1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_sem (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within 28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never 29 * taken together; in truncation, i_sem is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock 36 * zone->lru_lock (in mark_page_accessed) 37 * swap_list_lock (in swap_free etc's swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * swap_device_lock (in swap_duplicate, swap_info_get) 40 * mapping->private_lock (in __set_page_dirty_buffers) 41 * inode_lock (in set_page_dirty's __mark_inode_dirty) 42 * sb_lock (within inode_lock in fs/fs-writeback.c) 43 * mapping->tree_lock (widely used, in set_page_dirty, 44 * in arch-dependent flush_dcache_mmap_lock, 45 * within inode_lock in __sync_single_inode) 46 */ 47 48 #include <linux/mm.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/slab.h> 53 #include <linux/init.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 57 #include <asm/tlbflush.h> 58 59 //#define RMAP_DEBUG /* can be enabled only for debugging */ 60 61 kmem_cache_t *anon_vma_cachep; 62 63 static inline void validate_anon_vma(struct vm_area_struct *find_vma) 64 { 65 #ifdef RMAP_DEBUG 66 struct anon_vma *anon_vma = find_vma->anon_vma; 67 struct vm_area_struct *vma; 68 unsigned int mapcount = 0; 69 int found = 0; 70 71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 72 mapcount++; 73 BUG_ON(mapcount > 100000); 74 if (vma == find_vma) 75 found = 1; 76 } 77 BUG_ON(!found); 78 #endif 79 } 80 81 /* This must be called under the mmap_sem. */ 82 int anon_vma_prepare(struct vm_area_struct *vma) 83 { 84 struct anon_vma *anon_vma = vma->anon_vma; 85 86 might_sleep(); 87 if (unlikely(!anon_vma)) { 88 struct mm_struct *mm = vma->vm_mm; 89 struct anon_vma *allocated, *locked; 90 91 anon_vma = find_mergeable_anon_vma(vma); 92 if (anon_vma) { 93 allocated = NULL; 94 locked = anon_vma; 95 spin_lock(&locked->lock); 96 } else { 97 anon_vma = anon_vma_alloc(); 98 if (unlikely(!anon_vma)) 99 return -ENOMEM; 100 allocated = anon_vma; 101 locked = NULL; 102 } 103 104 /* page_table_lock to protect against threads */ 105 spin_lock(&mm->page_table_lock); 106 if (likely(!vma->anon_vma)) { 107 vma->anon_vma = anon_vma; 108 list_add(&vma->anon_vma_node, &anon_vma->head); 109 allocated = NULL; 110 } 111 spin_unlock(&mm->page_table_lock); 112 113 if (locked) 114 spin_unlock(&locked->lock); 115 if (unlikely(allocated)) 116 anon_vma_free(allocated); 117 } 118 return 0; 119 } 120 121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 122 { 123 BUG_ON(vma->anon_vma != next->anon_vma); 124 list_del(&next->anon_vma_node); 125 } 126 127 void __anon_vma_link(struct vm_area_struct *vma) 128 { 129 struct anon_vma *anon_vma = vma->anon_vma; 130 131 if (anon_vma) { 132 list_add(&vma->anon_vma_node, &anon_vma->head); 133 validate_anon_vma(vma); 134 } 135 } 136 137 void anon_vma_link(struct vm_area_struct *vma) 138 { 139 struct anon_vma *anon_vma = vma->anon_vma; 140 141 if (anon_vma) { 142 spin_lock(&anon_vma->lock); 143 list_add(&vma->anon_vma_node, &anon_vma->head); 144 validate_anon_vma(vma); 145 spin_unlock(&anon_vma->lock); 146 } 147 } 148 149 void anon_vma_unlink(struct vm_area_struct *vma) 150 { 151 struct anon_vma *anon_vma = vma->anon_vma; 152 int empty; 153 154 if (!anon_vma) 155 return; 156 157 spin_lock(&anon_vma->lock); 158 validate_anon_vma(vma); 159 list_del(&vma->anon_vma_node); 160 161 /* We must garbage collect the anon_vma if it's empty */ 162 empty = list_empty(&anon_vma->head); 163 spin_unlock(&anon_vma->lock); 164 165 if (empty) 166 anon_vma_free(anon_vma); 167 } 168 169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) 170 { 171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 172 SLAB_CTOR_CONSTRUCTOR) { 173 struct anon_vma *anon_vma = data; 174 175 spin_lock_init(&anon_vma->lock); 176 INIT_LIST_HEAD(&anon_vma->head); 177 } 178 } 179 180 void __init anon_vma_init(void) 181 { 182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 184 } 185 186 /* 187 * Getting a lock on a stable anon_vma from a page off the LRU is 188 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 189 */ 190 static struct anon_vma *page_lock_anon_vma(struct page *page) 191 { 192 struct anon_vma *anon_vma = NULL; 193 unsigned long anon_mapping; 194 195 rcu_read_lock(); 196 anon_mapping = (unsigned long) page->mapping; 197 if (!(anon_mapping & PAGE_MAPPING_ANON)) 198 goto out; 199 if (!page_mapped(page)) 200 goto out; 201 202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 203 spin_lock(&anon_vma->lock); 204 out: 205 rcu_read_unlock(); 206 return anon_vma; 207 } 208 209 /* 210 * At what user virtual address is page expected in vma? 211 */ 212 static inline unsigned long 213 vma_address(struct page *page, struct vm_area_struct *vma) 214 { 215 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 216 unsigned long address; 217 218 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 219 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 220 /* page should be within any vma from prio_tree_next */ 221 BUG_ON(!PageAnon(page)); 222 return -EFAULT; 223 } 224 return address; 225 } 226 227 /* 228 * At what user virtual address is page expected in vma? checking that the 229 * page matches the vma: currently only used by unuse_process, on anon pages. 230 */ 231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 232 { 233 if (PageAnon(page)) { 234 if ((void *)vma->anon_vma != 235 (void *)page->mapping - PAGE_MAPPING_ANON) 236 return -EFAULT; 237 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 238 if (vma->vm_file->f_mapping != page->mapping) 239 return -EFAULT; 240 } else 241 return -EFAULT; 242 return vma_address(page, vma); 243 } 244 245 /* 246 * Check that @page is mapped at @address into @mm. 247 * 248 * On success returns with mapped pte and locked mm->page_table_lock. 249 */ 250 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 251 unsigned long address) 252 { 253 pgd_t *pgd; 254 pud_t *pud; 255 pmd_t *pmd; 256 pte_t *pte; 257 258 /* 259 * We need the page_table_lock to protect us from page faults, 260 * munmap, fork, etc... 261 */ 262 spin_lock(&mm->page_table_lock); 263 pgd = pgd_offset(mm, address); 264 if (likely(pgd_present(*pgd))) { 265 pud = pud_offset(pgd, address); 266 if (likely(pud_present(*pud))) { 267 pmd = pmd_offset(pud, address); 268 if (likely(pmd_present(*pmd))) { 269 pte = pte_offset_map(pmd, address); 270 if (likely(pte_present(*pte) && 271 page_to_pfn(page) == pte_pfn(*pte))) 272 return pte; 273 pte_unmap(pte); 274 } 275 } 276 } 277 spin_unlock(&mm->page_table_lock); 278 return ERR_PTR(-ENOENT); 279 } 280 281 /* 282 * Subfunctions of page_referenced: page_referenced_one called 283 * repeatedly from either page_referenced_anon or page_referenced_file. 284 */ 285 static int page_referenced_one(struct page *page, 286 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) 287 { 288 struct mm_struct *mm = vma->vm_mm; 289 unsigned long address; 290 pte_t *pte; 291 int referenced = 0; 292 293 if (!get_mm_counter(mm, rss)) 294 goto out; 295 address = vma_address(page, vma); 296 if (address == -EFAULT) 297 goto out; 298 299 pte = page_check_address(page, mm, address); 300 if (!IS_ERR(pte)) { 301 if (ptep_clear_flush_young(vma, address, pte)) 302 referenced++; 303 304 if (mm != current->mm && !ignore_token && has_swap_token(mm)) 305 referenced++; 306 307 (*mapcount)--; 308 pte_unmap(pte); 309 spin_unlock(&mm->page_table_lock); 310 } 311 out: 312 return referenced; 313 } 314 315 static int page_referenced_anon(struct page *page, int ignore_token) 316 { 317 unsigned int mapcount; 318 struct anon_vma *anon_vma; 319 struct vm_area_struct *vma; 320 int referenced = 0; 321 322 anon_vma = page_lock_anon_vma(page); 323 if (!anon_vma) 324 return referenced; 325 326 mapcount = page_mapcount(page); 327 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 328 referenced += page_referenced_one(page, vma, &mapcount, 329 ignore_token); 330 if (!mapcount) 331 break; 332 } 333 spin_unlock(&anon_vma->lock); 334 return referenced; 335 } 336 337 /** 338 * page_referenced_file - referenced check for object-based rmap 339 * @page: the page we're checking references on. 340 * 341 * For an object-based mapped page, find all the places it is mapped and 342 * check/clear the referenced flag. This is done by following the page->mapping 343 * pointer, then walking the chain of vmas it holds. It returns the number 344 * of references it found. 345 * 346 * This function is only called from page_referenced for object-based pages. 347 */ 348 static int page_referenced_file(struct page *page, int ignore_token) 349 { 350 unsigned int mapcount; 351 struct address_space *mapping = page->mapping; 352 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 353 struct vm_area_struct *vma; 354 struct prio_tree_iter iter; 355 int referenced = 0; 356 357 /* 358 * The caller's checks on page->mapping and !PageAnon have made 359 * sure that this is a file page: the check for page->mapping 360 * excludes the case just before it gets set on an anon page. 361 */ 362 BUG_ON(PageAnon(page)); 363 364 /* 365 * The page lock not only makes sure that page->mapping cannot 366 * suddenly be NULLified by truncation, it makes sure that the 367 * structure at mapping cannot be freed and reused yet, 368 * so we can safely take mapping->i_mmap_lock. 369 */ 370 BUG_ON(!PageLocked(page)); 371 372 spin_lock(&mapping->i_mmap_lock); 373 374 /* 375 * i_mmap_lock does not stabilize mapcount at all, but mapcount 376 * is more likely to be accurate if we note it after spinning. 377 */ 378 mapcount = page_mapcount(page); 379 380 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 381 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 382 == (VM_LOCKED|VM_MAYSHARE)) { 383 referenced++; 384 break; 385 } 386 referenced += page_referenced_one(page, vma, &mapcount, 387 ignore_token); 388 if (!mapcount) 389 break; 390 } 391 392 spin_unlock(&mapping->i_mmap_lock); 393 return referenced; 394 } 395 396 /** 397 * page_referenced - test if the page was referenced 398 * @page: the page to test 399 * @is_locked: caller holds lock on the page 400 * 401 * Quick test_and_clear_referenced for all mappings to a page, 402 * returns the number of ptes which referenced the page. 403 */ 404 int page_referenced(struct page *page, int is_locked, int ignore_token) 405 { 406 int referenced = 0; 407 408 if (!swap_token_default_timeout) 409 ignore_token = 1; 410 411 if (page_test_and_clear_young(page)) 412 referenced++; 413 414 if (TestClearPageReferenced(page)) 415 referenced++; 416 417 if (page_mapped(page) && page->mapping) { 418 if (PageAnon(page)) 419 referenced += page_referenced_anon(page, ignore_token); 420 else if (is_locked) 421 referenced += page_referenced_file(page, ignore_token); 422 else if (TestSetPageLocked(page)) 423 referenced++; 424 else { 425 if (page->mapping) 426 referenced += page_referenced_file(page, 427 ignore_token); 428 unlock_page(page); 429 } 430 } 431 return referenced; 432 } 433 434 /** 435 * page_add_anon_rmap - add pte mapping to an anonymous page 436 * @page: the page to add the mapping to 437 * @vma: the vm area in which the mapping is added 438 * @address: the user virtual address mapped 439 * 440 * The caller needs to hold the mm->page_table_lock. 441 */ 442 void page_add_anon_rmap(struct page *page, 443 struct vm_area_struct *vma, unsigned long address) 444 { 445 struct anon_vma *anon_vma = vma->anon_vma; 446 pgoff_t index; 447 448 BUG_ON(PageReserved(page)); 449 BUG_ON(!anon_vma); 450 451 inc_mm_counter(vma->vm_mm, anon_rss); 452 453 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 454 index = (address - vma->vm_start) >> PAGE_SHIFT; 455 index += vma->vm_pgoff; 456 index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; 457 458 if (atomic_inc_and_test(&page->_mapcount)) { 459 page->index = index; 460 page->mapping = (struct address_space *) anon_vma; 461 inc_page_state(nr_mapped); 462 } 463 /* else checking page index and mapping is racy */ 464 } 465 466 /** 467 * page_add_file_rmap - add pte mapping to a file page 468 * @page: the page to add the mapping to 469 * 470 * The caller needs to hold the mm->page_table_lock. 471 */ 472 void page_add_file_rmap(struct page *page) 473 { 474 BUG_ON(PageAnon(page)); 475 if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) 476 return; 477 478 if (atomic_inc_and_test(&page->_mapcount)) 479 inc_page_state(nr_mapped); 480 } 481 482 /** 483 * page_remove_rmap - take down pte mapping from a page 484 * @page: page to remove mapping from 485 * 486 * Caller needs to hold the mm->page_table_lock. 487 */ 488 void page_remove_rmap(struct page *page) 489 { 490 BUG_ON(PageReserved(page)); 491 492 if (atomic_add_negative(-1, &page->_mapcount)) { 493 BUG_ON(page_mapcount(page) < 0); 494 /* 495 * It would be tidy to reset the PageAnon mapping here, 496 * but that might overwrite a racing page_add_anon_rmap 497 * which increments mapcount after us but sets mapping 498 * before us: so leave the reset to free_hot_cold_page, 499 * and remember that it's only reliable while mapped. 500 * Leaving it set also helps swapoff to reinstate ptes 501 * faster for those pages still in swapcache. 502 */ 503 if (page_test_and_clear_dirty(page)) 504 set_page_dirty(page); 505 dec_page_state(nr_mapped); 506 } 507 } 508 509 /* 510 * Subfunctions of try_to_unmap: try_to_unmap_one called 511 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 512 */ 513 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) 514 { 515 struct mm_struct *mm = vma->vm_mm; 516 unsigned long address; 517 pte_t *pte; 518 pte_t pteval; 519 int ret = SWAP_AGAIN; 520 521 if (!get_mm_counter(mm, rss)) 522 goto out; 523 address = vma_address(page, vma); 524 if (address == -EFAULT) 525 goto out; 526 527 pte = page_check_address(page, mm, address); 528 if (IS_ERR(pte)) 529 goto out; 530 531 /* 532 * If the page is mlock()d, we cannot swap it out. 533 * If it's recently referenced (perhaps page_referenced 534 * skipped over this mm) then we should reactivate it. 535 */ 536 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || 537 ptep_clear_flush_young(vma, address, pte)) { 538 ret = SWAP_FAIL; 539 goto out_unmap; 540 } 541 542 /* Nuke the page table entry. */ 543 flush_cache_page(vma, address, page_to_pfn(page)); 544 pteval = ptep_clear_flush(vma, address, pte); 545 546 /* Move the dirty bit to the physical page now the pte is gone. */ 547 if (pte_dirty(pteval)) 548 set_page_dirty(page); 549 550 if (PageAnon(page)) { 551 swp_entry_t entry = { .val = page->private }; 552 /* 553 * Store the swap location in the pte. 554 * See handle_pte_fault() ... 555 */ 556 BUG_ON(!PageSwapCache(page)); 557 swap_duplicate(entry); 558 if (list_empty(&mm->mmlist)) { 559 spin_lock(&mmlist_lock); 560 list_add(&mm->mmlist, &init_mm.mmlist); 561 spin_unlock(&mmlist_lock); 562 } 563 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 564 BUG_ON(pte_file(*pte)); 565 dec_mm_counter(mm, anon_rss); 566 } 567 568 dec_mm_counter(mm, rss); 569 page_remove_rmap(page); 570 page_cache_release(page); 571 572 out_unmap: 573 pte_unmap(pte); 574 spin_unlock(&mm->page_table_lock); 575 out: 576 return ret; 577 } 578 579 /* 580 * objrmap doesn't work for nonlinear VMAs because the assumption that 581 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 582 * Consequently, given a particular page and its ->index, we cannot locate the 583 * ptes which are mapping that page without an exhaustive linear search. 584 * 585 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 586 * maps the file to which the target page belongs. The ->vm_private_data field 587 * holds the current cursor into that scan. Successive searches will circulate 588 * around the vma's virtual address space. 589 * 590 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 591 * more scanning pressure is placed against them as well. Eventually pages 592 * will become fully unmapped and are eligible for eviction. 593 * 594 * For very sparsely populated VMAs this is a little inefficient - chances are 595 * there there won't be many ptes located within the scan cluster. In this case 596 * maybe we could scan further - to the end of the pte page, perhaps. 597 */ 598 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 599 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 600 601 static void try_to_unmap_cluster(unsigned long cursor, 602 unsigned int *mapcount, struct vm_area_struct *vma) 603 { 604 struct mm_struct *mm = vma->vm_mm; 605 pgd_t *pgd; 606 pud_t *pud; 607 pmd_t *pmd; 608 pte_t *pte, *original_pte; 609 pte_t pteval; 610 struct page *page; 611 unsigned long address; 612 unsigned long end; 613 unsigned long pfn; 614 615 /* 616 * We need the page_table_lock to protect us from page faults, 617 * munmap, fork, etc... 618 */ 619 spin_lock(&mm->page_table_lock); 620 621 address = (vma->vm_start + cursor) & CLUSTER_MASK; 622 end = address + CLUSTER_SIZE; 623 if (address < vma->vm_start) 624 address = vma->vm_start; 625 if (end > vma->vm_end) 626 end = vma->vm_end; 627 628 pgd = pgd_offset(mm, address); 629 if (!pgd_present(*pgd)) 630 goto out_unlock; 631 632 pud = pud_offset(pgd, address); 633 if (!pud_present(*pud)) 634 goto out_unlock; 635 636 pmd = pmd_offset(pud, address); 637 if (!pmd_present(*pmd)) 638 goto out_unlock; 639 640 for (original_pte = pte = pte_offset_map(pmd, address); 641 address < end; pte++, address += PAGE_SIZE) { 642 643 if (!pte_present(*pte)) 644 continue; 645 646 pfn = pte_pfn(*pte); 647 if (!pfn_valid(pfn)) 648 continue; 649 650 page = pfn_to_page(pfn); 651 BUG_ON(PageAnon(page)); 652 if (PageReserved(page)) 653 continue; 654 655 if (ptep_clear_flush_young(vma, address, pte)) 656 continue; 657 658 /* Nuke the page table entry. */ 659 flush_cache_page(vma, address, pfn); 660 pteval = ptep_clear_flush(vma, address, pte); 661 662 /* If nonlinear, store the file page offset in the pte. */ 663 if (page->index != linear_page_index(vma, address)) 664 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 665 666 /* Move the dirty bit to the physical page now the pte is gone. */ 667 if (pte_dirty(pteval)) 668 set_page_dirty(page); 669 670 page_remove_rmap(page); 671 page_cache_release(page); 672 dec_mm_counter(mm, rss); 673 (*mapcount)--; 674 } 675 676 pte_unmap(original_pte); 677 out_unlock: 678 spin_unlock(&mm->page_table_lock); 679 } 680 681 static int try_to_unmap_anon(struct page *page) 682 { 683 struct anon_vma *anon_vma; 684 struct vm_area_struct *vma; 685 int ret = SWAP_AGAIN; 686 687 anon_vma = page_lock_anon_vma(page); 688 if (!anon_vma) 689 return ret; 690 691 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 692 ret = try_to_unmap_one(page, vma); 693 if (ret == SWAP_FAIL || !page_mapped(page)) 694 break; 695 } 696 spin_unlock(&anon_vma->lock); 697 return ret; 698 } 699 700 /** 701 * try_to_unmap_file - unmap file page using the object-based rmap method 702 * @page: the page to unmap 703 * 704 * Find all the mappings of a page using the mapping pointer and the vma chains 705 * contained in the address_space struct it points to. 706 * 707 * This function is only called from try_to_unmap for object-based pages. 708 */ 709 static int try_to_unmap_file(struct page *page) 710 { 711 struct address_space *mapping = page->mapping; 712 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 713 struct vm_area_struct *vma; 714 struct prio_tree_iter iter; 715 int ret = SWAP_AGAIN; 716 unsigned long cursor; 717 unsigned long max_nl_cursor = 0; 718 unsigned long max_nl_size = 0; 719 unsigned int mapcount; 720 721 spin_lock(&mapping->i_mmap_lock); 722 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 723 ret = try_to_unmap_one(page, vma); 724 if (ret == SWAP_FAIL || !page_mapped(page)) 725 goto out; 726 } 727 728 if (list_empty(&mapping->i_mmap_nonlinear)) 729 goto out; 730 731 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 732 shared.vm_set.list) { 733 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) 734 continue; 735 cursor = (unsigned long) vma->vm_private_data; 736 if (cursor > max_nl_cursor) 737 max_nl_cursor = cursor; 738 cursor = vma->vm_end - vma->vm_start; 739 if (cursor > max_nl_size) 740 max_nl_size = cursor; 741 } 742 743 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 744 ret = SWAP_FAIL; 745 goto out; 746 } 747 748 /* 749 * We don't try to search for this page in the nonlinear vmas, 750 * and page_referenced wouldn't have found it anyway. Instead 751 * just walk the nonlinear vmas trying to age and unmap some. 752 * The mapcount of the page we came in with is irrelevant, 753 * but even so use it as a guide to how hard we should try? 754 */ 755 mapcount = page_mapcount(page); 756 if (!mapcount) 757 goto out; 758 cond_resched_lock(&mapping->i_mmap_lock); 759 760 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 761 if (max_nl_cursor == 0) 762 max_nl_cursor = CLUSTER_SIZE; 763 764 do { 765 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 766 shared.vm_set.list) { 767 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) 768 continue; 769 cursor = (unsigned long) vma->vm_private_data; 770 while (get_mm_counter(vma->vm_mm, rss) && 771 cursor < max_nl_cursor && 772 cursor < vma->vm_end - vma->vm_start) { 773 try_to_unmap_cluster(cursor, &mapcount, vma); 774 cursor += CLUSTER_SIZE; 775 vma->vm_private_data = (void *) cursor; 776 if ((int)mapcount <= 0) 777 goto out; 778 } 779 vma->vm_private_data = (void *) max_nl_cursor; 780 } 781 cond_resched_lock(&mapping->i_mmap_lock); 782 max_nl_cursor += CLUSTER_SIZE; 783 } while (max_nl_cursor <= max_nl_size); 784 785 /* 786 * Don't loop forever (perhaps all the remaining pages are 787 * in locked vmas). Reset cursor on all unreserved nonlinear 788 * vmas, now forgetting on which ones it had fallen behind. 789 */ 790 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 791 shared.vm_set.list) { 792 if (!(vma->vm_flags & VM_RESERVED)) 793 vma->vm_private_data = NULL; 794 } 795 out: 796 spin_unlock(&mapping->i_mmap_lock); 797 return ret; 798 } 799 800 /** 801 * try_to_unmap - try to remove all page table mappings to a page 802 * @page: the page to get unmapped 803 * 804 * Tries to remove all the page table entries which are mapping this 805 * page, used in the pageout path. Caller must hold the page lock. 806 * Return values are: 807 * 808 * SWAP_SUCCESS - we succeeded in removing all mappings 809 * SWAP_AGAIN - we missed a mapping, try again later 810 * SWAP_FAIL - the page is unswappable 811 */ 812 int try_to_unmap(struct page *page) 813 { 814 int ret; 815 816 BUG_ON(PageReserved(page)); 817 BUG_ON(!PageLocked(page)); 818 819 if (PageAnon(page)) 820 ret = try_to_unmap_anon(page); 821 else 822 ret = try_to_unmap_file(page); 823 824 if (!page_mapped(page)) 825 ret = SWAP_SUCCESS; 826 return ret; 827 } 828 829