xref: /linux/mm/rmap.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28  * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29  * taken together; in truncation, i_mutex is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock or pte_lock
36  *           zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37  *           swap_lock (in swap_duplicate, swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             mapping->private_lock (in __set_page_dirty_buffers)
40  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
41  *               sb_lock (within inode_lock in fs/fs-writeback.c)
42  *               mapping->tree_lock (widely used, in set_page_dirty,
43  *                         in arch-dependent flush_dcache_mmap_lock,
44  *                         within inode_lock in __sync_single_inode)
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 
57 #include <asm/tlbflush.h>
58 
59 struct kmem_cache *anon_vma_cachep;
60 
61 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
62 {
63 #ifdef CONFIG_DEBUG_VM
64 	struct anon_vma *anon_vma = find_vma->anon_vma;
65 	struct vm_area_struct *vma;
66 	unsigned int mapcount = 0;
67 	int found = 0;
68 
69 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
70 		mapcount++;
71 		BUG_ON(mapcount > 100000);
72 		if (vma == find_vma)
73 			found = 1;
74 	}
75 	BUG_ON(!found);
76 #endif
77 }
78 
79 /* This must be called under the mmap_sem. */
80 int anon_vma_prepare(struct vm_area_struct *vma)
81 {
82 	struct anon_vma *anon_vma = vma->anon_vma;
83 
84 	might_sleep();
85 	if (unlikely(!anon_vma)) {
86 		struct mm_struct *mm = vma->vm_mm;
87 		struct anon_vma *allocated, *locked;
88 
89 		anon_vma = find_mergeable_anon_vma(vma);
90 		if (anon_vma) {
91 			allocated = NULL;
92 			locked = anon_vma;
93 			spin_lock(&locked->lock);
94 		} else {
95 			anon_vma = anon_vma_alloc();
96 			if (unlikely(!anon_vma))
97 				return -ENOMEM;
98 			allocated = anon_vma;
99 			locked = NULL;
100 		}
101 
102 		/* page_table_lock to protect against threads */
103 		spin_lock(&mm->page_table_lock);
104 		if (likely(!vma->anon_vma)) {
105 			vma->anon_vma = anon_vma;
106 			list_add(&vma->anon_vma_node, &anon_vma->head);
107 			allocated = NULL;
108 		}
109 		spin_unlock(&mm->page_table_lock);
110 
111 		if (locked)
112 			spin_unlock(&locked->lock);
113 		if (unlikely(allocated))
114 			anon_vma_free(allocated);
115 	}
116 	return 0;
117 }
118 
119 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
120 {
121 	BUG_ON(vma->anon_vma != next->anon_vma);
122 	list_del(&next->anon_vma_node);
123 }
124 
125 void __anon_vma_link(struct vm_area_struct *vma)
126 {
127 	struct anon_vma *anon_vma = vma->anon_vma;
128 
129 	if (anon_vma) {
130 		list_add(&vma->anon_vma_node, &anon_vma->head);
131 		validate_anon_vma(vma);
132 	}
133 }
134 
135 void anon_vma_link(struct vm_area_struct *vma)
136 {
137 	struct anon_vma *anon_vma = vma->anon_vma;
138 
139 	if (anon_vma) {
140 		spin_lock(&anon_vma->lock);
141 		list_add(&vma->anon_vma_node, &anon_vma->head);
142 		validate_anon_vma(vma);
143 		spin_unlock(&anon_vma->lock);
144 	}
145 }
146 
147 void anon_vma_unlink(struct vm_area_struct *vma)
148 {
149 	struct anon_vma *anon_vma = vma->anon_vma;
150 	int empty;
151 
152 	if (!anon_vma)
153 		return;
154 
155 	spin_lock(&anon_vma->lock);
156 	validate_anon_vma(vma);
157 	list_del(&vma->anon_vma_node);
158 
159 	/* We must garbage collect the anon_vma if it's empty */
160 	empty = list_empty(&anon_vma->head);
161 	spin_unlock(&anon_vma->lock);
162 
163 	if (empty)
164 		anon_vma_free(anon_vma);
165 }
166 
167 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
168 			  unsigned long flags)
169 {
170 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 						SLAB_CTOR_CONSTRUCTOR) {
172 		struct anon_vma *anon_vma = data;
173 
174 		spin_lock_init(&anon_vma->lock);
175 		INIT_LIST_HEAD(&anon_vma->head);
176 	}
177 }
178 
179 void __init anon_vma_init(void)
180 {
181 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
183 }
184 
185 /*
186  * Getting a lock on a stable anon_vma from a page off the LRU is
187  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
188  */
189 static struct anon_vma *page_lock_anon_vma(struct page *page)
190 {
191 	struct anon_vma *anon_vma = NULL;
192 	unsigned long anon_mapping;
193 
194 	rcu_read_lock();
195 	anon_mapping = (unsigned long) page->mapping;
196 	if (!(anon_mapping & PAGE_MAPPING_ANON))
197 		goto out;
198 	if (!page_mapped(page))
199 		goto out;
200 
201 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 	spin_lock(&anon_vma->lock);
203 out:
204 	rcu_read_unlock();
205 	return anon_vma;
206 }
207 
208 #ifdef CONFIG_MIGRATION
209 /*
210  * Remove an anonymous page from swap replacing the swap pte's
211  * through real pte's pointing to valid pages and then releasing
212  * the page from the swap cache.
213  *
214  * Must hold page lock on page and mmap_sem of one vma that contains
215  * the page.
216  */
217 void remove_from_swap(struct page *page)
218 {
219 	struct anon_vma *anon_vma;
220 	struct vm_area_struct *vma;
221 	unsigned long mapping;
222 
223 	if (!PageSwapCache(page))
224 		return;
225 
226 	mapping = (unsigned long)page->mapping;
227 
228 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
229 		return;
230 
231 	/*
232 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
233 	 */
234 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
235 	spin_lock(&anon_vma->lock);
236 
237 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
238 		remove_vma_swap(vma, page);
239 
240 	spin_unlock(&anon_vma->lock);
241 	delete_from_swap_cache(page);
242 }
243 EXPORT_SYMBOL(remove_from_swap);
244 #endif
245 
246 /*
247  * At what user virtual address is page expected in vma?
248  */
249 static inline unsigned long
250 vma_address(struct page *page, struct vm_area_struct *vma)
251 {
252 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
253 	unsigned long address;
254 
255 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
256 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
257 		/* page should be within any vma from prio_tree_next */
258 		BUG_ON(!PageAnon(page));
259 		return -EFAULT;
260 	}
261 	return address;
262 }
263 
264 /*
265  * At what user virtual address is page expected in vma? checking that the
266  * page matches the vma: currently only used on anon pages, by unuse_vma;
267  */
268 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
269 {
270 	if (PageAnon(page)) {
271 		if ((void *)vma->anon_vma !=
272 		    (void *)page->mapping - PAGE_MAPPING_ANON)
273 			return -EFAULT;
274 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
275 		if (!vma->vm_file ||
276 		    vma->vm_file->f_mapping != page->mapping)
277 			return -EFAULT;
278 	} else
279 		return -EFAULT;
280 	return vma_address(page, vma);
281 }
282 
283 /*
284  * Check that @page is mapped at @address into @mm.
285  *
286  * On success returns with pte mapped and locked.
287  */
288 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
289 			  unsigned long address, spinlock_t **ptlp)
290 {
291 	pgd_t *pgd;
292 	pud_t *pud;
293 	pmd_t *pmd;
294 	pte_t *pte;
295 	spinlock_t *ptl;
296 
297 	pgd = pgd_offset(mm, address);
298 	if (!pgd_present(*pgd))
299 		return NULL;
300 
301 	pud = pud_offset(pgd, address);
302 	if (!pud_present(*pud))
303 		return NULL;
304 
305 	pmd = pmd_offset(pud, address);
306 	if (!pmd_present(*pmd))
307 		return NULL;
308 
309 	pte = pte_offset_map(pmd, address);
310 	/* Make a quick check before getting the lock */
311 	if (!pte_present(*pte)) {
312 		pte_unmap(pte);
313 		return NULL;
314 	}
315 
316 	ptl = pte_lockptr(mm, pmd);
317 	spin_lock(ptl);
318 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
319 		*ptlp = ptl;
320 		return pte;
321 	}
322 	pte_unmap_unlock(pte, ptl);
323 	return NULL;
324 }
325 
326 /*
327  * Subfunctions of page_referenced: page_referenced_one called
328  * repeatedly from either page_referenced_anon or page_referenced_file.
329  */
330 static int page_referenced_one(struct page *page,
331 	struct vm_area_struct *vma, unsigned int *mapcount)
332 {
333 	struct mm_struct *mm = vma->vm_mm;
334 	unsigned long address;
335 	pte_t *pte;
336 	spinlock_t *ptl;
337 	int referenced = 0;
338 
339 	address = vma_address(page, vma);
340 	if (address == -EFAULT)
341 		goto out;
342 
343 	pte = page_check_address(page, mm, address, &ptl);
344 	if (!pte)
345 		goto out;
346 
347 	if (ptep_clear_flush_young(vma, address, pte))
348 		referenced++;
349 
350 	/* Pretend the page is referenced if the task has the
351 	   swap token and is in the middle of a page fault. */
352 	if (mm != current->mm && has_swap_token(mm) &&
353 			rwsem_is_locked(&mm->mmap_sem))
354 		referenced++;
355 
356 	(*mapcount)--;
357 	pte_unmap_unlock(pte, ptl);
358 out:
359 	return referenced;
360 }
361 
362 static int page_referenced_anon(struct page *page)
363 {
364 	unsigned int mapcount;
365 	struct anon_vma *anon_vma;
366 	struct vm_area_struct *vma;
367 	int referenced = 0;
368 
369 	anon_vma = page_lock_anon_vma(page);
370 	if (!anon_vma)
371 		return referenced;
372 
373 	mapcount = page_mapcount(page);
374 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
375 		referenced += page_referenced_one(page, vma, &mapcount);
376 		if (!mapcount)
377 			break;
378 	}
379 	spin_unlock(&anon_vma->lock);
380 	return referenced;
381 }
382 
383 /**
384  * page_referenced_file - referenced check for object-based rmap
385  * @page: the page we're checking references on.
386  *
387  * For an object-based mapped page, find all the places it is mapped and
388  * check/clear the referenced flag.  This is done by following the page->mapping
389  * pointer, then walking the chain of vmas it holds.  It returns the number
390  * of references it found.
391  *
392  * This function is only called from page_referenced for object-based pages.
393  */
394 static int page_referenced_file(struct page *page)
395 {
396 	unsigned int mapcount;
397 	struct address_space *mapping = page->mapping;
398 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
399 	struct vm_area_struct *vma;
400 	struct prio_tree_iter iter;
401 	int referenced = 0;
402 
403 	/*
404 	 * The caller's checks on page->mapping and !PageAnon have made
405 	 * sure that this is a file page: the check for page->mapping
406 	 * excludes the case just before it gets set on an anon page.
407 	 */
408 	BUG_ON(PageAnon(page));
409 
410 	/*
411 	 * The page lock not only makes sure that page->mapping cannot
412 	 * suddenly be NULLified by truncation, it makes sure that the
413 	 * structure at mapping cannot be freed and reused yet,
414 	 * so we can safely take mapping->i_mmap_lock.
415 	 */
416 	BUG_ON(!PageLocked(page));
417 
418 	spin_lock(&mapping->i_mmap_lock);
419 
420 	/*
421 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
422 	 * is more likely to be accurate if we note it after spinning.
423 	 */
424 	mapcount = page_mapcount(page);
425 
426 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
427 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
428 				  == (VM_LOCKED|VM_MAYSHARE)) {
429 			referenced++;
430 			break;
431 		}
432 		referenced += page_referenced_one(page, vma, &mapcount);
433 		if (!mapcount)
434 			break;
435 	}
436 
437 	spin_unlock(&mapping->i_mmap_lock);
438 	return referenced;
439 }
440 
441 /**
442  * page_referenced - test if the page was referenced
443  * @page: the page to test
444  * @is_locked: caller holds lock on the page
445  *
446  * Quick test_and_clear_referenced for all mappings to a page,
447  * returns the number of ptes which referenced the page.
448  */
449 int page_referenced(struct page *page, int is_locked)
450 {
451 	int referenced = 0;
452 
453 	if (page_test_and_clear_young(page))
454 		referenced++;
455 
456 	if (TestClearPageReferenced(page))
457 		referenced++;
458 
459 	if (page_mapped(page) && page->mapping) {
460 		if (PageAnon(page))
461 			referenced += page_referenced_anon(page);
462 		else if (is_locked)
463 			referenced += page_referenced_file(page);
464 		else if (TestSetPageLocked(page))
465 			referenced++;
466 		else {
467 			if (page->mapping)
468 				referenced += page_referenced_file(page);
469 			unlock_page(page);
470 		}
471 	}
472 	return referenced;
473 }
474 
475 /**
476  * page_set_anon_rmap - setup new anonymous rmap
477  * @page:	the page to add the mapping to
478  * @vma:	the vm area in which the mapping is added
479  * @address:	the user virtual address mapped
480  */
481 static void __page_set_anon_rmap(struct page *page,
482 	struct vm_area_struct *vma, unsigned long address)
483 {
484 	struct anon_vma *anon_vma = vma->anon_vma;
485 
486 	BUG_ON(!anon_vma);
487 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
488 	page->mapping = (struct address_space *) anon_vma;
489 
490 	page->index = linear_page_index(vma, address);
491 
492 	/*
493 	 * nr_mapped state can be updated without turning off
494 	 * interrupts because it is not modified via interrupt.
495 	 */
496 	__inc_page_state(nr_mapped);
497 }
498 
499 /**
500  * page_add_anon_rmap - add pte mapping to an anonymous page
501  * @page:	the page to add the mapping to
502  * @vma:	the vm area in which the mapping is added
503  * @address:	the user virtual address mapped
504  *
505  * The caller needs to hold the pte lock.
506  */
507 void page_add_anon_rmap(struct page *page,
508 	struct vm_area_struct *vma, unsigned long address)
509 {
510 	if (atomic_inc_and_test(&page->_mapcount))
511 		__page_set_anon_rmap(page, vma, address);
512 	/* else checking page index and mapping is racy */
513 }
514 
515 /*
516  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
517  * @page:	the page to add the mapping to
518  * @vma:	the vm area in which the mapping is added
519  * @address:	the user virtual address mapped
520  *
521  * Same as page_add_anon_rmap but must only be called on *new* pages.
522  * This means the inc-and-test can be bypassed.
523  */
524 void page_add_new_anon_rmap(struct page *page,
525 	struct vm_area_struct *vma, unsigned long address)
526 {
527 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
528 	__page_set_anon_rmap(page, vma, address);
529 }
530 
531 /**
532  * page_add_file_rmap - add pte mapping to a file page
533  * @page: the page to add the mapping to
534  *
535  * The caller needs to hold the pte lock.
536  */
537 void page_add_file_rmap(struct page *page)
538 {
539 	if (atomic_inc_and_test(&page->_mapcount))
540 		__inc_page_state(nr_mapped);
541 }
542 
543 /**
544  * page_remove_rmap - take down pte mapping from a page
545  * @page: page to remove mapping from
546  *
547  * The caller needs to hold the pte lock.
548  */
549 void page_remove_rmap(struct page *page)
550 {
551 	if (atomic_add_negative(-1, &page->_mapcount)) {
552 #ifdef CONFIG_DEBUG_VM
553 		if (unlikely(page_mapcount(page) < 0)) {
554 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
555 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
556 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
557 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
558 		}
559 #endif
560 		BUG_ON(page_mapcount(page) < 0);
561 		/*
562 		 * It would be tidy to reset the PageAnon mapping here,
563 		 * but that might overwrite a racing page_add_anon_rmap
564 		 * which increments mapcount after us but sets mapping
565 		 * before us: so leave the reset to free_hot_cold_page,
566 		 * and remember that it's only reliable while mapped.
567 		 * Leaving it set also helps swapoff to reinstate ptes
568 		 * faster for those pages still in swapcache.
569 		 */
570 		if (page_test_and_clear_dirty(page))
571 			set_page_dirty(page);
572 		__dec_page_state(nr_mapped);
573 	}
574 }
575 
576 /*
577  * Subfunctions of try_to_unmap: try_to_unmap_one called
578  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
579  */
580 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
581 				int ignore_refs)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	unsigned long address;
585 	pte_t *pte;
586 	pte_t pteval;
587 	spinlock_t *ptl;
588 	int ret = SWAP_AGAIN;
589 
590 	address = vma_address(page, vma);
591 	if (address == -EFAULT)
592 		goto out;
593 
594 	pte = page_check_address(page, mm, address, &ptl);
595 	if (!pte)
596 		goto out;
597 
598 	/*
599 	 * If the page is mlock()d, we cannot swap it out.
600 	 * If it's recently referenced (perhaps page_referenced
601 	 * skipped over this mm) then we should reactivate it.
602 	 */
603 	if ((vma->vm_flags & VM_LOCKED) ||
604 			(ptep_clear_flush_young(vma, address, pte)
605 				&& !ignore_refs)) {
606 		ret = SWAP_FAIL;
607 		goto out_unmap;
608 	}
609 
610 	/* Nuke the page table entry. */
611 	flush_cache_page(vma, address, page_to_pfn(page));
612 	pteval = ptep_clear_flush(vma, address, pte);
613 
614 	/* Move the dirty bit to the physical page now the pte is gone. */
615 	if (pte_dirty(pteval))
616 		set_page_dirty(page);
617 
618 	/* Update high watermark before we lower rss */
619 	update_hiwater_rss(mm);
620 
621 	if (PageAnon(page)) {
622 		swp_entry_t entry = { .val = page_private(page) };
623 		/*
624 		 * Store the swap location in the pte.
625 		 * See handle_pte_fault() ...
626 		 */
627 		BUG_ON(!PageSwapCache(page));
628 		swap_duplicate(entry);
629 		if (list_empty(&mm->mmlist)) {
630 			spin_lock(&mmlist_lock);
631 			if (list_empty(&mm->mmlist))
632 				list_add(&mm->mmlist, &init_mm.mmlist);
633 			spin_unlock(&mmlist_lock);
634 		}
635 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
636 		BUG_ON(pte_file(*pte));
637 		dec_mm_counter(mm, anon_rss);
638 	} else
639 		dec_mm_counter(mm, file_rss);
640 
641 	page_remove_rmap(page);
642 	page_cache_release(page);
643 
644 out_unmap:
645 	pte_unmap_unlock(pte, ptl);
646 out:
647 	return ret;
648 }
649 
650 /*
651  * objrmap doesn't work for nonlinear VMAs because the assumption that
652  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
653  * Consequently, given a particular page and its ->index, we cannot locate the
654  * ptes which are mapping that page without an exhaustive linear search.
655  *
656  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
657  * maps the file to which the target page belongs.  The ->vm_private_data field
658  * holds the current cursor into that scan.  Successive searches will circulate
659  * around the vma's virtual address space.
660  *
661  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
662  * more scanning pressure is placed against them as well.   Eventually pages
663  * will become fully unmapped and are eligible for eviction.
664  *
665  * For very sparsely populated VMAs this is a little inefficient - chances are
666  * there there won't be many ptes located within the scan cluster.  In this case
667  * maybe we could scan further - to the end of the pte page, perhaps.
668  */
669 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
670 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
671 
672 static void try_to_unmap_cluster(unsigned long cursor,
673 	unsigned int *mapcount, struct vm_area_struct *vma)
674 {
675 	struct mm_struct *mm = vma->vm_mm;
676 	pgd_t *pgd;
677 	pud_t *pud;
678 	pmd_t *pmd;
679 	pte_t *pte;
680 	pte_t pteval;
681 	spinlock_t *ptl;
682 	struct page *page;
683 	unsigned long address;
684 	unsigned long end;
685 
686 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
687 	end = address + CLUSTER_SIZE;
688 	if (address < vma->vm_start)
689 		address = vma->vm_start;
690 	if (end > vma->vm_end)
691 		end = vma->vm_end;
692 
693 	pgd = pgd_offset(mm, address);
694 	if (!pgd_present(*pgd))
695 		return;
696 
697 	pud = pud_offset(pgd, address);
698 	if (!pud_present(*pud))
699 		return;
700 
701 	pmd = pmd_offset(pud, address);
702 	if (!pmd_present(*pmd))
703 		return;
704 
705 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
706 
707 	/* Update high watermark before we lower rss */
708 	update_hiwater_rss(mm);
709 
710 	for (; address < end; pte++, address += PAGE_SIZE) {
711 		if (!pte_present(*pte))
712 			continue;
713 		page = vm_normal_page(vma, address, *pte);
714 		BUG_ON(!page || PageAnon(page));
715 
716 		if (ptep_clear_flush_young(vma, address, pte))
717 			continue;
718 
719 		/* Nuke the page table entry. */
720 		flush_cache_page(vma, address, pte_pfn(*pte));
721 		pteval = ptep_clear_flush(vma, address, pte);
722 
723 		/* If nonlinear, store the file page offset in the pte. */
724 		if (page->index != linear_page_index(vma, address))
725 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
726 
727 		/* Move the dirty bit to the physical page now the pte is gone. */
728 		if (pte_dirty(pteval))
729 			set_page_dirty(page);
730 
731 		page_remove_rmap(page);
732 		page_cache_release(page);
733 		dec_mm_counter(mm, file_rss);
734 		(*mapcount)--;
735 	}
736 	pte_unmap_unlock(pte - 1, ptl);
737 }
738 
739 static int try_to_unmap_anon(struct page *page, int ignore_refs)
740 {
741 	struct anon_vma *anon_vma;
742 	struct vm_area_struct *vma;
743 	int ret = SWAP_AGAIN;
744 
745 	anon_vma = page_lock_anon_vma(page);
746 	if (!anon_vma)
747 		return ret;
748 
749 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
750 		ret = try_to_unmap_one(page, vma, ignore_refs);
751 		if (ret == SWAP_FAIL || !page_mapped(page))
752 			break;
753 	}
754 	spin_unlock(&anon_vma->lock);
755 	return ret;
756 }
757 
758 /**
759  * try_to_unmap_file - unmap file page using the object-based rmap method
760  * @page: the page to unmap
761  *
762  * Find all the mappings of a page using the mapping pointer and the vma chains
763  * contained in the address_space struct it points to.
764  *
765  * This function is only called from try_to_unmap for object-based pages.
766  */
767 static int try_to_unmap_file(struct page *page, int ignore_refs)
768 {
769 	struct address_space *mapping = page->mapping;
770 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
771 	struct vm_area_struct *vma;
772 	struct prio_tree_iter iter;
773 	int ret = SWAP_AGAIN;
774 	unsigned long cursor;
775 	unsigned long max_nl_cursor = 0;
776 	unsigned long max_nl_size = 0;
777 	unsigned int mapcount;
778 
779 	spin_lock(&mapping->i_mmap_lock);
780 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
781 		ret = try_to_unmap_one(page, vma, ignore_refs);
782 		if (ret == SWAP_FAIL || !page_mapped(page))
783 			goto out;
784 	}
785 
786 	if (list_empty(&mapping->i_mmap_nonlinear))
787 		goto out;
788 
789 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
790 						shared.vm_set.list) {
791 		if (vma->vm_flags & VM_LOCKED)
792 			continue;
793 		cursor = (unsigned long) vma->vm_private_data;
794 		if (cursor > max_nl_cursor)
795 			max_nl_cursor = cursor;
796 		cursor = vma->vm_end - vma->vm_start;
797 		if (cursor > max_nl_size)
798 			max_nl_size = cursor;
799 	}
800 
801 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
802 		ret = SWAP_FAIL;
803 		goto out;
804 	}
805 
806 	/*
807 	 * We don't try to search for this page in the nonlinear vmas,
808 	 * and page_referenced wouldn't have found it anyway.  Instead
809 	 * just walk the nonlinear vmas trying to age and unmap some.
810 	 * The mapcount of the page we came in with is irrelevant,
811 	 * but even so use it as a guide to how hard we should try?
812 	 */
813 	mapcount = page_mapcount(page);
814 	if (!mapcount)
815 		goto out;
816 	cond_resched_lock(&mapping->i_mmap_lock);
817 
818 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
819 	if (max_nl_cursor == 0)
820 		max_nl_cursor = CLUSTER_SIZE;
821 
822 	do {
823 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
824 						shared.vm_set.list) {
825 			if (vma->vm_flags & VM_LOCKED)
826 				continue;
827 			cursor = (unsigned long) vma->vm_private_data;
828 			while ( cursor < max_nl_cursor &&
829 				cursor < vma->vm_end - vma->vm_start) {
830 				try_to_unmap_cluster(cursor, &mapcount, vma);
831 				cursor += CLUSTER_SIZE;
832 				vma->vm_private_data = (void *) cursor;
833 				if ((int)mapcount <= 0)
834 					goto out;
835 			}
836 			vma->vm_private_data = (void *) max_nl_cursor;
837 		}
838 		cond_resched_lock(&mapping->i_mmap_lock);
839 		max_nl_cursor += CLUSTER_SIZE;
840 	} while (max_nl_cursor <= max_nl_size);
841 
842 	/*
843 	 * Don't loop forever (perhaps all the remaining pages are
844 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
845 	 * vmas, now forgetting on which ones it had fallen behind.
846 	 */
847 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
848 		vma->vm_private_data = NULL;
849 out:
850 	spin_unlock(&mapping->i_mmap_lock);
851 	return ret;
852 }
853 
854 /**
855  * try_to_unmap - try to remove all page table mappings to a page
856  * @page: the page to get unmapped
857  *
858  * Tries to remove all the page table entries which are mapping this
859  * page, used in the pageout path.  Caller must hold the page lock.
860  * Return values are:
861  *
862  * SWAP_SUCCESS	- we succeeded in removing all mappings
863  * SWAP_AGAIN	- we missed a mapping, try again later
864  * SWAP_FAIL	- the page is unswappable
865  */
866 int try_to_unmap(struct page *page, int ignore_refs)
867 {
868 	int ret;
869 
870 	BUG_ON(!PageLocked(page));
871 
872 	if (PageAnon(page))
873 		ret = try_to_unmap_anon(page, ignore_refs);
874 	else
875 		ret = try_to_unmap_file(page, ignore_refs);
876 
877 	if (!page_mapped(page))
878 		ret = SWAP_SUCCESS;
879 	return ret;
880 }
881 
882