1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * page->flags PG_locked (lock_page) 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * page->flags PG_locked (lock_page) 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 79 #include <asm/tlbflush.h> 80 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/tlb.h> 83 #include <trace/events/migrate.h> 84 85 #include "internal.h" 86 87 static struct kmem_cache *anon_vma_cachep; 88 static struct kmem_cache *anon_vma_chain_cachep; 89 90 static inline struct anon_vma *anon_vma_alloc(void) 91 { 92 struct anon_vma *anon_vma; 93 94 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 95 if (anon_vma) { 96 atomic_set(&anon_vma->refcount, 1); 97 anon_vma->num_children = 0; 98 anon_vma->num_active_vmas = 0; 99 anon_vma->parent = anon_vma; 100 /* 101 * Initialise the anon_vma root to point to itself. If called 102 * from fork, the root will be reset to the parents anon_vma. 103 */ 104 anon_vma->root = anon_vma; 105 } 106 107 return anon_vma; 108 } 109 110 static inline void anon_vma_free(struct anon_vma *anon_vma) 111 { 112 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 113 114 /* 115 * Synchronize against folio_lock_anon_vma_read() such that 116 * we can safely hold the lock without the anon_vma getting 117 * freed. 118 * 119 * Relies on the full mb implied by the atomic_dec_and_test() from 120 * put_anon_vma() against the acquire barrier implied by 121 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 122 * 123 * folio_lock_anon_vma_read() VS put_anon_vma() 124 * down_read_trylock() atomic_dec_and_test() 125 * LOCK MB 126 * atomic_read() rwsem_is_locked() 127 * 128 * LOCK should suffice since the actual taking of the lock must 129 * happen _before_ what follows. 130 */ 131 might_sleep(); 132 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 133 anon_vma_lock_write(anon_vma); 134 anon_vma_unlock_write(anon_vma); 135 } 136 137 kmem_cache_free(anon_vma_cachep, anon_vma); 138 } 139 140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 141 { 142 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 143 } 144 145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 146 { 147 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 148 } 149 150 static void anon_vma_chain_link(struct vm_area_struct *vma, 151 struct anon_vma_chain *avc, 152 struct anon_vma *anon_vma) 153 { 154 avc->vma = vma; 155 avc->anon_vma = anon_vma; 156 list_add(&avc->same_vma, &vma->anon_vma_chain); 157 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 158 } 159 160 /** 161 * __anon_vma_prepare - attach an anon_vma to a memory region 162 * @vma: the memory region in question 163 * 164 * This makes sure the memory mapping described by 'vma' has 165 * an 'anon_vma' attached to it, so that we can associate the 166 * anonymous pages mapped into it with that anon_vma. 167 * 168 * The common case will be that we already have one, which 169 * is handled inline by anon_vma_prepare(). But if 170 * not we either need to find an adjacent mapping that we 171 * can re-use the anon_vma from (very common when the only 172 * reason for splitting a vma has been mprotect()), or we 173 * allocate a new one. 174 * 175 * Anon-vma allocations are very subtle, because we may have 176 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 177 * and that may actually touch the rwsem even in the newly 178 * allocated vma (it depends on RCU to make sure that the 179 * anon_vma isn't actually destroyed). 180 * 181 * As a result, we need to do proper anon_vma locking even 182 * for the new allocation. At the same time, we do not want 183 * to do any locking for the common case of already having 184 * an anon_vma. 185 * 186 * This must be called with the mmap_lock held for reading. 187 */ 188 int __anon_vma_prepare(struct vm_area_struct *vma) 189 { 190 struct mm_struct *mm = vma->vm_mm; 191 struct anon_vma *anon_vma, *allocated; 192 struct anon_vma_chain *avc; 193 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against page_remove_rmap() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 */ 494 struct anon_vma *folio_get_anon_vma(struct folio *folio) 495 { 496 struct anon_vma *anon_vma = NULL; 497 unsigned long anon_mapping; 498 499 rcu_read_lock(); 500 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 502 goto out; 503 if (!folio_mapped(folio)) 504 goto out; 505 506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 507 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 508 anon_vma = NULL; 509 goto out; 510 } 511 512 /* 513 * If this folio is still mapped, then its anon_vma cannot have been 514 * freed. But if it has been unmapped, we have no security against the 515 * anon_vma structure being freed and reused (for another anon_vma: 516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 517 * above cannot corrupt). 518 */ 519 if (!folio_mapped(folio)) { 520 rcu_read_unlock(); 521 put_anon_vma(anon_vma); 522 return NULL; 523 } 524 out: 525 rcu_read_unlock(); 526 527 return anon_vma; 528 } 529 530 /* 531 * Similar to folio_get_anon_vma() except it locks the anon_vma. 532 * 533 * Its a little more complex as it tries to keep the fast path to a single 534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 535 * reference like with folio_get_anon_vma() and then block on the mutex 536 * on !rwc->try_lock case. 537 */ 538 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 539 struct rmap_walk_control *rwc) 540 { 541 struct anon_vma *anon_vma = NULL; 542 struct anon_vma *root_anon_vma; 543 unsigned long anon_mapping; 544 545 rcu_read_lock(); 546 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 547 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 548 goto out; 549 if (!folio_mapped(folio)) 550 goto out; 551 552 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 553 root_anon_vma = READ_ONCE(anon_vma->root); 554 if (down_read_trylock(&root_anon_vma->rwsem)) { 555 /* 556 * If the folio is still mapped, then this anon_vma is still 557 * its anon_vma, and holding the mutex ensures that it will 558 * not go away, see anon_vma_free(). 559 */ 560 if (!folio_mapped(folio)) { 561 up_read(&root_anon_vma->rwsem); 562 anon_vma = NULL; 563 } 564 goto out; 565 } 566 567 if (rwc && rwc->try_lock) { 568 anon_vma = NULL; 569 rwc->contended = true; 570 goto out; 571 } 572 573 /* trylock failed, we got to sleep */ 574 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 575 anon_vma = NULL; 576 goto out; 577 } 578 579 if (!folio_mapped(folio)) { 580 rcu_read_unlock(); 581 put_anon_vma(anon_vma); 582 return NULL; 583 } 584 585 /* we pinned the anon_vma, its safe to sleep */ 586 rcu_read_unlock(); 587 anon_vma_lock_read(anon_vma); 588 589 if (atomic_dec_and_test(&anon_vma->refcount)) { 590 /* 591 * Oops, we held the last refcount, release the lock 592 * and bail -- can't simply use put_anon_vma() because 593 * we'll deadlock on the anon_vma_lock_write() recursion. 594 */ 595 anon_vma_unlock_read(anon_vma); 596 __put_anon_vma(anon_vma); 597 anon_vma = NULL; 598 } 599 600 return anon_vma; 601 602 out: 603 rcu_read_unlock(); 604 return anon_vma; 605 } 606 607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608 /* 609 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 610 * important if a PTE was dirty when it was unmapped that it's flushed 611 * before any IO is initiated on the page to prevent lost writes. Similarly, 612 * it must be flushed before freeing to prevent data leakage. 613 */ 614 void try_to_unmap_flush(void) 615 { 616 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 617 618 if (!tlb_ubc->flush_required) 619 return; 620 621 arch_tlbbatch_flush(&tlb_ubc->arch); 622 tlb_ubc->flush_required = false; 623 tlb_ubc->writable = false; 624 } 625 626 /* Flush iff there are potentially writable TLB entries that can race with IO */ 627 void try_to_unmap_flush_dirty(void) 628 { 629 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 630 631 if (tlb_ubc->writable) 632 try_to_unmap_flush(); 633 } 634 635 /* 636 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 637 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 638 */ 639 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 640 #define TLB_FLUSH_BATCH_PENDING_MASK \ 641 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 642 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 643 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 644 645 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 646 unsigned long uaddr) 647 { 648 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 649 int batch; 650 bool writable = pte_dirty(pteval); 651 652 if (!pte_accessible(mm, pteval)) 653 return; 654 655 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 656 tlb_ubc->flush_required = true; 657 658 /* 659 * Ensure compiler does not re-order the setting of tlb_flush_batched 660 * before the PTE is cleared. 661 */ 662 barrier(); 663 batch = atomic_read(&mm->tlb_flush_batched); 664 retry: 665 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 666 /* 667 * Prevent `pending' from catching up with `flushed' because of 668 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 669 * `pending' becomes large. 670 */ 671 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 672 goto retry; 673 } else { 674 atomic_inc(&mm->tlb_flush_batched); 675 } 676 677 /* 678 * If the PTE was dirty then it's best to assume it's writable. The 679 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 680 * before the page is queued for IO. 681 */ 682 if (writable) 683 tlb_ubc->writable = true; 684 } 685 686 /* 687 * Returns true if the TLB flush should be deferred to the end of a batch of 688 * unmap operations to reduce IPIs. 689 */ 690 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 691 { 692 if (!(flags & TTU_BATCH_FLUSH)) 693 return false; 694 695 return arch_tlbbatch_should_defer(mm); 696 } 697 698 /* 699 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 700 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 701 * operation such as mprotect or munmap to race between reclaim unmapping 702 * the page and flushing the page. If this race occurs, it potentially allows 703 * access to data via a stale TLB entry. Tracking all mm's that have TLB 704 * batching in flight would be expensive during reclaim so instead track 705 * whether TLB batching occurred in the past and if so then do a flush here 706 * if required. This will cost one additional flush per reclaim cycle paid 707 * by the first operation at risk such as mprotect and mumap. 708 * 709 * This must be called under the PTL so that an access to tlb_flush_batched 710 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 711 * via the PTL. 712 */ 713 void flush_tlb_batched_pending(struct mm_struct *mm) 714 { 715 int batch = atomic_read(&mm->tlb_flush_batched); 716 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 717 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 718 719 if (pending != flushed) { 720 arch_flush_tlb_batched_pending(mm); 721 /* 722 * If the new TLB flushing is pending during flushing, leave 723 * mm->tlb_flush_batched as is, to avoid losing flushing. 724 */ 725 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 726 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 727 } 728 } 729 #else 730 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 731 unsigned long uaddr) 732 { 733 } 734 735 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 736 { 737 return false; 738 } 739 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 740 741 /* 742 * At what user virtual address is page expected in vma? 743 * Caller should check the page is actually part of the vma. 744 */ 745 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 746 { 747 struct folio *folio = page_folio(page); 748 if (folio_test_anon(folio)) { 749 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 750 /* 751 * Note: swapoff's unuse_vma() is more efficient with this 752 * check, and needs it to match anon_vma when KSM is active. 753 */ 754 if (!vma->anon_vma || !page__anon_vma || 755 vma->anon_vma->root != page__anon_vma->root) 756 return -EFAULT; 757 } else if (!vma->vm_file) { 758 return -EFAULT; 759 } else if (vma->vm_file->f_mapping != folio->mapping) { 760 return -EFAULT; 761 } 762 763 return vma_address(page, vma); 764 } 765 766 /* 767 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 768 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 769 * represents. 770 */ 771 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 772 { 773 pgd_t *pgd; 774 p4d_t *p4d; 775 pud_t *pud; 776 pmd_t *pmd = NULL; 777 778 pgd = pgd_offset(mm, address); 779 if (!pgd_present(*pgd)) 780 goto out; 781 782 p4d = p4d_offset(pgd, address); 783 if (!p4d_present(*p4d)) 784 goto out; 785 786 pud = pud_offset(p4d, address); 787 if (!pud_present(*pud)) 788 goto out; 789 790 pmd = pmd_offset(pud, address); 791 out: 792 return pmd; 793 } 794 795 struct folio_referenced_arg { 796 int mapcount; 797 int referenced; 798 unsigned long vm_flags; 799 struct mem_cgroup *memcg; 800 }; 801 /* 802 * arg: folio_referenced_arg will be passed 803 */ 804 static bool folio_referenced_one(struct folio *folio, 805 struct vm_area_struct *vma, unsigned long address, void *arg) 806 { 807 struct folio_referenced_arg *pra = arg; 808 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 809 int referenced = 0; 810 811 while (page_vma_mapped_walk(&pvmw)) { 812 address = pvmw.address; 813 814 if ((vma->vm_flags & VM_LOCKED) && 815 (!folio_test_large(folio) || !pvmw.pte)) { 816 /* Restore the mlock which got missed */ 817 mlock_vma_folio(folio, vma, !pvmw.pte); 818 page_vma_mapped_walk_done(&pvmw); 819 pra->vm_flags |= VM_LOCKED; 820 return false; /* To break the loop */ 821 } 822 823 if (pvmw.pte) { 824 if (lru_gen_enabled() && 825 pte_young(ptep_get(pvmw.pte))) { 826 lru_gen_look_around(&pvmw); 827 referenced++; 828 } 829 830 if (ptep_clear_flush_young_notify(vma, address, 831 pvmw.pte)) 832 referenced++; 833 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 834 if (pmdp_clear_flush_young_notify(vma, address, 835 pvmw.pmd)) 836 referenced++; 837 } else { 838 /* unexpected pmd-mapped folio? */ 839 WARN_ON_ONCE(1); 840 } 841 842 pra->mapcount--; 843 } 844 845 if (referenced) 846 folio_clear_idle(folio); 847 if (folio_test_clear_young(folio)) 848 referenced++; 849 850 if (referenced) { 851 pra->referenced++; 852 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 853 } 854 855 if (!pra->mapcount) 856 return false; /* To break the loop */ 857 858 return true; 859 } 860 861 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 862 { 863 struct folio_referenced_arg *pra = arg; 864 struct mem_cgroup *memcg = pra->memcg; 865 866 /* 867 * Ignore references from this mapping if it has no recency. If the 868 * folio has been used in another mapping, we will catch it; if this 869 * other mapping is already gone, the unmap path will have set the 870 * referenced flag or activated the folio in zap_pte_range(). 871 */ 872 if (!vma_has_recency(vma)) 873 return true; 874 875 /* 876 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 877 * of references from different cgroups. 878 */ 879 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 880 return true; 881 882 return false; 883 } 884 885 /** 886 * folio_referenced() - Test if the folio was referenced. 887 * @folio: The folio to test. 888 * @is_locked: Caller holds lock on the folio. 889 * @memcg: target memory cgroup 890 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 891 * 892 * Quick test_and_clear_referenced for all mappings of a folio, 893 * 894 * Return: The number of mappings which referenced the folio. Return -1 if 895 * the function bailed out due to rmap lock contention. 896 */ 897 int folio_referenced(struct folio *folio, int is_locked, 898 struct mem_cgroup *memcg, unsigned long *vm_flags) 899 { 900 int we_locked = 0; 901 struct folio_referenced_arg pra = { 902 .mapcount = folio_mapcount(folio), 903 .memcg = memcg, 904 }; 905 struct rmap_walk_control rwc = { 906 .rmap_one = folio_referenced_one, 907 .arg = (void *)&pra, 908 .anon_lock = folio_lock_anon_vma_read, 909 .try_lock = true, 910 .invalid_vma = invalid_folio_referenced_vma, 911 }; 912 913 *vm_flags = 0; 914 if (!pra.mapcount) 915 return 0; 916 917 if (!folio_raw_mapping(folio)) 918 return 0; 919 920 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 921 we_locked = folio_trylock(folio); 922 if (!we_locked) 923 return 1; 924 } 925 926 rmap_walk(folio, &rwc); 927 *vm_flags = pra.vm_flags; 928 929 if (we_locked) 930 folio_unlock(folio); 931 932 return rwc.contended ? -1 : pra.referenced; 933 } 934 935 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 936 { 937 int cleaned = 0; 938 struct vm_area_struct *vma = pvmw->vma; 939 struct mmu_notifier_range range; 940 unsigned long address = pvmw->address; 941 942 /* 943 * We have to assume the worse case ie pmd for invalidation. Note that 944 * the folio can not be freed from this function. 945 */ 946 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 947 vma->vm_mm, address, vma_address_end(pvmw)); 948 mmu_notifier_invalidate_range_start(&range); 949 950 while (page_vma_mapped_walk(pvmw)) { 951 int ret = 0; 952 953 address = pvmw->address; 954 if (pvmw->pte) { 955 pte_t *pte = pvmw->pte; 956 pte_t entry = ptep_get(pte); 957 958 if (!pte_dirty(entry) && !pte_write(entry)) 959 continue; 960 961 flush_cache_page(vma, address, pte_pfn(entry)); 962 entry = ptep_clear_flush(vma, address, pte); 963 entry = pte_wrprotect(entry); 964 entry = pte_mkclean(entry); 965 set_pte_at(vma->vm_mm, address, pte, entry); 966 ret = 1; 967 } else { 968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 969 pmd_t *pmd = pvmw->pmd; 970 pmd_t entry; 971 972 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 973 continue; 974 975 flush_cache_range(vma, address, 976 address + HPAGE_PMD_SIZE); 977 entry = pmdp_invalidate(vma, address, pmd); 978 entry = pmd_wrprotect(entry); 979 entry = pmd_mkclean(entry); 980 set_pmd_at(vma->vm_mm, address, pmd, entry); 981 ret = 1; 982 #else 983 /* unexpected pmd-mapped folio? */ 984 WARN_ON_ONCE(1); 985 #endif 986 } 987 988 if (ret) 989 cleaned++; 990 } 991 992 mmu_notifier_invalidate_range_end(&range); 993 994 return cleaned; 995 } 996 997 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 998 unsigned long address, void *arg) 999 { 1000 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1001 int *cleaned = arg; 1002 1003 *cleaned += page_vma_mkclean_one(&pvmw); 1004 1005 return true; 1006 } 1007 1008 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1009 { 1010 if (vma->vm_flags & VM_SHARED) 1011 return false; 1012 1013 return true; 1014 } 1015 1016 int folio_mkclean(struct folio *folio) 1017 { 1018 int cleaned = 0; 1019 struct address_space *mapping; 1020 struct rmap_walk_control rwc = { 1021 .arg = (void *)&cleaned, 1022 .rmap_one = page_mkclean_one, 1023 .invalid_vma = invalid_mkclean_vma, 1024 }; 1025 1026 BUG_ON(!folio_test_locked(folio)); 1027 1028 if (!folio_mapped(folio)) 1029 return 0; 1030 1031 mapping = folio_mapping(folio); 1032 if (!mapping) 1033 return 0; 1034 1035 rmap_walk(folio, &rwc); 1036 1037 return cleaned; 1038 } 1039 EXPORT_SYMBOL_GPL(folio_mkclean); 1040 1041 /** 1042 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1043 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1044 * within the @vma of shared mappings. And since clean PTEs 1045 * should also be readonly, write protects them too. 1046 * @pfn: start pfn. 1047 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1048 * @pgoff: page offset that the @pfn mapped with. 1049 * @vma: vma that @pfn mapped within. 1050 * 1051 * Returns the number of cleaned PTEs (including PMDs). 1052 */ 1053 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1054 struct vm_area_struct *vma) 1055 { 1056 struct page_vma_mapped_walk pvmw = { 1057 .pfn = pfn, 1058 .nr_pages = nr_pages, 1059 .pgoff = pgoff, 1060 .vma = vma, 1061 .flags = PVMW_SYNC, 1062 }; 1063 1064 if (invalid_mkclean_vma(vma, NULL)) 1065 return 0; 1066 1067 pvmw.address = vma_pgoff_address(pgoff, nr_pages, vma); 1068 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1069 1070 return page_vma_mkclean_one(&pvmw); 1071 } 1072 1073 int folio_total_mapcount(struct folio *folio) 1074 { 1075 int mapcount = folio_entire_mapcount(folio); 1076 int nr_pages; 1077 int i; 1078 1079 /* In the common case, avoid the loop when no pages mapped by PTE */ 1080 if (folio_nr_pages_mapped(folio) == 0) 1081 return mapcount; 1082 /* 1083 * Add all the PTE mappings of those pages mapped by PTE. 1084 * Limit the loop to folio_nr_pages_mapped()? 1085 * Perhaps: given all the raciness, that may be a good or a bad idea. 1086 */ 1087 nr_pages = folio_nr_pages(folio); 1088 for (i = 0; i < nr_pages; i++) 1089 mapcount += atomic_read(&folio_page(folio, i)->_mapcount); 1090 1091 /* But each of those _mapcounts was based on -1 */ 1092 mapcount += nr_pages; 1093 return mapcount; 1094 } 1095 1096 /** 1097 * page_move_anon_rmap - move a page to our anon_vma 1098 * @page: the page to move to our anon_vma 1099 * @vma: the vma the page belongs to 1100 * 1101 * When a page belongs exclusively to one process after a COW event, 1102 * that page can be moved into the anon_vma that belongs to just that 1103 * process, so the rmap code will not search the parent or sibling 1104 * processes. 1105 */ 1106 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1107 { 1108 void *anon_vma = vma->anon_vma; 1109 struct folio *folio = page_folio(page); 1110 1111 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1112 VM_BUG_ON_VMA(!anon_vma, vma); 1113 1114 anon_vma += PAGE_MAPPING_ANON; 1115 /* 1116 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1117 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1118 * folio_test_anon()) will not see one without the other. 1119 */ 1120 WRITE_ONCE(folio->mapping, anon_vma); 1121 SetPageAnonExclusive(page); 1122 } 1123 1124 /** 1125 * __page_set_anon_rmap - set up new anonymous rmap 1126 * @folio: Folio which contains page. 1127 * @page: Page to add to rmap. 1128 * @vma: VM area to add page to. 1129 * @address: User virtual address of the mapping 1130 * @exclusive: the page is exclusively owned by the current process 1131 */ 1132 static void __page_set_anon_rmap(struct folio *folio, struct page *page, 1133 struct vm_area_struct *vma, unsigned long address, int exclusive) 1134 { 1135 struct anon_vma *anon_vma = vma->anon_vma; 1136 1137 BUG_ON(!anon_vma); 1138 1139 if (folio_test_anon(folio)) 1140 goto out; 1141 1142 /* 1143 * If the page isn't exclusively mapped into this vma, 1144 * we must use the _oldest_ possible anon_vma for the 1145 * page mapping! 1146 */ 1147 if (!exclusive) 1148 anon_vma = anon_vma->root; 1149 1150 /* 1151 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1152 * Make sure the compiler doesn't split the stores of anon_vma and 1153 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1154 * could mistake the mapping for a struct address_space and crash. 1155 */ 1156 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1157 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1158 folio->index = linear_page_index(vma, address); 1159 out: 1160 if (exclusive) 1161 SetPageAnonExclusive(page); 1162 } 1163 1164 /** 1165 * __page_check_anon_rmap - sanity check anonymous rmap addition 1166 * @folio: The folio containing @page. 1167 * @page: the page to check the mapping of 1168 * @vma: the vm area in which the mapping is added 1169 * @address: the user virtual address mapped 1170 */ 1171 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1172 struct vm_area_struct *vma, unsigned long address) 1173 { 1174 /* 1175 * The page's anon-rmap details (mapping and index) are guaranteed to 1176 * be set up correctly at this point. 1177 * 1178 * We have exclusion against page_add_anon_rmap because the caller 1179 * always holds the page locked. 1180 * 1181 * We have exclusion against page_add_new_anon_rmap because those pages 1182 * are initially only visible via the pagetables, and the pte is locked 1183 * over the call to page_add_new_anon_rmap. 1184 */ 1185 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1186 folio); 1187 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1188 page); 1189 } 1190 1191 /** 1192 * page_add_anon_rmap - add pte mapping to an anonymous page 1193 * @page: the page to add the mapping to 1194 * @vma: the vm area in which the mapping is added 1195 * @address: the user virtual address mapped 1196 * @flags: the rmap flags 1197 * 1198 * The caller needs to hold the pte lock, and the page must be locked in 1199 * the anon_vma case: to serialize mapping,index checking after setting, 1200 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1201 * (but PageKsm is never downgraded to PageAnon). 1202 */ 1203 void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 1204 unsigned long address, rmap_t flags) 1205 { 1206 struct folio *folio = page_folio(page); 1207 atomic_t *mapped = &folio->_nr_pages_mapped; 1208 int nr = 0, nr_pmdmapped = 0; 1209 bool compound = flags & RMAP_COMPOUND; 1210 bool first = true; 1211 1212 /* Is page being mapped by PTE? Is this its first map to be added? */ 1213 if (likely(!compound)) { 1214 first = atomic_inc_and_test(&page->_mapcount); 1215 nr = first; 1216 if (first && folio_test_large(folio)) { 1217 nr = atomic_inc_return_relaxed(mapped); 1218 nr = (nr < COMPOUND_MAPPED); 1219 } 1220 } else if (folio_test_pmd_mappable(folio)) { 1221 /* That test is redundant: it's for safety or to optimize out */ 1222 1223 first = atomic_inc_and_test(&folio->_entire_mapcount); 1224 if (first) { 1225 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1226 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1227 nr_pmdmapped = folio_nr_pages(folio); 1228 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1229 /* Raced ahead of a remove and another add? */ 1230 if (unlikely(nr < 0)) 1231 nr = 0; 1232 } else { 1233 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1234 nr = 0; 1235 } 1236 } 1237 } 1238 1239 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 1240 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 1241 1242 if (nr_pmdmapped) 1243 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr_pmdmapped); 1244 if (nr) 1245 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1246 1247 if (likely(!folio_test_ksm(folio))) { 1248 /* address might be in next vma when migration races vma_merge */ 1249 if (first) 1250 __page_set_anon_rmap(folio, page, vma, address, 1251 !!(flags & RMAP_EXCLUSIVE)); 1252 else 1253 __page_check_anon_rmap(folio, page, vma, address); 1254 } 1255 1256 mlock_vma_folio(folio, vma, compound); 1257 } 1258 1259 /** 1260 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1261 * @folio: The folio to add the mapping to. 1262 * @vma: the vm area in which the mapping is added 1263 * @address: the user virtual address mapped 1264 * 1265 * Like page_add_anon_rmap() but must only be called on *new* folios. 1266 * This means the inc-and-test can be bypassed. 1267 * The folio does not have to be locked. 1268 * 1269 * If the folio is large, it is accounted as a THP. As the folio 1270 * is new, it's assumed to be mapped exclusively by a single process. 1271 */ 1272 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1273 unsigned long address) 1274 { 1275 int nr; 1276 1277 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1278 __folio_set_swapbacked(folio); 1279 1280 if (likely(!folio_test_pmd_mappable(folio))) { 1281 /* increment count (starts at -1) */ 1282 atomic_set(&folio->_mapcount, 0); 1283 nr = 1; 1284 } else { 1285 /* increment count (starts at -1) */ 1286 atomic_set(&folio->_entire_mapcount, 0); 1287 atomic_set(&folio->_nr_pages_mapped, COMPOUND_MAPPED); 1288 nr = folio_nr_pages(folio); 1289 __lruvec_stat_mod_folio(folio, NR_ANON_THPS, nr); 1290 } 1291 1292 __lruvec_stat_mod_folio(folio, NR_ANON_MAPPED, nr); 1293 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 1294 } 1295 1296 /** 1297 * folio_add_file_rmap_range - add pte mapping to page range of a folio 1298 * @folio: The folio to add the mapping to 1299 * @page: The first page to add 1300 * @nr_pages: The number of pages which will be mapped 1301 * @vma: the vm area in which the mapping is added 1302 * @compound: charge the page as compound or small page 1303 * 1304 * The page range of folio is defined by [first_page, first_page + nr_pages) 1305 * 1306 * The caller needs to hold the pte lock. 1307 */ 1308 void folio_add_file_rmap_range(struct folio *folio, struct page *page, 1309 unsigned int nr_pages, struct vm_area_struct *vma, 1310 bool compound) 1311 { 1312 atomic_t *mapped = &folio->_nr_pages_mapped; 1313 unsigned int nr_pmdmapped = 0, first; 1314 int nr = 0; 1315 1316 VM_WARN_ON_FOLIO(compound && !folio_test_pmd_mappable(folio), folio); 1317 1318 /* Is page being mapped by PTE? Is this its first map to be added? */ 1319 if (likely(!compound)) { 1320 do { 1321 first = atomic_inc_and_test(&page->_mapcount); 1322 if (first && folio_test_large(folio)) { 1323 first = atomic_inc_return_relaxed(mapped); 1324 first = (first < COMPOUND_MAPPED); 1325 } 1326 1327 if (first) 1328 nr++; 1329 } while (page++, --nr_pages > 0); 1330 } else if (folio_test_pmd_mappable(folio)) { 1331 /* That test is redundant: it's for safety or to optimize out */ 1332 1333 first = atomic_inc_and_test(&folio->_entire_mapcount); 1334 if (first) { 1335 nr = atomic_add_return_relaxed(COMPOUND_MAPPED, mapped); 1336 if (likely(nr < COMPOUND_MAPPED + COMPOUND_MAPPED)) { 1337 nr_pmdmapped = folio_nr_pages(folio); 1338 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1339 /* Raced ahead of a remove and another add? */ 1340 if (unlikely(nr < 0)) 1341 nr = 0; 1342 } else { 1343 /* Raced ahead of a remove of COMPOUND_MAPPED */ 1344 nr = 0; 1345 } 1346 } 1347 } 1348 1349 if (nr_pmdmapped) 1350 __lruvec_stat_mod_folio(folio, folio_test_swapbacked(folio) ? 1351 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED, nr_pmdmapped); 1352 if (nr) 1353 __lruvec_stat_mod_folio(folio, NR_FILE_MAPPED, nr); 1354 1355 mlock_vma_folio(folio, vma, compound); 1356 } 1357 1358 /** 1359 * page_add_file_rmap - add pte mapping to a file page 1360 * @page: the page to add the mapping to 1361 * @vma: the vm area in which the mapping is added 1362 * @compound: charge the page as compound or small page 1363 * 1364 * The caller needs to hold the pte lock. 1365 */ 1366 void page_add_file_rmap(struct page *page, struct vm_area_struct *vma, 1367 bool compound) 1368 { 1369 struct folio *folio = page_folio(page); 1370 unsigned int nr_pages; 1371 1372 VM_WARN_ON_ONCE_PAGE(compound && !PageTransHuge(page), page); 1373 1374 if (likely(!compound)) 1375 nr_pages = 1; 1376 else 1377 nr_pages = folio_nr_pages(folio); 1378 1379 folio_add_file_rmap_range(folio, page, nr_pages, vma, compound); 1380 } 1381 1382 /** 1383 * page_remove_rmap - take down pte mapping from a page 1384 * @page: page to remove mapping from 1385 * @vma: the vm area from which the mapping is removed 1386 * @compound: uncharge the page as compound or small page 1387 * 1388 * The caller needs to hold the pte lock. 1389 */ 1390 void page_remove_rmap(struct page *page, struct vm_area_struct *vma, 1391 bool compound) 1392 { 1393 struct folio *folio = page_folio(page); 1394 atomic_t *mapped = &folio->_nr_pages_mapped; 1395 int nr = 0, nr_pmdmapped = 0; 1396 bool last; 1397 enum node_stat_item idx; 1398 1399 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1400 1401 /* Hugetlb pages are not counted in NR_*MAPPED */ 1402 if (unlikely(folio_test_hugetlb(folio))) { 1403 /* hugetlb pages are always mapped with pmds */ 1404 atomic_dec(&folio->_entire_mapcount); 1405 return; 1406 } 1407 1408 /* Is page being unmapped by PTE? Is this its last map to be removed? */ 1409 if (likely(!compound)) { 1410 last = atomic_add_negative(-1, &page->_mapcount); 1411 nr = last; 1412 if (last && folio_test_large(folio)) { 1413 nr = atomic_dec_return_relaxed(mapped); 1414 nr = (nr < COMPOUND_MAPPED); 1415 } 1416 } else if (folio_test_pmd_mappable(folio)) { 1417 /* That test is redundant: it's for safety or to optimize out */ 1418 1419 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1420 if (last) { 1421 nr = atomic_sub_return_relaxed(COMPOUND_MAPPED, mapped); 1422 if (likely(nr < COMPOUND_MAPPED)) { 1423 nr_pmdmapped = folio_nr_pages(folio); 1424 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1425 /* Raced ahead of another remove and an add? */ 1426 if (unlikely(nr < 0)) 1427 nr = 0; 1428 } else { 1429 /* An add of COMPOUND_MAPPED raced ahead */ 1430 nr = 0; 1431 } 1432 } 1433 } 1434 1435 if (nr_pmdmapped) { 1436 if (folio_test_anon(folio)) 1437 idx = NR_ANON_THPS; 1438 else if (folio_test_swapbacked(folio)) 1439 idx = NR_SHMEM_PMDMAPPED; 1440 else 1441 idx = NR_FILE_PMDMAPPED; 1442 __lruvec_stat_mod_folio(folio, idx, -nr_pmdmapped); 1443 } 1444 if (nr) { 1445 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1446 __lruvec_stat_mod_folio(folio, idx, -nr); 1447 1448 /* 1449 * Queue anon THP for deferred split if at least one 1450 * page of the folio is unmapped and at least one page 1451 * is still mapped. 1452 */ 1453 if (folio_test_pmd_mappable(folio) && folio_test_anon(folio)) 1454 if (!compound || nr < nr_pmdmapped) 1455 deferred_split_folio(folio); 1456 } 1457 1458 /* 1459 * It would be tidy to reset folio_test_anon mapping when fully 1460 * unmapped, but that might overwrite a racing page_add_anon_rmap 1461 * which increments mapcount after us but sets mapping before us: 1462 * so leave the reset to free_pages_prepare, and remember that 1463 * it's only reliable while mapped. 1464 */ 1465 1466 munlock_vma_folio(folio, vma, compound); 1467 } 1468 1469 /* 1470 * @arg: enum ttu_flags will be passed to this argument 1471 */ 1472 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1473 unsigned long address, void *arg) 1474 { 1475 struct mm_struct *mm = vma->vm_mm; 1476 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1477 pte_t pteval; 1478 struct page *subpage; 1479 bool anon_exclusive, ret = true; 1480 struct mmu_notifier_range range; 1481 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1482 unsigned long pfn; 1483 1484 /* 1485 * When racing against e.g. zap_pte_range() on another cpu, 1486 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1487 * try_to_unmap() may return before page_mapped() has become false, 1488 * if page table locking is skipped: use TTU_SYNC to wait for that. 1489 */ 1490 if (flags & TTU_SYNC) 1491 pvmw.flags = PVMW_SYNC; 1492 1493 if (flags & TTU_SPLIT_HUGE_PMD) 1494 split_huge_pmd_address(vma, address, false, folio); 1495 1496 /* 1497 * For THP, we have to assume the worse case ie pmd for invalidation. 1498 * For hugetlb, it could be much worse if we need to do pud 1499 * invalidation in the case of pmd sharing. 1500 * 1501 * Note that the folio can not be freed in this function as call of 1502 * try_to_unmap() must hold a reference on the folio. 1503 */ 1504 range.end = vma_address_end(&pvmw); 1505 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1506 address, range.end); 1507 if (folio_test_hugetlb(folio)) { 1508 /* 1509 * If sharing is possible, start and end will be adjusted 1510 * accordingly. 1511 */ 1512 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1513 &range.end); 1514 } 1515 mmu_notifier_invalidate_range_start(&range); 1516 1517 while (page_vma_mapped_walk(&pvmw)) { 1518 /* Unexpected PMD-mapped THP? */ 1519 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1520 1521 /* 1522 * If the folio is in an mlock()d vma, we must not swap it out. 1523 */ 1524 if (!(flags & TTU_IGNORE_MLOCK) && 1525 (vma->vm_flags & VM_LOCKED)) { 1526 /* Restore the mlock which got missed */ 1527 mlock_vma_folio(folio, vma, false); 1528 page_vma_mapped_walk_done(&pvmw); 1529 ret = false; 1530 break; 1531 } 1532 1533 pfn = pte_pfn(ptep_get(pvmw.pte)); 1534 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1535 address = pvmw.address; 1536 anon_exclusive = folio_test_anon(folio) && 1537 PageAnonExclusive(subpage); 1538 1539 if (folio_test_hugetlb(folio)) { 1540 bool anon = folio_test_anon(folio); 1541 1542 /* 1543 * The try_to_unmap() is only passed a hugetlb page 1544 * in the case where the hugetlb page is poisoned. 1545 */ 1546 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1547 /* 1548 * huge_pmd_unshare may unmap an entire PMD page. 1549 * There is no way of knowing exactly which PMDs may 1550 * be cached for this mm, so we must flush them all. 1551 * start/end were already adjusted above to cover this 1552 * range. 1553 */ 1554 flush_cache_range(vma, range.start, range.end); 1555 1556 /* 1557 * To call huge_pmd_unshare, i_mmap_rwsem must be 1558 * held in write mode. Caller needs to explicitly 1559 * do this outside rmap routines. 1560 * 1561 * We also must hold hugetlb vma_lock in write mode. 1562 * Lock order dictates acquiring vma_lock BEFORE 1563 * i_mmap_rwsem. We can only try lock here and fail 1564 * if unsuccessful. 1565 */ 1566 if (!anon) { 1567 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1568 if (!hugetlb_vma_trylock_write(vma)) { 1569 page_vma_mapped_walk_done(&pvmw); 1570 ret = false; 1571 break; 1572 } 1573 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1574 hugetlb_vma_unlock_write(vma); 1575 flush_tlb_range(vma, 1576 range.start, range.end); 1577 /* 1578 * The ref count of the PMD page was 1579 * dropped which is part of the way map 1580 * counting is done for shared PMDs. 1581 * Return 'true' here. When there is 1582 * no other sharing, huge_pmd_unshare 1583 * returns false and we will unmap the 1584 * actual page and drop map count 1585 * to zero. 1586 */ 1587 page_vma_mapped_walk_done(&pvmw); 1588 break; 1589 } 1590 hugetlb_vma_unlock_write(vma); 1591 } 1592 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1593 } else { 1594 flush_cache_page(vma, address, pfn); 1595 /* Nuke the page table entry. */ 1596 if (should_defer_flush(mm, flags)) { 1597 /* 1598 * We clear the PTE but do not flush so potentially 1599 * a remote CPU could still be writing to the folio. 1600 * If the entry was previously clean then the 1601 * architecture must guarantee that a clear->dirty 1602 * transition on a cached TLB entry is written through 1603 * and traps if the PTE is unmapped. 1604 */ 1605 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1606 1607 set_tlb_ubc_flush_pending(mm, pteval, address); 1608 } else { 1609 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1610 } 1611 } 1612 1613 /* 1614 * Now the pte is cleared. If this pte was uffd-wp armed, 1615 * we may want to replace a none pte with a marker pte if 1616 * it's file-backed, so we don't lose the tracking info. 1617 */ 1618 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1619 1620 /* Set the dirty flag on the folio now the pte is gone. */ 1621 if (pte_dirty(pteval)) 1622 folio_mark_dirty(folio); 1623 1624 /* Update high watermark before we lower rss */ 1625 update_hiwater_rss(mm); 1626 1627 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1628 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1629 if (folio_test_hugetlb(folio)) { 1630 hugetlb_count_sub(folio_nr_pages(folio), mm); 1631 set_huge_pte_at(mm, address, pvmw.pte, pteval); 1632 } else { 1633 dec_mm_counter(mm, mm_counter(&folio->page)); 1634 set_pte_at(mm, address, pvmw.pte, pteval); 1635 } 1636 1637 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1638 /* 1639 * The guest indicated that the page content is of no 1640 * interest anymore. Simply discard the pte, vmscan 1641 * will take care of the rest. 1642 * A future reference will then fault in a new zero 1643 * page. When userfaultfd is active, we must not drop 1644 * this page though, as its main user (postcopy 1645 * migration) will not expect userfaults on already 1646 * copied pages. 1647 */ 1648 dec_mm_counter(mm, mm_counter(&folio->page)); 1649 } else if (folio_test_anon(folio)) { 1650 swp_entry_t entry = page_swap_entry(subpage); 1651 pte_t swp_pte; 1652 /* 1653 * Store the swap location in the pte. 1654 * See handle_pte_fault() ... 1655 */ 1656 if (unlikely(folio_test_swapbacked(folio) != 1657 folio_test_swapcache(folio))) { 1658 WARN_ON_ONCE(1); 1659 ret = false; 1660 page_vma_mapped_walk_done(&pvmw); 1661 break; 1662 } 1663 1664 /* MADV_FREE page check */ 1665 if (!folio_test_swapbacked(folio)) { 1666 int ref_count, map_count; 1667 1668 /* 1669 * Synchronize with gup_pte_range(): 1670 * - clear PTE; barrier; read refcount 1671 * - inc refcount; barrier; read PTE 1672 */ 1673 smp_mb(); 1674 1675 ref_count = folio_ref_count(folio); 1676 map_count = folio_mapcount(folio); 1677 1678 /* 1679 * Order reads for page refcount and dirty flag 1680 * (see comments in __remove_mapping()). 1681 */ 1682 smp_rmb(); 1683 1684 /* 1685 * The only page refs must be one from isolation 1686 * plus the rmap(s) (dropped by discard:). 1687 */ 1688 if (ref_count == 1 + map_count && 1689 !folio_test_dirty(folio)) { 1690 dec_mm_counter(mm, MM_ANONPAGES); 1691 goto discard; 1692 } 1693 1694 /* 1695 * If the folio was redirtied, it cannot be 1696 * discarded. Remap the page to page table. 1697 */ 1698 set_pte_at(mm, address, pvmw.pte, pteval); 1699 folio_set_swapbacked(folio); 1700 ret = false; 1701 page_vma_mapped_walk_done(&pvmw); 1702 break; 1703 } 1704 1705 if (swap_duplicate(entry) < 0) { 1706 set_pte_at(mm, address, pvmw.pte, pteval); 1707 ret = false; 1708 page_vma_mapped_walk_done(&pvmw); 1709 break; 1710 } 1711 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1712 swap_free(entry); 1713 set_pte_at(mm, address, pvmw.pte, pteval); 1714 ret = false; 1715 page_vma_mapped_walk_done(&pvmw); 1716 break; 1717 } 1718 1719 /* See page_try_share_anon_rmap(): clear PTE first. */ 1720 if (anon_exclusive && 1721 page_try_share_anon_rmap(subpage)) { 1722 swap_free(entry); 1723 set_pte_at(mm, address, pvmw.pte, pteval); 1724 ret = false; 1725 page_vma_mapped_walk_done(&pvmw); 1726 break; 1727 } 1728 if (list_empty(&mm->mmlist)) { 1729 spin_lock(&mmlist_lock); 1730 if (list_empty(&mm->mmlist)) 1731 list_add(&mm->mmlist, &init_mm.mmlist); 1732 spin_unlock(&mmlist_lock); 1733 } 1734 dec_mm_counter(mm, MM_ANONPAGES); 1735 inc_mm_counter(mm, MM_SWAPENTS); 1736 swp_pte = swp_entry_to_pte(entry); 1737 if (anon_exclusive) 1738 swp_pte = pte_swp_mkexclusive(swp_pte); 1739 if (pte_soft_dirty(pteval)) 1740 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1741 if (pte_uffd_wp(pteval)) 1742 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1743 set_pte_at(mm, address, pvmw.pte, swp_pte); 1744 } else { 1745 /* 1746 * This is a locked file-backed folio, 1747 * so it cannot be removed from the page 1748 * cache and replaced by a new folio before 1749 * mmu_notifier_invalidate_range_end, so no 1750 * concurrent thread might update its page table 1751 * to point at a new folio while a device is 1752 * still using this folio. 1753 * 1754 * See Documentation/mm/mmu_notifier.rst 1755 */ 1756 dec_mm_counter(mm, mm_counter_file(&folio->page)); 1757 } 1758 discard: 1759 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 1760 if (vma->vm_flags & VM_LOCKED) 1761 mlock_drain_local(); 1762 folio_put(folio); 1763 } 1764 1765 mmu_notifier_invalidate_range_end(&range); 1766 1767 return ret; 1768 } 1769 1770 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1771 { 1772 return vma_is_temporary_stack(vma); 1773 } 1774 1775 static int folio_not_mapped(struct folio *folio) 1776 { 1777 return !folio_mapped(folio); 1778 } 1779 1780 /** 1781 * try_to_unmap - Try to remove all page table mappings to a folio. 1782 * @folio: The folio to unmap. 1783 * @flags: action and flags 1784 * 1785 * Tries to remove all the page table entries which are mapping this 1786 * folio. It is the caller's responsibility to check if the folio is 1787 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1788 * 1789 * Context: Caller must hold the folio lock. 1790 */ 1791 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1792 { 1793 struct rmap_walk_control rwc = { 1794 .rmap_one = try_to_unmap_one, 1795 .arg = (void *)flags, 1796 .done = folio_not_mapped, 1797 .anon_lock = folio_lock_anon_vma_read, 1798 }; 1799 1800 if (flags & TTU_RMAP_LOCKED) 1801 rmap_walk_locked(folio, &rwc); 1802 else 1803 rmap_walk(folio, &rwc); 1804 } 1805 1806 /* 1807 * @arg: enum ttu_flags will be passed to this argument. 1808 * 1809 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1810 * containing migration entries. 1811 */ 1812 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 1813 unsigned long address, void *arg) 1814 { 1815 struct mm_struct *mm = vma->vm_mm; 1816 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1817 pte_t pteval; 1818 struct page *subpage; 1819 bool anon_exclusive, ret = true; 1820 struct mmu_notifier_range range; 1821 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1822 unsigned long pfn; 1823 1824 /* 1825 * When racing against e.g. zap_pte_range() on another cpu, 1826 * in between its ptep_get_and_clear_full() and page_remove_rmap(), 1827 * try_to_migrate() may return before page_mapped() has become false, 1828 * if page table locking is skipped: use TTU_SYNC to wait for that. 1829 */ 1830 if (flags & TTU_SYNC) 1831 pvmw.flags = PVMW_SYNC; 1832 1833 /* 1834 * unmap_page() in mm/huge_memory.c is the only user of migration with 1835 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 1836 */ 1837 if (flags & TTU_SPLIT_HUGE_PMD) 1838 split_huge_pmd_address(vma, address, true, folio); 1839 1840 /* 1841 * For THP, we have to assume the worse case ie pmd for invalidation. 1842 * For hugetlb, it could be much worse if we need to do pud 1843 * invalidation in the case of pmd sharing. 1844 * 1845 * Note that the page can not be free in this function as call of 1846 * try_to_unmap() must hold a reference on the page. 1847 */ 1848 range.end = vma_address_end(&pvmw); 1849 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1850 address, range.end); 1851 if (folio_test_hugetlb(folio)) { 1852 /* 1853 * If sharing is possible, start and end will be adjusted 1854 * accordingly. 1855 */ 1856 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1857 &range.end); 1858 } 1859 mmu_notifier_invalidate_range_start(&range); 1860 1861 while (page_vma_mapped_walk(&pvmw)) { 1862 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1863 /* PMD-mapped THP migration entry */ 1864 if (!pvmw.pte) { 1865 subpage = folio_page(folio, 1866 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 1867 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 1868 !folio_test_pmd_mappable(folio), folio); 1869 1870 if (set_pmd_migration_entry(&pvmw, subpage)) { 1871 ret = false; 1872 page_vma_mapped_walk_done(&pvmw); 1873 break; 1874 } 1875 continue; 1876 } 1877 #endif 1878 1879 /* Unexpected PMD-mapped THP? */ 1880 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1881 1882 pfn = pte_pfn(ptep_get(pvmw.pte)); 1883 1884 if (folio_is_zone_device(folio)) { 1885 /* 1886 * Our PTE is a non-present device exclusive entry and 1887 * calculating the subpage as for the common case would 1888 * result in an invalid pointer. 1889 * 1890 * Since only PAGE_SIZE pages can currently be 1891 * migrated, just set it to page. This will need to be 1892 * changed when hugepage migrations to device private 1893 * memory are supported. 1894 */ 1895 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 1896 subpage = &folio->page; 1897 } else { 1898 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1899 } 1900 address = pvmw.address; 1901 anon_exclusive = folio_test_anon(folio) && 1902 PageAnonExclusive(subpage); 1903 1904 if (folio_test_hugetlb(folio)) { 1905 bool anon = folio_test_anon(folio); 1906 1907 /* 1908 * huge_pmd_unshare may unmap an entire PMD page. 1909 * There is no way of knowing exactly which PMDs may 1910 * be cached for this mm, so we must flush them all. 1911 * start/end were already adjusted above to cover this 1912 * range. 1913 */ 1914 flush_cache_range(vma, range.start, range.end); 1915 1916 /* 1917 * To call huge_pmd_unshare, i_mmap_rwsem must be 1918 * held in write mode. Caller needs to explicitly 1919 * do this outside rmap routines. 1920 * 1921 * We also must hold hugetlb vma_lock in write mode. 1922 * Lock order dictates acquiring vma_lock BEFORE 1923 * i_mmap_rwsem. We can only try lock here and 1924 * fail if unsuccessful. 1925 */ 1926 if (!anon) { 1927 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1928 if (!hugetlb_vma_trylock_write(vma)) { 1929 page_vma_mapped_walk_done(&pvmw); 1930 ret = false; 1931 break; 1932 } 1933 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1934 hugetlb_vma_unlock_write(vma); 1935 flush_tlb_range(vma, 1936 range.start, range.end); 1937 1938 /* 1939 * The ref count of the PMD page was 1940 * dropped which is part of the way map 1941 * counting is done for shared PMDs. 1942 * Return 'true' here. When there is 1943 * no other sharing, huge_pmd_unshare 1944 * returns false and we will unmap the 1945 * actual page and drop map count 1946 * to zero. 1947 */ 1948 page_vma_mapped_walk_done(&pvmw); 1949 break; 1950 } 1951 hugetlb_vma_unlock_write(vma); 1952 } 1953 /* Nuke the hugetlb page table entry */ 1954 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1955 } else { 1956 flush_cache_page(vma, address, pfn); 1957 /* Nuke the page table entry. */ 1958 if (should_defer_flush(mm, flags)) { 1959 /* 1960 * We clear the PTE but do not flush so potentially 1961 * a remote CPU could still be writing to the folio. 1962 * If the entry was previously clean then the 1963 * architecture must guarantee that a clear->dirty 1964 * transition on a cached TLB entry is written through 1965 * and traps if the PTE is unmapped. 1966 */ 1967 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1968 1969 set_tlb_ubc_flush_pending(mm, pteval, address); 1970 } else { 1971 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1972 } 1973 } 1974 1975 /* Set the dirty flag on the folio now the pte is gone. */ 1976 if (pte_dirty(pteval)) 1977 folio_mark_dirty(folio); 1978 1979 /* Update high watermark before we lower rss */ 1980 update_hiwater_rss(mm); 1981 1982 if (folio_is_device_private(folio)) { 1983 unsigned long pfn = folio_pfn(folio); 1984 swp_entry_t entry; 1985 pte_t swp_pte; 1986 1987 if (anon_exclusive) 1988 BUG_ON(page_try_share_anon_rmap(subpage)); 1989 1990 /* 1991 * Store the pfn of the page in a special migration 1992 * pte. do_swap_page() will wait until the migration 1993 * pte is removed and then restart fault handling. 1994 */ 1995 entry = pte_to_swp_entry(pteval); 1996 if (is_writable_device_private_entry(entry)) 1997 entry = make_writable_migration_entry(pfn); 1998 else if (anon_exclusive) 1999 entry = make_readable_exclusive_migration_entry(pfn); 2000 else 2001 entry = make_readable_migration_entry(pfn); 2002 swp_pte = swp_entry_to_pte(entry); 2003 2004 /* 2005 * pteval maps a zone device page and is therefore 2006 * a swap pte. 2007 */ 2008 if (pte_swp_soft_dirty(pteval)) 2009 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2010 if (pte_swp_uffd_wp(pteval)) 2011 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2012 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2013 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2014 compound_order(&folio->page)); 2015 /* 2016 * No need to invalidate here it will synchronize on 2017 * against the special swap migration pte. 2018 */ 2019 } else if (PageHWPoison(subpage)) { 2020 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2021 if (folio_test_hugetlb(folio)) { 2022 hugetlb_count_sub(folio_nr_pages(folio), mm); 2023 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2024 } else { 2025 dec_mm_counter(mm, mm_counter(&folio->page)); 2026 set_pte_at(mm, address, pvmw.pte, pteval); 2027 } 2028 2029 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2030 /* 2031 * The guest indicated that the page content is of no 2032 * interest anymore. Simply discard the pte, vmscan 2033 * will take care of the rest. 2034 * A future reference will then fault in a new zero 2035 * page. When userfaultfd is active, we must not drop 2036 * this page though, as its main user (postcopy 2037 * migration) will not expect userfaults on already 2038 * copied pages. 2039 */ 2040 dec_mm_counter(mm, mm_counter(&folio->page)); 2041 } else { 2042 swp_entry_t entry; 2043 pte_t swp_pte; 2044 2045 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2046 if (folio_test_hugetlb(folio)) 2047 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2048 else 2049 set_pte_at(mm, address, pvmw.pte, pteval); 2050 ret = false; 2051 page_vma_mapped_walk_done(&pvmw); 2052 break; 2053 } 2054 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2055 !anon_exclusive, subpage); 2056 2057 /* See page_try_share_anon_rmap(): clear PTE first. */ 2058 if (anon_exclusive && 2059 page_try_share_anon_rmap(subpage)) { 2060 if (folio_test_hugetlb(folio)) 2061 set_huge_pte_at(mm, address, pvmw.pte, pteval); 2062 else 2063 set_pte_at(mm, address, pvmw.pte, pteval); 2064 ret = false; 2065 page_vma_mapped_walk_done(&pvmw); 2066 break; 2067 } 2068 2069 /* 2070 * Store the pfn of the page in a special migration 2071 * pte. do_swap_page() will wait until the migration 2072 * pte is removed and then restart fault handling. 2073 */ 2074 if (pte_write(pteval)) 2075 entry = make_writable_migration_entry( 2076 page_to_pfn(subpage)); 2077 else if (anon_exclusive) 2078 entry = make_readable_exclusive_migration_entry( 2079 page_to_pfn(subpage)); 2080 else 2081 entry = make_readable_migration_entry( 2082 page_to_pfn(subpage)); 2083 if (pte_young(pteval)) 2084 entry = make_migration_entry_young(entry); 2085 if (pte_dirty(pteval)) 2086 entry = make_migration_entry_dirty(entry); 2087 swp_pte = swp_entry_to_pte(entry); 2088 if (pte_soft_dirty(pteval)) 2089 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2090 if (pte_uffd_wp(pteval)) 2091 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2092 if (folio_test_hugetlb(folio)) 2093 set_huge_pte_at(mm, address, pvmw.pte, swp_pte); 2094 else 2095 set_pte_at(mm, address, pvmw.pte, swp_pte); 2096 trace_set_migration_pte(address, pte_val(swp_pte), 2097 compound_order(&folio->page)); 2098 /* 2099 * No need to invalidate here it will synchronize on 2100 * against the special swap migration pte. 2101 */ 2102 } 2103 2104 page_remove_rmap(subpage, vma, folio_test_hugetlb(folio)); 2105 if (vma->vm_flags & VM_LOCKED) 2106 mlock_drain_local(); 2107 folio_put(folio); 2108 } 2109 2110 mmu_notifier_invalidate_range_end(&range); 2111 2112 return ret; 2113 } 2114 2115 /** 2116 * try_to_migrate - try to replace all page table mappings with swap entries 2117 * @folio: the folio to replace page table entries for 2118 * @flags: action and flags 2119 * 2120 * Tries to remove all the page table entries which are mapping this folio and 2121 * replace them with special swap entries. Caller must hold the folio lock. 2122 */ 2123 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2124 { 2125 struct rmap_walk_control rwc = { 2126 .rmap_one = try_to_migrate_one, 2127 .arg = (void *)flags, 2128 .done = folio_not_mapped, 2129 .anon_lock = folio_lock_anon_vma_read, 2130 }; 2131 2132 /* 2133 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2134 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2135 */ 2136 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2137 TTU_SYNC | TTU_BATCH_FLUSH))) 2138 return; 2139 2140 if (folio_is_zone_device(folio) && 2141 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2142 return; 2143 2144 /* 2145 * During exec, a temporary VMA is setup and later moved. 2146 * The VMA is moved under the anon_vma lock but not the 2147 * page tables leading to a race where migration cannot 2148 * find the migration ptes. Rather than increasing the 2149 * locking requirements of exec(), migration skips 2150 * temporary VMAs until after exec() completes. 2151 */ 2152 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2153 rwc.invalid_vma = invalid_migration_vma; 2154 2155 if (flags & TTU_RMAP_LOCKED) 2156 rmap_walk_locked(folio, &rwc); 2157 else 2158 rmap_walk(folio, &rwc); 2159 } 2160 2161 #ifdef CONFIG_DEVICE_PRIVATE 2162 struct make_exclusive_args { 2163 struct mm_struct *mm; 2164 unsigned long address; 2165 void *owner; 2166 bool valid; 2167 }; 2168 2169 static bool page_make_device_exclusive_one(struct folio *folio, 2170 struct vm_area_struct *vma, unsigned long address, void *priv) 2171 { 2172 struct mm_struct *mm = vma->vm_mm; 2173 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2174 struct make_exclusive_args *args = priv; 2175 pte_t pteval; 2176 struct page *subpage; 2177 bool ret = true; 2178 struct mmu_notifier_range range; 2179 swp_entry_t entry; 2180 pte_t swp_pte; 2181 pte_t ptent; 2182 2183 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2184 vma->vm_mm, address, min(vma->vm_end, 2185 address + folio_size(folio)), 2186 args->owner); 2187 mmu_notifier_invalidate_range_start(&range); 2188 2189 while (page_vma_mapped_walk(&pvmw)) { 2190 /* Unexpected PMD-mapped THP? */ 2191 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2192 2193 ptent = ptep_get(pvmw.pte); 2194 if (!pte_present(ptent)) { 2195 ret = false; 2196 page_vma_mapped_walk_done(&pvmw); 2197 break; 2198 } 2199 2200 subpage = folio_page(folio, 2201 pte_pfn(ptent) - folio_pfn(folio)); 2202 address = pvmw.address; 2203 2204 /* Nuke the page table entry. */ 2205 flush_cache_page(vma, address, pte_pfn(ptent)); 2206 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2207 2208 /* Set the dirty flag on the folio now the pte is gone. */ 2209 if (pte_dirty(pteval)) 2210 folio_mark_dirty(folio); 2211 2212 /* 2213 * Check that our target page is still mapped at the expected 2214 * address. 2215 */ 2216 if (args->mm == mm && args->address == address && 2217 pte_write(pteval)) 2218 args->valid = true; 2219 2220 /* 2221 * Store the pfn of the page in a special migration 2222 * pte. do_swap_page() will wait until the migration 2223 * pte is removed and then restart fault handling. 2224 */ 2225 if (pte_write(pteval)) 2226 entry = make_writable_device_exclusive_entry( 2227 page_to_pfn(subpage)); 2228 else 2229 entry = make_readable_device_exclusive_entry( 2230 page_to_pfn(subpage)); 2231 swp_pte = swp_entry_to_pte(entry); 2232 if (pte_soft_dirty(pteval)) 2233 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2234 if (pte_uffd_wp(pteval)) 2235 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2236 2237 set_pte_at(mm, address, pvmw.pte, swp_pte); 2238 2239 /* 2240 * There is a reference on the page for the swap entry which has 2241 * been removed, so shouldn't take another. 2242 */ 2243 page_remove_rmap(subpage, vma, false); 2244 } 2245 2246 mmu_notifier_invalidate_range_end(&range); 2247 2248 return ret; 2249 } 2250 2251 /** 2252 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2253 * @folio: The folio to replace page table entries for. 2254 * @mm: The mm_struct where the folio is expected to be mapped. 2255 * @address: Address where the folio is expected to be mapped. 2256 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2257 * 2258 * Tries to remove all the page table entries which are mapping this 2259 * folio and replace them with special device exclusive swap entries to 2260 * grant a device exclusive access to the folio. 2261 * 2262 * Context: Caller must hold the folio lock. 2263 * Return: false if the page is still mapped, or if it could not be unmapped 2264 * from the expected address. Otherwise returns true (success). 2265 */ 2266 static bool folio_make_device_exclusive(struct folio *folio, 2267 struct mm_struct *mm, unsigned long address, void *owner) 2268 { 2269 struct make_exclusive_args args = { 2270 .mm = mm, 2271 .address = address, 2272 .owner = owner, 2273 .valid = false, 2274 }; 2275 struct rmap_walk_control rwc = { 2276 .rmap_one = page_make_device_exclusive_one, 2277 .done = folio_not_mapped, 2278 .anon_lock = folio_lock_anon_vma_read, 2279 .arg = &args, 2280 }; 2281 2282 /* 2283 * Restrict to anonymous folios for now to avoid potential writeback 2284 * issues. 2285 */ 2286 if (!folio_test_anon(folio)) 2287 return false; 2288 2289 rmap_walk(folio, &rwc); 2290 2291 return args.valid && !folio_mapcount(folio); 2292 } 2293 2294 /** 2295 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2296 * @mm: mm_struct of associated target process 2297 * @start: start of the region to mark for exclusive device access 2298 * @end: end address of region 2299 * @pages: returns the pages which were successfully marked for exclusive access 2300 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2301 * 2302 * Returns: number of pages found in the range by GUP. A page is marked for 2303 * exclusive access only if the page pointer is non-NULL. 2304 * 2305 * This function finds ptes mapping page(s) to the given address range, locks 2306 * them and replaces mappings with special swap entries preventing userspace CPU 2307 * access. On fault these entries are replaced with the original mapping after 2308 * calling MMU notifiers. 2309 * 2310 * A driver using this to program access from a device must use a mmu notifier 2311 * critical section to hold a device specific lock during programming. Once 2312 * programming is complete it should drop the page lock and reference after 2313 * which point CPU access to the page will revoke the exclusive access. 2314 */ 2315 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2316 unsigned long end, struct page **pages, 2317 void *owner) 2318 { 2319 long npages = (end - start) >> PAGE_SHIFT; 2320 long i; 2321 2322 npages = get_user_pages_remote(mm, start, npages, 2323 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2324 pages, NULL); 2325 if (npages < 0) 2326 return npages; 2327 2328 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2329 struct folio *folio = page_folio(pages[i]); 2330 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2331 folio_put(folio); 2332 pages[i] = NULL; 2333 continue; 2334 } 2335 2336 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2337 folio_unlock(folio); 2338 folio_put(folio); 2339 pages[i] = NULL; 2340 } 2341 } 2342 2343 return npages; 2344 } 2345 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2346 #endif 2347 2348 void __put_anon_vma(struct anon_vma *anon_vma) 2349 { 2350 struct anon_vma *root = anon_vma->root; 2351 2352 anon_vma_free(anon_vma); 2353 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2354 anon_vma_free(root); 2355 } 2356 2357 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2358 struct rmap_walk_control *rwc) 2359 { 2360 struct anon_vma *anon_vma; 2361 2362 if (rwc->anon_lock) 2363 return rwc->anon_lock(folio, rwc); 2364 2365 /* 2366 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2367 * because that depends on page_mapped(); but not all its usages 2368 * are holding mmap_lock. Users without mmap_lock are required to 2369 * take a reference count to prevent the anon_vma disappearing 2370 */ 2371 anon_vma = folio_anon_vma(folio); 2372 if (!anon_vma) 2373 return NULL; 2374 2375 if (anon_vma_trylock_read(anon_vma)) 2376 goto out; 2377 2378 if (rwc->try_lock) { 2379 anon_vma = NULL; 2380 rwc->contended = true; 2381 goto out; 2382 } 2383 2384 anon_vma_lock_read(anon_vma); 2385 out: 2386 return anon_vma; 2387 } 2388 2389 /* 2390 * rmap_walk_anon - do something to anonymous page using the object-based 2391 * rmap method 2392 * @folio: the folio to be handled 2393 * @rwc: control variable according to each walk type 2394 * @locked: caller holds relevant rmap lock 2395 * 2396 * Find all the mappings of a folio using the mapping pointer and the vma 2397 * chains contained in the anon_vma struct it points to. 2398 */ 2399 static void rmap_walk_anon(struct folio *folio, 2400 struct rmap_walk_control *rwc, bool locked) 2401 { 2402 struct anon_vma *anon_vma; 2403 pgoff_t pgoff_start, pgoff_end; 2404 struct anon_vma_chain *avc; 2405 2406 if (locked) { 2407 anon_vma = folio_anon_vma(folio); 2408 /* anon_vma disappear under us? */ 2409 VM_BUG_ON_FOLIO(!anon_vma, folio); 2410 } else { 2411 anon_vma = rmap_walk_anon_lock(folio, rwc); 2412 } 2413 if (!anon_vma) 2414 return; 2415 2416 pgoff_start = folio_pgoff(folio); 2417 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2418 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2419 pgoff_start, pgoff_end) { 2420 struct vm_area_struct *vma = avc->vma; 2421 unsigned long address = vma_address(&folio->page, vma); 2422 2423 VM_BUG_ON_VMA(address == -EFAULT, vma); 2424 cond_resched(); 2425 2426 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2427 continue; 2428 2429 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2430 break; 2431 if (rwc->done && rwc->done(folio)) 2432 break; 2433 } 2434 2435 if (!locked) 2436 anon_vma_unlock_read(anon_vma); 2437 } 2438 2439 /* 2440 * rmap_walk_file - do something to file page using the object-based rmap method 2441 * @folio: the folio to be handled 2442 * @rwc: control variable according to each walk type 2443 * @locked: caller holds relevant rmap lock 2444 * 2445 * Find all the mappings of a folio using the mapping pointer and the vma chains 2446 * contained in the address_space struct it points to. 2447 */ 2448 static void rmap_walk_file(struct folio *folio, 2449 struct rmap_walk_control *rwc, bool locked) 2450 { 2451 struct address_space *mapping = folio_mapping(folio); 2452 pgoff_t pgoff_start, pgoff_end; 2453 struct vm_area_struct *vma; 2454 2455 /* 2456 * The page lock not only makes sure that page->mapping cannot 2457 * suddenly be NULLified by truncation, it makes sure that the 2458 * structure at mapping cannot be freed and reused yet, 2459 * so we can safely take mapping->i_mmap_rwsem. 2460 */ 2461 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2462 2463 if (!mapping) 2464 return; 2465 2466 pgoff_start = folio_pgoff(folio); 2467 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2468 if (!locked) { 2469 if (i_mmap_trylock_read(mapping)) 2470 goto lookup; 2471 2472 if (rwc->try_lock) { 2473 rwc->contended = true; 2474 return; 2475 } 2476 2477 i_mmap_lock_read(mapping); 2478 } 2479 lookup: 2480 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2481 pgoff_start, pgoff_end) { 2482 unsigned long address = vma_address(&folio->page, vma); 2483 2484 VM_BUG_ON_VMA(address == -EFAULT, vma); 2485 cond_resched(); 2486 2487 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2488 continue; 2489 2490 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2491 goto done; 2492 if (rwc->done && rwc->done(folio)) 2493 goto done; 2494 } 2495 2496 done: 2497 if (!locked) 2498 i_mmap_unlock_read(mapping); 2499 } 2500 2501 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2502 { 2503 if (unlikely(folio_test_ksm(folio))) 2504 rmap_walk_ksm(folio, rwc); 2505 else if (folio_test_anon(folio)) 2506 rmap_walk_anon(folio, rwc, false); 2507 else 2508 rmap_walk_file(folio, rwc, false); 2509 } 2510 2511 /* Like rmap_walk, but caller holds relevant rmap lock */ 2512 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2513 { 2514 /* no ksm support for now */ 2515 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2516 if (folio_test_anon(folio)) 2517 rmap_walk_anon(folio, rwc, true); 2518 else 2519 rmap_walk_file(folio, rwc, true); 2520 } 2521 2522 #ifdef CONFIG_HUGETLB_PAGE 2523 /* 2524 * The following two functions are for anonymous (private mapped) hugepages. 2525 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2526 * and no lru code, because we handle hugepages differently from common pages. 2527 * 2528 * RMAP_COMPOUND is ignored. 2529 */ 2530 void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, 2531 unsigned long address, rmap_t flags) 2532 { 2533 struct folio *folio = page_folio(page); 2534 struct anon_vma *anon_vma = vma->anon_vma; 2535 int first; 2536 2537 BUG_ON(!folio_test_locked(folio)); 2538 BUG_ON(!anon_vma); 2539 /* address might be in next vma when migration races vma_merge */ 2540 first = atomic_inc_and_test(&folio->_entire_mapcount); 2541 VM_BUG_ON_PAGE(!first && (flags & RMAP_EXCLUSIVE), page); 2542 VM_BUG_ON_PAGE(!first && PageAnonExclusive(page), page); 2543 if (first) 2544 __page_set_anon_rmap(folio, page, vma, address, 2545 !!(flags & RMAP_EXCLUSIVE)); 2546 } 2547 2548 void hugepage_add_new_anon_rmap(struct folio *folio, 2549 struct vm_area_struct *vma, unsigned long address) 2550 { 2551 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2552 /* increment count (starts at -1) */ 2553 atomic_set(&folio->_entire_mapcount, 0); 2554 folio_clear_hugetlb_restore_reserve(folio); 2555 __page_set_anon_rmap(folio, &folio->page, vma, address, 1); 2556 } 2557 #endif /* CONFIG_HUGETLB_PAGE */ 2558