xref: /linux/mm/rmap.c (revision f8343685643f2901fe11aa9d0358cafbeaf7b4c3)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 
52 #include <asm/tlbflush.h>
53 
54 struct kmem_cache *anon_vma_cachep;
55 
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57 {
58 #ifdef CONFIG_DEBUG_VM
59 	struct anon_vma *anon_vma = find_vma->anon_vma;
60 	struct vm_area_struct *vma;
61 	unsigned int mapcount = 0;
62 	int found = 0;
63 
64 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 		mapcount++;
66 		BUG_ON(mapcount > 100000);
67 		if (vma == find_vma)
68 			found = 1;
69 	}
70 	BUG_ON(!found);
71 #endif
72 }
73 
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
76 {
77 	struct anon_vma *anon_vma = vma->anon_vma;
78 
79 	might_sleep();
80 	if (unlikely(!anon_vma)) {
81 		struct mm_struct *mm = vma->vm_mm;
82 		struct anon_vma *allocated, *locked;
83 
84 		anon_vma = find_mergeable_anon_vma(vma);
85 		if (anon_vma) {
86 			allocated = NULL;
87 			locked = anon_vma;
88 			spin_lock(&locked->lock);
89 		} else {
90 			anon_vma = anon_vma_alloc();
91 			if (unlikely(!anon_vma))
92 				return -ENOMEM;
93 			allocated = anon_vma;
94 			locked = NULL;
95 		}
96 
97 		/* page_table_lock to protect against threads */
98 		spin_lock(&mm->page_table_lock);
99 		if (likely(!vma->anon_vma)) {
100 			vma->anon_vma = anon_vma;
101 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 			allocated = NULL;
103 		}
104 		spin_unlock(&mm->page_table_lock);
105 
106 		if (locked)
107 			spin_unlock(&locked->lock);
108 		if (unlikely(allocated))
109 			anon_vma_free(allocated);
110 	}
111 	return 0;
112 }
113 
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115 {
116 	BUG_ON(vma->anon_vma != next->anon_vma);
117 	list_del(&next->anon_vma_node);
118 }
119 
120 void __anon_vma_link(struct vm_area_struct *vma)
121 {
122 	struct anon_vma *anon_vma = vma->anon_vma;
123 
124 	if (anon_vma) {
125 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 		validate_anon_vma(vma);
127 	}
128 }
129 
130 void anon_vma_link(struct vm_area_struct *vma)
131 {
132 	struct anon_vma *anon_vma = vma->anon_vma;
133 
134 	if (anon_vma) {
135 		spin_lock(&anon_vma->lock);
136 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 		validate_anon_vma(vma);
138 		spin_unlock(&anon_vma->lock);
139 	}
140 }
141 
142 void anon_vma_unlink(struct vm_area_struct *vma)
143 {
144 	struct anon_vma *anon_vma = vma->anon_vma;
145 	int empty;
146 
147 	if (!anon_vma)
148 		return;
149 
150 	spin_lock(&anon_vma->lock);
151 	validate_anon_vma(vma);
152 	list_del(&vma->anon_vma_node);
153 
154 	/* We must garbage collect the anon_vma if it's empty */
155 	empty = list_empty(&anon_vma->head);
156 	spin_unlock(&anon_vma->lock);
157 
158 	if (empty)
159 		anon_vma_free(anon_vma);
160 }
161 
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 			  unsigned long flags)
164 {
165 	struct anon_vma *anon_vma = data;
166 
167 	spin_lock_init(&anon_vma->lock);
168 	INIT_LIST_HEAD(&anon_vma->head);
169 }
170 
171 void __init anon_vma_init(void)
172 {
173 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
174 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
175 }
176 
177 /*
178  * Getting a lock on a stable anon_vma from a page off the LRU is
179  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
180  */
181 static struct anon_vma *page_lock_anon_vma(struct page *page)
182 {
183 	struct anon_vma *anon_vma;
184 	unsigned long anon_mapping;
185 
186 	rcu_read_lock();
187 	anon_mapping = (unsigned long) page->mapping;
188 	if (!(anon_mapping & PAGE_MAPPING_ANON))
189 		goto out;
190 	if (!page_mapped(page))
191 		goto out;
192 
193 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
194 	spin_lock(&anon_vma->lock);
195 	return anon_vma;
196 out:
197 	rcu_read_unlock();
198 	return NULL;
199 }
200 
201 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
202 {
203 	spin_unlock(&anon_vma->lock);
204 	rcu_read_unlock();
205 }
206 
207 /*
208  * At what user virtual address is page expected in vma?
209  */
210 static inline unsigned long
211 vma_address(struct page *page, struct vm_area_struct *vma)
212 {
213 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
214 	unsigned long address;
215 
216 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
217 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
218 		/* page should be within any vma from prio_tree_next */
219 		BUG_ON(!PageAnon(page));
220 		return -EFAULT;
221 	}
222 	return address;
223 }
224 
225 /*
226  * At what user virtual address is page expected in vma? checking that the
227  * page matches the vma: currently only used on anon pages, by unuse_vma;
228  */
229 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
230 {
231 	if (PageAnon(page)) {
232 		if ((void *)vma->anon_vma !=
233 		    (void *)page->mapping - PAGE_MAPPING_ANON)
234 			return -EFAULT;
235 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
236 		if (!vma->vm_file ||
237 		    vma->vm_file->f_mapping != page->mapping)
238 			return -EFAULT;
239 	} else
240 		return -EFAULT;
241 	return vma_address(page, vma);
242 }
243 
244 /*
245  * Check that @page is mapped at @address into @mm.
246  *
247  * On success returns with pte mapped and locked.
248  */
249 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
250 			  unsigned long address, spinlock_t **ptlp)
251 {
252 	pgd_t *pgd;
253 	pud_t *pud;
254 	pmd_t *pmd;
255 	pte_t *pte;
256 	spinlock_t *ptl;
257 
258 	pgd = pgd_offset(mm, address);
259 	if (!pgd_present(*pgd))
260 		return NULL;
261 
262 	pud = pud_offset(pgd, address);
263 	if (!pud_present(*pud))
264 		return NULL;
265 
266 	pmd = pmd_offset(pud, address);
267 	if (!pmd_present(*pmd))
268 		return NULL;
269 
270 	pte = pte_offset_map(pmd, address);
271 	/* Make a quick check before getting the lock */
272 	if (!pte_present(*pte)) {
273 		pte_unmap(pte);
274 		return NULL;
275 	}
276 
277 	ptl = pte_lockptr(mm, pmd);
278 	spin_lock(ptl);
279 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
280 		*ptlp = ptl;
281 		return pte;
282 	}
283 	pte_unmap_unlock(pte, ptl);
284 	return NULL;
285 }
286 
287 /*
288  * Subfunctions of page_referenced: page_referenced_one called
289  * repeatedly from either page_referenced_anon or page_referenced_file.
290  */
291 static int page_referenced_one(struct page *page,
292 	struct vm_area_struct *vma, unsigned int *mapcount)
293 {
294 	struct mm_struct *mm = vma->vm_mm;
295 	unsigned long address;
296 	pte_t *pte;
297 	spinlock_t *ptl;
298 	int referenced = 0;
299 
300 	address = vma_address(page, vma);
301 	if (address == -EFAULT)
302 		goto out;
303 
304 	pte = page_check_address(page, mm, address, &ptl);
305 	if (!pte)
306 		goto out;
307 
308 	if (ptep_clear_flush_young(vma, address, pte))
309 		referenced++;
310 
311 	/* Pretend the page is referenced if the task has the
312 	   swap token and is in the middle of a page fault. */
313 	if (mm != current->mm && has_swap_token(mm) &&
314 			rwsem_is_locked(&mm->mmap_sem))
315 		referenced++;
316 
317 	(*mapcount)--;
318 	pte_unmap_unlock(pte, ptl);
319 out:
320 	return referenced;
321 }
322 
323 static int page_referenced_anon(struct page *page)
324 {
325 	unsigned int mapcount;
326 	struct anon_vma *anon_vma;
327 	struct vm_area_struct *vma;
328 	int referenced = 0;
329 
330 	anon_vma = page_lock_anon_vma(page);
331 	if (!anon_vma)
332 		return referenced;
333 
334 	mapcount = page_mapcount(page);
335 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
336 		referenced += page_referenced_one(page, vma, &mapcount);
337 		if (!mapcount)
338 			break;
339 	}
340 
341 	page_unlock_anon_vma(anon_vma);
342 	return referenced;
343 }
344 
345 /**
346  * page_referenced_file - referenced check for object-based rmap
347  * @page: the page we're checking references on.
348  *
349  * For an object-based mapped page, find all the places it is mapped and
350  * check/clear the referenced flag.  This is done by following the page->mapping
351  * pointer, then walking the chain of vmas it holds.  It returns the number
352  * of references it found.
353  *
354  * This function is only called from page_referenced for object-based pages.
355  */
356 static int page_referenced_file(struct page *page)
357 {
358 	unsigned int mapcount;
359 	struct address_space *mapping = page->mapping;
360 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
361 	struct vm_area_struct *vma;
362 	struct prio_tree_iter iter;
363 	int referenced = 0;
364 
365 	/*
366 	 * The caller's checks on page->mapping and !PageAnon have made
367 	 * sure that this is a file page: the check for page->mapping
368 	 * excludes the case just before it gets set on an anon page.
369 	 */
370 	BUG_ON(PageAnon(page));
371 
372 	/*
373 	 * The page lock not only makes sure that page->mapping cannot
374 	 * suddenly be NULLified by truncation, it makes sure that the
375 	 * structure at mapping cannot be freed and reused yet,
376 	 * so we can safely take mapping->i_mmap_lock.
377 	 */
378 	BUG_ON(!PageLocked(page));
379 
380 	spin_lock(&mapping->i_mmap_lock);
381 
382 	/*
383 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
384 	 * is more likely to be accurate if we note it after spinning.
385 	 */
386 	mapcount = page_mapcount(page);
387 
388 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
389 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
390 				  == (VM_LOCKED|VM_MAYSHARE)) {
391 			referenced++;
392 			break;
393 		}
394 		referenced += page_referenced_one(page, vma, &mapcount);
395 		if (!mapcount)
396 			break;
397 	}
398 
399 	spin_unlock(&mapping->i_mmap_lock);
400 	return referenced;
401 }
402 
403 /**
404  * page_referenced - test if the page was referenced
405  * @page: the page to test
406  * @is_locked: caller holds lock on the page
407  *
408  * Quick test_and_clear_referenced for all mappings to a page,
409  * returns the number of ptes which referenced the page.
410  */
411 int page_referenced(struct page *page, int is_locked)
412 {
413 	int referenced = 0;
414 
415 	if (page_test_and_clear_young(page))
416 		referenced++;
417 
418 	if (TestClearPageReferenced(page))
419 		referenced++;
420 
421 	if (page_mapped(page) && page->mapping) {
422 		if (PageAnon(page))
423 			referenced += page_referenced_anon(page);
424 		else if (is_locked)
425 			referenced += page_referenced_file(page);
426 		else if (TestSetPageLocked(page))
427 			referenced++;
428 		else {
429 			if (page->mapping)
430 				referenced += page_referenced_file(page);
431 			unlock_page(page);
432 		}
433 	}
434 	return referenced;
435 }
436 
437 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
438 {
439 	struct mm_struct *mm = vma->vm_mm;
440 	unsigned long address;
441 	pte_t *pte;
442 	spinlock_t *ptl;
443 	int ret = 0;
444 
445 	address = vma_address(page, vma);
446 	if (address == -EFAULT)
447 		goto out;
448 
449 	pte = page_check_address(page, mm, address, &ptl);
450 	if (!pte)
451 		goto out;
452 
453 	if (pte_dirty(*pte) || pte_write(*pte)) {
454 		pte_t entry;
455 
456 		flush_cache_page(vma, address, pte_pfn(*pte));
457 		entry = ptep_clear_flush(vma, address, pte);
458 		entry = pte_wrprotect(entry);
459 		entry = pte_mkclean(entry);
460 		set_pte_at(mm, address, pte, entry);
461 		lazy_mmu_prot_update(entry);
462 		ret = 1;
463 	}
464 
465 	pte_unmap_unlock(pte, ptl);
466 out:
467 	return ret;
468 }
469 
470 static int page_mkclean_file(struct address_space *mapping, struct page *page)
471 {
472 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
473 	struct vm_area_struct *vma;
474 	struct prio_tree_iter iter;
475 	int ret = 0;
476 
477 	BUG_ON(PageAnon(page));
478 
479 	spin_lock(&mapping->i_mmap_lock);
480 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
481 		if (vma->vm_flags & VM_SHARED)
482 			ret += page_mkclean_one(page, vma);
483 	}
484 	spin_unlock(&mapping->i_mmap_lock);
485 	return ret;
486 }
487 
488 int page_mkclean(struct page *page)
489 {
490 	int ret = 0;
491 
492 	BUG_ON(!PageLocked(page));
493 
494 	if (page_mapped(page)) {
495 		struct address_space *mapping = page_mapping(page);
496 		if (mapping)
497 			ret = page_mkclean_file(mapping, page);
498 		if (page_test_dirty(page)) {
499 			page_clear_dirty(page);
500 			ret = 1;
501 		}
502 	}
503 
504 	return ret;
505 }
506 EXPORT_SYMBOL_GPL(page_mkclean);
507 
508 /**
509  * page_set_anon_rmap - setup new anonymous rmap
510  * @page:	the page to add the mapping to
511  * @vma:	the vm area in which the mapping is added
512  * @address:	the user virtual address mapped
513  */
514 static void __page_set_anon_rmap(struct page *page,
515 	struct vm_area_struct *vma, unsigned long address)
516 {
517 	struct anon_vma *anon_vma = vma->anon_vma;
518 
519 	BUG_ON(!anon_vma);
520 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
521 	page->mapping = (struct address_space *) anon_vma;
522 
523 	page->index = linear_page_index(vma, address);
524 
525 	/*
526 	 * nr_mapped state can be updated without turning off
527 	 * interrupts because it is not modified via interrupt.
528 	 */
529 	__inc_zone_page_state(page, NR_ANON_PAGES);
530 }
531 
532 /**
533  * page_set_anon_rmap - sanity check anonymous rmap addition
534  * @page:	the page to add the mapping to
535  * @vma:	the vm area in which the mapping is added
536  * @address:	the user virtual address mapped
537  */
538 static void __page_check_anon_rmap(struct page *page,
539 	struct vm_area_struct *vma, unsigned long address)
540 {
541 #ifdef CONFIG_DEBUG_VM
542 	/*
543 	 * The page's anon-rmap details (mapping and index) are guaranteed to
544 	 * be set up correctly at this point.
545 	 *
546 	 * We have exclusion against page_add_anon_rmap because the caller
547 	 * always holds the page locked, except if called from page_dup_rmap,
548 	 * in which case the page is already known to be setup.
549 	 *
550 	 * We have exclusion against page_add_new_anon_rmap because those pages
551 	 * are initially only visible via the pagetables, and the pte is locked
552 	 * over the call to page_add_new_anon_rmap.
553 	 */
554 	struct anon_vma *anon_vma = vma->anon_vma;
555 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
556 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
557 	BUG_ON(page->index != linear_page_index(vma, address));
558 #endif
559 }
560 
561 /**
562  * page_add_anon_rmap - add pte mapping to an anonymous page
563  * @page:	the page to add the mapping to
564  * @vma:	the vm area in which the mapping is added
565  * @address:	the user virtual address mapped
566  *
567  * The caller needs to hold the pte lock and the page must be locked.
568  */
569 void page_add_anon_rmap(struct page *page,
570 	struct vm_area_struct *vma, unsigned long address)
571 {
572 	VM_BUG_ON(!PageLocked(page));
573 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
574 	if (atomic_inc_and_test(&page->_mapcount))
575 		__page_set_anon_rmap(page, vma, address);
576 	else
577 		__page_check_anon_rmap(page, vma, address);
578 }
579 
580 /*
581  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
582  * @page:	the page to add the mapping to
583  * @vma:	the vm area in which the mapping is added
584  * @address:	the user virtual address mapped
585  *
586  * Same as page_add_anon_rmap but must only be called on *new* pages.
587  * This means the inc-and-test can be bypassed.
588  * Page does not have to be locked.
589  */
590 void page_add_new_anon_rmap(struct page *page,
591 	struct vm_area_struct *vma, unsigned long address)
592 {
593 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
594 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
595 	__page_set_anon_rmap(page, vma, address);
596 }
597 
598 /**
599  * page_add_file_rmap - add pte mapping to a file page
600  * @page: the page to add the mapping to
601  *
602  * The caller needs to hold the pte lock.
603  */
604 void page_add_file_rmap(struct page *page)
605 {
606 	if (atomic_inc_and_test(&page->_mapcount))
607 		__inc_zone_page_state(page, NR_FILE_MAPPED);
608 }
609 
610 #ifdef CONFIG_DEBUG_VM
611 /**
612  * page_dup_rmap - duplicate pte mapping to a page
613  * @page:	the page to add the mapping to
614  *
615  * For copy_page_range only: minimal extract from page_add_file_rmap /
616  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
617  * quicker.
618  *
619  * The caller needs to hold the pte lock.
620  */
621 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
622 {
623 	BUG_ON(page_mapcount(page) == 0);
624 	if (PageAnon(page))
625 		__page_check_anon_rmap(page, vma, address);
626 	atomic_inc(&page->_mapcount);
627 }
628 #endif
629 
630 /**
631  * page_remove_rmap - take down pte mapping from a page
632  * @page: page to remove mapping from
633  *
634  * The caller needs to hold the pte lock.
635  */
636 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
637 {
638 	if (atomic_add_negative(-1, &page->_mapcount)) {
639 		if (unlikely(page_mapcount(page) < 0)) {
640 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
641 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
642 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
643 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
644 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
645 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
646 			if (vma->vm_ops)
647 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
648 			if (vma->vm_file && vma->vm_file->f_op)
649 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
650 			BUG();
651 		}
652 
653 		/*
654 		 * It would be tidy to reset the PageAnon mapping here,
655 		 * but that might overwrite a racing page_add_anon_rmap
656 		 * which increments mapcount after us but sets mapping
657 		 * before us: so leave the reset to free_hot_cold_page,
658 		 * and remember that it's only reliable while mapped.
659 		 * Leaving it set also helps swapoff to reinstate ptes
660 		 * faster for those pages still in swapcache.
661 		 */
662 		if (page_test_dirty(page)) {
663 			page_clear_dirty(page);
664 			set_page_dirty(page);
665 		}
666 		__dec_zone_page_state(page,
667 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
668 	}
669 }
670 
671 /*
672  * Subfunctions of try_to_unmap: try_to_unmap_one called
673  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
674  */
675 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
676 				int migration)
677 {
678 	struct mm_struct *mm = vma->vm_mm;
679 	unsigned long address;
680 	pte_t *pte;
681 	pte_t pteval;
682 	spinlock_t *ptl;
683 	int ret = SWAP_AGAIN;
684 
685 	address = vma_address(page, vma);
686 	if (address == -EFAULT)
687 		goto out;
688 
689 	pte = page_check_address(page, mm, address, &ptl);
690 	if (!pte)
691 		goto out;
692 
693 	/*
694 	 * If the page is mlock()d, we cannot swap it out.
695 	 * If it's recently referenced (perhaps page_referenced
696 	 * skipped over this mm) then we should reactivate it.
697 	 */
698 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
699 			(ptep_clear_flush_young(vma, address, pte)))) {
700 		ret = SWAP_FAIL;
701 		goto out_unmap;
702 	}
703 
704 	/* Nuke the page table entry. */
705 	flush_cache_page(vma, address, page_to_pfn(page));
706 	pteval = ptep_clear_flush(vma, address, pte);
707 
708 	/* Move the dirty bit to the physical page now the pte is gone. */
709 	if (pte_dirty(pteval))
710 		set_page_dirty(page);
711 
712 	/* Update high watermark before we lower rss */
713 	update_hiwater_rss(mm);
714 
715 	if (PageAnon(page)) {
716 		swp_entry_t entry = { .val = page_private(page) };
717 
718 		if (PageSwapCache(page)) {
719 			/*
720 			 * Store the swap location in the pte.
721 			 * See handle_pte_fault() ...
722 			 */
723 			swap_duplicate(entry);
724 			if (list_empty(&mm->mmlist)) {
725 				spin_lock(&mmlist_lock);
726 				if (list_empty(&mm->mmlist))
727 					list_add(&mm->mmlist, &init_mm.mmlist);
728 				spin_unlock(&mmlist_lock);
729 			}
730 			dec_mm_counter(mm, anon_rss);
731 #ifdef CONFIG_MIGRATION
732 		} else {
733 			/*
734 			 * Store the pfn of the page in a special migration
735 			 * pte. do_swap_page() will wait until the migration
736 			 * pte is removed and then restart fault handling.
737 			 */
738 			BUG_ON(!migration);
739 			entry = make_migration_entry(page, pte_write(pteval));
740 #endif
741 		}
742 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
743 		BUG_ON(pte_file(*pte));
744 	} else
745 #ifdef CONFIG_MIGRATION
746 	if (migration) {
747 		/* Establish migration entry for a file page */
748 		swp_entry_t entry;
749 		entry = make_migration_entry(page, pte_write(pteval));
750 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
751 	} else
752 #endif
753 		dec_mm_counter(mm, file_rss);
754 
755 
756 	page_remove_rmap(page, vma);
757 	page_cache_release(page);
758 
759 out_unmap:
760 	pte_unmap_unlock(pte, ptl);
761 out:
762 	return ret;
763 }
764 
765 /*
766  * objrmap doesn't work for nonlinear VMAs because the assumption that
767  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
768  * Consequently, given a particular page and its ->index, we cannot locate the
769  * ptes which are mapping that page without an exhaustive linear search.
770  *
771  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
772  * maps the file to which the target page belongs.  The ->vm_private_data field
773  * holds the current cursor into that scan.  Successive searches will circulate
774  * around the vma's virtual address space.
775  *
776  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
777  * more scanning pressure is placed against them as well.   Eventually pages
778  * will become fully unmapped and are eligible for eviction.
779  *
780  * For very sparsely populated VMAs this is a little inefficient - chances are
781  * there there won't be many ptes located within the scan cluster.  In this case
782  * maybe we could scan further - to the end of the pte page, perhaps.
783  */
784 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
785 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
786 
787 static void try_to_unmap_cluster(unsigned long cursor,
788 	unsigned int *mapcount, struct vm_area_struct *vma)
789 {
790 	struct mm_struct *mm = vma->vm_mm;
791 	pgd_t *pgd;
792 	pud_t *pud;
793 	pmd_t *pmd;
794 	pte_t *pte;
795 	pte_t pteval;
796 	spinlock_t *ptl;
797 	struct page *page;
798 	unsigned long address;
799 	unsigned long end;
800 
801 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
802 	end = address + CLUSTER_SIZE;
803 	if (address < vma->vm_start)
804 		address = vma->vm_start;
805 	if (end > vma->vm_end)
806 		end = vma->vm_end;
807 
808 	pgd = pgd_offset(mm, address);
809 	if (!pgd_present(*pgd))
810 		return;
811 
812 	pud = pud_offset(pgd, address);
813 	if (!pud_present(*pud))
814 		return;
815 
816 	pmd = pmd_offset(pud, address);
817 	if (!pmd_present(*pmd))
818 		return;
819 
820 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
821 
822 	/* Update high watermark before we lower rss */
823 	update_hiwater_rss(mm);
824 
825 	for (; address < end; pte++, address += PAGE_SIZE) {
826 		if (!pte_present(*pte))
827 			continue;
828 		page = vm_normal_page(vma, address, *pte);
829 		BUG_ON(!page || PageAnon(page));
830 
831 		if (ptep_clear_flush_young(vma, address, pte))
832 			continue;
833 
834 		/* Nuke the page table entry. */
835 		flush_cache_page(vma, address, pte_pfn(*pte));
836 		pteval = ptep_clear_flush(vma, address, pte);
837 
838 		/* If nonlinear, store the file page offset in the pte. */
839 		if (page->index != linear_page_index(vma, address))
840 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
841 
842 		/* Move the dirty bit to the physical page now the pte is gone. */
843 		if (pte_dirty(pteval))
844 			set_page_dirty(page);
845 
846 		page_remove_rmap(page, vma);
847 		page_cache_release(page);
848 		dec_mm_counter(mm, file_rss);
849 		(*mapcount)--;
850 	}
851 	pte_unmap_unlock(pte - 1, ptl);
852 }
853 
854 static int try_to_unmap_anon(struct page *page, int migration)
855 {
856 	struct anon_vma *anon_vma;
857 	struct vm_area_struct *vma;
858 	int ret = SWAP_AGAIN;
859 
860 	anon_vma = page_lock_anon_vma(page);
861 	if (!anon_vma)
862 		return ret;
863 
864 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
865 		ret = try_to_unmap_one(page, vma, migration);
866 		if (ret == SWAP_FAIL || !page_mapped(page))
867 			break;
868 	}
869 
870 	page_unlock_anon_vma(anon_vma);
871 	return ret;
872 }
873 
874 /**
875  * try_to_unmap_file - unmap file page using the object-based rmap method
876  * @page: the page to unmap
877  *
878  * Find all the mappings of a page using the mapping pointer and the vma chains
879  * contained in the address_space struct it points to.
880  *
881  * This function is only called from try_to_unmap for object-based pages.
882  */
883 static int try_to_unmap_file(struct page *page, int migration)
884 {
885 	struct address_space *mapping = page->mapping;
886 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
887 	struct vm_area_struct *vma;
888 	struct prio_tree_iter iter;
889 	int ret = SWAP_AGAIN;
890 	unsigned long cursor;
891 	unsigned long max_nl_cursor = 0;
892 	unsigned long max_nl_size = 0;
893 	unsigned int mapcount;
894 
895 	spin_lock(&mapping->i_mmap_lock);
896 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
897 		ret = try_to_unmap_one(page, vma, migration);
898 		if (ret == SWAP_FAIL || !page_mapped(page))
899 			goto out;
900 	}
901 
902 	if (list_empty(&mapping->i_mmap_nonlinear))
903 		goto out;
904 
905 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
906 						shared.vm_set.list) {
907 		if ((vma->vm_flags & VM_LOCKED) && !migration)
908 			continue;
909 		cursor = (unsigned long) vma->vm_private_data;
910 		if (cursor > max_nl_cursor)
911 			max_nl_cursor = cursor;
912 		cursor = vma->vm_end - vma->vm_start;
913 		if (cursor > max_nl_size)
914 			max_nl_size = cursor;
915 	}
916 
917 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
918 		ret = SWAP_FAIL;
919 		goto out;
920 	}
921 
922 	/*
923 	 * We don't try to search for this page in the nonlinear vmas,
924 	 * and page_referenced wouldn't have found it anyway.  Instead
925 	 * just walk the nonlinear vmas trying to age and unmap some.
926 	 * The mapcount of the page we came in with is irrelevant,
927 	 * but even so use it as a guide to how hard we should try?
928 	 */
929 	mapcount = page_mapcount(page);
930 	if (!mapcount)
931 		goto out;
932 	cond_resched_lock(&mapping->i_mmap_lock);
933 
934 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
935 	if (max_nl_cursor == 0)
936 		max_nl_cursor = CLUSTER_SIZE;
937 
938 	do {
939 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
940 						shared.vm_set.list) {
941 			if ((vma->vm_flags & VM_LOCKED) && !migration)
942 				continue;
943 			cursor = (unsigned long) vma->vm_private_data;
944 			while ( cursor < max_nl_cursor &&
945 				cursor < vma->vm_end - vma->vm_start) {
946 				try_to_unmap_cluster(cursor, &mapcount, vma);
947 				cursor += CLUSTER_SIZE;
948 				vma->vm_private_data = (void *) cursor;
949 				if ((int)mapcount <= 0)
950 					goto out;
951 			}
952 			vma->vm_private_data = (void *) max_nl_cursor;
953 		}
954 		cond_resched_lock(&mapping->i_mmap_lock);
955 		max_nl_cursor += CLUSTER_SIZE;
956 	} while (max_nl_cursor <= max_nl_size);
957 
958 	/*
959 	 * Don't loop forever (perhaps all the remaining pages are
960 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
961 	 * vmas, now forgetting on which ones it had fallen behind.
962 	 */
963 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
964 		vma->vm_private_data = NULL;
965 out:
966 	spin_unlock(&mapping->i_mmap_lock);
967 	return ret;
968 }
969 
970 /**
971  * try_to_unmap - try to remove all page table mappings to a page
972  * @page: the page to get unmapped
973  *
974  * Tries to remove all the page table entries which are mapping this
975  * page, used in the pageout path.  Caller must hold the page lock.
976  * Return values are:
977  *
978  * SWAP_SUCCESS	- we succeeded in removing all mappings
979  * SWAP_AGAIN	- we missed a mapping, try again later
980  * SWAP_FAIL	- the page is unswappable
981  */
982 int try_to_unmap(struct page *page, int migration)
983 {
984 	int ret;
985 
986 	BUG_ON(!PageLocked(page));
987 
988 	if (PageAnon(page))
989 		ret = try_to_unmap_anon(page, migration);
990 	else
991 		ret = try_to_unmap_file(page, migration);
992 
993 	if (!page_mapped(page))
994 		ret = SWAP_SUCCESS;
995 	return ret;
996 }
997 
998