xref: /linux/mm/rmap.c (revision d67b569f5f620c0fb95d5212642746b7ba9d29e4)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_sem	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem
25  *
26  * When a page fault occurs in writing from user to file, down_read
27  * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28  * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29  * taken together; in truncation, i_sem is taken outermost.
30  *
31  * mm->mmap_sem
32  *   page->flags PG_locked (lock_page)
33  *     mapping->i_mmap_lock
34  *       anon_vma->lock
35  *         mm->page_table_lock
36  *           zone->lru_lock (in mark_page_accessed)
37  *           swap_list_lock (in swap_free etc's swap_info_get)
38  *             mmlist_lock (in mmput, drain_mmlist and others)
39  *             swap_device_lock (in swap_duplicate, swap_info_get)
40  *             mapping->private_lock (in __set_page_dirty_buffers)
41  *             inode_lock (in set_page_dirty's __mark_inode_dirty)
42  *               sb_lock (within inode_lock in fs/fs-writeback.c)
43  *               mapping->tree_lock (widely used, in set_page_dirty,
44  *                         in arch-dependent flush_dcache_mmap_lock,
45  *                         within inode_lock in __sync_single_inode)
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 
57 #include <asm/tlbflush.h>
58 
59 //#define RMAP_DEBUG /* can be enabled only for debugging */
60 
61 kmem_cache_t *anon_vma_cachep;
62 
63 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
64 {
65 #ifdef RMAP_DEBUG
66 	struct anon_vma *anon_vma = find_vma->anon_vma;
67 	struct vm_area_struct *vma;
68 	unsigned int mapcount = 0;
69 	int found = 0;
70 
71 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
72 		mapcount++;
73 		BUG_ON(mapcount > 100000);
74 		if (vma == find_vma)
75 			found = 1;
76 	}
77 	BUG_ON(!found);
78 #endif
79 }
80 
81 /* This must be called under the mmap_sem. */
82 int anon_vma_prepare(struct vm_area_struct *vma)
83 {
84 	struct anon_vma *anon_vma = vma->anon_vma;
85 
86 	might_sleep();
87 	if (unlikely(!anon_vma)) {
88 		struct mm_struct *mm = vma->vm_mm;
89 		struct anon_vma *allocated, *locked;
90 
91 		anon_vma = find_mergeable_anon_vma(vma);
92 		if (anon_vma) {
93 			allocated = NULL;
94 			locked = anon_vma;
95 			spin_lock(&locked->lock);
96 		} else {
97 			anon_vma = anon_vma_alloc();
98 			if (unlikely(!anon_vma))
99 				return -ENOMEM;
100 			allocated = anon_vma;
101 			locked = NULL;
102 		}
103 
104 		/* page_table_lock to protect against threads */
105 		spin_lock(&mm->page_table_lock);
106 		if (likely(!vma->anon_vma)) {
107 			vma->anon_vma = anon_vma;
108 			list_add(&vma->anon_vma_node, &anon_vma->head);
109 			allocated = NULL;
110 		}
111 		spin_unlock(&mm->page_table_lock);
112 
113 		if (locked)
114 			spin_unlock(&locked->lock);
115 		if (unlikely(allocated))
116 			anon_vma_free(allocated);
117 	}
118 	return 0;
119 }
120 
121 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
122 {
123 	BUG_ON(vma->anon_vma != next->anon_vma);
124 	list_del(&next->anon_vma_node);
125 }
126 
127 void __anon_vma_link(struct vm_area_struct *vma)
128 {
129 	struct anon_vma *anon_vma = vma->anon_vma;
130 
131 	if (anon_vma) {
132 		list_add(&vma->anon_vma_node, &anon_vma->head);
133 		validate_anon_vma(vma);
134 	}
135 }
136 
137 void anon_vma_link(struct vm_area_struct *vma)
138 {
139 	struct anon_vma *anon_vma = vma->anon_vma;
140 
141 	if (anon_vma) {
142 		spin_lock(&anon_vma->lock);
143 		list_add(&vma->anon_vma_node, &anon_vma->head);
144 		validate_anon_vma(vma);
145 		spin_unlock(&anon_vma->lock);
146 	}
147 }
148 
149 void anon_vma_unlink(struct vm_area_struct *vma)
150 {
151 	struct anon_vma *anon_vma = vma->anon_vma;
152 	int empty;
153 
154 	if (!anon_vma)
155 		return;
156 
157 	spin_lock(&anon_vma->lock);
158 	validate_anon_vma(vma);
159 	list_del(&vma->anon_vma_node);
160 
161 	/* We must garbage collect the anon_vma if it's empty */
162 	empty = list_empty(&anon_vma->head);
163 	spin_unlock(&anon_vma->lock);
164 
165 	if (empty)
166 		anon_vma_free(anon_vma);
167 }
168 
169 static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
170 {
171 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
172 						SLAB_CTOR_CONSTRUCTOR) {
173 		struct anon_vma *anon_vma = data;
174 
175 		spin_lock_init(&anon_vma->lock);
176 		INIT_LIST_HEAD(&anon_vma->head);
177 	}
178 }
179 
180 void __init anon_vma_init(void)
181 {
182 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
183 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
184 }
185 
186 /*
187  * Getting a lock on a stable anon_vma from a page off the LRU is
188  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
189  */
190 static struct anon_vma *page_lock_anon_vma(struct page *page)
191 {
192 	struct anon_vma *anon_vma = NULL;
193 	unsigned long anon_mapping;
194 
195 	rcu_read_lock();
196 	anon_mapping = (unsigned long) page->mapping;
197 	if (!(anon_mapping & PAGE_MAPPING_ANON))
198 		goto out;
199 	if (!page_mapped(page))
200 		goto out;
201 
202 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
203 	spin_lock(&anon_vma->lock);
204 out:
205 	rcu_read_unlock();
206 	return anon_vma;
207 }
208 
209 /*
210  * At what user virtual address is page expected in vma?
211  */
212 static inline unsigned long
213 vma_address(struct page *page, struct vm_area_struct *vma)
214 {
215 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 	unsigned long address;
217 
218 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 		/* page should be within any vma from prio_tree_next */
221 		BUG_ON(!PageAnon(page));
222 		return -EFAULT;
223 	}
224 	return address;
225 }
226 
227 /*
228  * At what user virtual address is page expected in vma? checking that the
229  * page matches the vma: currently only used by unuse_process, on anon pages.
230  */
231 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232 {
233 	if (PageAnon(page)) {
234 		if ((void *)vma->anon_vma !=
235 		    (void *)page->mapping - PAGE_MAPPING_ANON)
236 			return -EFAULT;
237 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
238 		if (vma->vm_file->f_mapping != page->mapping)
239 			return -EFAULT;
240 	} else
241 		return -EFAULT;
242 	return vma_address(page, vma);
243 }
244 
245 /*
246  * Check that @page is mapped at @address into @mm.
247  *
248  * On success returns with mapped pte and locked mm->page_table_lock.
249  */
250 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
251 			  unsigned long address)
252 {
253 	pgd_t *pgd;
254 	pud_t *pud;
255 	pmd_t *pmd;
256 	pte_t *pte;
257 
258 	/*
259 	 * We need the page_table_lock to protect us from page faults,
260 	 * munmap, fork, etc...
261 	 */
262 	spin_lock(&mm->page_table_lock);
263 	pgd = pgd_offset(mm, address);
264 	if (likely(pgd_present(*pgd))) {
265 		pud = pud_offset(pgd, address);
266 		if (likely(pud_present(*pud))) {
267 			pmd = pmd_offset(pud, address);
268 			if (likely(pmd_present(*pmd))) {
269 				pte = pte_offset_map(pmd, address);
270 				if (likely(pte_present(*pte) &&
271 					   page_to_pfn(page) == pte_pfn(*pte)))
272 					return pte;
273 				pte_unmap(pte);
274 			}
275 		}
276 	}
277 	spin_unlock(&mm->page_table_lock);
278 	return ERR_PTR(-ENOENT);
279 }
280 
281 /*
282  * Subfunctions of page_referenced: page_referenced_one called
283  * repeatedly from either page_referenced_anon or page_referenced_file.
284  */
285 static int page_referenced_one(struct page *page,
286 	struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
287 {
288 	struct mm_struct *mm = vma->vm_mm;
289 	unsigned long address;
290 	pte_t *pte;
291 	int referenced = 0;
292 
293 	if (!get_mm_counter(mm, rss))
294 		goto out;
295 	address = vma_address(page, vma);
296 	if (address == -EFAULT)
297 		goto out;
298 
299 	pte = page_check_address(page, mm, address);
300 	if (!IS_ERR(pte)) {
301 		if (ptep_clear_flush_young(vma, address, pte))
302 			referenced++;
303 
304 		if (mm != current->mm && !ignore_token && has_swap_token(mm))
305 			referenced++;
306 
307 		(*mapcount)--;
308 		pte_unmap(pte);
309 		spin_unlock(&mm->page_table_lock);
310 	}
311 out:
312 	return referenced;
313 }
314 
315 static int page_referenced_anon(struct page *page, int ignore_token)
316 {
317 	unsigned int mapcount;
318 	struct anon_vma *anon_vma;
319 	struct vm_area_struct *vma;
320 	int referenced = 0;
321 
322 	anon_vma = page_lock_anon_vma(page);
323 	if (!anon_vma)
324 		return referenced;
325 
326 	mapcount = page_mapcount(page);
327 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
328 		referenced += page_referenced_one(page, vma, &mapcount,
329 							ignore_token);
330 		if (!mapcount)
331 			break;
332 	}
333 	spin_unlock(&anon_vma->lock);
334 	return referenced;
335 }
336 
337 /**
338  * page_referenced_file - referenced check for object-based rmap
339  * @page: the page we're checking references on.
340  *
341  * For an object-based mapped page, find all the places it is mapped and
342  * check/clear the referenced flag.  This is done by following the page->mapping
343  * pointer, then walking the chain of vmas it holds.  It returns the number
344  * of references it found.
345  *
346  * This function is only called from page_referenced for object-based pages.
347  */
348 static int page_referenced_file(struct page *page, int ignore_token)
349 {
350 	unsigned int mapcount;
351 	struct address_space *mapping = page->mapping;
352 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
353 	struct vm_area_struct *vma;
354 	struct prio_tree_iter iter;
355 	int referenced = 0;
356 
357 	/*
358 	 * The caller's checks on page->mapping and !PageAnon have made
359 	 * sure that this is a file page: the check for page->mapping
360 	 * excludes the case just before it gets set on an anon page.
361 	 */
362 	BUG_ON(PageAnon(page));
363 
364 	/*
365 	 * The page lock not only makes sure that page->mapping cannot
366 	 * suddenly be NULLified by truncation, it makes sure that the
367 	 * structure at mapping cannot be freed and reused yet,
368 	 * so we can safely take mapping->i_mmap_lock.
369 	 */
370 	BUG_ON(!PageLocked(page));
371 
372 	spin_lock(&mapping->i_mmap_lock);
373 
374 	/*
375 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
376 	 * is more likely to be accurate if we note it after spinning.
377 	 */
378 	mapcount = page_mapcount(page);
379 
380 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
381 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
382 				  == (VM_LOCKED|VM_MAYSHARE)) {
383 			referenced++;
384 			break;
385 		}
386 		referenced += page_referenced_one(page, vma, &mapcount,
387 							ignore_token);
388 		if (!mapcount)
389 			break;
390 	}
391 
392 	spin_unlock(&mapping->i_mmap_lock);
393 	return referenced;
394 }
395 
396 /**
397  * page_referenced - test if the page was referenced
398  * @page: the page to test
399  * @is_locked: caller holds lock on the page
400  *
401  * Quick test_and_clear_referenced for all mappings to a page,
402  * returns the number of ptes which referenced the page.
403  */
404 int page_referenced(struct page *page, int is_locked, int ignore_token)
405 {
406 	int referenced = 0;
407 
408 	if (!swap_token_default_timeout)
409 		ignore_token = 1;
410 
411 	if (page_test_and_clear_young(page))
412 		referenced++;
413 
414 	if (TestClearPageReferenced(page))
415 		referenced++;
416 
417 	if (page_mapped(page) && page->mapping) {
418 		if (PageAnon(page))
419 			referenced += page_referenced_anon(page, ignore_token);
420 		else if (is_locked)
421 			referenced += page_referenced_file(page, ignore_token);
422 		else if (TestSetPageLocked(page))
423 			referenced++;
424 		else {
425 			if (page->mapping)
426 				referenced += page_referenced_file(page,
427 								ignore_token);
428 			unlock_page(page);
429 		}
430 	}
431 	return referenced;
432 }
433 
434 /**
435  * page_add_anon_rmap - add pte mapping to an anonymous page
436  * @page:	the page to add the mapping to
437  * @vma:	the vm area in which the mapping is added
438  * @address:	the user virtual address mapped
439  *
440  * The caller needs to hold the mm->page_table_lock.
441  */
442 void page_add_anon_rmap(struct page *page,
443 	struct vm_area_struct *vma, unsigned long address)
444 {
445 	struct anon_vma *anon_vma = vma->anon_vma;
446 	pgoff_t index;
447 
448 	BUG_ON(PageReserved(page));
449 	BUG_ON(!anon_vma);
450 
451 	inc_mm_counter(vma->vm_mm, anon_rss);
452 
453 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
454 	index = (address - vma->vm_start) >> PAGE_SHIFT;
455 	index += vma->vm_pgoff;
456 	index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
457 
458 	if (atomic_inc_and_test(&page->_mapcount)) {
459 		page->index = index;
460 		page->mapping = (struct address_space *) anon_vma;
461 		inc_page_state(nr_mapped);
462 	}
463 	/* else checking page index and mapping is racy */
464 }
465 
466 /**
467  * page_add_file_rmap - add pte mapping to a file page
468  * @page: the page to add the mapping to
469  *
470  * The caller needs to hold the mm->page_table_lock.
471  */
472 void page_add_file_rmap(struct page *page)
473 {
474 	BUG_ON(PageAnon(page));
475 	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
476 		return;
477 
478 	if (atomic_inc_and_test(&page->_mapcount))
479 		inc_page_state(nr_mapped);
480 }
481 
482 /**
483  * page_remove_rmap - take down pte mapping from a page
484  * @page: page to remove mapping from
485  *
486  * Caller needs to hold the mm->page_table_lock.
487  */
488 void page_remove_rmap(struct page *page)
489 {
490 	BUG_ON(PageReserved(page));
491 
492 	if (atomic_add_negative(-1, &page->_mapcount)) {
493 		BUG_ON(page_mapcount(page) < 0);
494 		/*
495 		 * It would be tidy to reset the PageAnon mapping here,
496 		 * but that might overwrite a racing page_add_anon_rmap
497 		 * which increments mapcount after us but sets mapping
498 		 * before us: so leave the reset to free_hot_cold_page,
499 		 * and remember that it's only reliable while mapped.
500 		 * Leaving it set also helps swapoff to reinstate ptes
501 		 * faster for those pages still in swapcache.
502 		 */
503 		if (page_test_and_clear_dirty(page))
504 			set_page_dirty(page);
505 		dec_page_state(nr_mapped);
506 	}
507 }
508 
509 /*
510  * Subfunctions of try_to_unmap: try_to_unmap_one called
511  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
512  */
513 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
514 {
515 	struct mm_struct *mm = vma->vm_mm;
516 	unsigned long address;
517 	pte_t *pte;
518 	pte_t pteval;
519 	int ret = SWAP_AGAIN;
520 
521 	if (!get_mm_counter(mm, rss))
522 		goto out;
523 	address = vma_address(page, vma);
524 	if (address == -EFAULT)
525 		goto out;
526 
527 	pte = page_check_address(page, mm, address);
528 	if (IS_ERR(pte))
529 		goto out;
530 
531 	/*
532 	 * If the page is mlock()d, we cannot swap it out.
533 	 * If it's recently referenced (perhaps page_referenced
534 	 * skipped over this mm) then we should reactivate it.
535 	 */
536 	if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
537 			ptep_clear_flush_young(vma, address, pte)) {
538 		ret = SWAP_FAIL;
539 		goto out_unmap;
540 	}
541 
542 	/* Nuke the page table entry. */
543 	flush_cache_page(vma, address, page_to_pfn(page));
544 	pteval = ptep_clear_flush(vma, address, pte);
545 
546 	/* Move the dirty bit to the physical page now the pte is gone. */
547 	if (pte_dirty(pteval))
548 		set_page_dirty(page);
549 
550 	if (PageAnon(page)) {
551 		swp_entry_t entry = { .val = page->private };
552 		/*
553 		 * Store the swap location in the pte.
554 		 * See handle_pte_fault() ...
555 		 */
556 		BUG_ON(!PageSwapCache(page));
557 		swap_duplicate(entry);
558 		if (list_empty(&mm->mmlist)) {
559 			spin_lock(&mmlist_lock);
560 			list_add(&mm->mmlist, &init_mm.mmlist);
561 			spin_unlock(&mmlist_lock);
562 		}
563 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
564 		BUG_ON(pte_file(*pte));
565 		dec_mm_counter(mm, anon_rss);
566 	}
567 
568 	dec_mm_counter(mm, rss);
569 	page_remove_rmap(page);
570 	page_cache_release(page);
571 
572 out_unmap:
573 	pte_unmap(pte);
574 	spin_unlock(&mm->page_table_lock);
575 out:
576 	return ret;
577 }
578 
579 /*
580  * objrmap doesn't work for nonlinear VMAs because the assumption that
581  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
582  * Consequently, given a particular page and its ->index, we cannot locate the
583  * ptes which are mapping that page without an exhaustive linear search.
584  *
585  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
586  * maps the file to which the target page belongs.  The ->vm_private_data field
587  * holds the current cursor into that scan.  Successive searches will circulate
588  * around the vma's virtual address space.
589  *
590  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
591  * more scanning pressure is placed against them as well.   Eventually pages
592  * will become fully unmapped and are eligible for eviction.
593  *
594  * For very sparsely populated VMAs this is a little inefficient - chances are
595  * there there won't be many ptes located within the scan cluster.  In this case
596  * maybe we could scan further - to the end of the pte page, perhaps.
597  */
598 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
599 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
600 
601 static void try_to_unmap_cluster(unsigned long cursor,
602 	unsigned int *mapcount, struct vm_area_struct *vma)
603 {
604 	struct mm_struct *mm = vma->vm_mm;
605 	pgd_t *pgd;
606 	pud_t *pud;
607 	pmd_t *pmd;
608 	pte_t *pte, *original_pte;
609 	pte_t pteval;
610 	struct page *page;
611 	unsigned long address;
612 	unsigned long end;
613 	unsigned long pfn;
614 
615 	/*
616 	 * We need the page_table_lock to protect us from page faults,
617 	 * munmap, fork, etc...
618 	 */
619 	spin_lock(&mm->page_table_lock);
620 
621 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
622 	end = address + CLUSTER_SIZE;
623 	if (address < vma->vm_start)
624 		address = vma->vm_start;
625 	if (end > vma->vm_end)
626 		end = vma->vm_end;
627 
628 	pgd = pgd_offset(mm, address);
629 	if (!pgd_present(*pgd))
630 		goto out_unlock;
631 
632 	pud = pud_offset(pgd, address);
633 	if (!pud_present(*pud))
634 		goto out_unlock;
635 
636 	pmd = pmd_offset(pud, address);
637 	if (!pmd_present(*pmd))
638 		goto out_unlock;
639 
640 	for (original_pte = pte = pte_offset_map(pmd, address);
641 			address < end; pte++, address += PAGE_SIZE) {
642 
643 		if (!pte_present(*pte))
644 			continue;
645 
646 		pfn = pte_pfn(*pte);
647 		if (!pfn_valid(pfn))
648 			continue;
649 
650 		page = pfn_to_page(pfn);
651 		BUG_ON(PageAnon(page));
652 		if (PageReserved(page))
653 			continue;
654 
655 		if (ptep_clear_flush_young(vma, address, pte))
656 			continue;
657 
658 		/* Nuke the page table entry. */
659 		flush_cache_page(vma, address, pfn);
660 		pteval = ptep_clear_flush(vma, address, pte);
661 
662 		/* If nonlinear, store the file page offset in the pte. */
663 		if (page->index != linear_page_index(vma, address))
664 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
665 
666 		/* Move the dirty bit to the physical page now the pte is gone. */
667 		if (pte_dirty(pteval))
668 			set_page_dirty(page);
669 
670 		page_remove_rmap(page);
671 		page_cache_release(page);
672 		dec_mm_counter(mm, rss);
673 		(*mapcount)--;
674 	}
675 
676 	pte_unmap(original_pte);
677 out_unlock:
678 	spin_unlock(&mm->page_table_lock);
679 }
680 
681 static int try_to_unmap_anon(struct page *page)
682 {
683 	struct anon_vma *anon_vma;
684 	struct vm_area_struct *vma;
685 	int ret = SWAP_AGAIN;
686 
687 	anon_vma = page_lock_anon_vma(page);
688 	if (!anon_vma)
689 		return ret;
690 
691 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
692 		ret = try_to_unmap_one(page, vma);
693 		if (ret == SWAP_FAIL || !page_mapped(page))
694 			break;
695 	}
696 	spin_unlock(&anon_vma->lock);
697 	return ret;
698 }
699 
700 /**
701  * try_to_unmap_file - unmap file page using the object-based rmap method
702  * @page: the page to unmap
703  *
704  * Find all the mappings of a page using the mapping pointer and the vma chains
705  * contained in the address_space struct it points to.
706  *
707  * This function is only called from try_to_unmap for object-based pages.
708  */
709 static int try_to_unmap_file(struct page *page)
710 {
711 	struct address_space *mapping = page->mapping;
712 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
713 	struct vm_area_struct *vma;
714 	struct prio_tree_iter iter;
715 	int ret = SWAP_AGAIN;
716 	unsigned long cursor;
717 	unsigned long max_nl_cursor = 0;
718 	unsigned long max_nl_size = 0;
719 	unsigned int mapcount;
720 
721 	spin_lock(&mapping->i_mmap_lock);
722 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
723 		ret = try_to_unmap_one(page, vma);
724 		if (ret == SWAP_FAIL || !page_mapped(page))
725 			goto out;
726 	}
727 
728 	if (list_empty(&mapping->i_mmap_nonlinear))
729 		goto out;
730 
731 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
732 						shared.vm_set.list) {
733 		if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
734 			continue;
735 		cursor = (unsigned long) vma->vm_private_data;
736 		if (cursor > max_nl_cursor)
737 			max_nl_cursor = cursor;
738 		cursor = vma->vm_end - vma->vm_start;
739 		if (cursor > max_nl_size)
740 			max_nl_size = cursor;
741 	}
742 
743 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
744 		ret = SWAP_FAIL;
745 		goto out;
746 	}
747 
748 	/*
749 	 * We don't try to search for this page in the nonlinear vmas,
750 	 * and page_referenced wouldn't have found it anyway.  Instead
751 	 * just walk the nonlinear vmas trying to age and unmap some.
752 	 * The mapcount of the page we came in with is irrelevant,
753 	 * but even so use it as a guide to how hard we should try?
754 	 */
755 	mapcount = page_mapcount(page);
756 	if (!mapcount)
757 		goto out;
758 	cond_resched_lock(&mapping->i_mmap_lock);
759 
760 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
761 	if (max_nl_cursor == 0)
762 		max_nl_cursor = CLUSTER_SIZE;
763 
764 	do {
765 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
766 						shared.vm_set.list) {
767 			if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
768 				continue;
769 			cursor = (unsigned long) vma->vm_private_data;
770 			while (get_mm_counter(vma->vm_mm, rss) &&
771 				cursor < max_nl_cursor &&
772 				cursor < vma->vm_end - vma->vm_start) {
773 				try_to_unmap_cluster(cursor, &mapcount, vma);
774 				cursor += CLUSTER_SIZE;
775 				vma->vm_private_data = (void *) cursor;
776 				if ((int)mapcount <= 0)
777 					goto out;
778 			}
779 			vma->vm_private_data = (void *) max_nl_cursor;
780 		}
781 		cond_resched_lock(&mapping->i_mmap_lock);
782 		max_nl_cursor += CLUSTER_SIZE;
783 	} while (max_nl_cursor <= max_nl_size);
784 
785 	/*
786 	 * Don't loop forever (perhaps all the remaining pages are
787 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
788 	 * vmas, now forgetting on which ones it had fallen behind.
789 	 */
790 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
791 						shared.vm_set.list) {
792 		if (!(vma->vm_flags & VM_RESERVED))
793 			vma->vm_private_data = NULL;
794 	}
795 out:
796 	spin_unlock(&mapping->i_mmap_lock);
797 	return ret;
798 }
799 
800 /**
801  * try_to_unmap - try to remove all page table mappings to a page
802  * @page: the page to get unmapped
803  *
804  * Tries to remove all the page table entries which are mapping this
805  * page, used in the pageout path.  Caller must hold the page lock.
806  * Return values are:
807  *
808  * SWAP_SUCCESS	- we succeeded in removing all mappings
809  * SWAP_AGAIN	- we missed a mapping, try again later
810  * SWAP_FAIL	- the page is unswappable
811  */
812 int try_to_unmap(struct page *page)
813 {
814 	int ret;
815 
816 	BUG_ON(PageReserved(page));
817 	BUG_ON(!PageLocked(page));
818 
819 	if (PageAnon(page))
820 		ret = try_to_unmap_anon(page);
821 	else
822 		ret = try_to_unmap_file(page);
823 
824 	if (!page_mapped(page))
825 		ret = SWAP_SUCCESS;
826 	return ret;
827 }
828 
829