xref: /linux/mm/rmap.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71 }
72 
73 void anon_vma_free(struct anon_vma *anon_vma)
74 {
75 	kmem_cache_free(anon_vma_cachep, anon_vma);
76 }
77 
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 {
80 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81 }
82 
83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 {
85 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86 }
87 
88 /**
89  * anon_vma_prepare - attach an anon_vma to a memory region
90  * @vma: the memory region in question
91  *
92  * This makes sure the memory mapping described by 'vma' has
93  * an 'anon_vma' attached to it, so that we can associate the
94  * anonymous pages mapped into it with that anon_vma.
95  *
96  * The common case will be that we already have one, but if
97  * not we either need to find an adjacent mapping that we
98  * can re-use the anon_vma from (very common when the only
99  * reason for splitting a vma has been mprotect()), or we
100  * allocate a new one.
101  *
102  * Anon-vma allocations are very subtle, because we may have
103  * optimistically looked up an anon_vma in page_lock_anon_vma()
104  * and that may actually touch the spinlock even in the newly
105  * allocated vma (it depends on RCU to make sure that the
106  * anon_vma isn't actually destroyed).
107  *
108  * As a result, we need to do proper anon_vma locking even
109  * for the new allocation. At the same time, we do not want
110  * to do any locking for the common case of already having
111  * an anon_vma.
112  *
113  * This must be called with the mmap_sem held for reading.
114  */
115 int anon_vma_prepare(struct vm_area_struct *vma)
116 {
117 	struct anon_vma *anon_vma = vma->anon_vma;
118 	struct anon_vma_chain *avc;
119 
120 	might_sleep();
121 	if (unlikely(!anon_vma)) {
122 		struct mm_struct *mm = vma->vm_mm;
123 		struct anon_vma *allocated;
124 
125 		avc = anon_vma_chain_alloc();
126 		if (!avc)
127 			goto out_enomem;
128 
129 		anon_vma = find_mergeable_anon_vma(vma);
130 		allocated = NULL;
131 		if (!anon_vma) {
132 			anon_vma = anon_vma_alloc();
133 			if (unlikely(!anon_vma))
134 				goto out_enomem_free_avc;
135 			allocated = anon_vma;
136 			/*
137 			 * This VMA had no anon_vma yet.  This anon_vma is
138 			 * the root of any anon_vma tree that might form.
139 			 */
140 			anon_vma->root = anon_vma;
141 		}
142 
143 		anon_vma_lock(anon_vma);
144 		/* page_table_lock to protect against threads */
145 		spin_lock(&mm->page_table_lock);
146 		if (likely(!vma->anon_vma)) {
147 			vma->anon_vma = anon_vma;
148 			avc->anon_vma = anon_vma;
149 			avc->vma = vma;
150 			list_add(&avc->same_vma, &vma->anon_vma_chain);
151 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 			allocated = NULL;
153 			avc = NULL;
154 		}
155 		spin_unlock(&mm->page_table_lock);
156 		anon_vma_unlock(anon_vma);
157 
158 		if (unlikely(allocated))
159 			anon_vma_free(allocated);
160 		if (unlikely(avc))
161 			anon_vma_chain_free(avc);
162 	}
163 	return 0;
164 
165  out_enomem_free_avc:
166 	anon_vma_chain_free(avc);
167  out_enomem:
168 	return -ENOMEM;
169 }
170 
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 				struct anon_vma_chain *avc,
173 				struct anon_vma *anon_vma)
174 {
175 	avc->vma = vma;
176 	avc->anon_vma = anon_vma;
177 	list_add(&avc->same_vma, &vma->anon_vma_chain);
178 
179 	anon_vma_lock(anon_vma);
180 	/*
181 	 * It's critical to add new vmas to the tail of the anon_vma,
182 	 * see comment in huge_memory.c:__split_huge_page().
183 	 */
184 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
185 	anon_vma_unlock(anon_vma);
186 }
187 
188 /*
189  * Attach the anon_vmas from src to dst.
190  * Returns 0 on success, -ENOMEM on failure.
191  */
192 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
193 {
194 	struct anon_vma_chain *avc, *pavc;
195 
196 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
197 		avc = anon_vma_chain_alloc();
198 		if (!avc)
199 			goto enomem_failure;
200 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
201 	}
202 	return 0;
203 
204  enomem_failure:
205 	unlink_anon_vmas(dst);
206 	return -ENOMEM;
207 }
208 
209 /*
210  * Attach vma to its own anon_vma, as well as to the anon_vmas that
211  * the corresponding VMA in the parent process is attached to.
212  * Returns 0 on success, non-zero on failure.
213  */
214 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
215 {
216 	struct anon_vma_chain *avc;
217 	struct anon_vma *anon_vma;
218 
219 	/* Don't bother if the parent process has no anon_vma here. */
220 	if (!pvma->anon_vma)
221 		return 0;
222 
223 	/*
224 	 * First, attach the new VMA to the parent VMA's anon_vmas,
225 	 * so rmap can find non-COWed pages in child processes.
226 	 */
227 	if (anon_vma_clone(vma, pvma))
228 		return -ENOMEM;
229 
230 	/* Then add our own anon_vma. */
231 	anon_vma = anon_vma_alloc();
232 	if (!anon_vma)
233 		goto out_error;
234 	avc = anon_vma_chain_alloc();
235 	if (!avc)
236 		goto out_error_free_anon_vma;
237 
238 	/*
239 	 * The root anon_vma's spinlock is the lock actually used when we
240 	 * lock any of the anon_vmas in this anon_vma tree.
241 	 */
242 	anon_vma->root = pvma->anon_vma->root;
243 	/*
244 	 * With KSM refcounts, an anon_vma can stay around longer than the
245 	 * process it belongs to.  The root anon_vma needs to be pinned
246 	 * until this anon_vma is freed, because the lock lives in the root.
247 	 */
248 	get_anon_vma(anon_vma->root);
249 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
250 	vma->anon_vma = anon_vma;
251 	anon_vma_chain_link(vma, avc, anon_vma);
252 
253 	return 0;
254 
255  out_error_free_anon_vma:
256 	anon_vma_free(anon_vma);
257  out_error:
258 	unlink_anon_vmas(vma);
259 	return -ENOMEM;
260 }
261 
262 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
263 {
264 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
265 	int empty;
266 
267 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
268 	if (!anon_vma)
269 		return;
270 
271 	anon_vma_lock(anon_vma);
272 	list_del(&anon_vma_chain->same_anon_vma);
273 
274 	/* We must garbage collect the anon_vma if it's empty */
275 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
276 	anon_vma_unlock(anon_vma);
277 
278 	if (empty) {
279 		/* We no longer need the root anon_vma */
280 		if (anon_vma->root != anon_vma)
281 			drop_anon_vma(anon_vma->root);
282 		anon_vma_free(anon_vma);
283 	}
284 }
285 
286 void unlink_anon_vmas(struct vm_area_struct *vma)
287 {
288 	struct anon_vma_chain *avc, *next;
289 
290 	/*
291 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
292 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
293 	 */
294 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
295 		anon_vma_unlink(avc);
296 		list_del(&avc->same_vma);
297 		anon_vma_chain_free(avc);
298 	}
299 }
300 
301 static void anon_vma_ctor(void *data)
302 {
303 	struct anon_vma *anon_vma = data;
304 
305 	spin_lock_init(&anon_vma->lock);
306 	anonvma_external_refcount_init(anon_vma);
307 	INIT_LIST_HEAD(&anon_vma->head);
308 }
309 
310 void __init anon_vma_init(void)
311 {
312 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
313 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
314 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
315 }
316 
317 /*
318  * Getting a lock on a stable anon_vma from a page off the LRU is
319  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
320  */
321 struct anon_vma *__page_lock_anon_vma(struct page *page)
322 {
323 	struct anon_vma *anon_vma, *root_anon_vma;
324 	unsigned long anon_mapping;
325 
326 	rcu_read_lock();
327 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
328 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
329 		goto out;
330 	if (!page_mapped(page))
331 		goto out;
332 
333 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
334 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
335 	spin_lock(&root_anon_vma->lock);
336 
337 	/*
338 	 * If this page is still mapped, then its anon_vma cannot have been
339 	 * freed.  But if it has been unmapped, we have no security against
340 	 * the anon_vma structure being freed and reused (for another anon_vma:
341 	 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
342 	 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
343 	 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
344 	 */
345 	if (page_mapped(page))
346 		return anon_vma;
347 
348 	spin_unlock(&root_anon_vma->lock);
349 out:
350 	rcu_read_unlock();
351 	return NULL;
352 }
353 
354 void page_unlock_anon_vma(struct anon_vma *anon_vma)
355 	__releases(&anon_vma->root->lock)
356 	__releases(RCU)
357 {
358 	anon_vma_unlock(anon_vma);
359 	rcu_read_unlock();
360 }
361 
362 /*
363  * At what user virtual address is page expected in @vma?
364  * Returns virtual address or -EFAULT if page's index/offset is not
365  * within the range mapped the @vma.
366  */
367 inline unsigned long
368 vma_address(struct page *page, struct vm_area_struct *vma)
369 {
370 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
371 	unsigned long address;
372 
373 	if (unlikely(is_vm_hugetlb_page(vma)))
374 		pgoff = page->index << huge_page_order(page_hstate(page));
375 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
376 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
377 		/* page should be within @vma mapping range */
378 		return -EFAULT;
379 	}
380 	return address;
381 }
382 
383 /*
384  * At what user virtual address is page expected in vma?
385  * Caller should check the page is actually part of the vma.
386  */
387 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
388 {
389 	if (PageAnon(page)) {
390 		struct anon_vma *page__anon_vma = page_anon_vma(page);
391 		/*
392 		 * Note: swapoff's unuse_vma() is more efficient with this
393 		 * check, and needs it to match anon_vma when KSM is active.
394 		 */
395 		if (!vma->anon_vma || !page__anon_vma ||
396 		    vma->anon_vma->root != page__anon_vma->root)
397 			return -EFAULT;
398 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
399 		if (!vma->vm_file ||
400 		    vma->vm_file->f_mapping != page->mapping)
401 			return -EFAULT;
402 	} else
403 		return -EFAULT;
404 	return vma_address(page, vma);
405 }
406 
407 /*
408  * Check that @page is mapped at @address into @mm.
409  *
410  * If @sync is false, page_check_address may perform a racy check to avoid
411  * the page table lock when the pte is not present (helpful when reclaiming
412  * highly shared pages).
413  *
414  * On success returns with pte mapped and locked.
415  */
416 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
417 			  unsigned long address, spinlock_t **ptlp, int sync)
418 {
419 	pgd_t *pgd;
420 	pud_t *pud;
421 	pmd_t *pmd;
422 	pte_t *pte;
423 	spinlock_t *ptl;
424 
425 	if (unlikely(PageHuge(page))) {
426 		pte = huge_pte_offset(mm, address);
427 		ptl = &mm->page_table_lock;
428 		goto check;
429 	}
430 
431 	pgd = pgd_offset(mm, address);
432 	if (!pgd_present(*pgd))
433 		return NULL;
434 
435 	pud = pud_offset(pgd, address);
436 	if (!pud_present(*pud))
437 		return NULL;
438 
439 	pmd = pmd_offset(pud, address);
440 	if (!pmd_present(*pmd))
441 		return NULL;
442 	if (pmd_trans_huge(*pmd))
443 		return NULL;
444 
445 	pte = pte_offset_map(pmd, address);
446 	/* Make a quick check before getting the lock */
447 	if (!sync && !pte_present(*pte)) {
448 		pte_unmap(pte);
449 		return NULL;
450 	}
451 
452 	ptl = pte_lockptr(mm, pmd);
453 check:
454 	spin_lock(ptl);
455 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
456 		*ptlp = ptl;
457 		return pte;
458 	}
459 	pte_unmap_unlock(pte, ptl);
460 	return NULL;
461 }
462 
463 /**
464  * page_mapped_in_vma - check whether a page is really mapped in a VMA
465  * @page: the page to test
466  * @vma: the VMA to test
467  *
468  * Returns 1 if the page is mapped into the page tables of the VMA, 0
469  * if the page is not mapped into the page tables of this VMA.  Only
470  * valid for normal file or anonymous VMAs.
471  */
472 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
473 {
474 	unsigned long address;
475 	pte_t *pte;
476 	spinlock_t *ptl;
477 
478 	address = vma_address(page, vma);
479 	if (address == -EFAULT)		/* out of vma range */
480 		return 0;
481 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
482 	if (!pte)			/* the page is not in this mm */
483 		return 0;
484 	pte_unmap_unlock(pte, ptl);
485 
486 	return 1;
487 }
488 
489 /*
490  * Subfunctions of page_referenced: page_referenced_one called
491  * repeatedly from either page_referenced_anon or page_referenced_file.
492  */
493 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
494 			unsigned long address, unsigned int *mapcount,
495 			unsigned long *vm_flags)
496 {
497 	struct mm_struct *mm = vma->vm_mm;
498 	int referenced = 0;
499 
500 	/*
501 	 * Don't want to elevate referenced for mlocked page that gets this far,
502 	 * in order that it progresses to try_to_unmap and is moved to the
503 	 * unevictable list.
504 	 */
505 	if (vma->vm_flags & VM_LOCKED) {
506 		*mapcount = 0;	/* break early from loop */
507 		*vm_flags |= VM_LOCKED;
508 		goto out;
509 	}
510 
511 	/* Pretend the page is referenced if the task has the
512 	   swap token and is in the middle of a page fault. */
513 	if (mm != current->mm && has_swap_token(mm) &&
514 			rwsem_is_locked(&mm->mmap_sem))
515 		referenced++;
516 
517 	if (unlikely(PageTransHuge(page))) {
518 		pmd_t *pmd;
519 
520 		spin_lock(&mm->page_table_lock);
521 		pmd = page_check_address_pmd(page, mm, address,
522 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
523 		if (pmd && !pmd_trans_splitting(*pmd) &&
524 		    pmdp_clear_flush_young_notify(vma, address, pmd))
525 			referenced++;
526 		spin_unlock(&mm->page_table_lock);
527 	} else {
528 		pte_t *pte;
529 		spinlock_t *ptl;
530 
531 		pte = page_check_address(page, mm, address, &ptl, 0);
532 		if (!pte)
533 			goto out;
534 
535 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
536 			/*
537 			 * Don't treat a reference through a sequentially read
538 			 * mapping as such.  If the page has been used in
539 			 * another mapping, we will catch it; if this other
540 			 * mapping is already gone, the unmap path will have
541 			 * set PG_referenced or activated the page.
542 			 */
543 			if (likely(!VM_SequentialReadHint(vma)))
544 				referenced++;
545 		}
546 		pte_unmap_unlock(pte, ptl);
547 	}
548 
549 	(*mapcount)--;
550 
551 	if (referenced)
552 		*vm_flags |= vma->vm_flags;
553 out:
554 	return referenced;
555 }
556 
557 static int page_referenced_anon(struct page *page,
558 				struct mem_cgroup *mem_cont,
559 				unsigned long *vm_flags)
560 {
561 	unsigned int mapcount;
562 	struct anon_vma *anon_vma;
563 	struct anon_vma_chain *avc;
564 	int referenced = 0;
565 
566 	anon_vma = page_lock_anon_vma(page);
567 	if (!anon_vma)
568 		return referenced;
569 
570 	mapcount = page_mapcount(page);
571 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
572 		struct vm_area_struct *vma = avc->vma;
573 		unsigned long address = vma_address(page, vma);
574 		if (address == -EFAULT)
575 			continue;
576 		/*
577 		 * If we are reclaiming on behalf of a cgroup, skip
578 		 * counting on behalf of references from different
579 		 * cgroups
580 		 */
581 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
582 			continue;
583 		referenced += page_referenced_one(page, vma, address,
584 						  &mapcount, vm_flags);
585 		if (!mapcount)
586 			break;
587 	}
588 
589 	page_unlock_anon_vma(anon_vma);
590 	return referenced;
591 }
592 
593 /**
594  * page_referenced_file - referenced check for object-based rmap
595  * @page: the page we're checking references on.
596  * @mem_cont: target memory controller
597  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
598  *
599  * For an object-based mapped page, find all the places it is mapped and
600  * check/clear the referenced flag.  This is done by following the page->mapping
601  * pointer, then walking the chain of vmas it holds.  It returns the number
602  * of references it found.
603  *
604  * This function is only called from page_referenced for object-based pages.
605  */
606 static int page_referenced_file(struct page *page,
607 				struct mem_cgroup *mem_cont,
608 				unsigned long *vm_flags)
609 {
610 	unsigned int mapcount;
611 	struct address_space *mapping = page->mapping;
612 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
613 	struct vm_area_struct *vma;
614 	struct prio_tree_iter iter;
615 	int referenced = 0;
616 
617 	/*
618 	 * The caller's checks on page->mapping and !PageAnon have made
619 	 * sure that this is a file page: the check for page->mapping
620 	 * excludes the case just before it gets set on an anon page.
621 	 */
622 	BUG_ON(PageAnon(page));
623 
624 	/*
625 	 * The page lock not only makes sure that page->mapping cannot
626 	 * suddenly be NULLified by truncation, it makes sure that the
627 	 * structure at mapping cannot be freed and reused yet,
628 	 * so we can safely take mapping->i_mmap_lock.
629 	 */
630 	BUG_ON(!PageLocked(page));
631 
632 	spin_lock(&mapping->i_mmap_lock);
633 
634 	/*
635 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
636 	 * is more likely to be accurate if we note it after spinning.
637 	 */
638 	mapcount = page_mapcount(page);
639 
640 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
641 		unsigned long address = vma_address(page, vma);
642 		if (address == -EFAULT)
643 			continue;
644 		/*
645 		 * If we are reclaiming on behalf of a cgroup, skip
646 		 * counting on behalf of references from different
647 		 * cgroups
648 		 */
649 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
650 			continue;
651 		referenced += page_referenced_one(page, vma, address,
652 						  &mapcount, vm_flags);
653 		if (!mapcount)
654 			break;
655 	}
656 
657 	spin_unlock(&mapping->i_mmap_lock);
658 	return referenced;
659 }
660 
661 /**
662  * page_referenced - test if the page was referenced
663  * @page: the page to test
664  * @is_locked: caller holds lock on the page
665  * @mem_cont: target memory controller
666  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
667  *
668  * Quick test_and_clear_referenced for all mappings to a page,
669  * returns the number of ptes which referenced the page.
670  */
671 int page_referenced(struct page *page,
672 		    int is_locked,
673 		    struct mem_cgroup *mem_cont,
674 		    unsigned long *vm_flags)
675 {
676 	int referenced = 0;
677 	int we_locked = 0;
678 
679 	*vm_flags = 0;
680 	if (page_mapped(page) && page_rmapping(page)) {
681 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
682 			we_locked = trylock_page(page);
683 			if (!we_locked) {
684 				referenced++;
685 				goto out;
686 			}
687 		}
688 		if (unlikely(PageKsm(page)))
689 			referenced += page_referenced_ksm(page, mem_cont,
690 								vm_flags);
691 		else if (PageAnon(page))
692 			referenced += page_referenced_anon(page, mem_cont,
693 								vm_flags);
694 		else if (page->mapping)
695 			referenced += page_referenced_file(page, mem_cont,
696 								vm_flags);
697 		if (we_locked)
698 			unlock_page(page);
699 	}
700 out:
701 	if (page_test_and_clear_young(page))
702 		referenced++;
703 
704 	return referenced;
705 }
706 
707 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
708 			    unsigned long address)
709 {
710 	struct mm_struct *mm = vma->vm_mm;
711 	pte_t *pte;
712 	spinlock_t *ptl;
713 	int ret = 0;
714 
715 	pte = page_check_address(page, mm, address, &ptl, 1);
716 	if (!pte)
717 		goto out;
718 
719 	if (pte_dirty(*pte) || pte_write(*pte)) {
720 		pte_t entry;
721 
722 		flush_cache_page(vma, address, pte_pfn(*pte));
723 		entry = ptep_clear_flush_notify(vma, address, pte);
724 		entry = pte_wrprotect(entry);
725 		entry = pte_mkclean(entry);
726 		set_pte_at(mm, address, pte, entry);
727 		ret = 1;
728 	}
729 
730 	pte_unmap_unlock(pte, ptl);
731 out:
732 	return ret;
733 }
734 
735 static int page_mkclean_file(struct address_space *mapping, struct page *page)
736 {
737 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
738 	struct vm_area_struct *vma;
739 	struct prio_tree_iter iter;
740 	int ret = 0;
741 
742 	BUG_ON(PageAnon(page));
743 
744 	spin_lock(&mapping->i_mmap_lock);
745 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
746 		if (vma->vm_flags & VM_SHARED) {
747 			unsigned long address = vma_address(page, vma);
748 			if (address == -EFAULT)
749 				continue;
750 			ret += page_mkclean_one(page, vma, address);
751 		}
752 	}
753 	spin_unlock(&mapping->i_mmap_lock);
754 	return ret;
755 }
756 
757 int page_mkclean(struct page *page)
758 {
759 	int ret = 0;
760 
761 	BUG_ON(!PageLocked(page));
762 
763 	if (page_mapped(page)) {
764 		struct address_space *mapping = page_mapping(page);
765 		if (mapping) {
766 			ret = page_mkclean_file(mapping, page);
767 			if (page_test_dirty(page)) {
768 				page_clear_dirty(page, 1);
769 				ret = 1;
770 			}
771 		}
772 	}
773 
774 	return ret;
775 }
776 EXPORT_SYMBOL_GPL(page_mkclean);
777 
778 /**
779  * page_move_anon_rmap - move a page to our anon_vma
780  * @page:	the page to move to our anon_vma
781  * @vma:	the vma the page belongs to
782  * @address:	the user virtual address mapped
783  *
784  * When a page belongs exclusively to one process after a COW event,
785  * that page can be moved into the anon_vma that belongs to just that
786  * process, so the rmap code will not search the parent or sibling
787  * processes.
788  */
789 void page_move_anon_rmap(struct page *page,
790 	struct vm_area_struct *vma, unsigned long address)
791 {
792 	struct anon_vma *anon_vma = vma->anon_vma;
793 
794 	VM_BUG_ON(!PageLocked(page));
795 	VM_BUG_ON(!anon_vma);
796 	VM_BUG_ON(page->index != linear_page_index(vma, address));
797 
798 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
799 	page->mapping = (struct address_space *) anon_vma;
800 }
801 
802 /**
803  * __page_set_anon_rmap - set up new anonymous rmap
804  * @page:	Page to add to rmap
805  * @vma:	VM area to add page to.
806  * @address:	User virtual address of the mapping
807  * @exclusive:	the page is exclusively owned by the current process
808  */
809 static void __page_set_anon_rmap(struct page *page,
810 	struct vm_area_struct *vma, unsigned long address, int exclusive)
811 {
812 	struct anon_vma *anon_vma = vma->anon_vma;
813 
814 	BUG_ON(!anon_vma);
815 
816 	if (PageAnon(page))
817 		return;
818 
819 	/*
820 	 * If the page isn't exclusively mapped into this vma,
821 	 * we must use the _oldest_ possible anon_vma for the
822 	 * page mapping!
823 	 */
824 	if (!exclusive)
825 		anon_vma = anon_vma->root;
826 
827 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
828 	page->mapping = (struct address_space *) anon_vma;
829 	page->index = linear_page_index(vma, address);
830 }
831 
832 /**
833  * __page_check_anon_rmap - sanity check anonymous rmap addition
834  * @page:	the page to add the mapping to
835  * @vma:	the vm area in which the mapping is added
836  * @address:	the user virtual address mapped
837  */
838 static void __page_check_anon_rmap(struct page *page,
839 	struct vm_area_struct *vma, unsigned long address)
840 {
841 #ifdef CONFIG_DEBUG_VM
842 	/*
843 	 * The page's anon-rmap details (mapping and index) are guaranteed to
844 	 * be set up correctly at this point.
845 	 *
846 	 * We have exclusion against page_add_anon_rmap because the caller
847 	 * always holds the page locked, except if called from page_dup_rmap,
848 	 * in which case the page is already known to be setup.
849 	 *
850 	 * We have exclusion against page_add_new_anon_rmap because those pages
851 	 * are initially only visible via the pagetables, and the pte is locked
852 	 * over the call to page_add_new_anon_rmap.
853 	 */
854 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
855 	BUG_ON(page->index != linear_page_index(vma, address));
856 #endif
857 }
858 
859 /**
860  * page_add_anon_rmap - add pte mapping to an anonymous page
861  * @page:	the page to add the mapping to
862  * @vma:	the vm area in which the mapping is added
863  * @address:	the user virtual address mapped
864  *
865  * The caller needs to hold the pte lock, and the page must be locked in
866  * the anon_vma case: to serialize mapping,index checking after setting,
867  * and to ensure that PageAnon is not being upgraded racily to PageKsm
868  * (but PageKsm is never downgraded to PageAnon).
869  */
870 void page_add_anon_rmap(struct page *page,
871 	struct vm_area_struct *vma, unsigned long address)
872 {
873 	do_page_add_anon_rmap(page, vma, address, 0);
874 }
875 
876 /*
877  * Special version of the above for do_swap_page, which often runs
878  * into pages that are exclusively owned by the current process.
879  * Everybody else should continue to use page_add_anon_rmap above.
880  */
881 void do_page_add_anon_rmap(struct page *page,
882 	struct vm_area_struct *vma, unsigned long address, int exclusive)
883 {
884 	int first = atomic_inc_and_test(&page->_mapcount);
885 	if (first) {
886 		if (!PageTransHuge(page))
887 			__inc_zone_page_state(page, NR_ANON_PAGES);
888 		else
889 			__inc_zone_page_state(page,
890 					      NR_ANON_TRANSPARENT_HUGEPAGES);
891 	}
892 	if (unlikely(PageKsm(page)))
893 		return;
894 
895 	VM_BUG_ON(!PageLocked(page));
896 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
897 	if (first)
898 		__page_set_anon_rmap(page, vma, address, exclusive);
899 	else
900 		__page_check_anon_rmap(page, vma, address);
901 }
902 
903 /**
904  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
905  * @page:	the page to add the mapping to
906  * @vma:	the vm area in which the mapping is added
907  * @address:	the user virtual address mapped
908  *
909  * Same as page_add_anon_rmap but must only be called on *new* pages.
910  * This means the inc-and-test can be bypassed.
911  * Page does not have to be locked.
912  */
913 void page_add_new_anon_rmap(struct page *page,
914 	struct vm_area_struct *vma, unsigned long address)
915 {
916 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
917 	SetPageSwapBacked(page);
918 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
919 	if (!PageTransHuge(page))
920 		__inc_zone_page_state(page, NR_ANON_PAGES);
921 	else
922 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
923 	__page_set_anon_rmap(page, vma, address, 1);
924 	if (page_evictable(page, vma))
925 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
926 	else
927 		add_page_to_unevictable_list(page);
928 }
929 
930 /**
931  * page_add_file_rmap - add pte mapping to a file page
932  * @page: the page to add the mapping to
933  *
934  * The caller needs to hold the pte lock.
935  */
936 void page_add_file_rmap(struct page *page)
937 {
938 	if (atomic_inc_and_test(&page->_mapcount)) {
939 		__inc_zone_page_state(page, NR_FILE_MAPPED);
940 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
941 	}
942 }
943 
944 /**
945  * page_remove_rmap - take down pte mapping from a page
946  * @page: page to remove mapping from
947  *
948  * The caller needs to hold the pte lock.
949  */
950 void page_remove_rmap(struct page *page)
951 {
952 	/* page still mapped by someone else? */
953 	if (!atomic_add_negative(-1, &page->_mapcount))
954 		return;
955 
956 	/*
957 	 * Now that the last pte has gone, s390 must transfer dirty
958 	 * flag from storage key to struct page.  We can usually skip
959 	 * this if the page is anon, so about to be freed; but perhaps
960 	 * not if it's in swapcache - there might be another pte slot
961 	 * containing the swap entry, but page not yet written to swap.
962 	 */
963 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
964 		page_clear_dirty(page, 1);
965 		set_page_dirty(page);
966 	}
967 	/*
968 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
969 	 * and not charged by memcg for now.
970 	 */
971 	if (unlikely(PageHuge(page)))
972 		return;
973 	if (PageAnon(page)) {
974 		mem_cgroup_uncharge_page(page);
975 		if (!PageTransHuge(page))
976 			__dec_zone_page_state(page, NR_ANON_PAGES);
977 		else
978 			__dec_zone_page_state(page,
979 					      NR_ANON_TRANSPARENT_HUGEPAGES);
980 	} else {
981 		__dec_zone_page_state(page, NR_FILE_MAPPED);
982 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
983 	}
984 	/*
985 	 * It would be tidy to reset the PageAnon mapping here,
986 	 * but that might overwrite a racing page_add_anon_rmap
987 	 * which increments mapcount after us but sets mapping
988 	 * before us: so leave the reset to free_hot_cold_page,
989 	 * and remember that it's only reliable while mapped.
990 	 * Leaving it set also helps swapoff to reinstate ptes
991 	 * faster for those pages still in swapcache.
992 	 */
993 }
994 
995 /*
996  * Subfunctions of try_to_unmap: try_to_unmap_one called
997  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
998  */
999 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1000 		     unsigned long address, enum ttu_flags flags)
1001 {
1002 	struct mm_struct *mm = vma->vm_mm;
1003 	pte_t *pte;
1004 	pte_t pteval;
1005 	spinlock_t *ptl;
1006 	int ret = SWAP_AGAIN;
1007 
1008 	pte = page_check_address(page, mm, address, &ptl, 0);
1009 	if (!pte)
1010 		goto out;
1011 
1012 	/*
1013 	 * If the page is mlock()d, we cannot swap it out.
1014 	 * If it's recently referenced (perhaps page_referenced
1015 	 * skipped over this mm) then we should reactivate it.
1016 	 */
1017 	if (!(flags & TTU_IGNORE_MLOCK)) {
1018 		if (vma->vm_flags & VM_LOCKED)
1019 			goto out_mlock;
1020 
1021 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1022 			goto out_unmap;
1023 	}
1024 	if (!(flags & TTU_IGNORE_ACCESS)) {
1025 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1026 			ret = SWAP_FAIL;
1027 			goto out_unmap;
1028 		}
1029   	}
1030 
1031 	/* Nuke the page table entry. */
1032 	flush_cache_page(vma, address, page_to_pfn(page));
1033 	pteval = ptep_clear_flush_notify(vma, address, pte);
1034 
1035 	/* Move the dirty bit to the physical page now the pte is gone. */
1036 	if (pte_dirty(pteval))
1037 		set_page_dirty(page);
1038 
1039 	/* Update high watermark before we lower rss */
1040 	update_hiwater_rss(mm);
1041 
1042 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1043 		if (PageAnon(page))
1044 			dec_mm_counter(mm, MM_ANONPAGES);
1045 		else
1046 			dec_mm_counter(mm, MM_FILEPAGES);
1047 		set_pte_at(mm, address, pte,
1048 				swp_entry_to_pte(make_hwpoison_entry(page)));
1049 	} else if (PageAnon(page)) {
1050 		swp_entry_t entry = { .val = page_private(page) };
1051 
1052 		if (PageSwapCache(page)) {
1053 			/*
1054 			 * Store the swap location in the pte.
1055 			 * See handle_pte_fault() ...
1056 			 */
1057 			if (swap_duplicate(entry) < 0) {
1058 				set_pte_at(mm, address, pte, pteval);
1059 				ret = SWAP_FAIL;
1060 				goto out_unmap;
1061 			}
1062 			if (list_empty(&mm->mmlist)) {
1063 				spin_lock(&mmlist_lock);
1064 				if (list_empty(&mm->mmlist))
1065 					list_add(&mm->mmlist, &init_mm.mmlist);
1066 				spin_unlock(&mmlist_lock);
1067 			}
1068 			dec_mm_counter(mm, MM_ANONPAGES);
1069 			inc_mm_counter(mm, MM_SWAPENTS);
1070 		} else if (PAGE_MIGRATION) {
1071 			/*
1072 			 * Store the pfn of the page in a special migration
1073 			 * pte. do_swap_page() will wait until the migration
1074 			 * pte is removed and then restart fault handling.
1075 			 */
1076 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1077 			entry = make_migration_entry(page, pte_write(pteval));
1078 		}
1079 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1080 		BUG_ON(pte_file(*pte));
1081 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1082 		/* Establish migration entry for a file page */
1083 		swp_entry_t entry;
1084 		entry = make_migration_entry(page, pte_write(pteval));
1085 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1086 	} else
1087 		dec_mm_counter(mm, MM_FILEPAGES);
1088 
1089 	page_remove_rmap(page);
1090 	page_cache_release(page);
1091 
1092 out_unmap:
1093 	pte_unmap_unlock(pte, ptl);
1094 out:
1095 	return ret;
1096 
1097 out_mlock:
1098 	pte_unmap_unlock(pte, ptl);
1099 
1100 
1101 	/*
1102 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1103 	 * unstable result and race. Plus, We can't wait here because
1104 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1105 	 * if trylock failed, the page remain in evictable lru and later
1106 	 * vmscan could retry to move the page to unevictable lru if the
1107 	 * page is actually mlocked.
1108 	 */
1109 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1110 		if (vma->vm_flags & VM_LOCKED) {
1111 			mlock_vma_page(page);
1112 			ret = SWAP_MLOCK;
1113 		}
1114 		up_read(&vma->vm_mm->mmap_sem);
1115 	}
1116 	return ret;
1117 }
1118 
1119 /*
1120  * objrmap doesn't work for nonlinear VMAs because the assumption that
1121  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1122  * Consequently, given a particular page and its ->index, we cannot locate the
1123  * ptes which are mapping that page without an exhaustive linear search.
1124  *
1125  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1126  * maps the file to which the target page belongs.  The ->vm_private_data field
1127  * holds the current cursor into that scan.  Successive searches will circulate
1128  * around the vma's virtual address space.
1129  *
1130  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1131  * more scanning pressure is placed against them as well.   Eventually pages
1132  * will become fully unmapped and are eligible for eviction.
1133  *
1134  * For very sparsely populated VMAs this is a little inefficient - chances are
1135  * there there won't be many ptes located within the scan cluster.  In this case
1136  * maybe we could scan further - to the end of the pte page, perhaps.
1137  *
1138  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1139  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1140  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1141  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1142  */
1143 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1144 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1145 
1146 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1147 		struct vm_area_struct *vma, struct page *check_page)
1148 {
1149 	struct mm_struct *mm = vma->vm_mm;
1150 	pgd_t *pgd;
1151 	pud_t *pud;
1152 	pmd_t *pmd;
1153 	pte_t *pte;
1154 	pte_t pteval;
1155 	spinlock_t *ptl;
1156 	struct page *page;
1157 	unsigned long address;
1158 	unsigned long end;
1159 	int ret = SWAP_AGAIN;
1160 	int locked_vma = 0;
1161 
1162 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1163 	end = address + CLUSTER_SIZE;
1164 	if (address < vma->vm_start)
1165 		address = vma->vm_start;
1166 	if (end > vma->vm_end)
1167 		end = vma->vm_end;
1168 
1169 	pgd = pgd_offset(mm, address);
1170 	if (!pgd_present(*pgd))
1171 		return ret;
1172 
1173 	pud = pud_offset(pgd, address);
1174 	if (!pud_present(*pud))
1175 		return ret;
1176 
1177 	pmd = pmd_offset(pud, address);
1178 	if (!pmd_present(*pmd))
1179 		return ret;
1180 
1181 	/*
1182 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1183 	 * keep the sem while scanning the cluster for mlocking pages.
1184 	 */
1185 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1186 		locked_vma = (vma->vm_flags & VM_LOCKED);
1187 		if (!locked_vma)
1188 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1189 	}
1190 
1191 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1192 
1193 	/* Update high watermark before we lower rss */
1194 	update_hiwater_rss(mm);
1195 
1196 	for (; address < end; pte++, address += PAGE_SIZE) {
1197 		if (!pte_present(*pte))
1198 			continue;
1199 		page = vm_normal_page(vma, address, *pte);
1200 		BUG_ON(!page || PageAnon(page));
1201 
1202 		if (locked_vma) {
1203 			mlock_vma_page(page);   /* no-op if already mlocked */
1204 			if (page == check_page)
1205 				ret = SWAP_MLOCK;
1206 			continue;	/* don't unmap */
1207 		}
1208 
1209 		if (ptep_clear_flush_young_notify(vma, address, pte))
1210 			continue;
1211 
1212 		/* Nuke the page table entry. */
1213 		flush_cache_page(vma, address, pte_pfn(*pte));
1214 		pteval = ptep_clear_flush_notify(vma, address, pte);
1215 
1216 		/* If nonlinear, store the file page offset in the pte. */
1217 		if (page->index != linear_page_index(vma, address))
1218 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1219 
1220 		/* Move the dirty bit to the physical page now the pte is gone. */
1221 		if (pte_dirty(pteval))
1222 			set_page_dirty(page);
1223 
1224 		page_remove_rmap(page);
1225 		page_cache_release(page);
1226 		dec_mm_counter(mm, MM_FILEPAGES);
1227 		(*mapcount)--;
1228 	}
1229 	pte_unmap_unlock(pte - 1, ptl);
1230 	if (locked_vma)
1231 		up_read(&vma->vm_mm->mmap_sem);
1232 	return ret;
1233 }
1234 
1235 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1236 {
1237 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1238 
1239 	if (!maybe_stack)
1240 		return false;
1241 
1242 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1243 						VM_STACK_INCOMPLETE_SETUP)
1244 		return true;
1245 
1246 	return false;
1247 }
1248 
1249 /**
1250  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1251  * rmap method
1252  * @page: the page to unmap/unlock
1253  * @flags: action and flags
1254  *
1255  * Find all the mappings of a page using the mapping pointer and the vma chains
1256  * contained in the anon_vma struct it points to.
1257  *
1258  * This function is only called from try_to_unmap/try_to_munlock for
1259  * anonymous pages.
1260  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1261  * where the page was found will be held for write.  So, we won't recheck
1262  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1263  * 'LOCKED.
1264  */
1265 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1266 {
1267 	struct anon_vma *anon_vma;
1268 	struct anon_vma_chain *avc;
1269 	int ret = SWAP_AGAIN;
1270 
1271 	anon_vma = page_lock_anon_vma(page);
1272 	if (!anon_vma)
1273 		return ret;
1274 
1275 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1276 		struct vm_area_struct *vma = avc->vma;
1277 		unsigned long address;
1278 
1279 		/*
1280 		 * During exec, a temporary VMA is setup and later moved.
1281 		 * The VMA is moved under the anon_vma lock but not the
1282 		 * page tables leading to a race where migration cannot
1283 		 * find the migration ptes. Rather than increasing the
1284 		 * locking requirements of exec(), migration skips
1285 		 * temporary VMAs until after exec() completes.
1286 		 */
1287 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1288 				is_vma_temporary_stack(vma))
1289 			continue;
1290 
1291 		address = vma_address(page, vma);
1292 		if (address == -EFAULT)
1293 			continue;
1294 		ret = try_to_unmap_one(page, vma, address, flags);
1295 		if (ret != SWAP_AGAIN || !page_mapped(page))
1296 			break;
1297 	}
1298 
1299 	page_unlock_anon_vma(anon_vma);
1300 	return ret;
1301 }
1302 
1303 /**
1304  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1305  * @page: the page to unmap/unlock
1306  * @flags: action and flags
1307  *
1308  * Find all the mappings of a page using the mapping pointer and the vma chains
1309  * contained in the address_space struct it points to.
1310  *
1311  * This function is only called from try_to_unmap/try_to_munlock for
1312  * object-based pages.
1313  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1314  * where the page was found will be held for write.  So, we won't recheck
1315  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1316  * 'LOCKED.
1317  */
1318 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1319 {
1320 	struct address_space *mapping = page->mapping;
1321 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1322 	struct vm_area_struct *vma;
1323 	struct prio_tree_iter iter;
1324 	int ret = SWAP_AGAIN;
1325 	unsigned long cursor;
1326 	unsigned long max_nl_cursor = 0;
1327 	unsigned long max_nl_size = 0;
1328 	unsigned int mapcount;
1329 
1330 	spin_lock(&mapping->i_mmap_lock);
1331 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1332 		unsigned long address = vma_address(page, vma);
1333 		if (address == -EFAULT)
1334 			continue;
1335 		ret = try_to_unmap_one(page, vma, address, flags);
1336 		if (ret != SWAP_AGAIN || !page_mapped(page))
1337 			goto out;
1338 	}
1339 
1340 	if (list_empty(&mapping->i_mmap_nonlinear))
1341 		goto out;
1342 
1343 	/*
1344 	 * We don't bother to try to find the munlocked page in nonlinears.
1345 	 * It's costly. Instead, later, page reclaim logic may call
1346 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1347 	 */
1348 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1349 		goto out;
1350 
1351 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1352 						shared.vm_set.list) {
1353 		cursor = (unsigned long) vma->vm_private_data;
1354 		if (cursor > max_nl_cursor)
1355 			max_nl_cursor = cursor;
1356 		cursor = vma->vm_end - vma->vm_start;
1357 		if (cursor > max_nl_size)
1358 			max_nl_size = cursor;
1359 	}
1360 
1361 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1362 		ret = SWAP_FAIL;
1363 		goto out;
1364 	}
1365 
1366 	/*
1367 	 * We don't try to search for this page in the nonlinear vmas,
1368 	 * and page_referenced wouldn't have found it anyway.  Instead
1369 	 * just walk the nonlinear vmas trying to age and unmap some.
1370 	 * The mapcount of the page we came in with is irrelevant,
1371 	 * but even so use it as a guide to how hard we should try?
1372 	 */
1373 	mapcount = page_mapcount(page);
1374 	if (!mapcount)
1375 		goto out;
1376 	cond_resched_lock(&mapping->i_mmap_lock);
1377 
1378 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1379 	if (max_nl_cursor == 0)
1380 		max_nl_cursor = CLUSTER_SIZE;
1381 
1382 	do {
1383 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1384 						shared.vm_set.list) {
1385 			cursor = (unsigned long) vma->vm_private_data;
1386 			while ( cursor < max_nl_cursor &&
1387 				cursor < vma->vm_end - vma->vm_start) {
1388 				if (try_to_unmap_cluster(cursor, &mapcount,
1389 						vma, page) == SWAP_MLOCK)
1390 					ret = SWAP_MLOCK;
1391 				cursor += CLUSTER_SIZE;
1392 				vma->vm_private_data = (void *) cursor;
1393 				if ((int)mapcount <= 0)
1394 					goto out;
1395 			}
1396 			vma->vm_private_data = (void *) max_nl_cursor;
1397 		}
1398 		cond_resched_lock(&mapping->i_mmap_lock);
1399 		max_nl_cursor += CLUSTER_SIZE;
1400 	} while (max_nl_cursor <= max_nl_size);
1401 
1402 	/*
1403 	 * Don't loop forever (perhaps all the remaining pages are
1404 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1405 	 * vmas, now forgetting on which ones it had fallen behind.
1406 	 */
1407 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1408 		vma->vm_private_data = NULL;
1409 out:
1410 	spin_unlock(&mapping->i_mmap_lock);
1411 	return ret;
1412 }
1413 
1414 /**
1415  * try_to_unmap - try to remove all page table mappings to a page
1416  * @page: the page to get unmapped
1417  * @flags: action and flags
1418  *
1419  * Tries to remove all the page table entries which are mapping this
1420  * page, used in the pageout path.  Caller must hold the page lock.
1421  * Return values are:
1422  *
1423  * SWAP_SUCCESS	- we succeeded in removing all mappings
1424  * SWAP_AGAIN	- we missed a mapping, try again later
1425  * SWAP_FAIL	- the page is unswappable
1426  * SWAP_MLOCK	- page is mlocked.
1427  */
1428 int try_to_unmap(struct page *page, enum ttu_flags flags)
1429 {
1430 	int ret;
1431 
1432 	BUG_ON(!PageLocked(page));
1433 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1434 
1435 	if (unlikely(PageKsm(page)))
1436 		ret = try_to_unmap_ksm(page, flags);
1437 	else if (PageAnon(page))
1438 		ret = try_to_unmap_anon(page, flags);
1439 	else
1440 		ret = try_to_unmap_file(page, flags);
1441 	if (ret != SWAP_MLOCK && !page_mapped(page))
1442 		ret = SWAP_SUCCESS;
1443 	return ret;
1444 }
1445 
1446 /**
1447  * try_to_munlock - try to munlock a page
1448  * @page: the page to be munlocked
1449  *
1450  * Called from munlock code.  Checks all of the VMAs mapping the page
1451  * to make sure nobody else has this page mlocked. The page will be
1452  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1453  *
1454  * Return values are:
1455  *
1456  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1457  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1458  * SWAP_FAIL	- page cannot be located at present
1459  * SWAP_MLOCK	- page is now mlocked.
1460  */
1461 int try_to_munlock(struct page *page)
1462 {
1463 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1464 
1465 	if (unlikely(PageKsm(page)))
1466 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1467 	else if (PageAnon(page))
1468 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1469 	else
1470 		return try_to_unmap_file(page, TTU_MUNLOCK);
1471 }
1472 
1473 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1474 /*
1475  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1476  * if necessary.  Be careful to do all the tests under the lock.  Once
1477  * we know we are the last user, nobody else can get a reference and we
1478  * can do the freeing without the lock.
1479  */
1480 void drop_anon_vma(struct anon_vma *anon_vma)
1481 {
1482 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1483 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1484 		struct anon_vma *root = anon_vma->root;
1485 		int empty = list_empty(&anon_vma->head);
1486 		int last_root_user = 0;
1487 		int root_empty = 0;
1488 
1489 		/*
1490 		 * The refcount on a non-root anon_vma got dropped.  Drop
1491 		 * the refcount on the root and check if we need to free it.
1492 		 */
1493 		if (empty && anon_vma != root) {
1494 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1495 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1496 			root_empty = list_empty(&root->head);
1497 		}
1498 		anon_vma_unlock(anon_vma);
1499 
1500 		if (empty) {
1501 			anon_vma_free(anon_vma);
1502 			if (root_empty && last_root_user)
1503 				anon_vma_free(root);
1504 		}
1505 	}
1506 }
1507 #endif
1508 
1509 #ifdef CONFIG_MIGRATION
1510 /*
1511  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1512  * Called by migrate.c to remove migration ptes, but might be used more later.
1513  */
1514 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1515 		struct vm_area_struct *, unsigned long, void *), void *arg)
1516 {
1517 	struct anon_vma *anon_vma;
1518 	struct anon_vma_chain *avc;
1519 	int ret = SWAP_AGAIN;
1520 
1521 	/*
1522 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1523 	 * because that depends on page_mapped(); but not all its usages
1524 	 * are holding mmap_sem. Users without mmap_sem are required to
1525 	 * take a reference count to prevent the anon_vma disappearing
1526 	 */
1527 	anon_vma = page_anon_vma(page);
1528 	if (!anon_vma)
1529 		return ret;
1530 	anon_vma_lock(anon_vma);
1531 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1532 		struct vm_area_struct *vma = avc->vma;
1533 		unsigned long address = vma_address(page, vma);
1534 		if (address == -EFAULT)
1535 			continue;
1536 		ret = rmap_one(page, vma, address, arg);
1537 		if (ret != SWAP_AGAIN)
1538 			break;
1539 	}
1540 	anon_vma_unlock(anon_vma);
1541 	return ret;
1542 }
1543 
1544 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1545 		struct vm_area_struct *, unsigned long, void *), void *arg)
1546 {
1547 	struct address_space *mapping = page->mapping;
1548 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1549 	struct vm_area_struct *vma;
1550 	struct prio_tree_iter iter;
1551 	int ret = SWAP_AGAIN;
1552 
1553 	if (!mapping)
1554 		return ret;
1555 	spin_lock(&mapping->i_mmap_lock);
1556 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1557 		unsigned long address = vma_address(page, vma);
1558 		if (address == -EFAULT)
1559 			continue;
1560 		ret = rmap_one(page, vma, address, arg);
1561 		if (ret != SWAP_AGAIN)
1562 			break;
1563 	}
1564 	/*
1565 	 * No nonlinear handling: being always shared, nonlinear vmas
1566 	 * never contain migration ptes.  Decide what to do about this
1567 	 * limitation to linear when we need rmap_walk() on nonlinear.
1568 	 */
1569 	spin_unlock(&mapping->i_mmap_lock);
1570 	return ret;
1571 }
1572 
1573 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1574 		struct vm_area_struct *, unsigned long, void *), void *arg)
1575 {
1576 	VM_BUG_ON(!PageLocked(page));
1577 
1578 	if (unlikely(PageKsm(page)))
1579 		return rmap_walk_ksm(page, rmap_one, arg);
1580 	else if (PageAnon(page))
1581 		return rmap_walk_anon(page, rmap_one, arg);
1582 	else
1583 		return rmap_walk_file(page, rmap_one, arg);
1584 }
1585 #endif /* CONFIG_MIGRATION */
1586 
1587 #ifdef CONFIG_HUGETLB_PAGE
1588 /*
1589  * The following three functions are for anonymous (private mapped) hugepages.
1590  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1591  * and no lru code, because we handle hugepages differently from common pages.
1592  */
1593 static void __hugepage_set_anon_rmap(struct page *page,
1594 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1595 {
1596 	struct anon_vma *anon_vma = vma->anon_vma;
1597 
1598 	BUG_ON(!anon_vma);
1599 
1600 	if (PageAnon(page))
1601 		return;
1602 	if (!exclusive)
1603 		anon_vma = anon_vma->root;
1604 
1605 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1606 	page->mapping = (struct address_space *) anon_vma;
1607 	page->index = linear_page_index(vma, address);
1608 }
1609 
1610 void hugepage_add_anon_rmap(struct page *page,
1611 			    struct vm_area_struct *vma, unsigned long address)
1612 {
1613 	struct anon_vma *anon_vma = vma->anon_vma;
1614 	int first;
1615 
1616 	BUG_ON(!PageLocked(page));
1617 	BUG_ON(!anon_vma);
1618 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1619 	first = atomic_inc_and_test(&page->_mapcount);
1620 	if (first)
1621 		__hugepage_set_anon_rmap(page, vma, address, 0);
1622 }
1623 
1624 void hugepage_add_new_anon_rmap(struct page *page,
1625 			struct vm_area_struct *vma, unsigned long address)
1626 {
1627 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1628 	atomic_set(&page->_mapcount, 0);
1629 	__hugepage_set_anon_rmap(page, vma, address, 1);
1630 }
1631 #endif /* CONFIG_HUGETLB_PAGE */
1632