_anon(folio)) { 1313 idx = NR_ANON_THPS; 1314 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1315 } else { 1316 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1317 idx = folio_test_swapbacked(folio) ? 1318 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1319 __mod_node_page_state(folio_pgdat(folio), idx, 1320 nr_pmdmapped); 1321 } 1322 } 1323 } 1324 1325 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1326 struct page *page, int nr_pages, struct vm_area_struct *vma, 1327 unsigned long address, rmap_t flags, enum rmap_level level) 1328 { 1329 int i, nr, nr_pmdmapped = 0; 1330 1331 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1332 1333 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1334 1335 if (likely(!folio_test_ksm(folio))) 1336 __page_check_anon_rmap(folio, page, vma, address); 1337 1338 __folio_mod_stat(folio, nr, nr_pmdmapped); 1339 1340 if (flags & RMAP_EXCLUSIVE) { 1341 switch (level) { 1342 case RMAP_LEVEL_PTE: 1343 for (i = 0; i < nr_pages; i++) 1344 SetPageAnonExclusive(page + i); 1345 break; 1346 case RMAP_LEVEL_PMD: 1347 SetPageAnonExclusive(page); 1348 break; 1349 } 1350 } 1351 for (i = 0; i < nr_pages; i++) { 1352 struct page *cur_page = page + i; 1353 1354 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1355 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1356 (folio_test_large(folio) && 1357 folio_entire_mapcount(folio) > 1)) && 1358 PageAnonExclusive(cur_page), folio); 1359 } 1360 1361 /* 1362 * For large folio, only mlock it if it's fully mapped to VMA. It's 1363 * not easy to check whether the large folio is fully mapped to VMA 1364 * here. Only mlock normal 4K folio and leave page reclaim to handle 1365 * large folio. 1366 */ 1367 if (!folio_test_large(folio)) 1368 mlock_vma_folio(folio, vma); 1369 } 1370 1371 /** 1372 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1373 * @folio: The folio to add the mappings to 1374 * @page: The first page to add 1375 * @nr_pages: The number of pages which will be mapped 1376 * @vma: The vm area in which the mappings are added 1377 * @address: The user virtual address of the first page to map 1378 * @flags: The rmap flags 1379 * 1380 * The page range of folio is defined by [first_page, first_page + nr_pages) 1381 * 1382 * The caller needs to hold the page table lock, and the page must be locked in 1383 * the anon_vma case: to serialize mapping,index checking after setting, 1384 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1385 * (but KSM folios are never downgraded). 1386 */ 1387 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1388 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1389 rmap_t flags) 1390 { 1391 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1392 RMAP_LEVEL_PTE); 1393 } 1394 1395 /** 1396 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1397 * @folio: The folio to add the mapping to 1398 * @page: The first page to add 1399 * @vma: The vm area in which the mapping is added 1400 * @address: The user virtual address of the first page to map 1401 * @flags: The rmap flags 1402 * 1403 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1404 * 1405 * The caller needs to hold the page table lock, and the page must be locked in 1406 * the anon_vma case: to serialize mapping,index checking after setting. 1407 */ 1408 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1409 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1410 { 1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1412 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1413 RMAP_LEVEL_PMD); 1414 #else 1415 WARN_ON_ONCE(true); 1416 #endif 1417 } 1418 1419 /** 1420 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1421 * @folio: The folio to add the mapping to. 1422 * @vma: the vm area in which the mapping is added 1423 * @address: the user virtual address mapped 1424 * @flags: The rmap flags 1425 * 1426 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1427 * This means the inc-and-test can be bypassed. 1428 * The folio doesn't necessarily need to be locked while it's exclusive 1429 * unless two threads map it concurrently. However, the folio must be 1430 * locked if it's shared. 1431 * 1432 * If the folio is pmd-mappable, it is accounted as a THP. 1433 */ 1434 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1435 unsigned long address, rmap_t flags) 1436 { 1437 const int nr = folio_nr_pages(folio); 1438 const bool exclusive = flags & RMAP_EXCLUSIVE; 1439 int nr_pmdmapped = 0; 1440 1441 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1442 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1443 VM_BUG_ON_VMA(address < vma->vm_start || 1444 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1445 1446 /* 1447 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1448 * under memory pressure. 1449 */ 1450 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1451 __folio_set_swapbacked(folio); 1452 __folio_set_anon(folio, vma, address, exclusive); 1453 1454 if (likely(!folio_test_large(folio))) { 1455 /* increment count (starts at -1) */ 1456 atomic_set(&folio->_mapcount, 0); 1457 if (exclusive) 1458 SetPageAnonExclusive(&folio->page); 1459 } else if (!folio_test_pmd_mappable(folio)) { 1460 int i; 1461 1462 for (i = 0; i < nr; i++) { 1463 struct page *page = folio_page(folio, i); 1464 1465 /* increment count (starts at -1) */ 1466 atomic_set(&page->_mapcount, 0); 1467 if (exclusive) 1468 SetPageAnonExclusive(page); 1469 } 1470 1471 /* increment count (starts at -1) */ 1472 atomic_set(&folio->_large_mapcount, nr - 1); 1473 atomic_set(&folio->_nr_pages_mapped, nr); 1474 } else { 1475 /* increment count (starts at -1) */ 1476 atomic_set(&folio->_entire_mapcount, 0); 1477 /* increment count (starts at -1) */ 1478 atomic_set(&folio->_large_mapcount, 0); 1479 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1480 if (exclusive) 1481 SetPageAnonExclusive(&folio->page); 1482 nr_pmdmapped = nr; 1483 } 1484 1485 __folio_mod_stat(folio, nr, nr_pmdmapped); 1486 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1487 } 1488 1489 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1490 struct page *page, int nr_pages, struct vm_area_struct *vma, 1491 enum rmap_level level) 1492 { 1493 int nr, nr_pmdmapped = 0; 1494 1495 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1496 1497 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1498 __folio_mod_stat(folio, nr, nr_pmdmapped); 1499 1500 /* See comments in folio_add_anon_rmap_*() */ 1501 if (!folio_test_large(folio)) 1502 mlock_vma_folio(folio, vma); 1503 } 1504 1505 /** 1506 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1507 * @folio: The folio to add the mappings to 1508 * @page: The first page to add 1509 * @nr_pages: The number of pages that will be mapped using PTEs 1510 * @vma: The vm area in which the mappings are added 1511 * 1512 * The page range of the folio is defined by [page, page + nr_pages) 1513 * 1514 * The caller needs to hold the page table lock. 1515 */ 1516 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1517 int nr_pages, struct vm_area_struct *vma) 1518 { 1519 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1520 } 1521 1522 /** 1523 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1524 * @folio: The folio to add the mapping to 1525 * @page: The first page to add 1526 * @vma: The vm area in which the mapping is added 1527 * 1528 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1529 * 1530 * The caller needs to hold the page table lock. 1531 */ 1532 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1533 struct vm_area_struct *vma) 1534 { 1535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1536 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1537 #else 1538 WARN_ON_ONCE(true); 1539 #endif 1540 } 1541 1542 static __always_inline void __folio_remove_rmap(struct folio *folio, 1543 struct page *page, int nr_pages, struct vm_area_struct *vma, 1544 enum rmap_level level) 1545 { 1546 atomic_t *mapped = &folio->_nr_pages_mapped; 1547 int last = 0, nr = 0, nr_pmdmapped = 0; 1548 bool partially_mapped = false; 1549 1550 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1551 1552 switch (level) { 1553 case RMAP_LEVEL_PTE: 1554 if (!folio_test_large(folio)) { 1555 nr = atomic_add_negative(-1, &folio->_mapcount); 1556 break; 1557 } 1558 1559 atomic_sub(nr_pages, &folio->_large_mapcount); 1560 do { 1561 last += atomic_add_negative(-1, &page->_mapcount); 1562 } while (page++, --nr_pages > 0); 1563 1564 if (last && 1565 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1566 nr = last; 1567 1568 partially_mapped = nr && atomic_read(mapped); 1569 break; 1570 case RMAP_LEVEL_PMD: 1571 atomic_dec(&folio->_large_mapcount); 1572 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1573 if (last) { 1574 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1575 if (likely(nr < ENTIRELY_MAPPED)) { 1576 nr_pmdmapped = folio_nr_pages(folio); 1577 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1578 /* Raced ahead of another remove and an add? */ 1579 if (unlikely(nr < 0)) 1580 nr = 0; 1581 } else { 1582 /* An add of ENTIRELY_MAPPED raced ahead */ 1583 nr = 0; 1584 } 1585 } 1586 1587 partially_mapped = nr && nr < nr_pmdmapped; 1588 break; 1589 } 1590 1591 /* 1592 * Queue anon large folio for deferred split if at least one page of 1593 * the folio is unmapped and at least one page is still mapped. 1594 * 1595 * Check partially_mapped first to ensure it is a large folio. 1596 */ 1597 if (partially_mapped && folio_test_anon(folio) && 1598 !folio_test_partially_mapped(folio)) 1599 deferred_split_folio(folio, true); 1600 1601 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1602 1603 /* 1604 * It would be tidy to reset folio_test_anon mapping when fully 1605 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1606 * which increments mapcount after us but sets mapping before us: 1607 * so leave the reset to free_pages_prepare, and remember that 1608 * it's only reliable while mapped. 1609 */ 1610 1611 munlock_vma_folio(folio, vma); 1612 } 1613 1614 /** 1615 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1616 * @folio: The folio to remove the mappings from 1617 * @page: The first page to remove 1618 * @nr_pages: The number of pages that will be removed from the mapping 1619 * @vma: The vm area from which the mappings are removed 1620 * 1621 * The page range of the folio is defined by [page, page + nr_pages) 1622 * 1623 * The caller needs to hold the page table lock. 1624 */ 1625 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1626 int nr_pages, struct vm_area_struct *vma) 1627 { 1628 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1629 } 1630 1631 /** 1632 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1633 * @folio: The folio to remove the mapping from 1634 * @page: The first page to remove 1635 * @vma: The vm area from which the mapping is removed 1636 * 1637 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1638 * 1639 * The caller needs to hold the page table lock. 1640 */ 1641 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1642 struct vm_area_struct *vma) 1643 { 1644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1645 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1646 #else 1647 WARN_ON_ONCE(true); 1648 #endif 1649 } 1650 1651 /* 1652 * @arg: enum ttu_flags will be passed to this argument 1653 */ 1654 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1655 unsigned long address, void *arg) 1656 { 1657 struct mm_struct *mm = vma->vm_mm; 1658 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1659 bool anon_exclusive, ret = true; 1660 pte_t pteval; 1661 struct page *subpage; 1662 struct mmu_notifier_range range; 1663 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1664 unsigned long pfn; 1665 unsigned long hsz = 0; 1666 1667 /* 1668 * When racing against e.g. zap_pte_range() on another cpu, 1669 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1670 * try_to_unmap() may return before page_mapped() has become false, 1671 * if page table locking is skipped: use TTU_SYNC to wait for that. 1672 */ 1673 if (flags & TTU_SYNC) 1674 pvmw.flags = PVMW_SYNC; 1675 1676 /* 1677 * For THP, we have to assume the worse case ie pmd for invalidation. 1678 * For hugetlb, it could be much worse if we need to do pud 1679 * invalidation in the case of pmd sharing. 1680 * 1681 * Note that the folio can not be freed in this function as call of 1682 * try_to_unmap() must hold a reference on the folio. 1683 */ 1684 range.end = vma_address_end(&pvmw); 1685 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1686 address, range.end); 1687 if (folio_test_hugetlb(folio)) { 1688 /* 1689 * If sharing is possible, start and end will be adjusted 1690 * accordingly. 1691 */ 1692 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1693 &range.end); 1694 1695 /* We need the huge page size for set_huge_pte_at() */ 1696 hsz = huge_page_size(hstate_vma(vma)); 1697 } 1698 mmu_notifier_invalidate_range_start(&range); 1699 1700 while (page_vma_mapped_walk(&pvmw)) { 1701 /* 1702 * If the folio is in an mlock()d vma, we must not swap it out. 1703 */ 1704 if (!(flags & TTU_IGNORE_MLOCK) && 1705 (vma->vm_flags & VM_LOCKED)) { 1706 /* Restore the mlock which got missed */ 1707 if (!folio_test_large(folio)) 1708 mlock_vma_folio(folio, vma); 1709 goto walk_abort; 1710 } 1711 1712 if (!pvmw.pte) { 1713 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, 1714 folio)) 1715 goto walk_done; 1716 1717 if (flags & TTU_SPLIT_HUGE_PMD) { 1718 /* 1719 * We temporarily have to drop the PTL and 1720 * restart so we can process the PTE-mapped THP. 1721 */ 1722 split_huge_pmd_locked(vma, pvmw.address, 1723 pvmw.pmd, false, folio); 1724 flags &= ~TTU_SPLIT_HUGE_PMD; 1725 page_vma_mapped_walk_restart(&pvmw); 1726 continue; 1727 } 1728 } 1729 1730 /* Unexpected PMD-mapped THP? */ 1731 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1732 1733 /* 1734 * Handle PFN swap PTEs, such as device-exclusive ones, that 1735 * actually map pages. 1736 */ 1737 pteval = ptep_get(pvmw.pte); 1738 if (likely(pte_present(pteval))) { 1739 pfn = pte_pfn(pteval); 1740 } else { 1741 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 1742 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1743 } 1744 1745 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1746 address = pvmw.address; 1747 anon_exclusive = folio_test_anon(folio) && 1748 PageAnonExclusive(subpage); 1749 1750 if (folio_test_hugetlb(folio)) { 1751 bool anon = folio_test_anon(folio); 1752 1753 /* 1754 * The try_to_unmap() is only passed a hugetlb page 1755 * in the case where the hugetlb page is poisoned. 1756 */ 1757 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1758 /* 1759 * huge_pmd_unshare may unmap an entire PMD page. 1760 * There is no way of knowing exactly which PMDs may 1761 * be cached for this mm, so we must flush them all. 1762 * start/end were already adjusted above to cover this 1763 * range. 1764 */ 1765 flush_cache_range(vma, range.start, range.end); 1766 1767 /* 1768 * To call huge_pmd_unshare, i_mmap_rwsem must be 1769 * held in write mode. Caller needs to explicitly 1770 * do this outside rmap routines. 1771 * 1772 * We also must hold hugetlb vma_lock in write mode. 1773 * Lock order dictates acquiring vma_lock BEFORE 1774 * i_mmap_rwsem. We can only try lock here and fail 1775 * if unsuccessful. 1776 */ 1777 if (!anon) { 1778 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1779 if (!hugetlb_vma_trylock_write(vma)) 1780 goto walk_abort; 1781 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1782 hugetlb_vma_unlock_write(vma); 1783 flush_tlb_range(vma, 1784 range.start, range.end); 1785 /* 1786 * The ref count of the PMD page was 1787 * dropped which is part of the way map 1788 * counting is done for shared PMDs. 1789 * Return 'true' here. When there is 1790 * no other sharing, huge_pmd_unshare 1791 * returns false and we will unmap the 1792 * actual page and drop map count 1793 * to zero. 1794 */ 1795 goto walk_done; 1796 } 1797 hugetlb_vma_unlock_write(vma); 1798 } 1799 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1800 if (pte_dirty(pteval)) 1801 folio_mark_dirty(folio); 1802 } else if (likely(pte_present(pteval))) { 1803 flush_cache_page(vma, address, pfn); 1804 /* Nuke the page table entry. */ 1805 if (should_defer_flush(mm, flags)) { 1806 /* 1807 * We clear the PTE but do not flush so potentially 1808 * a remote CPU could still be writing to the folio. 1809 * If the entry was previously clean then the 1810 * architecture must guarantee that a clear->dirty 1811 * transition on a cached TLB entry is written through 1812 * and traps if the PTE is unmapped. 1813 */ 1814 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1815 1816 set_tlb_ubc_flush_pending(mm, pteval, address); 1817 } else { 1818 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1819 } 1820 if (pte_dirty(pteval)) 1821 folio_mark_dirty(folio); 1822 } else { 1823 pte_clear(mm, address, pvmw.pte); 1824 } 1825 1826 /* 1827 * Now the pte is cleared. If this pte was uffd-wp armed, 1828 * we may want to replace a none pte with a marker pte if 1829 * it's file-backed, so we don't lose the tracking info. 1830 */ 1831 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1832 1833 /* Update high watermark before we lower rss */ 1834 update_hiwater_rss(mm); 1835 1836 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1837 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1838 if (folio_test_hugetlb(folio)) { 1839 hugetlb_count_sub(folio_nr_pages(folio), mm); 1840 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1841 hsz); 1842 } else { 1843 dec_mm_counter(mm, mm_counter(folio)); 1844 set_pte_at(mm, address, pvmw.pte, pteval); 1845 } 1846 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 1847 !userfaultfd_armed(vma)) { 1848 /* 1849 * The guest indicated that the page content is of no 1850 * interest anymore. Simply discard the pte, vmscan 1851 * will take care of the rest. 1852 * A future reference will then fault in a new zero 1853 * page. When userfaultfd is active, we must not drop 1854 * this page though, as its main user (postcopy 1855 * migration) will not expect userfaults on already 1856 * copied pages. 1857 */ 1858 dec_mm_counter(mm, mm_counter(folio)); 1859 } else if (folio_test_anon(folio)) { 1860 swp_entry_t entry = page_swap_entry(subpage); 1861 pte_t swp_pte; 1862 /* 1863 * Store the swap location in the pte. 1864 * See handle_pte_fault() ... 1865 */ 1866 if (unlikely(folio_test_swapbacked(folio) != 1867 folio_test_swapcache(folio))) { 1868 WARN_ON_ONCE(1); 1869 goto walk_abort; 1870 } 1871 1872 /* MADV_FREE page check */ 1873 if (!folio_test_swapbacked(folio)) { 1874 int ref_count, map_count; 1875 1876 /* 1877 * Synchronize with gup_pte_range(): 1878 * - clear PTE; barrier; read refcount 1879 * - inc refcount; barrier; read PTE 1880 */ 1881 smp_mb(); 1882 1883 ref_count = folio_ref_count(folio); 1884 map_count = folio_mapcount(folio); 1885 1886 /* 1887 * Order reads for page refcount and dirty flag 1888 * (see comments in __remove_mapping()). 1889 */ 1890 smp_rmb(); 1891 1892 /* 1893 * The only page refs must be one from isolation 1894 * plus the rmap(s) (dropped by discard:). 1895 */ 1896 if (ref_count == 1 + map_count && 1897 (!folio_test_dirty(folio) || 1898 /* 1899 * Unlike MADV_FREE mappings, VM_DROPPABLE 1900 * ones can be dropped even if they've 1901 * been dirtied. 1902 */ 1903 (vma->vm_flags & VM_DROPPABLE))) { 1904 dec_mm_counter(mm, MM_ANONPAGES); 1905 goto discard; 1906 } 1907 1908 /* 1909 * If the folio was redirtied, it cannot be 1910 * discarded. Remap the page to page table. 1911 */ 1912 set_pte_at(mm, address, pvmw.pte, pteval); 1913 /* 1914 * Unlike MADV_FREE mappings, VM_DROPPABLE ones 1915 * never get swap backed on failure to drop. 1916 */ 1917 if (!(vma->vm_flags & VM_DROPPABLE)) 1918 folio_set_swapbacked(folio); 1919 goto walk_abort; 1920 } 1921 1922 if (swap_duplicate(entry) < 0) { 1923 set_pte_at(mm, address, pvmw.pte, pteval); 1924 goto walk_abort; 1925 } 1926 1927 /* 1928 * arch_unmap_one() is expected to be a NOP on 1929 * architectures where we could have PFN swap PTEs, 1930 * so we'll not check/care. 1931 */ 1932 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1933 swap_free(entry); 1934 set_pte_at(mm, address, pvmw.pte, pteval); 1935 goto walk_abort; 1936 } 1937 1938 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1939 if (anon_exclusive && 1940 folio_try_share_anon_rmap_pte(folio, subpage)) { 1941 swap_free(entry); 1942 set_pte_at(mm, address, pvmw.pte, pteval); 1943 goto walk_abort; 1944 } 1945 if (list_empty(&mm->mmlist)) { 1946 spin_lock(&mmlist_lock); 1947 if (list_empty(&mm->mmlist)) 1948 list_add(&mm->mmlist, &init_mm.mmlist); 1949 spin_unlock(&mmlist_lock); 1950 } 1951 dec_mm_counter(mm, MM_ANONPAGES); 1952 inc_mm_counter(mm, MM_SWAPENTS); 1953 swp_pte = swp_entry_to_pte(entry); 1954 if (anon_exclusive) 1955 swp_pte = pte_swp_mkexclusive(swp_pte); 1956 if (likely(pte_present(pteval))) { 1957 if (pte_soft_dirty(pteval)) 1958 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1959 if (pte_uffd_wp(pteval)) 1960 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1961 } else { 1962 if (pte_swp_soft_dirty(pteval)) 1963 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1964 if (pte_swp_uffd_wp(pteval)) 1965 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1966 } 1967 set_pte_at(mm, address, pvmw.pte, swp_pte); 1968 } else { 1969 /* 1970 * This is a locked file-backed folio, 1971 * so it cannot be removed from the page 1972 * cache and replaced by a new folio before 1973 * mmu_notifier_invalidate_range_end, so no 1974 * concurrent thread might update its page table 1975 * to point at a new folio while a device is 1976 * still using this folio. 1977 * 1978 * See Documentation/mm/mmu_notifier.rst 1979 */ 1980 dec_mm_counter(mm, mm_counter_file(folio)); 1981 } 1982 discard: 1983 if (unlikely(folio_test_hugetlb(folio))) 1984 hugetlb_remove_rmap(folio); 1985 else 1986 folio_remove_rmap_pte(folio, subpage, vma); 1987 if (vma->vm_flags & VM_LOCKED) 1988 mlock_drain_local(); 1989 folio_put(folio); 1990 continue; 1991 walk_abort: 1992 ret = false; 1993 walk_done: 1994 page_vma_mapped_walk_done(&pvmw); 1995 break; 1996 } 1997 1998 mmu_notifier_invalidate_range_end(&range); 1999 2000 return ret; 2001 } 2002 2003 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 2004 { 2005 return vma_is_temporary_stack(vma); 2006 } 2007 2008 static int folio_not_mapped(struct folio *folio) 2009 { 2010 return !folio_mapped(folio); 2011 } 2012 2013 /** 2014 * try_to_unmap - Try to remove all page table mappings to a folio. 2015 * @folio: The folio to unmap. 2016 * @flags: action and flags 2017 * 2018 * Tries to remove all the page table entries which are mapping this 2019 * folio. It is the caller's responsibility to check if the folio is 2020 * still mapped if needed (use TTU_SYNC to prevent accounting races). 2021 * 2022 * Context: Caller must hold the folio lock. 2023 */ 2024 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 2025 { 2026 struct rmap_walk_control rwc = { 2027 .rmap_one = try_to_unmap_one, 2028 .arg = (void *)flags, 2029 .done = folio_not_mapped, 2030 .anon_lock = folio_lock_anon_vma_read, 2031 }; 2032 2033 if (flags & TTU_RMAP_LOCKED) 2034 rmap_walk_locked(folio, &rwc); 2035 else 2036 rmap_walk(folio, &rwc); 2037 } 2038 2039 /* 2040 * @arg: enum ttu_flags will be passed to this argument. 2041 * 2042 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 2043 * containing migration entries. 2044 */ 2045 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2046 unsigned long address, void *arg) 2047 { 2048 struct mm_struct *mm = vma->vm_mm; 2049 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2050 bool anon_exclusive, writable, ret = true; 2051 pte_t pteval; 2052 struct page *subpage; 2053 struct mmu_notifier_range range; 2054 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2055 unsigned long pfn; 2056 unsigned long hsz = 0; 2057 2058 /* 2059 * When racing against e.g. zap_pte_range() on another cpu, 2060 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2061 * try_to_migrate() may return before page_mapped() has become false, 2062 * if page table locking is skipped: use TTU_SYNC to wait for that. 2063 */ 2064 if (flags & TTU_SYNC) 2065 pvmw.flags = PVMW_SYNC; 2066 2067 /* 2068 * unmap_page() in mm/huge_memory.c is the only user of migration with 2069 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2070 */ 2071 if (flags & TTU_SPLIT_HUGE_PMD) 2072 split_huge_pmd_address(vma, address, true, folio); 2073 2074 /* 2075 * For THP, we have to assume the worse case ie pmd for invalidation. 2076 * For hugetlb, it could be much worse if we need to do pud 2077 * invalidation in the case of pmd sharing. 2078 * 2079 * Note that the page can not be free in this function as call of 2080 * try_to_unmap() must hold a reference on the page. 2081 */ 2082 range.end = vma_address_end(&pvmw); 2083 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2084 address, range.end); 2085 if (folio_test_hugetlb(folio)) { 2086 /* 2087 * If sharing is possible, start and end will be adjusted 2088 * accordingly. 2089 */ 2090 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2091 &range.end); 2092 2093 /* We need the huge page size for set_huge_pte_at() */ 2094 hsz = huge_page_size(hstate_vma(vma)); 2095 } 2096 mmu_notifier_invalidate_range_start(&range); 2097 2098 while (page_vma_mapped_walk(&pvmw)) { 2099 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2100 /* PMD-mapped THP migration entry */ 2101 if (!pvmw.pte) { 2102 subpage = folio_page(folio, 2103 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2104 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2105 !folio_test_pmd_mappable(folio), folio); 2106 2107 if (set_pmd_migration_entry(&pvmw, subpage)) { 2108 ret = false; 2109 page_vma_mapped_walk_done(&pvmw); 2110 break; 2111 } 2112 continue; 2113 } 2114 #endif 2115 2116 /* Unexpected PMD-mapped THP? */ 2117 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2118 2119 /* 2120 * Handle PFN swap PTEs, such as device-exclusive ones, that 2121 * actually map pages. 2122 */ 2123 pteval = ptep_get(pvmw.pte); 2124 if (likely(pte_present(pteval))) { 2125 pfn = pte_pfn(pteval); 2126 } else { 2127 pfn = swp_offset_pfn(pte_to_swp_entry(pteval)); 2128 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 2129 } 2130 2131 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2132 address = pvmw.address; 2133 anon_exclusive = folio_test_anon(folio) && 2134 PageAnonExclusive(subpage); 2135 2136 if (folio_test_hugetlb(folio)) { 2137 bool anon = folio_test_anon(folio); 2138 2139 /* 2140 * huge_pmd_unshare may unmap an entire PMD page. 2141 * There is no way of knowing exactly which PMDs may 2142 * be cached for this mm, so we must flush them all. 2143 * start/end were already adjusted above to cover this 2144 * range. 2145 */ 2146 flush_cache_range(vma, range.start, range.end); 2147 2148 /* 2149 * To call huge_pmd_unshare, i_mmap_rwsem must be 2150 * held in write mode. Caller needs to explicitly 2151 * do this outside rmap routines. 2152 * 2153 * We also must hold hugetlb vma_lock in write mode. 2154 * Lock order dictates acquiring vma_lock BEFORE 2155 * i_mmap_rwsem. We can only try lock here and 2156 * fail if unsuccessful. 2157 */ 2158 if (!anon) { 2159 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2160 if (!hugetlb_vma_trylock_write(vma)) { 2161 page_vma_mapped_walk_done(&pvmw); 2162 ret = false; 2163 break; 2164 } 2165 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2166 hugetlb_vma_unlock_write(vma); 2167 flush_tlb_range(vma, 2168 range.start, range.end); 2169 2170 /* 2171 * The ref count of the PMD page was 2172 * dropped which is part of the way map 2173 * counting is done for shared PMDs. 2174 * Return 'true' here. When there is 2175 * no other sharing, huge_pmd_unshare 2176 * returns false and we will unmap the 2177 * actual page and drop map count 2178 * to zero. 2179 */ 2180 page_vma_mapped_walk_done(&pvmw); 2181 break; 2182 } 2183 hugetlb_vma_unlock_write(vma); 2184 } 2185 /* Nuke the hugetlb page table entry */ 2186 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2187 if (pte_dirty(pteval)) 2188 folio_mark_dirty(folio); 2189 writable = pte_write(pteval); 2190 } else if (likely(pte_present(pteval))) { 2191 flush_cache_page(vma, address, pfn); 2192 /* Nuke the page table entry. */ 2193 if (should_defer_flush(mm, flags)) { 2194 /* 2195 * We clear the PTE but do not flush so potentially 2196 * a remote CPU could still be writing to the folio. 2197 * If the entry was previously clean then the 2198 * architecture must guarantee that a clear->dirty 2199 * transition on a cached TLB entry is written through 2200 * and traps if the PTE is unmapped. 2201 */ 2202 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2203 2204 set_tlb_ubc_flush_pending(mm, pteval, address); 2205 } else { 2206 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2207 } 2208 if (pte_dirty(pteval)) 2209 folio_mark_dirty(folio); 2210 writable = pte_write(pteval); 2211 } else { 2212 pte_clear(mm, address, pvmw.pte); 2213 writable = is_writable_device_private_entry(pte_to_swp_entry(pteval)); 2214 } 2215 2216 VM_WARN_ON_FOLIO(writable && folio_test_anon(folio) && 2217 !anon_exclusive, folio); 2218 2219 /* Update high watermark before we lower rss */ 2220 update_hiwater_rss(mm); 2221 2222 if (PageHWPoison(subpage)) { 2223 VM_WARN_ON_FOLIO(folio_is_device_private(folio), folio); 2224 2225 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2226 if (folio_test_hugetlb(folio)) { 2227 hugetlb_count_sub(folio_nr_pages(folio), mm); 2228 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2229 hsz); 2230 } else { 2231 dec_mm_counter(mm, mm_counter(folio)); 2232 set_pte_at(mm, address, pvmw.pte, pteval); 2233 } 2234 } else if (likely(pte_present(pteval)) && pte_unused(pteval) && 2235 !userfaultfd_armed(vma)) { 2236 /* 2237 * The guest indicated that the page content is of no 2238 * interest anymore. Simply discard the pte, vmscan 2239 * will take care of the rest. 2240 * A future reference will then fault in a new zero 2241 * page. When userfaultfd is active, we must not drop 2242 * this page though, as its main user (postcopy 2243 * migration) will not expect userfaults on already 2244 * copied pages. 2245 */ 2246 dec_mm_counter(mm, mm_counter(folio)); 2247 } else { 2248 swp_entry_t entry; 2249 pte_t swp_pte; 2250 2251 /* 2252 * arch_unmap_one() is expected to be a NOP on 2253 * architectures where we could have PFN swap PTEs, 2254 * so we'll not check/care. 2255 */ 2256 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2257 if (folio_test_hugetlb(folio)) 2258 set_huge_pte_at(mm, address, pvmw.pte, 2259 pteval, hsz); 2260 else 2261 set_pte_at(mm, address, pvmw.pte, pteval); 2262 ret = false; 2263 page_vma_mapped_walk_done(&pvmw); 2264 break; 2265 } 2266 2267 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2268 if (folio_test_hugetlb(folio)) { 2269 if (anon_exclusive && 2270 hugetlb_try_share_anon_rmap(folio)) { 2271 set_huge_pte_at(mm, address, pvmw.pte, 2272 pteval, hsz); 2273 ret = false; 2274 page_vma_mapped_walk_done(&pvmw); 2275 break; 2276 } 2277 } else if (anon_exclusive && 2278 folio_try_share_anon_rmap_pte(folio, subpage)) { 2279 set_pte_at(mm, address, pvmw.pte, pteval); 2280 ret = false; 2281 page_vma_mapped_walk_done(&pvmw); 2282 break; 2283 } 2284 2285 /* 2286 * Store the pfn of the page in a special migration 2287 * pte. do_swap_page() will wait until the migration 2288 * pte is removed and then restart fault handling. 2289 */ 2290 if (writable) 2291 entry = make_writable_migration_entry( 2292 page_to_pfn(subpage)); 2293 else if (anon_exclusive) 2294 entry = make_readable_exclusive_migration_entry( 2295 page_to_pfn(subpage)); 2296 else 2297 entry = make_readable_migration_entry( 2298 page_to_pfn(subpage)); 2299 if (likely(pte_present(pteval))) { 2300 if (pte_young(pteval)) 2301 entry = make_migration_entry_young(entry); 2302 if (pte_dirty(pteval)) 2303 entry = make_migration_entry_dirty(entry); 2304 swp_pte = swp_entry_to_pte(entry); 2305 if (pte_soft_dirty(pteval)) 2306 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2307 if (pte_uffd_wp(pteval)) 2308 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2309 } else { 2310 swp_pte = swp_entry_to_pte(entry); 2311 if (pte_swp_soft_dirty(pteval)) 2312 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2313 if (pte_swp_uffd_wp(pteval)) 2314 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2315 } 2316 if (folio_test_hugetlb(folio)) 2317 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2318 hsz); 2319 else 2320 set_pte_at(mm, address, pvmw.pte, swp_pte); 2321 trace_set_migration_pte(address, pte_val(swp_pte), 2322 folio_order(folio)); 2323 /* 2324 * No need to invalidate here it will synchronize on 2325 * against the special swap migration pte. 2326 */ 2327 } 2328 2329 if (unlikely(folio_test_hugetlb(folio))) 2330 hugetlb_remove_rmap(folio); 2331 else 2332 folio_remove_rmap_pte(folio, subpage, vma); 2333 if (vma->vm_flags & VM_LOCKED) 2334 mlock_drain_local(); 2335 folio_put(folio); 2336 } 2337 2338 mmu_notifier_invalidate_range_end(&range); 2339 2340 return ret; 2341 } 2342 2343 /** 2344 * try_to_migrate - try to replace all page table mappings with swap entries 2345 * @folio: the folio to replace page table entries for 2346 * @flags: action and flags 2347 * 2348 * Tries to remove all the page table entries which are mapping this folio and 2349 * replace them with special swap entries. Caller must hold the folio lock. 2350 */ 2351 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2352 { 2353 struct rmap_walk_control rwc = { 2354 .rmap_one = try_to_migrate_one, 2355 .arg = (void *)flags, 2356 .done = folio_not_mapped, 2357 .anon_lock = folio_lock_anon_vma_read, 2358 }; 2359 2360 /* 2361 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2362 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2363 */ 2364 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2365 TTU_SYNC | TTU_BATCH_FLUSH))) 2366 return; 2367 2368 if (folio_is_zone_device(folio) && 2369 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2370 return; 2371 2372 /* 2373 * During exec, a temporary VMA is setup and later moved. 2374 * The VMA is moved under the anon_vma lock but not the 2375 * page tables leading to a race where migration cannot 2376 * find the migration ptes. Rather than increasing the 2377 * locking requirements of exec(), migration skips 2378 * temporary VMAs until after exec() completes. 2379 */ 2380 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2381 rwc.invalid_vma = invalid_migration_vma; 2382 2383 if (flags & TTU_RMAP_LOCKED) 2384 rmap_walk_locked(folio, &rwc); 2385 else 2386 rmap_walk(folio, &rwc); 2387 } 2388 2389 #ifdef CONFIG_DEVICE_PRIVATE 2390 /** 2391 * make_device_exclusive() - Mark a page for exclusive use by a device 2392 * @mm: mm_struct of associated target process 2393 * @addr: the virtual address to mark for exclusive device access 2394 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2395 * @foliop: folio pointer will be stored here on success. 2396 * 2397 * This function looks up the page mapped at the given address, grabs a 2398 * folio reference, locks the folio and replaces the PTE with special 2399 * device-exclusive PFN swap entry, preventing access through the process 2400 * page tables. The function will return with the folio locked and referenced. 2401 * 2402 * On fault, the device-exclusive entries are replaced with the original PTE 2403 * under folio lock, after calling MMU notifiers. 2404 * 2405 * Only anonymous non-hugetlb folios are supported and the VMA must have 2406 * write permissions such that we can fault in the anonymous page writable 2407 * in order to mark it exclusive. The caller must hold the mmap_lock in read 2408 * mode. 2409 * 2410 * A driver using this to program access from a device must use a mmu notifier 2411 * critical section to hold a device specific lock during programming. Once 2412 * programming is complete it should drop the folio lock and reference after 2413 * which point CPU access to the page will revoke the exclusive access. 2414 * 2415 * Notes: 2416 * #. This function always operates on individual PTEs mapping individual 2417 * pages. PMD-sized THPs are first remapped to be mapped by PTEs before 2418 * the conversion happens on a single PTE corresponding to @addr. 2419 * #. While concurrent access through the process page tables is prevented, 2420 * concurrent access through other page references (e.g., earlier GUP 2421 * invocation) is not handled and not supported. 2422 * #. device-exclusive entries are considered "clean" and "old" by core-mm. 2423 * Device drivers must update the folio state when informed by MMU 2424 * notifiers. 2425 * 2426 * Returns: pointer to mapped page on success, otherwise a negative error. 2427 */ 2428 struct page *make_device_exclusive(struct mm_struct *mm, unsigned long addr, 2429 void *owner, struct folio **foliop) 2430 { 2431 struct mmu_notifier_range range; 2432 struct folio *folio, *fw_folio; 2433 struct vm_area_struct *vma; 2434 struct folio_walk fw; 2435 struct page *page; 2436 swp_entry_t entry; 2437 pte_t swp_pte; 2438 int ret; 2439 2440 mmap_assert_locked(mm); 2441 addr = PAGE_ALIGN_DOWN(addr); 2442 2443 /* 2444 * Fault in the page writable and try to lock it; note that if the 2445 * address would already be marked for exclusive use by a device, 2446 * the GUP call would undo that first by triggering a fault. 2447 * 2448 * If any other device would already map this page exclusively, the 2449 * fault will trigger a conversion to an ordinary 2450 * (non-device-exclusive) PTE and issue a MMU_NOTIFY_EXCLUSIVE. 2451 */ 2452 retry: 2453 page = get_user_page_vma_remote(mm, addr, 2454 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2455 &vma); 2456 if (IS_ERR(page)) 2457 return page; 2458 folio = page_folio(page); 2459 2460 if (!folio_test_anon(folio) || folio_test_hugetlb(folio)) { 2461 folio_put(folio); 2462 return ERR_PTR(-EOPNOTSUPP); 2463 } 2464 2465 ret = folio_lock_killable(folio); 2466 if (ret) { 2467 folio_put(folio); 2468 return ERR_PTR(ret); 2469 } 2470 2471 /* 2472 * Inform secondary MMUs that we are going to convert this PTE to 2473 * device-exclusive, such that they unmap it now. Note that the 2474 * caller must filter this event out to prevent livelocks. 2475 */ 2476 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2477 mm, addr, addr + PAGE_SIZE, owner); 2478 mmu_notifier_invalidate_range_start(&range); 2479 2480 /* 2481 * Let's do a second walk and make sure we still find the same page 2482 * mapped writable. Note that any page of an anonymous folio can 2483 * only be mapped writable using exactly one PTE ("exclusive"), so 2484 * there cannot be other mappings. 2485 */ 2486 fw_folio = folio_walk_start(&fw, vma, addr, 0); 2487 if (fw_folio != folio || fw.page != page || 2488 fw.level != FW_LEVEL_PTE || !pte_write(fw.pte)) { 2489 if (fw_folio) 2490 folio_walk_end(&fw, vma); 2491 mmu_notifier_invalidate_range_end(&range); 2492 folio_unlock(folio); 2493 folio_put(folio); 2494 goto retry; 2495 } 2496 2497 /* Nuke the page table entry so we get the uptodate dirty bit. */ 2498 flush_cache_page(vma, addr, page_to_pfn(page)); 2499 fw.pte = ptep_clear_flush(vma, addr, fw.ptep); 2500 2501 /* Set the dirty flag on the folio now the PTE is gone. */ 2502 if (pte_dirty(fw.pte)) 2503 folio_mark_dirty(folio); 2504 2505 /* 2506 * Store the pfn of the page in a special device-exclusive PFN swap PTE. 2507 * do_swap_page() will trigger the conversion back while holding the 2508 * folio lock. 2509 */ 2510 entry = make_device_exclusive_entry(page_to_pfn(page)); 2511 swp_pte = swp_entry_to_pte(entry); 2512 if (pte_soft_dirty(fw.pte)) 2513 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2514 /* The pte is writable, uffd-wp does not apply. */ 2515 set_pte_at(mm, addr, fw.ptep, swp_pte); 2516 2517 folio_walk_end(&fw, vma); 2518 mmu_notifier_invalidate_range_end(&range); 2519 *foliop = folio; 2520 return page; 2521 } 2522 EXPORT_SYMBOL_GPL(make_device_exclusive); 2523 #endif 2524 2525 void __put_anon_vma(struct anon_vma *anon_vma) 2526 { 2527 struct anon_vma *root = anon_vma->root; 2528 2529 anon_vma_free(anon_vma); 2530 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2531 anon_vma_free(root); 2532 } 2533 2534 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio, 2535 struct rmap_walk_control *rwc) 2536 { 2537 struct anon_vma *anon_vma; 2538 2539 if (rwc->anon_lock) 2540 return rwc->anon_lock(folio, rwc); 2541 2542 /* 2543 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2544 * because that depends on page_mapped(); but not all its usages 2545 * are holding mmap_lock. Users without mmap_lock are required to 2546 * take a reference count to prevent the anon_vma disappearing 2547 */ 2548 anon_vma = folio_anon_vma(folio); 2549 if (!anon_vma) 2550 return NULL; 2551 2552 if (anon_vma_trylock_read(anon_vma)) 2553 goto out; 2554 2555 if (rwc->try_lock) { 2556 anon_vma = NULL; 2557 rwc->contended = true; 2558 goto out; 2559 } 2560 2561 anon_vma_lock_read(anon_vma); 2562 out: 2563 return anon_vma; 2564 } 2565 2566 /* 2567 * rmap_walk_anon - do something to anonymous page using the object-based 2568 * rmap method 2569 * @folio: the folio to be handled 2570 * @rwc: control variable according to each walk type 2571 * @locked: caller holds relevant rmap lock 2572 * 2573 * Find all the mappings of a folio using the mapping pointer and the vma 2574 * chains contained in the anon_vma struct it points to. 2575 */ 2576 static void rmap_walk_anon(struct folio *folio, 2577 struct rmap_walk_control *rwc, bool locked) 2578 { 2579 struct anon_vma *anon_vma; 2580 pgoff_t pgoff_start, pgoff_end; 2581 struct anon_vma_chain *avc; 2582 2583 if (locked) { 2584 anon_vma = folio_anon_vma(folio); 2585 /* anon_vma disappear under us? */ 2586 VM_BUG_ON_FOLIO(!anon_vma, folio); 2587 } else { 2588 anon_vma = rmap_walk_anon_lock(folio, rwc); 2589 } 2590 if (!anon_vma) 2591 return; 2592 2593 pgoff_start = folio_pgoff(folio); 2594 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2595 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2596 pgoff_start, pgoff_end) { 2597 struct vm_area_struct *vma = avc->vma; 2598 unsigned long address = vma_address(vma, pgoff_start, 2599 folio_nr_pages(folio)); 2600 2601 VM_BUG_ON_VMA(address == -EFAULT, vma); 2602 cond_resched(); 2603 2604 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2605 continue; 2606 2607 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2608 break; 2609 if (rwc->done && rwc->done(folio)) 2610 break; 2611 } 2612 2613 if (!locked) 2614 anon_vma_unlock_read(anon_vma); 2615 } 2616 2617 /* 2618 * rmap_walk_file - do something to file page using the object-based rmap method 2619 * @folio: the folio to be handled 2620 * @rwc: control variable according to each walk type 2621 * @locked: caller holds relevant rmap lock 2622 * 2623 * Find all the mappings of a folio using the mapping pointer and the vma chains 2624 * contained in the address_space struct it points to. 2625 */ 2626 static void rmap_walk_file(struct folio *folio, 2627 struct rmap_walk_control *rwc, bool locked) 2628 { 2629 struct address_space *mapping = folio_mapping(folio); 2630 pgoff_t pgoff_start, pgoff_end; 2631 struct vm_area_struct *vma; 2632 2633 /* 2634 * The page lock not only makes sure that page->mapping cannot 2635 * suddenly be NULLified by truncation, it makes sure that the 2636 * structure at mapping cannot be freed and reused yet, 2637 * so we can safely take mapping->i_mmap_rwsem. 2638 */ 2639 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2640 2641 if (!mapping) 2642 return; 2643 2644 pgoff_start = folio_pgoff(folio); 2645 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2646 if (!locked) { 2647 if (i_mmap_trylock_read(mapping)) 2648 goto lookup; 2649 2650 if (rwc->try_lock) { 2651 rwc->contended = true; 2652 return; 2653 } 2654 2655 i_mmap_lock_read(mapping); 2656 } 2657 lookup: 2658 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2659 pgoff_start, pgoff_end) { 2660 unsigned long address = vma_address(vma, pgoff_start, 2661 folio_nr_pages(folio)); 2662 2663 VM_BUG_ON_VMA(address == -EFAULT, vma); 2664 cond_resched(); 2665 2666 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2667 continue; 2668 2669 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2670 goto done; 2671 if (rwc->done && rwc->done(folio)) 2672 goto done; 2673 } 2674 2675 done: 2676 if (!locked) 2677 i_mmap_unlock_read(mapping); 2678 } 2679 2680 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2681 { 2682 if (unlikely(folio_test_ksm(folio))) 2683 rmap_walk_ksm(folio, rwc); 2684 else if (folio_test_anon(folio)) 2685 rmap_walk_anon(folio, rwc, false); 2686 else 2687 rmap_walk_file(folio, rwc, false); 2688 } 2689 2690 /* Like rmap_walk, but caller holds relevant rmap lock */ 2691 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2692 { 2693 /* no ksm support for now */ 2694 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2695 if (folio_test_anon(folio)) 2696 rmap_walk_anon(folio, rwc, true); 2697 else 2698 rmap_walk_file(folio, rwc, true); 2699 } 2700 2701 #ifdef CONFIG_HUGETLB_PAGE 2702 /* 2703 * The following two functions are for anonymous (private mapped) hugepages. 2704 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2705 * and no lru code, because we handle hugepages differently from common pages. 2706 */ 2707 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2708 unsigned long address, rmap_t flags) 2709 { 2710 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2711 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2712 2713 atomic_inc(&folio->_entire_mapcount); 2714 atomic_inc(&folio->_large_mapcount); 2715 if (flags & RMAP_EXCLUSIVE) 2716 SetPageAnonExclusive(&folio->page); 2717 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2718 PageAnonExclusive(&folio->page), folio); 2719 } 2720 2721 void hugetlb_add_new_anon_rmap(struct folio *folio, 2722 struct vm_area_struct *vma, unsigned long address) 2723 { 2724 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2725 2726 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2727 /* increment count (starts at -1) */ 2728 atomic_set(&folio->_entire_mapcount, 0); 2729 atomic_set(&folio->_large_mapcount, 0); 2730 folio_clear_hugetlb_restore_reserve(folio); 2731 __folio_set_anon(folio, vma, address, true); 2732 SetPageAnonExclusive(&folio->page); 2733 } 2734 #endif /* CONFIG_HUGETLB_PAGE */ 2735