1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 646 unsigned long uaddr) 647 { 648 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 649 int batch; 650 bool writable = pte_dirty(pteval); 651 652 if (!pte_accessible(mm, pteval)) 653 return; 654 655 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 656 tlb_ubc->flush_required = true; 657 658 /* 659 * Ensure compiler does not re-order the setting of tlb_flush_batched 660 * before the PTE is cleared. 661 */ 662 barrier(); 663 batch = atomic_read(&mm->tlb_flush_batched); 664 retry: 665 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 666 /* 667 * Prevent `pending' from catching up with `flushed' because of 668 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 669 * `pending' becomes large. 670 */ 671 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 672 goto retry; 673 } else { 674 atomic_inc(&mm->tlb_flush_batched); 675 } 676 677 /* 678 * If the PTE was dirty then it's best to assume it's writable. The 679 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 680 * before the page is queued for IO. 681 */ 682 if (writable) 683 tlb_ubc->writable = true; 684 } 685 686 /* 687 * Returns true if the TLB flush should be deferred to the end of a batch of 688 * unmap operations to reduce IPIs. 689 */ 690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 691 { 692 if (!(flags & TTU_BATCH_FLUSH)) 693 return false; 694 695 return arch_tlbbatch_should_defer(mm); 696 } 697 698 /* 699 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 700 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 701 * operation such as mprotect or munmap to race between reclaim unmapping 702 * the page and flushing the page. If this race occurs, it potentially allows 703 * access to data via a stale TLB entry. Tracking all mm's that have TLB 704 * batching in flight would be expensive during reclaim so instead track 705 * whether TLB batching occurred in the past and if so then do a flush here 706 * if required. This will cost one additional flush per reclaim cycle paid 707 * by the first operation at risk such as mprotect and mumap. 708 * 709 * This must be called under the PTL so that an access to tlb_flush_batched 710 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 711 * via the PTL. 712 */ 713 void flush_tlb_batched_pending(struct mm_struct *mm) 714 { 715 int batch = atomic_read(&mm->tlb_flush_batched); 716 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 717 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 718 719 if (pending != flushed) { 720 arch_flush_tlb_batched_pending(mm); 721 /* 722 * If the new TLB flushing is pending during flushing, leave 723 * mm->tlb_flush_batched as is, to avoid losing flushing. 724 */ 725 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 726 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 727 } 728 } 729 #else 730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 731 unsigned long uaddr) 732 { 733 } 734 735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 736 { 737 return false; 738 } 739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 740 741 /* 742 * At what user virtual address is page expected in vma? 743 * Caller should check the page is actually part of the vma. 744 */ 745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 746 { 747 struct folio *folio = page_folio(page); 748 if (folio_test_anon(folio)) { 749 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 750 /* 751 * Note: swapoff's unuse_vma() is more efficient with this 752 * check, and needs it to match anon_vma when KSM is active. 753 */ 754 if (!vma->anon_vma || !page__anon_vma || 755 vma->anon_vma->root != page__anon_vma->root) 756 return -EFAULT; 757 } else if (!vma->vm_file) { 758 return -EFAULT; 759 } else if (vma->vm_file->f_mapping != folio->mapping) { 760 return -EFAULT; 761 } 762 763 return vma_address(page, vma); 764 } 765 766 /* 767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 769 * represents. 770 */ 771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 772 { 773 pgd_t *pgd; 774 p4d_t *p4d; 775 pud_t *pud; 776 pmd_t *pmd = NULL; 777 778 pgd = pgd_offset(mm, address); 779 if (!pgd_present(*pgd)) 780 goto out; 781 782 p4d = p4d_offset(pgd, address); 783 if (!p4d_present(*p4d)) 784 goto out; 785 786 pud = pud_offset(p4d, address); 787 if (!pud_present(*pud)) 788 goto out; 789 790 pmd = pmd_offset(pud, address); 791 out: 792 return pmd; 793 } 794 795 struct folio_referenced_arg { 796 int mapcount; 797 int referenced; 798 unsigned long vm_flags; 799 struct mem_cgroup *memcg; 800 }; 801 /* 802 * arg: folio_referenced_arg will be passed 803 */ 804 static bool folio_referenced_one(struct folio *folio, 805 struct vm_area_struct *vma, unsigned long address, void *arg) 806 { 807 struct folio_referenced_arg *pra = arg; 808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 809 int referenced = 0; 810 811 while (page_vma_mapped_walk(&pvmw)) { 812 address = pvmw.address; 813 814 if ((vma->vm_flags & VM_LOCKED) && 815 (!folio_test_large(folio) || !pvmw.pte)) { 816 /* Restore the mlock which got missed */ 817 mlock_vma_folio(folio, vma, !pvmw.pte); 818 page_vma_mapped_walk_done(&pvmw); 819 pra->vm_flags |= VM_LOCKED; 820 return false; /* To break the loop */ 821 } 822 823 if (pvmw.pte) { 824 if (lru_gen_enabled() && 825 pte_young(ptep_get(pvmw.pte))) { 826 lru_gen_look_around(&pvmw); 827 referenced++; 828 } 829 830 if (ptep_clear_flush_young_notify(vma, address, 831 pvmw.pte)) 832 referenced++; 833 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 834 if (pmdp_clear_flush_young_notify(vma, address, 835 pvmw.pmd)) 836 referenced++; 837 } else { 838 /* unexpected pmd-mapped folio? */ 839 WARN_ON_ONCE(1); 840 } 841 842 pra->mapcount--; 843 } 844 845 if (referenced) 846 folio_clear_idle(folio); 847 if (folio_test_clear_young(folio)) 848 referenced++; 849 850 if (referenced) { 851 pra->referenced++; 852 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 853 } 854 855 if (!pra->mapcount) 856 return false; /* To break the loop */ 857 858 return true; 859 } 860 861 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 862 { 863 struct folio_referenced_arg *pra = arg; 864 struct mem_cgroup *memcg = pra->memcg; 865 866 /* 867 * Ignore references from this mapping if it has no recency. If the 868 * folio has been used in another mapping, we will catch it; if this 869 * other mapping is already gone, the unmap path will have set the 870 * referenced flag or activated the folio in zap_pte_range(). 871 */ 872 if (!vma_has_recency(vma)) 873 return true; 874 875 /* 876 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 877 * of references from different cgroups. 878 */ 879 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 880 return true; 881 882 return false; 883 } 884 885 /** 886 * folio_referenced() - Test if the folio was referenced. 887 * @folio: The folio to test. 888 * @is_locked: Caller holds lock on the folio. 889 * @memcg: target memory cgroup 890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 891 * 892 * Quick test_and_clear_referenced for all mappings of a folio, 893 * 894 * Return: The number of mappings which referenced the folio. Return -1 if 895 * the function bailed out due to rmap lock contention. 896 */ 897 int folio_referenced(struct folio *folio, int is_locked, 898 struct mem_cgroup *memcg, unsigned long *vm_flags) 899 { 900 int we_locked = 0; 901 struct folio_referenced_arg pra = { 902 .mapcount = folio_mapcount(folio), 903 .memcg = memcg, 904 }; 905 struct rmap_walk_control rwc = { 906 .rmap_one = folio_referenced_one, 907 .arg = (void *)&pra, 908 .anon_lock = folio_lock_anon_vma_read, 909 .try_lock = true, 910 .invalid_vma = invalid_folio_referenced_vma, 911 }; 912 913 *vm_flags = 0; 914 if (!pra.mapcount) 915 return 0; 916 917 if (!folio_raw_mapping(folio)) 918 return 0; 919 920 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 921 we_locked = folio_trylock(folio); 922 if (!we_locked) 923 return 1; 924 } 925 926 rmap_walk(folio, &rwc); 927 *vm_flags = pra.vm_flags; 928 929 if (we_locked) 930 folio_unlock(folio); 931 932 return rwc.contended ? -1 : pra.referenced; 933 } 934 935 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 936 { 937 int cleaned = 0; 938 struct vm_area_struct *vma = pvmw->vma; 939 struct mmu_notifier_range range; 940 unsigned long address = pvmw->address; 941 942 /* 943 * We have to assume the worse case ie pmd for invalidation. Note that 944 * the folio can not be freed from this function. 945 */ 946 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 947 vma->vm_mm, address, vma_address_end(pvmw)); 948 mmu_notifier_invalidate_range_start(&range); 949 950 while (page_vma_mapped_walk(pvmw)) { 951 int ret = 0; 952 953 address = pvmw->address; 954 if (pvmw->pte) { 955 pte_t *pte = pvmw->pte; 956 pte_t entry = ptep_get(pte); 957 958 if (!pte_dirty(entry) && !pte_write(entry)) 959 continue; 960 961 flush_cache_page(vma, address, pte_pfn(entry)); 962 entry = ptep_clear_flush(vma, address, pte); 963 entry = pte_wrprotect(entry); 964 entry = pte_mkclean(entry); 965 set_pte_at(vma->vm_mm, address, pte, entry); 966 ret = 1; 967 } else { 968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 969 pmd_t *pmd = pvmw->pmd; 970 pmd_t entry; 971 972 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 973 continue; 974 975 flush_cache_range(vma, address, 976 address + HPAGE_PMD_SIZE); 977 entry = pmdp_invalidate(vma, address, pmd); 978 entry = pmd_wrprotect(entry); 979 entry = pmd_mkclean(entry); 980 set_pmd_at(vma->vm_mm, address, pmd, entry); 981 ret = 1; 982 #else 983 /* unexpected pmd-mapped folio? */ 984 WARN_ON_ONCE(1); 985 #endif 986 } 987 988 if (ret) 989 cleaned++; 990 } 991 992 mmu_notifier_invalidate_range_end(&range); 993 994 return cleaned; 995 } 996 997 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 998 unsigned long address, void *arg) 999 { 1000 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1001 int *cleaned = arg; 1002 1003 *cleaned += page_vma_mkclean_one(&pvmw); 1004 1005 return true; 1006 } 1007 1008 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1009 { 1010 if (vma->vm_flags & VM_SHARED) 1011 return false; 1012 1013 return true; 1014 } 1015 1016 int folio_mkclean(struct folio *folio) 1017 { 1018 int cleaned = 0; 1019 struct address_space *mapping; 1020 struct rmap_walk_control rwc = { 1021 .arg = (void *)&cleaned, 1022 .rmap_one = page_mkclean_one, 1023 .invalid_vma = invalid_mkclean_vma, 1024 }; 1025 1026 BUG_ON(!folio_test_locked(folio)); 1027 1028 if (!folio_mapped(folio)) 1029 return 0; 1030 1031 mapping = folio_mapping(folio); 1032 if (!mapping) 1033 return 0; 1034 1035 rmap_walk(folio, &rwc); 1036 1037 return cleaned; 1038 } 1039 EXPORT_SYMBOL_GPL(folio_mkclean); 1040 1041 /** 1042 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1043 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1044 * within the @vma of shared mappings. And since clean PTEs 1045 * should also be readonly, write protects them too. 1046 * @pfn: start pfn. 1047 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1048 * @pgoff: page offset that the @pfn mapped with. 1049 * @vma: vma that @pfn mapped within. 1050 * 1051 * Returns the number of cleaned PTEs (including PMDs). 1052 */ 1053 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1054 struct vm_area_struct *vma) 1055 { 1056 struct page_vma_mapped_walk pvmw = { 1057 .pfn = pfn, 1058 .nr_pages = nr_pages, 1059 .pgoff = pgoff, 1060 .vma = vma, 1061 .flags = PVMW_SYNC, 1062 }; 1063 1064 if (invalid_mkclean_vma(vma, NULL)) 1065 return 0; 1066 1067 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1068 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1069 1070 return page_vma_mkclean_one(&pvmw); 1071 } 1072 1073 int folio_total_mapcount(struct folio *folio) 1074 { 1075 int mapcount = folio_entire_mapcount(folio); 1076 int nr_pages; 1077 int i; 1078 1079 /* In the common case, avoid the loop when no pages mapped by PTE */ 1080 if (folio_nr_pages_mapped(folio) == 0) 1081 return mapcount; 1082 /* 1083 * Add all the PTE mappings of those pages mapped by PTE. 1084 * Limit the loop to folio_nr_pages_mapped()? 1085 * Perhaps: given all the raciness, that may be a good or a bad idea. 1086 */ 1087 nr_pages = folio_nr_pages(folio); 1088 for (i = 0; i < nr_pages; i++) 1089 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1090 1091 /* But each of those _mapcounts was based on -1 */ 1092 mapcount += nr_pages; 1093 return mapcount; 1094 } 1095 1096 /** 1097 * page_move_anon_rmap - move a page to our anon_vma 1098 * @page: the page to move to our anon_vma 1099 * @vma: the vma the page belongs to 1100 * 1101 * When a page belongs exclusively to one process after a COW event, 1102 * that page can be moved into the anon_vma that belongs to just that 1103 * process, so the rmap code will not search the parent or sibling 1104 * processes. 1105 */ 1106 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1107 { 1108 void *anon_vma = vma->anon_vma; 1109 struct folio *folio = page_folio(page); 1110 1111 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1112 VM_BUG_ON_VMA(!anon_vma, vma); 1113 1114 anon_vma += PAGE_MAPPING_ANON; 1115 /* 1116 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1117 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1118 * folio_test_anon()) will not see one without the other. 1119 */ 1120 WRITE_ONCE(folio->mapping, anon_vma); 1121 SetPageAnonExclusive(page); 1122 } 1123 1124 /** 1125 * __page_set_anon_rmap - set up new anonymous rmap 1126 * @folio: Folio which contains page. 1127 * @page: Page to add to rmap. 1128 * @vma: VM area to add page to. 1129 * @address: User virtual address of the mapping 1130 * @exclusive: the page is exclusively owned by the current process 1131 */ 1132 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1133 struct vm_area_struct *vma, unsigned long address, int exclusive) 1134 { 1135 struct anon_vma *anon_vma = vma->anon_vma; 1136 1137 BUG_ON(!anon_vma); 1138 1139 if (folio_test_anon(folio)) 1140 goto out; 1141 1142 /* 1143 * If the page isn't exclusively mapped into this vma, 1144 * we must use the _oldest_ possible anon_vma for the 1145 * page mapping! 1146 */ 1147 if (!exclusive) 1148 anon_vma = anon_vma->root; 1149 1150 /* 1151 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1152 * Make sure the compiler doesn't split the stores of anon_vma and 1153 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1154 * could mistake the mapping for a struct address_space and crash. 1155 */ 1156 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1157 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1158 folio->index = linear_page_index(vma, address); 1159 out: 1160 if (exclusive) 1161 SetPageAnonExclusive(page); 1162 } 1163 1164 /** 1165 * __page_check_anon_rmap - sanity check anonymous rmap addition 1166 * @folio: The folio containing @page. 1167 * @page: the page to check the mapping of 1168 * @vma: the vm area in which the mapping is added 1169 * @address: the user virtual address mapped 1170 */ 1171 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1172 struct vm_area_struct *vma, unsigned long address) 1173 { 1174 /* 1175 * The page's anon-rmap details (mapping and index) are guaranteed to 1176 * be set up correctly at this point. 1177 * 1178 * We have exclusion against page_add_anon_rmap because the caller 1179 * always holds the page locked. 1180 * 1181 * We have exclusion against page_add_new_anon_rmap because those pages 1182 * are initially only visible via the pagetables, and the pte is locked 1183 * over the call to page_add_new_anon_rmap. 1184 */ 1185 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1186 folio); 1187 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1188 page); 1189 } 1190 1191 /** 1192 * page_add_anon_rmap - add pte mapping to an anonymous page 1193 * @page: the page to add the mapping to 1194 * @vma: the vm area in which the mapping is added 1195 * @address: the user virtual address mapped 1196 * @flags: the rmap flags 1197 * 1198 * The caller needs to hold the pte lock, and the page must be locked in 1199 * the anon_vma case: to serialize mapping,index checking after setting, 1200 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1201 * (but PageKsm is never downgraded to PageAnon). 1202 */ 1203 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1204 unsigned long address, rmap_t flags) 1205 { 1206 struct folio *folio = page_folio(page); 1207 atomic_t *mapped = &folio->_nr_pages_mapped; 1208 int nr = 0, nr_pmdmapped = 0; 1209 bool compound = flags & RMAP_COMPOUND; 1210 bool first = true; 1211 1212 /* Is page being mapped by PTE? Is this its first map to be added? */ 1213 if (likely(!compound)) { 1214 first = atomic_inc_and_test(&page->_mapcount); 1215 nr = first; 1216 if (first && folio_test_large(folio)) { 1217 nr = atomic_inc_return_relaxed(mapped); 1218 nr = (nr < COMPOUND_MAPPED); 1219 } 1220 } else if (folio_test_pmd_mappable(folio)) { 1221 /* That test is redundant: it's for safety or to optimize out */ 1222 1223 first = atomic_inc_and_test(&folio->_entire_mapcount); 1224 if (first) { 1225 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1226 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1227 nr_pmdmapped = folio_nr_pages(folio); 1228 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1229 /* Raced ahead of a remove and another add? */ 1230 if (unlikely(nr < 0)) 1231 nr = 0; 1232 } else { 1233 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1234 nr = 0; 1235 } 1236 } 1237 } 1238 1239 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1240 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1241 1242 if (nr_pmdmapped) 1243 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1244 if (nr) 1245 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1246 1247 if (likely(!folio_test_ksm(folio))) { 1248 /* address might be in next vma when migration races vma_merge */ 1249 if (first) 1250 __page_set_anon_rmap(folio, page, vma, address, 1251 !!(flags & RMAP_EXCLUSIVE)); 1252 else 1253 __page_check_anon_rmap(folio, page, vma, address); 1254 } 1255 1256 mlock_vma_folio(folio, vma, compound); 1257 } 1258 1259 /** 1260 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1261 * @folio: The folio to add the mapping to. 1262 * @vma: the vm area in which the mapping is added 1263 * @address: the user virtual address mapped 1264 * 1265 * Like page_add_anon_rmap() but must only be called on *new* folios. 1266 * This means the inc-and-test can be bypassed. 1267 * The folio does not have to be locked. 1268 * 1269 * If the folio is large, it is accounted as a THP. As the folio 1270 * is new, it's assumed to be mapped exclusively by a single process. 1271 */ 1272 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1273 unsigned long address) 1274 { 1275 int nr; 1276 1277 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1278 __folio_set_swapbacked(folio); 1279 1280 if (likely(!folio_test_pmd_mappable(folio))) { 1281 /* increment count (starts at -1) */ 1282 atomic_set(&folio->_mapcount, 0); 1283 nr = 1; 1284 } else { 1285 /* increment count (starts at -1) */ 1286 atomic_set(&folio->_entire_mapcount, 0); 1287 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1288 nr = folio_nr_pages(folio); 1289 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1290 } 1291 1292 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1293 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1294 } 1295 1296 /** 1297 * page_add_file_rmap - add pte mapping to a file page 1298 * @page: the page to add the mapping to 1299 * @vma: the vm area in which the mapping is added 1300 * @compound: charge the page as compound or small page 1301 * 1302 * The caller needs to hold the pte lock. 1303 */ 1304 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1305 bool compound) 1306 { 1307 struct folio *folio = page_folio(page); 1308 atomic_t *mapped = &folio->_nr_pages_mapped; 1309 int nr = 0, nr_pmdmapped = 0; 1310 bool first; 1311 1312 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1313 1314 /* Is page being mapped by PTE? Is this its first map to be added? */ 1315 if (likely(!compound)) { 1316 first = atomic_inc_and_test(&page->_mapcount); 1317 nr = first; 1318 if (first && folio_test_large(folio)) { 1319 nr = atomic_inc_return_relaxed(mapped); 1320 nr = (nr < COMPOUND_MAPPED); 1321 } 1322 } else if (folio_test_pmd_mappable(folio)) { 1323 /* That test is redundant: it's for safety or to optimize out */ 1324 1325 first = atomic_inc_and_test(&folio->_entire_mapcount); 1326 if (first) { 1327 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1328 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1329 nr_pmdmapped = folio_nr_pages(folio); 1330 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1331 /* Raced ahead of a remove and another add? */ 1332 if (unlikely(nr < 0)) 1333 nr = 0; 1334 } else { 1335 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1336 nr = 0; 1337 } 1338 } 1339 } 1340 1341 if (nr_pmdmapped) 1342 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1343 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1344 if (nr) 1345 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1346 1347 mlock_vma_folio(folio, vma, compound); 1348 } 1349 1350 /** 1351 * page_remove_rmap - take down pte mapping from a page 1352 * @page: page to remove mapping from 1353 * @vma: the vm area from which the mapping is removed 1354 * @compound: uncharge the page as compound or small page 1355 * 1356 * The caller needs to hold the pte lock. 1357 */ 1358 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1359 bool compound) 1360 { 1361 struct folio *folio = page_folio(page); 1362 atomic_t *mapped = &folio->_nr_pages_mapped; 1363 int nr = 0, nr_pmdmapped = 0; 1364 bool last; 1365 enum node_stat_item idx; 1366 1367 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1368 1369 /* Hugetlb pages are not counted in NR_*MAPPED */ 1370 if (unlikely(folio_test_hugetlb(folio))) { 1371 /* hugetlb pages are always mapped with pmds */ 1372 atomic_dec(&folio->_entire_mapcount); 1373 return; 1374 } 1375 1376 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1377 if (likely(!compound)) { 1378 last = atomic_add_negative(-1, &page->_mapcount); 1379 nr = last; 1380 if (last && folio_test_large(folio)) { 1381 nr = atomic_dec_return_relaxed(mapped); 1382 nr = (nr < COMPOUND_MAPPED); 1383 } 1384 } else if (folio_test_pmd_mappable(folio)) { 1385 /* That test is redundant: it's for safety or to optimize out */ 1386 1387 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1388 if (last) { 1389 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1390 if (likely(nr < COMPOUND_MAPPED)) { 1391 nr_pmdmapped = folio_nr_pages(folio); 1392 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1393 /* Raced ahead of another remove and an add? */ 1394 if (unlikely(nr < 0)) 1395 nr = 0; 1396 } else { 1397 /* An add of COMPOUND_MAPPED raced ahead */ 1398 nr = 0; 1399 } 1400 } 1401 } 1402 1403 if (nr_pmdmapped) { 1404 if (folio_test_anon(folio)) 1405 idx = NR_ANON_THPS; 1406 else if (folio_test_swapbacked(folio)) 1407 idx = NR_SHMEM_PMDMAPPED; 1408 else 1409 idx = NR_FILE_PMDMAPPED; 1410 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1411 } 1412 if (nr) { 1413 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1414 __lruvec_stat_mod_folio(folio, idx, -nr); 1415 1416 /* 1417 * Queue anon THP for deferred split if at least one 1418 * page of the folio is unmapped and at least one page 1419 * is still mapped. 1420 */ 1421 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1422 if (!compound || nr < nr_pmdmapped) 1423 deferred_split_folio(folio); 1424 } 1425 1426 /* 1427 * It would be tidy to reset folio_test_anon mapping when fully 1428 * unmapped, but that might overwrite a racing page_add_anon_rmap 1429 * which increments mapcount after us but sets mapping before us: 1430 * so leave the reset to free_pages_prepare, and remember that 1431 * it's only reliable while mapped. 1432 */ 1433 1434 munlock_vma_folio(folio, vma, compound); 1435 } 1436 1437 /* 1438 * @arg: enum ttu_flags will be passed to this argument 1439 */ 1440 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1441 unsigned long address, void *arg) 1442 { 1443 struct mm_struct *mm = vma->vm_mm; 1444 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1445 pte_t pteval; 1446 struct page *subpage; 1447 bool anon_exclusive, ret = true; 1448 struct mmu_notifier_range range; 1449 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1450 unsigned long pfn; 1451 1452 /* 1453 * When racing against e.g. zap_pte_range() on another cpu, 1454 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1455 * try_to_unmap() may return before page_mapped() has become false, 1456 * if page table locking is skipped: use TTU_SYNC to wait for that. 1457 */ 1458 if (flags & TTU_SYNC) 1459 pvmw.flags = PVMW_SYNC; 1460 1461 if (flags & TTU_SPLIT_HUGE_PMD) 1462 split_huge_pmd_address(vma, address, false, folio); 1463 1464 /* 1465 * For THP, we have to assume the worse case ie pmd for invalidation. 1466 * For hugetlb, it could be much worse if we need to do pud 1467 * invalidation in the case of pmd sharing. 1468 * 1469 * Note that the folio can not be freed in this function as call of 1470 * try_to_unmap() must hold a reference on the folio. 1471 */ 1472 range.end = vma_address_end(&pvmw); 1473 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1474 address, range.end); 1475 if (folio_test_hugetlb(folio)) { 1476 /* 1477 * If sharing is possible, start and end will be adjusted 1478 * accordingly. 1479 */ 1480 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1481 &range.end); 1482 } 1483 mmu_notifier_invalidate_range_start(&range); 1484 1485 while (page_vma_mapped_walk(&pvmw)) { 1486 /* Unexpected PMD-mapped THP? */ 1487 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1488 1489 /* 1490 * If the folio is in an mlock()d vma, we must not swap it out. 1491 */ 1492 if (!(flags & TTU_IGNORE_MLOCK) && 1493 (vma->vm_flags & VM_LOCKED)) { 1494 /* Restore the mlock which got missed */ 1495 mlock_vma_folio(folio, vma, false); 1496 page_vma_mapped_walk_done(&pvmw); 1497 ret = false; 1498 break; 1499 } 1500 1501 pfn = pte_pfn(ptep_get(pvmw.pte)); 1502 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1503 address = pvmw.address; 1504 anon_exclusive = folio_test_anon(folio) && 1505 PageAnonExclusive(subpage); 1506 1507 if (folio_test_hugetlb(folio)) { 1508 bool anon = folio_test_anon(folio); 1509 1510 /* 1511 * The try_to_unmap() is only passed a hugetlb page 1512 * in the case where the hugetlb page is poisoned. 1513 */ 1514 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1515 /* 1516 * huge_pmd_unshare may unmap an entire PMD page. 1517 * There is no way of knowing exactly which PMDs may 1518 * be cached for this mm, so we must flush them all. 1519 * start/end were already adjusted above to cover this 1520 * range. 1521 */ 1522 flush_cache_range(vma, range.start, range.end); 1523 1524 /* 1525 * To call huge_pmd_unshare, i_mmap_rwsem must be 1526 * held in write mode. Caller needs to explicitly 1527 * do this outside rmap routines. 1528 * 1529 * We also must hold hugetlb vma_lock in write mode. 1530 * Lock order dictates acquiring vma_lock BEFORE 1531 * i_mmap_rwsem. We can only try lock here and fail 1532 * if unsuccessful. 1533 */ 1534 if (!anon) { 1535 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1536 if (!hugetlb_vma_trylock_write(vma)) { 1537 page_vma_mapped_walk_done(&pvmw); 1538 ret = false; 1539 break; 1540 } 1541 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1542 hugetlb_vma_unlock_write(vma); 1543 flush_tlb_range(vma, 1544 range.start, range.end); 1545 /* 1546 * The ref count of the PMD page was 1547 * dropped which is part of the way map 1548 * counting is done for shared PMDs. 1549 * Return 'true' here. When there is 1550 * no other sharing, huge_pmd_unshare 1551 * returns false and we will unmap the 1552 * actual page and drop map count 1553 * to zero. 1554 */ 1555 page_vma_mapped_walk_done(&pvmw); 1556 break; 1557 } 1558 hugetlb_vma_unlock_write(vma); 1559 } 1560 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1561 } else { 1562 flush_cache_page(vma, address, pfn); 1563 /* Nuke the page table entry. */ 1564 if (should_defer_flush(mm, flags)) { 1565 /* 1566 * We clear the PTE but do not flush so potentially 1567 * a remote CPU could still be writing to the folio. 1568 * If the entry was previously clean then the 1569 * architecture must guarantee that a clear->dirty 1570 * transition on a cached TLB entry is written through 1571 * and traps if the PTE is unmapped. 1572 */ 1573 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1574 1575 set_tlb_ubc_flush_pending(mm, pteval, address); 1576 } else { 1577 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1578 } 1579 } 1580 1581 /* 1582 * Now the pte is cleared. If this pte was uffd-wp armed, 1583 * we may want to replace a none pte with a marker pte if 1584 * it's file-backed, so we don't lose the tracking info. 1585 */ 1586 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1587 1588 /* Set the dirty flag on the folio now the pte is gone. */ 1589 if (pte_dirty(pteval)) 1590 folio_mark_dirty(folio); 1591 1592 /* Update high watermark before we lower rss */ 1593 update_hiwater_rss(mm); 1594 1595 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1596 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1597 if (folio_test_hugetlb(folio)) { 1598 hugetlb_count_sub(folio_nr_pages(folio), mm); 1599 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1600 } else { 1601 dec_mm_counter(mm, mm_counter(&folio->page)); 1602 set_pte_at(mm, address, pvmw.pte, pteval); 1603 } 1604 1605 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1606 /* 1607 * The guest indicated that the page content is of no 1608 * interest anymore. Simply discard the pte, vmscan 1609 * will take care of the rest. 1610 * A future reference will then fault in a new zero 1611 * page. When userfaultfd is active, we must not drop 1612 * this page though, as its main user (postcopy 1613 * migration) will not expect userfaults on already 1614 * copied pages. 1615 */ 1616 dec_mm_counter(mm, mm_counter(&folio->page)); 1617 } else if (folio_test_anon(folio)) { 1618 swp_entry_t entry = { .val = page_private(subpage) }; 1619 pte_t swp_pte; 1620 /* 1621 * Store the swap location in the pte. 1622 * See handle_pte_fault() ... 1623 */ 1624 if (unlikely(folio_test_swapbacked(folio) != 1625 folio_test_swapcache(folio))) { 1626 WARN_ON_ONCE(1); 1627 ret = false; 1628 page_vma_mapped_walk_done(&pvmw); 1629 break; 1630 } 1631 1632 /* MADV_FREE page check */ 1633 if (!folio_test_swapbacked(folio)) { 1634 int ref_count, map_count; 1635 1636 /* 1637 * Synchronize with gup_pte_range(): 1638 * - clear PTE; barrier; read refcount 1639 * - inc refcount; barrier; read PTE 1640 */ 1641 smp_mb(); 1642 1643 ref_count = folio_ref_count(folio); 1644 map_count = folio_mapcount(folio); 1645 1646 /* 1647 * Order reads for page refcount and dirty flag 1648 * (see comments in __remove_mapping()). 1649 */ 1650 smp_rmb(); 1651 1652 /* 1653 * The only page refs must be one from isolation 1654 * plus the rmap(s) (dropped by discard:). 1655 */ 1656 if (ref_count == 1 + map_count && 1657 !folio_test_dirty(folio)) { 1658 dec_mm_counter(mm, MM_ANONPAGES); 1659 goto discard; 1660 } 1661 1662 /* 1663 * If the folio was redirtied, it cannot be 1664 * discarded. Remap the page to page table. 1665 */ 1666 set_pte_at(mm, address, pvmw.pte, pteval); 1667 folio_set_swapbacked(folio); 1668 ret = false; 1669 page_vma_mapped_walk_done(&pvmw); 1670 break; 1671 } 1672 1673 if (swap_duplicate(entry) < 0) { 1674 set_pte_at(mm, address, pvmw.pte, pteval); 1675 ret = false; 1676 page_vma_mapped_walk_done(&pvmw); 1677 break; 1678 } 1679 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1680 swap_free(entry); 1681 set_pte_at(mm, address, pvmw.pte, pteval); 1682 ret = false; 1683 page_vma_mapped_walk_done(&pvmw); 1684 break; 1685 } 1686 1687 /* See page_try_share_anon_rmap(): clear PTE first. */ 1688 if (anon_exclusive && 1689 page_try_share_anon_rmap(subpage)) { 1690 swap_free(entry); 1691 set_pte_at(mm, address, pvmw.pte, pteval); 1692 ret = false; 1693 page_vma_mapped_walk_done(&pvmw); 1694 break; 1695 } 1696 if (list_empty(&mm->mmlist)) { 1697 spin_lock(&mmlist_lock); 1698 if (list_empty(&mm->mmlist)) 1699 list_add(&mm->mmlist, &init_mm.mmlist); 1700 spin_unlock(&mmlist_lock); 1701 } 1702 dec_mm_counter(mm, MM_ANONPAGES); 1703 inc_mm_counter(mm, MM_SWAPENTS); 1704 swp_pte = swp_entry_to_pte(entry); 1705 if (anon_exclusive) 1706 swp_pte = pte_swp_mkexclusive(swp_pte); 1707 if (pte_soft_dirty(pteval)) 1708 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1709 if (pte_uffd_wp(pteval)) 1710 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1711 set_pte_at(mm, address, pvmw.pte, swp_pte); 1712 } else { 1713 /* 1714 * This is a locked file-backed folio, 1715 * so it cannot be removed from the page 1716 * cache and replaced by a new folio before 1717 * mmu_notifier_invalidate_range_end, so no 1718 * concurrent thread might update its page table 1719 * to point at a new folio while a device is 1720 * still using this folio. 1721 * 1722 * See Documentation/mm/mmu_notifier.rst 1723 */ 1724 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1725 } 1726 discard: 1727 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1728 if (vma->vm_flags & VM_LOCKED) 1729 mlock_drain_local(); 1730 folio_put(folio); 1731 } 1732 1733 mmu_notifier_invalidate_range_end(&range); 1734 1735 return ret; 1736 } 1737 1738 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1739 { 1740 return vma_is_temporary_stack(vma); 1741 } 1742 1743 static int folio_not_mapped(struct folio *folio) 1744 { 1745 return !folio_mapped(folio); 1746 } 1747 1748 /** 1749 * try_to_unmap - Try to remove all page table mappings to a folio. 1750 * @folio: The folio to unmap. 1751 * @flags: action and flags 1752 * 1753 * Tries to remove all the page table entries which are mapping this 1754 * folio. It is the caller's responsibility to check if the folio is 1755 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1756 * 1757 * Context: Caller must hold the folio lock. 1758 */ 1759 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1760 { 1761 struct rmap_walk_control rwc = { 1762 .rmap_one = try_to_unmap_one, 1763 .arg = (void *)flags, 1764 .done = folio_not_mapped, 1765 .anon_lock = folio_lock_anon_vma_read, 1766 }; 1767 1768 if (flags & TTU_RMAP_LOCKED) 1769 rmap_walk_locked(folio, &rwc); 1770 else 1771 rmap_walk(folio, &rwc); 1772 } 1773 1774 /* 1775 * @arg: enum ttu_flags will be passed to this argument. 1776 * 1777 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1778 * containing migration entries. 1779 */ 1780 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1781 unsigned long address, void *arg) 1782 { 1783 struct mm_struct *mm = vma->vm_mm; 1784 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1785 pte_t pteval; 1786 struct page *subpage; 1787 bool anon_exclusive, ret = true; 1788 struct mmu_notifier_range range; 1789 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1790 unsigned long pfn; 1791 1792 /* 1793 * When racing against e.g. zap_pte_range() on another cpu, 1794 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1795 * try_to_migrate() may return before page_mapped() has become false, 1796 * if page table locking is skipped: use TTU_SYNC to wait for that. 1797 */ 1798 if (flags & TTU_SYNC) 1799 pvmw.flags = PVMW_SYNC; 1800 1801 /* 1802 * unmap_page() in mm/huge_memory.c is the only user of migration with 1803 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1804 */ 1805 if (flags & TTU_SPLIT_HUGE_PMD) 1806 split_huge_pmd_address(vma, address, true, folio); 1807 1808 /* 1809 * For THP, we have to assume the worse case ie pmd for invalidation. 1810 * For hugetlb, it could be much worse if we need to do pud 1811 * invalidation in the case of pmd sharing. 1812 * 1813 * Note that the page can not be free in this function as call of 1814 * try_to_unmap() must hold a reference on the page. 1815 */ 1816 range.end = vma_address_end(&pvmw); 1817 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1818 address, range.end); 1819 if (folio_test_hugetlb(folio)) { 1820 /* 1821 * If sharing is possible, start and end will be adjusted 1822 * accordingly. 1823 */ 1824 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1825 &range.end); 1826 } 1827 mmu_notifier_invalidate_range_start(&range); 1828 1829 while (page_vma_mapped_walk(&pvmw)) { 1830 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1831 /* PMD-mapped THP migration entry */ 1832 if (!pvmw.pte) { 1833 subpage = folio_page(folio, 1834 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1835 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1836 !folio_test_pmd_mappable(folio), folio); 1837 1838 if (set_pmd_migration_entry(&pvmw, subpage)) { 1839 ret = false; 1840 page_vma_mapped_walk_done(&pvmw); 1841 break; 1842 } 1843 continue; 1844 } 1845 #endif 1846 1847 /* Unexpected PMD-mapped THP? */ 1848 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1849 1850 pfn = pte_pfn(ptep_get(pvmw.pte)); 1851 1852 if (folio_is_zone_device(folio)) { 1853 /* 1854 * Our PTE is a non-present device exclusive entry and 1855 * calculating the subpage as for the common case would 1856 * result in an invalid pointer. 1857 * 1858 * Since only PAGE_SIZE pages can currently be 1859 * migrated, just set it to page. This will need to be 1860 * changed when hugepage migrations to device private 1861 * memory are supported. 1862 */ 1863 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1864 subpage = &folio->page; 1865 } else { 1866 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1867 } 1868 address = pvmw.address; 1869 anon_exclusive = folio_test_anon(folio) && 1870 PageAnonExclusive(subpage); 1871 1872 if (folio_test_hugetlb(folio)) { 1873 bool anon = folio_test_anon(folio); 1874 1875 /* 1876 * huge_pmd_unshare may unmap an entire PMD page. 1877 * There is no way of knowing exactly which PMDs may 1878 * be cached for this mm, so we must flush them all. 1879 * start/end were already adjusted above to cover this 1880 * range. 1881 */ 1882 flush_cache_range(vma, range.start, range.end); 1883 1884 /* 1885 * To call huge_pmd_unshare, i_mmap_rwsem must be 1886 * held in write mode. Caller needs to explicitly 1887 * do this outside rmap routines. 1888 * 1889 * We also must hold hugetlb vma_lock in write mode. 1890 * Lock order dictates acquiring vma_lock BEFORE 1891 * i_mmap_rwsem. We can only try lock here and 1892 * fail if unsuccessful. 1893 */ 1894 if (!anon) { 1895 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1896 if (!hugetlb_vma_trylock_write(vma)) { 1897 page_vma_mapped_walk_done(&pvmw); 1898 ret = false; 1899 break; 1900 } 1901 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1902 hugetlb_vma_unlock_write(vma); 1903 flush_tlb_range(vma, 1904 range.start, range.end); 1905 1906 /* 1907 * The ref count of the PMD page was 1908 * dropped which is part of the way map 1909 * counting is done for shared PMDs. 1910 * Return 'true' here. When there is 1911 * no other sharing, huge_pmd_unshare 1912 * returns false and we will unmap the 1913 * actual page and drop map count 1914 * to zero. 1915 */ 1916 page_vma_mapped_walk_done(&pvmw); 1917 break; 1918 } 1919 hugetlb_vma_unlock_write(vma); 1920 } 1921 /* Nuke the hugetlb page table entry */ 1922 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1923 } else { 1924 flush_cache_page(vma, address, pfn); 1925 /* Nuke the page table entry. */ 1926 if (should_defer_flush(mm, flags)) { 1927 /* 1928 * We clear the PTE but do not flush so potentially 1929 * a remote CPU could still be writing to the folio. 1930 * If the entry was previously clean then the 1931 * architecture must guarantee that a clear->dirty 1932 * transition on a cached TLB entry is written through 1933 * and traps if the PTE is unmapped. 1934 */ 1935 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1936 1937 set_tlb_ubc_flush_pending(mm, pteval, address); 1938 } else { 1939 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1940 } 1941 } 1942 1943 /* Set the dirty flag on the folio now the pte is gone. */ 1944 if (pte_dirty(pteval)) 1945 folio_mark_dirty(folio); 1946 1947 /* Update high watermark before we lower rss */ 1948 update_hiwater_rss(mm); 1949 1950 if (folio_is_device_private(folio)) { 1951 unsigned long pfn = folio_pfn(folio); 1952 swp_entry_t entry; 1953 pte_t swp_pte; 1954 1955 if (anon_exclusive) 1956 BUG_ON(page_try_share_anon_rmap(subpage)); 1957 1958 /* 1959 * Store the pfn of the page in a special migration 1960 * pte. do_swap_page() will wait until the migration 1961 * pte is removed and then restart fault handling. 1962 */ 1963 entry = pte_to_swp_entry(pteval); 1964 if (is_writable_device_private_entry(entry)) 1965 entry = make_writable_migration_entry(pfn); 1966 else if (anon_exclusive) 1967 entry = make_readable_exclusive_migration_entry(pfn); 1968 else 1969 entry = make_readable_migration_entry(pfn); 1970 swp_pte = swp_entry_to_pte(entry); 1971 1972 /* 1973 * pteval maps a zone device page and is therefore 1974 * a swap pte. 1975 */ 1976 if (pte_swp_soft_dirty(pteval)) 1977 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1978 if (pte_swp_uffd_wp(pteval)) 1979 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1980 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1981 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 1982 compound_order(&folio->page)); 1983 /* 1984 * No need to invalidate here it will synchronize on 1985 * against the special swap migration pte. 1986 */ 1987 } else if (PageHWPoison(subpage)) { 1988 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1989 if (folio_test_hugetlb(folio)) { 1990 hugetlb_count_sub(folio_nr_pages(folio), mm); 1991 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1992 } else { 1993 dec_mm_counter(mm, mm_counter(&folio->page)); 1994 set_pte_at(mm, address, pvmw.pte, pteval); 1995 } 1996 1997 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1998 /* 1999 * The guest indicated that the page content is of no 2000 * interest anymore. Simply discard the pte, vmscan 2001 * will take care of the rest. 2002 * A future reference will then fault in a new zero 2003 * page. When userfaultfd is active, we must not drop 2004 * this page though, as its main user (postcopy 2005 * migration) will not expect userfaults on already 2006 * copied pages. 2007 */ 2008 dec_mm_counter(mm, mm_counter(&folio->page)); 2009 } else { 2010 swp_entry_t entry; 2011 pte_t swp_pte; 2012 2013 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2014 if (folio_test_hugetlb(folio)) 2015 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2016 else 2017 set_pte_at(mm, address, pvmw.pte, pteval); 2018 ret = false; 2019 page_vma_mapped_walk_done(&pvmw); 2020 break; 2021 } 2022 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2023 !anon_exclusive, subpage); 2024 2025 /* See page_try_share_anon_rmap(): clear PTE first. */ 2026 if (anon_exclusive && 2027 page_try_share_anon_rmap(subpage)) { 2028 if (folio_test_hugetlb(folio)) 2029 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2030 else 2031 set_pte_at(mm, address, pvmw.pte, pteval); 2032 ret = false; 2033 page_vma_mapped_walk_done(&pvmw); 2034 break; 2035 } 2036 2037 /* 2038 * Store the pfn of the page in a special migration 2039 * pte. do_swap_page() will wait until the migration 2040 * pte is removed and then restart fault handling. 2041 */ 2042 if (pte_write(pteval)) 2043 entry = make_writable_migration_entry( 2044 page_to_pfn(subpage)); 2045 else if (anon_exclusive) 2046 entry = make_readable_exclusive_migration_entry( 2047 page_to_pfn(subpage)); 2048 else 2049 entry = make_readable_migration_entry( 2050 page_to_pfn(subpage)); 2051 if (pte_young(pteval)) 2052 entry = make_migration_entry_young(entry); 2053 if (pte_dirty(pteval)) 2054 entry = make_migration_entry_dirty(entry); 2055 swp_pte = swp_entry_to_pte(entry); 2056 if (pte_soft_dirty(pteval)) 2057 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2058 if (pte_uffd_wp(pteval)) 2059 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2060 if (folio_test_hugetlb(folio)) 2061 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2062 else 2063 set_pte_at(mm, address, pvmw.pte, swp_pte); 2064 trace_set_migration_pte(address, pte_val(swp_pte), 2065 compound_order(&folio->page)); 2066 /* 2067 * No need to invalidate here it will synchronize on 2068 * against the special swap migration pte. 2069 */ 2070 } 2071 2072 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2073 if (vma->vm_flags & VM_LOCKED) 2074 mlock_drain_local(); 2075 folio_put(folio); 2076 } 2077 2078 mmu_notifier_invalidate_range_end(&range); 2079 2080 return ret; 2081 } 2082 2083 /** 2084 * try_to_migrate - try to replace all page table mappings with swap entries 2085 * @folio: the folio to replace page table entries for 2086 * @flags: action and flags 2087 * 2088 * Tries to remove all the page table entries which are mapping this folio and 2089 * replace them with special swap entries. Caller must hold the folio lock. 2090 */ 2091 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2092 { 2093 struct rmap_walk_control rwc = { 2094 .rmap_one = try_to_migrate_one, 2095 .arg = (void *)flags, 2096 .done = folio_not_mapped, 2097 .anon_lock = folio_lock_anon_vma_read, 2098 }; 2099 2100 /* 2101 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2102 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2103 */ 2104 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2105 TTU_SYNC | TTU_BATCH_FLUSH))) 2106 return; 2107 2108 if (folio_is_zone_device(folio) && 2109 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2110 return; 2111 2112 /* 2113 * During exec, a temporary VMA is setup and later moved. 2114 * The VMA is moved under the anon_vma lock but not the 2115 * page tables leading to a race where migration cannot 2116 * find the migration ptes. Rather than increasing the 2117 * locking requirements of exec(), migration skips 2118 * temporary VMAs until after exec() completes. 2119 */ 2120 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2121 rwc.invalid_vma = invalid_migration_vma; 2122 2123 if (flags & TTU_RMAP_LOCKED) 2124 rmap_walk_locked(folio, &rwc); 2125 else 2126 rmap_walk(folio, &rwc); 2127 } 2128 2129 #ifdef CONFIG_DEVICE_PRIVATE 2130 struct make_exclusive_args { 2131 struct mm_struct *mm; 2132 unsigned long address; 2133 void *owner; 2134 bool valid; 2135 }; 2136 2137 static bool page_make_device_exclusive_one(struct folio *folio, 2138 struct vm_area_struct *vma, unsigned long address, void *priv) 2139 { 2140 struct mm_struct *mm = vma->vm_mm; 2141 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2142 struct make_exclusive_args *args = priv; 2143 pte_t pteval; 2144 struct page *subpage; 2145 bool ret = true; 2146 struct mmu_notifier_range range; 2147 swp_entry_t entry; 2148 pte_t swp_pte; 2149 pte_t ptent; 2150 2151 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2152 vma->vm_mm, address, min(vma->vm_end, 2153 address + folio_size(folio)), 2154 args->owner); 2155 mmu_notifier_invalidate_range_start(&range); 2156 2157 while (page_vma_mapped_walk(&pvmw)) { 2158 /* Unexpected PMD-mapped THP? */ 2159 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2160 2161 ptent = ptep_get(pvmw.pte); 2162 if (!pte_present(ptent)) { 2163 ret = false; 2164 page_vma_mapped_walk_done(&pvmw); 2165 break; 2166 } 2167 2168 subpage = folio_page(folio, 2169 pte_pfn(ptent) - folio_pfn(folio)); 2170 address = pvmw.address; 2171 2172 /* Nuke the page table entry. */ 2173 flush_cache_page(vma, address, pte_pfn(ptent)); 2174 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2175 2176 /* Set the dirty flag on the folio now the pte is gone. */ 2177 if (pte_dirty(pteval)) 2178 folio_mark_dirty(folio); 2179 2180 /* 2181 * Check that our target page is still mapped at the expected 2182 * address. 2183 */ 2184 if (args->mm == mm && args->address == address && 2185 pte_write(pteval)) 2186 args->valid = true; 2187 2188 /* 2189 * Store the pfn of the page in a special migration 2190 * pte. do_swap_page() will wait until the migration 2191 * pte is removed and then restart fault handling. 2192 */ 2193 if (pte_write(pteval)) 2194 entry = make_writable_device_exclusive_entry( 2195 page_to_pfn(subpage)); 2196 else 2197 entry = make_readable_device_exclusive_entry( 2198 page_to_pfn(subpage)); 2199 swp_pte = swp_entry_to_pte(entry); 2200 if (pte_soft_dirty(pteval)) 2201 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2202 if (pte_uffd_wp(pteval)) 2203 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2204 2205 set_pte_at(mm, address, pvmw.pte, swp_pte); 2206 2207 /* 2208 * There is a reference on the page for the swap entry which has 2209 * been removed, so shouldn't take another. 2210 */ 2211 page_remove_rmap(subpage, vma, false); 2212 } 2213 2214 mmu_notifier_invalidate_range_end(&range); 2215 2216 return ret; 2217 } 2218 2219 /** 2220 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2221 * @folio: The folio to replace page table entries for. 2222 * @mm: The mm_struct where the folio is expected to be mapped. 2223 * @address: Address where the folio is expected to be mapped. 2224 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2225 * 2226 * Tries to remove all the page table entries which are mapping this 2227 * folio and replace them with special device exclusive swap entries to 2228 * grant a device exclusive access to the folio. 2229 * 2230 * Context: Caller must hold the folio lock. 2231 * Return: false if the page is still mapped, or if it could not be unmapped 2232 * from the expected address. Otherwise returns true (success). 2233 */ 2234 static bool folio_make_device_exclusive(struct folio *folio, 2235 struct mm_struct *mm, unsigned long address, void *owner) 2236 { 2237 struct make_exclusive_args args = { 2238 .mm = mm, 2239 .address = address, 2240 .owner = owner, 2241 .valid = false, 2242 }; 2243 struct rmap_walk_control rwc = { 2244 .rmap_one = page_make_device_exclusive_one, 2245 .done = folio_not_mapped, 2246 .anon_lock = folio_lock_anon_vma_read, 2247 .arg = &args, 2248 }; 2249 2250 /* 2251 * Restrict to anonymous folios for now to avoid potential writeback 2252 * issues. 2253 */ 2254 if (!folio_test_anon(folio)) 2255 return false; 2256 2257 rmap_walk(folio, &rwc); 2258 2259 return args.valid && !folio_mapcount(folio); 2260 } 2261 2262 /** 2263 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2264 * @mm: mm_struct of associated target process 2265 * @start: start of the region to mark for exclusive device access 2266 * @end: end address of region 2267 * @pages: returns the pages which were successfully marked for exclusive access 2268 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2269 * 2270 * Returns: number of pages found in the range by GUP. A page is marked for 2271 * exclusive access only if the page pointer is non-NULL. 2272 * 2273 * This function finds ptes mapping page(s) to the given address range, locks 2274 * them and replaces mappings with special swap entries preventing userspace CPU 2275 * access. On fault these entries are replaced with the original mapping after 2276 * calling MMU notifiers. 2277 * 2278 * A driver using this to program access from a device must use a mmu notifier 2279 * critical section to hold a device specific lock during programming. Once 2280 * programming is complete it should drop the page lock and reference after 2281 * which point CPU access to the page will revoke the exclusive access. 2282 */ 2283 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2284 unsigned long end, struct page **pages, 2285 void *owner) 2286 { 2287 long npages = (end - start) >> PAGE_SHIFT; 2288 long i; 2289 2290 npages = get_user_pages_remote(mm, start, npages, 2291 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2292 pages, NULL); 2293 if (npages < 0) 2294 return npages; 2295 2296 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2297 struct folio *folio = page_folio(pages[i]); 2298 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2299 folio_put(folio); 2300 pages[i] = NULL; 2301 continue; 2302 } 2303 2304 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2305 folio_unlock(folio); 2306 folio_put(folio); 2307 pages[i] = NULL; 2308 } 2309 } 2310 2311 return npages; 2312 } 2313 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2314 #endif 2315 2316 void __put_anon_vma(struct anon_vma *anon_vma) 2317 { 2318 struct anon_vma *root = anon_vma->root; 2319 2320 anon_vma_free(anon_vma); 2321 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2322 anon_vma_free(root); 2323 } 2324 2325 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2326 struct rmap_walk_control *rwc) 2327 { 2328 struct anon_vma *anon_vma; 2329 2330 if (rwc->anon_lock) 2331 return rwc->anon_lock(folio, rwc); 2332 2333 /* 2334 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2335 * because that depends on page_mapped(); but not all its usages 2336 * are holding mmap_lock. Users without mmap_lock are required to 2337 * take a reference count to prevent the anon_vma disappearing 2338 */ 2339 anon_vma = folio_anon_vma(folio); 2340 if (!anon_vma) 2341 return NULL; 2342 2343 if (anon_vma_trylock_read(anon_vma)) 2344 goto out; 2345 2346 if (rwc->try_lock) { 2347 anon_vma = NULL; 2348 rwc->contended = true; 2349 goto out; 2350 } 2351 2352 anon_vma_lock_read(anon_vma); 2353 out: 2354 return anon_vma; 2355 } 2356 2357 /* 2358 * rmap_walk_anon - do something to anonymous page using the object-based 2359 * rmap method 2360 * @folio: the folio to be handled 2361 * @rwc: control variable according to each walk type 2362 * @locked: caller holds relevant rmap lock 2363 * 2364 * Find all the mappings of a folio using the mapping pointer and the vma 2365 * chains contained in the anon_vma struct it points to. 2366 */ 2367 static void rmap_walk_anon(struct folio *folio, 2368 struct rmap_walk_control *rwc, bool locked) 2369 { 2370 struct anon_vma *anon_vma; 2371 pgoff_t pgoff_start, pgoff_end; 2372 struct anon_vma_chain *avc; 2373 2374 if (locked) { 2375 anon_vma = folio_anon_vma(folio); 2376 /* anon_vma disappear under us? */ 2377 VM_BUG_ON_FOLIO(!anon_vma, folio); 2378 } else { 2379 anon_vma = rmap_walk_anon_lock(folio, rwc); 2380 } 2381 if (!anon_vma) 2382 return; 2383 2384 pgoff_start = folio_pgoff(folio); 2385 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2386 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2387 pgoff_start, pgoff_end) { 2388 struct vm_area_struct *vma = avc->vma; 2389 unsigned long address = vma_address(&folio->page, vma); 2390 2391 VM_BUG_ON_VMA(address == -EFAULT, vma); 2392 cond_resched(); 2393 2394 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2395 continue; 2396 2397 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2398 break; 2399 if (rwc->done && rwc->done(folio)) 2400 break; 2401 } 2402 2403 if (!locked) 2404 anon_vma_unlock_read(anon_vma); 2405 } 2406 2407 /* 2408 * rmap_walk_file - do something to file page using the object-based rmap method 2409 * @folio: the folio to be handled 2410 * @rwc: control variable according to each walk type 2411 * @locked: caller holds relevant rmap lock 2412 * 2413 * Find all the mappings of a folio using the mapping pointer and the vma chains 2414 * contained in the address_space struct it points to. 2415 */ 2416 static void rmap_walk_file(struct folio *folio, 2417 struct rmap_walk_control *rwc, bool locked) 2418 { 2419 struct address_space *mapping = folio_mapping(folio); 2420 pgoff_t pgoff_start, pgoff_end; 2421 struct vm_area_struct *vma; 2422 2423 /* 2424 * The page lock not only makes sure that page->mapping cannot 2425 * suddenly be NULLified by truncation, it makes sure that the 2426 * structure at mapping cannot be freed and reused yet, 2427 * so we can safely take mapping->i_mmap_rwsem. 2428 */ 2429 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2430 2431 if (!mapping) 2432 return; 2433 2434 pgoff_start = folio_pgoff(folio); 2435 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2436 if (!locked) { 2437 if (i_mmap_trylock_read(mapping)) 2438 goto lookup; 2439 2440 if (rwc->try_lock) { 2441 rwc->contended = true; 2442 return; 2443 } 2444 2445 i_mmap_lock_read(mapping); 2446 } 2447 lookup: 2448 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2449 pgoff_start, pgoff_end) { 2450 unsigned long address = vma_address(&folio->page, vma); 2451 2452 VM_BUG_ON_VMA(address == -EFAULT, vma); 2453 cond_resched(); 2454 2455 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2456 continue; 2457 2458 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2459 goto done; 2460 if (rwc->done && rwc->done(folio)) 2461 goto done; 2462 } 2463 2464 done: 2465 if (!locked) 2466 i_mmap_unlock_read(mapping); 2467 } 2468 2469 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2470 { 2471 if (unlikely(folio_test_ksm(folio))) 2472 rmap_walk_ksm(folio, rwc); 2473 else if (folio_test_anon(folio)) 2474 rmap_walk_anon(folio, rwc, false); 2475 else 2476 rmap_walk_file(folio, rwc, false); 2477 } 2478 2479 /* Like rmap_walk, but caller holds relevant rmap lock */ 2480 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2481 { 2482 /* no ksm support for now */ 2483 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2484 if (folio_test_anon(folio)) 2485 rmap_walk_anon(folio, rwc, true); 2486 else 2487 rmap_walk_file(folio, rwc, true); 2488 } 2489 2490 #ifdef CONFIG_HUGETLB_PAGE 2491 /* 2492 * The following two functions are for anonymous (private mapped) hugepages. 2493 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2494 * and no lru code, because we handle hugepages differently from common pages. 2495 * 2496 * RMAP_COMPOUND is ignored. 2497 */ 2498 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2499 unsigned long address, rmap_t flags) 2500 { 2501 struct folio *folio = page_folio(page); 2502 struct anon_vma *anon_vma = vma->anon_vma; 2503 int first; 2504 2505 BUG_ON(!folio_test_locked(folio)); 2506 BUG_ON(!anon_vma); 2507 /* address might be in next vma when migration races vma_merge */ 2508 first = atomic_inc_and_test(&folio->_entire_mapcount); 2509 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2510 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2511 if (first) 2512 __page_set_anon_rmap(folio, page, vma, address, 2513 !!(flags & RMAP_EXCLUSIVE)); 2514 } 2515 2516 void hugepage_add_new_anon_rmap(struct folio *folio, 2517 struct vm_area_struct *vma, unsigned long address) 2518 { 2519 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2520 /* increment count (starts at -1) */ 2521 atomic_set(&folio->_entire_mapcount, 0); 2522 folio_clear_hugetlb_restore_reserve(folio); 2523 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2524 } 2525 #endif /* CONFIG_HUGETLB_PAGE */ 2526