xref: /linux/mm/rmap.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 
67 #include <asm/tlbflush.h>
68 
69 #include <trace/events/tlb.h>
70 
71 #include "internal.h"
72 
73 static struct kmem_cache *anon_vma_cachep;
74 static struct kmem_cache *anon_vma_chain_cachep;
75 
76 static inline struct anon_vma *anon_vma_alloc(void)
77 {
78 	struct anon_vma *anon_vma;
79 
80 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
81 	if (anon_vma) {
82 		atomic_set(&anon_vma->refcount, 1);
83 		anon_vma->degree = 1;	/* Reference for first vma */
84 		anon_vma->parent = anon_vma;
85 		/*
86 		 * Initialise the anon_vma root to point to itself. If called
87 		 * from fork, the root will be reset to the parents anon_vma.
88 		 */
89 		anon_vma->root = anon_vma;
90 	}
91 
92 	return anon_vma;
93 }
94 
95 static inline void anon_vma_free(struct anon_vma *anon_vma)
96 {
97 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
98 
99 	/*
100 	 * Synchronize against page_lock_anon_vma_read() such that
101 	 * we can safely hold the lock without the anon_vma getting
102 	 * freed.
103 	 *
104 	 * Relies on the full mb implied by the atomic_dec_and_test() from
105 	 * put_anon_vma() against the acquire barrier implied by
106 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
107 	 *
108 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
109 	 *   down_read_trylock()		  atomic_dec_and_test()
110 	 *   LOCK				  MB
111 	 *   atomic_read()			  rwsem_is_locked()
112 	 *
113 	 * LOCK should suffice since the actual taking of the lock must
114 	 * happen _before_ what follows.
115 	 */
116 	might_sleep();
117 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
118 		anon_vma_lock_write(anon_vma);
119 		anon_vma_unlock_write(anon_vma);
120 	}
121 
122 	kmem_cache_free(anon_vma_cachep, anon_vma);
123 }
124 
125 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
126 {
127 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
128 }
129 
130 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
131 {
132 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
133 }
134 
135 static void anon_vma_chain_link(struct vm_area_struct *vma,
136 				struct anon_vma_chain *avc,
137 				struct anon_vma *anon_vma)
138 {
139 	avc->vma = vma;
140 	avc->anon_vma = anon_vma;
141 	list_add(&avc->same_vma, &vma->anon_vma_chain);
142 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
143 }
144 
145 /**
146  * __anon_vma_prepare - attach an anon_vma to a memory region
147  * @vma: the memory region in question
148  *
149  * This makes sure the memory mapping described by 'vma' has
150  * an 'anon_vma' attached to it, so that we can associate the
151  * anonymous pages mapped into it with that anon_vma.
152  *
153  * The common case will be that we already have one, which
154  * is handled inline by anon_vma_prepare(). But if
155  * not we either need to find an adjacent mapping that we
156  * can re-use the anon_vma from (very common when the only
157  * reason for splitting a vma has been mprotect()), or we
158  * allocate a new one.
159  *
160  * Anon-vma allocations are very subtle, because we may have
161  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
162  * and that may actually touch the spinlock even in the newly
163  * allocated vma (it depends on RCU to make sure that the
164  * anon_vma isn't actually destroyed).
165  *
166  * As a result, we need to do proper anon_vma locking even
167  * for the new allocation. At the same time, we do not want
168  * to do any locking for the common case of already having
169  * an anon_vma.
170  *
171  * This must be called with the mmap_sem held for reading.
172  */
173 int __anon_vma_prepare(struct vm_area_struct *vma)
174 {
175 	struct mm_struct *mm = vma->vm_mm;
176 	struct anon_vma *anon_vma, *allocated;
177 	struct anon_vma_chain *avc;
178 
179 	might_sleep();
180 
181 	avc = anon_vma_chain_alloc(GFP_KERNEL);
182 	if (!avc)
183 		goto out_enomem;
184 
185 	anon_vma = find_mergeable_anon_vma(vma);
186 	allocated = NULL;
187 	if (!anon_vma) {
188 		anon_vma = anon_vma_alloc();
189 		if (unlikely(!anon_vma))
190 			goto out_enomem_free_avc;
191 		allocated = anon_vma;
192 	}
193 
194 	anon_vma_lock_write(anon_vma);
195 	/* page_table_lock to protect against threads */
196 	spin_lock(&mm->page_table_lock);
197 	if (likely(!vma->anon_vma)) {
198 		vma->anon_vma = anon_vma;
199 		anon_vma_chain_link(vma, avc, anon_vma);
200 		/* vma reference or self-parent link for new root */
201 		anon_vma->degree++;
202 		allocated = NULL;
203 		avc = NULL;
204 	}
205 	spin_unlock(&mm->page_table_lock);
206 	anon_vma_unlock_write(anon_vma);
207 
208 	if (unlikely(allocated))
209 		put_anon_vma(allocated);
210 	if (unlikely(avc))
211 		anon_vma_chain_free(avc);
212 
213 	return 0;
214 
215  out_enomem_free_avc:
216 	anon_vma_chain_free(avc);
217  out_enomem:
218 	return -ENOMEM;
219 }
220 
221 /*
222  * This is a useful helper function for locking the anon_vma root as
223  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224  * have the same vma.
225  *
226  * Such anon_vma's should have the same root, so you'd expect to see
227  * just a single mutex_lock for the whole traversal.
228  */
229 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
230 {
231 	struct anon_vma *new_root = anon_vma->root;
232 	if (new_root != root) {
233 		if (WARN_ON_ONCE(root))
234 			up_write(&root->rwsem);
235 		root = new_root;
236 		down_write(&root->rwsem);
237 	}
238 	return root;
239 }
240 
241 static inline void unlock_anon_vma_root(struct anon_vma *root)
242 {
243 	if (root)
244 		up_write(&root->rwsem);
245 }
246 
247 /*
248  * Attach the anon_vmas from src to dst.
249  * Returns 0 on success, -ENOMEM on failure.
250  *
251  * If dst->anon_vma is NULL this function tries to find and reuse existing
252  * anon_vma which has no vmas and only one child anon_vma. This prevents
253  * degradation of anon_vma hierarchy to endless linear chain in case of
254  * constantly forking task. On the other hand, an anon_vma with more than one
255  * child isn't reused even if there was no alive vma, thus rmap walker has a
256  * good chance of avoiding scanning the whole hierarchy when it searches where
257  * page is mapped.
258  */
259 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
260 {
261 	struct anon_vma_chain *avc, *pavc;
262 	struct anon_vma *root = NULL;
263 
264 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
265 		struct anon_vma *anon_vma;
266 
267 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
268 		if (unlikely(!avc)) {
269 			unlock_anon_vma_root(root);
270 			root = NULL;
271 			avc = anon_vma_chain_alloc(GFP_KERNEL);
272 			if (!avc)
273 				goto enomem_failure;
274 		}
275 		anon_vma = pavc->anon_vma;
276 		root = lock_anon_vma_root(root, anon_vma);
277 		anon_vma_chain_link(dst, avc, anon_vma);
278 
279 		/*
280 		 * Reuse existing anon_vma if its degree lower than two,
281 		 * that means it has no vma and only one anon_vma child.
282 		 *
283 		 * Do not chose parent anon_vma, otherwise first child
284 		 * will always reuse it. Root anon_vma is never reused:
285 		 * it has self-parent reference and at least one child.
286 		 */
287 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
288 				anon_vma->degree < 2)
289 			dst->anon_vma = anon_vma;
290 	}
291 	if (dst->anon_vma)
292 		dst->anon_vma->degree++;
293 	unlock_anon_vma_root(root);
294 	return 0;
295 
296  enomem_failure:
297 	/*
298 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
299 	 * decremented in unlink_anon_vmas().
300 	 * We can safely do this because callers of anon_vma_clone() don't care
301 	 * about dst->anon_vma if anon_vma_clone() failed.
302 	 */
303 	dst->anon_vma = NULL;
304 	unlink_anon_vmas(dst);
305 	return -ENOMEM;
306 }
307 
308 /*
309  * Attach vma to its own anon_vma, as well as to the anon_vmas that
310  * the corresponding VMA in the parent process is attached to.
311  * Returns 0 on success, non-zero on failure.
312  */
313 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
314 {
315 	struct anon_vma_chain *avc;
316 	struct anon_vma *anon_vma;
317 	int error;
318 
319 	/* Don't bother if the parent process has no anon_vma here. */
320 	if (!pvma->anon_vma)
321 		return 0;
322 
323 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
324 	vma->anon_vma = NULL;
325 
326 	/*
327 	 * First, attach the new VMA to the parent VMA's anon_vmas,
328 	 * so rmap can find non-COWed pages in child processes.
329 	 */
330 	error = anon_vma_clone(vma, pvma);
331 	if (error)
332 		return error;
333 
334 	/* An existing anon_vma has been reused, all done then. */
335 	if (vma->anon_vma)
336 		return 0;
337 
338 	/* Then add our own anon_vma. */
339 	anon_vma = anon_vma_alloc();
340 	if (!anon_vma)
341 		goto out_error;
342 	avc = anon_vma_chain_alloc(GFP_KERNEL);
343 	if (!avc)
344 		goto out_error_free_anon_vma;
345 
346 	/*
347 	 * The root anon_vma's spinlock is the lock actually used when we
348 	 * lock any of the anon_vmas in this anon_vma tree.
349 	 */
350 	anon_vma->root = pvma->anon_vma->root;
351 	anon_vma->parent = pvma->anon_vma;
352 	/*
353 	 * With refcounts, an anon_vma can stay around longer than the
354 	 * process it belongs to. The root anon_vma needs to be pinned until
355 	 * this anon_vma is freed, because the lock lives in the root.
356 	 */
357 	get_anon_vma(anon_vma->root);
358 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
359 	vma->anon_vma = anon_vma;
360 	anon_vma_lock_write(anon_vma);
361 	anon_vma_chain_link(vma, avc, anon_vma);
362 	anon_vma->parent->degree++;
363 	anon_vma_unlock_write(anon_vma);
364 
365 	return 0;
366 
367  out_error_free_anon_vma:
368 	put_anon_vma(anon_vma);
369  out_error:
370 	unlink_anon_vmas(vma);
371 	return -ENOMEM;
372 }
373 
374 void unlink_anon_vmas(struct vm_area_struct *vma)
375 {
376 	struct anon_vma_chain *avc, *next;
377 	struct anon_vma *root = NULL;
378 
379 	/*
380 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
381 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
382 	 */
383 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
384 		struct anon_vma *anon_vma = avc->anon_vma;
385 
386 		root = lock_anon_vma_root(root, anon_vma);
387 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
388 
389 		/*
390 		 * Leave empty anon_vmas on the list - we'll need
391 		 * to free them outside the lock.
392 		 */
393 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
394 			anon_vma->parent->degree--;
395 			continue;
396 		}
397 
398 		list_del(&avc->same_vma);
399 		anon_vma_chain_free(avc);
400 	}
401 	if (vma->anon_vma)
402 		vma->anon_vma->degree--;
403 	unlock_anon_vma_root(root);
404 
405 	/*
406 	 * Iterate the list once more, it now only contains empty and unlinked
407 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
408 	 * needing to write-acquire the anon_vma->root->rwsem.
409 	 */
410 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
411 		struct anon_vma *anon_vma = avc->anon_vma;
412 
413 		VM_WARN_ON(anon_vma->degree);
414 		put_anon_vma(anon_vma);
415 
416 		list_del(&avc->same_vma);
417 		anon_vma_chain_free(avc);
418 	}
419 }
420 
421 static void anon_vma_ctor(void *data)
422 {
423 	struct anon_vma *anon_vma = data;
424 
425 	init_rwsem(&anon_vma->rwsem);
426 	atomic_set(&anon_vma->refcount, 0);
427 	anon_vma->rb_root = RB_ROOT;
428 }
429 
430 void __init anon_vma_init(void)
431 {
432 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
433 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
434 			anon_vma_ctor);
435 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
436 			SLAB_PANIC|SLAB_ACCOUNT);
437 }
438 
439 /*
440  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
441  *
442  * Since there is no serialization what so ever against page_remove_rmap()
443  * the best this function can do is return a locked anon_vma that might
444  * have been relevant to this page.
445  *
446  * The page might have been remapped to a different anon_vma or the anon_vma
447  * returned may already be freed (and even reused).
448  *
449  * In case it was remapped to a different anon_vma, the new anon_vma will be a
450  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
451  * ensure that any anon_vma obtained from the page will still be valid for as
452  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
453  *
454  * All users of this function must be very careful when walking the anon_vma
455  * chain and verify that the page in question is indeed mapped in it
456  * [ something equivalent to page_mapped_in_vma() ].
457  *
458  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
459  * that the anon_vma pointer from page->mapping is valid if there is a
460  * mapcount, we can dereference the anon_vma after observing those.
461  */
462 struct anon_vma *page_get_anon_vma(struct page *page)
463 {
464 	struct anon_vma *anon_vma = NULL;
465 	unsigned long anon_mapping;
466 
467 	rcu_read_lock();
468 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
469 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
470 		goto out;
471 	if (!page_mapped(page))
472 		goto out;
473 
474 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
475 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
476 		anon_vma = NULL;
477 		goto out;
478 	}
479 
480 	/*
481 	 * If this page is still mapped, then its anon_vma cannot have been
482 	 * freed.  But if it has been unmapped, we have no security against the
483 	 * anon_vma structure being freed and reused (for another anon_vma:
484 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
485 	 * above cannot corrupt).
486 	 */
487 	if (!page_mapped(page)) {
488 		rcu_read_unlock();
489 		put_anon_vma(anon_vma);
490 		return NULL;
491 	}
492 out:
493 	rcu_read_unlock();
494 
495 	return anon_vma;
496 }
497 
498 /*
499  * Similar to page_get_anon_vma() except it locks the anon_vma.
500  *
501  * Its a little more complex as it tries to keep the fast path to a single
502  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
503  * reference like with page_get_anon_vma() and then block on the mutex.
504  */
505 struct anon_vma *page_lock_anon_vma_read(struct page *page)
506 {
507 	struct anon_vma *anon_vma = NULL;
508 	struct anon_vma *root_anon_vma;
509 	unsigned long anon_mapping;
510 
511 	rcu_read_lock();
512 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
513 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
514 		goto out;
515 	if (!page_mapped(page))
516 		goto out;
517 
518 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
519 	root_anon_vma = READ_ONCE(anon_vma->root);
520 	if (down_read_trylock(&root_anon_vma->rwsem)) {
521 		/*
522 		 * If the page is still mapped, then this anon_vma is still
523 		 * its anon_vma, and holding the mutex ensures that it will
524 		 * not go away, see anon_vma_free().
525 		 */
526 		if (!page_mapped(page)) {
527 			up_read(&root_anon_vma->rwsem);
528 			anon_vma = NULL;
529 		}
530 		goto out;
531 	}
532 
533 	/* trylock failed, we got to sleep */
534 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
535 		anon_vma = NULL;
536 		goto out;
537 	}
538 
539 	if (!page_mapped(page)) {
540 		rcu_read_unlock();
541 		put_anon_vma(anon_vma);
542 		return NULL;
543 	}
544 
545 	/* we pinned the anon_vma, its safe to sleep */
546 	rcu_read_unlock();
547 	anon_vma_lock_read(anon_vma);
548 
549 	if (atomic_dec_and_test(&anon_vma->refcount)) {
550 		/*
551 		 * Oops, we held the last refcount, release the lock
552 		 * and bail -- can't simply use put_anon_vma() because
553 		 * we'll deadlock on the anon_vma_lock_write() recursion.
554 		 */
555 		anon_vma_unlock_read(anon_vma);
556 		__put_anon_vma(anon_vma);
557 		anon_vma = NULL;
558 	}
559 
560 	return anon_vma;
561 
562 out:
563 	rcu_read_unlock();
564 	return anon_vma;
565 }
566 
567 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
568 {
569 	anon_vma_unlock_read(anon_vma);
570 }
571 
572 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
573 /*
574  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
575  * important if a PTE was dirty when it was unmapped that it's flushed
576  * before any IO is initiated on the page to prevent lost writes. Similarly,
577  * it must be flushed before freeing to prevent data leakage.
578  */
579 void try_to_unmap_flush(void)
580 {
581 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
582 	int cpu;
583 
584 	if (!tlb_ubc->flush_required)
585 		return;
586 
587 	cpu = get_cpu();
588 
589 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
590 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
591 		local_flush_tlb();
592 		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
593 	}
594 
595 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
596 		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
597 	cpumask_clear(&tlb_ubc->cpumask);
598 	tlb_ubc->flush_required = false;
599 	tlb_ubc->writable = false;
600 	put_cpu();
601 }
602 
603 /* Flush iff there are potentially writable TLB entries that can race with IO */
604 void try_to_unmap_flush_dirty(void)
605 {
606 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
607 
608 	if (tlb_ubc->writable)
609 		try_to_unmap_flush();
610 }
611 
612 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
613 {
614 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615 
616 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 	tlb_ubc->flush_required = true;
618 
619 	/*
620 	 * If the PTE was dirty then it's best to assume it's writable. The
621 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
622 	 * before the page is queued for IO.
623 	 */
624 	if (writable)
625 		tlb_ubc->writable = true;
626 }
627 
628 /*
629  * Returns true if the TLB flush should be deferred to the end of a batch of
630  * unmap operations to reduce IPIs.
631  */
632 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
633 {
634 	bool should_defer = false;
635 
636 	if (!(flags & TTU_BATCH_FLUSH))
637 		return false;
638 
639 	/* If remote CPUs need to be flushed then defer batch the flush */
640 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
641 		should_defer = true;
642 	put_cpu();
643 
644 	return should_defer;
645 }
646 #else
647 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
648 {
649 }
650 
651 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652 {
653 	return false;
654 }
655 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
656 
657 /*
658  * At what user virtual address is page expected in vma?
659  * Caller should check the page is actually part of the vma.
660  */
661 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
662 {
663 	unsigned long address;
664 	if (PageAnon(page)) {
665 		struct anon_vma *page__anon_vma = page_anon_vma(page);
666 		/*
667 		 * Note: swapoff's unuse_vma() is more efficient with this
668 		 * check, and needs it to match anon_vma when KSM is active.
669 		 */
670 		if (!vma->anon_vma || !page__anon_vma ||
671 		    vma->anon_vma->root != page__anon_vma->root)
672 			return -EFAULT;
673 	} else if (page->mapping) {
674 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
675 			return -EFAULT;
676 	} else
677 		return -EFAULT;
678 	address = __vma_address(page, vma);
679 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
680 		return -EFAULT;
681 	return address;
682 }
683 
684 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
685 {
686 	pgd_t *pgd;
687 	p4d_t *p4d;
688 	pud_t *pud;
689 	pmd_t *pmd = NULL;
690 	pmd_t pmde;
691 
692 	pgd = pgd_offset(mm, address);
693 	if (!pgd_present(*pgd))
694 		goto out;
695 
696 	p4d = p4d_offset(pgd, address);
697 	if (!p4d_present(*p4d))
698 		goto out;
699 
700 	pud = pud_offset(p4d, address);
701 	if (!pud_present(*pud))
702 		goto out;
703 
704 	pmd = pmd_offset(pud, address);
705 	/*
706 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
707 	 * without holding anon_vma lock for write.  So when looking for a
708 	 * genuine pmde (in which to find pte), test present and !THP together.
709 	 */
710 	pmde = *pmd;
711 	barrier();
712 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
713 		pmd = NULL;
714 out:
715 	return pmd;
716 }
717 
718 struct page_referenced_arg {
719 	int mapcount;
720 	int referenced;
721 	unsigned long vm_flags;
722 	struct mem_cgroup *memcg;
723 };
724 /*
725  * arg: page_referenced_arg will be passed
726  */
727 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
728 			unsigned long address, void *arg)
729 {
730 	struct page_referenced_arg *pra = arg;
731 	struct page_vma_mapped_walk pvmw = {
732 		.page = page,
733 		.vma = vma,
734 		.address = address,
735 	};
736 	int referenced = 0;
737 
738 	while (page_vma_mapped_walk(&pvmw)) {
739 		address = pvmw.address;
740 
741 		if (vma->vm_flags & VM_LOCKED) {
742 			page_vma_mapped_walk_done(&pvmw);
743 			pra->vm_flags |= VM_LOCKED;
744 			return false; /* To break the loop */
745 		}
746 
747 		if (pvmw.pte) {
748 			if (ptep_clear_flush_young_notify(vma, address,
749 						pvmw.pte)) {
750 				/*
751 				 * Don't treat a reference through
752 				 * a sequentially read mapping as such.
753 				 * If the page has been used in another mapping,
754 				 * we will catch it; if this other mapping is
755 				 * already gone, the unmap path will have set
756 				 * PG_referenced or activated the page.
757 				 */
758 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
759 					referenced++;
760 			}
761 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
762 			if (pmdp_clear_flush_young_notify(vma, address,
763 						pvmw.pmd))
764 				referenced++;
765 		} else {
766 			/* unexpected pmd-mapped page? */
767 			WARN_ON_ONCE(1);
768 		}
769 
770 		pra->mapcount--;
771 	}
772 
773 	if (referenced)
774 		clear_page_idle(page);
775 	if (test_and_clear_page_young(page))
776 		referenced++;
777 
778 	if (referenced) {
779 		pra->referenced++;
780 		pra->vm_flags |= vma->vm_flags;
781 	}
782 
783 	if (!pra->mapcount)
784 		return false; /* To break the loop */
785 
786 	return true;
787 }
788 
789 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
790 {
791 	struct page_referenced_arg *pra = arg;
792 	struct mem_cgroup *memcg = pra->memcg;
793 
794 	if (!mm_match_cgroup(vma->vm_mm, memcg))
795 		return true;
796 
797 	return false;
798 }
799 
800 /**
801  * page_referenced - test if the page was referenced
802  * @page: the page to test
803  * @is_locked: caller holds lock on the page
804  * @memcg: target memory cgroup
805  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
806  *
807  * Quick test_and_clear_referenced for all mappings to a page,
808  * returns the number of ptes which referenced the page.
809  */
810 int page_referenced(struct page *page,
811 		    int is_locked,
812 		    struct mem_cgroup *memcg,
813 		    unsigned long *vm_flags)
814 {
815 	int we_locked = 0;
816 	struct page_referenced_arg pra = {
817 		.mapcount = total_mapcount(page),
818 		.memcg = memcg,
819 	};
820 	struct rmap_walk_control rwc = {
821 		.rmap_one = page_referenced_one,
822 		.arg = (void *)&pra,
823 		.anon_lock = page_lock_anon_vma_read,
824 	};
825 
826 	*vm_flags = 0;
827 	if (!page_mapped(page))
828 		return 0;
829 
830 	if (!page_rmapping(page))
831 		return 0;
832 
833 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
834 		we_locked = trylock_page(page);
835 		if (!we_locked)
836 			return 1;
837 	}
838 
839 	/*
840 	 * If we are reclaiming on behalf of a cgroup, skip
841 	 * counting on behalf of references from different
842 	 * cgroups
843 	 */
844 	if (memcg) {
845 		rwc.invalid_vma = invalid_page_referenced_vma;
846 	}
847 
848 	rmap_walk(page, &rwc);
849 	*vm_flags = pra.vm_flags;
850 
851 	if (we_locked)
852 		unlock_page(page);
853 
854 	return pra.referenced;
855 }
856 
857 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
858 			    unsigned long address, void *arg)
859 {
860 	struct page_vma_mapped_walk pvmw = {
861 		.page = page,
862 		.vma = vma,
863 		.address = address,
864 		.flags = PVMW_SYNC,
865 	};
866 	int *cleaned = arg;
867 
868 	while (page_vma_mapped_walk(&pvmw)) {
869 		int ret = 0;
870 		address = pvmw.address;
871 		if (pvmw.pte) {
872 			pte_t entry;
873 			pte_t *pte = pvmw.pte;
874 
875 			if (!pte_dirty(*pte) && !pte_write(*pte))
876 				continue;
877 
878 			flush_cache_page(vma, address, pte_pfn(*pte));
879 			entry = ptep_clear_flush(vma, address, pte);
880 			entry = pte_wrprotect(entry);
881 			entry = pte_mkclean(entry);
882 			set_pte_at(vma->vm_mm, address, pte, entry);
883 			ret = 1;
884 		} else {
885 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
886 			pmd_t *pmd = pvmw.pmd;
887 			pmd_t entry;
888 
889 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
890 				continue;
891 
892 			flush_cache_page(vma, address, page_to_pfn(page));
893 			entry = pmdp_huge_clear_flush(vma, address, pmd);
894 			entry = pmd_wrprotect(entry);
895 			entry = pmd_mkclean(entry);
896 			set_pmd_at(vma->vm_mm, address, pmd, entry);
897 			ret = 1;
898 #else
899 			/* unexpected pmd-mapped page? */
900 			WARN_ON_ONCE(1);
901 #endif
902 		}
903 
904 		if (ret) {
905 			mmu_notifier_invalidate_page(vma->vm_mm, address);
906 			(*cleaned)++;
907 		}
908 	}
909 
910 	return true;
911 }
912 
913 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
914 {
915 	if (vma->vm_flags & VM_SHARED)
916 		return false;
917 
918 	return true;
919 }
920 
921 int page_mkclean(struct page *page)
922 {
923 	int cleaned = 0;
924 	struct address_space *mapping;
925 	struct rmap_walk_control rwc = {
926 		.arg = (void *)&cleaned,
927 		.rmap_one = page_mkclean_one,
928 		.invalid_vma = invalid_mkclean_vma,
929 	};
930 
931 	BUG_ON(!PageLocked(page));
932 
933 	if (!page_mapped(page))
934 		return 0;
935 
936 	mapping = page_mapping(page);
937 	if (!mapping)
938 		return 0;
939 
940 	rmap_walk(page, &rwc);
941 
942 	return cleaned;
943 }
944 EXPORT_SYMBOL_GPL(page_mkclean);
945 
946 /**
947  * page_move_anon_rmap - move a page to our anon_vma
948  * @page:	the page to move to our anon_vma
949  * @vma:	the vma the page belongs to
950  *
951  * When a page belongs exclusively to one process after a COW event,
952  * that page can be moved into the anon_vma that belongs to just that
953  * process, so the rmap code will not search the parent or sibling
954  * processes.
955  */
956 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
957 {
958 	struct anon_vma *anon_vma = vma->anon_vma;
959 
960 	page = compound_head(page);
961 
962 	VM_BUG_ON_PAGE(!PageLocked(page), page);
963 	VM_BUG_ON_VMA(!anon_vma, vma);
964 
965 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
966 	/*
967 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
968 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
969 	 * PageAnon()) will not see one without the other.
970 	 */
971 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
972 }
973 
974 /**
975  * __page_set_anon_rmap - set up new anonymous rmap
976  * @page:	Page to add to rmap
977  * @vma:	VM area to add page to.
978  * @address:	User virtual address of the mapping
979  * @exclusive:	the page is exclusively owned by the current process
980  */
981 static void __page_set_anon_rmap(struct page *page,
982 	struct vm_area_struct *vma, unsigned long address, int exclusive)
983 {
984 	struct anon_vma *anon_vma = vma->anon_vma;
985 
986 	BUG_ON(!anon_vma);
987 
988 	if (PageAnon(page))
989 		return;
990 
991 	/*
992 	 * If the page isn't exclusively mapped into this vma,
993 	 * we must use the _oldest_ possible anon_vma for the
994 	 * page mapping!
995 	 */
996 	if (!exclusive)
997 		anon_vma = anon_vma->root;
998 
999 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1000 	page->mapping = (struct address_space *) anon_vma;
1001 	page->index = linear_page_index(vma, address);
1002 }
1003 
1004 /**
1005  * __page_check_anon_rmap - sanity check anonymous rmap addition
1006  * @page:	the page to add the mapping to
1007  * @vma:	the vm area in which the mapping is added
1008  * @address:	the user virtual address mapped
1009  */
1010 static void __page_check_anon_rmap(struct page *page,
1011 	struct vm_area_struct *vma, unsigned long address)
1012 {
1013 #ifdef CONFIG_DEBUG_VM
1014 	/*
1015 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1016 	 * be set up correctly at this point.
1017 	 *
1018 	 * We have exclusion against page_add_anon_rmap because the caller
1019 	 * always holds the page locked, except if called from page_dup_rmap,
1020 	 * in which case the page is already known to be setup.
1021 	 *
1022 	 * We have exclusion against page_add_new_anon_rmap because those pages
1023 	 * are initially only visible via the pagetables, and the pte is locked
1024 	 * over the call to page_add_new_anon_rmap.
1025 	 */
1026 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1027 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1028 #endif
1029 }
1030 
1031 /**
1032  * page_add_anon_rmap - add pte mapping to an anonymous page
1033  * @page:	the page to add the mapping to
1034  * @vma:	the vm area in which the mapping is added
1035  * @address:	the user virtual address mapped
1036  * @compound:	charge the page as compound or small page
1037  *
1038  * The caller needs to hold the pte lock, and the page must be locked in
1039  * the anon_vma case: to serialize mapping,index checking after setting,
1040  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1041  * (but PageKsm is never downgraded to PageAnon).
1042  */
1043 void page_add_anon_rmap(struct page *page,
1044 	struct vm_area_struct *vma, unsigned long address, bool compound)
1045 {
1046 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1047 }
1048 
1049 /*
1050  * Special version of the above for do_swap_page, which often runs
1051  * into pages that are exclusively owned by the current process.
1052  * Everybody else should continue to use page_add_anon_rmap above.
1053  */
1054 void do_page_add_anon_rmap(struct page *page,
1055 	struct vm_area_struct *vma, unsigned long address, int flags)
1056 {
1057 	bool compound = flags & RMAP_COMPOUND;
1058 	bool first;
1059 
1060 	if (compound) {
1061 		atomic_t *mapcount;
1062 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1063 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1064 		mapcount = compound_mapcount_ptr(page);
1065 		first = atomic_inc_and_test(mapcount);
1066 	} else {
1067 		first = atomic_inc_and_test(&page->_mapcount);
1068 	}
1069 
1070 	if (first) {
1071 		int nr = compound ? hpage_nr_pages(page) : 1;
1072 		/*
1073 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1074 		 * these counters are not modified in interrupt context, and
1075 		 * pte lock(a spinlock) is held, which implies preemption
1076 		 * disabled.
1077 		 */
1078 		if (compound)
1079 			__inc_node_page_state(page, NR_ANON_THPS);
1080 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1081 	}
1082 	if (unlikely(PageKsm(page)))
1083 		return;
1084 
1085 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1086 
1087 	/* address might be in next vma when migration races vma_adjust */
1088 	if (first)
1089 		__page_set_anon_rmap(page, vma, address,
1090 				flags & RMAP_EXCLUSIVE);
1091 	else
1092 		__page_check_anon_rmap(page, vma, address);
1093 }
1094 
1095 /**
1096  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1097  * @page:	the page to add the mapping to
1098  * @vma:	the vm area in which the mapping is added
1099  * @address:	the user virtual address mapped
1100  * @compound:	charge the page as compound or small page
1101  *
1102  * Same as page_add_anon_rmap but must only be called on *new* pages.
1103  * This means the inc-and-test can be bypassed.
1104  * Page does not have to be locked.
1105  */
1106 void page_add_new_anon_rmap(struct page *page,
1107 	struct vm_area_struct *vma, unsigned long address, bool compound)
1108 {
1109 	int nr = compound ? hpage_nr_pages(page) : 1;
1110 
1111 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1112 	__SetPageSwapBacked(page);
1113 	if (compound) {
1114 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1115 		/* increment count (starts at -1) */
1116 		atomic_set(compound_mapcount_ptr(page), 0);
1117 		__inc_node_page_state(page, NR_ANON_THPS);
1118 	} else {
1119 		/* Anon THP always mapped first with PMD */
1120 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1121 		/* increment count (starts at -1) */
1122 		atomic_set(&page->_mapcount, 0);
1123 	}
1124 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1125 	__page_set_anon_rmap(page, vma, address, 1);
1126 }
1127 
1128 /**
1129  * page_add_file_rmap - add pte mapping to a file page
1130  * @page: the page to add the mapping to
1131  *
1132  * The caller needs to hold the pte lock.
1133  */
1134 void page_add_file_rmap(struct page *page, bool compound)
1135 {
1136 	int i, nr = 1;
1137 
1138 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1139 	lock_page_memcg(page);
1140 	if (compound && PageTransHuge(page)) {
1141 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1142 			if (atomic_inc_and_test(&page[i]._mapcount))
1143 				nr++;
1144 		}
1145 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1146 			goto out;
1147 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1148 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1149 	} else {
1150 		if (PageTransCompound(page) && page_mapping(page)) {
1151 			VM_WARN_ON_ONCE(!PageLocked(page));
1152 
1153 			SetPageDoubleMap(compound_head(page));
1154 			if (PageMlocked(page))
1155 				clear_page_mlock(compound_head(page));
1156 		}
1157 		if (!atomic_inc_and_test(&page->_mapcount))
1158 			goto out;
1159 	}
1160 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1161 	mod_memcg_page_state(page, NR_FILE_MAPPED, nr);
1162 out:
1163 	unlock_page_memcg(page);
1164 }
1165 
1166 static void page_remove_file_rmap(struct page *page, bool compound)
1167 {
1168 	int i, nr = 1;
1169 
1170 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1171 	lock_page_memcg(page);
1172 
1173 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1174 	if (unlikely(PageHuge(page))) {
1175 		/* hugetlb pages are always mapped with pmds */
1176 		atomic_dec(compound_mapcount_ptr(page));
1177 		goto out;
1178 	}
1179 
1180 	/* page still mapped by someone else? */
1181 	if (compound && PageTransHuge(page)) {
1182 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1183 			if (atomic_add_negative(-1, &page[i]._mapcount))
1184 				nr++;
1185 		}
1186 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1187 			goto out;
1188 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1189 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1190 	} else {
1191 		if (!atomic_add_negative(-1, &page->_mapcount))
1192 			goto out;
1193 	}
1194 
1195 	/*
1196 	 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1197 	 * these counters are not modified in interrupt context, and
1198 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1199 	 */
1200 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1201 	mod_memcg_page_state(page, NR_FILE_MAPPED, -nr);
1202 
1203 	if (unlikely(PageMlocked(page)))
1204 		clear_page_mlock(page);
1205 out:
1206 	unlock_page_memcg(page);
1207 }
1208 
1209 static void page_remove_anon_compound_rmap(struct page *page)
1210 {
1211 	int i, nr;
1212 
1213 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1214 		return;
1215 
1216 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1217 	if (unlikely(PageHuge(page)))
1218 		return;
1219 
1220 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1221 		return;
1222 
1223 	__dec_node_page_state(page, NR_ANON_THPS);
1224 
1225 	if (TestClearPageDoubleMap(page)) {
1226 		/*
1227 		 * Subpages can be mapped with PTEs too. Check how many of
1228 		 * themi are still mapped.
1229 		 */
1230 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1231 			if (atomic_add_negative(-1, &page[i]._mapcount))
1232 				nr++;
1233 		}
1234 	} else {
1235 		nr = HPAGE_PMD_NR;
1236 	}
1237 
1238 	if (unlikely(PageMlocked(page)))
1239 		clear_page_mlock(page);
1240 
1241 	if (nr) {
1242 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1243 		deferred_split_huge_page(page);
1244 	}
1245 }
1246 
1247 /**
1248  * page_remove_rmap - take down pte mapping from a page
1249  * @page:	page to remove mapping from
1250  * @compound:	uncharge the page as compound or small page
1251  *
1252  * The caller needs to hold the pte lock.
1253  */
1254 void page_remove_rmap(struct page *page, bool compound)
1255 {
1256 	if (!PageAnon(page))
1257 		return page_remove_file_rmap(page, compound);
1258 
1259 	if (compound)
1260 		return page_remove_anon_compound_rmap(page);
1261 
1262 	/* page still mapped by someone else? */
1263 	if (!atomic_add_negative(-1, &page->_mapcount))
1264 		return;
1265 
1266 	/*
1267 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1268 	 * these counters are not modified in interrupt context, and
1269 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1270 	 */
1271 	__dec_node_page_state(page, NR_ANON_MAPPED);
1272 
1273 	if (unlikely(PageMlocked(page)))
1274 		clear_page_mlock(page);
1275 
1276 	if (PageTransCompound(page))
1277 		deferred_split_huge_page(compound_head(page));
1278 
1279 	/*
1280 	 * It would be tidy to reset the PageAnon mapping here,
1281 	 * but that might overwrite a racing page_add_anon_rmap
1282 	 * which increments mapcount after us but sets mapping
1283 	 * before us: so leave the reset to free_hot_cold_page,
1284 	 * and remember that it's only reliable while mapped.
1285 	 * Leaving it set also helps swapoff to reinstate ptes
1286 	 * faster for those pages still in swapcache.
1287 	 */
1288 }
1289 
1290 /*
1291  * @arg: enum ttu_flags will be passed to this argument
1292  */
1293 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1294 		     unsigned long address, void *arg)
1295 {
1296 	struct mm_struct *mm = vma->vm_mm;
1297 	struct page_vma_mapped_walk pvmw = {
1298 		.page = page,
1299 		.vma = vma,
1300 		.address = address,
1301 	};
1302 	pte_t pteval;
1303 	struct page *subpage;
1304 	bool ret = true;
1305 	enum ttu_flags flags = (enum ttu_flags)arg;
1306 
1307 	/* munlock has nothing to gain from examining un-locked vmas */
1308 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1309 		return true;
1310 
1311 	if (flags & TTU_SPLIT_HUGE_PMD) {
1312 		split_huge_pmd_address(vma, address,
1313 				flags & TTU_MIGRATION, page);
1314 	}
1315 
1316 	while (page_vma_mapped_walk(&pvmw)) {
1317 		/*
1318 		 * If the page is mlock()d, we cannot swap it out.
1319 		 * If it's recently referenced (perhaps page_referenced
1320 		 * skipped over this mm) then we should reactivate it.
1321 		 */
1322 		if (!(flags & TTU_IGNORE_MLOCK)) {
1323 			if (vma->vm_flags & VM_LOCKED) {
1324 				/* PTE-mapped THP are never mlocked */
1325 				if (!PageTransCompound(page)) {
1326 					/*
1327 					 * Holding pte lock, we do *not* need
1328 					 * mmap_sem here
1329 					 */
1330 					mlock_vma_page(page);
1331 				}
1332 				ret = false;
1333 				page_vma_mapped_walk_done(&pvmw);
1334 				break;
1335 			}
1336 			if (flags & TTU_MUNLOCK)
1337 				continue;
1338 		}
1339 
1340 		/* Unexpected PMD-mapped THP? */
1341 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1342 
1343 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1344 		address = pvmw.address;
1345 
1346 
1347 		if (!(flags & TTU_IGNORE_ACCESS)) {
1348 			if (ptep_clear_flush_young_notify(vma, address,
1349 						pvmw.pte)) {
1350 				ret = false;
1351 				page_vma_mapped_walk_done(&pvmw);
1352 				break;
1353 			}
1354 		}
1355 
1356 		/* Nuke the page table entry. */
1357 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1358 		if (should_defer_flush(mm, flags)) {
1359 			/*
1360 			 * We clear the PTE but do not flush so potentially
1361 			 * a remote CPU could still be writing to the page.
1362 			 * If the entry was previously clean then the
1363 			 * architecture must guarantee that a clear->dirty
1364 			 * transition on a cached TLB entry is written through
1365 			 * and traps if the PTE is unmapped.
1366 			 */
1367 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1368 
1369 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1370 		} else {
1371 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1372 		}
1373 
1374 		/* Move the dirty bit to the page. Now the pte is gone. */
1375 		if (pte_dirty(pteval))
1376 			set_page_dirty(page);
1377 
1378 		/* Update high watermark before we lower rss */
1379 		update_hiwater_rss(mm);
1380 
1381 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1382 			if (PageHuge(page)) {
1383 				int nr = 1 << compound_order(page);
1384 				hugetlb_count_sub(nr, mm);
1385 			} else {
1386 				dec_mm_counter(mm, mm_counter(page));
1387 			}
1388 
1389 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1390 			set_pte_at(mm, address, pvmw.pte, pteval);
1391 		} else if (pte_unused(pteval)) {
1392 			/*
1393 			 * The guest indicated that the page content is of no
1394 			 * interest anymore. Simply discard the pte, vmscan
1395 			 * will take care of the rest.
1396 			 */
1397 			dec_mm_counter(mm, mm_counter(page));
1398 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1399 				(flags & TTU_MIGRATION)) {
1400 			swp_entry_t entry;
1401 			pte_t swp_pte;
1402 			/*
1403 			 * Store the pfn of the page in a special migration
1404 			 * pte. do_swap_page() will wait until the migration
1405 			 * pte is removed and then restart fault handling.
1406 			 */
1407 			entry = make_migration_entry(subpage,
1408 					pte_write(pteval));
1409 			swp_pte = swp_entry_to_pte(entry);
1410 			if (pte_soft_dirty(pteval))
1411 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1412 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1413 		} else if (PageAnon(page)) {
1414 			swp_entry_t entry = { .val = page_private(subpage) };
1415 			pte_t swp_pte;
1416 			/*
1417 			 * Store the swap location in the pte.
1418 			 * See handle_pte_fault() ...
1419 			 */
1420 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1421 				WARN_ON_ONCE(1);
1422 				ret = false;
1423 				page_vma_mapped_walk_done(&pvmw);
1424 				break;
1425 			}
1426 
1427 			/* MADV_FREE page check */
1428 			if (!PageSwapBacked(page)) {
1429 				if (!PageDirty(page)) {
1430 					dec_mm_counter(mm, MM_ANONPAGES);
1431 					goto discard;
1432 				}
1433 
1434 				/*
1435 				 * If the page was redirtied, it cannot be
1436 				 * discarded. Remap the page to page table.
1437 				 */
1438 				set_pte_at(mm, address, pvmw.pte, pteval);
1439 				SetPageSwapBacked(page);
1440 				ret = false;
1441 				page_vma_mapped_walk_done(&pvmw);
1442 				break;
1443 			}
1444 
1445 			if (swap_duplicate(entry) < 0) {
1446 				set_pte_at(mm, address, pvmw.pte, pteval);
1447 				ret = false;
1448 				page_vma_mapped_walk_done(&pvmw);
1449 				break;
1450 			}
1451 			if (list_empty(&mm->mmlist)) {
1452 				spin_lock(&mmlist_lock);
1453 				if (list_empty(&mm->mmlist))
1454 					list_add(&mm->mmlist, &init_mm.mmlist);
1455 				spin_unlock(&mmlist_lock);
1456 			}
1457 			dec_mm_counter(mm, MM_ANONPAGES);
1458 			inc_mm_counter(mm, MM_SWAPENTS);
1459 			swp_pte = swp_entry_to_pte(entry);
1460 			if (pte_soft_dirty(pteval))
1461 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1462 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1463 		} else
1464 			dec_mm_counter(mm, mm_counter_file(page));
1465 discard:
1466 		page_remove_rmap(subpage, PageHuge(page));
1467 		put_page(page);
1468 		mmu_notifier_invalidate_page(mm, address);
1469 	}
1470 	return ret;
1471 }
1472 
1473 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1474 {
1475 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1476 
1477 	if (!maybe_stack)
1478 		return false;
1479 
1480 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1481 						VM_STACK_INCOMPLETE_SETUP)
1482 		return true;
1483 
1484 	return false;
1485 }
1486 
1487 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1488 {
1489 	return is_vma_temporary_stack(vma);
1490 }
1491 
1492 static int page_mapcount_is_zero(struct page *page)
1493 {
1494 	return !total_mapcount(page);
1495 }
1496 
1497 /**
1498  * try_to_unmap - try to remove all page table mappings to a page
1499  * @page: the page to get unmapped
1500  * @flags: action and flags
1501  *
1502  * Tries to remove all the page table entries which are mapping this
1503  * page, used in the pageout path.  Caller must hold the page lock.
1504  *
1505  * If unmap is successful, return true. Otherwise, false.
1506  */
1507 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1508 {
1509 	struct rmap_walk_control rwc = {
1510 		.rmap_one = try_to_unmap_one,
1511 		.arg = (void *)flags,
1512 		.done = page_mapcount_is_zero,
1513 		.anon_lock = page_lock_anon_vma_read,
1514 	};
1515 
1516 	/*
1517 	 * During exec, a temporary VMA is setup and later moved.
1518 	 * The VMA is moved under the anon_vma lock but not the
1519 	 * page tables leading to a race where migration cannot
1520 	 * find the migration ptes. Rather than increasing the
1521 	 * locking requirements of exec(), migration skips
1522 	 * temporary VMAs until after exec() completes.
1523 	 */
1524 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1525 		rwc.invalid_vma = invalid_migration_vma;
1526 
1527 	if (flags & TTU_RMAP_LOCKED)
1528 		rmap_walk_locked(page, &rwc);
1529 	else
1530 		rmap_walk(page, &rwc);
1531 
1532 	return !page_mapcount(page) ? true : false;
1533 }
1534 
1535 static int page_not_mapped(struct page *page)
1536 {
1537 	return !page_mapped(page);
1538 };
1539 
1540 /**
1541  * try_to_munlock - try to munlock a page
1542  * @page: the page to be munlocked
1543  *
1544  * Called from munlock code.  Checks all of the VMAs mapping the page
1545  * to make sure nobody else has this page mlocked. The page will be
1546  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1547  */
1548 
1549 void try_to_munlock(struct page *page)
1550 {
1551 	struct rmap_walk_control rwc = {
1552 		.rmap_one = try_to_unmap_one,
1553 		.arg = (void *)TTU_MUNLOCK,
1554 		.done = page_not_mapped,
1555 		.anon_lock = page_lock_anon_vma_read,
1556 
1557 	};
1558 
1559 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1560 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1561 
1562 	rmap_walk(page, &rwc);
1563 }
1564 
1565 void __put_anon_vma(struct anon_vma *anon_vma)
1566 {
1567 	struct anon_vma *root = anon_vma->root;
1568 
1569 	anon_vma_free(anon_vma);
1570 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1571 		anon_vma_free(root);
1572 }
1573 
1574 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1575 					struct rmap_walk_control *rwc)
1576 {
1577 	struct anon_vma *anon_vma;
1578 
1579 	if (rwc->anon_lock)
1580 		return rwc->anon_lock(page);
1581 
1582 	/*
1583 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1584 	 * because that depends on page_mapped(); but not all its usages
1585 	 * are holding mmap_sem. Users without mmap_sem are required to
1586 	 * take a reference count to prevent the anon_vma disappearing
1587 	 */
1588 	anon_vma = page_anon_vma(page);
1589 	if (!anon_vma)
1590 		return NULL;
1591 
1592 	anon_vma_lock_read(anon_vma);
1593 	return anon_vma;
1594 }
1595 
1596 /*
1597  * rmap_walk_anon - do something to anonymous page using the object-based
1598  * rmap method
1599  * @page: the page to be handled
1600  * @rwc: control variable according to each walk type
1601  *
1602  * Find all the mappings of a page using the mapping pointer and the vma chains
1603  * contained in the anon_vma struct it points to.
1604  *
1605  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1606  * where the page was found will be held for write.  So, we won't recheck
1607  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1608  * LOCKED.
1609  */
1610 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1611 		bool locked)
1612 {
1613 	struct anon_vma *anon_vma;
1614 	pgoff_t pgoff_start, pgoff_end;
1615 	struct anon_vma_chain *avc;
1616 
1617 	if (locked) {
1618 		anon_vma = page_anon_vma(page);
1619 		/* anon_vma disappear under us? */
1620 		VM_BUG_ON_PAGE(!anon_vma, page);
1621 	} else {
1622 		anon_vma = rmap_walk_anon_lock(page, rwc);
1623 	}
1624 	if (!anon_vma)
1625 		return;
1626 
1627 	pgoff_start = page_to_pgoff(page);
1628 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1629 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1630 			pgoff_start, pgoff_end) {
1631 		struct vm_area_struct *vma = avc->vma;
1632 		unsigned long address = vma_address(page, vma);
1633 
1634 		cond_resched();
1635 
1636 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1637 			continue;
1638 
1639 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1640 			break;
1641 		if (rwc->done && rwc->done(page))
1642 			break;
1643 	}
1644 
1645 	if (!locked)
1646 		anon_vma_unlock_read(anon_vma);
1647 }
1648 
1649 /*
1650  * rmap_walk_file - do something to file page using the object-based rmap method
1651  * @page: the page to be handled
1652  * @rwc: control variable according to each walk type
1653  *
1654  * Find all the mappings of a page using the mapping pointer and the vma chains
1655  * contained in the address_space struct it points to.
1656  *
1657  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1658  * where the page was found will be held for write.  So, we won't recheck
1659  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1660  * LOCKED.
1661  */
1662 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1663 		bool locked)
1664 {
1665 	struct address_space *mapping = page_mapping(page);
1666 	pgoff_t pgoff_start, pgoff_end;
1667 	struct vm_area_struct *vma;
1668 
1669 	/*
1670 	 * The page lock not only makes sure that page->mapping cannot
1671 	 * suddenly be NULLified by truncation, it makes sure that the
1672 	 * structure at mapping cannot be freed and reused yet,
1673 	 * so we can safely take mapping->i_mmap_rwsem.
1674 	 */
1675 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1676 
1677 	if (!mapping)
1678 		return;
1679 
1680 	pgoff_start = page_to_pgoff(page);
1681 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1682 	if (!locked)
1683 		i_mmap_lock_read(mapping);
1684 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1685 			pgoff_start, pgoff_end) {
1686 		unsigned long address = vma_address(page, vma);
1687 
1688 		cond_resched();
1689 
1690 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1691 			continue;
1692 
1693 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1694 			goto done;
1695 		if (rwc->done && rwc->done(page))
1696 			goto done;
1697 	}
1698 
1699 done:
1700 	if (!locked)
1701 		i_mmap_unlock_read(mapping);
1702 }
1703 
1704 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1705 {
1706 	if (unlikely(PageKsm(page)))
1707 		rmap_walk_ksm(page, rwc);
1708 	else if (PageAnon(page))
1709 		rmap_walk_anon(page, rwc, false);
1710 	else
1711 		rmap_walk_file(page, rwc, false);
1712 }
1713 
1714 /* Like rmap_walk, but caller holds relevant rmap lock */
1715 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1716 {
1717 	/* no ksm support for now */
1718 	VM_BUG_ON_PAGE(PageKsm(page), page);
1719 	if (PageAnon(page))
1720 		rmap_walk_anon(page, rwc, true);
1721 	else
1722 		rmap_walk_file(page, rwc, true);
1723 }
1724 
1725 #ifdef CONFIG_HUGETLB_PAGE
1726 /*
1727  * The following three functions are for anonymous (private mapped) hugepages.
1728  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1729  * and no lru code, because we handle hugepages differently from common pages.
1730  */
1731 static void __hugepage_set_anon_rmap(struct page *page,
1732 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1733 {
1734 	struct anon_vma *anon_vma = vma->anon_vma;
1735 
1736 	BUG_ON(!anon_vma);
1737 
1738 	if (PageAnon(page))
1739 		return;
1740 	if (!exclusive)
1741 		anon_vma = anon_vma->root;
1742 
1743 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1744 	page->mapping = (struct address_space *) anon_vma;
1745 	page->index = linear_page_index(vma, address);
1746 }
1747 
1748 void hugepage_add_anon_rmap(struct page *page,
1749 			    struct vm_area_struct *vma, unsigned long address)
1750 {
1751 	struct anon_vma *anon_vma = vma->anon_vma;
1752 	int first;
1753 
1754 	BUG_ON(!PageLocked(page));
1755 	BUG_ON(!anon_vma);
1756 	/* address might be in next vma when migration races vma_adjust */
1757 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1758 	if (first)
1759 		__hugepage_set_anon_rmap(page, vma, address, 0);
1760 }
1761 
1762 void hugepage_add_new_anon_rmap(struct page *page,
1763 			struct vm_area_struct *vma, unsigned long address)
1764 {
1765 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1766 	atomic_set(compound_mapcount_ptr(page), 0);
1767 	__hugepage_set_anon_rmap(page, vma, address, 1);
1768 }
1769 #endif /* CONFIG_HUGETLB_PAGE */
1770