xref: /linux/mm/rmap.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 
52 #include <asm/tlbflush.h>
53 
54 struct kmem_cache *anon_vma_cachep;
55 
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57 {
58 #ifdef CONFIG_DEBUG_VM
59 	struct anon_vma *anon_vma = find_vma->anon_vma;
60 	struct vm_area_struct *vma;
61 	unsigned int mapcount = 0;
62 	int found = 0;
63 
64 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 		mapcount++;
66 		BUG_ON(mapcount > 100000);
67 		if (vma == find_vma)
68 			found = 1;
69 	}
70 	BUG_ON(!found);
71 #endif
72 }
73 
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
76 {
77 	struct anon_vma *anon_vma = vma->anon_vma;
78 
79 	might_sleep();
80 	if (unlikely(!anon_vma)) {
81 		struct mm_struct *mm = vma->vm_mm;
82 		struct anon_vma *allocated, *locked;
83 
84 		anon_vma = find_mergeable_anon_vma(vma);
85 		if (anon_vma) {
86 			allocated = NULL;
87 			locked = anon_vma;
88 			spin_lock(&locked->lock);
89 		} else {
90 			anon_vma = anon_vma_alloc();
91 			if (unlikely(!anon_vma))
92 				return -ENOMEM;
93 			allocated = anon_vma;
94 			locked = NULL;
95 		}
96 
97 		/* page_table_lock to protect against threads */
98 		spin_lock(&mm->page_table_lock);
99 		if (likely(!vma->anon_vma)) {
100 			vma->anon_vma = anon_vma;
101 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 			allocated = NULL;
103 		}
104 		spin_unlock(&mm->page_table_lock);
105 
106 		if (locked)
107 			spin_unlock(&locked->lock);
108 		if (unlikely(allocated))
109 			anon_vma_free(allocated);
110 	}
111 	return 0;
112 }
113 
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115 {
116 	BUG_ON(vma->anon_vma != next->anon_vma);
117 	list_del(&next->anon_vma_node);
118 }
119 
120 void __anon_vma_link(struct vm_area_struct *vma)
121 {
122 	struct anon_vma *anon_vma = vma->anon_vma;
123 
124 	if (anon_vma) {
125 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 		validate_anon_vma(vma);
127 	}
128 }
129 
130 void anon_vma_link(struct vm_area_struct *vma)
131 {
132 	struct anon_vma *anon_vma = vma->anon_vma;
133 
134 	if (anon_vma) {
135 		spin_lock(&anon_vma->lock);
136 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 		validate_anon_vma(vma);
138 		spin_unlock(&anon_vma->lock);
139 	}
140 }
141 
142 void anon_vma_unlink(struct vm_area_struct *vma)
143 {
144 	struct anon_vma *anon_vma = vma->anon_vma;
145 	int empty;
146 
147 	if (!anon_vma)
148 		return;
149 
150 	spin_lock(&anon_vma->lock);
151 	validate_anon_vma(vma);
152 	list_del(&vma->anon_vma_node);
153 
154 	/* We must garbage collect the anon_vma if it's empty */
155 	empty = list_empty(&anon_vma->head);
156 	spin_unlock(&anon_vma->lock);
157 
158 	if (empty)
159 		anon_vma_free(anon_vma);
160 }
161 
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 			  unsigned long flags)
164 {
165 	if (flags & SLAB_CTOR_CONSTRUCTOR) {
166 		struct anon_vma *anon_vma = data;
167 
168 		spin_lock_init(&anon_vma->lock);
169 		INIT_LIST_HEAD(&anon_vma->head);
170 	}
171 }
172 
173 void __init anon_vma_init(void)
174 {
175 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
176 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
177 }
178 
179 /*
180  * Getting a lock on a stable anon_vma from a page off the LRU is
181  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
182  */
183 static struct anon_vma *page_lock_anon_vma(struct page *page)
184 {
185 	struct anon_vma *anon_vma;
186 	unsigned long anon_mapping;
187 
188 	rcu_read_lock();
189 	anon_mapping = (unsigned long) page->mapping;
190 	if (!(anon_mapping & PAGE_MAPPING_ANON))
191 		goto out;
192 	if (!page_mapped(page))
193 		goto out;
194 
195 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
196 	spin_lock(&anon_vma->lock);
197 	return anon_vma;
198 out:
199 	rcu_read_unlock();
200 	return NULL;
201 }
202 
203 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
204 {
205 	spin_unlock(&anon_vma->lock);
206 	rcu_read_unlock();
207 }
208 
209 /*
210  * At what user virtual address is page expected in vma?
211  */
212 static inline unsigned long
213 vma_address(struct page *page, struct vm_area_struct *vma)
214 {
215 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 	unsigned long address;
217 
218 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 		/* page should be within any vma from prio_tree_next */
221 		BUG_ON(!PageAnon(page));
222 		return -EFAULT;
223 	}
224 	return address;
225 }
226 
227 /*
228  * At what user virtual address is page expected in vma? checking that the
229  * page matches the vma: currently only used on anon pages, by unuse_vma;
230  */
231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232 {
233 	if (PageAnon(page)) {
234 		if ((void *)vma->anon_vma !=
235 		    (void *)page->mapping - PAGE_MAPPING_ANON)
236 			return -EFAULT;
237 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 		if (!vma->vm_file ||
239 		    vma->vm_file->f_mapping != page->mapping)
240 			return -EFAULT;
241 	} else
242 		return -EFAULT;
243 	return vma_address(page, vma);
244 }
245 
246 /*
247  * Check that @page is mapped at @address into @mm.
248  *
249  * On success returns with pte mapped and locked.
250  */
251 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
252 			  unsigned long address, spinlock_t **ptlp)
253 {
254 	pgd_t *pgd;
255 	pud_t *pud;
256 	pmd_t *pmd;
257 	pte_t *pte;
258 	spinlock_t *ptl;
259 
260 	pgd = pgd_offset(mm, address);
261 	if (!pgd_present(*pgd))
262 		return NULL;
263 
264 	pud = pud_offset(pgd, address);
265 	if (!pud_present(*pud))
266 		return NULL;
267 
268 	pmd = pmd_offset(pud, address);
269 	if (!pmd_present(*pmd))
270 		return NULL;
271 
272 	pte = pte_offset_map(pmd, address);
273 	/* Make a quick check before getting the lock */
274 	if (!pte_present(*pte)) {
275 		pte_unmap(pte);
276 		return NULL;
277 	}
278 
279 	ptl = pte_lockptr(mm, pmd);
280 	spin_lock(ptl);
281 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
282 		*ptlp = ptl;
283 		return pte;
284 	}
285 	pte_unmap_unlock(pte, ptl);
286 	return NULL;
287 }
288 
289 /*
290  * Subfunctions of page_referenced: page_referenced_one called
291  * repeatedly from either page_referenced_anon or page_referenced_file.
292  */
293 static int page_referenced_one(struct page *page,
294 	struct vm_area_struct *vma, unsigned int *mapcount)
295 {
296 	struct mm_struct *mm = vma->vm_mm;
297 	unsigned long address;
298 	pte_t *pte;
299 	spinlock_t *ptl;
300 	int referenced = 0;
301 
302 	address = vma_address(page, vma);
303 	if (address == -EFAULT)
304 		goto out;
305 
306 	pte = page_check_address(page, mm, address, &ptl);
307 	if (!pte)
308 		goto out;
309 
310 	if (ptep_clear_flush_young(vma, address, pte))
311 		referenced++;
312 
313 	/* Pretend the page is referenced if the task has the
314 	   swap token and is in the middle of a page fault. */
315 	if (mm != current->mm && has_swap_token(mm) &&
316 			rwsem_is_locked(&mm->mmap_sem))
317 		referenced++;
318 
319 	(*mapcount)--;
320 	pte_unmap_unlock(pte, ptl);
321 out:
322 	return referenced;
323 }
324 
325 static int page_referenced_anon(struct page *page)
326 {
327 	unsigned int mapcount;
328 	struct anon_vma *anon_vma;
329 	struct vm_area_struct *vma;
330 	int referenced = 0;
331 
332 	anon_vma = page_lock_anon_vma(page);
333 	if (!anon_vma)
334 		return referenced;
335 
336 	mapcount = page_mapcount(page);
337 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
338 		referenced += page_referenced_one(page, vma, &mapcount);
339 		if (!mapcount)
340 			break;
341 	}
342 
343 	page_unlock_anon_vma(anon_vma);
344 	return referenced;
345 }
346 
347 /**
348  * page_referenced_file - referenced check for object-based rmap
349  * @page: the page we're checking references on.
350  *
351  * For an object-based mapped page, find all the places it is mapped and
352  * check/clear the referenced flag.  This is done by following the page->mapping
353  * pointer, then walking the chain of vmas it holds.  It returns the number
354  * of references it found.
355  *
356  * This function is only called from page_referenced for object-based pages.
357  */
358 static int page_referenced_file(struct page *page)
359 {
360 	unsigned int mapcount;
361 	struct address_space *mapping = page->mapping;
362 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
363 	struct vm_area_struct *vma;
364 	struct prio_tree_iter iter;
365 	int referenced = 0;
366 
367 	/*
368 	 * The caller's checks on page->mapping and !PageAnon have made
369 	 * sure that this is a file page: the check for page->mapping
370 	 * excludes the case just before it gets set on an anon page.
371 	 */
372 	BUG_ON(PageAnon(page));
373 
374 	/*
375 	 * The page lock not only makes sure that page->mapping cannot
376 	 * suddenly be NULLified by truncation, it makes sure that the
377 	 * structure at mapping cannot be freed and reused yet,
378 	 * so we can safely take mapping->i_mmap_lock.
379 	 */
380 	BUG_ON(!PageLocked(page));
381 
382 	spin_lock(&mapping->i_mmap_lock);
383 
384 	/*
385 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
386 	 * is more likely to be accurate if we note it after spinning.
387 	 */
388 	mapcount = page_mapcount(page);
389 
390 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
391 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
392 				  == (VM_LOCKED|VM_MAYSHARE)) {
393 			referenced++;
394 			break;
395 		}
396 		referenced += page_referenced_one(page, vma, &mapcount);
397 		if (!mapcount)
398 			break;
399 	}
400 
401 	spin_unlock(&mapping->i_mmap_lock);
402 	return referenced;
403 }
404 
405 /**
406  * page_referenced - test if the page was referenced
407  * @page: the page to test
408  * @is_locked: caller holds lock on the page
409  *
410  * Quick test_and_clear_referenced for all mappings to a page,
411  * returns the number of ptes which referenced the page.
412  */
413 int page_referenced(struct page *page, int is_locked)
414 {
415 	int referenced = 0;
416 
417 	if (page_test_and_clear_young(page))
418 		referenced++;
419 
420 	if (TestClearPageReferenced(page))
421 		referenced++;
422 
423 	if (page_mapped(page) && page->mapping) {
424 		if (PageAnon(page))
425 			referenced += page_referenced_anon(page);
426 		else if (is_locked)
427 			referenced += page_referenced_file(page);
428 		else if (TestSetPageLocked(page))
429 			referenced++;
430 		else {
431 			if (page->mapping)
432 				referenced += page_referenced_file(page);
433 			unlock_page(page);
434 		}
435 	}
436 	return referenced;
437 }
438 
439 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
440 {
441 	struct mm_struct *mm = vma->vm_mm;
442 	unsigned long address;
443 	pte_t *pte;
444 	spinlock_t *ptl;
445 	int ret = 0;
446 
447 	address = vma_address(page, vma);
448 	if (address == -EFAULT)
449 		goto out;
450 
451 	pte = page_check_address(page, mm, address, &ptl);
452 	if (!pte)
453 		goto out;
454 
455 	if (pte_dirty(*pte) || pte_write(*pte)) {
456 		pte_t entry;
457 
458 		flush_cache_page(vma, address, pte_pfn(*pte));
459 		entry = ptep_clear_flush(vma, address, pte);
460 		entry = pte_wrprotect(entry);
461 		entry = pte_mkclean(entry);
462 		set_pte_at(mm, address, pte, entry);
463 		lazy_mmu_prot_update(entry);
464 		ret = 1;
465 	}
466 
467 	pte_unmap_unlock(pte, ptl);
468 out:
469 	return ret;
470 }
471 
472 static int page_mkclean_file(struct address_space *mapping, struct page *page)
473 {
474 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
475 	struct vm_area_struct *vma;
476 	struct prio_tree_iter iter;
477 	int ret = 0;
478 
479 	BUG_ON(PageAnon(page));
480 
481 	spin_lock(&mapping->i_mmap_lock);
482 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
483 		if (vma->vm_flags & VM_SHARED)
484 			ret += page_mkclean_one(page, vma);
485 	}
486 	spin_unlock(&mapping->i_mmap_lock);
487 	return ret;
488 }
489 
490 int page_mkclean(struct page *page)
491 {
492 	int ret = 0;
493 
494 	BUG_ON(!PageLocked(page));
495 
496 	if (page_mapped(page)) {
497 		struct address_space *mapping = page_mapping(page);
498 		if (mapping)
499 			ret = page_mkclean_file(mapping, page);
500 		if (page_test_dirty(page)) {
501 			page_clear_dirty(page);
502 			ret = 1;
503 		}
504 	}
505 
506 	return ret;
507 }
508 
509 /**
510  * page_set_anon_rmap - setup new anonymous rmap
511  * @page:	the page to add the mapping to
512  * @vma:	the vm area in which the mapping is added
513  * @address:	the user virtual address mapped
514  */
515 static void __page_set_anon_rmap(struct page *page,
516 	struct vm_area_struct *vma, unsigned long address)
517 {
518 	struct anon_vma *anon_vma = vma->anon_vma;
519 
520 	BUG_ON(!anon_vma);
521 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
522 	page->mapping = (struct address_space *) anon_vma;
523 
524 	page->index = linear_page_index(vma, address);
525 
526 	/*
527 	 * nr_mapped state can be updated without turning off
528 	 * interrupts because it is not modified via interrupt.
529 	 */
530 	__inc_zone_page_state(page, NR_ANON_PAGES);
531 }
532 
533 /**
534  * page_add_anon_rmap - add pte mapping to an anonymous page
535  * @page:	the page to add the mapping to
536  * @vma:	the vm area in which the mapping is added
537  * @address:	the user virtual address mapped
538  *
539  * The caller needs to hold the pte lock.
540  */
541 void page_add_anon_rmap(struct page *page,
542 	struct vm_area_struct *vma, unsigned long address)
543 {
544 	if (atomic_inc_and_test(&page->_mapcount))
545 		__page_set_anon_rmap(page, vma, address);
546 	/* else checking page index and mapping is racy */
547 }
548 
549 /*
550  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
551  * @page:	the page to add the mapping to
552  * @vma:	the vm area in which the mapping is added
553  * @address:	the user virtual address mapped
554  *
555  * Same as page_add_anon_rmap but must only be called on *new* pages.
556  * This means the inc-and-test can be bypassed.
557  */
558 void page_add_new_anon_rmap(struct page *page,
559 	struct vm_area_struct *vma, unsigned long address)
560 {
561 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
562 	__page_set_anon_rmap(page, vma, address);
563 }
564 
565 /**
566  * page_add_file_rmap - add pte mapping to a file page
567  * @page: the page to add the mapping to
568  *
569  * The caller needs to hold the pte lock.
570  */
571 void page_add_file_rmap(struct page *page)
572 {
573 	if (atomic_inc_and_test(&page->_mapcount))
574 		__inc_zone_page_state(page, NR_FILE_MAPPED);
575 }
576 
577 /**
578  * page_remove_rmap - take down pte mapping from a page
579  * @page: page to remove mapping from
580  *
581  * The caller needs to hold the pte lock.
582  */
583 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
584 {
585 	if (atomic_add_negative(-1, &page->_mapcount)) {
586 		if (unlikely(page_mapcount(page) < 0)) {
587 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
588 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
589 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
590 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
591 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
592 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
593 			if (vma->vm_ops)
594 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
595 			if (vma->vm_file && vma->vm_file->f_op)
596 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
597 			BUG();
598 		}
599 
600 		/*
601 		 * It would be tidy to reset the PageAnon mapping here,
602 		 * but that might overwrite a racing page_add_anon_rmap
603 		 * which increments mapcount after us but sets mapping
604 		 * before us: so leave the reset to free_hot_cold_page,
605 		 * and remember that it's only reliable while mapped.
606 		 * Leaving it set also helps swapoff to reinstate ptes
607 		 * faster for those pages still in swapcache.
608 		 */
609 		if (page_test_dirty(page)) {
610 			page_clear_dirty(page);
611 			set_page_dirty(page);
612 		}
613 		__dec_zone_page_state(page,
614 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
615 	}
616 }
617 
618 /*
619  * Subfunctions of try_to_unmap: try_to_unmap_one called
620  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
621  */
622 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
623 				int migration)
624 {
625 	struct mm_struct *mm = vma->vm_mm;
626 	unsigned long address;
627 	pte_t *pte;
628 	pte_t pteval;
629 	spinlock_t *ptl;
630 	int ret = SWAP_AGAIN;
631 
632 	address = vma_address(page, vma);
633 	if (address == -EFAULT)
634 		goto out;
635 
636 	pte = page_check_address(page, mm, address, &ptl);
637 	if (!pte)
638 		goto out;
639 
640 	/*
641 	 * If the page is mlock()d, we cannot swap it out.
642 	 * If it's recently referenced (perhaps page_referenced
643 	 * skipped over this mm) then we should reactivate it.
644 	 */
645 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
646 			(ptep_clear_flush_young(vma, address, pte)))) {
647 		ret = SWAP_FAIL;
648 		goto out_unmap;
649 	}
650 
651 	/* Nuke the page table entry. */
652 	flush_cache_page(vma, address, page_to_pfn(page));
653 	pteval = ptep_clear_flush(vma, address, pte);
654 
655 	/* Move the dirty bit to the physical page now the pte is gone. */
656 	if (pte_dirty(pteval))
657 		set_page_dirty(page);
658 
659 	/* Update high watermark before we lower rss */
660 	update_hiwater_rss(mm);
661 
662 	if (PageAnon(page)) {
663 		swp_entry_t entry = { .val = page_private(page) };
664 
665 		if (PageSwapCache(page)) {
666 			/*
667 			 * Store the swap location in the pte.
668 			 * See handle_pte_fault() ...
669 			 */
670 			swap_duplicate(entry);
671 			if (list_empty(&mm->mmlist)) {
672 				spin_lock(&mmlist_lock);
673 				if (list_empty(&mm->mmlist))
674 					list_add(&mm->mmlist, &init_mm.mmlist);
675 				spin_unlock(&mmlist_lock);
676 			}
677 			dec_mm_counter(mm, anon_rss);
678 #ifdef CONFIG_MIGRATION
679 		} else {
680 			/*
681 			 * Store the pfn of the page in a special migration
682 			 * pte. do_swap_page() will wait until the migration
683 			 * pte is removed and then restart fault handling.
684 			 */
685 			BUG_ON(!migration);
686 			entry = make_migration_entry(page, pte_write(pteval));
687 #endif
688 		}
689 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
690 		BUG_ON(pte_file(*pte));
691 	} else
692 #ifdef CONFIG_MIGRATION
693 	if (migration) {
694 		/* Establish migration entry for a file page */
695 		swp_entry_t entry;
696 		entry = make_migration_entry(page, pte_write(pteval));
697 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
698 	} else
699 #endif
700 		dec_mm_counter(mm, file_rss);
701 
702 
703 	page_remove_rmap(page, vma);
704 	page_cache_release(page);
705 
706 out_unmap:
707 	pte_unmap_unlock(pte, ptl);
708 out:
709 	return ret;
710 }
711 
712 /*
713  * objrmap doesn't work for nonlinear VMAs because the assumption that
714  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
715  * Consequently, given a particular page and its ->index, we cannot locate the
716  * ptes which are mapping that page without an exhaustive linear search.
717  *
718  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
719  * maps the file to which the target page belongs.  The ->vm_private_data field
720  * holds the current cursor into that scan.  Successive searches will circulate
721  * around the vma's virtual address space.
722  *
723  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
724  * more scanning pressure is placed against them as well.   Eventually pages
725  * will become fully unmapped and are eligible for eviction.
726  *
727  * For very sparsely populated VMAs this is a little inefficient - chances are
728  * there there won't be many ptes located within the scan cluster.  In this case
729  * maybe we could scan further - to the end of the pte page, perhaps.
730  */
731 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
732 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
733 
734 static void try_to_unmap_cluster(unsigned long cursor,
735 	unsigned int *mapcount, struct vm_area_struct *vma)
736 {
737 	struct mm_struct *mm = vma->vm_mm;
738 	pgd_t *pgd;
739 	pud_t *pud;
740 	pmd_t *pmd;
741 	pte_t *pte;
742 	pte_t pteval;
743 	spinlock_t *ptl;
744 	struct page *page;
745 	unsigned long address;
746 	unsigned long end;
747 
748 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
749 	end = address + CLUSTER_SIZE;
750 	if (address < vma->vm_start)
751 		address = vma->vm_start;
752 	if (end > vma->vm_end)
753 		end = vma->vm_end;
754 
755 	pgd = pgd_offset(mm, address);
756 	if (!pgd_present(*pgd))
757 		return;
758 
759 	pud = pud_offset(pgd, address);
760 	if (!pud_present(*pud))
761 		return;
762 
763 	pmd = pmd_offset(pud, address);
764 	if (!pmd_present(*pmd))
765 		return;
766 
767 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
768 
769 	/* Update high watermark before we lower rss */
770 	update_hiwater_rss(mm);
771 
772 	for (; address < end; pte++, address += PAGE_SIZE) {
773 		if (!pte_present(*pte))
774 			continue;
775 		page = vm_normal_page(vma, address, *pte);
776 		BUG_ON(!page || PageAnon(page));
777 
778 		if (ptep_clear_flush_young(vma, address, pte))
779 			continue;
780 
781 		/* Nuke the page table entry. */
782 		flush_cache_page(vma, address, pte_pfn(*pte));
783 		pteval = ptep_clear_flush(vma, address, pte);
784 
785 		/* If nonlinear, store the file page offset in the pte. */
786 		if (page->index != linear_page_index(vma, address))
787 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
788 
789 		/* Move the dirty bit to the physical page now the pte is gone. */
790 		if (pte_dirty(pteval))
791 			set_page_dirty(page);
792 
793 		page_remove_rmap(page, vma);
794 		page_cache_release(page);
795 		dec_mm_counter(mm, file_rss);
796 		(*mapcount)--;
797 	}
798 	pte_unmap_unlock(pte - 1, ptl);
799 }
800 
801 static int try_to_unmap_anon(struct page *page, int migration)
802 {
803 	struct anon_vma *anon_vma;
804 	struct vm_area_struct *vma;
805 	int ret = SWAP_AGAIN;
806 
807 	anon_vma = page_lock_anon_vma(page);
808 	if (!anon_vma)
809 		return ret;
810 
811 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
812 		ret = try_to_unmap_one(page, vma, migration);
813 		if (ret == SWAP_FAIL || !page_mapped(page))
814 			break;
815 	}
816 
817 	page_unlock_anon_vma(anon_vma);
818 	return ret;
819 }
820 
821 /**
822  * try_to_unmap_file - unmap file page using the object-based rmap method
823  * @page: the page to unmap
824  *
825  * Find all the mappings of a page using the mapping pointer and the vma chains
826  * contained in the address_space struct it points to.
827  *
828  * This function is only called from try_to_unmap for object-based pages.
829  */
830 static int try_to_unmap_file(struct page *page, int migration)
831 {
832 	struct address_space *mapping = page->mapping;
833 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
834 	struct vm_area_struct *vma;
835 	struct prio_tree_iter iter;
836 	int ret = SWAP_AGAIN;
837 	unsigned long cursor;
838 	unsigned long max_nl_cursor = 0;
839 	unsigned long max_nl_size = 0;
840 	unsigned int mapcount;
841 
842 	spin_lock(&mapping->i_mmap_lock);
843 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
844 		ret = try_to_unmap_one(page, vma, migration);
845 		if (ret == SWAP_FAIL || !page_mapped(page))
846 			goto out;
847 	}
848 
849 	if (list_empty(&mapping->i_mmap_nonlinear))
850 		goto out;
851 
852 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
853 						shared.vm_set.list) {
854 		if ((vma->vm_flags & VM_LOCKED) && !migration)
855 			continue;
856 		cursor = (unsigned long) vma->vm_private_data;
857 		if (cursor > max_nl_cursor)
858 			max_nl_cursor = cursor;
859 		cursor = vma->vm_end - vma->vm_start;
860 		if (cursor > max_nl_size)
861 			max_nl_size = cursor;
862 	}
863 
864 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
865 		ret = SWAP_FAIL;
866 		goto out;
867 	}
868 
869 	/*
870 	 * We don't try to search for this page in the nonlinear vmas,
871 	 * and page_referenced wouldn't have found it anyway.  Instead
872 	 * just walk the nonlinear vmas trying to age and unmap some.
873 	 * The mapcount of the page we came in with is irrelevant,
874 	 * but even so use it as a guide to how hard we should try?
875 	 */
876 	mapcount = page_mapcount(page);
877 	if (!mapcount)
878 		goto out;
879 	cond_resched_lock(&mapping->i_mmap_lock);
880 
881 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
882 	if (max_nl_cursor == 0)
883 		max_nl_cursor = CLUSTER_SIZE;
884 
885 	do {
886 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
887 						shared.vm_set.list) {
888 			if ((vma->vm_flags & VM_LOCKED) && !migration)
889 				continue;
890 			cursor = (unsigned long) vma->vm_private_data;
891 			while ( cursor < max_nl_cursor &&
892 				cursor < vma->vm_end - vma->vm_start) {
893 				try_to_unmap_cluster(cursor, &mapcount, vma);
894 				cursor += CLUSTER_SIZE;
895 				vma->vm_private_data = (void *) cursor;
896 				if ((int)mapcount <= 0)
897 					goto out;
898 			}
899 			vma->vm_private_data = (void *) max_nl_cursor;
900 		}
901 		cond_resched_lock(&mapping->i_mmap_lock);
902 		max_nl_cursor += CLUSTER_SIZE;
903 	} while (max_nl_cursor <= max_nl_size);
904 
905 	/*
906 	 * Don't loop forever (perhaps all the remaining pages are
907 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
908 	 * vmas, now forgetting on which ones it had fallen behind.
909 	 */
910 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
911 		vma->vm_private_data = NULL;
912 out:
913 	spin_unlock(&mapping->i_mmap_lock);
914 	return ret;
915 }
916 
917 /**
918  * try_to_unmap - try to remove all page table mappings to a page
919  * @page: the page to get unmapped
920  *
921  * Tries to remove all the page table entries which are mapping this
922  * page, used in the pageout path.  Caller must hold the page lock.
923  * Return values are:
924  *
925  * SWAP_SUCCESS	- we succeeded in removing all mappings
926  * SWAP_AGAIN	- we missed a mapping, try again later
927  * SWAP_FAIL	- the page is unswappable
928  */
929 int try_to_unmap(struct page *page, int migration)
930 {
931 	int ret;
932 
933 	BUG_ON(!PageLocked(page));
934 
935 	if (PageAnon(page))
936 		ret = try_to_unmap_anon(page, migration);
937 	else
938 		ret = try_to_unmap_file(page, migration);
939 
940 	if (!page_mapped(page))
941 		ret = SWAP_SUCCESS;
942 	return ret;
943 }
944 
945