1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within 28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never 29 * taken together; in truncation, i_mutex is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock or pte_lock 36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 37 * swap_lock (in swap_duplicate, swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * mapping->private_lock (in __set_page_dirty_buffers) 40 * inode_lock (in set_page_dirty's __mark_inode_dirty) 41 * sb_lock (within inode_lock in fs/fs-writeback.c) 42 * mapping->tree_lock (widely used, in set_page_dirty, 43 * in arch-dependent flush_dcache_mmap_lock, 44 * within inode_lock in __sync_single_inode) 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 57 #include <asm/tlbflush.h> 58 59 struct kmem_cache *anon_vma_cachep; 60 61 static inline void validate_anon_vma(struct vm_area_struct *find_vma) 62 { 63 #ifdef CONFIG_DEBUG_VM 64 struct anon_vma *anon_vma = find_vma->anon_vma; 65 struct vm_area_struct *vma; 66 unsigned int mapcount = 0; 67 int found = 0; 68 69 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 70 mapcount++; 71 BUG_ON(mapcount > 100000); 72 if (vma == find_vma) 73 found = 1; 74 } 75 BUG_ON(!found); 76 #endif 77 } 78 79 /* This must be called under the mmap_sem. */ 80 int anon_vma_prepare(struct vm_area_struct *vma) 81 { 82 struct anon_vma *anon_vma = vma->anon_vma; 83 84 might_sleep(); 85 if (unlikely(!anon_vma)) { 86 struct mm_struct *mm = vma->vm_mm; 87 struct anon_vma *allocated, *locked; 88 89 anon_vma = find_mergeable_anon_vma(vma); 90 if (anon_vma) { 91 allocated = NULL; 92 locked = anon_vma; 93 spin_lock(&locked->lock); 94 } else { 95 anon_vma = anon_vma_alloc(); 96 if (unlikely(!anon_vma)) 97 return -ENOMEM; 98 allocated = anon_vma; 99 locked = NULL; 100 } 101 102 /* page_table_lock to protect against threads */ 103 spin_lock(&mm->page_table_lock); 104 if (likely(!vma->anon_vma)) { 105 vma->anon_vma = anon_vma; 106 list_add(&vma->anon_vma_node, &anon_vma->head); 107 allocated = NULL; 108 } 109 spin_unlock(&mm->page_table_lock); 110 111 if (locked) 112 spin_unlock(&locked->lock); 113 if (unlikely(allocated)) 114 anon_vma_free(allocated); 115 } 116 return 0; 117 } 118 119 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 120 { 121 BUG_ON(vma->anon_vma != next->anon_vma); 122 list_del(&next->anon_vma_node); 123 } 124 125 void __anon_vma_link(struct vm_area_struct *vma) 126 { 127 struct anon_vma *anon_vma = vma->anon_vma; 128 129 if (anon_vma) { 130 list_add(&vma->anon_vma_node, &anon_vma->head); 131 validate_anon_vma(vma); 132 } 133 } 134 135 void anon_vma_link(struct vm_area_struct *vma) 136 { 137 struct anon_vma *anon_vma = vma->anon_vma; 138 139 if (anon_vma) { 140 spin_lock(&anon_vma->lock); 141 list_add(&vma->anon_vma_node, &anon_vma->head); 142 validate_anon_vma(vma); 143 spin_unlock(&anon_vma->lock); 144 } 145 } 146 147 void anon_vma_unlink(struct vm_area_struct *vma) 148 { 149 struct anon_vma *anon_vma = vma->anon_vma; 150 int empty; 151 152 if (!anon_vma) 153 return; 154 155 spin_lock(&anon_vma->lock); 156 validate_anon_vma(vma); 157 list_del(&vma->anon_vma_node); 158 159 /* We must garbage collect the anon_vma if it's empty */ 160 empty = list_empty(&anon_vma->head); 161 spin_unlock(&anon_vma->lock); 162 163 if (empty) 164 anon_vma_free(anon_vma); 165 } 166 167 static void anon_vma_ctor(void *data, struct kmem_cache *cachep, 168 unsigned long flags) 169 { 170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 171 SLAB_CTOR_CONSTRUCTOR) { 172 struct anon_vma *anon_vma = data; 173 174 spin_lock_init(&anon_vma->lock); 175 INIT_LIST_HEAD(&anon_vma->head); 176 } 177 } 178 179 void __init anon_vma_init(void) 180 { 181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 183 } 184 185 /* 186 * Getting a lock on a stable anon_vma from a page off the LRU is 187 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 188 */ 189 static struct anon_vma *page_lock_anon_vma(struct page *page) 190 { 191 struct anon_vma *anon_vma = NULL; 192 unsigned long anon_mapping; 193 194 rcu_read_lock(); 195 anon_mapping = (unsigned long) page->mapping; 196 if (!(anon_mapping & PAGE_MAPPING_ANON)) 197 goto out; 198 if (!page_mapped(page)) 199 goto out; 200 201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 202 spin_lock(&anon_vma->lock); 203 out: 204 rcu_read_unlock(); 205 return anon_vma; 206 } 207 208 #ifdef CONFIG_MIGRATION 209 /* 210 * Remove an anonymous page from swap replacing the swap pte's 211 * through real pte's pointing to valid pages and then releasing 212 * the page from the swap cache. 213 * 214 * Must hold page lock on page and mmap_sem of one vma that contains 215 * the page. 216 */ 217 void remove_from_swap(struct page *page) 218 { 219 struct anon_vma *anon_vma; 220 struct vm_area_struct *vma; 221 unsigned long mapping; 222 223 if (!PageSwapCache(page)) 224 return; 225 226 mapping = (unsigned long)page->mapping; 227 228 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 229 return; 230 231 /* 232 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 233 */ 234 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 235 spin_lock(&anon_vma->lock); 236 237 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 238 remove_vma_swap(vma, page); 239 240 spin_unlock(&anon_vma->lock); 241 delete_from_swap_cache(page); 242 } 243 EXPORT_SYMBOL(remove_from_swap); 244 #endif 245 246 /* 247 * At what user virtual address is page expected in vma? 248 */ 249 static inline unsigned long 250 vma_address(struct page *page, struct vm_area_struct *vma) 251 { 252 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 253 unsigned long address; 254 255 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 256 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 257 /* page should be within any vma from prio_tree_next */ 258 BUG_ON(!PageAnon(page)); 259 return -EFAULT; 260 } 261 return address; 262 } 263 264 /* 265 * At what user virtual address is page expected in vma? checking that the 266 * page matches the vma: currently only used on anon pages, by unuse_vma; 267 */ 268 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 269 { 270 if (PageAnon(page)) { 271 if ((void *)vma->anon_vma != 272 (void *)page->mapping - PAGE_MAPPING_ANON) 273 return -EFAULT; 274 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 275 if (!vma->vm_file || 276 vma->vm_file->f_mapping != page->mapping) 277 return -EFAULT; 278 } else 279 return -EFAULT; 280 return vma_address(page, vma); 281 } 282 283 /* 284 * Check that @page is mapped at @address into @mm. 285 * 286 * On success returns with pte mapped and locked. 287 */ 288 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 289 unsigned long address, spinlock_t **ptlp) 290 { 291 pgd_t *pgd; 292 pud_t *pud; 293 pmd_t *pmd; 294 pte_t *pte; 295 spinlock_t *ptl; 296 297 pgd = pgd_offset(mm, address); 298 if (!pgd_present(*pgd)) 299 return NULL; 300 301 pud = pud_offset(pgd, address); 302 if (!pud_present(*pud)) 303 return NULL; 304 305 pmd = pmd_offset(pud, address); 306 if (!pmd_present(*pmd)) 307 return NULL; 308 309 pte = pte_offset_map(pmd, address); 310 /* Make a quick check before getting the lock */ 311 if (!pte_present(*pte)) { 312 pte_unmap(pte); 313 return NULL; 314 } 315 316 ptl = pte_lockptr(mm, pmd); 317 spin_lock(ptl); 318 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 319 *ptlp = ptl; 320 return pte; 321 } 322 pte_unmap_unlock(pte, ptl); 323 return NULL; 324 } 325 326 /* 327 * Subfunctions of page_referenced: page_referenced_one called 328 * repeatedly from either page_referenced_anon or page_referenced_file. 329 */ 330 static int page_referenced_one(struct page *page, 331 struct vm_area_struct *vma, unsigned int *mapcount) 332 { 333 struct mm_struct *mm = vma->vm_mm; 334 unsigned long address; 335 pte_t *pte; 336 spinlock_t *ptl; 337 int referenced = 0; 338 339 address = vma_address(page, vma); 340 if (address == -EFAULT) 341 goto out; 342 343 pte = page_check_address(page, mm, address, &ptl); 344 if (!pte) 345 goto out; 346 347 if (ptep_clear_flush_young(vma, address, pte)) 348 referenced++; 349 350 /* Pretend the page is referenced if the task has the 351 swap token and is in the middle of a page fault. */ 352 if (mm != current->mm && has_swap_token(mm) && 353 rwsem_is_locked(&mm->mmap_sem)) 354 referenced++; 355 356 (*mapcount)--; 357 pte_unmap_unlock(pte, ptl); 358 out: 359 return referenced; 360 } 361 362 static int page_referenced_anon(struct page *page) 363 { 364 unsigned int mapcount; 365 struct anon_vma *anon_vma; 366 struct vm_area_struct *vma; 367 int referenced = 0; 368 369 anon_vma = page_lock_anon_vma(page); 370 if (!anon_vma) 371 return referenced; 372 373 mapcount = page_mapcount(page); 374 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 375 referenced += page_referenced_one(page, vma, &mapcount); 376 if (!mapcount) 377 break; 378 } 379 spin_unlock(&anon_vma->lock); 380 return referenced; 381 } 382 383 /** 384 * page_referenced_file - referenced check for object-based rmap 385 * @page: the page we're checking references on. 386 * 387 * For an object-based mapped page, find all the places it is mapped and 388 * check/clear the referenced flag. This is done by following the page->mapping 389 * pointer, then walking the chain of vmas it holds. It returns the number 390 * of references it found. 391 * 392 * This function is only called from page_referenced for object-based pages. 393 */ 394 static int page_referenced_file(struct page *page) 395 { 396 unsigned int mapcount; 397 struct address_space *mapping = page->mapping; 398 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 399 struct vm_area_struct *vma; 400 struct prio_tree_iter iter; 401 int referenced = 0; 402 403 /* 404 * The caller's checks on page->mapping and !PageAnon have made 405 * sure that this is a file page: the check for page->mapping 406 * excludes the case just before it gets set on an anon page. 407 */ 408 BUG_ON(PageAnon(page)); 409 410 /* 411 * The page lock not only makes sure that page->mapping cannot 412 * suddenly be NULLified by truncation, it makes sure that the 413 * structure at mapping cannot be freed and reused yet, 414 * so we can safely take mapping->i_mmap_lock. 415 */ 416 BUG_ON(!PageLocked(page)); 417 418 spin_lock(&mapping->i_mmap_lock); 419 420 /* 421 * i_mmap_lock does not stabilize mapcount at all, but mapcount 422 * is more likely to be accurate if we note it after spinning. 423 */ 424 mapcount = page_mapcount(page); 425 426 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 427 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 428 == (VM_LOCKED|VM_MAYSHARE)) { 429 referenced++; 430 break; 431 } 432 referenced += page_referenced_one(page, vma, &mapcount); 433 if (!mapcount) 434 break; 435 } 436 437 spin_unlock(&mapping->i_mmap_lock); 438 return referenced; 439 } 440 441 /** 442 * page_referenced - test if the page was referenced 443 * @page: the page to test 444 * @is_locked: caller holds lock on the page 445 * 446 * Quick test_and_clear_referenced for all mappings to a page, 447 * returns the number of ptes which referenced the page. 448 */ 449 int page_referenced(struct page *page, int is_locked) 450 { 451 int referenced = 0; 452 453 if (page_test_and_clear_young(page)) 454 referenced++; 455 456 if (TestClearPageReferenced(page)) 457 referenced++; 458 459 if (page_mapped(page) && page->mapping) { 460 if (PageAnon(page)) 461 referenced += page_referenced_anon(page); 462 else if (is_locked) 463 referenced += page_referenced_file(page); 464 else if (TestSetPageLocked(page)) 465 referenced++; 466 else { 467 if (page->mapping) 468 referenced += page_referenced_file(page); 469 unlock_page(page); 470 } 471 } 472 return referenced; 473 } 474 475 /** 476 * page_set_anon_rmap - setup new anonymous rmap 477 * @page: the page to add the mapping to 478 * @vma: the vm area in which the mapping is added 479 * @address: the user virtual address mapped 480 */ 481 static void __page_set_anon_rmap(struct page *page, 482 struct vm_area_struct *vma, unsigned long address) 483 { 484 struct anon_vma *anon_vma = vma->anon_vma; 485 486 BUG_ON(!anon_vma); 487 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 488 page->mapping = (struct address_space *) anon_vma; 489 490 page->index = linear_page_index(vma, address); 491 492 /* 493 * nr_mapped state can be updated without turning off 494 * interrupts because it is not modified via interrupt. 495 */ 496 __inc_page_state(nr_mapped); 497 } 498 499 /** 500 * page_add_anon_rmap - add pte mapping to an anonymous page 501 * @page: the page to add the mapping to 502 * @vma: the vm area in which the mapping is added 503 * @address: the user virtual address mapped 504 * 505 * The caller needs to hold the pte lock. 506 */ 507 void page_add_anon_rmap(struct page *page, 508 struct vm_area_struct *vma, unsigned long address) 509 { 510 if (atomic_inc_and_test(&page->_mapcount)) 511 __page_set_anon_rmap(page, vma, address); 512 /* else checking page index and mapping is racy */ 513 } 514 515 /* 516 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 517 * @page: the page to add the mapping to 518 * @vma: the vm area in which the mapping is added 519 * @address: the user virtual address mapped 520 * 521 * Same as page_add_anon_rmap but must only be called on *new* pages. 522 * This means the inc-and-test can be bypassed. 523 */ 524 void page_add_new_anon_rmap(struct page *page, 525 struct vm_area_struct *vma, unsigned long address) 526 { 527 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 528 __page_set_anon_rmap(page, vma, address); 529 } 530 531 /** 532 * page_add_file_rmap - add pte mapping to a file page 533 * @page: the page to add the mapping to 534 * 535 * The caller needs to hold the pte lock. 536 */ 537 void page_add_file_rmap(struct page *page) 538 { 539 if (atomic_inc_and_test(&page->_mapcount)) 540 __inc_page_state(nr_mapped); 541 } 542 543 /** 544 * page_remove_rmap - take down pte mapping from a page 545 * @page: page to remove mapping from 546 * 547 * The caller needs to hold the pte lock. 548 */ 549 void page_remove_rmap(struct page *page) 550 { 551 if (atomic_add_negative(-1, &page->_mapcount)) { 552 #ifdef CONFIG_DEBUG_VM 553 if (unlikely(page_mapcount(page) < 0)) { 554 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 555 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 556 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 557 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 558 } 559 #endif 560 BUG_ON(page_mapcount(page) < 0); 561 /* 562 * It would be tidy to reset the PageAnon mapping here, 563 * but that might overwrite a racing page_add_anon_rmap 564 * which increments mapcount after us but sets mapping 565 * before us: so leave the reset to free_hot_cold_page, 566 * and remember that it's only reliable while mapped. 567 * Leaving it set also helps swapoff to reinstate ptes 568 * faster for those pages still in swapcache. 569 */ 570 if (page_test_and_clear_dirty(page)) 571 set_page_dirty(page); 572 __dec_page_state(nr_mapped); 573 } 574 } 575 576 /* 577 * Subfunctions of try_to_unmap: try_to_unmap_one called 578 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 579 */ 580 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 581 int ignore_refs) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 unsigned long address; 585 pte_t *pte; 586 pte_t pteval; 587 spinlock_t *ptl; 588 int ret = SWAP_AGAIN; 589 590 address = vma_address(page, vma); 591 if (address == -EFAULT) 592 goto out; 593 594 pte = page_check_address(page, mm, address, &ptl); 595 if (!pte) 596 goto out; 597 598 /* 599 * If the page is mlock()d, we cannot swap it out. 600 * If it's recently referenced (perhaps page_referenced 601 * skipped over this mm) then we should reactivate it. 602 */ 603 if ((vma->vm_flags & VM_LOCKED) || 604 (ptep_clear_flush_young(vma, address, pte) 605 && !ignore_refs)) { 606 ret = SWAP_FAIL; 607 goto out_unmap; 608 } 609 610 /* Nuke the page table entry. */ 611 flush_cache_page(vma, address, page_to_pfn(page)); 612 pteval = ptep_clear_flush(vma, address, pte); 613 614 /* Move the dirty bit to the physical page now the pte is gone. */ 615 if (pte_dirty(pteval)) 616 set_page_dirty(page); 617 618 /* Update high watermark before we lower rss */ 619 update_hiwater_rss(mm); 620 621 if (PageAnon(page)) { 622 swp_entry_t entry = { .val = page_private(page) }; 623 /* 624 * Store the swap location in the pte. 625 * See handle_pte_fault() ... 626 */ 627 BUG_ON(!PageSwapCache(page)); 628 swap_duplicate(entry); 629 if (list_empty(&mm->mmlist)) { 630 spin_lock(&mmlist_lock); 631 if (list_empty(&mm->mmlist)) 632 list_add(&mm->mmlist, &init_mm.mmlist); 633 spin_unlock(&mmlist_lock); 634 } 635 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 636 BUG_ON(pte_file(*pte)); 637 dec_mm_counter(mm, anon_rss); 638 } else 639 dec_mm_counter(mm, file_rss); 640 641 page_remove_rmap(page); 642 page_cache_release(page); 643 644 out_unmap: 645 pte_unmap_unlock(pte, ptl); 646 out: 647 return ret; 648 } 649 650 /* 651 * objrmap doesn't work for nonlinear VMAs because the assumption that 652 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 653 * Consequently, given a particular page and its ->index, we cannot locate the 654 * ptes which are mapping that page without an exhaustive linear search. 655 * 656 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 657 * maps the file to which the target page belongs. The ->vm_private_data field 658 * holds the current cursor into that scan. Successive searches will circulate 659 * around the vma's virtual address space. 660 * 661 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 662 * more scanning pressure is placed against them as well. Eventually pages 663 * will become fully unmapped and are eligible for eviction. 664 * 665 * For very sparsely populated VMAs this is a little inefficient - chances are 666 * there there won't be many ptes located within the scan cluster. In this case 667 * maybe we could scan further - to the end of the pte page, perhaps. 668 */ 669 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 670 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 671 672 static void try_to_unmap_cluster(unsigned long cursor, 673 unsigned int *mapcount, struct vm_area_struct *vma) 674 { 675 struct mm_struct *mm = vma->vm_mm; 676 pgd_t *pgd; 677 pud_t *pud; 678 pmd_t *pmd; 679 pte_t *pte; 680 pte_t pteval; 681 spinlock_t *ptl; 682 struct page *page; 683 unsigned long address; 684 unsigned long end; 685 686 address = (vma->vm_start + cursor) & CLUSTER_MASK; 687 end = address + CLUSTER_SIZE; 688 if (address < vma->vm_start) 689 address = vma->vm_start; 690 if (end > vma->vm_end) 691 end = vma->vm_end; 692 693 pgd = pgd_offset(mm, address); 694 if (!pgd_present(*pgd)) 695 return; 696 697 pud = pud_offset(pgd, address); 698 if (!pud_present(*pud)) 699 return; 700 701 pmd = pmd_offset(pud, address); 702 if (!pmd_present(*pmd)) 703 return; 704 705 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 706 707 /* Update high watermark before we lower rss */ 708 update_hiwater_rss(mm); 709 710 for (; address < end; pte++, address += PAGE_SIZE) { 711 if (!pte_present(*pte)) 712 continue; 713 page = vm_normal_page(vma, address, *pte); 714 BUG_ON(!page || PageAnon(page)); 715 716 if (ptep_clear_flush_young(vma, address, pte)) 717 continue; 718 719 /* Nuke the page table entry. */ 720 flush_cache_page(vma, address, pte_pfn(*pte)); 721 pteval = ptep_clear_flush(vma, address, pte); 722 723 /* If nonlinear, store the file page offset in the pte. */ 724 if (page->index != linear_page_index(vma, address)) 725 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 726 727 /* Move the dirty bit to the physical page now the pte is gone. */ 728 if (pte_dirty(pteval)) 729 set_page_dirty(page); 730 731 page_remove_rmap(page); 732 page_cache_release(page); 733 dec_mm_counter(mm, file_rss); 734 (*mapcount)--; 735 } 736 pte_unmap_unlock(pte - 1, ptl); 737 } 738 739 static int try_to_unmap_anon(struct page *page, int ignore_refs) 740 { 741 struct anon_vma *anon_vma; 742 struct vm_area_struct *vma; 743 int ret = SWAP_AGAIN; 744 745 anon_vma = page_lock_anon_vma(page); 746 if (!anon_vma) 747 return ret; 748 749 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 750 ret = try_to_unmap_one(page, vma, ignore_refs); 751 if (ret == SWAP_FAIL || !page_mapped(page)) 752 break; 753 } 754 spin_unlock(&anon_vma->lock); 755 return ret; 756 } 757 758 /** 759 * try_to_unmap_file - unmap file page using the object-based rmap method 760 * @page: the page to unmap 761 * 762 * Find all the mappings of a page using the mapping pointer and the vma chains 763 * contained in the address_space struct it points to. 764 * 765 * This function is only called from try_to_unmap for object-based pages. 766 */ 767 static int try_to_unmap_file(struct page *page, int ignore_refs) 768 { 769 struct address_space *mapping = page->mapping; 770 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 771 struct vm_area_struct *vma; 772 struct prio_tree_iter iter; 773 int ret = SWAP_AGAIN; 774 unsigned long cursor; 775 unsigned long max_nl_cursor = 0; 776 unsigned long max_nl_size = 0; 777 unsigned int mapcount; 778 779 spin_lock(&mapping->i_mmap_lock); 780 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 781 ret = try_to_unmap_one(page, vma, ignore_refs); 782 if (ret == SWAP_FAIL || !page_mapped(page)) 783 goto out; 784 } 785 786 if (list_empty(&mapping->i_mmap_nonlinear)) 787 goto out; 788 789 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 790 shared.vm_set.list) { 791 if (vma->vm_flags & VM_LOCKED) 792 continue; 793 cursor = (unsigned long) vma->vm_private_data; 794 if (cursor > max_nl_cursor) 795 max_nl_cursor = cursor; 796 cursor = vma->vm_end - vma->vm_start; 797 if (cursor > max_nl_size) 798 max_nl_size = cursor; 799 } 800 801 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 802 ret = SWAP_FAIL; 803 goto out; 804 } 805 806 /* 807 * We don't try to search for this page in the nonlinear vmas, 808 * and page_referenced wouldn't have found it anyway. Instead 809 * just walk the nonlinear vmas trying to age and unmap some. 810 * The mapcount of the page we came in with is irrelevant, 811 * but even so use it as a guide to how hard we should try? 812 */ 813 mapcount = page_mapcount(page); 814 if (!mapcount) 815 goto out; 816 cond_resched_lock(&mapping->i_mmap_lock); 817 818 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 819 if (max_nl_cursor == 0) 820 max_nl_cursor = CLUSTER_SIZE; 821 822 do { 823 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 824 shared.vm_set.list) { 825 if (vma->vm_flags & VM_LOCKED) 826 continue; 827 cursor = (unsigned long) vma->vm_private_data; 828 while ( cursor < max_nl_cursor && 829 cursor < vma->vm_end - vma->vm_start) { 830 try_to_unmap_cluster(cursor, &mapcount, vma); 831 cursor += CLUSTER_SIZE; 832 vma->vm_private_data = (void *) cursor; 833 if ((int)mapcount <= 0) 834 goto out; 835 } 836 vma->vm_private_data = (void *) max_nl_cursor; 837 } 838 cond_resched_lock(&mapping->i_mmap_lock); 839 max_nl_cursor += CLUSTER_SIZE; 840 } while (max_nl_cursor <= max_nl_size); 841 842 /* 843 * Don't loop forever (perhaps all the remaining pages are 844 * in locked vmas). Reset cursor on all unreserved nonlinear 845 * vmas, now forgetting on which ones it had fallen behind. 846 */ 847 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 848 vma->vm_private_data = NULL; 849 out: 850 spin_unlock(&mapping->i_mmap_lock); 851 return ret; 852 } 853 854 /** 855 * try_to_unmap - try to remove all page table mappings to a page 856 * @page: the page to get unmapped 857 * 858 * Tries to remove all the page table entries which are mapping this 859 * page, used in the pageout path. Caller must hold the page lock. 860 * Return values are: 861 * 862 * SWAP_SUCCESS - we succeeded in removing all mappings 863 * SWAP_AGAIN - we missed a mapping, try again later 864 * SWAP_FAIL - the page is unswappable 865 */ 866 int try_to_unmap(struct page *page, int ignore_refs) 867 { 868 int ret; 869 870 BUG_ON(!PageLocked(page)); 871 872 if (PageAnon(page)) 873 ret = try_to_unmap_anon(page, ignore_refs); 874 else 875 ret = try_to_unmap_file(page, ignore_refs); 876 877 if (!page_mapped(page)) 878 ret = SWAP_SUCCESS; 879 return ret; 880 } 881 882