xref: /linux/mm/rmap.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52 
53 #include <asm/tlbflush.h>
54 
55 struct kmem_cache *anon_vma_cachep;
56 
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
59 {
60 	struct anon_vma *anon_vma = vma->anon_vma;
61 
62 	might_sleep();
63 	if (unlikely(!anon_vma)) {
64 		struct mm_struct *mm = vma->vm_mm;
65 		struct anon_vma *allocated, *locked;
66 
67 		anon_vma = find_mergeable_anon_vma(vma);
68 		if (anon_vma) {
69 			allocated = NULL;
70 			locked = anon_vma;
71 			spin_lock(&locked->lock);
72 		} else {
73 			anon_vma = anon_vma_alloc();
74 			if (unlikely(!anon_vma))
75 				return -ENOMEM;
76 			allocated = anon_vma;
77 			locked = NULL;
78 		}
79 
80 		/* page_table_lock to protect against threads */
81 		spin_lock(&mm->page_table_lock);
82 		if (likely(!vma->anon_vma)) {
83 			vma->anon_vma = anon_vma;
84 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 			allocated = NULL;
86 		}
87 		spin_unlock(&mm->page_table_lock);
88 
89 		if (locked)
90 			spin_unlock(&locked->lock);
91 		if (unlikely(allocated))
92 			anon_vma_free(allocated);
93 	}
94 	return 0;
95 }
96 
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 {
99 	BUG_ON(vma->anon_vma != next->anon_vma);
100 	list_del(&next->anon_vma_node);
101 }
102 
103 void __anon_vma_link(struct vm_area_struct *vma)
104 {
105 	struct anon_vma *anon_vma = vma->anon_vma;
106 
107 	if (anon_vma)
108 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 }
110 
111 void anon_vma_link(struct vm_area_struct *vma)
112 {
113 	struct anon_vma *anon_vma = vma->anon_vma;
114 
115 	if (anon_vma) {
116 		spin_lock(&anon_vma->lock);
117 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 		spin_unlock(&anon_vma->lock);
119 	}
120 }
121 
122 void anon_vma_unlink(struct vm_area_struct *vma)
123 {
124 	struct anon_vma *anon_vma = vma->anon_vma;
125 	int empty;
126 
127 	if (!anon_vma)
128 		return;
129 
130 	spin_lock(&anon_vma->lock);
131 	list_del(&vma->anon_vma_node);
132 
133 	/* We must garbage collect the anon_vma if it's empty */
134 	empty = list_empty(&anon_vma->head);
135 	spin_unlock(&anon_vma->lock);
136 
137 	if (empty)
138 		anon_vma_free(anon_vma);
139 }
140 
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
142 {
143 	struct anon_vma *anon_vma = data;
144 
145 	spin_lock_init(&anon_vma->lock);
146 	INIT_LIST_HEAD(&anon_vma->head);
147 }
148 
149 void __init anon_vma_init(void)
150 {
151 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153 }
154 
155 /*
156  * Getting a lock on a stable anon_vma from a page off the LRU is
157  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158  */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 	struct anon_vma *anon_vma;
162 	unsigned long anon_mapping;
163 
164 	rcu_read_lock();
165 	anon_mapping = (unsigned long) page->mapping;
166 	if (!(anon_mapping & PAGE_MAPPING_ANON))
167 		goto out;
168 	if (!page_mapped(page))
169 		goto out;
170 
171 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 	spin_lock(&anon_vma->lock);
173 	return anon_vma;
174 out:
175 	rcu_read_unlock();
176 	return NULL;
177 }
178 
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 	spin_unlock(&anon_vma->lock);
182 	rcu_read_unlock();
183 }
184 
185 /*
186  * At what user virtual address is page expected in @vma?
187  * Returns virtual address or -EFAULT if page's index/offset is not
188  * within the range mapped the @vma.
189  */
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
192 {
193 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 	unsigned long address;
195 
196 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 		/* page should be within @vma mapping range */
199 		return -EFAULT;
200 	}
201 	return address;
202 }
203 
204 /*
205  * At what user virtual address is page expected in vma? checking that the
206  * page matches the vma: currently only used on anon pages, by unuse_vma;
207  */
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209 {
210 	if (PageAnon(page)) {
211 		if ((void *)vma->anon_vma !=
212 		    (void *)page->mapping - PAGE_MAPPING_ANON)
213 			return -EFAULT;
214 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 		if (!vma->vm_file ||
216 		    vma->vm_file->f_mapping != page->mapping)
217 			return -EFAULT;
218 	} else
219 		return -EFAULT;
220 	return vma_address(page, vma);
221 }
222 
223 /*
224  * Check that @page is mapped at @address into @mm.
225  *
226  * On success returns with pte mapped and locked.
227  */
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 			  unsigned long address, spinlock_t **ptlp)
230 {
231 	pgd_t *pgd;
232 	pud_t *pud;
233 	pmd_t *pmd;
234 	pte_t *pte;
235 	spinlock_t *ptl;
236 
237 	pgd = pgd_offset(mm, address);
238 	if (!pgd_present(*pgd))
239 		return NULL;
240 
241 	pud = pud_offset(pgd, address);
242 	if (!pud_present(*pud))
243 		return NULL;
244 
245 	pmd = pmd_offset(pud, address);
246 	if (!pmd_present(*pmd))
247 		return NULL;
248 
249 	pte = pte_offset_map(pmd, address);
250 	/* Make a quick check before getting the lock */
251 	if (!pte_present(*pte)) {
252 		pte_unmap(pte);
253 		return NULL;
254 	}
255 
256 	ptl = pte_lockptr(mm, pmd);
257 	spin_lock(ptl);
258 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 		*ptlp = ptl;
260 		return pte;
261 	}
262 	pte_unmap_unlock(pte, ptl);
263 	return NULL;
264 }
265 
266 /*
267  * Subfunctions of page_referenced: page_referenced_one called
268  * repeatedly from either page_referenced_anon or page_referenced_file.
269  */
270 static int page_referenced_one(struct page *page,
271 	struct vm_area_struct *vma, unsigned int *mapcount)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	unsigned long address;
275 	pte_t *pte;
276 	spinlock_t *ptl;
277 	int referenced = 0;
278 
279 	address = vma_address(page, vma);
280 	if (address == -EFAULT)
281 		goto out;
282 
283 	pte = page_check_address(page, mm, address, &ptl);
284 	if (!pte)
285 		goto out;
286 
287 	if (vma->vm_flags & VM_LOCKED) {
288 		referenced++;
289 		*mapcount = 1;	/* break early from loop */
290 	} else if (ptep_clear_flush_young(vma, address, pte))
291 		referenced++;
292 
293 	/* Pretend the page is referenced if the task has the
294 	   swap token and is in the middle of a page fault. */
295 	if (mm != current->mm && has_swap_token(mm) &&
296 			rwsem_is_locked(&mm->mmap_sem))
297 		referenced++;
298 
299 	(*mapcount)--;
300 	pte_unmap_unlock(pte, ptl);
301 out:
302 	return referenced;
303 }
304 
305 static int page_referenced_anon(struct page *page,
306 				struct mem_cgroup *mem_cont)
307 {
308 	unsigned int mapcount;
309 	struct anon_vma *anon_vma;
310 	struct vm_area_struct *vma;
311 	int referenced = 0;
312 
313 	anon_vma = page_lock_anon_vma(page);
314 	if (!anon_vma)
315 		return referenced;
316 
317 	mapcount = page_mapcount(page);
318 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
319 		/*
320 		 * If we are reclaiming on behalf of a cgroup, skip
321 		 * counting on behalf of references from different
322 		 * cgroups
323 		 */
324 		if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
325 			continue;
326 		referenced += page_referenced_one(page, vma, &mapcount);
327 		if (!mapcount)
328 			break;
329 	}
330 
331 	page_unlock_anon_vma(anon_vma);
332 	return referenced;
333 }
334 
335 /**
336  * page_referenced_file - referenced check for object-based rmap
337  * @page: the page we're checking references on.
338  *
339  * For an object-based mapped page, find all the places it is mapped and
340  * check/clear the referenced flag.  This is done by following the page->mapping
341  * pointer, then walking the chain of vmas it holds.  It returns the number
342  * of references it found.
343  *
344  * This function is only called from page_referenced for object-based pages.
345  */
346 static int page_referenced_file(struct page *page,
347 				struct mem_cgroup *mem_cont)
348 {
349 	unsigned int mapcount;
350 	struct address_space *mapping = page->mapping;
351 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
352 	struct vm_area_struct *vma;
353 	struct prio_tree_iter iter;
354 	int referenced = 0;
355 
356 	/*
357 	 * The caller's checks on page->mapping and !PageAnon have made
358 	 * sure that this is a file page: the check for page->mapping
359 	 * excludes the case just before it gets set on an anon page.
360 	 */
361 	BUG_ON(PageAnon(page));
362 
363 	/*
364 	 * The page lock not only makes sure that page->mapping cannot
365 	 * suddenly be NULLified by truncation, it makes sure that the
366 	 * structure at mapping cannot be freed and reused yet,
367 	 * so we can safely take mapping->i_mmap_lock.
368 	 */
369 	BUG_ON(!PageLocked(page));
370 
371 	spin_lock(&mapping->i_mmap_lock);
372 
373 	/*
374 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
375 	 * is more likely to be accurate if we note it after spinning.
376 	 */
377 	mapcount = page_mapcount(page);
378 
379 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
380 		/*
381 		 * If we are reclaiming on behalf of a cgroup, skip
382 		 * counting on behalf of references from different
383 		 * cgroups
384 		 */
385 		if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
386 			continue;
387 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
388 				  == (VM_LOCKED|VM_MAYSHARE)) {
389 			referenced++;
390 			break;
391 		}
392 		referenced += page_referenced_one(page, vma, &mapcount);
393 		if (!mapcount)
394 			break;
395 	}
396 
397 	spin_unlock(&mapping->i_mmap_lock);
398 	return referenced;
399 }
400 
401 /**
402  * page_referenced - test if the page was referenced
403  * @page: the page to test
404  * @is_locked: caller holds lock on the page
405  *
406  * Quick test_and_clear_referenced for all mappings to a page,
407  * returns the number of ptes which referenced the page.
408  */
409 int page_referenced(struct page *page, int is_locked,
410 			struct mem_cgroup *mem_cont)
411 {
412 	int referenced = 0;
413 
414 	if (page_test_and_clear_young(page))
415 		referenced++;
416 
417 	if (TestClearPageReferenced(page))
418 		referenced++;
419 
420 	if (page_mapped(page) && page->mapping) {
421 		if (PageAnon(page))
422 			referenced += page_referenced_anon(page, mem_cont);
423 		else if (is_locked)
424 			referenced += page_referenced_file(page, mem_cont);
425 		else if (TestSetPageLocked(page))
426 			referenced++;
427 		else {
428 			if (page->mapping)
429 				referenced +=
430 					page_referenced_file(page, mem_cont);
431 			unlock_page(page);
432 		}
433 	}
434 	return referenced;
435 }
436 
437 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
438 {
439 	struct mm_struct *mm = vma->vm_mm;
440 	unsigned long address;
441 	pte_t *pte;
442 	spinlock_t *ptl;
443 	int ret = 0;
444 
445 	address = vma_address(page, vma);
446 	if (address == -EFAULT)
447 		goto out;
448 
449 	pte = page_check_address(page, mm, address, &ptl);
450 	if (!pte)
451 		goto out;
452 
453 	if (pte_dirty(*pte) || pte_write(*pte)) {
454 		pte_t entry;
455 
456 		flush_cache_page(vma, address, pte_pfn(*pte));
457 		entry = ptep_clear_flush(vma, address, pte);
458 		entry = pte_wrprotect(entry);
459 		entry = pte_mkclean(entry);
460 		set_pte_at(mm, address, pte, entry);
461 		ret = 1;
462 	}
463 
464 	pte_unmap_unlock(pte, ptl);
465 out:
466 	return ret;
467 }
468 
469 static int page_mkclean_file(struct address_space *mapping, struct page *page)
470 {
471 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
472 	struct vm_area_struct *vma;
473 	struct prio_tree_iter iter;
474 	int ret = 0;
475 
476 	BUG_ON(PageAnon(page));
477 
478 	spin_lock(&mapping->i_mmap_lock);
479 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
480 		if (vma->vm_flags & VM_SHARED)
481 			ret += page_mkclean_one(page, vma);
482 	}
483 	spin_unlock(&mapping->i_mmap_lock);
484 	return ret;
485 }
486 
487 int page_mkclean(struct page *page)
488 {
489 	int ret = 0;
490 
491 	BUG_ON(!PageLocked(page));
492 
493 	if (page_mapped(page)) {
494 		struct address_space *mapping = page_mapping(page);
495 		if (mapping) {
496 			ret = page_mkclean_file(mapping, page);
497 			if (page_test_dirty(page)) {
498 				page_clear_dirty(page);
499 				ret = 1;
500 			}
501 		}
502 	}
503 
504 	return ret;
505 }
506 EXPORT_SYMBOL_GPL(page_mkclean);
507 
508 /**
509  * page_set_anon_rmap - setup new anonymous rmap
510  * @page:	the page to add the mapping to
511  * @vma:	the vm area in which the mapping is added
512  * @address:	the user virtual address mapped
513  */
514 static void __page_set_anon_rmap(struct page *page,
515 	struct vm_area_struct *vma, unsigned long address)
516 {
517 	struct anon_vma *anon_vma = vma->anon_vma;
518 
519 	BUG_ON(!anon_vma);
520 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
521 	page->mapping = (struct address_space *) anon_vma;
522 
523 	page->index = linear_page_index(vma, address);
524 
525 	/*
526 	 * nr_mapped state can be updated without turning off
527 	 * interrupts because it is not modified via interrupt.
528 	 */
529 	__inc_zone_page_state(page, NR_ANON_PAGES);
530 }
531 
532 /**
533  * page_set_anon_rmap - sanity check anonymous rmap addition
534  * @page:	the page to add the mapping to
535  * @vma:	the vm area in which the mapping is added
536  * @address:	the user virtual address mapped
537  */
538 static void __page_check_anon_rmap(struct page *page,
539 	struct vm_area_struct *vma, unsigned long address)
540 {
541 #ifdef CONFIG_DEBUG_VM
542 	/*
543 	 * The page's anon-rmap details (mapping and index) are guaranteed to
544 	 * be set up correctly at this point.
545 	 *
546 	 * We have exclusion against page_add_anon_rmap because the caller
547 	 * always holds the page locked, except if called from page_dup_rmap,
548 	 * in which case the page is already known to be setup.
549 	 *
550 	 * We have exclusion against page_add_new_anon_rmap because those pages
551 	 * are initially only visible via the pagetables, and the pte is locked
552 	 * over the call to page_add_new_anon_rmap.
553 	 */
554 	struct anon_vma *anon_vma = vma->anon_vma;
555 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
556 	BUG_ON(page->mapping != (struct address_space *)anon_vma);
557 	BUG_ON(page->index != linear_page_index(vma, address));
558 #endif
559 }
560 
561 /**
562  * page_add_anon_rmap - add pte mapping to an anonymous page
563  * @page:	the page to add the mapping to
564  * @vma:	the vm area in which the mapping is added
565  * @address:	the user virtual address mapped
566  *
567  * The caller needs to hold the pte lock and the page must be locked.
568  */
569 void page_add_anon_rmap(struct page *page,
570 	struct vm_area_struct *vma, unsigned long address)
571 {
572 	VM_BUG_ON(!PageLocked(page));
573 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
574 	if (atomic_inc_and_test(&page->_mapcount))
575 		__page_set_anon_rmap(page, vma, address);
576 	else {
577 		__page_check_anon_rmap(page, vma, address);
578 		/*
579 		 * We unconditionally charged during prepare, we uncharge here
580 		 * This takes care of balancing the reference counts
581 		 */
582 		mem_cgroup_uncharge_page(page);
583 	}
584 }
585 
586 /*
587  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
588  * @page:	the page to add the mapping to
589  * @vma:	the vm area in which the mapping is added
590  * @address:	the user virtual address mapped
591  *
592  * Same as page_add_anon_rmap but must only be called on *new* pages.
593  * This means the inc-and-test can be bypassed.
594  * Page does not have to be locked.
595  */
596 void page_add_new_anon_rmap(struct page *page,
597 	struct vm_area_struct *vma, unsigned long address)
598 {
599 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
600 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
601 	__page_set_anon_rmap(page, vma, address);
602 }
603 
604 /**
605  * page_add_file_rmap - add pte mapping to a file page
606  * @page: the page to add the mapping to
607  *
608  * The caller needs to hold the pte lock.
609  */
610 void page_add_file_rmap(struct page *page)
611 {
612 	if (atomic_inc_and_test(&page->_mapcount))
613 		__inc_zone_page_state(page, NR_FILE_MAPPED);
614 	else
615 		/*
616 		 * We unconditionally charged during prepare, we uncharge here
617 		 * This takes care of balancing the reference counts
618 		 */
619 		mem_cgroup_uncharge_page(page);
620 }
621 
622 #ifdef CONFIG_DEBUG_VM
623 /**
624  * page_dup_rmap - duplicate pte mapping to a page
625  * @page:	the page to add the mapping to
626  *
627  * For copy_page_range only: minimal extract from page_add_file_rmap /
628  * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
629  * quicker.
630  *
631  * The caller needs to hold the pte lock.
632  */
633 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
634 {
635 	BUG_ON(page_mapcount(page) == 0);
636 	if (PageAnon(page))
637 		__page_check_anon_rmap(page, vma, address);
638 	atomic_inc(&page->_mapcount);
639 }
640 #endif
641 
642 /**
643  * page_remove_rmap - take down pte mapping from a page
644  * @page: page to remove mapping from
645  *
646  * The caller needs to hold the pte lock.
647  */
648 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
649 {
650 	if (atomic_add_negative(-1, &page->_mapcount)) {
651 		if (unlikely(page_mapcount(page) < 0)) {
652 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
653 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
654 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
655 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
656 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
657 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
658 			if (vma->vm_ops) {
659 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
660 				print_symbol (KERN_EMERG "  vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
661 			}
662 			if (vma->vm_file && vma->vm_file->f_op)
663 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
664 			BUG();
665 		}
666 
667 		/*
668 		 * It would be tidy to reset the PageAnon mapping here,
669 		 * but that might overwrite a racing page_add_anon_rmap
670 		 * which increments mapcount after us but sets mapping
671 		 * before us: so leave the reset to free_hot_cold_page,
672 		 * and remember that it's only reliable while mapped.
673 		 * Leaving it set also helps swapoff to reinstate ptes
674 		 * faster for those pages still in swapcache.
675 		 */
676 		if (page_test_dirty(page)) {
677 			page_clear_dirty(page);
678 			set_page_dirty(page);
679 		}
680 		mem_cgroup_uncharge_page(page);
681 
682 		__dec_zone_page_state(page,
683 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
684 	}
685 }
686 
687 /*
688  * Subfunctions of try_to_unmap: try_to_unmap_one called
689  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
690  */
691 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
692 				int migration)
693 {
694 	struct mm_struct *mm = vma->vm_mm;
695 	unsigned long address;
696 	pte_t *pte;
697 	pte_t pteval;
698 	spinlock_t *ptl;
699 	int ret = SWAP_AGAIN;
700 
701 	address = vma_address(page, vma);
702 	if (address == -EFAULT)
703 		goto out;
704 
705 	pte = page_check_address(page, mm, address, &ptl);
706 	if (!pte)
707 		goto out;
708 
709 	/*
710 	 * If the page is mlock()d, we cannot swap it out.
711 	 * If it's recently referenced (perhaps page_referenced
712 	 * skipped over this mm) then we should reactivate it.
713 	 */
714 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
715 			(ptep_clear_flush_young(vma, address, pte)))) {
716 		ret = SWAP_FAIL;
717 		goto out_unmap;
718 	}
719 
720 	/* Nuke the page table entry. */
721 	flush_cache_page(vma, address, page_to_pfn(page));
722 	pteval = ptep_clear_flush(vma, address, pte);
723 
724 	/* Move the dirty bit to the physical page now the pte is gone. */
725 	if (pte_dirty(pteval))
726 		set_page_dirty(page);
727 
728 	/* Update high watermark before we lower rss */
729 	update_hiwater_rss(mm);
730 
731 	if (PageAnon(page)) {
732 		swp_entry_t entry = { .val = page_private(page) };
733 
734 		if (PageSwapCache(page)) {
735 			/*
736 			 * Store the swap location in the pte.
737 			 * See handle_pte_fault() ...
738 			 */
739 			swap_duplicate(entry);
740 			if (list_empty(&mm->mmlist)) {
741 				spin_lock(&mmlist_lock);
742 				if (list_empty(&mm->mmlist))
743 					list_add(&mm->mmlist, &init_mm.mmlist);
744 				spin_unlock(&mmlist_lock);
745 			}
746 			dec_mm_counter(mm, anon_rss);
747 #ifdef CONFIG_MIGRATION
748 		} else {
749 			/*
750 			 * Store the pfn of the page in a special migration
751 			 * pte. do_swap_page() will wait until the migration
752 			 * pte is removed and then restart fault handling.
753 			 */
754 			BUG_ON(!migration);
755 			entry = make_migration_entry(page, pte_write(pteval));
756 #endif
757 		}
758 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
759 		BUG_ON(pte_file(*pte));
760 	} else
761 #ifdef CONFIG_MIGRATION
762 	if (migration) {
763 		/* Establish migration entry for a file page */
764 		swp_entry_t entry;
765 		entry = make_migration_entry(page, pte_write(pteval));
766 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
767 	} else
768 #endif
769 		dec_mm_counter(mm, file_rss);
770 
771 
772 	page_remove_rmap(page, vma);
773 	page_cache_release(page);
774 
775 out_unmap:
776 	pte_unmap_unlock(pte, ptl);
777 out:
778 	return ret;
779 }
780 
781 /*
782  * objrmap doesn't work for nonlinear VMAs because the assumption that
783  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
784  * Consequently, given a particular page and its ->index, we cannot locate the
785  * ptes which are mapping that page without an exhaustive linear search.
786  *
787  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
788  * maps the file to which the target page belongs.  The ->vm_private_data field
789  * holds the current cursor into that scan.  Successive searches will circulate
790  * around the vma's virtual address space.
791  *
792  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
793  * more scanning pressure is placed against them as well.   Eventually pages
794  * will become fully unmapped and are eligible for eviction.
795  *
796  * For very sparsely populated VMAs this is a little inefficient - chances are
797  * there there won't be many ptes located within the scan cluster.  In this case
798  * maybe we could scan further - to the end of the pte page, perhaps.
799  */
800 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
801 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
802 
803 static void try_to_unmap_cluster(unsigned long cursor,
804 	unsigned int *mapcount, struct vm_area_struct *vma)
805 {
806 	struct mm_struct *mm = vma->vm_mm;
807 	pgd_t *pgd;
808 	pud_t *pud;
809 	pmd_t *pmd;
810 	pte_t *pte;
811 	pte_t pteval;
812 	spinlock_t *ptl;
813 	struct page *page;
814 	unsigned long address;
815 	unsigned long end;
816 
817 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
818 	end = address + CLUSTER_SIZE;
819 	if (address < vma->vm_start)
820 		address = vma->vm_start;
821 	if (end > vma->vm_end)
822 		end = vma->vm_end;
823 
824 	pgd = pgd_offset(mm, address);
825 	if (!pgd_present(*pgd))
826 		return;
827 
828 	pud = pud_offset(pgd, address);
829 	if (!pud_present(*pud))
830 		return;
831 
832 	pmd = pmd_offset(pud, address);
833 	if (!pmd_present(*pmd))
834 		return;
835 
836 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
837 
838 	/* Update high watermark before we lower rss */
839 	update_hiwater_rss(mm);
840 
841 	for (; address < end; pte++, address += PAGE_SIZE) {
842 		if (!pte_present(*pte))
843 			continue;
844 		page = vm_normal_page(vma, address, *pte);
845 		BUG_ON(!page || PageAnon(page));
846 
847 		if (ptep_clear_flush_young(vma, address, pte))
848 			continue;
849 
850 		/* Nuke the page table entry. */
851 		flush_cache_page(vma, address, pte_pfn(*pte));
852 		pteval = ptep_clear_flush(vma, address, pte);
853 
854 		/* If nonlinear, store the file page offset in the pte. */
855 		if (page->index != linear_page_index(vma, address))
856 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
857 
858 		/* Move the dirty bit to the physical page now the pte is gone. */
859 		if (pte_dirty(pteval))
860 			set_page_dirty(page);
861 
862 		page_remove_rmap(page, vma);
863 		page_cache_release(page);
864 		dec_mm_counter(mm, file_rss);
865 		(*mapcount)--;
866 	}
867 	pte_unmap_unlock(pte - 1, ptl);
868 }
869 
870 static int try_to_unmap_anon(struct page *page, int migration)
871 {
872 	struct anon_vma *anon_vma;
873 	struct vm_area_struct *vma;
874 	int ret = SWAP_AGAIN;
875 
876 	anon_vma = page_lock_anon_vma(page);
877 	if (!anon_vma)
878 		return ret;
879 
880 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
881 		ret = try_to_unmap_one(page, vma, migration);
882 		if (ret == SWAP_FAIL || !page_mapped(page))
883 			break;
884 	}
885 
886 	page_unlock_anon_vma(anon_vma);
887 	return ret;
888 }
889 
890 /**
891  * try_to_unmap_file - unmap file page using the object-based rmap method
892  * @page: the page to unmap
893  *
894  * Find all the mappings of a page using the mapping pointer and the vma chains
895  * contained in the address_space struct it points to.
896  *
897  * This function is only called from try_to_unmap for object-based pages.
898  */
899 static int try_to_unmap_file(struct page *page, int migration)
900 {
901 	struct address_space *mapping = page->mapping;
902 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
903 	struct vm_area_struct *vma;
904 	struct prio_tree_iter iter;
905 	int ret = SWAP_AGAIN;
906 	unsigned long cursor;
907 	unsigned long max_nl_cursor = 0;
908 	unsigned long max_nl_size = 0;
909 	unsigned int mapcount;
910 
911 	spin_lock(&mapping->i_mmap_lock);
912 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
913 		ret = try_to_unmap_one(page, vma, migration);
914 		if (ret == SWAP_FAIL || !page_mapped(page))
915 			goto out;
916 	}
917 
918 	if (list_empty(&mapping->i_mmap_nonlinear))
919 		goto out;
920 
921 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
922 						shared.vm_set.list) {
923 		if ((vma->vm_flags & VM_LOCKED) && !migration)
924 			continue;
925 		cursor = (unsigned long) vma->vm_private_data;
926 		if (cursor > max_nl_cursor)
927 			max_nl_cursor = cursor;
928 		cursor = vma->vm_end - vma->vm_start;
929 		if (cursor > max_nl_size)
930 			max_nl_size = cursor;
931 	}
932 
933 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
934 		ret = SWAP_FAIL;
935 		goto out;
936 	}
937 
938 	/*
939 	 * We don't try to search for this page in the nonlinear vmas,
940 	 * and page_referenced wouldn't have found it anyway.  Instead
941 	 * just walk the nonlinear vmas trying to age and unmap some.
942 	 * The mapcount of the page we came in with is irrelevant,
943 	 * but even so use it as a guide to how hard we should try?
944 	 */
945 	mapcount = page_mapcount(page);
946 	if (!mapcount)
947 		goto out;
948 	cond_resched_lock(&mapping->i_mmap_lock);
949 
950 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
951 	if (max_nl_cursor == 0)
952 		max_nl_cursor = CLUSTER_SIZE;
953 
954 	do {
955 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
956 						shared.vm_set.list) {
957 			if ((vma->vm_flags & VM_LOCKED) && !migration)
958 				continue;
959 			cursor = (unsigned long) vma->vm_private_data;
960 			while ( cursor < max_nl_cursor &&
961 				cursor < vma->vm_end - vma->vm_start) {
962 				try_to_unmap_cluster(cursor, &mapcount, vma);
963 				cursor += CLUSTER_SIZE;
964 				vma->vm_private_data = (void *) cursor;
965 				if ((int)mapcount <= 0)
966 					goto out;
967 			}
968 			vma->vm_private_data = (void *) max_nl_cursor;
969 		}
970 		cond_resched_lock(&mapping->i_mmap_lock);
971 		max_nl_cursor += CLUSTER_SIZE;
972 	} while (max_nl_cursor <= max_nl_size);
973 
974 	/*
975 	 * Don't loop forever (perhaps all the remaining pages are
976 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
977 	 * vmas, now forgetting on which ones it had fallen behind.
978 	 */
979 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
980 		vma->vm_private_data = NULL;
981 out:
982 	spin_unlock(&mapping->i_mmap_lock);
983 	return ret;
984 }
985 
986 /**
987  * try_to_unmap - try to remove all page table mappings to a page
988  * @page: the page to get unmapped
989  *
990  * Tries to remove all the page table entries which are mapping this
991  * page, used in the pageout path.  Caller must hold the page lock.
992  * Return values are:
993  *
994  * SWAP_SUCCESS	- we succeeded in removing all mappings
995  * SWAP_AGAIN	- we missed a mapping, try again later
996  * SWAP_FAIL	- the page is unswappable
997  */
998 int try_to_unmap(struct page *page, int migration)
999 {
1000 	int ret;
1001 
1002 	BUG_ON(!PageLocked(page));
1003 
1004 	if (PageAnon(page))
1005 		ret = try_to_unmap_anon(page, migration);
1006 	else
1007 		ret = try_to_unmap_file(page, migration);
1008 
1009 	if (!page_mapped(page))
1010 		ret = SWAP_SUCCESS;
1011 	return ret;
1012 }
1013 
1014