1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within 28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never 29 * taken together; in truncation, i_mutex is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock or pte_lock 36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 37 * swap_lock (in swap_duplicate, swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * mapping->private_lock (in __set_page_dirty_buffers) 40 * inode_lock (in set_page_dirty's __mark_inode_dirty) 41 * sb_lock (within inode_lock in fs/fs-writeback.c) 42 * mapping->tree_lock (widely used, in set_page_dirty, 43 * in arch-dependent flush_dcache_mmap_lock, 44 * within inode_lock in __sync_single_inode) 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 57 #include <asm/tlbflush.h> 58 59 //#define RMAP_DEBUG /* can be enabled only for debugging */ 60 61 kmem_cache_t *anon_vma_cachep; 62 63 static inline void validate_anon_vma(struct vm_area_struct *find_vma) 64 { 65 #ifdef RMAP_DEBUG 66 struct anon_vma *anon_vma = find_vma->anon_vma; 67 struct vm_area_struct *vma; 68 unsigned int mapcount = 0; 69 int found = 0; 70 71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 72 mapcount++; 73 BUG_ON(mapcount > 100000); 74 if (vma == find_vma) 75 found = 1; 76 } 77 BUG_ON(!found); 78 #endif 79 } 80 81 /* This must be called under the mmap_sem. */ 82 int anon_vma_prepare(struct vm_area_struct *vma) 83 { 84 struct anon_vma *anon_vma = vma->anon_vma; 85 86 might_sleep(); 87 if (unlikely(!anon_vma)) { 88 struct mm_struct *mm = vma->vm_mm; 89 struct anon_vma *allocated, *locked; 90 91 anon_vma = find_mergeable_anon_vma(vma); 92 if (anon_vma) { 93 allocated = NULL; 94 locked = anon_vma; 95 spin_lock(&locked->lock); 96 } else { 97 anon_vma = anon_vma_alloc(); 98 if (unlikely(!anon_vma)) 99 return -ENOMEM; 100 allocated = anon_vma; 101 locked = NULL; 102 } 103 104 /* page_table_lock to protect against threads */ 105 spin_lock(&mm->page_table_lock); 106 if (likely(!vma->anon_vma)) { 107 vma->anon_vma = anon_vma; 108 list_add(&vma->anon_vma_node, &anon_vma->head); 109 allocated = NULL; 110 } 111 spin_unlock(&mm->page_table_lock); 112 113 if (locked) 114 spin_unlock(&locked->lock); 115 if (unlikely(allocated)) 116 anon_vma_free(allocated); 117 } 118 return 0; 119 } 120 121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 122 { 123 BUG_ON(vma->anon_vma != next->anon_vma); 124 list_del(&next->anon_vma_node); 125 } 126 127 void __anon_vma_link(struct vm_area_struct *vma) 128 { 129 struct anon_vma *anon_vma = vma->anon_vma; 130 131 if (anon_vma) { 132 list_add(&vma->anon_vma_node, &anon_vma->head); 133 validate_anon_vma(vma); 134 } 135 } 136 137 void anon_vma_link(struct vm_area_struct *vma) 138 { 139 struct anon_vma *anon_vma = vma->anon_vma; 140 141 if (anon_vma) { 142 spin_lock(&anon_vma->lock); 143 list_add(&vma->anon_vma_node, &anon_vma->head); 144 validate_anon_vma(vma); 145 spin_unlock(&anon_vma->lock); 146 } 147 } 148 149 void anon_vma_unlink(struct vm_area_struct *vma) 150 { 151 struct anon_vma *anon_vma = vma->anon_vma; 152 int empty; 153 154 if (!anon_vma) 155 return; 156 157 spin_lock(&anon_vma->lock); 158 validate_anon_vma(vma); 159 list_del(&vma->anon_vma_node); 160 161 /* We must garbage collect the anon_vma if it's empty */ 162 empty = list_empty(&anon_vma->head); 163 spin_unlock(&anon_vma->lock); 164 165 if (empty) 166 anon_vma_free(anon_vma); 167 } 168 169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) 170 { 171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 172 SLAB_CTOR_CONSTRUCTOR) { 173 struct anon_vma *anon_vma = data; 174 175 spin_lock_init(&anon_vma->lock); 176 INIT_LIST_HEAD(&anon_vma->head); 177 } 178 } 179 180 void __init anon_vma_init(void) 181 { 182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 184 } 185 186 /* 187 * Getting a lock on a stable anon_vma from a page off the LRU is 188 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 189 */ 190 static struct anon_vma *page_lock_anon_vma(struct page *page) 191 { 192 struct anon_vma *anon_vma = NULL; 193 unsigned long anon_mapping; 194 195 rcu_read_lock(); 196 anon_mapping = (unsigned long) page->mapping; 197 if (!(anon_mapping & PAGE_MAPPING_ANON)) 198 goto out; 199 if (!page_mapped(page)) 200 goto out; 201 202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 203 spin_lock(&anon_vma->lock); 204 out: 205 rcu_read_unlock(); 206 return anon_vma; 207 } 208 209 #ifdef CONFIG_MIGRATION 210 /* 211 * Remove an anonymous page from swap replacing the swap pte's 212 * through real pte's pointing to valid pages and then releasing 213 * the page from the swap cache. 214 * 215 * Must hold page lock on page and mmap_sem of one vma that contains 216 * the page. 217 */ 218 void remove_from_swap(struct page *page) 219 { 220 struct anon_vma *anon_vma; 221 struct vm_area_struct *vma; 222 unsigned long mapping; 223 224 if (!PageSwapCache(page)) 225 return; 226 227 mapping = (unsigned long)page->mapping; 228 229 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0) 230 return; 231 232 /* 233 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma. 234 */ 235 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON); 236 spin_lock(&anon_vma->lock); 237 238 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 239 remove_vma_swap(vma, page); 240 241 spin_unlock(&anon_vma->lock); 242 delete_from_swap_cache(page); 243 } 244 EXPORT_SYMBOL(remove_from_swap); 245 #endif 246 247 /* 248 * At what user virtual address is page expected in vma? 249 */ 250 static inline unsigned long 251 vma_address(struct page *page, struct vm_area_struct *vma) 252 { 253 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 254 unsigned long address; 255 256 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 257 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 258 /* page should be within any vma from prio_tree_next */ 259 BUG_ON(!PageAnon(page)); 260 return -EFAULT; 261 } 262 return address; 263 } 264 265 /* 266 * At what user virtual address is page expected in vma? checking that the 267 * page matches the vma: currently only used on anon pages, by unuse_vma; 268 */ 269 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 270 { 271 if (PageAnon(page)) { 272 if ((void *)vma->anon_vma != 273 (void *)page->mapping - PAGE_MAPPING_ANON) 274 return -EFAULT; 275 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 276 if (!vma->vm_file || 277 vma->vm_file->f_mapping != page->mapping) 278 return -EFAULT; 279 } else 280 return -EFAULT; 281 return vma_address(page, vma); 282 } 283 284 /* 285 * Check that @page is mapped at @address into @mm. 286 * 287 * On success returns with pte mapped and locked. 288 */ 289 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 290 unsigned long address, spinlock_t **ptlp) 291 { 292 pgd_t *pgd; 293 pud_t *pud; 294 pmd_t *pmd; 295 pte_t *pte; 296 spinlock_t *ptl; 297 298 pgd = pgd_offset(mm, address); 299 if (!pgd_present(*pgd)) 300 return NULL; 301 302 pud = pud_offset(pgd, address); 303 if (!pud_present(*pud)) 304 return NULL; 305 306 pmd = pmd_offset(pud, address); 307 if (!pmd_present(*pmd)) 308 return NULL; 309 310 pte = pte_offset_map(pmd, address); 311 /* Make a quick check before getting the lock */ 312 if (!pte_present(*pte)) { 313 pte_unmap(pte); 314 return NULL; 315 } 316 317 ptl = pte_lockptr(mm, pmd); 318 spin_lock(ptl); 319 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 320 *ptlp = ptl; 321 return pte; 322 } 323 pte_unmap_unlock(pte, ptl); 324 return NULL; 325 } 326 327 /* 328 * Subfunctions of page_referenced: page_referenced_one called 329 * repeatedly from either page_referenced_anon or page_referenced_file. 330 */ 331 static int page_referenced_one(struct page *page, 332 struct vm_area_struct *vma, unsigned int *mapcount) 333 { 334 struct mm_struct *mm = vma->vm_mm; 335 unsigned long address; 336 pte_t *pte; 337 spinlock_t *ptl; 338 int referenced = 0; 339 340 address = vma_address(page, vma); 341 if (address == -EFAULT) 342 goto out; 343 344 pte = page_check_address(page, mm, address, &ptl); 345 if (!pte) 346 goto out; 347 348 if (ptep_clear_flush_young(vma, address, pte)) 349 referenced++; 350 351 /* Pretend the page is referenced if the task has the 352 swap token and is in the middle of a page fault. */ 353 if (mm != current->mm && has_swap_token(mm) && 354 rwsem_is_locked(&mm->mmap_sem)) 355 referenced++; 356 357 (*mapcount)--; 358 pte_unmap_unlock(pte, ptl); 359 out: 360 return referenced; 361 } 362 363 static int page_referenced_anon(struct page *page) 364 { 365 unsigned int mapcount; 366 struct anon_vma *anon_vma; 367 struct vm_area_struct *vma; 368 int referenced = 0; 369 370 anon_vma = page_lock_anon_vma(page); 371 if (!anon_vma) 372 return referenced; 373 374 mapcount = page_mapcount(page); 375 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 376 referenced += page_referenced_one(page, vma, &mapcount); 377 if (!mapcount) 378 break; 379 } 380 spin_unlock(&anon_vma->lock); 381 return referenced; 382 } 383 384 /** 385 * page_referenced_file - referenced check for object-based rmap 386 * @page: the page we're checking references on. 387 * 388 * For an object-based mapped page, find all the places it is mapped and 389 * check/clear the referenced flag. This is done by following the page->mapping 390 * pointer, then walking the chain of vmas it holds. It returns the number 391 * of references it found. 392 * 393 * This function is only called from page_referenced for object-based pages. 394 */ 395 static int page_referenced_file(struct page *page) 396 { 397 unsigned int mapcount; 398 struct address_space *mapping = page->mapping; 399 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 400 struct vm_area_struct *vma; 401 struct prio_tree_iter iter; 402 int referenced = 0; 403 404 /* 405 * The caller's checks on page->mapping and !PageAnon have made 406 * sure that this is a file page: the check for page->mapping 407 * excludes the case just before it gets set on an anon page. 408 */ 409 BUG_ON(PageAnon(page)); 410 411 /* 412 * The page lock not only makes sure that page->mapping cannot 413 * suddenly be NULLified by truncation, it makes sure that the 414 * structure at mapping cannot be freed and reused yet, 415 * so we can safely take mapping->i_mmap_lock. 416 */ 417 BUG_ON(!PageLocked(page)); 418 419 spin_lock(&mapping->i_mmap_lock); 420 421 /* 422 * i_mmap_lock does not stabilize mapcount at all, but mapcount 423 * is more likely to be accurate if we note it after spinning. 424 */ 425 mapcount = page_mapcount(page); 426 427 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 428 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 429 == (VM_LOCKED|VM_MAYSHARE)) { 430 referenced++; 431 break; 432 } 433 referenced += page_referenced_one(page, vma, &mapcount); 434 if (!mapcount) 435 break; 436 } 437 438 spin_unlock(&mapping->i_mmap_lock); 439 return referenced; 440 } 441 442 /** 443 * page_referenced - test if the page was referenced 444 * @page: the page to test 445 * @is_locked: caller holds lock on the page 446 * 447 * Quick test_and_clear_referenced for all mappings to a page, 448 * returns the number of ptes which referenced the page. 449 */ 450 int page_referenced(struct page *page, int is_locked) 451 { 452 int referenced = 0; 453 454 if (page_test_and_clear_young(page)) 455 referenced++; 456 457 if (TestClearPageReferenced(page)) 458 referenced++; 459 460 if (page_mapped(page) && page->mapping) { 461 if (PageAnon(page)) 462 referenced += page_referenced_anon(page); 463 else if (is_locked) 464 referenced += page_referenced_file(page); 465 else if (TestSetPageLocked(page)) 466 referenced++; 467 else { 468 if (page->mapping) 469 referenced += page_referenced_file(page); 470 unlock_page(page); 471 } 472 } 473 return referenced; 474 } 475 476 /** 477 * page_set_anon_rmap - setup new anonymous rmap 478 * @page: the page to add the mapping to 479 * @vma: the vm area in which the mapping is added 480 * @address: the user virtual address mapped 481 */ 482 static void __page_set_anon_rmap(struct page *page, 483 struct vm_area_struct *vma, unsigned long address) 484 { 485 struct anon_vma *anon_vma = vma->anon_vma; 486 487 BUG_ON(!anon_vma); 488 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 489 page->mapping = (struct address_space *) anon_vma; 490 491 page->index = linear_page_index(vma, address); 492 493 /* 494 * nr_mapped state can be updated without turning off 495 * interrupts because it is not modified via interrupt. 496 */ 497 __inc_page_state(nr_mapped); 498 } 499 500 /** 501 * page_add_anon_rmap - add pte mapping to an anonymous page 502 * @page: the page to add the mapping to 503 * @vma: the vm area in which the mapping is added 504 * @address: the user virtual address mapped 505 * 506 * The caller needs to hold the pte lock. 507 */ 508 void page_add_anon_rmap(struct page *page, 509 struct vm_area_struct *vma, unsigned long address) 510 { 511 if (atomic_inc_and_test(&page->_mapcount)) 512 __page_set_anon_rmap(page, vma, address); 513 /* else checking page index and mapping is racy */ 514 } 515 516 /* 517 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 518 * @page: the page to add the mapping to 519 * @vma: the vm area in which the mapping is added 520 * @address: the user virtual address mapped 521 * 522 * Same as page_add_anon_rmap but must only be called on *new* pages. 523 * This means the inc-and-test can be bypassed. 524 */ 525 void page_add_new_anon_rmap(struct page *page, 526 struct vm_area_struct *vma, unsigned long address) 527 { 528 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 529 __page_set_anon_rmap(page, vma, address); 530 } 531 532 /** 533 * page_add_file_rmap - add pte mapping to a file page 534 * @page: the page to add the mapping to 535 * 536 * The caller needs to hold the pte lock. 537 */ 538 void page_add_file_rmap(struct page *page) 539 { 540 if (atomic_inc_and_test(&page->_mapcount)) 541 __inc_page_state(nr_mapped); 542 } 543 544 /** 545 * page_remove_rmap - take down pte mapping from a page 546 * @page: page to remove mapping from 547 * 548 * The caller needs to hold the pte lock. 549 */ 550 void page_remove_rmap(struct page *page) 551 { 552 if (atomic_add_negative(-1, &page->_mapcount)) { 553 if (page_mapcount(page) < 0) { 554 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 555 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 556 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 557 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 558 } 559 560 BUG_ON(page_mapcount(page) < 0); 561 /* 562 * It would be tidy to reset the PageAnon mapping here, 563 * but that might overwrite a racing page_add_anon_rmap 564 * which increments mapcount after us but sets mapping 565 * before us: so leave the reset to free_hot_cold_page, 566 * and remember that it's only reliable while mapped. 567 * Leaving it set also helps swapoff to reinstate ptes 568 * faster for those pages still in swapcache. 569 */ 570 if (page_test_and_clear_dirty(page)) 571 set_page_dirty(page); 572 __dec_page_state(nr_mapped); 573 } 574 } 575 576 /* 577 * Subfunctions of try_to_unmap: try_to_unmap_one called 578 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 579 */ 580 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 581 int ignore_refs) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 unsigned long address; 585 pte_t *pte; 586 pte_t pteval; 587 spinlock_t *ptl; 588 int ret = SWAP_AGAIN; 589 590 address = vma_address(page, vma); 591 if (address == -EFAULT) 592 goto out; 593 594 pte = page_check_address(page, mm, address, &ptl); 595 if (!pte) 596 goto out; 597 598 /* 599 * If the page is mlock()d, we cannot swap it out. 600 * If it's recently referenced (perhaps page_referenced 601 * skipped over this mm) then we should reactivate it. 602 */ 603 if ((vma->vm_flags & VM_LOCKED) || 604 (ptep_clear_flush_young(vma, address, pte) 605 && !ignore_refs)) { 606 ret = SWAP_FAIL; 607 goto out_unmap; 608 } 609 610 /* Nuke the page table entry. */ 611 flush_cache_page(vma, address, page_to_pfn(page)); 612 pteval = ptep_clear_flush(vma, address, pte); 613 614 /* Move the dirty bit to the physical page now the pte is gone. */ 615 if (pte_dirty(pteval)) 616 set_page_dirty(page); 617 618 /* Update high watermark before we lower rss */ 619 update_hiwater_rss(mm); 620 621 if (PageAnon(page)) { 622 swp_entry_t entry = { .val = page_private(page) }; 623 /* 624 * Store the swap location in the pte. 625 * See handle_pte_fault() ... 626 */ 627 BUG_ON(!PageSwapCache(page)); 628 swap_duplicate(entry); 629 if (list_empty(&mm->mmlist)) { 630 spin_lock(&mmlist_lock); 631 if (list_empty(&mm->mmlist)) 632 list_add(&mm->mmlist, &init_mm.mmlist); 633 spin_unlock(&mmlist_lock); 634 } 635 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 636 BUG_ON(pte_file(*pte)); 637 dec_mm_counter(mm, anon_rss); 638 } else 639 dec_mm_counter(mm, file_rss); 640 641 page_remove_rmap(page); 642 page_cache_release(page); 643 644 out_unmap: 645 pte_unmap_unlock(pte, ptl); 646 out: 647 return ret; 648 } 649 650 /* 651 * objrmap doesn't work for nonlinear VMAs because the assumption that 652 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 653 * Consequently, given a particular page and its ->index, we cannot locate the 654 * ptes which are mapping that page without an exhaustive linear search. 655 * 656 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 657 * maps the file to which the target page belongs. The ->vm_private_data field 658 * holds the current cursor into that scan. Successive searches will circulate 659 * around the vma's virtual address space. 660 * 661 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 662 * more scanning pressure is placed against them as well. Eventually pages 663 * will become fully unmapped and are eligible for eviction. 664 * 665 * For very sparsely populated VMAs this is a little inefficient - chances are 666 * there there won't be many ptes located within the scan cluster. In this case 667 * maybe we could scan further - to the end of the pte page, perhaps. 668 */ 669 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 670 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 671 672 static void try_to_unmap_cluster(unsigned long cursor, 673 unsigned int *mapcount, struct vm_area_struct *vma) 674 { 675 struct mm_struct *mm = vma->vm_mm; 676 pgd_t *pgd; 677 pud_t *pud; 678 pmd_t *pmd; 679 pte_t *pte; 680 pte_t pteval; 681 spinlock_t *ptl; 682 struct page *page; 683 unsigned long address; 684 unsigned long end; 685 686 address = (vma->vm_start + cursor) & CLUSTER_MASK; 687 end = address + CLUSTER_SIZE; 688 if (address < vma->vm_start) 689 address = vma->vm_start; 690 if (end > vma->vm_end) 691 end = vma->vm_end; 692 693 pgd = pgd_offset(mm, address); 694 if (!pgd_present(*pgd)) 695 return; 696 697 pud = pud_offset(pgd, address); 698 if (!pud_present(*pud)) 699 return; 700 701 pmd = pmd_offset(pud, address); 702 if (!pmd_present(*pmd)) 703 return; 704 705 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 706 707 /* Update high watermark before we lower rss */ 708 update_hiwater_rss(mm); 709 710 for (; address < end; pte++, address += PAGE_SIZE) { 711 if (!pte_present(*pte)) 712 continue; 713 page = vm_normal_page(vma, address, *pte); 714 BUG_ON(!page || PageAnon(page)); 715 716 if (ptep_clear_flush_young(vma, address, pte)) 717 continue; 718 719 /* Nuke the page table entry. */ 720 flush_cache_page(vma, address, pte_pfn(*pte)); 721 pteval = ptep_clear_flush(vma, address, pte); 722 723 /* If nonlinear, store the file page offset in the pte. */ 724 if (page->index != linear_page_index(vma, address)) 725 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 726 727 /* Move the dirty bit to the physical page now the pte is gone. */ 728 if (pte_dirty(pteval)) 729 set_page_dirty(page); 730 731 page_remove_rmap(page); 732 page_cache_release(page); 733 dec_mm_counter(mm, file_rss); 734 (*mapcount)--; 735 } 736 pte_unmap_unlock(pte - 1, ptl); 737 } 738 739 static int try_to_unmap_anon(struct page *page, int ignore_refs) 740 { 741 struct anon_vma *anon_vma; 742 struct vm_area_struct *vma; 743 int ret = SWAP_AGAIN; 744 745 anon_vma = page_lock_anon_vma(page); 746 if (!anon_vma) 747 return ret; 748 749 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 750 ret = try_to_unmap_one(page, vma, ignore_refs); 751 if (ret == SWAP_FAIL || !page_mapped(page)) 752 break; 753 } 754 spin_unlock(&anon_vma->lock); 755 return ret; 756 } 757 758 /** 759 * try_to_unmap_file - unmap file page using the object-based rmap method 760 * @page: the page to unmap 761 * 762 * Find all the mappings of a page using the mapping pointer and the vma chains 763 * contained in the address_space struct it points to. 764 * 765 * This function is only called from try_to_unmap for object-based pages. 766 */ 767 static int try_to_unmap_file(struct page *page, int ignore_refs) 768 { 769 struct address_space *mapping = page->mapping; 770 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 771 struct vm_area_struct *vma; 772 struct prio_tree_iter iter; 773 int ret = SWAP_AGAIN; 774 unsigned long cursor; 775 unsigned long max_nl_cursor = 0; 776 unsigned long max_nl_size = 0; 777 unsigned int mapcount; 778 779 spin_lock(&mapping->i_mmap_lock); 780 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 781 ret = try_to_unmap_one(page, vma, ignore_refs); 782 if (ret == SWAP_FAIL || !page_mapped(page)) 783 goto out; 784 } 785 786 if (list_empty(&mapping->i_mmap_nonlinear)) 787 goto out; 788 789 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 790 shared.vm_set.list) { 791 if (vma->vm_flags & VM_LOCKED) 792 continue; 793 cursor = (unsigned long) vma->vm_private_data; 794 if (cursor > max_nl_cursor) 795 max_nl_cursor = cursor; 796 cursor = vma->vm_end - vma->vm_start; 797 if (cursor > max_nl_size) 798 max_nl_size = cursor; 799 } 800 801 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 802 ret = SWAP_FAIL; 803 goto out; 804 } 805 806 /* 807 * We don't try to search for this page in the nonlinear vmas, 808 * and page_referenced wouldn't have found it anyway. Instead 809 * just walk the nonlinear vmas trying to age and unmap some. 810 * The mapcount of the page we came in with is irrelevant, 811 * but even so use it as a guide to how hard we should try? 812 */ 813 mapcount = page_mapcount(page); 814 if (!mapcount) 815 goto out; 816 cond_resched_lock(&mapping->i_mmap_lock); 817 818 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 819 if (max_nl_cursor == 0) 820 max_nl_cursor = CLUSTER_SIZE; 821 822 do { 823 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 824 shared.vm_set.list) { 825 if (vma->vm_flags & VM_LOCKED) 826 continue; 827 cursor = (unsigned long) vma->vm_private_data; 828 while ( cursor < max_nl_cursor && 829 cursor < vma->vm_end - vma->vm_start) { 830 try_to_unmap_cluster(cursor, &mapcount, vma); 831 cursor += CLUSTER_SIZE; 832 vma->vm_private_data = (void *) cursor; 833 if ((int)mapcount <= 0) 834 goto out; 835 } 836 vma->vm_private_data = (void *) max_nl_cursor; 837 } 838 cond_resched_lock(&mapping->i_mmap_lock); 839 max_nl_cursor += CLUSTER_SIZE; 840 } while (max_nl_cursor <= max_nl_size); 841 842 /* 843 * Don't loop forever (perhaps all the remaining pages are 844 * in locked vmas). Reset cursor on all unreserved nonlinear 845 * vmas, now forgetting on which ones it had fallen behind. 846 */ 847 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 848 vma->vm_private_data = NULL; 849 out: 850 spin_unlock(&mapping->i_mmap_lock); 851 return ret; 852 } 853 854 /** 855 * try_to_unmap - try to remove all page table mappings to a page 856 * @page: the page to get unmapped 857 * 858 * Tries to remove all the page table entries which are mapping this 859 * page, used in the pageout path. Caller must hold the page lock. 860 * Return values are: 861 * 862 * SWAP_SUCCESS - we succeeded in removing all mappings 863 * SWAP_AGAIN - we missed a mapping, try again later 864 * SWAP_FAIL - the page is unswappable 865 */ 866 int try_to_unmap(struct page *page, int ignore_refs) 867 { 868 int ret; 869 870 BUG_ON(!PageLocked(page)); 871 872 if (PageAnon(page)) 873 ret = try_to_unmap_anon(page, ignore_refs); 874 else 875 ret = try_to_unmap_file(page, ignore_refs); 876 877 if (!page_mapped(page)) 878 ret = SWAP_SUCCESS; 879 return ret; 880 } 881 882