1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 */ 40 41 #include <linux/mm.h> 42 #include <linux/pagemap.h> 43 #include <linux/swap.h> 44 #include <linux/swapops.h> 45 #include <linux/slab.h> 46 #include <linux/init.h> 47 #include <linux/rmap.h> 48 #include <linux/rcupdate.h> 49 #include <linux/module.h> 50 #include <linux/kallsyms.h> 51 #include <linux/memcontrol.h> 52 53 #include <asm/tlbflush.h> 54 55 struct kmem_cache *anon_vma_cachep; 56 57 /* This must be called under the mmap_sem. */ 58 int anon_vma_prepare(struct vm_area_struct *vma) 59 { 60 struct anon_vma *anon_vma = vma->anon_vma; 61 62 might_sleep(); 63 if (unlikely(!anon_vma)) { 64 struct mm_struct *mm = vma->vm_mm; 65 struct anon_vma *allocated, *locked; 66 67 anon_vma = find_mergeable_anon_vma(vma); 68 if (anon_vma) { 69 allocated = NULL; 70 locked = anon_vma; 71 spin_lock(&locked->lock); 72 } else { 73 anon_vma = anon_vma_alloc(); 74 if (unlikely(!anon_vma)) 75 return -ENOMEM; 76 allocated = anon_vma; 77 locked = NULL; 78 } 79 80 /* page_table_lock to protect against threads */ 81 spin_lock(&mm->page_table_lock); 82 if (likely(!vma->anon_vma)) { 83 vma->anon_vma = anon_vma; 84 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 85 allocated = NULL; 86 } 87 spin_unlock(&mm->page_table_lock); 88 89 if (locked) 90 spin_unlock(&locked->lock); 91 if (unlikely(allocated)) 92 anon_vma_free(allocated); 93 } 94 return 0; 95 } 96 97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 98 { 99 BUG_ON(vma->anon_vma != next->anon_vma); 100 list_del(&next->anon_vma_node); 101 } 102 103 void __anon_vma_link(struct vm_area_struct *vma) 104 { 105 struct anon_vma *anon_vma = vma->anon_vma; 106 107 if (anon_vma) 108 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 109 } 110 111 void anon_vma_link(struct vm_area_struct *vma) 112 { 113 struct anon_vma *anon_vma = vma->anon_vma; 114 115 if (anon_vma) { 116 spin_lock(&anon_vma->lock); 117 list_add_tail(&vma->anon_vma_node, &anon_vma->head); 118 spin_unlock(&anon_vma->lock); 119 } 120 } 121 122 void anon_vma_unlink(struct vm_area_struct *vma) 123 { 124 struct anon_vma *anon_vma = vma->anon_vma; 125 int empty; 126 127 if (!anon_vma) 128 return; 129 130 spin_lock(&anon_vma->lock); 131 list_del(&vma->anon_vma_node); 132 133 /* We must garbage collect the anon_vma if it's empty */ 134 empty = list_empty(&anon_vma->head); 135 spin_unlock(&anon_vma->lock); 136 137 if (empty) 138 anon_vma_free(anon_vma); 139 } 140 141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data) 142 { 143 struct anon_vma *anon_vma = data; 144 145 spin_lock_init(&anon_vma->lock); 146 INIT_LIST_HEAD(&anon_vma->head); 147 } 148 149 void __init anon_vma_init(void) 150 { 151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 153 } 154 155 /* 156 * Getting a lock on a stable anon_vma from a page off the LRU is 157 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 158 */ 159 static struct anon_vma *page_lock_anon_vma(struct page *page) 160 { 161 struct anon_vma *anon_vma; 162 unsigned long anon_mapping; 163 164 rcu_read_lock(); 165 anon_mapping = (unsigned long) page->mapping; 166 if (!(anon_mapping & PAGE_MAPPING_ANON)) 167 goto out; 168 if (!page_mapped(page)) 169 goto out; 170 171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 172 spin_lock(&anon_vma->lock); 173 return anon_vma; 174 out: 175 rcu_read_unlock(); 176 return NULL; 177 } 178 179 static void page_unlock_anon_vma(struct anon_vma *anon_vma) 180 { 181 spin_unlock(&anon_vma->lock); 182 rcu_read_unlock(); 183 } 184 185 /* 186 * At what user virtual address is page expected in @vma? 187 * Returns virtual address or -EFAULT if page's index/offset is not 188 * within the range mapped the @vma. 189 */ 190 static inline unsigned long 191 vma_address(struct page *page, struct vm_area_struct *vma) 192 { 193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 194 unsigned long address; 195 196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 198 /* page should be within @vma mapping range */ 199 return -EFAULT; 200 } 201 return address; 202 } 203 204 /* 205 * At what user virtual address is page expected in vma? checking that the 206 * page matches the vma: currently only used on anon pages, by unuse_vma; 207 */ 208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 209 { 210 if (PageAnon(page)) { 211 if ((void *)vma->anon_vma != 212 (void *)page->mapping - PAGE_MAPPING_ANON) 213 return -EFAULT; 214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 215 if (!vma->vm_file || 216 vma->vm_file->f_mapping != page->mapping) 217 return -EFAULT; 218 } else 219 return -EFAULT; 220 return vma_address(page, vma); 221 } 222 223 /* 224 * Check that @page is mapped at @address into @mm. 225 * 226 * On success returns with pte mapped and locked. 227 */ 228 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 229 unsigned long address, spinlock_t **ptlp) 230 { 231 pgd_t *pgd; 232 pud_t *pud; 233 pmd_t *pmd; 234 pte_t *pte; 235 spinlock_t *ptl; 236 237 pgd = pgd_offset(mm, address); 238 if (!pgd_present(*pgd)) 239 return NULL; 240 241 pud = pud_offset(pgd, address); 242 if (!pud_present(*pud)) 243 return NULL; 244 245 pmd = pmd_offset(pud, address); 246 if (!pmd_present(*pmd)) 247 return NULL; 248 249 pte = pte_offset_map(pmd, address); 250 /* Make a quick check before getting the lock */ 251 if (!pte_present(*pte)) { 252 pte_unmap(pte); 253 return NULL; 254 } 255 256 ptl = pte_lockptr(mm, pmd); 257 spin_lock(ptl); 258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 259 *ptlp = ptl; 260 return pte; 261 } 262 pte_unmap_unlock(pte, ptl); 263 return NULL; 264 } 265 266 /* 267 * Subfunctions of page_referenced: page_referenced_one called 268 * repeatedly from either page_referenced_anon or page_referenced_file. 269 */ 270 static int page_referenced_one(struct page *page, 271 struct vm_area_struct *vma, unsigned int *mapcount) 272 { 273 struct mm_struct *mm = vma->vm_mm; 274 unsigned long address; 275 pte_t *pte; 276 spinlock_t *ptl; 277 int referenced = 0; 278 279 address = vma_address(page, vma); 280 if (address == -EFAULT) 281 goto out; 282 283 pte = page_check_address(page, mm, address, &ptl); 284 if (!pte) 285 goto out; 286 287 if (vma->vm_flags & VM_LOCKED) { 288 referenced++; 289 *mapcount = 1; /* break early from loop */ 290 } else if (ptep_clear_flush_young(vma, address, pte)) 291 referenced++; 292 293 /* Pretend the page is referenced if the task has the 294 swap token and is in the middle of a page fault. */ 295 if (mm != current->mm && has_swap_token(mm) && 296 rwsem_is_locked(&mm->mmap_sem)) 297 referenced++; 298 299 (*mapcount)--; 300 pte_unmap_unlock(pte, ptl); 301 out: 302 return referenced; 303 } 304 305 static int page_referenced_anon(struct page *page, 306 struct mem_cgroup *mem_cont) 307 { 308 unsigned int mapcount; 309 struct anon_vma *anon_vma; 310 struct vm_area_struct *vma; 311 int referenced = 0; 312 313 anon_vma = page_lock_anon_vma(page); 314 if (!anon_vma) 315 return referenced; 316 317 mapcount = page_mapcount(page); 318 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 319 /* 320 * If we are reclaiming on behalf of a cgroup, skip 321 * counting on behalf of references from different 322 * cgroups 323 */ 324 if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont)) 325 continue; 326 referenced += page_referenced_one(page, vma, &mapcount); 327 if (!mapcount) 328 break; 329 } 330 331 page_unlock_anon_vma(anon_vma); 332 return referenced; 333 } 334 335 /** 336 * page_referenced_file - referenced check for object-based rmap 337 * @page: the page we're checking references on. 338 * 339 * For an object-based mapped page, find all the places it is mapped and 340 * check/clear the referenced flag. This is done by following the page->mapping 341 * pointer, then walking the chain of vmas it holds. It returns the number 342 * of references it found. 343 * 344 * This function is only called from page_referenced for object-based pages. 345 */ 346 static int page_referenced_file(struct page *page, 347 struct mem_cgroup *mem_cont) 348 { 349 unsigned int mapcount; 350 struct address_space *mapping = page->mapping; 351 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 352 struct vm_area_struct *vma; 353 struct prio_tree_iter iter; 354 int referenced = 0; 355 356 /* 357 * The caller's checks on page->mapping and !PageAnon have made 358 * sure that this is a file page: the check for page->mapping 359 * excludes the case just before it gets set on an anon page. 360 */ 361 BUG_ON(PageAnon(page)); 362 363 /* 364 * The page lock not only makes sure that page->mapping cannot 365 * suddenly be NULLified by truncation, it makes sure that the 366 * structure at mapping cannot be freed and reused yet, 367 * so we can safely take mapping->i_mmap_lock. 368 */ 369 BUG_ON(!PageLocked(page)); 370 371 spin_lock(&mapping->i_mmap_lock); 372 373 /* 374 * i_mmap_lock does not stabilize mapcount at all, but mapcount 375 * is more likely to be accurate if we note it after spinning. 376 */ 377 mapcount = page_mapcount(page); 378 379 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 380 /* 381 * If we are reclaiming on behalf of a cgroup, skip 382 * counting on behalf of references from different 383 * cgroups 384 */ 385 if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont)) 386 continue; 387 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 388 == (VM_LOCKED|VM_MAYSHARE)) { 389 referenced++; 390 break; 391 } 392 referenced += page_referenced_one(page, vma, &mapcount); 393 if (!mapcount) 394 break; 395 } 396 397 spin_unlock(&mapping->i_mmap_lock); 398 return referenced; 399 } 400 401 /** 402 * page_referenced - test if the page was referenced 403 * @page: the page to test 404 * @is_locked: caller holds lock on the page 405 * 406 * Quick test_and_clear_referenced for all mappings to a page, 407 * returns the number of ptes which referenced the page. 408 */ 409 int page_referenced(struct page *page, int is_locked, 410 struct mem_cgroup *mem_cont) 411 { 412 int referenced = 0; 413 414 if (page_test_and_clear_young(page)) 415 referenced++; 416 417 if (TestClearPageReferenced(page)) 418 referenced++; 419 420 if (page_mapped(page) && page->mapping) { 421 if (PageAnon(page)) 422 referenced += page_referenced_anon(page, mem_cont); 423 else if (is_locked) 424 referenced += page_referenced_file(page, mem_cont); 425 else if (TestSetPageLocked(page)) 426 referenced++; 427 else { 428 if (page->mapping) 429 referenced += 430 page_referenced_file(page, mem_cont); 431 unlock_page(page); 432 } 433 } 434 return referenced; 435 } 436 437 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) 438 { 439 struct mm_struct *mm = vma->vm_mm; 440 unsigned long address; 441 pte_t *pte; 442 spinlock_t *ptl; 443 int ret = 0; 444 445 address = vma_address(page, vma); 446 if (address == -EFAULT) 447 goto out; 448 449 pte = page_check_address(page, mm, address, &ptl); 450 if (!pte) 451 goto out; 452 453 if (pte_dirty(*pte) || pte_write(*pte)) { 454 pte_t entry; 455 456 flush_cache_page(vma, address, pte_pfn(*pte)); 457 entry = ptep_clear_flush(vma, address, pte); 458 entry = pte_wrprotect(entry); 459 entry = pte_mkclean(entry); 460 set_pte_at(mm, address, pte, entry); 461 ret = 1; 462 } 463 464 pte_unmap_unlock(pte, ptl); 465 out: 466 return ret; 467 } 468 469 static int page_mkclean_file(struct address_space *mapping, struct page *page) 470 { 471 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 472 struct vm_area_struct *vma; 473 struct prio_tree_iter iter; 474 int ret = 0; 475 476 BUG_ON(PageAnon(page)); 477 478 spin_lock(&mapping->i_mmap_lock); 479 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 480 if (vma->vm_flags & VM_SHARED) 481 ret += page_mkclean_one(page, vma); 482 } 483 spin_unlock(&mapping->i_mmap_lock); 484 return ret; 485 } 486 487 int page_mkclean(struct page *page) 488 { 489 int ret = 0; 490 491 BUG_ON(!PageLocked(page)); 492 493 if (page_mapped(page)) { 494 struct address_space *mapping = page_mapping(page); 495 if (mapping) { 496 ret = page_mkclean_file(mapping, page); 497 if (page_test_dirty(page)) { 498 page_clear_dirty(page); 499 ret = 1; 500 } 501 } 502 } 503 504 return ret; 505 } 506 EXPORT_SYMBOL_GPL(page_mkclean); 507 508 /** 509 * page_set_anon_rmap - setup new anonymous rmap 510 * @page: the page to add the mapping to 511 * @vma: the vm area in which the mapping is added 512 * @address: the user virtual address mapped 513 */ 514 static void __page_set_anon_rmap(struct page *page, 515 struct vm_area_struct *vma, unsigned long address) 516 { 517 struct anon_vma *anon_vma = vma->anon_vma; 518 519 BUG_ON(!anon_vma); 520 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 521 page->mapping = (struct address_space *) anon_vma; 522 523 page->index = linear_page_index(vma, address); 524 525 /* 526 * nr_mapped state can be updated without turning off 527 * interrupts because it is not modified via interrupt. 528 */ 529 __inc_zone_page_state(page, NR_ANON_PAGES); 530 } 531 532 /** 533 * page_set_anon_rmap - sanity check anonymous rmap addition 534 * @page: the page to add the mapping to 535 * @vma: the vm area in which the mapping is added 536 * @address: the user virtual address mapped 537 */ 538 static void __page_check_anon_rmap(struct page *page, 539 struct vm_area_struct *vma, unsigned long address) 540 { 541 #ifdef CONFIG_DEBUG_VM 542 /* 543 * The page's anon-rmap details (mapping and index) are guaranteed to 544 * be set up correctly at this point. 545 * 546 * We have exclusion against page_add_anon_rmap because the caller 547 * always holds the page locked, except if called from page_dup_rmap, 548 * in which case the page is already known to be setup. 549 * 550 * We have exclusion against page_add_new_anon_rmap because those pages 551 * are initially only visible via the pagetables, and the pte is locked 552 * over the call to page_add_new_anon_rmap. 553 */ 554 struct anon_vma *anon_vma = vma->anon_vma; 555 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 556 BUG_ON(page->mapping != (struct address_space *)anon_vma); 557 BUG_ON(page->index != linear_page_index(vma, address)); 558 #endif 559 } 560 561 /** 562 * page_add_anon_rmap - add pte mapping to an anonymous page 563 * @page: the page to add the mapping to 564 * @vma: the vm area in which the mapping is added 565 * @address: the user virtual address mapped 566 * 567 * The caller needs to hold the pte lock and the page must be locked. 568 */ 569 void page_add_anon_rmap(struct page *page, 570 struct vm_area_struct *vma, unsigned long address) 571 { 572 VM_BUG_ON(!PageLocked(page)); 573 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 574 if (atomic_inc_and_test(&page->_mapcount)) 575 __page_set_anon_rmap(page, vma, address); 576 else { 577 __page_check_anon_rmap(page, vma, address); 578 /* 579 * We unconditionally charged during prepare, we uncharge here 580 * This takes care of balancing the reference counts 581 */ 582 mem_cgroup_uncharge_page(page); 583 } 584 } 585 586 /* 587 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 588 * @page: the page to add the mapping to 589 * @vma: the vm area in which the mapping is added 590 * @address: the user virtual address mapped 591 * 592 * Same as page_add_anon_rmap but must only be called on *new* pages. 593 * This means the inc-and-test can be bypassed. 594 * Page does not have to be locked. 595 */ 596 void page_add_new_anon_rmap(struct page *page, 597 struct vm_area_struct *vma, unsigned long address) 598 { 599 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 600 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 601 __page_set_anon_rmap(page, vma, address); 602 } 603 604 /** 605 * page_add_file_rmap - add pte mapping to a file page 606 * @page: the page to add the mapping to 607 * 608 * The caller needs to hold the pte lock. 609 */ 610 void page_add_file_rmap(struct page *page) 611 { 612 if (atomic_inc_and_test(&page->_mapcount)) 613 __inc_zone_page_state(page, NR_FILE_MAPPED); 614 else 615 /* 616 * We unconditionally charged during prepare, we uncharge here 617 * This takes care of balancing the reference counts 618 */ 619 mem_cgroup_uncharge_page(page); 620 } 621 622 #ifdef CONFIG_DEBUG_VM 623 /** 624 * page_dup_rmap - duplicate pte mapping to a page 625 * @page: the page to add the mapping to 626 * 627 * For copy_page_range only: minimal extract from page_add_file_rmap / 628 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's 629 * quicker. 630 * 631 * The caller needs to hold the pte lock. 632 */ 633 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) 634 { 635 BUG_ON(page_mapcount(page) == 0); 636 if (PageAnon(page)) 637 __page_check_anon_rmap(page, vma, address); 638 atomic_inc(&page->_mapcount); 639 } 640 #endif 641 642 /** 643 * page_remove_rmap - take down pte mapping from a page 644 * @page: page to remove mapping from 645 * 646 * The caller needs to hold the pte lock. 647 */ 648 void page_remove_rmap(struct page *page, struct vm_area_struct *vma) 649 { 650 if (atomic_add_negative(-1, &page->_mapcount)) { 651 if (unlikely(page_mapcount(page) < 0)) { 652 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 653 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); 654 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 655 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 656 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 657 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); 658 if (vma->vm_ops) { 659 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage); 660 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); 661 } 662 if (vma->vm_file && vma->vm_file->f_op) 663 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); 664 BUG(); 665 } 666 667 /* 668 * It would be tidy to reset the PageAnon mapping here, 669 * but that might overwrite a racing page_add_anon_rmap 670 * which increments mapcount after us but sets mapping 671 * before us: so leave the reset to free_hot_cold_page, 672 * and remember that it's only reliable while mapped. 673 * Leaving it set also helps swapoff to reinstate ptes 674 * faster for those pages still in swapcache. 675 */ 676 if (page_test_dirty(page)) { 677 page_clear_dirty(page); 678 set_page_dirty(page); 679 } 680 mem_cgroup_uncharge_page(page); 681 682 __dec_zone_page_state(page, 683 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); 684 } 685 } 686 687 /* 688 * Subfunctions of try_to_unmap: try_to_unmap_one called 689 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 690 */ 691 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 692 int migration) 693 { 694 struct mm_struct *mm = vma->vm_mm; 695 unsigned long address; 696 pte_t *pte; 697 pte_t pteval; 698 spinlock_t *ptl; 699 int ret = SWAP_AGAIN; 700 701 address = vma_address(page, vma); 702 if (address == -EFAULT) 703 goto out; 704 705 pte = page_check_address(page, mm, address, &ptl); 706 if (!pte) 707 goto out; 708 709 /* 710 * If the page is mlock()d, we cannot swap it out. 711 * If it's recently referenced (perhaps page_referenced 712 * skipped over this mm) then we should reactivate it. 713 */ 714 if (!migration && ((vma->vm_flags & VM_LOCKED) || 715 (ptep_clear_flush_young(vma, address, pte)))) { 716 ret = SWAP_FAIL; 717 goto out_unmap; 718 } 719 720 /* Nuke the page table entry. */ 721 flush_cache_page(vma, address, page_to_pfn(page)); 722 pteval = ptep_clear_flush(vma, address, pte); 723 724 /* Move the dirty bit to the physical page now the pte is gone. */ 725 if (pte_dirty(pteval)) 726 set_page_dirty(page); 727 728 /* Update high watermark before we lower rss */ 729 update_hiwater_rss(mm); 730 731 if (PageAnon(page)) { 732 swp_entry_t entry = { .val = page_private(page) }; 733 734 if (PageSwapCache(page)) { 735 /* 736 * Store the swap location in the pte. 737 * See handle_pte_fault() ... 738 */ 739 swap_duplicate(entry); 740 if (list_empty(&mm->mmlist)) { 741 spin_lock(&mmlist_lock); 742 if (list_empty(&mm->mmlist)) 743 list_add(&mm->mmlist, &init_mm.mmlist); 744 spin_unlock(&mmlist_lock); 745 } 746 dec_mm_counter(mm, anon_rss); 747 #ifdef CONFIG_MIGRATION 748 } else { 749 /* 750 * Store the pfn of the page in a special migration 751 * pte. do_swap_page() will wait until the migration 752 * pte is removed and then restart fault handling. 753 */ 754 BUG_ON(!migration); 755 entry = make_migration_entry(page, pte_write(pteval)); 756 #endif 757 } 758 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 759 BUG_ON(pte_file(*pte)); 760 } else 761 #ifdef CONFIG_MIGRATION 762 if (migration) { 763 /* Establish migration entry for a file page */ 764 swp_entry_t entry; 765 entry = make_migration_entry(page, pte_write(pteval)); 766 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 767 } else 768 #endif 769 dec_mm_counter(mm, file_rss); 770 771 772 page_remove_rmap(page, vma); 773 page_cache_release(page); 774 775 out_unmap: 776 pte_unmap_unlock(pte, ptl); 777 out: 778 return ret; 779 } 780 781 /* 782 * objrmap doesn't work for nonlinear VMAs because the assumption that 783 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 784 * Consequently, given a particular page and its ->index, we cannot locate the 785 * ptes which are mapping that page without an exhaustive linear search. 786 * 787 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 788 * maps the file to which the target page belongs. The ->vm_private_data field 789 * holds the current cursor into that scan. Successive searches will circulate 790 * around the vma's virtual address space. 791 * 792 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 793 * more scanning pressure is placed against them as well. Eventually pages 794 * will become fully unmapped and are eligible for eviction. 795 * 796 * For very sparsely populated VMAs this is a little inefficient - chances are 797 * there there won't be many ptes located within the scan cluster. In this case 798 * maybe we could scan further - to the end of the pte page, perhaps. 799 */ 800 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 801 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 802 803 static void try_to_unmap_cluster(unsigned long cursor, 804 unsigned int *mapcount, struct vm_area_struct *vma) 805 { 806 struct mm_struct *mm = vma->vm_mm; 807 pgd_t *pgd; 808 pud_t *pud; 809 pmd_t *pmd; 810 pte_t *pte; 811 pte_t pteval; 812 spinlock_t *ptl; 813 struct page *page; 814 unsigned long address; 815 unsigned long end; 816 817 address = (vma->vm_start + cursor) & CLUSTER_MASK; 818 end = address + CLUSTER_SIZE; 819 if (address < vma->vm_start) 820 address = vma->vm_start; 821 if (end > vma->vm_end) 822 end = vma->vm_end; 823 824 pgd = pgd_offset(mm, address); 825 if (!pgd_present(*pgd)) 826 return; 827 828 pud = pud_offset(pgd, address); 829 if (!pud_present(*pud)) 830 return; 831 832 pmd = pmd_offset(pud, address); 833 if (!pmd_present(*pmd)) 834 return; 835 836 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 837 838 /* Update high watermark before we lower rss */ 839 update_hiwater_rss(mm); 840 841 for (; address < end; pte++, address += PAGE_SIZE) { 842 if (!pte_present(*pte)) 843 continue; 844 page = vm_normal_page(vma, address, *pte); 845 BUG_ON(!page || PageAnon(page)); 846 847 if (ptep_clear_flush_young(vma, address, pte)) 848 continue; 849 850 /* Nuke the page table entry. */ 851 flush_cache_page(vma, address, pte_pfn(*pte)); 852 pteval = ptep_clear_flush(vma, address, pte); 853 854 /* If nonlinear, store the file page offset in the pte. */ 855 if (page->index != linear_page_index(vma, address)) 856 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 857 858 /* Move the dirty bit to the physical page now the pte is gone. */ 859 if (pte_dirty(pteval)) 860 set_page_dirty(page); 861 862 page_remove_rmap(page, vma); 863 page_cache_release(page); 864 dec_mm_counter(mm, file_rss); 865 (*mapcount)--; 866 } 867 pte_unmap_unlock(pte - 1, ptl); 868 } 869 870 static int try_to_unmap_anon(struct page *page, int migration) 871 { 872 struct anon_vma *anon_vma; 873 struct vm_area_struct *vma; 874 int ret = SWAP_AGAIN; 875 876 anon_vma = page_lock_anon_vma(page); 877 if (!anon_vma) 878 return ret; 879 880 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 881 ret = try_to_unmap_one(page, vma, migration); 882 if (ret == SWAP_FAIL || !page_mapped(page)) 883 break; 884 } 885 886 page_unlock_anon_vma(anon_vma); 887 return ret; 888 } 889 890 /** 891 * try_to_unmap_file - unmap file page using the object-based rmap method 892 * @page: the page to unmap 893 * 894 * Find all the mappings of a page using the mapping pointer and the vma chains 895 * contained in the address_space struct it points to. 896 * 897 * This function is only called from try_to_unmap for object-based pages. 898 */ 899 static int try_to_unmap_file(struct page *page, int migration) 900 { 901 struct address_space *mapping = page->mapping; 902 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 903 struct vm_area_struct *vma; 904 struct prio_tree_iter iter; 905 int ret = SWAP_AGAIN; 906 unsigned long cursor; 907 unsigned long max_nl_cursor = 0; 908 unsigned long max_nl_size = 0; 909 unsigned int mapcount; 910 911 spin_lock(&mapping->i_mmap_lock); 912 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 913 ret = try_to_unmap_one(page, vma, migration); 914 if (ret == SWAP_FAIL || !page_mapped(page)) 915 goto out; 916 } 917 918 if (list_empty(&mapping->i_mmap_nonlinear)) 919 goto out; 920 921 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 922 shared.vm_set.list) { 923 if ((vma->vm_flags & VM_LOCKED) && !migration) 924 continue; 925 cursor = (unsigned long) vma->vm_private_data; 926 if (cursor > max_nl_cursor) 927 max_nl_cursor = cursor; 928 cursor = vma->vm_end - vma->vm_start; 929 if (cursor > max_nl_size) 930 max_nl_size = cursor; 931 } 932 933 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 934 ret = SWAP_FAIL; 935 goto out; 936 } 937 938 /* 939 * We don't try to search for this page in the nonlinear vmas, 940 * and page_referenced wouldn't have found it anyway. Instead 941 * just walk the nonlinear vmas trying to age and unmap some. 942 * The mapcount of the page we came in with is irrelevant, 943 * but even so use it as a guide to how hard we should try? 944 */ 945 mapcount = page_mapcount(page); 946 if (!mapcount) 947 goto out; 948 cond_resched_lock(&mapping->i_mmap_lock); 949 950 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 951 if (max_nl_cursor == 0) 952 max_nl_cursor = CLUSTER_SIZE; 953 954 do { 955 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 956 shared.vm_set.list) { 957 if ((vma->vm_flags & VM_LOCKED) && !migration) 958 continue; 959 cursor = (unsigned long) vma->vm_private_data; 960 while ( cursor < max_nl_cursor && 961 cursor < vma->vm_end - vma->vm_start) { 962 try_to_unmap_cluster(cursor, &mapcount, vma); 963 cursor += CLUSTER_SIZE; 964 vma->vm_private_data = (void *) cursor; 965 if ((int)mapcount <= 0) 966 goto out; 967 } 968 vma->vm_private_data = (void *) max_nl_cursor; 969 } 970 cond_resched_lock(&mapping->i_mmap_lock); 971 max_nl_cursor += CLUSTER_SIZE; 972 } while (max_nl_cursor <= max_nl_size); 973 974 /* 975 * Don't loop forever (perhaps all the remaining pages are 976 * in locked vmas). Reset cursor on all unreserved nonlinear 977 * vmas, now forgetting on which ones it had fallen behind. 978 */ 979 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 980 vma->vm_private_data = NULL; 981 out: 982 spin_unlock(&mapping->i_mmap_lock); 983 return ret; 984 } 985 986 /** 987 * try_to_unmap - try to remove all page table mappings to a page 988 * @page: the page to get unmapped 989 * 990 * Tries to remove all the page table entries which are mapping this 991 * page, used in the pageout path. Caller must hold the page lock. 992 * Return values are: 993 * 994 * SWAP_SUCCESS - we succeeded in removing all mappings 995 * SWAP_AGAIN - we missed a mapping, try again later 996 * SWAP_FAIL - the page is unswappable 997 */ 998 int try_to_unmap(struct page *page, int migration) 999 { 1000 int ret; 1001 1002 BUG_ON(!PageLocked(page)); 1003 1004 if (PageAnon(page)) 1005 ret = try_to_unmap_anon(page, migration); 1006 else 1007 ret = try_to_unmap_file(page, migration); 1008 1009 if (!page_mapped(page)) 1010 ret = SWAP_SUCCESS; 1011 return ret; 1012 } 1013 1014