xref: /linux/mm/rmap.c (revision d42990f486b56ce4381edd42a47119c073b131d5)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29  *           anon_vma->rwsem
30  *             mm->page_table_lock or pte_lock
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
35  *                     i_pages lock (widely used)
36  *                       lruvec->lru_lock (in lock_page_lruvec_irq)
37  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                   i_pages lock (widely used, in set_page_dirty,
41  *                             in arch-dependent flush_dcache_mmap_lock,
42  *                             within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * * hugetlbfs PageHuge() pages take locks in this order:
49  *         mapping->i_mmap_rwsem
50  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *             page->flags PG_locked (lock_page)
52  */
53 
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75 
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/tlb.h>
79 
80 #include "internal.h"
81 
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84 
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 	struct anon_vma *anon_vma;
88 
89 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 	if (anon_vma) {
91 		atomic_set(&anon_vma->refcount, 1);
92 		anon_vma->degree = 1;	/* Reference for first vma */
93 		anon_vma->parent = anon_vma;
94 		/*
95 		 * Initialise the anon_vma root to point to itself. If called
96 		 * from fork, the root will be reset to the parents anon_vma.
97 		 */
98 		anon_vma->root = anon_vma;
99 	}
100 
101 	return anon_vma;
102 }
103 
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
107 
108 	/*
109 	 * Synchronize against page_lock_anon_vma_read() such that
110 	 * we can safely hold the lock without the anon_vma getting
111 	 * freed.
112 	 *
113 	 * Relies on the full mb implied by the atomic_dec_and_test() from
114 	 * put_anon_vma() against the acquire barrier implied by
115 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 	 *
117 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
118 	 *   down_read_trylock()		  atomic_dec_and_test()
119 	 *   LOCK				  MB
120 	 *   atomic_read()			  rwsem_is_locked()
121 	 *
122 	 * LOCK should suffice since the actual taking of the lock must
123 	 * happen _before_ what follows.
124 	 */
125 	might_sleep();
126 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 		anon_vma_lock_write(anon_vma);
128 		anon_vma_unlock_write(anon_vma);
129 	}
130 
131 	kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133 
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138 
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143 
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 				struct anon_vma_chain *avc,
146 				struct anon_vma *anon_vma)
147 {
148 	avc->vma = vma;
149 	avc->anon_vma = anon_vma;
150 	list_add(&avc->same_vma, &vma->anon_vma_chain);
151 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153 
154 /**
155  * __anon_vma_prepare - attach an anon_vma to a memory region
156  * @vma: the memory region in question
157  *
158  * This makes sure the memory mapping described by 'vma' has
159  * an 'anon_vma' attached to it, so that we can associate the
160  * anonymous pages mapped into it with that anon_vma.
161  *
162  * The common case will be that we already have one, which
163  * is handled inline by anon_vma_prepare(). But if
164  * not we either need to find an adjacent mapping that we
165  * can re-use the anon_vma from (very common when the only
166  * reason for splitting a vma has been mprotect()), or we
167  * allocate a new one.
168  *
169  * Anon-vma allocations are very subtle, because we may have
170  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171  * and that may actually touch the rwsem even in the newly
172  * allocated vma (it depends on RCU to make sure that the
173  * anon_vma isn't actually destroyed).
174  *
175  * As a result, we need to do proper anon_vma locking even
176  * for the new allocation. At the same time, we do not want
177  * to do any locking for the common case of already having
178  * an anon_vma.
179  *
180  * This must be called with the mmap_lock held for reading.
181  */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 	struct mm_struct *mm = vma->vm_mm;
185 	struct anon_vma *anon_vma, *allocated;
186 	struct anon_vma_chain *avc;
187 
188 	might_sleep();
189 
190 	avc = anon_vma_chain_alloc(GFP_KERNEL);
191 	if (!avc)
192 		goto out_enomem;
193 
194 	anon_vma = find_mergeable_anon_vma(vma);
195 	allocated = NULL;
196 	if (!anon_vma) {
197 		anon_vma = anon_vma_alloc();
198 		if (unlikely(!anon_vma))
199 			goto out_enomem_free_avc;
200 		allocated = anon_vma;
201 	}
202 
203 	anon_vma_lock_write(anon_vma);
204 	/* page_table_lock to protect against threads */
205 	spin_lock(&mm->page_table_lock);
206 	if (likely(!vma->anon_vma)) {
207 		vma->anon_vma = anon_vma;
208 		anon_vma_chain_link(vma, avc, anon_vma);
209 		/* vma reference or self-parent link for new root */
210 		anon_vma->degree++;
211 		allocated = NULL;
212 		avc = NULL;
213 	}
214 	spin_unlock(&mm->page_table_lock);
215 	anon_vma_unlock_write(anon_vma);
216 
217 	if (unlikely(allocated))
218 		put_anon_vma(allocated);
219 	if (unlikely(avc))
220 		anon_vma_chain_free(avc);
221 
222 	return 0;
223 
224  out_enomem_free_avc:
225 	anon_vma_chain_free(avc);
226  out_enomem:
227 	return -ENOMEM;
228 }
229 
230 /*
231  * This is a useful helper function for locking the anon_vma root as
232  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233  * have the same vma.
234  *
235  * Such anon_vma's should have the same root, so you'd expect to see
236  * just a single mutex_lock for the whole traversal.
237  */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 	struct anon_vma *new_root = anon_vma->root;
241 	if (new_root != root) {
242 		if (WARN_ON_ONCE(root))
243 			up_write(&root->rwsem);
244 		root = new_root;
245 		down_write(&root->rwsem);
246 	}
247 	return root;
248 }
249 
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 	if (root)
253 		up_write(&root->rwsem);
254 }
255 
256 /*
257  * Attach the anon_vmas from src to dst.
258  * Returns 0 on success, -ENOMEM on failure.
259  *
260  * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
261  * anon_vma_fork(). The first three want an exact copy of src, while the last
262  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265  *
266  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268  * This prevents degradation of anon_vma hierarchy to endless linear chain in
269  * case of constantly forking task. On the other hand, an anon_vma with more
270  * than one child isn't reused even if there was no alive vma, thus rmap
271  * walker has a good chance of avoiding scanning the whole hierarchy when it
272  * searches where page is mapped.
273  */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 	struct anon_vma_chain *avc, *pavc;
277 	struct anon_vma *root = NULL;
278 
279 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
280 		struct anon_vma *anon_vma;
281 
282 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
283 		if (unlikely(!avc)) {
284 			unlock_anon_vma_root(root);
285 			root = NULL;
286 			avc = anon_vma_chain_alloc(GFP_KERNEL);
287 			if (!avc)
288 				goto enomem_failure;
289 		}
290 		anon_vma = pavc->anon_vma;
291 		root = lock_anon_vma_root(root, anon_vma);
292 		anon_vma_chain_link(dst, avc, anon_vma);
293 
294 		/*
295 		 * Reuse existing anon_vma if its degree lower than two,
296 		 * that means it has no vma and only one anon_vma child.
297 		 *
298 		 * Do not chose parent anon_vma, otherwise first child
299 		 * will always reuse it. Root anon_vma is never reused:
300 		 * it has self-parent reference and at least one child.
301 		 */
302 		if (!dst->anon_vma && src->anon_vma &&
303 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
304 			dst->anon_vma = anon_vma;
305 	}
306 	if (dst->anon_vma)
307 		dst->anon_vma->degree++;
308 	unlock_anon_vma_root(root);
309 	return 0;
310 
311  enomem_failure:
312 	/*
313 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
314 	 * decremented in unlink_anon_vmas().
315 	 * We can safely do this because callers of anon_vma_clone() don't care
316 	 * about dst->anon_vma if anon_vma_clone() failed.
317 	 */
318 	dst->anon_vma = NULL;
319 	unlink_anon_vmas(dst);
320 	return -ENOMEM;
321 }
322 
323 /*
324  * Attach vma to its own anon_vma, as well as to the anon_vmas that
325  * the corresponding VMA in the parent process is attached to.
326  * Returns 0 on success, non-zero on failure.
327  */
328 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
329 {
330 	struct anon_vma_chain *avc;
331 	struct anon_vma *anon_vma;
332 	int error;
333 
334 	/* Don't bother if the parent process has no anon_vma here. */
335 	if (!pvma->anon_vma)
336 		return 0;
337 
338 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
339 	vma->anon_vma = NULL;
340 
341 	/*
342 	 * First, attach the new VMA to the parent VMA's anon_vmas,
343 	 * so rmap can find non-COWed pages in child processes.
344 	 */
345 	error = anon_vma_clone(vma, pvma);
346 	if (error)
347 		return error;
348 
349 	/* An existing anon_vma has been reused, all done then. */
350 	if (vma->anon_vma)
351 		return 0;
352 
353 	/* Then add our own anon_vma. */
354 	anon_vma = anon_vma_alloc();
355 	if (!anon_vma)
356 		goto out_error;
357 	avc = anon_vma_chain_alloc(GFP_KERNEL);
358 	if (!avc)
359 		goto out_error_free_anon_vma;
360 
361 	/*
362 	 * The root anon_vma's rwsem is the lock actually used when we
363 	 * lock any of the anon_vmas in this anon_vma tree.
364 	 */
365 	anon_vma->root = pvma->anon_vma->root;
366 	anon_vma->parent = pvma->anon_vma;
367 	/*
368 	 * With refcounts, an anon_vma can stay around longer than the
369 	 * process it belongs to. The root anon_vma needs to be pinned until
370 	 * this anon_vma is freed, because the lock lives in the root.
371 	 */
372 	get_anon_vma(anon_vma->root);
373 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
374 	vma->anon_vma = anon_vma;
375 	anon_vma_lock_write(anon_vma);
376 	anon_vma_chain_link(vma, avc, anon_vma);
377 	anon_vma->parent->degree++;
378 	anon_vma_unlock_write(anon_vma);
379 
380 	return 0;
381 
382  out_error_free_anon_vma:
383 	put_anon_vma(anon_vma);
384  out_error:
385 	unlink_anon_vmas(vma);
386 	return -ENOMEM;
387 }
388 
389 void unlink_anon_vmas(struct vm_area_struct *vma)
390 {
391 	struct anon_vma_chain *avc, *next;
392 	struct anon_vma *root = NULL;
393 
394 	/*
395 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
396 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
397 	 */
398 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
399 		struct anon_vma *anon_vma = avc->anon_vma;
400 
401 		root = lock_anon_vma_root(root, anon_vma);
402 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
403 
404 		/*
405 		 * Leave empty anon_vmas on the list - we'll need
406 		 * to free them outside the lock.
407 		 */
408 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
409 			anon_vma->parent->degree--;
410 			continue;
411 		}
412 
413 		list_del(&avc->same_vma);
414 		anon_vma_chain_free(avc);
415 	}
416 	if (vma->anon_vma) {
417 		vma->anon_vma->degree--;
418 
419 		/*
420 		 * vma would still be needed after unlink, and anon_vma will be prepared
421 		 * when handle fault.
422 		 */
423 		vma->anon_vma = NULL;
424 	}
425 	unlock_anon_vma_root(root);
426 
427 	/*
428 	 * Iterate the list once more, it now only contains empty and unlinked
429 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
430 	 * needing to write-acquire the anon_vma->root->rwsem.
431 	 */
432 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
433 		struct anon_vma *anon_vma = avc->anon_vma;
434 
435 		VM_WARN_ON(anon_vma->degree);
436 		put_anon_vma(anon_vma);
437 
438 		list_del(&avc->same_vma);
439 		anon_vma_chain_free(avc);
440 	}
441 }
442 
443 static void anon_vma_ctor(void *data)
444 {
445 	struct anon_vma *anon_vma = data;
446 
447 	init_rwsem(&anon_vma->rwsem);
448 	atomic_set(&anon_vma->refcount, 0);
449 	anon_vma->rb_root = RB_ROOT_CACHED;
450 }
451 
452 void __init anon_vma_init(void)
453 {
454 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
455 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
456 			anon_vma_ctor);
457 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
458 			SLAB_PANIC|SLAB_ACCOUNT);
459 }
460 
461 /*
462  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
463  *
464  * Since there is no serialization what so ever against page_remove_rmap()
465  * the best this function can do is return a refcount increased anon_vma
466  * that might have been relevant to this page.
467  *
468  * The page might have been remapped to a different anon_vma or the anon_vma
469  * returned may already be freed (and even reused).
470  *
471  * In case it was remapped to a different anon_vma, the new anon_vma will be a
472  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
473  * ensure that any anon_vma obtained from the page will still be valid for as
474  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
475  *
476  * All users of this function must be very careful when walking the anon_vma
477  * chain and verify that the page in question is indeed mapped in it
478  * [ something equivalent to page_mapped_in_vma() ].
479  *
480  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
481  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
482  * if there is a mapcount, we can dereference the anon_vma after observing
483  * those.
484  */
485 struct anon_vma *page_get_anon_vma(struct page *page)
486 {
487 	struct anon_vma *anon_vma = NULL;
488 	unsigned long anon_mapping;
489 
490 	rcu_read_lock();
491 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
492 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 		goto out;
494 	if (!page_mapped(page))
495 		goto out;
496 
497 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
498 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
499 		anon_vma = NULL;
500 		goto out;
501 	}
502 
503 	/*
504 	 * If this page is still mapped, then its anon_vma cannot have been
505 	 * freed.  But if it has been unmapped, we have no security against the
506 	 * anon_vma structure being freed and reused (for another anon_vma:
507 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
508 	 * above cannot corrupt).
509 	 */
510 	if (!page_mapped(page)) {
511 		rcu_read_unlock();
512 		put_anon_vma(anon_vma);
513 		return NULL;
514 	}
515 out:
516 	rcu_read_unlock();
517 
518 	return anon_vma;
519 }
520 
521 /*
522  * Similar to page_get_anon_vma() except it locks the anon_vma.
523  *
524  * Its a little more complex as it tries to keep the fast path to a single
525  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
526  * reference like with page_get_anon_vma() and then block on the mutex.
527  */
528 struct anon_vma *page_lock_anon_vma_read(struct page *page)
529 {
530 	struct anon_vma *anon_vma = NULL;
531 	struct anon_vma *root_anon_vma;
532 	unsigned long anon_mapping;
533 
534 	rcu_read_lock();
535 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
536 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
537 		goto out;
538 	if (!page_mapped(page))
539 		goto out;
540 
541 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
542 	root_anon_vma = READ_ONCE(anon_vma->root);
543 	if (down_read_trylock(&root_anon_vma->rwsem)) {
544 		/*
545 		 * If the page is still mapped, then this anon_vma is still
546 		 * its anon_vma, and holding the mutex ensures that it will
547 		 * not go away, see anon_vma_free().
548 		 */
549 		if (!page_mapped(page)) {
550 			up_read(&root_anon_vma->rwsem);
551 			anon_vma = NULL;
552 		}
553 		goto out;
554 	}
555 
556 	/* trylock failed, we got to sleep */
557 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
558 		anon_vma = NULL;
559 		goto out;
560 	}
561 
562 	if (!page_mapped(page)) {
563 		rcu_read_unlock();
564 		put_anon_vma(anon_vma);
565 		return NULL;
566 	}
567 
568 	/* we pinned the anon_vma, its safe to sleep */
569 	rcu_read_unlock();
570 	anon_vma_lock_read(anon_vma);
571 
572 	if (atomic_dec_and_test(&anon_vma->refcount)) {
573 		/*
574 		 * Oops, we held the last refcount, release the lock
575 		 * and bail -- can't simply use put_anon_vma() because
576 		 * we'll deadlock on the anon_vma_lock_write() recursion.
577 		 */
578 		anon_vma_unlock_read(anon_vma);
579 		__put_anon_vma(anon_vma);
580 		anon_vma = NULL;
581 	}
582 
583 	return anon_vma;
584 
585 out:
586 	rcu_read_unlock();
587 	return anon_vma;
588 }
589 
590 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
591 {
592 	anon_vma_unlock_read(anon_vma);
593 }
594 
595 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
596 /*
597  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
598  * important if a PTE was dirty when it was unmapped that it's flushed
599  * before any IO is initiated on the page to prevent lost writes. Similarly,
600  * it must be flushed before freeing to prevent data leakage.
601  */
602 void try_to_unmap_flush(void)
603 {
604 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 
606 	if (!tlb_ubc->flush_required)
607 		return;
608 
609 	arch_tlbbatch_flush(&tlb_ubc->arch);
610 	tlb_ubc->flush_required = false;
611 	tlb_ubc->writable = false;
612 }
613 
614 /* Flush iff there are potentially writable TLB entries that can race with IO */
615 void try_to_unmap_flush_dirty(void)
616 {
617 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
618 
619 	if (tlb_ubc->writable)
620 		try_to_unmap_flush();
621 }
622 
623 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
624 {
625 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
626 
627 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
628 	tlb_ubc->flush_required = true;
629 
630 	/*
631 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
632 	 * before the PTE is cleared.
633 	 */
634 	barrier();
635 	mm->tlb_flush_batched = true;
636 
637 	/*
638 	 * If the PTE was dirty then it's best to assume it's writable. The
639 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
640 	 * before the page is queued for IO.
641 	 */
642 	if (writable)
643 		tlb_ubc->writable = true;
644 }
645 
646 /*
647  * Returns true if the TLB flush should be deferred to the end of a batch of
648  * unmap operations to reduce IPIs.
649  */
650 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
651 {
652 	bool should_defer = false;
653 
654 	if (!(flags & TTU_BATCH_FLUSH))
655 		return false;
656 
657 	/* If remote CPUs need to be flushed then defer batch the flush */
658 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
659 		should_defer = true;
660 	put_cpu();
661 
662 	return should_defer;
663 }
664 
665 /*
666  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
667  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
668  * operation such as mprotect or munmap to race between reclaim unmapping
669  * the page and flushing the page. If this race occurs, it potentially allows
670  * access to data via a stale TLB entry. Tracking all mm's that have TLB
671  * batching in flight would be expensive during reclaim so instead track
672  * whether TLB batching occurred in the past and if so then do a flush here
673  * if required. This will cost one additional flush per reclaim cycle paid
674  * by the first operation at risk such as mprotect and mumap.
675  *
676  * This must be called under the PTL so that an access to tlb_flush_batched
677  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
678  * via the PTL.
679  */
680 void flush_tlb_batched_pending(struct mm_struct *mm)
681 {
682 	if (data_race(mm->tlb_flush_batched)) {
683 		flush_tlb_mm(mm);
684 
685 		/*
686 		 * Do not allow the compiler to re-order the clearing of
687 		 * tlb_flush_batched before the tlb is flushed.
688 		 */
689 		barrier();
690 		mm->tlb_flush_batched = false;
691 	}
692 }
693 #else
694 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
695 {
696 }
697 
698 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
699 {
700 	return false;
701 }
702 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
703 
704 /*
705  * At what user virtual address is page expected in vma?
706  * Caller should check the page is actually part of the vma.
707  */
708 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
709 {
710 	if (PageAnon(page)) {
711 		struct anon_vma *page__anon_vma = page_anon_vma(page);
712 		/*
713 		 * Note: swapoff's unuse_vma() is more efficient with this
714 		 * check, and needs it to match anon_vma when KSM is active.
715 		 */
716 		if (!vma->anon_vma || !page__anon_vma ||
717 		    vma->anon_vma->root != page__anon_vma->root)
718 			return -EFAULT;
719 	} else if (!vma->vm_file) {
720 		return -EFAULT;
721 	} else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
722 		return -EFAULT;
723 	}
724 
725 	return vma_address(page, vma);
726 }
727 
728 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
729 {
730 	pgd_t *pgd;
731 	p4d_t *p4d;
732 	pud_t *pud;
733 	pmd_t *pmd = NULL;
734 	pmd_t pmde;
735 
736 	pgd = pgd_offset(mm, address);
737 	if (!pgd_present(*pgd))
738 		goto out;
739 
740 	p4d = p4d_offset(pgd, address);
741 	if (!p4d_present(*p4d))
742 		goto out;
743 
744 	pud = pud_offset(p4d, address);
745 	if (!pud_present(*pud))
746 		goto out;
747 
748 	pmd = pmd_offset(pud, address);
749 	/*
750 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
751 	 * without holding anon_vma lock for write.  So when looking for a
752 	 * genuine pmde (in which to find pte), test present and !THP together.
753 	 */
754 	pmde = *pmd;
755 	barrier();
756 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
757 		pmd = NULL;
758 out:
759 	return pmd;
760 }
761 
762 struct page_referenced_arg {
763 	int mapcount;
764 	int referenced;
765 	unsigned long vm_flags;
766 	struct mem_cgroup *memcg;
767 };
768 /*
769  * arg: page_referenced_arg will be passed
770  */
771 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
772 			unsigned long address, void *arg)
773 {
774 	struct page_referenced_arg *pra = arg;
775 	struct page_vma_mapped_walk pvmw = {
776 		.page = page,
777 		.vma = vma,
778 		.address = address,
779 	};
780 	int referenced = 0;
781 
782 	while (page_vma_mapped_walk(&pvmw)) {
783 		address = pvmw.address;
784 
785 		if (vma->vm_flags & VM_LOCKED) {
786 			page_vma_mapped_walk_done(&pvmw);
787 			pra->vm_flags |= VM_LOCKED;
788 			return false; /* To break the loop */
789 		}
790 
791 		if (pvmw.pte) {
792 			if (ptep_clear_flush_young_notify(vma, address,
793 						pvmw.pte)) {
794 				/*
795 				 * Don't treat a reference through
796 				 * a sequentially read mapping as such.
797 				 * If the page has been used in another mapping,
798 				 * we will catch it; if this other mapping is
799 				 * already gone, the unmap path will have set
800 				 * PG_referenced or activated the page.
801 				 */
802 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
803 					referenced++;
804 			}
805 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
806 			if (pmdp_clear_flush_young_notify(vma, address,
807 						pvmw.pmd))
808 				referenced++;
809 		} else {
810 			/* unexpected pmd-mapped page? */
811 			WARN_ON_ONCE(1);
812 		}
813 
814 		pra->mapcount--;
815 	}
816 
817 	if (referenced)
818 		clear_page_idle(page);
819 	if (test_and_clear_page_young(page))
820 		referenced++;
821 
822 	if (referenced) {
823 		pra->referenced++;
824 		pra->vm_flags |= vma->vm_flags;
825 	}
826 
827 	if (!pra->mapcount)
828 		return false; /* To break the loop */
829 
830 	return true;
831 }
832 
833 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
834 {
835 	struct page_referenced_arg *pra = arg;
836 	struct mem_cgroup *memcg = pra->memcg;
837 
838 	if (!mm_match_cgroup(vma->vm_mm, memcg))
839 		return true;
840 
841 	return false;
842 }
843 
844 /**
845  * page_referenced - test if the page was referenced
846  * @page: the page to test
847  * @is_locked: caller holds lock on the page
848  * @memcg: target memory cgroup
849  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
850  *
851  * Quick test_and_clear_referenced for all mappings to a page,
852  * returns the number of ptes which referenced the page.
853  */
854 int page_referenced(struct page *page,
855 		    int is_locked,
856 		    struct mem_cgroup *memcg,
857 		    unsigned long *vm_flags)
858 {
859 	int we_locked = 0;
860 	struct page_referenced_arg pra = {
861 		.mapcount = total_mapcount(page),
862 		.memcg = memcg,
863 	};
864 	struct rmap_walk_control rwc = {
865 		.rmap_one = page_referenced_one,
866 		.arg = (void *)&pra,
867 		.anon_lock = page_lock_anon_vma_read,
868 	};
869 
870 	*vm_flags = 0;
871 	if (!pra.mapcount)
872 		return 0;
873 
874 	if (!page_rmapping(page))
875 		return 0;
876 
877 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
878 		we_locked = trylock_page(page);
879 		if (!we_locked)
880 			return 1;
881 	}
882 
883 	/*
884 	 * If we are reclaiming on behalf of a cgroup, skip
885 	 * counting on behalf of references from different
886 	 * cgroups
887 	 */
888 	if (memcg) {
889 		rwc.invalid_vma = invalid_page_referenced_vma;
890 	}
891 
892 	rmap_walk(page, &rwc);
893 	*vm_flags = pra.vm_flags;
894 
895 	if (we_locked)
896 		unlock_page(page);
897 
898 	return pra.referenced;
899 }
900 
901 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
902 			    unsigned long address, void *arg)
903 {
904 	struct page_vma_mapped_walk pvmw = {
905 		.page = page,
906 		.vma = vma,
907 		.address = address,
908 		.flags = PVMW_SYNC,
909 	};
910 	struct mmu_notifier_range range;
911 	int *cleaned = arg;
912 
913 	/*
914 	 * We have to assume the worse case ie pmd for invalidation. Note that
915 	 * the page can not be free from this function.
916 	 */
917 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
918 				0, vma, vma->vm_mm, address,
919 				vma_address_end(page, vma));
920 	mmu_notifier_invalidate_range_start(&range);
921 
922 	while (page_vma_mapped_walk(&pvmw)) {
923 		int ret = 0;
924 
925 		address = pvmw.address;
926 		if (pvmw.pte) {
927 			pte_t entry;
928 			pte_t *pte = pvmw.pte;
929 
930 			if (!pte_dirty(*pte) && !pte_write(*pte))
931 				continue;
932 
933 			flush_cache_page(vma, address, pte_pfn(*pte));
934 			entry = ptep_clear_flush(vma, address, pte);
935 			entry = pte_wrprotect(entry);
936 			entry = pte_mkclean(entry);
937 			set_pte_at(vma->vm_mm, address, pte, entry);
938 			ret = 1;
939 		} else {
940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
941 			pmd_t *pmd = pvmw.pmd;
942 			pmd_t entry;
943 
944 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
945 				continue;
946 
947 			flush_cache_page(vma, address, page_to_pfn(page));
948 			entry = pmdp_invalidate(vma, address, pmd);
949 			entry = pmd_wrprotect(entry);
950 			entry = pmd_mkclean(entry);
951 			set_pmd_at(vma->vm_mm, address, pmd, entry);
952 			ret = 1;
953 #else
954 			/* unexpected pmd-mapped page? */
955 			WARN_ON_ONCE(1);
956 #endif
957 		}
958 
959 		/*
960 		 * No need to call mmu_notifier_invalidate_range() as we are
961 		 * downgrading page table protection not changing it to point
962 		 * to a new page.
963 		 *
964 		 * See Documentation/vm/mmu_notifier.rst
965 		 */
966 		if (ret)
967 			(*cleaned)++;
968 	}
969 
970 	mmu_notifier_invalidate_range_end(&range);
971 
972 	return true;
973 }
974 
975 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
976 {
977 	if (vma->vm_flags & VM_SHARED)
978 		return false;
979 
980 	return true;
981 }
982 
983 int page_mkclean(struct page *page)
984 {
985 	int cleaned = 0;
986 	struct address_space *mapping;
987 	struct rmap_walk_control rwc = {
988 		.arg = (void *)&cleaned,
989 		.rmap_one = page_mkclean_one,
990 		.invalid_vma = invalid_mkclean_vma,
991 	};
992 
993 	BUG_ON(!PageLocked(page));
994 
995 	if (!page_mapped(page))
996 		return 0;
997 
998 	mapping = page_mapping(page);
999 	if (!mapping)
1000 		return 0;
1001 
1002 	rmap_walk(page, &rwc);
1003 
1004 	return cleaned;
1005 }
1006 EXPORT_SYMBOL_GPL(page_mkclean);
1007 
1008 /**
1009  * page_move_anon_rmap - move a page to our anon_vma
1010  * @page:	the page to move to our anon_vma
1011  * @vma:	the vma the page belongs to
1012  *
1013  * When a page belongs exclusively to one process after a COW event,
1014  * that page can be moved into the anon_vma that belongs to just that
1015  * process, so the rmap code will not search the parent or sibling
1016  * processes.
1017  */
1018 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1019 {
1020 	struct anon_vma *anon_vma = vma->anon_vma;
1021 
1022 	page = compound_head(page);
1023 
1024 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1025 	VM_BUG_ON_VMA(!anon_vma, vma);
1026 
1027 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1028 	/*
1029 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1030 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1031 	 * PageAnon()) will not see one without the other.
1032 	 */
1033 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1034 }
1035 
1036 /**
1037  * __page_set_anon_rmap - set up new anonymous rmap
1038  * @page:	Page or Hugepage to add to rmap
1039  * @vma:	VM area to add page to.
1040  * @address:	User virtual address of the mapping
1041  * @exclusive:	the page is exclusively owned by the current process
1042  */
1043 static void __page_set_anon_rmap(struct page *page,
1044 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1045 {
1046 	struct anon_vma *anon_vma = vma->anon_vma;
1047 
1048 	BUG_ON(!anon_vma);
1049 
1050 	if (PageAnon(page))
1051 		return;
1052 
1053 	/*
1054 	 * If the page isn't exclusively mapped into this vma,
1055 	 * we must use the _oldest_ possible anon_vma for the
1056 	 * page mapping!
1057 	 */
1058 	if (!exclusive)
1059 		anon_vma = anon_vma->root;
1060 
1061 	/*
1062 	 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1063 	 * Make sure the compiler doesn't split the stores of anon_vma and
1064 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1065 	 * could mistake the mapping for a struct address_space and crash.
1066 	 */
1067 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1068 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1069 	page->index = linear_page_index(vma, address);
1070 }
1071 
1072 /**
1073  * __page_check_anon_rmap - sanity check anonymous rmap addition
1074  * @page:	the page to add the mapping to
1075  * @vma:	the vm area in which the mapping is added
1076  * @address:	the user virtual address mapped
1077  */
1078 static void __page_check_anon_rmap(struct page *page,
1079 	struct vm_area_struct *vma, unsigned long address)
1080 {
1081 	/*
1082 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1083 	 * be set up correctly at this point.
1084 	 *
1085 	 * We have exclusion against page_add_anon_rmap because the caller
1086 	 * always holds the page locked.
1087 	 *
1088 	 * We have exclusion against page_add_new_anon_rmap because those pages
1089 	 * are initially only visible via the pagetables, and the pte is locked
1090 	 * over the call to page_add_new_anon_rmap.
1091 	 */
1092 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1093 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1094 		       page);
1095 }
1096 
1097 /**
1098  * page_add_anon_rmap - add pte mapping to an anonymous page
1099  * @page:	the page to add the mapping to
1100  * @vma:	the vm area in which the mapping is added
1101  * @address:	the user virtual address mapped
1102  * @compound:	charge the page as compound or small page
1103  *
1104  * The caller needs to hold the pte lock, and the page must be locked in
1105  * the anon_vma case: to serialize mapping,index checking after setting,
1106  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1107  * (but PageKsm is never downgraded to PageAnon).
1108  */
1109 void page_add_anon_rmap(struct page *page,
1110 	struct vm_area_struct *vma, unsigned long address, bool compound)
1111 {
1112 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1113 }
1114 
1115 /*
1116  * Special version of the above for do_swap_page, which often runs
1117  * into pages that are exclusively owned by the current process.
1118  * Everybody else should continue to use page_add_anon_rmap above.
1119  */
1120 void do_page_add_anon_rmap(struct page *page,
1121 	struct vm_area_struct *vma, unsigned long address, int flags)
1122 {
1123 	bool compound = flags & RMAP_COMPOUND;
1124 	bool first;
1125 
1126 	if (unlikely(PageKsm(page)))
1127 		lock_page_memcg(page);
1128 	else
1129 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1130 
1131 	if (compound) {
1132 		atomic_t *mapcount;
1133 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1134 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1135 		mapcount = compound_mapcount_ptr(page);
1136 		first = atomic_inc_and_test(mapcount);
1137 	} else {
1138 		first = atomic_inc_and_test(&page->_mapcount);
1139 	}
1140 
1141 	if (first) {
1142 		int nr = compound ? thp_nr_pages(page) : 1;
1143 		/*
1144 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1145 		 * these counters are not modified in interrupt context, and
1146 		 * pte lock(a spinlock) is held, which implies preemption
1147 		 * disabled.
1148 		 */
1149 		if (compound)
1150 			__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1151 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1152 	}
1153 
1154 	if (unlikely(PageKsm(page))) {
1155 		unlock_page_memcg(page);
1156 		return;
1157 	}
1158 
1159 	/* address might be in next vma when migration races vma_adjust */
1160 	if (first)
1161 		__page_set_anon_rmap(page, vma, address,
1162 				flags & RMAP_EXCLUSIVE);
1163 	else
1164 		__page_check_anon_rmap(page, vma, address);
1165 }
1166 
1167 /**
1168  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1169  * @page:	the page to add the mapping to
1170  * @vma:	the vm area in which the mapping is added
1171  * @address:	the user virtual address mapped
1172  * @compound:	charge the page as compound or small page
1173  *
1174  * Same as page_add_anon_rmap but must only be called on *new* pages.
1175  * This means the inc-and-test can be bypassed.
1176  * Page does not have to be locked.
1177  */
1178 void page_add_new_anon_rmap(struct page *page,
1179 	struct vm_area_struct *vma, unsigned long address, bool compound)
1180 {
1181 	int nr = compound ? thp_nr_pages(page) : 1;
1182 
1183 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1184 	__SetPageSwapBacked(page);
1185 	if (compound) {
1186 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1187 		/* increment count (starts at -1) */
1188 		atomic_set(compound_mapcount_ptr(page), 0);
1189 		if (hpage_pincount_available(page))
1190 			atomic_set(compound_pincount_ptr(page), 0);
1191 
1192 		__mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1193 	} else {
1194 		/* Anon THP always mapped first with PMD */
1195 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1196 		/* increment count (starts at -1) */
1197 		atomic_set(&page->_mapcount, 0);
1198 	}
1199 	__mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1200 	__page_set_anon_rmap(page, vma, address, 1);
1201 }
1202 
1203 /**
1204  * page_add_file_rmap - add pte mapping to a file page
1205  * @page: the page to add the mapping to
1206  * @compound: charge the page as compound or small page
1207  *
1208  * The caller needs to hold the pte lock.
1209  */
1210 void page_add_file_rmap(struct page *page, bool compound)
1211 {
1212 	int i, nr = 1;
1213 
1214 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1215 	lock_page_memcg(page);
1216 	if (compound && PageTransHuge(page)) {
1217 		int nr_pages = thp_nr_pages(page);
1218 
1219 		for (i = 0, nr = 0; i < nr_pages; i++) {
1220 			if (atomic_inc_and_test(&page[i]._mapcount))
1221 				nr++;
1222 		}
1223 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1224 			goto out;
1225 		if (PageSwapBacked(page))
1226 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1227 						nr_pages);
1228 		else
1229 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1230 						nr_pages);
1231 	} else {
1232 		if (PageTransCompound(page) && page_mapping(page)) {
1233 			struct page *head = compound_head(page);
1234 
1235 			VM_WARN_ON_ONCE(!PageLocked(page));
1236 
1237 			SetPageDoubleMap(head);
1238 			if (PageMlocked(page))
1239 				clear_page_mlock(head);
1240 		}
1241 		if (!atomic_inc_and_test(&page->_mapcount))
1242 			goto out;
1243 	}
1244 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1245 out:
1246 	unlock_page_memcg(page);
1247 }
1248 
1249 static void page_remove_file_rmap(struct page *page, bool compound)
1250 {
1251 	int i, nr = 1;
1252 
1253 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1254 
1255 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1256 	if (unlikely(PageHuge(page))) {
1257 		/* hugetlb pages are always mapped with pmds */
1258 		atomic_dec(compound_mapcount_ptr(page));
1259 		return;
1260 	}
1261 
1262 	/* page still mapped by someone else? */
1263 	if (compound && PageTransHuge(page)) {
1264 		int nr_pages = thp_nr_pages(page);
1265 
1266 		for (i = 0, nr = 0; i < nr_pages; i++) {
1267 			if (atomic_add_negative(-1, &page[i]._mapcount))
1268 				nr++;
1269 		}
1270 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1271 			return;
1272 		if (PageSwapBacked(page))
1273 			__mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1274 						-nr_pages);
1275 		else
1276 			__mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1277 						-nr_pages);
1278 	} else {
1279 		if (!atomic_add_negative(-1, &page->_mapcount))
1280 			return;
1281 	}
1282 
1283 	/*
1284 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1285 	 * these counters are not modified in interrupt context, and
1286 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1287 	 */
1288 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1289 
1290 	if (unlikely(PageMlocked(page)))
1291 		clear_page_mlock(page);
1292 }
1293 
1294 static void page_remove_anon_compound_rmap(struct page *page)
1295 {
1296 	int i, nr;
1297 
1298 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1299 		return;
1300 
1301 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1302 	if (unlikely(PageHuge(page)))
1303 		return;
1304 
1305 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1306 		return;
1307 
1308 	__mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1309 
1310 	if (TestClearPageDoubleMap(page)) {
1311 		/*
1312 		 * Subpages can be mapped with PTEs too. Check how many of
1313 		 * them are still mapped.
1314 		 */
1315 		for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1316 			if (atomic_add_negative(-1, &page[i]._mapcount))
1317 				nr++;
1318 		}
1319 
1320 		/*
1321 		 * Queue the page for deferred split if at least one small
1322 		 * page of the compound page is unmapped, but at least one
1323 		 * small page is still mapped.
1324 		 */
1325 		if (nr && nr < thp_nr_pages(page))
1326 			deferred_split_huge_page(page);
1327 	} else {
1328 		nr = thp_nr_pages(page);
1329 	}
1330 
1331 	if (unlikely(PageMlocked(page)))
1332 		clear_page_mlock(page);
1333 
1334 	if (nr)
1335 		__mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1336 }
1337 
1338 /**
1339  * page_remove_rmap - take down pte mapping from a page
1340  * @page:	page to remove mapping from
1341  * @compound:	uncharge the page as compound or small page
1342  *
1343  * The caller needs to hold the pte lock.
1344  */
1345 void page_remove_rmap(struct page *page, bool compound)
1346 {
1347 	lock_page_memcg(page);
1348 
1349 	if (!PageAnon(page)) {
1350 		page_remove_file_rmap(page, compound);
1351 		goto out;
1352 	}
1353 
1354 	if (compound) {
1355 		page_remove_anon_compound_rmap(page);
1356 		goto out;
1357 	}
1358 
1359 	/* page still mapped by someone else? */
1360 	if (!atomic_add_negative(-1, &page->_mapcount))
1361 		goto out;
1362 
1363 	/*
1364 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1365 	 * these counters are not modified in interrupt context, and
1366 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1367 	 */
1368 	__dec_lruvec_page_state(page, NR_ANON_MAPPED);
1369 
1370 	if (unlikely(PageMlocked(page)))
1371 		clear_page_mlock(page);
1372 
1373 	if (PageTransCompound(page))
1374 		deferred_split_huge_page(compound_head(page));
1375 
1376 	/*
1377 	 * It would be tidy to reset the PageAnon mapping here,
1378 	 * but that might overwrite a racing page_add_anon_rmap
1379 	 * which increments mapcount after us but sets mapping
1380 	 * before us: so leave the reset to free_unref_page,
1381 	 * and remember that it's only reliable while mapped.
1382 	 * Leaving it set also helps swapoff to reinstate ptes
1383 	 * faster for those pages still in swapcache.
1384 	 */
1385 out:
1386 	unlock_page_memcg(page);
1387 }
1388 
1389 /*
1390  * @arg: enum ttu_flags will be passed to this argument
1391  */
1392 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1393 		     unsigned long address, void *arg)
1394 {
1395 	struct mm_struct *mm = vma->vm_mm;
1396 	struct page_vma_mapped_walk pvmw = {
1397 		.page = page,
1398 		.vma = vma,
1399 		.address = address,
1400 	};
1401 	pte_t pteval;
1402 	struct page *subpage;
1403 	bool ret = true;
1404 	struct mmu_notifier_range range;
1405 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1406 
1407 	/*
1408 	 * When racing against e.g. zap_pte_range() on another cpu,
1409 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1410 	 * try_to_unmap() may return before page_mapped() has become false,
1411 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1412 	 */
1413 	if (flags & TTU_SYNC)
1414 		pvmw.flags = PVMW_SYNC;
1415 
1416 	if (flags & TTU_SPLIT_HUGE_PMD)
1417 		split_huge_pmd_address(vma, address, false, page);
1418 
1419 	/*
1420 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1421 	 * For hugetlb, it could be much worse if we need to do pud
1422 	 * invalidation in the case of pmd sharing.
1423 	 *
1424 	 * Note that the page can not be free in this function as call of
1425 	 * try_to_unmap() must hold a reference on the page.
1426 	 */
1427 	range.end = PageKsm(page) ?
1428 			address + PAGE_SIZE : vma_address_end(page, vma);
1429 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1430 				address, range.end);
1431 	if (PageHuge(page)) {
1432 		/*
1433 		 * If sharing is possible, start and end will be adjusted
1434 		 * accordingly.
1435 		 */
1436 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1437 						     &range.end);
1438 	}
1439 	mmu_notifier_invalidate_range_start(&range);
1440 
1441 	while (page_vma_mapped_walk(&pvmw)) {
1442 		/*
1443 		 * If the page is mlock()d, we cannot swap it out.
1444 		 */
1445 		if (!(flags & TTU_IGNORE_MLOCK) &&
1446 		    (vma->vm_flags & VM_LOCKED)) {
1447 			/*
1448 			 * PTE-mapped THP are never marked as mlocked: so do
1449 			 * not set it on a DoubleMap THP, nor on an Anon THP
1450 			 * (which may still be PTE-mapped after DoubleMap was
1451 			 * cleared).  But stop unmapping even in those cases.
1452 			 */
1453 			if (!PageTransCompound(page) || (PageHead(page) &&
1454 			     !PageDoubleMap(page) && !PageAnon(page)))
1455 				mlock_vma_page(page);
1456 			page_vma_mapped_walk_done(&pvmw);
1457 			ret = false;
1458 			break;
1459 		}
1460 
1461 		/* Unexpected PMD-mapped THP? */
1462 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1463 
1464 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1465 		address = pvmw.address;
1466 
1467 		if (PageHuge(page) && !PageAnon(page)) {
1468 			/*
1469 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1470 			 * held in write mode.  Caller needs to explicitly
1471 			 * do this outside rmap routines.
1472 			 */
1473 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1474 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1475 				/*
1476 				 * huge_pmd_unshare unmapped an entire PMD
1477 				 * page.  There is no way of knowing exactly
1478 				 * which PMDs may be cached for this mm, so
1479 				 * we must flush them all.  start/end were
1480 				 * already adjusted above to cover this range.
1481 				 */
1482 				flush_cache_range(vma, range.start, range.end);
1483 				flush_tlb_range(vma, range.start, range.end);
1484 				mmu_notifier_invalidate_range(mm, range.start,
1485 							      range.end);
1486 
1487 				/*
1488 				 * The ref count of the PMD page was dropped
1489 				 * which is part of the way map counting
1490 				 * is done for shared PMDs.  Return 'true'
1491 				 * here.  When there is no other sharing,
1492 				 * huge_pmd_unshare returns false and we will
1493 				 * unmap the actual page and drop map count
1494 				 * to zero.
1495 				 */
1496 				page_vma_mapped_walk_done(&pvmw);
1497 				break;
1498 			}
1499 		}
1500 
1501 		/* Nuke the page table entry. */
1502 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1503 		if (should_defer_flush(mm, flags)) {
1504 			/*
1505 			 * We clear the PTE but do not flush so potentially
1506 			 * a remote CPU could still be writing to the page.
1507 			 * If the entry was previously clean then the
1508 			 * architecture must guarantee that a clear->dirty
1509 			 * transition on a cached TLB entry is written through
1510 			 * and traps if the PTE is unmapped.
1511 			 */
1512 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1513 
1514 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1515 		} else {
1516 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1517 		}
1518 
1519 		/* Move the dirty bit to the page. Now the pte is gone. */
1520 		if (pte_dirty(pteval))
1521 			set_page_dirty(page);
1522 
1523 		/* Update high watermark before we lower rss */
1524 		update_hiwater_rss(mm);
1525 
1526 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1527 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1528 			if (PageHuge(page)) {
1529 				hugetlb_count_sub(compound_nr(page), mm);
1530 				set_huge_swap_pte_at(mm, address,
1531 						     pvmw.pte, pteval,
1532 						     vma_mmu_pagesize(vma));
1533 			} else {
1534 				dec_mm_counter(mm, mm_counter(page));
1535 				set_pte_at(mm, address, pvmw.pte, pteval);
1536 			}
1537 
1538 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1539 			/*
1540 			 * The guest indicated that the page content is of no
1541 			 * interest anymore. Simply discard the pte, vmscan
1542 			 * will take care of the rest.
1543 			 * A future reference will then fault in a new zero
1544 			 * page. When userfaultfd is active, we must not drop
1545 			 * this page though, as its main user (postcopy
1546 			 * migration) will not expect userfaults on already
1547 			 * copied pages.
1548 			 */
1549 			dec_mm_counter(mm, mm_counter(page));
1550 			/* We have to invalidate as we cleared the pte */
1551 			mmu_notifier_invalidate_range(mm, address,
1552 						      address + PAGE_SIZE);
1553 		} else if (PageAnon(page)) {
1554 			swp_entry_t entry = { .val = page_private(subpage) };
1555 			pte_t swp_pte;
1556 			/*
1557 			 * Store the swap location in the pte.
1558 			 * See handle_pte_fault() ...
1559 			 */
1560 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1561 				WARN_ON_ONCE(1);
1562 				ret = false;
1563 				/* We have to invalidate as we cleared the pte */
1564 				mmu_notifier_invalidate_range(mm, address,
1565 							address + PAGE_SIZE);
1566 				page_vma_mapped_walk_done(&pvmw);
1567 				break;
1568 			}
1569 
1570 			/* MADV_FREE page check */
1571 			if (!PageSwapBacked(page)) {
1572 				if (!PageDirty(page)) {
1573 					/* Invalidate as we cleared the pte */
1574 					mmu_notifier_invalidate_range(mm,
1575 						address, address + PAGE_SIZE);
1576 					dec_mm_counter(mm, MM_ANONPAGES);
1577 					goto discard;
1578 				}
1579 
1580 				/*
1581 				 * If the page was redirtied, it cannot be
1582 				 * discarded. Remap the page to page table.
1583 				 */
1584 				set_pte_at(mm, address, pvmw.pte, pteval);
1585 				SetPageSwapBacked(page);
1586 				ret = false;
1587 				page_vma_mapped_walk_done(&pvmw);
1588 				break;
1589 			}
1590 
1591 			if (swap_duplicate(entry) < 0) {
1592 				set_pte_at(mm, address, pvmw.pte, pteval);
1593 				ret = false;
1594 				page_vma_mapped_walk_done(&pvmw);
1595 				break;
1596 			}
1597 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1598 				set_pte_at(mm, address, pvmw.pte, pteval);
1599 				ret = false;
1600 				page_vma_mapped_walk_done(&pvmw);
1601 				break;
1602 			}
1603 			if (list_empty(&mm->mmlist)) {
1604 				spin_lock(&mmlist_lock);
1605 				if (list_empty(&mm->mmlist))
1606 					list_add(&mm->mmlist, &init_mm.mmlist);
1607 				spin_unlock(&mmlist_lock);
1608 			}
1609 			dec_mm_counter(mm, MM_ANONPAGES);
1610 			inc_mm_counter(mm, MM_SWAPENTS);
1611 			swp_pte = swp_entry_to_pte(entry);
1612 			if (pte_soft_dirty(pteval))
1613 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1614 			if (pte_uffd_wp(pteval))
1615 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1616 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1617 			/* Invalidate as we cleared the pte */
1618 			mmu_notifier_invalidate_range(mm, address,
1619 						      address + PAGE_SIZE);
1620 		} else {
1621 			/*
1622 			 * This is a locked file-backed page, thus it cannot
1623 			 * be removed from the page cache and replaced by a new
1624 			 * page before mmu_notifier_invalidate_range_end, so no
1625 			 * concurrent thread might update its page table to
1626 			 * point at new page while a device still is using this
1627 			 * page.
1628 			 *
1629 			 * See Documentation/vm/mmu_notifier.rst
1630 			 */
1631 			dec_mm_counter(mm, mm_counter_file(page));
1632 		}
1633 discard:
1634 		/*
1635 		 * No need to call mmu_notifier_invalidate_range() it has be
1636 		 * done above for all cases requiring it to happen under page
1637 		 * table lock before mmu_notifier_invalidate_range_end()
1638 		 *
1639 		 * See Documentation/vm/mmu_notifier.rst
1640 		 */
1641 		page_remove_rmap(subpage, PageHuge(page));
1642 		put_page(page);
1643 	}
1644 
1645 	mmu_notifier_invalidate_range_end(&range);
1646 
1647 	return ret;
1648 }
1649 
1650 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1651 {
1652 	return vma_is_temporary_stack(vma);
1653 }
1654 
1655 static int page_not_mapped(struct page *page)
1656 {
1657 	return !page_mapped(page);
1658 }
1659 
1660 /**
1661  * try_to_unmap - try to remove all page table mappings to a page
1662  * @page: the page to get unmapped
1663  * @flags: action and flags
1664  *
1665  * Tries to remove all the page table entries which are mapping this
1666  * page, used in the pageout path.  Caller must hold the page lock.
1667  *
1668  * It is the caller's responsibility to check if the page is still
1669  * mapped when needed (use TTU_SYNC to prevent accounting races).
1670  */
1671 void try_to_unmap(struct page *page, enum ttu_flags flags)
1672 {
1673 	struct rmap_walk_control rwc = {
1674 		.rmap_one = try_to_unmap_one,
1675 		.arg = (void *)flags,
1676 		.done = page_not_mapped,
1677 		.anon_lock = page_lock_anon_vma_read,
1678 	};
1679 
1680 	if (flags & TTU_RMAP_LOCKED)
1681 		rmap_walk_locked(page, &rwc);
1682 	else
1683 		rmap_walk(page, &rwc);
1684 }
1685 
1686 /*
1687  * @arg: enum ttu_flags will be passed to this argument.
1688  *
1689  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1690  * containing migration entries.
1691  */
1692 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1693 		     unsigned long address, void *arg)
1694 {
1695 	struct mm_struct *mm = vma->vm_mm;
1696 	struct page_vma_mapped_walk pvmw = {
1697 		.page = page,
1698 		.vma = vma,
1699 		.address = address,
1700 	};
1701 	pte_t pteval;
1702 	struct page *subpage;
1703 	bool ret = true;
1704 	struct mmu_notifier_range range;
1705 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1706 
1707 	/*
1708 	 * When racing against e.g. zap_pte_range() on another cpu,
1709 	 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1710 	 * try_to_migrate() may return before page_mapped() has become false,
1711 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1712 	 */
1713 	if (flags & TTU_SYNC)
1714 		pvmw.flags = PVMW_SYNC;
1715 
1716 	/*
1717 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
1718 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1719 	 */
1720 	if (flags & TTU_SPLIT_HUGE_PMD)
1721 		split_huge_pmd_address(vma, address, true, page);
1722 
1723 	/*
1724 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1725 	 * For hugetlb, it could be much worse if we need to do pud
1726 	 * invalidation in the case of pmd sharing.
1727 	 *
1728 	 * Note that the page can not be free in this function as call of
1729 	 * try_to_unmap() must hold a reference on the page.
1730 	 */
1731 	range.end = PageKsm(page) ?
1732 			address + PAGE_SIZE : vma_address_end(page, vma);
1733 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1734 				address, range.end);
1735 	if (PageHuge(page)) {
1736 		/*
1737 		 * If sharing is possible, start and end will be adjusted
1738 		 * accordingly.
1739 		 */
1740 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1741 						     &range.end);
1742 	}
1743 	mmu_notifier_invalidate_range_start(&range);
1744 
1745 	while (page_vma_mapped_walk(&pvmw)) {
1746 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1747 		/* PMD-mapped THP migration entry */
1748 		if (!pvmw.pte) {
1749 			VM_BUG_ON_PAGE(PageHuge(page) ||
1750 				       !PageTransCompound(page), page);
1751 
1752 			set_pmd_migration_entry(&pvmw, page);
1753 			continue;
1754 		}
1755 #endif
1756 
1757 		/* Unexpected PMD-mapped THP? */
1758 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1759 
1760 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1761 		address = pvmw.address;
1762 
1763 		if (PageHuge(page) && !PageAnon(page)) {
1764 			/*
1765 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1766 			 * held in write mode.  Caller needs to explicitly
1767 			 * do this outside rmap routines.
1768 			 */
1769 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1770 			if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1771 				/*
1772 				 * huge_pmd_unshare unmapped an entire PMD
1773 				 * page.  There is no way of knowing exactly
1774 				 * which PMDs may be cached for this mm, so
1775 				 * we must flush them all.  start/end were
1776 				 * already adjusted above to cover this range.
1777 				 */
1778 				flush_cache_range(vma, range.start, range.end);
1779 				flush_tlb_range(vma, range.start, range.end);
1780 				mmu_notifier_invalidate_range(mm, range.start,
1781 							      range.end);
1782 
1783 				/*
1784 				 * The ref count of the PMD page was dropped
1785 				 * which is part of the way map counting
1786 				 * is done for shared PMDs.  Return 'true'
1787 				 * here.  When there is no other sharing,
1788 				 * huge_pmd_unshare returns false and we will
1789 				 * unmap the actual page and drop map count
1790 				 * to zero.
1791 				 */
1792 				page_vma_mapped_walk_done(&pvmw);
1793 				break;
1794 			}
1795 		}
1796 
1797 		/* Nuke the page table entry. */
1798 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1799 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
1800 
1801 		/* Move the dirty bit to the page. Now the pte is gone. */
1802 		if (pte_dirty(pteval))
1803 			set_page_dirty(page);
1804 
1805 		/* Update high watermark before we lower rss */
1806 		update_hiwater_rss(mm);
1807 
1808 		if (is_zone_device_page(page)) {
1809 			swp_entry_t entry;
1810 			pte_t swp_pte;
1811 
1812 			/*
1813 			 * Store the pfn of the page in a special migration
1814 			 * pte. do_swap_page() will wait until the migration
1815 			 * pte is removed and then restart fault handling.
1816 			 */
1817 			entry = make_readable_migration_entry(
1818 							page_to_pfn(page));
1819 			swp_pte = swp_entry_to_pte(entry);
1820 
1821 			/*
1822 			 * pteval maps a zone device page and is therefore
1823 			 * a swap pte.
1824 			 */
1825 			if (pte_swp_soft_dirty(pteval))
1826 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1827 			if (pte_swp_uffd_wp(pteval))
1828 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1829 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1830 			/*
1831 			 * No need to invalidate here it will synchronize on
1832 			 * against the special swap migration pte.
1833 			 *
1834 			 * The assignment to subpage above was computed from a
1835 			 * swap PTE which results in an invalid pointer.
1836 			 * Since only PAGE_SIZE pages can currently be
1837 			 * migrated, just set it to page. This will need to be
1838 			 * changed when hugepage migrations to device private
1839 			 * memory are supported.
1840 			 */
1841 			subpage = page;
1842 		} else if (PageHWPoison(page)) {
1843 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1844 			if (PageHuge(page)) {
1845 				hugetlb_count_sub(compound_nr(page), mm);
1846 				set_huge_swap_pte_at(mm, address,
1847 						     pvmw.pte, pteval,
1848 						     vma_mmu_pagesize(vma));
1849 			} else {
1850 				dec_mm_counter(mm, mm_counter(page));
1851 				set_pte_at(mm, address, pvmw.pte, pteval);
1852 			}
1853 
1854 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1855 			/*
1856 			 * The guest indicated that the page content is of no
1857 			 * interest anymore. Simply discard the pte, vmscan
1858 			 * will take care of the rest.
1859 			 * A future reference will then fault in a new zero
1860 			 * page. When userfaultfd is active, we must not drop
1861 			 * this page though, as its main user (postcopy
1862 			 * migration) will not expect userfaults on already
1863 			 * copied pages.
1864 			 */
1865 			dec_mm_counter(mm, mm_counter(page));
1866 			/* We have to invalidate as we cleared the pte */
1867 			mmu_notifier_invalidate_range(mm, address,
1868 						      address + PAGE_SIZE);
1869 		} else {
1870 			swp_entry_t entry;
1871 			pte_t swp_pte;
1872 
1873 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1874 				set_pte_at(mm, address, pvmw.pte, pteval);
1875 				ret = false;
1876 				page_vma_mapped_walk_done(&pvmw);
1877 				break;
1878 			}
1879 
1880 			/*
1881 			 * Store the pfn of the page in a special migration
1882 			 * pte. do_swap_page() will wait until the migration
1883 			 * pte is removed and then restart fault handling.
1884 			 */
1885 			if (pte_write(pteval))
1886 				entry = make_writable_migration_entry(
1887 							page_to_pfn(subpage));
1888 			else
1889 				entry = make_readable_migration_entry(
1890 							page_to_pfn(subpage));
1891 
1892 			swp_pte = swp_entry_to_pte(entry);
1893 			if (pte_soft_dirty(pteval))
1894 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1895 			if (pte_uffd_wp(pteval))
1896 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1897 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1898 			/*
1899 			 * No need to invalidate here it will synchronize on
1900 			 * against the special swap migration pte.
1901 			 */
1902 		}
1903 
1904 		/*
1905 		 * No need to call mmu_notifier_invalidate_range() it has be
1906 		 * done above for all cases requiring it to happen under page
1907 		 * table lock before mmu_notifier_invalidate_range_end()
1908 		 *
1909 		 * See Documentation/vm/mmu_notifier.rst
1910 		 */
1911 		page_remove_rmap(subpage, PageHuge(page));
1912 		put_page(page);
1913 	}
1914 
1915 	mmu_notifier_invalidate_range_end(&range);
1916 
1917 	return ret;
1918 }
1919 
1920 /**
1921  * try_to_migrate - try to replace all page table mappings with swap entries
1922  * @page: the page to replace page table entries for
1923  * @flags: action and flags
1924  *
1925  * Tries to remove all the page table entries which are mapping this page and
1926  * replace them with special swap entries. Caller must hold the page lock.
1927  */
1928 void try_to_migrate(struct page *page, enum ttu_flags flags)
1929 {
1930 	struct rmap_walk_control rwc = {
1931 		.rmap_one = try_to_migrate_one,
1932 		.arg = (void *)flags,
1933 		.done = page_not_mapped,
1934 		.anon_lock = page_lock_anon_vma_read,
1935 	};
1936 
1937 	/*
1938 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1939 	 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1940 	 */
1941 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1942 					TTU_SYNC)))
1943 		return;
1944 
1945 	if (is_zone_device_page(page) && !is_device_private_page(page))
1946 		return;
1947 
1948 	/*
1949 	 * During exec, a temporary VMA is setup and later moved.
1950 	 * The VMA is moved under the anon_vma lock but not the
1951 	 * page tables leading to a race where migration cannot
1952 	 * find the migration ptes. Rather than increasing the
1953 	 * locking requirements of exec(), migration skips
1954 	 * temporary VMAs until after exec() completes.
1955 	 */
1956 	if (!PageKsm(page) && PageAnon(page))
1957 		rwc.invalid_vma = invalid_migration_vma;
1958 
1959 	if (flags & TTU_RMAP_LOCKED)
1960 		rmap_walk_locked(page, &rwc);
1961 	else
1962 		rmap_walk(page, &rwc);
1963 }
1964 
1965 /*
1966  * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1967  * found. Once one is found the page is locked and the scan can be terminated.
1968  */
1969 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1970 				 unsigned long address, void *unused)
1971 {
1972 	struct page_vma_mapped_walk pvmw = {
1973 		.page = page,
1974 		.vma = vma,
1975 		.address = address,
1976 	};
1977 
1978 	/* An un-locked vma doesn't have any pages to lock, continue the scan */
1979 	if (!(vma->vm_flags & VM_LOCKED))
1980 		return true;
1981 
1982 	while (page_vma_mapped_walk(&pvmw)) {
1983 		/*
1984 		 * Need to recheck under the ptl to serialise with
1985 		 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1986 		 * munlock_vma_pages_range().
1987 		 */
1988 		if (vma->vm_flags & VM_LOCKED) {
1989 			/*
1990 			 * PTE-mapped THP are never marked as mlocked; but
1991 			 * this function is never called on a DoubleMap THP,
1992 			 * nor on an Anon THP (which may still be PTE-mapped
1993 			 * after DoubleMap was cleared).
1994 			 */
1995 			mlock_vma_page(page);
1996 			/*
1997 			 * No need to scan further once the page is marked
1998 			 * as mlocked.
1999 			 */
2000 			page_vma_mapped_walk_done(&pvmw);
2001 			return false;
2002 		}
2003 	}
2004 
2005 	return true;
2006 }
2007 
2008 /**
2009  * page_mlock - try to mlock a page
2010  * @page: the page to be mlocked
2011  *
2012  * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2013  * the page if any are found. The page will be returned with PG_mlocked cleared
2014  * if it is not mapped by any locked vmas.
2015  */
2016 void page_mlock(struct page *page)
2017 {
2018 	struct rmap_walk_control rwc = {
2019 		.rmap_one = page_mlock_one,
2020 		.done = page_not_mapped,
2021 		.anon_lock = page_lock_anon_vma_read,
2022 
2023 	};
2024 
2025 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2026 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2027 
2028 	/* Anon THP are only marked as mlocked when singly mapped */
2029 	if (PageTransCompound(page) && PageAnon(page))
2030 		return;
2031 
2032 	rmap_walk(page, &rwc);
2033 }
2034 
2035 #ifdef CONFIG_DEVICE_PRIVATE
2036 struct make_exclusive_args {
2037 	struct mm_struct *mm;
2038 	unsigned long address;
2039 	void *owner;
2040 	bool valid;
2041 };
2042 
2043 static bool page_make_device_exclusive_one(struct page *page,
2044 		struct vm_area_struct *vma, unsigned long address, void *priv)
2045 {
2046 	struct mm_struct *mm = vma->vm_mm;
2047 	struct page_vma_mapped_walk pvmw = {
2048 		.page = page,
2049 		.vma = vma,
2050 		.address = address,
2051 	};
2052 	struct make_exclusive_args *args = priv;
2053 	pte_t pteval;
2054 	struct page *subpage;
2055 	bool ret = true;
2056 	struct mmu_notifier_range range;
2057 	swp_entry_t entry;
2058 	pte_t swp_pte;
2059 
2060 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2061 				      vma->vm_mm, address, min(vma->vm_end,
2062 				      address + page_size(page)), args->owner);
2063 	mmu_notifier_invalidate_range_start(&range);
2064 
2065 	while (page_vma_mapped_walk(&pvmw)) {
2066 		/* Unexpected PMD-mapped THP? */
2067 		VM_BUG_ON_PAGE(!pvmw.pte, page);
2068 
2069 		if (!pte_present(*pvmw.pte)) {
2070 			ret = false;
2071 			page_vma_mapped_walk_done(&pvmw);
2072 			break;
2073 		}
2074 
2075 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2076 		address = pvmw.address;
2077 
2078 		/* Nuke the page table entry. */
2079 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2080 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2081 
2082 		/* Move the dirty bit to the page. Now the pte is gone. */
2083 		if (pte_dirty(pteval))
2084 			set_page_dirty(page);
2085 
2086 		/*
2087 		 * Check that our target page is still mapped at the expected
2088 		 * address.
2089 		 */
2090 		if (args->mm == mm && args->address == address &&
2091 		    pte_write(pteval))
2092 			args->valid = true;
2093 
2094 		/*
2095 		 * Store the pfn of the page in a special migration
2096 		 * pte. do_swap_page() will wait until the migration
2097 		 * pte is removed and then restart fault handling.
2098 		 */
2099 		if (pte_write(pteval))
2100 			entry = make_writable_device_exclusive_entry(
2101 							page_to_pfn(subpage));
2102 		else
2103 			entry = make_readable_device_exclusive_entry(
2104 							page_to_pfn(subpage));
2105 		swp_pte = swp_entry_to_pte(entry);
2106 		if (pte_soft_dirty(pteval))
2107 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2108 		if (pte_uffd_wp(pteval))
2109 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2110 
2111 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2112 
2113 		/*
2114 		 * There is a reference on the page for the swap entry which has
2115 		 * been removed, so shouldn't take another.
2116 		 */
2117 		page_remove_rmap(subpage, false);
2118 	}
2119 
2120 	mmu_notifier_invalidate_range_end(&range);
2121 
2122 	return ret;
2123 }
2124 
2125 /**
2126  * page_make_device_exclusive - mark the page exclusively owned by a device
2127  * @page: the page to replace page table entries for
2128  * @mm: the mm_struct where the page is expected to be mapped
2129  * @address: address where the page is expected to be mapped
2130  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2131  *
2132  * Tries to remove all the page table entries which are mapping this page and
2133  * replace them with special device exclusive swap entries to grant a device
2134  * exclusive access to the page. Caller must hold the page lock.
2135  *
2136  * Returns false if the page is still mapped, or if it could not be unmapped
2137  * from the expected address. Otherwise returns true (success).
2138  */
2139 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2140 				unsigned long address, void *owner)
2141 {
2142 	struct make_exclusive_args args = {
2143 		.mm = mm,
2144 		.address = address,
2145 		.owner = owner,
2146 		.valid = false,
2147 	};
2148 	struct rmap_walk_control rwc = {
2149 		.rmap_one = page_make_device_exclusive_one,
2150 		.done = page_not_mapped,
2151 		.anon_lock = page_lock_anon_vma_read,
2152 		.arg = &args,
2153 	};
2154 
2155 	/*
2156 	 * Restrict to anonymous pages for now to avoid potential writeback
2157 	 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2158 	 * those.
2159 	 */
2160 	if (!PageAnon(page) || PageTail(page))
2161 		return false;
2162 
2163 	rmap_walk(page, &rwc);
2164 
2165 	return args.valid && !page_mapcount(page);
2166 }
2167 
2168 /**
2169  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2170  * @mm: mm_struct of assoicated target process
2171  * @start: start of the region to mark for exclusive device access
2172  * @end: end address of region
2173  * @pages: returns the pages which were successfully marked for exclusive access
2174  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2175  *
2176  * Returns: number of pages found in the range by GUP. A page is marked for
2177  * exclusive access only if the page pointer is non-NULL.
2178  *
2179  * This function finds ptes mapping page(s) to the given address range, locks
2180  * them and replaces mappings with special swap entries preventing userspace CPU
2181  * access. On fault these entries are replaced with the original mapping after
2182  * calling MMU notifiers.
2183  *
2184  * A driver using this to program access from a device must use a mmu notifier
2185  * critical section to hold a device specific lock during programming. Once
2186  * programming is complete it should drop the page lock and reference after
2187  * which point CPU access to the page will revoke the exclusive access.
2188  */
2189 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2190 				unsigned long end, struct page **pages,
2191 				void *owner)
2192 {
2193 	long npages = (end - start) >> PAGE_SHIFT;
2194 	long i;
2195 
2196 	npages = get_user_pages_remote(mm, start, npages,
2197 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2198 				       pages, NULL, NULL);
2199 	if (npages < 0)
2200 		return npages;
2201 
2202 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2203 		if (!trylock_page(pages[i])) {
2204 			put_page(pages[i]);
2205 			pages[i] = NULL;
2206 			continue;
2207 		}
2208 
2209 		if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2210 			unlock_page(pages[i]);
2211 			put_page(pages[i]);
2212 			pages[i] = NULL;
2213 		}
2214 	}
2215 
2216 	return npages;
2217 }
2218 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2219 #endif
2220 
2221 void __put_anon_vma(struct anon_vma *anon_vma)
2222 {
2223 	struct anon_vma *root = anon_vma->root;
2224 
2225 	anon_vma_free(anon_vma);
2226 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2227 		anon_vma_free(root);
2228 }
2229 
2230 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2231 					struct rmap_walk_control *rwc)
2232 {
2233 	struct anon_vma *anon_vma;
2234 
2235 	if (rwc->anon_lock)
2236 		return rwc->anon_lock(page);
2237 
2238 	/*
2239 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2240 	 * because that depends on page_mapped(); but not all its usages
2241 	 * are holding mmap_lock. Users without mmap_lock are required to
2242 	 * take a reference count to prevent the anon_vma disappearing
2243 	 */
2244 	anon_vma = page_anon_vma(page);
2245 	if (!anon_vma)
2246 		return NULL;
2247 
2248 	anon_vma_lock_read(anon_vma);
2249 	return anon_vma;
2250 }
2251 
2252 /*
2253  * rmap_walk_anon - do something to anonymous page using the object-based
2254  * rmap method
2255  * @page: the page to be handled
2256  * @rwc: control variable according to each walk type
2257  *
2258  * Find all the mappings of a page using the mapping pointer and the vma chains
2259  * contained in the anon_vma struct it points to.
2260  *
2261  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2262  * where the page was found will be held for write.  So, we won't recheck
2263  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2264  * LOCKED.
2265  */
2266 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2267 		bool locked)
2268 {
2269 	struct anon_vma *anon_vma;
2270 	pgoff_t pgoff_start, pgoff_end;
2271 	struct anon_vma_chain *avc;
2272 
2273 	if (locked) {
2274 		anon_vma = page_anon_vma(page);
2275 		/* anon_vma disappear under us? */
2276 		VM_BUG_ON_PAGE(!anon_vma, page);
2277 	} else {
2278 		anon_vma = rmap_walk_anon_lock(page, rwc);
2279 	}
2280 	if (!anon_vma)
2281 		return;
2282 
2283 	pgoff_start = page_to_pgoff(page);
2284 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2285 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2286 			pgoff_start, pgoff_end) {
2287 		struct vm_area_struct *vma = avc->vma;
2288 		unsigned long address = vma_address(page, vma);
2289 
2290 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2291 		cond_resched();
2292 
2293 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2294 			continue;
2295 
2296 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2297 			break;
2298 		if (rwc->done && rwc->done(page))
2299 			break;
2300 	}
2301 
2302 	if (!locked)
2303 		anon_vma_unlock_read(anon_vma);
2304 }
2305 
2306 /*
2307  * rmap_walk_file - do something to file page using the object-based rmap method
2308  * @page: the page to be handled
2309  * @rwc: control variable according to each walk type
2310  *
2311  * Find all the mappings of a page using the mapping pointer and the vma chains
2312  * contained in the address_space struct it points to.
2313  *
2314  * When called from page_mlock(), the mmap_lock of the mm containing the vma
2315  * where the page was found will be held for write.  So, we won't recheck
2316  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
2317  * LOCKED.
2318  */
2319 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2320 		bool locked)
2321 {
2322 	struct address_space *mapping = page_mapping(page);
2323 	pgoff_t pgoff_start, pgoff_end;
2324 	struct vm_area_struct *vma;
2325 
2326 	/*
2327 	 * The page lock not only makes sure that page->mapping cannot
2328 	 * suddenly be NULLified by truncation, it makes sure that the
2329 	 * structure at mapping cannot be freed and reused yet,
2330 	 * so we can safely take mapping->i_mmap_rwsem.
2331 	 */
2332 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2333 
2334 	if (!mapping)
2335 		return;
2336 
2337 	pgoff_start = page_to_pgoff(page);
2338 	pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2339 	if (!locked)
2340 		i_mmap_lock_read(mapping);
2341 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2342 			pgoff_start, pgoff_end) {
2343 		unsigned long address = vma_address(page, vma);
2344 
2345 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2346 		cond_resched();
2347 
2348 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2349 			continue;
2350 
2351 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
2352 			goto done;
2353 		if (rwc->done && rwc->done(page))
2354 			goto done;
2355 	}
2356 
2357 done:
2358 	if (!locked)
2359 		i_mmap_unlock_read(mapping);
2360 }
2361 
2362 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2363 {
2364 	if (unlikely(PageKsm(page)))
2365 		rmap_walk_ksm(page, rwc);
2366 	else if (PageAnon(page))
2367 		rmap_walk_anon(page, rwc, false);
2368 	else
2369 		rmap_walk_file(page, rwc, false);
2370 }
2371 
2372 /* Like rmap_walk, but caller holds relevant rmap lock */
2373 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2374 {
2375 	/* no ksm support for now */
2376 	VM_BUG_ON_PAGE(PageKsm(page), page);
2377 	if (PageAnon(page))
2378 		rmap_walk_anon(page, rwc, true);
2379 	else
2380 		rmap_walk_file(page, rwc, true);
2381 }
2382 
2383 #ifdef CONFIG_HUGETLB_PAGE
2384 /*
2385  * The following two functions are for anonymous (private mapped) hugepages.
2386  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2387  * and no lru code, because we handle hugepages differently from common pages.
2388  */
2389 void hugepage_add_anon_rmap(struct page *page,
2390 			    struct vm_area_struct *vma, unsigned long address)
2391 {
2392 	struct anon_vma *anon_vma = vma->anon_vma;
2393 	int first;
2394 
2395 	BUG_ON(!PageLocked(page));
2396 	BUG_ON(!anon_vma);
2397 	/* address might be in next vma when migration races vma_adjust */
2398 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
2399 	if (first)
2400 		__page_set_anon_rmap(page, vma, address, 0);
2401 }
2402 
2403 void hugepage_add_new_anon_rmap(struct page *page,
2404 			struct vm_area_struct *vma, unsigned long address)
2405 {
2406 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2407 	atomic_set(compound_mapcount_ptr(page), 0);
2408 	if (hpage_pincount_available(page))
2409 		atomic_set(compound_pincount_ptr(page), 0);
2410 
2411 	__page_set_anon_rmap(page, vma, address, 1);
2412 }
2413 #endif /* CONFIG_HUGETLB_PAGE */
2414