1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * 40 * (code doesn't rely on that order so it could be switched around) 41 * ->tasklist_lock 42 * anon_vma->lock (memory_failure, collect_procs_anon) 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 71 } 72 73 void anon_vma_free(struct anon_vma *anon_vma) 74 { 75 kmem_cache_free(anon_vma_cachep, anon_vma); 76 } 77 78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 79 { 80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 81 } 82 83 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 84 { 85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 86 } 87 88 /** 89 * anon_vma_prepare - attach an anon_vma to a memory region 90 * @vma: the memory region in question 91 * 92 * This makes sure the memory mapping described by 'vma' has 93 * an 'anon_vma' attached to it, so that we can associate the 94 * anonymous pages mapped into it with that anon_vma. 95 * 96 * The common case will be that we already have one, but if 97 * not we either need to find an adjacent mapping that we 98 * can re-use the anon_vma from (very common when the only 99 * reason for splitting a vma has been mprotect()), or we 100 * allocate a new one. 101 * 102 * Anon-vma allocations are very subtle, because we may have 103 * optimistically looked up an anon_vma in page_lock_anon_vma() 104 * and that may actually touch the spinlock even in the newly 105 * allocated vma (it depends on RCU to make sure that the 106 * anon_vma isn't actually destroyed). 107 * 108 * As a result, we need to do proper anon_vma locking even 109 * for the new allocation. At the same time, we do not want 110 * to do any locking for the common case of already having 111 * an anon_vma. 112 * 113 * This must be called with the mmap_sem held for reading. 114 */ 115 int anon_vma_prepare(struct vm_area_struct *vma) 116 { 117 struct anon_vma *anon_vma = vma->anon_vma; 118 struct anon_vma_chain *avc; 119 120 might_sleep(); 121 if (unlikely(!anon_vma)) { 122 struct mm_struct *mm = vma->vm_mm; 123 struct anon_vma *allocated; 124 125 avc = anon_vma_chain_alloc(); 126 if (!avc) 127 goto out_enomem; 128 129 anon_vma = find_mergeable_anon_vma(vma); 130 allocated = NULL; 131 if (!anon_vma) { 132 anon_vma = anon_vma_alloc(); 133 if (unlikely(!anon_vma)) 134 goto out_enomem_free_avc; 135 allocated = anon_vma; 136 /* 137 * This VMA had no anon_vma yet. This anon_vma is 138 * the root of any anon_vma tree that might form. 139 */ 140 anon_vma->root = anon_vma; 141 } 142 143 anon_vma_lock(anon_vma); 144 /* page_table_lock to protect against threads */ 145 spin_lock(&mm->page_table_lock); 146 if (likely(!vma->anon_vma)) { 147 vma->anon_vma = anon_vma; 148 avc->anon_vma = anon_vma; 149 avc->vma = vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 152 allocated = NULL; 153 avc = NULL; 154 } 155 spin_unlock(&mm->page_table_lock); 156 anon_vma_unlock(anon_vma); 157 158 if (unlikely(allocated)) 159 anon_vma_free(allocated); 160 if (unlikely(avc)) 161 anon_vma_chain_free(avc); 162 } 163 return 0; 164 165 out_enomem_free_avc: 166 anon_vma_chain_free(avc); 167 out_enomem: 168 return -ENOMEM; 169 } 170 171 static void anon_vma_chain_link(struct vm_area_struct *vma, 172 struct anon_vma_chain *avc, 173 struct anon_vma *anon_vma) 174 { 175 avc->vma = vma; 176 avc->anon_vma = anon_vma; 177 list_add(&avc->same_vma, &vma->anon_vma_chain); 178 179 anon_vma_lock(anon_vma); 180 /* 181 * It's critical to add new vmas to the tail of the anon_vma, 182 * see comment in huge_memory.c:__split_huge_page(). 183 */ 184 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 185 anon_vma_unlock(anon_vma); 186 } 187 188 /* 189 * Attach the anon_vmas from src to dst. 190 * Returns 0 on success, -ENOMEM on failure. 191 */ 192 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 193 { 194 struct anon_vma_chain *avc, *pavc; 195 196 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 197 avc = anon_vma_chain_alloc(); 198 if (!avc) 199 goto enomem_failure; 200 anon_vma_chain_link(dst, avc, pavc->anon_vma); 201 } 202 return 0; 203 204 enomem_failure: 205 unlink_anon_vmas(dst); 206 return -ENOMEM; 207 } 208 209 /* 210 * Attach vma to its own anon_vma, as well as to the anon_vmas that 211 * the corresponding VMA in the parent process is attached to. 212 * Returns 0 on success, non-zero on failure. 213 */ 214 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 215 { 216 struct anon_vma_chain *avc; 217 struct anon_vma *anon_vma; 218 219 /* Don't bother if the parent process has no anon_vma here. */ 220 if (!pvma->anon_vma) 221 return 0; 222 223 /* 224 * First, attach the new VMA to the parent VMA's anon_vmas, 225 * so rmap can find non-COWed pages in child processes. 226 */ 227 if (anon_vma_clone(vma, pvma)) 228 return -ENOMEM; 229 230 /* Then add our own anon_vma. */ 231 anon_vma = anon_vma_alloc(); 232 if (!anon_vma) 233 goto out_error; 234 avc = anon_vma_chain_alloc(); 235 if (!avc) 236 goto out_error_free_anon_vma; 237 238 /* 239 * The root anon_vma's spinlock is the lock actually used when we 240 * lock any of the anon_vmas in this anon_vma tree. 241 */ 242 anon_vma->root = pvma->anon_vma->root; 243 /* 244 * With KSM refcounts, an anon_vma can stay around longer than the 245 * process it belongs to. The root anon_vma needs to be pinned 246 * until this anon_vma is freed, because the lock lives in the root. 247 */ 248 get_anon_vma(anon_vma->root); 249 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 250 vma->anon_vma = anon_vma; 251 anon_vma_chain_link(vma, avc, anon_vma); 252 253 return 0; 254 255 out_error_free_anon_vma: 256 anon_vma_free(anon_vma); 257 out_error: 258 unlink_anon_vmas(vma); 259 return -ENOMEM; 260 } 261 262 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 263 { 264 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 265 int empty; 266 267 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 268 if (!anon_vma) 269 return; 270 271 anon_vma_lock(anon_vma); 272 list_del(&anon_vma_chain->same_anon_vma); 273 274 /* We must garbage collect the anon_vma if it's empty */ 275 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); 276 anon_vma_unlock(anon_vma); 277 278 if (empty) { 279 /* We no longer need the root anon_vma */ 280 if (anon_vma->root != anon_vma) 281 drop_anon_vma(anon_vma->root); 282 anon_vma_free(anon_vma); 283 } 284 } 285 286 void unlink_anon_vmas(struct vm_area_struct *vma) 287 { 288 struct anon_vma_chain *avc, *next; 289 290 /* 291 * Unlink each anon_vma chained to the VMA. This list is ordered 292 * from newest to oldest, ensuring the root anon_vma gets freed last. 293 */ 294 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 295 anon_vma_unlink(avc); 296 list_del(&avc->same_vma); 297 anon_vma_chain_free(avc); 298 } 299 } 300 301 static void anon_vma_ctor(void *data) 302 { 303 struct anon_vma *anon_vma = data; 304 305 spin_lock_init(&anon_vma->lock); 306 anonvma_external_refcount_init(anon_vma); 307 INIT_LIST_HEAD(&anon_vma->head); 308 } 309 310 void __init anon_vma_init(void) 311 { 312 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 313 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 314 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 315 } 316 317 /* 318 * Getting a lock on a stable anon_vma from a page off the LRU is 319 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 320 */ 321 struct anon_vma *__page_lock_anon_vma(struct page *page) 322 { 323 struct anon_vma *anon_vma, *root_anon_vma; 324 unsigned long anon_mapping; 325 326 rcu_read_lock(); 327 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 328 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 329 goto out; 330 if (!page_mapped(page)) 331 goto out; 332 333 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 334 root_anon_vma = ACCESS_ONCE(anon_vma->root); 335 spin_lock(&root_anon_vma->lock); 336 337 /* 338 * If this page is still mapped, then its anon_vma cannot have been 339 * freed. But if it has been unmapped, we have no security against 340 * the anon_vma structure being freed and reused (for another anon_vma: 341 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot 342 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting 343 * anon_vma->root before page_unlock_anon_vma() is called to unlock. 344 */ 345 if (page_mapped(page)) 346 return anon_vma; 347 348 spin_unlock(&root_anon_vma->lock); 349 out: 350 rcu_read_unlock(); 351 return NULL; 352 } 353 354 void page_unlock_anon_vma(struct anon_vma *anon_vma) 355 __releases(&anon_vma->root->lock) 356 __releases(RCU) 357 { 358 anon_vma_unlock(anon_vma); 359 rcu_read_unlock(); 360 } 361 362 /* 363 * At what user virtual address is page expected in @vma? 364 * Returns virtual address or -EFAULT if page's index/offset is not 365 * within the range mapped the @vma. 366 */ 367 inline unsigned long 368 vma_address(struct page *page, struct vm_area_struct *vma) 369 { 370 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 371 unsigned long address; 372 373 if (unlikely(is_vm_hugetlb_page(vma))) 374 pgoff = page->index << huge_page_order(page_hstate(page)); 375 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 376 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 377 /* page should be within @vma mapping range */ 378 return -EFAULT; 379 } 380 return address; 381 } 382 383 /* 384 * At what user virtual address is page expected in vma? 385 * Caller should check the page is actually part of the vma. 386 */ 387 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 388 { 389 if (PageAnon(page)) { 390 struct anon_vma *page__anon_vma = page_anon_vma(page); 391 /* 392 * Note: swapoff's unuse_vma() is more efficient with this 393 * check, and needs it to match anon_vma when KSM is active. 394 */ 395 if (!vma->anon_vma || !page__anon_vma || 396 vma->anon_vma->root != page__anon_vma->root) 397 return -EFAULT; 398 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 399 if (!vma->vm_file || 400 vma->vm_file->f_mapping != page->mapping) 401 return -EFAULT; 402 } else 403 return -EFAULT; 404 return vma_address(page, vma); 405 } 406 407 /* 408 * Check that @page is mapped at @address into @mm. 409 * 410 * If @sync is false, page_check_address may perform a racy check to avoid 411 * the page table lock when the pte is not present (helpful when reclaiming 412 * highly shared pages). 413 * 414 * On success returns with pte mapped and locked. 415 */ 416 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 417 unsigned long address, spinlock_t **ptlp, int sync) 418 { 419 pgd_t *pgd; 420 pud_t *pud; 421 pmd_t *pmd; 422 pte_t *pte; 423 spinlock_t *ptl; 424 425 if (unlikely(PageHuge(page))) { 426 pte = huge_pte_offset(mm, address); 427 ptl = &mm->page_table_lock; 428 goto check; 429 } 430 431 pgd = pgd_offset(mm, address); 432 if (!pgd_present(*pgd)) 433 return NULL; 434 435 pud = pud_offset(pgd, address); 436 if (!pud_present(*pud)) 437 return NULL; 438 439 pmd = pmd_offset(pud, address); 440 if (!pmd_present(*pmd)) 441 return NULL; 442 if (pmd_trans_huge(*pmd)) 443 return NULL; 444 445 pte = pte_offset_map(pmd, address); 446 /* Make a quick check before getting the lock */ 447 if (!sync && !pte_present(*pte)) { 448 pte_unmap(pte); 449 return NULL; 450 } 451 452 ptl = pte_lockptr(mm, pmd); 453 check: 454 spin_lock(ptl); 455 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 456 *ptlp = ptl; 457 return pte; 458 } 459 pte_unmap_unlock(pte, ptl); 460 return NULL; 461 } 462 463 /** 464 * page_mapped_in_vma - check whether a page is really mapped in a VMA 465 * @page: the page to test 466 * @vma: the VMA to test 467 * 468 * Returns 1 if the page is mapped into the page tables of the VMA, 0 469 * if the page is not mapped into the page tables of this VMA. Only 470 * valid for normal file or anonymous VMAs. 471 */ 472 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 473 { 474 unsigned long address; 475 pte_t *pte; 476 spinlock_t *ptl; 477 478 address = vma_address(page, vma); 479 if (address == -EFAULT) /* out of vma range */ 480 return 0; 481 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 482 if (!pte) /* the page is not in this mm */ 483 return 0; 484 pte_unmap_unlock(pte, ptl); 485 486 return 1; 487 } 488 489 /* 490 * Subfunctions of page_referenced: page_referenced_one called 491 * repeatedly from either page_referenced_anon or page_referenced_file. 492 */ 493 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 494 unsigned long address, unsigned int *mapcount, 495 unsigned long *vm_flags) 496 { 497 struct mm_struct *mm = vma->vm_mm; 498 int referenced = 0; 499 500 /* 501 * Don't want to elevate referenced for mlocked page that gets this far, 502 * in order that it progresses to try_to_unmap and is moved to the 503 * unevictable list. 504 */ 505 if (vma->vm_flags & VM_LOCKED) { 506 *mapcount = 0; /* break early from loop */ 507 *vm_flags |= VM_LOCKED; 508 goto out; 509 } 510 511 /* Pretend the page is referenced if the task has the 512 swap token and is in the middle of a page fault. */ 513 if (mm != current->mm && has_swap_token(mm) && 514 rwsem_is_locked(&mm->mmap_sem)) 515 referenced++; 516 517 if (unlikely(PageTransHuge(page))) { 518 pmd_t *pmd; 519 520 spin_lock(&mm->page_table_lock); 521 pmd = page_check_address_pmd(page, mm, address, 522 PAGE_CHECK_ADDRESS_PMD_FLAG); 523 if (pmd && !pmd_trans_splitting(*pmd) && 524 pmdp_clear_flush_young_notify(vma, address, pmd)) 525 referenced++; 526 spin_unlock(&mm->page_table_lock); 527 } else { 528 pte_t *pte; 529 spinlock_t *ptl; 530 531 pte = page_check_address(page, mm, address, &ptl, 0); 532 if (!pte) 533 goto out; 534 535 if (ptep_clear_flush_young_notify(vma, address, pte)) { 536 /* 537 * Don't treat a reference through a sequentially read 538 * mapping as such. If the page has been used in 539 * another mapping, we will catch it; if this other 540 * mapping is already gone, the unmap path will have 541 * set PG_referenced or activated the page. 542 */ 543 if (likely(!VM_SequentialReadHint(vma))) 544 referenced++; 545 } 546 pte_unmap_unlock(pte, ptl); 547 } 548 549 (*mapcount)--; 550 551 if (referenced) 552 *vm_flags |= vma->vm_flags; 553 out: 554 return referenced; 555 } 556 557 static int page_referenced_anon(struct page *page, 558 struct mem_cgroup *mem_cont, 559 unsigned long *vm_flags) 560 { 561 unsigned int mapcount; 562 struct anon_vma *anon_vma; 563 struct anon_vma_chain *avc; 564 int referenced = 0; 565 566 anon_vma = page_lock_anon_vma(page); 567 if (!anon_vma) 568 return referenced; 569 570 mapcount = page_mapcount(page); 571 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 572 struct vm_area_struct *vma = avc->vma; 573 unsigned long address = vma_address(page, vma); 574 if (address == -EFAULT) 575 continue; 576 /* 577 * If we are reclaiming on behalf of a cgroup, skip 578 * counting on behalf of references from different 579 * cgroups 580 */ 581 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 582 continue; 583 referenced += page_referenced_one(page, vma, address, 584 &mapcount, vm_flags); 585 if (!mapcount) 586 break; 587 } 588 589 page_unlock_anon_vma(anon_vma); 590 return referenced; 591 } 592 593 /** 594 * page_referenced_file - referenced check for object-based rmap 595 * @page: the page we're checking references on. 596 * @mem_cont: target memory controller 597 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 598 * 599 * For an object-based mapped page, find all the places it is mapped and 600 * check/clear the referenced flag. This is done by following the page->mapping 601 * pointer, then walking the chain of vmas it holds. It returns the number 602 * of references it found. 603 * 604 * This function is only called from page_referenced for object-based pages. 605 */ 606 static int page_referenced_file(struct page *page, 607 struct mem_cgroup *mem_cont, 608 unsigned long *vm_flags) 609 { 610 unsigned int mapcount; 611 struct address_space *mapping = page->mapping; 612 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 613 struct vm_area_struct *vma; 614 struct prio_tree_iter iter; 615 int referenced = 0; 616 617 /* 618 * The caller's checks on page->mapping and !PageAnon have made 619 * sure that this is a file page: the check for page->mapping 620 * excludes the case just before it gets set on an anon page. 621 */ 622 BUG_ON(PageAnon(page)); 623 624 /* 625 * The page lock not only makes sure that page->mapping cannot 626 * suddenly be NULLified by truncation, it makes sure that the 627 * structure at mapping cannot be freed and reused yet, 628 * so we can safely take mapping->i_mmap_lock. 629 */ 630 BUG_ON(!PageLocked(page)); 631 632 spin_lock(&mapping->i_mmap_lock); 633 634 /* 635 * i_mmap_lock does not stabilize mapcount at all, but mapcount 636 * is more likely to be accurate if we note it after spinning. 637 */ 638 mapcount = page_mapcount(page); 639 640 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 641 unsigned long address = vma_address(page, vma); 642 if (address == -EFAULT) 643 continue; 644 /* 645 * If we are reclaiming on behalf of a cgroup, skip 646 * counting on behalf of references from different 647 * cgroups 648 */ 649 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 650 continue; 651 referenced += page_referenced_one(page, vma, address, 652 &mapcount, vm_flags); 653 if (!mapcount) 654 break; 655 } 656 657 spin_unlock(&mapping->i_mmap_lock); 658 return referenced; 659 } 660 661 /** 662 * page_referenced - test if the page was referenced 663 * @page: the page to test 664 * @is_locked: caller holds lock on the page 665 * @mem_cont: target memory controller 666 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 667 * 668 * Quick test_and_clear_referenced for all mappings to a page, 669 * returns the number of ptes which referenced the page. 670 */ 671 int page_referenced(struct page *page, 672 int is_locked, 673 struct mem_cgroup *mem_cont, 674 unsigned long *vm_flags) 675 { 676 int referenced = 0; 677 int we_locked = 0; 678 679 *vm_flags = 0; 680 if (page_mapped(page) && page_rmapping(page)) { 681 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 682 we_locked = trylock_page(page); 683 if (!we_locked) { 684 referenced++; 685 goto out; 686 } 687 } 688 if (unlikely(PageKsm(page))) 689 referenced += page_referenced_ksm(page, mem_cont, 690 vm_flags); 691 else if (PageAnon(page)) 692 referenced += page_referenced_anon(page, mem_cont, 693 vm_flags); 694 else if (page->mapping) 695 referenced += page_referenced_file(page, mem_cont, 696 vm_flags); 697 if (we_locked) 698 unlock_page(page); 699 } 700 out: 701 if (page_test_and_clear_young(page)) 702 referenced++; 703 704 return referenced; 705 } 706 707 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 708 unsigned long address) 709 { 710 struct mm_struct *mm = vma->vm_mm; 711 pte_t *pte; 712 spinlock_t *ptl; 713 int ret = 0; 714 715 pte = page_check_address(page, mm, address, &ptl, 1); 716 if (!pte) 717 goto out; 718 719 if (pte_dirty(*pte) || pte_write(*pte)) { 720 pte_t entry; 721 722 flush_cache_page(vma, address, pte_pfn(*pte)); 723 entry = ptep_clear_flush_notify(vma, address, pte); 724 entry = pte_wrprotect(entry); 725 entry = pte_mkclean(entry); 726 set_pte_at(mm, address, pte, entry); 727 ret = 1; 728 } 729 730 pte_unmap_unlock(pte, ptl); 731 out: 732 return ret; 733 } 734 735 static int page_mkclean_file(struct address_space *mapping, struct page *page) 736 { 737 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 738 struct vm_area_struct *vma; 739 struct prio_tree_iter iter; 740 int ret = 0; 741 742 BUG_ON(PageAnon(page)); 743 744 spin_lock(&mapping->i_mmap_lock); 745 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 746 if (vma->vm_flags & VM_SHARED) { 747 unsigned long address = vma_address(page, vma); 748 if (address == -EFAULT) 749 continue; 750 ret += page_mkclean_one(page, vma, address); 751 } 752 } 753 spin_unlock(&mapping->i_mmap_lock); 754 return ret; 755 } 756 757 int page_mkclean(struct page *page) 758 { 759 int ret = 0; 760 761 BUG_ON(!PageLocked(page)); 762 763 if (page_mapped(page)) { 764 struct address_space *mapping = page_mapping(page); 765 if (mapping) { 766 ret = page_mkclean_file(mapping, page); 767 if (page_test_dirty(page)) { 768 page_clear_dirty(page, 1); 769 ret = 1; 770 } 771 } 772 } 773 774 return ret; 775 } 776 EXPORT_SYMBOL_GPL(page_mkclean); 777 778 /** 779 * page_move_anon_rmap - move a page to our anon_vma 780 * @page: the page to move to our anon_vma 781 * @vma: the vma the page belongs to 782 * @address: the user virtual address mapped 783 * 784 * When a page belongs exclusively to one process after a COW event, 785 * that page can be moved into the anon_vma that belongs to just that 786 * process, so the rmap code will not search the parent or sibling 787 * processes. 788 */ 789 void page_move_anon_rmap(struct page *page, 790 struct vm_area_struct *vma, unsigned long address) 791 { 792 struct anon_vma *anon_vma = vma->anon_vma; 793 794 VM_BUG_ON(!PageLocked(page)); 795 VM_BUG_ON(!anon_vma); 796 VM_BUG_ON(page->index != linear_page_index(vma, address)); 797 798 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 799 page->mapping = (struct address_space *) anon_vma; 800 } 801 802 /** 803 * __page_set_anon_rmap - set up new anonymous rmap 804 * @page: Page to add to rmap 805 * @vma: VM area to add page to. 806 * @address: User virtual address of the mapping 807 * @exclusive: the page is exclusively owned by the current process 808 */ 809 static void __page_set_anon_rmap(struct page *page, 810 struct vm_area_struct *vma, unsigned long address, int exclusive) 811 { 812 struct anon_vma *anon_vma = vma->anon_vma; 813 814 BUG_ON(!anon_vma); 815 816 if (PageAnon(page)) 817 return; 818 819 /* 820 * If the page isn't exclusively mapped into this vma, 821 * we must use the _oldest_ possible anon_vma for the 822 * page mapping! 823 */ 824 if (!exclusive) 825 anon_vma = anon_vma->root; 826 827 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 828 page->mapping = (struct address_space *) anon_vma; 829 page->index = linear_page_index(vma, address); 830 } 831 832 /** 833 * __page_check_anon_rmap - sanity check anonymous rmap addition 834 * @page: the page to add the mapping to 835 * @vma: the vm area in which the mapping is added 836 * @address: the user virtual address mapped 837 */ 838 static void __page_check_anon_rmap(struct page *page, 839 struct vm_area_struct *vma, unsigned long address) 840 { 841 #ifdef CONFIG_DEBUG_VM 842 /* 843 * The page's anon-rmap details (mapping and index) are guaranteed to 844 * be set up correctly at this point. 845 * 846 * We have exclusion against page_add_anon_rmap because the caller 847 * always holds the page locked, except if called from page_dup_rmap, 848 * in which case the page is already known to be setup. 849 * 850 * We have exclusion against page_add_new_anon_rmap because those pages 851 * are initially only visible via the pagetables, and the pte is locked 852 * over the call to page_add_new_anon_rmap. 853 */ 854 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 855 BUG_ON(page->index != linear_page_index(vma, address)); 856 #endif 857 } 858 859 /** 860 * page_add_anon_rmap - add pte mapping to an anonymous page 861 * @page: the page to add the mapping to 862 * @vma: the vm area in which the mapping is added 863 * @address: the user virtual address mapped 864 * 865 * The caller needs to hold the pte lock, and the page must be locked in 866 * the anon_vma case: to serialize mapping,index checking after setting, 867 * and to ensure that PageAnon is not being upgraded racily to PageKsm 868 * (but PageKsm is never downgraded to PageAnon). 869 */ 870 void page_add_anon_rmap(struct page *page, 871 struct vm_area_struct *vma, unsigned long address) 872 { 873 do_page_add_anon_rmap(page, vma, address, 0); 874 } 875 876 /* 877 * Special version of the above for do_swap_page, which often runs 878 * into pages that are exclusively owned by the current process. 879 * Everybody else should continue to use page_add_anon_rmap above. 880 */ 881 void do_page_add_anon_rmap(struct page *page, 882 struct vm_area_struct *vma, unsigned long address, int exclusive) 883 { 884 int first = atomic_inc_and_test(&page->_mapcount); 885 if (first) { 886 if (!PageTransHuge(page)) 887 __inc_zone_page_state(page, NR_ANON_PAGES); 888 else 889 __inc_zone_page_state(page, 890 NR_ANON_TRANSPARENT_HUGEPAGES); 891 } 892 if (unlikely(PageKsm(page))) 893 return; 894 895 VM_BUG_ON(!PageLocked(page)); 896 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 897 if (first) 898 __page_set_anon_rmap(page, vma, address, exclusive); 899 else 900 __page_check_anon_rmap(page, vma, address); 901 } 902 903 /** 904 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 905 * @page: the page to add the mapping to 906 * @vma: the vm area in which the mapping is added 907 * @address: the user virtual address mapped 908 * 909 * Same as page_add_anon_rmap but must only be called on *new* pages. 910 * This means the inc-and-test can be bypassed. 911 * Page does not have to be locked. 912 */ 913 void page_add_new_anon_rmap(struct page *page, 914 struct vm_area_struct *vma, unsigned long address) 915 { 916 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 917 SetPageSwapBacked(page); 918 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 919 if (!PageTransHuge(page)) 920 __inc_zone_page_state(page, NR_ANON_PAGES); 921 else 922 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 923 __page_set_anon_rmap(page, vma, address, 1); 924 if (page_evictable(page, vma)) 925 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 926 else 927 add_page_to_unevictable_list(page); 928 } 929 930 /** 931 * page_add_file_rmap - add pte mapping to a file page 932 * @page: the page to add the mapping to 933 * 934 * The caller needs to hold the pte lock. 935 */ 936 void page_add_file_rmap(struct page *page) 937 { 938 if (atomic_inc_and_test(&page->_mapcount)) { 939 __inc_zone_page_state(page, NR_FILE_MAPPED); 940 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 941 } 942 } 943 944 /** 945 * page_remove_rmap - take down pte mapping from a page 946 * @page: page to remove mapping from 947 * 948 * The caller needs to hold the pte lock. 949 */ 950 void page_remove_rmap(struct page *page) 951 { 952 /* page still mapped by someone else? */ 953 if (!atomic_add_negative(-1, &page->_mapcount)) 954 return; 955 956 /* 957 * Now that the last pte has gone, s390 must transfer dirty 958 * flag from storage key to struct page. We can usually skip 959 * this if the page is anon, so about to be freed; but perhaps 960 * not if it's in swapcache - there might be another pte slot 961 * containing the swap entry, but page not yet written to swap. 962 */ 963 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { 964 page_clear_dirty(page, 1); 965 set_page_dirty(page); 966 } 967 /* 968 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 969 * and not charged by memcg for now. 970 */ 971 if (unlikely(PageHuge(page))) 972 return; 973 if (PageAnon(page)) { 974 mem_cgroup_uncharge_page(page); 975 if (!PageTransHuge(page)) 976 __dec_zone_page_state(page, NR_ANON_PAGES); 977 else 978 __dec_zone_page_state(page, 979 NR_ANON_TRANSPARENT_HUGEPAGES); 980 } else { 981 __dec_zone_page_state(page, NR_FILE_MAPPED); 982 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 983 } 984 /* 985 * It would be tidy to reset the PageAnon mapping here, 986 * but that might overwrite a racing page_add_anon_rmap 987 * which increments mapcount after us but sets mapping 988 * before us: so leave the reset to free_hot_cold_page, 989 * and remember that it's only reliable while mapped. 990 * Leaving it set also helps swapoff to reinstate ptes 991 * faster for those pages still in swapcache. 992 */ 993 } 994 995 /* 996 * Subfunctions of try_to_unmap: try_to_unmap_one called 997 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 998 */ 999 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1000 unsigned long address, enum ttu_flags flags) 1001 { 1002 struct mm_struct *mm = vma->vm_mm; 1003 pte_t *pte; 1004 pte_t pteval; 1005 spinlock_t *ptl; 1006 int ret = SWAP_AGAIN; 1007 1008 pte = page_check_address(page, mm, address, &ptl, 0); 1009 if (!pte) 1010 goto out; 1011 1012 /* 1013 * If the page is mlock()d, we cannot swap it out. 1014 * If it's recently referenced (perhaps page_referenced 1015 * skipped over this mm) then we should reactivate it. 1016 */ 1017 if (!(flags & TTU_IGNORE_MLOCK)) { 1018 if (vma->vm_flags & VM_LOCKED) 1019 goto out_mlock; 1020 1021 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1022 goto out_unmap; 1023 } 1024 if (!(flags & TTU_IGNORE_ACCESS)) { 1025 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1026 ret = SWAP_FAIL; 1027 goto out_unmap; 1028 } 1029 } 1030 1031 /* Nuke the page table entry. */ 1032 flush_cache_page(vma, address, page_to_pfn(page)); 1033 pteval = ptep_clear_flush_notify(vma, address, pte); 1034 1035 /* Move the dirty bit to the physical page now the pte is gone. */ 1036 if (pte_dirty(pteval)) 1037 set_page_dirty(page); 1038 1039 /* Update high watermark before we lower rss */ 1040 update_hiwater_rss(mm); 1041 1042 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1043 if (PageAnon(page)) 1044 dec_mm_counter(mm, MM_ANONPAGES); 1045 else 1046 dec_mm_counter(mm, MM_FILEPAGES); 1047 set_pte_at(mm, address, pte, 1048 swp_entry_to_pte(make_hwpoison_entry(page))); 1049 } else if (PageAnon(page)) { 1050 swp_entry_t entry = { .val = page_private(page) }; 1051 1052 if (PageSwapCache(page)) { 1053 /* 1054 * Store the swap location in the pte. 1055 * See handle_pte_fault() ... 1056 */ 1057 if (swap_duplicate(entry) < 0) { 1058 set_pte_at(mm, address, pte, pteval); 1059 ret = SWAP_FAIL; 1060 goto out_unmap; 1061 } 1062 if (list_empty(&mm->mmlist)) { 1063 spin_lock(&mmlist_lock); 1064 if (list_empty(&mm->mmlist)) 1065 list_add(&mm->mmlist, &init_mm.mmlist); 1066 spin_unlock(&mmlist_lock); 1067 } 1068 dec_mm_counter(mm, MM_ANONPAGES); 1069 inc_mm_counter(mm, MM_SWAPENTS); 1070 } else if (PAGE_MIGRATION) { 1071 /* 1072 * Store the pfn of the page in a special migration 1073 * pte. do_swap_page() will wait until the migration 1074 * pte is removed and then restart fault handling. 1075 */ 1076 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1077 entry = make_migration_entry(page, pte_write(pteval)); 1078 } 1079 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1080 BUG_ON(pte_file(*pte)); 1081 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1082 /* Establish migration entry for a file page */ 1083 swp_entry_t entry; 1084 entry = make_migration_entry(page, pte_write(pteval)); 1085 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1086 } else 1087 dec_mm_counter(mm, MM_FILEPAGES); 1088 1089 page_remove_rmap(page); 1090 page_cache_release(page); 1091 1092 out_unmap: 1093 pte_unmap_unlock(pte, ptl); 1094 out: 1095 return ret; 1096 1097 out_mlock: 1098 pte_unmap_unlock(pte, ptl); 1099 1100 1101 /* 1102 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1103 * unstable result and race. Plus, We can't wait here because 1104 * we now hold anon_vma->lock or mapping->i_mmap_lock. 1105 * if trylock failed, the page remain in evictable lru and later 1106 * vmscan could retry to move the page to unevictable lru if the 1107 * page is actually mlocked. 1108 */ 1109 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1110 if (vma->vm_flags & VM_LOCKED) { 1111 mlock_vma_page(page); 1112 ret = SWAP_MLOCK; 1113 } 1114 up_read(&vma->vm_mm->mmap_sem); 1115 } 1116 return ret; 1117 } 1118 1119 /* 1120 * objrmap doesn't work for nonlinear VMAs because the assumption that 1121 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1122 * Consequently, given a particular page and its ->index, we cannot locate the 1123 * ptes which are mapping that page without an exhaustive linear search. 1124 * 1125 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1126 * maps the file to which the target page belongs. The ->vm_private_data field 1127 * holds the current cursor into that scan. Successive searches will circulate 1128 * around the vma's virtual address space. 1129 * 1130 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1131 * more scanning pressure is placed against them as well. Eventually pages 1132 * will become fully unmapped and are eligible for eviction. 1133 * 1134 * For very sparsely populated VMAs this is a little inefficient - chances are 1135 * there there won't be many ptes located within the scan cluster. In this case 1136 * maybe we could scan further - to the end of the pte page, perhaps. 1137 * 1138 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1139 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1140 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1141 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1142 */ 1143 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1144 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1145 1146 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1147 struct vm_area_struct *vma, struct page *check_page) 1148 { 1149 struct mm_struct *mm = vma->vm_mm; 1150 pgd_t *pgd; 1151 pud_t *pud; 1152 pmd_t *pmd; 1153 pte_t *pte; 1154 pte_t pteval; 1155 spinlock_t *ptl; 1156 struct page *page; 1157 unsigned long address; 1158 unsigned long end; 1159 int ret = SWAP_AGAIN; 1160 int locked_vma = 0; 1161 1162 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1163 end = address + CLUSTER_SIZE; 1164 if (address < vma->vm_start) 1165 address = vma->vm_start; 1166 if (end > vma->vm_end) 1167 end = vma->vm_end; 1168 1169 pgd = pgd_offset(mm, address); 1170 if (!pgd_present(*pgd)) 1171 return ret; 1172 1173 pud = pud_offset(pgd, address); 1174 if (!pud_present(*pud)) 1175 return ret; 1176 1177 pmd = pmd_offset(pud, address); 1178 if (!pmd_present(*pmd)) 1179 return ret; 1180 1181 /* 1182 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1183 * keep the sem while scanning the cluster for mlocking pages. 1184 */ 1185 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1186 locked_vma = (vma->vm_flags & VM_LOCKED); 1187 if (!locked_vma) 1188 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1189 } 1190 1191 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1192 1193 /* Update high watermark before we lower rss */ 1194 update_hiwater_rss(mm); 1195 1196 for (; address < end; pte++, address += PAGE_SIZE) { 1197 if (!pte_present(*pte)) 1198 continue; 1199 page = vm_normal_page(vma, address, *pte); 1200 BUG_ON(!page || PageAnon(page)); 1201 1202 if (locked_vma) { 1203 mlock_vma_page(page); /* no-op if already mlocked */ 1204 if (page == check_page) 1205 ret = SWAP_MLOCK; 1206 continue; /* don't unmap */ 1207 } 1208 1209 if (ptep_clear_flush_young_notify(vma, address, pte)) 1210 continue; 1211 1212 /* Nuke the page table entry. */ 1213 flush_cache_page(vma, address, pte_pfn(*pte)); 1214 pteval = ptep_clear_flush_notify(vma, address, pte); 1215 1216 /* If nonlinear, store the file page offset in the pte. */ 1217 if (page->index != linear_page_index(vma, address)) 1218 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1219 1220 /* Move the dirty bit to the physical page now the pte is gone. */ 1221 if (pte_dirty(pteval)) 1222 set_page_dirty(page); 1223 1224 page_remove_rmap(page); 1225 page_cache_release(page); 1226 dec_mm_counter(mm, MM_FILEPAGES); 1227 (*mapcount)--; 1228 } 1229 pte_unmap_unlock(pte - 1, ptl); 1230 if (locked_vma) 1231 up_read(&vma->vm_mm->mmap_sem); 1232 return ret; 1233 } 1234 1235 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1236 { 1237 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1238 1239 if (!maybe_stack) 1240 return false; 1241 1242 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1243 VM_STACK_INCOMPLETE_SETUP) 1244 return true; 1245 1246 return false; 1247 } 1248 1249 /** 1250 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1251 * rmap method 1252 * @page: the page to unmap/unlock 1253 * @flags: action and flags 1254 * 1255 * Find all the mappings of a page using the mapping pointer and the vma chains 1256 * contained in the anon_vma struct it points to. 1257 * 1258 * This function is only called from try_to_unmap/try_to_munlock for 1259 * anonymous pages. 1260 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1261 * where the page was found will be held for write. So, we won't recheck 1262 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1263 * 'LOCKED. 1264 */ 1265 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1266 { 1267 struct anon_vma *anon_vma; 1268 struct anon_vma_chain *avc; 1269 int ret = SWAP_AGAIN; 1270 1271 anon_vma = page_lock_anon_vma(page); 1272 if (!anon_vma) 1273 return ret; 1274 1275 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1276 struct vm_area_struct *vma = avc->vma; 1277 unsigned long address; 1278 1279 /* 1280 * During exec, a temporary VMA is setup and later moved. 1281 * The VMA is moved under the anon_vma lock but not the 1282 * page tables leading to a race where migration cannot 1283 * find the migration ptes. Rather than increasing the 1284 * locking requirements of exec(), migration skips 1285 * temporary VMAs until after exec() completes. 1286 */ 1287 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1288 is_vma_temporary_stack(vma)) 1289 continue; 1290 1291 address = vma_address(page, vma); 1292 if (address == -EFAULT) 1293 continue; 1294 ret = try_to_unmap_one(page, vma, address, flags); 1295 if (ret != SWAP_AGAIN || !page_mapped(page)) 1296 break; 1297 } 1298 1299 page_unlock_anon_vma(anon_vma); 1300 return ret; 1301 } 1302 1303 /** 1304 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1305 * @page: the page to unmap/unlock 1306 * @flags: action and flags 1307 * 1308 * Find all the mappings of a page using the mapping pointer and the vma chains 1309 * contained in the address_space struct it points to. 1310 * 1311 * This function is only called from try_to_unmap/try_to_munlock for 1312 * object-based pages. 1313 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1314 * where the page was found will be held for write. So, we won't recheck 1315 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1316 * 'LOCKED. 1317 */ 1318 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1319 { 1320 struct address_space *mapping = page->mapping; 1321 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1322 struct vm_area_struct *vma; 1323 struct prio_tree_iter iter; 1324 int ret = SWAP_AGAIN; 1325 unsigned long cursor; 1326 unsigned long max_nl_cursor = 0; 1327 unsigned long max_nl_size = 0; 1328 unsigned int mapcount; 1329 1330 spin_lock(&mapping->i_mmap_lock); 1331 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1332 unsigned long address = vma_address(page, vma); 1333 if (address == -EFAULT) 1334 continue; 1335 ret = try_to_unmap_one(page, vma, address, flags); 1336 if (ret != SWAP_AGAIN || !page_mapped(page)) 1337 goto out; 1338 } 1339 1340 if (list_empty(&mapping->i_mmap_nonlinear)) 1341 goto out; 1342 1343 /* 1344 * We don't bother to try to find the munlocked page in nonlinears. 1345 * It's costly. Instead, later, page reclaim logic may call 1346 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1347 */ 1348 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1349 goto out; 1350 1351 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1352 shared.vm_set.list) { 1353 cursor = (unsigned long) vma->vm_private_data; 1354 if (cursor > max_nl_cursor) 1355 max_nl_cursor = cursor; 1356 cursor = vma->vm_end - vma->vm_start; 1357 if (cursor > max_nl_size) 1358 max_nl_size = cursor; 1359 } 1360 1361 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1362 ret = SWAP_FAIL; 1363 goto out; 1364 } 1365 1366 /* 1367 * We don't try to search for this page in the nonlinear vmas, 1368 * and page_referenced wouldn't have found it anyway. Instead 1369 * just walk the nonlinear vmas trying to age and unmap some. 1370 * The mapcount of the page we came in with is irrelevant, 1371 * but even so use it as a guide to how hard we should try? 1372 */ 1373 mapcount = page_mapcount(page); 1374 if (!mapcount) 1375 goto out; 1376 cond_resched_lock(&mapping->i_mmap_lock); 1377 1378 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1379 if (max_nl_cursor == 0) 1380 max_nl_cursor = CLUSTER_SIZE; 1381 1382 do { 1383 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1384 shared.vm_set.list) { 1385 cursor = (unsigned long) vma->vm_private_data; 1386 while ( cursor < max_nl_cursor && 1387 cursor < vma->vm_end - vma->vm_start) { 1388 if (try_to_unmap_cluster(cursor, &mapcount, 1389 vma, page) == SWAP_MLOCK) 1390 ret = SWAP_MLOCK; 1391 cursor += CLUSTER_SIZE; 1392 vma->vm_private_data = (void *) cursor; 1393 if ((int)mapcount <= 0) 1394 goto out; 1395 } 1396 vma->vm_private_data = (void *) max_nl_cursor; 1397 } 1398 cond_resched_lock(&mapping->i_mmap_lock); 1399 max_nl_cursor += CLUSTER_SIZE; 1400 } while (max_nl_cursor <= max_nl_size); 1401 1402 /* 1403 * Don't loop forever (perhaps all the remaining pages are 1404 * in locked vmas). Reset cursor on all unreserved nonlinear 1405 * vmas, now forgetting on which ones it had fallen behind. 1406 */ 1407 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1408 vma->vm_private_data = NULL; 1409 out: 1410 spin_unlock(&mapping->i_mmap_lock); 1411 return ret; 1412 } 1413 1414 /** 1415 * try_to_unmap - try to remove all page table mappings to a page 1416 * @page: the page to get unmapped 1417 * @flags: action and flags 1418 * 1419 * Tries to remove all the page table entries which are mapping this 1420 * page, used in the pageout path. Caller must hold the page lock. 1421 * Return values are: 1422 * 1423 * SWAP_SUCCESS - we succeeded in removing all mappings 1424 * SWAP_AGAIN - we missed a mapping, try again later 1425 * SWAP_FAIL - the page is unswappable 1426 * SWAP_MLOCK - page is mlocked. 1427 */ 1428 int try_to_unmap(struct page *page, enum ttu_flags flags) 1429 { 1430 int ret; 1431 1432 BUG_ON(!PageLocked(page)); 1433 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1434 1435 if (unlikely(PageKsm(page))) 1436 ret = try_to_unmap_ksm(page, flags); 1437 else if (PageAnon(page)) 1438 ret = try_to_unmap_anon(page, flags); 1439 else 1440 ret = try_to_unmap_file(page, flags); 1441 if (ret != SWAP_MLOCK && !page_mapped(page)) 1442 ret = SWAP_SUCCESS; 1443 return ret; 1444 } 1445 1446 /** 1447 * try_to_munlock - try to munlock a page 1448 * @page: the page to be munlocked 1449 * 1450 * Called from munlock code. Checks all of the VMAs mapping the page 1451 * to make sure nobody else has this page mlocked. The page will be 1452 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1453 * 1454 * Return values are: 1455 * 1456 * SWAP_AGAIN - no vma is holding page mlocked, or, 1457 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1458 * SWAP_FAIL - page cannot be located at present 1459 * SWAP_MLOCK - page is now mlocked. 1460 */ 1461 int try_to_munlock(struct page *page) 1462 { 1463 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1464 1465 if (unlikely(PageKsm(page))) 1466 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1467 else if (PageAnon(page)) 1468 return try_to_unmap_anon(page, TTU_MUNLOCK); 1469 else 1470 return try_to_unmap_file(page, TTU_MUNLOCK); 1471 } 1472 1473 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) 1474 /* 1475 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root 1476 * if necessary. Be careful to do all the tests under the lock. Once 1477 * we know we are the last user, nobody else can get a reference and we 1478 * can do the freeing without the lock. 1479 */ 1480 void drop_anon_vma(struct anon_vma *anon_vma) 1481 { 1482 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); 1483 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { 1484 struct anon_vma *root = anon_vma->root; 1485 int empty = list_empty(&anon_vma->head); 1486 int last_root_user = 0; 1487 int root_empty = 0; 1488 1489 /* 1490 * The refcount on a non-root anon_vma got dropped. Drop 1491 * the refcount on the root and check if we need to free it. 1492 */ 1493 if (empty && anon_vma != root) { 1494 BUG_ON(atomic_read(&root->external_refcount) <= 0); 1495 last_root_user = atomic_dec_and_test(&root->external_refcount); 1496 root_empty = list_empty(&root->head); 1497 } 1498 anon_vma_unlock(anon_vma); 1499 1500 if (empty) { 1501 anon_vma_free(anon_vma); 1502 if (root_empty && last_root_user) 1503 anon_vma_free(root); 1504 } 1505 } 1506 } 1507 #endif 1508 1509 #ifdef CONFIG_MIGRATION 1510 /* 1511 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1512 * Called by migrate.c to remove migration ptes, but might be used more later. 1513 */ 1514 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1515 struct vm_area_struct *, unsigned long, void *), void *arg) 1516 { 1517 struct anon_vma *anon_vma; 1518 struct anon_vma_chain *avc; 1519 int ret = SWAP_AGAIN; 1520 1521 /* 1522 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1523 * because that depends on page_mapped(); but not all its usages 1524 * are holding mmap_sem. Users without mmap_sem are required to 1525 * take a reference count to prevent the anon_vma disappearing 1526 */ 1527 anon_vma = page_anon_vma(page); 1528 if (!anon_vma) 1529 return ret; 1530 anon_vma_lock(anon_vma); 1531 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1532 struct vm_area_struct *vma = avc->vma; 1533 unsigned long address = vma_address(page, vma); 1534 if (address == -EFAULT) 1535 continue; 1536 ret = rmap_one(page, vma, address, arg); 1537 if (ret != SWAP_AGAIN) 1538 break; 1539 } 1540 anon_vma_unlock(anon_vma); 1541 return ret; 1542 } 1543 1544 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1545 struct vm_area_struct *, unsigned long, void *), void *arg) 1546 { 1547 struct address_space *mapping = page->mapping; 1548 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1549 struct vm_area_struct *vma; 1550 struct prio_tree_iter iter; 1551 int ret = SWAP_AGAIN; 1552 1553 if (!mapping) 1554 return ret; 1555 spin_lock(&mapping->i_mmap_lock); 1556 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1557 unsigned long address = vma_address(page, vma); 1558 if (address == -EFAULT) 1559 continue; 1560 ret = rmap_one(page, vma, address, arg); 1561 if (ret != SWAP_AGAIN) 1562 break; 1563 } 1564 /* 1565 * No nonlinear handling: being always shared, nonlinear vmas 1566 * never contain migration ptes. Decide what to do about this 1567 * limitation to linear when we need rmap_walk() on nonlinear. 1568 */ 1569 spin_unlock(&mapping->i_mmap_lock); 1570 return ret; 1571 } 1572 1573 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1574 struct vm_area_struct *, unsigned long, void *), void *arg) 1575 { 1576 VM_BUG_ON(!PageLocked(page)); 1577 1578 if (unlikely(PageKsm(page))) 1579 return rmap_walk_ksm(page, rmap_one, arg); 1580 else if (PageAnon(page)) 1581 return rmap_walk_anon(page, rmap_one, arg); 1582 else 1583 return rmap_walk_file(page, rmap_one, arg); 1584 } 1585 #endif /* CONFIG_MIGRATION */ 1586 1587 #ifdef CONFIG_HUGETLB_PAGE 1588 /* 1589 * The following three functions are for anonymous (private mapped) hugepages. 1590 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1591 * and no lru code, because we handle hugepages differently from common pages. 1592 */ 1593 static void __hugepage_set_anon_rmap(struct page *page, 1594 struct vm_area_struct *vma, unsigned long address, int exclusive) 1595 { 1596 struct anon_vma *anon_vma = vma->anon_vma; 1597 1598 BUG_ON(!anon_vma); 1599 1600 if (PageAnon(page)) 1601 return; 1602 if (!exclusive) 1603 anon_vma = anon_vma->root; 1604 1605 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1606 page->mapping = (struct address_space *) anon_vma; 1607 page->index = linear_page_index(vma, address); 1608 } 1609 1610 void hugepage_add_anon_rmap(struct page *page, 1611 struct vm_area_struct *vma, unsigned long address) 1612 { 1613 struct anon_vma *anon_vma = vma->anon_vma; 1614 int first; 1615 1616 BUG_ON(!PageLocked(page)); 1617 BUG_ON(!anon_vma); 1618 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1619 first = atomic_inc_and_test(&page->_mapcount); 1620 if (first) 1621 __hugepage_set_anon_rmap(page, vma, address, 0); 1622 } 1623 1624 void hugepage_add_new_anon_rmap(struct page *page, 1625 struct vm_area_struct *vma, unsigned long address) 1626 { 1627 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1628 atomic_set(&page->_mapcount, 0); 1629 __hugepage_set_anon_rmap(page, vma, address, 1); 1630 } 1631 #endif /* CONFIG_HUGETLB_PAGE */ 1632