xref: /linux/mm/rmap.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within
28  * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never
29  * taken together; in truncation, i_mutex is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock or pte_lock
36  *           zone->lru_lock (in mark_page_accessed, isolate_lru_page)
37  *           swap_lock (in swap_duplicate, swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             mapping->private_lock (in __set_page_dirty_buffers)
40  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
41  *               sb_lock (within inode_lock in fs/fs-writeback.c)
42  *               mapping->tree_lock (widely used, in set_page_dirty,
43  *                         in arch-dependent flush_dcache_mmap_lock,
44  *                         within inode_lock in __sync_single_inode)
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 
57 #include <asm/tlbflush.h>
58 
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
60 
61 kmem_cache_t *anon_vma_cachep;
62 
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
64 {
65 #ifdef RMAP_DEBUG
66 	struct anon_vma *anon_vma = find_vma->anon_vma;
67 	struct vm_area_struct *vma;
68 	unsigned int mapcount = 0;
69 	int found = 0;
70 
71 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 		mapcount++;
73 		BUG_ON(mapcount > 100000);
74 		if (vma == find_vma)
75 			found = 1;
76 	}
77 	BUG_ON(!found);
78 #endif
79 }
80 
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
83 {
84 	struct anon_vma *anon_vma = vma->anon_vma;
85 
86 	might_sleep();
87 	if (unlikely(!anon_vma)) {
88 		struct mm_struct *mm = vma->vm_mm;
89 		struct anon_vma *allocated, *locked;
90 
91 		anon_vma = find_mergeable_anon_vma(vma);
92 		if (anon_vma) {
93 			allocated = NULL;
94 			locked = anon_vma;
95 			spin_lock(&locked->lock);
96 		} else {
97 			anon_vma = anon_vma_alloc();
98 			if (unlikely(!anon_vma))
99 				return -ENOMEM;
100 			allocated = anon_vma;
101 			locked = NULL;
102 		}
103 
104 		/* page_table_lock to protect against threads */
105 		spin_lock(&mm->page_table_lock);
106 		if (likely(!vma->anon_vma)) {
107 			vma->anon_vma = anon_vma;
108 			list_add(&vma->anon_vma_node, &anon_vma->head);
109 			allocated = NULL;
110 		}
111 		spin_unlock(&mm->page_table_lock);
112 
113 		if (locked)
114 			spin_unlock(&locked->lock);
115 		if (unlikely(allocated))
116 			anon_vma_free(allocated);
117 	}
118 	return 0;
119 }
120 
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
122 {
123 	BUG_ON(vma->anon_vma != next->anon_vma);
124 	list_del(&next->anon_vma_node);
125 }
126 
127 void __anon_vma_link(struct vm_area_struct *vma)
128 {
129 	struct anon_vma *anon_vma = vma->anon_vma;
130 
131 	if (anon_vma) {
132 		list_add(&vma->anon_vma_node, &anon_vma->head);
133 		validate_anon_vma(vma);
134 	}
135 }
136 
137 void anon_vma_link(struct vm_area_struct *vma)
138 {
139 	struct anon_vma *anon_vma = vma->anon_vma;
140 
141 	if (anon_vma) {
142 		spin_lock(&anon_vma->lock);
143 		list_add(&vma->anon_vma_node, &anon_vma->head);
144 		validate_anon_vma(vma);
145 		spin_unlock(&anon_vma->lock);
146 	}
147 }
148 
149 void anon_vma_unlink(struct vm_area_struct *vma)
150 {
151 	struct anon_vma *anon_vma = vma->anon_vma;
152 	int empty;
153 
154 	if (!anon_vma)
155 		return;
156 
157 	spin_lock(&anon_vma->lock);
158 	validate_anon_vma(vma);
159 	list_del(&vma->anon_vma_node);
160 
161 	/* We must garbage collect the anon_vma if it's empty */
162 	empty = list_empty(&anon_vma->head);
163 	spin_unlock(&anon_vma->lock);
164 
165 	if (empty)
166 		anon_vma_free(anon_vma);
167 }
168 
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
170 {
171 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 						SLAB_CTOR_CONSTRUCTOR) {
173 		struct anon_vma *anon_vma = data;
174 
175 		spin_lock_init(&anon_vma->lock);
176 		INIT_LIST_HEAD(&anon_vma->head);
177 	}
178 }
179 
180 void __init anon_vma_init(void)
181 {
182 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
184 }
185 
186 /*
187  * Getting a lock on a stable anon_vma from a page off the LRU is
188  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
189  */
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
191 {
192 	struct anon_vma *anon_vma = NULL;
193 	unsigned long anon_mapping;
194 
195 	rcu_read_lock();
196 	anon_mapping = (unsigned long) page->mapping;
197 	if (!(anon_mapping & PAGE_MAPPING_ANON))
198 		goto out;
199 	if (!page_mapped(page))
200 		goto out;
201 
202 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 	spin_lock(&anon_vma->lock);
204 out:
205 	rcu_read_unlock();
206 	return anon_vma;
207 }
208 
209 #ifdef CONFIG_MIGRATION
210 /*
211  * Remove an anonymous page from swap replacing the swap pte's
212  * through real pte's pointing to valid pages and then releasing
213  * the page from the swap cache.
214  *
215  * Must hold page lock on page and mmap_sem of one vma that contains
216  * the page.
217  */
218 void remove_from_swap(struct page *page)
219 {
220 	struct anon_vma *anon_vma;
221 	struct vm_area_struct *vma;
222 	unsigned long mapping;
223 
224 	if (!PageSwapCache(page))
225 		return;
226 
227 	mapping = (unsigned long)page->mapping;
228 
229 	if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
230 		return;
231 
232 	/*
233 	 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
234 	 */
235 	anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
236 	spin_lock(&anon_vma->lock);
237 
238 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
239 		remove_vma_swap(vma, page);
240 
241 	spin_unlock(&anon_vma->lock);
242 	delete_from_swap_cache(page);
243 }
244 EXPORT_SYMBOL(remove_from_swap);
245 #endif
246 
247 /*
248  * At what user virtual address is page expected in vma?
249  */
250 static inline unsigned long
251 vma_address(struct page *page, struct vm_area_struct *vma)
252 {
253 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
254 	unsigned long address;
255 
256 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
257 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
258 		/* page should be within any vma from prio_tree_next */
259 		BUG_ON(!PageAnon(page));
260 		return -EFAULT;
261 	}
262 	return address;
263 }
264 
265 /*
266  * At what user virtual address is page expected in vma? checking that the
267  * page matches the vma: currently only used on anon pages, by unuse_vma;
268  */
269 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
270 {
271 	if (PageAnon(page)) {
272 		if ((void *)vma->anon_vma !=
273 		    (void *)page->mapping - PAGE_MAPPING_ANON)
274 			return -EFAULT;
275 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
276 		if (!vma->vm_file ||
277 		    vma->vm_file->f_mapping != page->mapping)
278 			return -EFAULT;
279 	} else
280 		return -EFAULT;
281 	return vma_address(page, vma);
282 }
283 
284 /*
285  * Check that @page is mapped at @address into @mm.
286  *
287  * On success returns with pte mapped and locked.
288  */
289 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
290 			  unsigned long address, spinlock_t **ptlp)
291 {
292 	pgd_t *pgd;
293 	pud_t *pud;
294 	pmd_t *pmd;
295 	pte_t *pte;
296 	spinlock_t *ptl;
297 
298 	pgd = pgd_offset(mm, address);
299 	if (!pgd_present(*pgd))
300 		return NULL;
301 
302 	pud = pud_offset(pgd, address);
303 	if (!pud_present(*pud))
304 		return NULL;
305 
306 	pmd = pmd_offset(pud, address);
307 	if (!pmd_present(*pmd))
308 		return NULL;
309 
310 	pte = pte_offset_map(pmd, address);
311 	/* Make a quick check before getting the lock */
312 	if (!pte_present(*pte)) {
313 		pte_unmap(pte);
314 		return NULL;
315 	}
316 
317 	ptl = pte_lockptr(mm, pmd);
318 	spin_lock(ptl);
319 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
320 		*ptlp = ptl;
321 		return pte;
322 	}
323 	pte_unmap_unlock(pte, ptl);
324 	return NULL;
325 }
326 
327 /*
328  * Subfunctions of page_referenced: page_referenced_one called
329  * repeatedly from either page_referenced_anon or page_referenced_file.
330  */
331 static int page_referenced_one(struct page *page,
332 	struct vm_area_struct *vma, unsigned int *mapcount)
333 {
334 	struct mm_struct *mm = vma->vm_mm;
335 	unsigned long address;
336 	pte_t *pte;
337 	spinlock_t *ptl;
338 	int referenced = 0;
339 
340 	address = vma_address(page, vma);
341 	if (address == -EFAULT)
342 		goto out;
343 
344 	pte = page_check_address(page, mm, address, &ptl);
345 	if (!pte)
346 		goto out;
347 
348 	if (ptep_clear_flush_young(vma, address, pte))
349 		referenced++;
350 
351 	/* Pretend the page is referenced if the task has the
352 	   swap token and is in the middle of a page fault. */
353 	if (mm != current->mm && has_swap_token(mm) &&
354 			rwsem_is_locked(&mm->mmap_sem))
355 		referenced++;
356 
357 	(*mapcount)--;
358 	pte_unmap_unlock(pte, ptl);
359 out:
360 	return referenced;
361 }
362 
363 static int page_referenced_anon(struct page *page)
364 {
365 	unsigned int mapcount;
366 	struct anon_vma *anon_vma;
367 	struct vm_area_struct *vma;
368 	int referenced = 0;
369 
370 	anon_vma = page_lock_anon_vma(page);
371 	if (!anon_vma)
372 		return referenced;
373 
374 	mapcount = page_mapcount(page);
375 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
376 		referenced += page_referenced_one(page, vma, &mapcount);
377 		if (!mapcount)
378 			break;
379 	}
380 	spin_unlock(&anon_vma->lock);
381 	return referenced;
382 }
383 
384 /**
385  * page_referenced_file - referenced check for object-based rmap
386  * @page: the page we're checking references on.
387  *
388  * For an object-based mapped page, find all the places it is mapped and
389  * check/clear the referenced flag.  This is done by following the page->mapping
390  * pointer, then walking the chain of vmas it holds.  It returns the number
391  * of references it found.
392  *
393  * This function is only called from page_referenced for object-based pages.
394  */
395 static int page_referenced_file(struct page *page)
396 {
397 	unsigned int mapcount;
398 	struct address_space *mapping = page->mapping;
399 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
400 	struct vm_area_struct *vma;
401 	struct prio_tree_iter iter;
402 	int referenced = 0;
403 
404 	/*
405 	 * The caller's checks on page->mapping and !PageAnon have made
406 	 * sure that this is a file page: the check for page->mapping
407 	 * excludes the case just before it gets set on an anon page.
408 	 */
409 	BUG_ON(PageAnon(page));
410 
411 	/*
412 	 * The page lock not only makes sure that page->mapping cannot
413 	 * suddenly be NULLified by truncation, it makes sure that the
414 	 * structure at mapping cannot be freed and reused yet,
415 	 * so we can safely take mapping->i_mmap_lock.
416 	 */
417 	BUG_ON(!PageLocked(page));
418 
419 	spin_lock(&mapping->i_mmap_lock);
420 
421 	/*
422 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
423 	 * is more likely to be accurate if we note it after spinning.
424 	 */
425 	mapcount = page_mapcount(page);
426 
427 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
428 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
429 				  == (VM_LOCKED|VM_MAYSHARE)) {
430 			referenced++;
431 			break;
432 		}
433 		referenced += page_referenced_one(page, vma, &mapcount);
434 		if (!mapcount)
435 			break;
436 	}
437 
438 	spin_unlock(&mapping->i_mmap_lock);
439 	return referenced;
440 }
441 
442 /**
443  * page_referenced - test if the page was referenced
444  * @page: the page to test
445  * @is_locked: caller holds lock on the page
446  *
447  * Quick test_and_clear_referenced for all mappings to a page,
448  * returns the number of ptes which referenced the page.
449  */
450 int page_referenced(struct page *page, int is_locked)
451 {
452 	int referenced = 0;
453 
454 	if (page_test_and_clear_young(page))
455 		referenced++;
456 
457 	if (TestClearPageReferenced(page))
458 		referenced++;
459 
460 	if (page_mapped(page) && page->mapping) {
461 		if (PageAnon(page))
462 			referenced += page_referenced_anon(page);
463 		else if (is_locked)
464 			referenced += page_referenced_file(page);
465 		else if (TestSetPageLocked(page))
466 			referenced++;
467 		else {
468 			if (page->mapping)
469 				referenced += page_referenced_file(page);
470 			unlock_page(page);
471 		}
472 	}
473 	return referenced;
474 }
475 
476 /**
477  * page_set_anon_rmap - setup new anonymous rmap
478  * @page:	the page to add the mapping to
479  * @vma:	the vm area in which the mapping is added
480  * @address:	the user virtual address mapped
481  */
482 static void __page_set_anon_rmap(struct page *page,
483 	struct vm_area_struct *vma, unsigned long address)
484 {
485 	struct anon_vma *anon_vma = vma->anon_vma;
486 
487 	BUG_ON(!anon_vma);
488 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
489 	page->mapping = (struct address_space *) anon_vma;
490 
491 	page->index = linear_page_index(vma, address);
492 
493 	/*
494 	 * nr_mapped state can be updated without turning off
495 	 * interrupts because it is not modified via interrupt.
496 	 */
497 	__inc_page_state(nr_mapped);
498 }
499 
500 /**
501  * page_add_anon_rmap - add pte mapping to an anonymous page
502  * @page:	the page to add the mapping to
503  * @vma:	the vm area in which the mapping is added
504  * @address:	the user virtual address mapped
505  *
506  * The caller needs to hold the pte lock.
507  */
508 void page_add_anon_rmap(struct page *page,
509 	struct vm_area_struct *vma, unsigned long address)
510 {
511 	if (atomic_inc_and_test(&page->_mapcount))
512 		__page_set_anon_rmap(page, vma, address);
513 	/* else checking page index and mapping is racy */
514 }
515 
516 /*
517  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
518  * @page:	the page to add the mapping to
519  * @vma:	the vm area in which the mapping is added
520  * @address:	the user virtual address mapped
521  *
522  * Same as page_add_anon_rmap but must only be called on *new* pages.
523  * This means the inc-and-test can be bypassed.
524  */
525 void page_add_new_anon_rmap(struct page *page,
526 	struct vm_area_struct *vma, unsigned long address)
527 {
528 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
529 	__page_set_anon_rmap(page, vma, address);
530 }
531 
532 /**
533  * page_add_file_rmap - add pte mapping to a file page
534  * @page: the page to add the mapping to
535  *
536  * The caller needs to hold the pte lock.
537  */
538 void page_add_file_rmap(struct page *page)
539 {
540 	if (atomic_inc_and_test(&page->_mapcount))
541 		__inc_page_state(nr_mapped);
542 }
543 
544 /**
545  * page_remove_rmap - take down pte mapping from a page
546  * @page: page to remove mapping from
547  *
548  * The caller needs to hold the pte lock.
549  */
550 void page_remove_rmap(struct page *page)
551 {
552 	if (atomic_add_negative(-1, &page->_mapcount)) {
553 		if (page_mapcount(page) < 0) {
554 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
555 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
556 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
557 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
558 		}
559 
560 		BUG_ON(page_mapcount(page) < 0);
561 		/*
562 		 * It would be tidy to reset the PageAnon mapping here,
563 		 * but that might overwrite a racing page_add_anon_rmap
564 		 * which increments mapcount after us but sets mapping
565 		 * before us: so leave the reset to free_hot_cold_page,
566 		 * and remember that it's only reliable while mapped.
567 		 * Leaving it set also helps swapoff to reinstate ptes
568 		 * faster for those pages still in swapcache.
569 		 */
570 		if (page_test_and_clear_dirty(page))
571 			set_page_dirty(page);
572 		__dec_page_state(nr_mapped);
573 	}
574 }
575 
576 /*
577  * Subfunctions of try_to_unmap: try_to_unmap_one called
578  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
579  */
580 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
581 				int ignore_refs)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	unsigned long address;
585 	pte_t *pte;
586 	pte_t pteval;
587 	spinlock_t *ptl;
588 	int ret = SWAP_AGAIN;
589 
590 	address = vma_address(page, vma);
591 	if (address == -EFAULT)
592 		goto out;
593 
594 	pte = page_check_address(page, mm, address, &ptl);
595 	if (!pte)
596 		goto out;
597 
598 	/*
599 	 * If the page is mlock()d, we cannot swap it out.
600 	 * If it's recently referenced (perhaps page_referenced
601 	 * skipped over this mm) then we should reactivate it.
602 	 */
603 	if ((vma->vm_flags & VM_LOCKED) ||
604 			(ptep_clear_flush_young(vma, address, pte)
605 				&& !ignore_refs)) {
606 		ret = SWAP_FAIL;
607 		goto out_unmap;
608 	}
609 
610 	/* Nuke the page table entry. */
611 	flush_cache_page(vma, address, page_to_pfn(page));
612 	pteval = ptep_clear_flush(vma, address, pte);
613 
614 	/* Move the dirty bit to the physical page now the pte is gone. */
615 	if (pte_dirty(pteval))
616 		set_page_dirty(page);
617 
618 	/* Update high watermark before we lower rss */
619 	update_hiwater_rss(mm);
620 
621 	if (PageAnon(page)) {
622 		swp_entry_t entry = { .val = page_private(page) };
623 		/*
624 		 * Store the swap location in the pte.
625 		 * See handle_pte_fault() ...
626 		 */
627 		BUG_ON(!PageSwapCache(page));
628 		swap_duplicate(entry);
629 		if (list_empty(&mm->mmlist)) {
630 			spin_lock(&mmlist_lock);
631 			if (list_empty(&mm->mmlist))
632 				list_add(&mm->mmlist, &init_mm.mmlist);
633 			spin_unlock(&mmlist_lock);
634 		}
635 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
636 		BUG_ON(pte_file(*pte));
637 		dec_mm_counter(mm, anon_rss);
638 	} else
639 		dec_mm_counter(mm, file_rss);
640 
641 	page_remove_rmap(page);
642 	page_cache_release(page);
643 
644 out_unmap:
645 	pte_unmap_unlock(pte, ptl);
646 out:
647 	return ret;
648 }
649 
650 /*
651  * objrmap doesn't work for nonlinear VMAs because the assumption that
652  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
653  * Consequently, given a particular page and its ->index, we cannot locate the
654  * ptes which are mapping that page without an exhaustive linear search.
655  *
656  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
657  * maps the file to which the target page belongs.  The ->vm_private_data field
658  * holds the current cursor into that scan.  Successive searches will circulate
659  * around the vma's virtual address space.
660  *
661  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
662  * more scanning pressure is placed against them as well.   Eventually pages
663  * will become fully unmapped and are eligible for eviction.
664  *
665  * For very sparsely populated VMAs this is a little inefficient - chances are
666  * there there won't be many ptes located within the scan cluster.  In this case
667  * maybe we could scan further - to the end of the pte page, perhaps.
668  */
669 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
670 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
671 
672 static void try_to_unmap_cluster(unsigned long cursor,
673 	unsigned int *mapcount, struct vm_area_struct *vma)
674 {
675 	struct mm_struct *mm = vma->vm_mm;
676 	pgd_t *pgd;
677 	pud_t *pud;
678 	pmd_t *pmd;
679 	pte_t *pte;
680 	pte_t pteval;
681 	spinlock_t *ptl;
682 	struct page *page;
683 	unsigned long address;
684 	unsigned long end;
685 
686 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
687 	end = address + CLUSTER_SIZE;
688 	if (address < vma->vm_start)
689 		address = vma->vm_start;
690 	if (end > vma->vm_end)
691 		end = vma->vm_end;
692 
693 	pgd = pgd_offset(mm, address);
694 	if (!pgd_present(*pgd))
695 		return;
696 
697 	pud = pud_offset(pgd, address);
698 	if (!pud_present(*pud))
699 		return;
700 
701 	pmd = pmd_offset(pud, address);
702 	if (!pmd_present(*pmd))
703 		return;
704 
705 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
706 
707 	/* Update high watermark before we lower rss */
708 	update_hiwater_rss(mm);
709 
710 	for (; address < end; pte++, address += PAGE_SIZE) {
711 		if (!pte_present(*pte))
712 			continue;
713 		page = vm_normal_page(vma, address, *pte);
714 		BUG_ON(!page || PageAnon(page));
715 
716 		if (ptep_clear_flush_young(vma, address, pte))
717 			continue;
718 
719 		/* Nuke the page table entry. */
720 		flush_cache_page(vma, address, pte_pfn(*pte));
721 		pteval = ptep_clear_flush(vma, address, pte);
722 
723 		/* If nonlinear, store the file page offset in the pte. */
724 		if (page->index != linear_page_index(vma, address))
725 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
726 
727 		/* Move the dirty bit to the physical page now the pte is gone. */
728 		if (pte_dirty(pteval))
729 			set_page_dirty(page);
730 
731 		page_remove_rmap(page);
732 		page_cache_release(page);
733 		dec_mm_counter(mm, file_rss);
734 		(*mapcount)--;
735 	}
736 	pte_unmap_unlock(pte - 1, ptl);
737 }
738 
739 static int try_to_unmap_anon(struct page *page, int ignore_refs)
740 {
741 	struct anon_vma *anon_vma;
742 	struct vm_area_struct *vma;
743 	int ret = SWAP_AGAIN;
744 
745 	anon_vma = page_lock_anon_vma(page);
746 	if (!anon_vma)
747 		return ret;
748 
749 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
750 		ret = try_to_unmap_one(page, vma, ignore_refs);
751 		if (ret == SWAP_FAIL || !page_mapped(page))
752 			break;
753 	}
754 	spin_unlock(&anon_vma->lock);
755 	return ret;
756 }
757 
758 /**
759  * try_to_unmap_file - unmap file page using the object-based rmap method
760  * @page: the page to unmap
761  *
762  * Find all the mappings of a page using the mapping pointer and the vma chains
763  * contained in the address_space struct it points to.
764  *
765  * This function is only called from try_to_unmap for object-based pages.
766  */
767 static int try_to_unmap_file(struct page *page, int ignore_refs)
768 {
769 	struct address_space *mapping = page->mapping;
770 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
771 	struct vm_area_struct *vma;
772 	struct prio_tree_iter iter;
773 	int ret = SWAP_AGAIN;
774 	unsigned long cursor;
775 	unsigned long max_nl_cursor = 0;
776 	unsigned long max_nl_size = 0;
777 	unsigned int mapcount;
778 
779 	spin_lock(&mapping->i_mmap_lock);
780 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
781 		ret = try_to_unmap_one(page, vma, ignore_refs);
782 		if (ret == SWAP_FAIL || !page_mapped(page))
783 			goto out;
784 	}
785 
786 	if (list_empty(&mapping->i_mmap_nonlinear))
787 		goto out;
788 
789 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
790 						shared.vm_set.list) {
791 		if (vma->vm_flags & VM_LOCKED)
792 			continue;
793 		cursor = (unsigned long) vma->vm_private_data;
794 		if (cursor > max_nl_cursor)
795 			max_nl_cursor = cursor;
796 		cursor = vma->vm_end - vma->vm_start;
797 		if (cursor > max_nl_size)
798 			max_nl_size = cursor;
799 	}
800 
801 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
802 		ret = SWAP_FAIL;
803 		goto out;
804 	}
805 
806 	/*
807 	 * We don't try to search for this page in the nonlinear vmas,
808 	 * and page_referenced wouldn't have found it anyway.  Instead
809 	 * just walk the nonlinear vmas trying to age and unmap some.
810 	 * The mapcount of the page we came in with is irrelevant,
811 	 * but even so use it as a guide to how hard we should try?
812 	 */
813 	mapcount = page_mapcount(page);
814 	if (!mapcount)
815 		goto out;
816 	cond_resched_lock(&mapping->i_mmap_lock);
817 
818 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
819 	if (max_nl_cursor == 0)
820 		max_nl_cursor = CLUSTER_SIZE;
821 
822 	do {
823 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
824 						shared.vm_set.list) {
825 			if (vma->vm_flags & VM_LOCKED)
826 				continue;
827 			cursor = (unsigned long) vma->vm_private_data;
828 			while ( cursor < max_nl_cursor &&
829 				cursor < vma->vm_end - vma->vm_start) {
830 				try_to_unmap_cluster(cursor, &mapcount, vma);
831 				cursor += CLUSTER_SIZE;
832 				vma->vm_private_data = (void *) cursor;
833 				if ((int)mapcount <= 0)
834 					goto out;
835 			}
836 			vma->vm_private_data = (void *) max_nl_cursor;
837 		}
838 		cond_resched_lock(&mapping->i_mmap_lock);
839 		max_nl_cursor += CLUSTER_SIZE;
840 	} while (max_nl_cursor <= max_nl_size);
841 
842 	/*
843 	 * Don't loop forever (perhaps all the remaining pages are
844 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
845 	 * vmas, now forgetting on which ones it had fallen behind.
846 	 */
847 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
848 		vma->vm_private_data = NULL;
849 out:
850 	spin_unlock(&mapping->i_mmap_lock);
851 	return ret;
852 }
853 
854 /**
855  * try_to_unmap - try to remove all page table mappings to a page
856  * @page: the page to get unmapped
857  *
858  * Tries to remove all the page table entries which are mapping this
859  * page, used in the pageout path.  Caller must hold the page lock.
860  * Return values are:
861  *
862  * SWAP_SUCCESS	- we succeeded in removing all mappings
863  * SWAP_AGAIN	- we missed a mapping, try again later
864  * SWAP_FAIL	- the page is unswappable
865  */
866 int try_to_unmap(struct page *page, int ignore_refs)
867 {
868 	int ret;
869 
870 	BUG_ON(!PageLocked(page));
871 
872 	if (PageAnon(page))
873 		ret = try_to_unmap_anon(page, ignore_refs);
874 	else
875 		ret = try_to_unmap_file(page, ignore_refs);
876 
877 	if (!page_mapped(page))
878 		ret = SWAP_SUCCESS;
879 	return ret;
880 }
881 
882