xref: /linux/mm/rmap.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 #include <linux/hugetlb.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71 }
72 
73 void anon_vma_free(struct anon_vma *anon_vma)
74 {
75 	kmem_cache_free(anon_vma_cachep, anon_vma);
76 }
77 
78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 {
80 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81 }
82 
83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 {
85 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86 }
87 
88 /**
89  * anon_vma_prepare - attach an anon_vma to a memory region
90  * @vma: the memory region in question
91  *
92  * This makes sure the memory mapping described by 'vma' has
93  * an 'anon_vma' attached to it, so that we can associate the
94  * anonymous pages mapped into it with that anon_vma.
95  *
96  * The common case will be that we already have one, but if
97  * if not we either need to find an adjacent mapping that we
98  * can re-use the anon_vma from (very common when the only
99  * reason for splitting a vma has been mprotect()), or we
100  * allocate a new one.
101  *
102  * Anon-vma allocations are very subtle, because we may have
103  * optimistically looked up an anon_vma in page_lock_anon_vma()
104  * and that may actually touch the spinlock even in the newly
105  * allocated vma (it depends on RCU to make sure that the
106  * anon_vma isn't actually destroyed).
107  *
108  * As a result, we need to do proper anon_vma locking even
109  * for the new allocation. At the same time, we do not want
110  * to do any locking for the common case of already having
111  * an anon_vma.
112  *
113  * This must be called with the mmap_sem held for reading.
114  */
115 int anon_vma_prepare(struct vm_area_struct *vma)
116 {
117 	struct anon_vma *anon_vma = vma->anon_vma;
118 	struct anon_vma_chain *avc;
119 
120 	might_sleep();
121 	if (unlikely(!anon_vma)) {
122 		struct mm_struct *mm = vma->vm_mm;
123 		struct anon_vma *allocated;
124 
125 		avc = anon_vma_chain_alloc();
126 		if (!avc)
127 			goto out_enomem;
128 
129 		anon_vma = find_mergeable_anon_vma(vma);
130 		allocated = NULL;
131 		if (!anon_vma) {
132 			anon_vma = anon_vma_alloc();
133 			if (unlikely(!anon_vma))
134 				goto out_enomem_free_avc;
135 			allocated = anon_vma;
136 			/*
137 			 * This VMA had no anon_vma yet.  This anon_vma is
138 			 * the root of any anon_vma tree that might form.
139 			 */
140 			anon_vma->root = anon_vma;
141 		}
142 
143 		anon_vma_lock(anon_vma);
144 		/* page_table_lock to protect against threads */
145 		spin_lock(&mm->page_table_lock);
146 		if (likely(!vma->anon_vma)) {
147 			vma->anon_vma = anon_vma;
148 			avc->anon_vma = anon_vma;
149 			avc->vma = vma;
150 			list_add(&avc->same_vma, &vma->anon_vma_chain);
151 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
152 			allocated = NULL;
153 			avc = NULL;
154 		}
155 		spin_unlock(&mm->page_table_lock);
156 		anon_vma_unlock(anon_vma);
157 
158 		if (unlikely(allocated))
159 			anon_vma_free(allocated);
160 		if (unlikely(avc))
161 			anon_vma_chain_free(avc);
162 	}
163 	return 0;
164 
165  out_enomem_free_avc:
166 	anon_vma_chain_free(avc);
167  out_enomem:
168 	return -ENOMEM;
169 }
170 
171 static void anon_vma_chain_link(struct vm_area_struct *vma,
172 				struct anon_vma_chain *avc,
173 				struct anon_vma *anon_vma)
174 {
175 	avc->vma = vma;
176 	avc->anon_vma = anon_vma;
177 	list_add(&avc->same_vma, &vma->anon_vma_chain);
178 
179 	anon_vma_lock(anon_vma);
180 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
181 	anon_vma_unlock(anon_vma);
182 }
183 
184 /*
185  * Attach the anon_vmas from src to dst.
186  * Returns 0 on success, -ENOMEM on failure.
187  */
188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
189 {
190 	struct anon_vma_chain *avc, *pavc;
191 
192 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
193 		avc = anon_vma_chain_alloc();
194 		if (!avc)
195 			goto enomem_failure;
196 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 	}
198 	return 0;
199 
200  enomem_failure:
201 	unlink_anon_vmas(dst);
202 	return -ENOMEM;
203 }
204 
205 /*
206  * Attach vma to its own anon_vma, as well as to the anon_vmas that
207  * the corresponding VMA in the parent process is attached to.
208  * Returns 0 on success, non-zero on failure.
209  */
210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
211 {
212 	struct anon_vma_chain *avc;
213 	struct anon_vma *anon_vma;
214 
215 	/* Don't bother if the parent process has no anon_vma here. */
216 	if (!pvma->anon_vma)
217 		return 0;
218 
219 	/*
220 	 * First, attach the new VMA to the parent VMA's anon_vmas,
221 	 * so rmap can find non-COWed pages in child processes.
222 	 */
223 	if (anon_vma_clone(vma, pvma))
224 		return -ENOMEM;
225 
226 	/* Then add our own anon_vma. */
227 	anon_vma = anon_vma_alloc();
228 	if (!anon_vma)
229 		goto out_error;
230 	avc = anon_vma_chain_alloc();
231 	if (!avc)
232 		goto out_error_free_anon_vma;
233 
234 	/*
235 	 * The root anon_vma's spinlock is the lock actually used when we
236 	 * lock any of the anon_vmas in this anon_vma tree.
237 	 */
238 	anon_vma->root = pvma->anon_vma->root;
239 	/*
240 	 * With KSM refcounts, an anon_vma can stay around longer than the
241 	 * process it belongs to.  The root anon_vma needs to be pinned
242 	 * until this anon_vma is freed, because the lock lives in the root.
243 	 */
244 	get_anon_vma(anon_vma->root);
245 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
246 	vma->anon_vma = anon_vma;
247 	anon_vma_chain_link(vma, avc, anon_vma);
248 
249 	return 0;
250 
251  out_error_free_anon_vma:
252 	anon_vma_free(anon_vma);
253  out_error:
254 	unlink_anon_vmas(vma);
255 	return -ENOMEM;
256 }
257 
258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
259 {
260 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
261 	int empty;
262 
263 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
264 	if (!anon_vma)
265 		return;
266 
267 	anon_vma_lock(anon_vma);
268 	list_del(&anon_vma_chain->same_anon_vma);
269 
270 	/* We must garbage collect the anon_vma if it's empty */
271 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
272 	anon_vma_unlock(anon_vma);
273 
274 	if (empty) {
275 		/* We no longer need the root anon_vma */
276 		if (anon_vma->root != anon_vma)
277 			drop_anon_vma(anon_vma->root);
278 		anon_vma_free(anon_vma);
279 	}
280 }
281 
282 void unlink_anon_vmas(struct vm_area_struct *vma)
283 {
284 	struct anon_vma_chain *avc, *next;
285 
286 	/*
287 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
288 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 	 */
290 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 		anon_vma_unlink(avc);
292 		list_del(&avc->same_vma);
293 		anon_vma_chain_free(avc);
294 	}
295 }
296 
297 static void anon_vma_ctor(void *data)
298 {
299 	struct anon_vma *anon_vma = data;
300 
301 	spin_lock_init(&anon_vma->lock);
302 	anonvma_external_refcount_init(anon_vma);
303 	INIT_LIST_HEAD(&anon_vma->head);
304 }
305 
306 void __init anon_vma_init(void)
307 {
308 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
309 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
310 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
311 }
312 
313 /*
314  * Getting a lock on a stable anon_vma from a page off the LRU is
315  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316  */
317 struct anon_vma *page_lock_anon_vma(struct page *page)
318 {
319 	struct anon_vma *anon_vma;
320 	unsigned long anon_mapping;
321 
322 	rcu_read_lock();
323 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
324 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
325 		goto out;
326 	if (!page_mapped(page))
327 		goto out;
328 
329 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
330 	anon_vma_lock(anon_vma);
331 	return anon_vma;
332 out:
333 	rcu_read_unlock();
334 	return NULL;
335 }
336 
337 void page_unlock_anon_vma(struct anon_vma *anon_vma)
338 {
339 	anon_vma_unlock(anon_vma);
340 	rcu_read_unlock();
341 }
342 
343 /*
344  * At what user virtual address is page expected in @vma?
345  * Returns virtual address or -EFAULT if page's index/offset is not
346  * within the range mapped the @vma.
347  */
348 static inline unsigned long
349 vma_address(struct page *page, struct vm_area_struct *vma)
350 {
351 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
352 	unsigned long address;
353 
354 	if (unlikely(is_vm_hugetlb_page(vma)))
355 		pgoff = page->index << huge_page_order(page_hstate(page));
356 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
357 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
358 		/* page should be within @vma mapping range */
359 		return -EFAULT;
360 	}
361 	return address;
362 }
363 
364 /*
365  * At what user virtual address is page expected in vma?
366  * Caller should check the page is actually part of the vma.
367  */
368 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
369 {
370 	if (PageAnon(page)) {
371 		if (vma->anon_vma->root != page_anon_vma(page)->root)
372 			return -EFAULT;
373 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
374 		if (!vma->vm_file ||
375 		    vma->vm_file->f_mapping != page->mapping)
376 			return -EFAULT;
377 	} else
378 		return -EFAULT;
379 	return vma_address(page, vma);
380 }
381 
382 /*
383  * Check that @page is mapped at @address into @mm.
384  *
385  * If @sync is false, page_check_address may perform a racy check to avoid
386  * the page table lock when the pte is not present (helpful when reclaiming
387  * highly shared pages).
388  *
389  * On success returns with pte mapped and locked.
390  */
391 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
392 			  unsigned long address, spinlock_t **ptlp, int sync)
393 {
394 	pgd_t *pgd;
395 	pud_t *pud;
396 	pmd_t *pmd;
397 	pte_t *pte;
398 	spinlock_t *ptl;
399 
400 	if (unlikely(PageHuge(page))) {
401 		pte = huge_pte_offset(mm, address);
402 		ptl = &mm->page_table_lock;
403 		goto check;
404 	}
405 
406 	pgd = pgd_offset(mm, address);
407 	if (!pgd_present(*pgd))
408 		return NULL;
409 
410 	pud = pud_offset(pgd, address);
411 	if (!pud_present(*pud))
412 		return NULL;
413 
414 	pmd = pmd_offset(pud, address);
415 	if (!pmd_present(*pmd))
416 		return NULL;
417 
418 	pte = pte_offset_map(pmd, address);
419 	/* Make a quick check before getting the lock */
420 	if (!sync && !pte_present(*pte)) {
421 		pte_unmap(pte);
422 		return NULL;
423 	}
424 
425 	ptl = pte_lockptr(mm, pmd);
426 check:
427 	spin_lock(ptl);
428 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
429 		*ptlp = ptl;
430 		return pte;
431 	}
432 	pte_unmap_unlock(pte, ptl);
433 	return NULL;
434 }
435 
436 /**
437  * page_mapped_in_vma - check whether a page is really mapped in a VMA
438  * @page: the page to test
439  * @vma: the VMA to test
440  *
441  * Returns 1 if the page is mapped into the page tables of the VMA, 0
442  * if the page is not mapped into the page tables of this VMA.  Only
443  * valid for normal file or anonymous VMAs.
444  */
445 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
446 {
447 	unsigned long address;
448 	pte_t *pte;
449 	spinlock_t *ptl;
450 
451 	address = vma_address(page, vma);
452 	if (address == -EFAULT)		/* out of vma range */
453 		return 0;
454 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
455 	if (!pte)			/* the page is not in this mm */
456 		return 0;
457 	pte_unmap_unlock(pte, ptl);
458 
459 	return 1;
460 }
461 
462 /*
463  * Subfunctions of page_referenced: page_referenced_one called
464  * repeatedly from either page_referenced_anon or page_referenced_file.
465  */
466 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
467 			unsigned long address, unsigned int *mapcount,
468 			unsigned long *vm_flags)
469 {
470 	struct mm_struct *mm = vma->vm_mm;
471 	pte_t *pte;
472 	spinlock_t *ptl;
473 	int referenced = 0;
474 
475 	pte = page_check_address(page, mm, address, &ptl, 0);
476 	if (!pte)
477 		goto out;
478 
479 	/*
480 	 * Don't want to elevate referenced for mlocked page that gets this far,
481 	 * in order that it progresses to try_to_unmap and is moved to the
482 	 * unevictable list.
483 	 */
484 	if (vma->vm_flags & VM_LOCKED) {
485 		*mapcount = 1;	/* break early from loop */
486 		*vm_flags |= VM_LOCKED;
487 		goto out_unmap;
488 	}
489 
490 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
491 		/*
492 		 * Don't treat a reference through a sequentially read
493 		 * mapping as such.  If the page has been used in
494 		 * another mapping, we will catch it; if this other
495 		 * mapping is already gone, the unmap path will have
496 		 * set PG_referenced or activated the page.
497 		 */
498 		if (likely(!VM_SequentialReadHint(vma)))
499 			referenced++;
500 	}
501 
502 	/* Pretend the page is referenced if the task has the
503 	   swap token and is in the middle of a page fault. */
504 	if (mm != current->mm && has_swap_token(mm) &&
505 			rwsem_is_locked(&mm->mmap_sem))
506 		referenced++;
507 
508 out_unmap:
509 	(*mapcount)--;
510 	pte_unmap_unlock(pte, ptl);
511 
512 	if (referenced)
513 		*vm_flags |= vma->vm_flags;
514 out:
515 	return referenced;
516 }
517 
518 static int page_referenced_anon(struct page *page,
519 				struct mem_cgroup *mem_cont,
520 				unsigned long *vm_flags)
521 {
522 	unsigned int mapcount;
523 	struct anon_vma *anon_vma;
524 	struct anon_vma_chain *avc;
525 	int referenced = 0;
526 
527 	anon_vma = page_lock_anon_vma(page);
528 	if (!anon_vma)
529 		return referenced;
530 
531 	mapcount = page_mapcount(page);
532 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
533 		struct vm_area_struct *vma = avc->vma;
534 		unsigned long address = vma_address(page, vma);
535 		if (address == -EFAULT)
536 			continue;
537 		/*
538 		 * If we are reclaiming on behalf of a cgroup, skip
539 		 * counting on behalf of references from different
540 		 * cgroups
541 		 */
542 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
543 			continue;
544 		referenced += page_referenced_one(page, vma, address,
545 						  &mapcount, vm_flags);
546 		if (!mapcount)
547 			break;
548 	}
549 
550 	page_unlock_anon_vma(anon_vma);
551 	return referenced;
552 }
553 
554 /**
555  * page_referenced_file - referenced check for object-based rmap
556  * @page: the page we're checking references on.
557  * @mem_cont: target memory controller
558  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
559  *
560  * For an object-based mapped page, find all the places it is mapped and
561  * check/clear the referenced flag.  This is done by following the page->mapping
562  * pointer, then walking the chain of vmas it holds.  It returns the number
563  * of references it found.
564  *
565  * This function is only called from page_referenced for object-based pages.
566  */
567 static int page_referenced_file(struct page *page,
568 				struct mem_cgroup *mem_cont,
569 				unsigned long *vm_flags)
570 {
571 	unsigned int mapcount;
572 	struct address_space *mapping = page->mapping;
573 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
574 	struct vm_area_struct *vma;
575 	struct prio_tree_iter iter;
576 	int referenced = 0;
577 
578 	/*
579 	 * The caller's checks on page->mapping and !PageAnon have made
580 	 * sure that this is a file page: the check for page->mapping
581 	 * excludes the case just before it gets set on an anon page.
582 	 */
583 	BUG_ON(PageAnon(page));
584 
585 	/*
586 	 * The page lock not only makes sure that page->mapping cannot
587 	 * suddenly be NULLified by truncation, it makes sure that the
588 	 * structure at mapping cannot be freed and reused yet,
589 	 * so we can safely take mapping->i_mmap_lock.
590 	 */
591 	BUG_ON(!PageLocked(page));
592 
593 	spin_lock(&mapping->i_mmap_lock);
594 
595 	/*
596 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
597 	 * is more likely to be accurate if we note it after spinning.
598 	 */
599 	mapcount = page_mapcount(page);
600 
601 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
602 		unsigned long address = vma_address(page, vma);
603 		if (address == -EFAULT)
604 			continue;
605 		/*
606 		 * If we are reclaiming on behalf of a cgroup, skip
607 		 * counting on behalf of references from different
608 		 * cgroups
609 		 */
610 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
611 			continue;
612 		referenced += page_referenced_one(page, vma, address,
613 						  &mapcount, vm_flags);
614 		if (!mapcount)
615 			break;
616 	}
617 
618 	spin_unlock(&mapping->i_mmap_lock);
619 	return referenced;
620 }
621 
622 /**
623  * page_referenced - test if the page was referenced
624  * @page: the page to test
625  * @is_locked: caller holds lock on the page
626  * @mem_cont: target memory controller
627  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
628  *
629  * Quick test_and_clear_referenced for all mappings to a page,
630  * returns the number of ptes which referenced the page.
631  */
632 int page_referenced(struct page *page,
633 		    int is_locked,
634 		    struct mem_cgroup *mem_cont,
635 		    unsigned long *vm_flags)
636 {
637 	int referenced = 0;
638 	int we_locked = 0;
639 
640 	*vm_flags = 0;
641 	if (page_mapped(page) && page_rmapping(page)) {
642 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
643 			we_locked = trylock_page(page);
644 			if (!we_locked) {
645 				referenced++;
646 				goto out;
647 			}
648 		}
649 		if (unlikely(PageKsm(page)))
650 			referenced += page_referenced_ksm(page, mem_cont,
651 								vm_flags);
652 		else if (PageAnon(page))
653 			referenced += page_referenced_anon(page, mem_cont,
654 								vm_flags);
655 		else if (page->mapping)
656 			referenced += page_referenced_file(page, mem_cont,
657 								vm_flags);
658 		if (we_locked)
659 			unlock_page(page);
660 	}
661 out:
662 	if (page_test_and_clear_young(page))
663 		referenced++;
664 
665 	return referenced;
666 }
667 
668 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
669 			    unsigned long address)
670 {
671 	struct mm_struct *mm = vma->vm_mm;
672 	pte_t *pte;
673 	spinlock_t *ptl;
674 	int ret = 0;
675 
676 	pte = page_check_address(page, mm, address, &ptl, 1);
677 	if (!pte)
678 		goto out;
679 
680 	if (pte_dirty(*pte) || pte_write(*pte)) {
681 		pte_t entry;
682 
683 		flush_cache_page(vma, address, pte_pfn(*pte));
684 		entry = ptep_clear_flush_notify(vma, address, pte);
685 		entry = pte_wrprotect(entry);
686 		entry = pte_mkclean(entry);
687 		set_pte_at(mm, address, pte, entry);
688 		ret = 1;
689 	}
690 
691 	pte_unmap_unlock(pte, ptl);
692 out:
693 	return ret;
694 }
695 
696 static int page_mkclean_file(struct address_space *mapping, struct page *page)
697 {
698 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
699 	struct vm_area_struct *vma;
700 	struct prio_tree_iter iter;
701 	int ret = 0;
702 
703 	BUG_ON(PageAnon(page));
704 
705 	spin_lock(&mapping->i_mmap_lock);
706 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
707 		if (vma->vm_flags & VM_SHARED) {
708 			unsigned long address = vma_address(page, vma);
709 			if (address == -EFAULT)
710 				continue;
711 			ret += page_mkclean_one(page, vma, address);
712 		}
713 	}
714 	spin_unlock(&mapping->i_mmap_lock);
715 	return ret;
716 }
717 
718 int page_mkclean(struct page *page)
719 {
720 	int ret = 0;
721 
722 	BUG_ON(!PageLocked(page));
723 
724 	if (page_mapped(page)) {
725 		struct address_space *mapping = page_mapping(page);
726 		if (mapping) {
727 			ret = page_mkclean_file(mapping, page);
728 			if (page_test_dirty(page)) {
729 				page_clear_dirty(page);
730 				ret = 1;
731 			}
732 		}
733 	}
734 
735 	return ret;
736 }
737 EXPORT_SYMBOL_GPL(page_mkclean);
738 
739 /**
740  * page_move_anon_rmap - move a page to our anon_vma
741  * @page:	the page to move to our anon_vma
742  * @vma:	the vma the page belongs to
743  * @address:	the user virtual address mapped
744  *
745  * When a page belongs exclusively to one process after a COW event,
746  * that page can be moved into the anon_vma that belongs to just that
747  * process, so the rmap code will not search the parent or sibling
748  * processes.
749  */
750 void page_move_anon_rmap(struct page *page,
751 	struct vm_area_struct *vma, unsigned long address)
752 {
753 	struct anon_vma *anon_vma = vma->anon_vma;
754 
755 	VM_BUG_ON(!PageLocked(page));
756 	VM_BUG_ON(!anon_vma);
757 	VM_BUG_ON(page->index != linear_page_index(vma, address));
758 
759 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
760 	page->mapping = (struct address_space *) anon_vma;
761 }
762 
763 /**
764  * __page_set_anon_rmap - setup new anonymous rmap
765  * @page:	the page to add the mapping to
766  * @vma:	the vm area in which the mapping is added
767  * @address:	the user virtual address mapped
768  * @exclusive:	the page is exclusively owned by the current process
769  */
770 static void __page_set_anon_rmap(struct page *page,
771 	struct vm_area_struct *vma, unsigned long address, int exclusive)
772 {
773 	struct anon_vma *anon_vma = vma->anon_vma;
774 
775 	BUG_ON(!anon_vma);
776 
777 	/*
778 	 * If the page isn't exclusively mapped into this vma,
779 	 * we must use the _oldest_ possible anon_vma for the
780 	 * page mapping!
781 	 */
782 	if (!exclusive) {
783 		if (PageAnon(page))
784 			return;
785 		anon_vma = anon_vma->root;
786 	} else {
787 		/*
788 		 * In this case, swapped-out-but-not-discarded swap-cache
789 		 * is remapped. So, no need to update page->mapping here.
790 		 * We convice anon_vma poitned by page->mapping is not obsolete
791 		 * because vma->anon_vma is necessary to be a family of it.
792 		 */
793 		if (PageAnon(page))
794 			return;
795 	}
796 
797 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
798 	page->mapping = (struct address_space *) anon_vma;
799 	page->index = linear_page_index(vma, address);
800 }
801 
802 /**
803  * __page_check_anon_rmap - sanity check anonymous rmap addition
804  * @page:	the page to add the mapping to
805  * @vma:	the vm area in which the mapping is added
806  * @address:	the user virtual address mapped
807  */
808 static void __page_check_anon_rmap(struct page *page,
809 	struct vm_area_struct *vma, unsigned long address)
810 {
811 #ifdef CONFIG_DEBUG_VM
812 	/*
813 	 * The page's anon-rmap details (mapping and index) are guaranteed to
814 	 * be set up correctly at this point.
815 	 *
816 	 * We have exclusion against page_add_anon_rmap because the caller
817 	 * always holds the page locked, except if called from page_dup_rmap,
818 	 * in which case the page is already known to be setup.
819 	 *
820 	 * We have exclusion against page_add_new_anon_rmap because those pages
821 	 * are initially only visible via the pagetables, and the pte is locked
822 	 * over the call to page_add_new_anon_rmap.
823 	 */
824 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
825 	BUG_ON(page->index != linear_page_index(vma, address));
826 #endif
827 }
828 
829 /**
830  * page_add_anon_rmap - add pte mapping to an anonymous page
831  * @page:	the page to add the mapping to
832  * @vma:	the vm area in which the mapping is added
833  * @address:	the user virtual address mapped
834  *
835  * The caller needs to hold the pte lock, and the page must be locked in
836  * the anon_vma case: to serialize mapping,index checking after setting,
837  * and to ensure that PageAnon is not being upgraded racily to PageKsm
838  * (but PageKsm is never downgraded to PageAnon).
839  */
840 void page_add_anon_rmap(struct page *page,
841 	struct vm_area_struct *vma, unsigned long address)
842 {
843 	do_page_add_anon_rmap(page, vma, address, 0);
844 }
845 
846 /*
847  * Special version of the above for do_swap_page, which often runs
848  * into pages that are exclusively owned by the current process.
849  * Everybody else should continue to use page_add_anon_rmap above.
850  */
851 void do_page_add_anon_rmap(struct page *page,
852 	struct vm_area_struct *vma, unsigned long address, int exclusive)
853 {
854 	int first = atomic_inc_and_test(&page->_mapcount);
855 	if (first)
856 		__inc_zone_page_state(page, NR_ANON_PAGES);
857 	if (unlikely(PageKsm(page)))
858 		return;
859 
860 	VM_BUG_ON(!PageLocked(page));
861 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
862 	if (first)
863 		__page_set_anon_rmap(page, vma, address, exclusive);
864 	else
865 		__page_check_anon_rmap(page, vma, address);
866 }
867 
868 /**
869  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
870  * @page:	the page to add the mapping to
871  * @vma:	the vm area in which the mapping is added
872  * @address:	the user virtual address mapped
873  *
874  * Same as page_add_anon_rmap but must only be called on *new* pages.
875  * This means the inc-and-test can be bypassed.
876  * Page does not have to be locked.
877  */
878 void page_add_new_anon_rmap(struct page *page,
879 	struct vm_area_struct *vma, unsigned long address)
880 {
881 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
882 	SetPageSwapBacked(page);
883 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
884 	__inc_zone_page_state(page, NR_ANON_PAGES);
885 	__page_set_anon_rmap(page, vma, address, 1);
886 	if (page_evictable(page, vma))
887 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
888 	else
889 		add_page_to_unevictable_list(page);
890 }
891 
892 /**
893  * page_add_file_rmap - add pte mapping to a file page
894  * @page: the page to add the mapping to
895  *
896  * The caller needs to hold the pte lock.
897  */
898 void page_add_file_rmap(struct page *page)
899 {
900 	if (atomic_inc_and_test(&page->_mapcount)) {
901 		__inc_zone_page_state(page, NR_FILE_MAPPED);
902 		mem_cgroup_update_file_mapped(page, 1);
903 	}
904 }
905 
906 /**
907  * page_remove_rmap - take down pte mapping from a page
908  * @page: page to remove mapping from
909  *
910  * The caller needs to hold the pte lock.
911  */
912 void page_remove_rmap(struct page *page)
913 {
914 	/* page still mapped by someone else? */
915 	if (!atomic_add_negative(-1, &page->_mapcount))
916 		return;
917 
918 	/*
919 	 * Now that the last pte has gone, s390 must transfer dirty
920 	 * flag from storage key to struct page.  We can usually skip
921 	 * this if the page is anon, so about to be freed; but perhaps
922 	 * not if it's in swapcache - there might be another pte slot
923 	 * containing the swap entry, but page not yet written to swap.
924 	 */
925 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
926 		page_clear_dirty(page);
927 		set_page_dirty(page);
928 	}
929 	/*
930 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
931 	 * and not charged by memcg for now.
932 	 */
933 	if (unlikely(PageHuge(page)))
934 		return;
935 	if (PageAnon(page)) {
936 		mem_cgroup_uncharge_page(page);
937 		__dec_zone_page_state(page, NR_ANON_PAGES);
938 	} else {
939 		__dec_zone_page_state(page, NR_FILE_MAPPED);
940 		mem_cgroup_update_file_mapped(page, -1);
941 	}
942 	/*
943 	 * It would be tidy to reset the PageAnon mapping here,
944 	 * but that might overwrite a racing page_add_anon_rmap
945 	 * which increments mapcount after us but sets mapping
946 	 * before us: so leave the reset to free_hot_cold_page,
947 	 * and remember that it's only reliable while mapped.
948 	 * Leaving it set also helps swapoff to reinstate ptes
949 	 * faster for those pages still in swapcache.
950 	 */
951 }
952 
953 /*
954  * Subfunctions of try_to_unmap: try_to_unmap_one called
955  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
956  */
957 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
958 		     unsigned long address, enum ttu_flags flags)
959 {
960 	struct mm_struct *mm = vma->vm_mm;
961 	pte_t *pte;
962 	pte_t pteval;
963 	spinlock_t *ptl;
964 	int ret = SWAP_AGAIN;
965 
966 	pte = page_check_address(page, mm, address, &ptl, 0);
967 	if (!pte)
968 		goto out;
969 
970 	/*
971 	 * If the page is mlock()d, we cannot swap it out.
972 	 * If it's recently referenced (perhaps page_referenced
973 	 * skipped over this mm) then we should reactivate it.
974 	 */
975 	if (!(flags & TTU_IGNORE_MLOCK)) {
976 		if (vma->vm_flags & VM_LOCKED)
977 			goto out_mlock;
978 
979 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
980 			goto out_unmap;
981 	}
982 	if (!(flags & TTU_IGNORE_ACCESS)) {
983 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
984 			ret = SWAP_FAIL;
985 			goto out_unmap;
986 		}
987   	}
988 
989 	/* Nuke the page table entry. */
990 	flush_cache_page(vma, address, page_to_pfn(page));
991 	pteval = ptep_clear_flush_notify(vma, address, pte);
992 
993 	/* Move the dirty bit to the physical page now the pte is gone. */
994 	if (pte_dirty(pteval))
995 		set_page_dirty(page);
996 
997 	/* Update high watermark before we lower rss */
998 	update_hiwater_rss(mm);
999 
1000 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1001 		if (PageAnon(page))
1002 			dec_mm_counter(mm, MM_ANONPAGES);
1003 		else
1004 			dec_mm_counter(mm, MM_FILEPAGES);
1005 		set_pte_at(mm, address, pte,
1006 				swp_entry_to_pte(make_hwpoison_entry(page)));
1007 	} else if (PageAnon(page)) {
1008 		swp_entry_t entry = { .val = page_private(page) };
1009 
1010 		if (PageSwapCache(page)) {
1011 			/*
1012 			 * Store the swap location in the pte.
1013 			 * See handle_pte_fault() ...
1014 			 */
1015 			if (swap_duplicate(entry) < 0) {
1016 				set_pte_at(mm, address, pte, pteval);
1017 				ret = SWAP_FAIL;
1018 				goto out_unmap;
1019 			}
1020 			if (list_empty(&mm->mmlist)) {
1021 				spin_lock(&mmlist_lock);
1022 				if (list_empty(&mm->mmlist))
1023 					list_add(&mm->mmlist, &init_mm.mmlist);
1024 				spin_unlock(&mmlist_lock);
1025 			}
1026 			dec_mm_counter(mm, MM_ANONPAGES);
1027 			inc_mm_counter(mm, MM_SWAPENTS);
1028 		} else if (PAGE_MIGRATION) {
1029 			/*
1030 			 * Store the pfn of the page in a special migration
1031 			 * pte. do_swap_page() will wait until the migration
1032 			 * pte is removed and then restart fault handling.
1033 			 */
1034 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1035 			entry = make_migration_entry(page, pte_write(pteval));
1036 		}
1037 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1038 		BUG_ON(pte_file(*pte));
1039 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1040 		/* Establish migration entry for a file page */
1041 		swp_entry_t entry;
1042 		entry = make_migration_entry(page, pte_write(pteval));
1043 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1044 	} else
1045 		dec_mm_counter(mm, MM_FILEPAGES);
1046 
1047 	page_remove_rmap(page);
1048 	page_cache_release(page);
1049 
1050 out_unmap:
1051 	pte_unmap_unlock(pte, ptl);
1052 out:
1053 	return ret;
1054 
1055 out_mlock:
1056 	pte_unmap_unlock(pte, ptl);
1057 
1058 
1059 	/*
1060 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1061 	 * unstable result and race. Plus, We can't wait here because
1062 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1063 	 * if trylock failed, the page remain in evictable lru and later
1064 	 * vmscan could retry to move the page to unevictable lru if the
1065 	 * page is actually mlocked.
1066 	 */
1067 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1068 		if (vma->vm_flags & VM_LOCKED) {
1069 			mlock_vma_page(page);
1070 			ret = SWAP_MLOCK;
1071 		}
1072 		up_read(&vma->vm_mm->mmap_sem);
1073 	}
1074 	return ret;
1075 }
1076 
1077 /*
1078  * objrmap doesn't work for nonlinear VMAs because the assumption that
1079  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1080  * Consequently, given a particular page and its ->index, we cannot locate the
1081  * ptes which are mapping that page without an exhaustive linear search.
1082  *
1083  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1084  * maps the file to which the target page belongs.  The ->vm_private_data field
1085  * holds the current cursor into that scan.  Successive searches will circulate
1086  * around the vma's virtual address space.
1087  *
1088  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1089  * more scanning pressure is placed against them as well.   Eventually pages
1090  * will become fully unmapped and are eligible for eviction.
1091  *
1092  * For very sparsely populated VMAs this is a little inefficient - chances are
1093  * there there won't be many ptes located within the scan cluster.  In this case
1094  * maybe we could scan further - to the end of the pte page, perhaps.
1095  *
1096  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1097  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1098  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1099  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1100  */
1101 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1102 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1103 
1104 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1105 		struct vm_area_struct *vma, struct page *check_page)
1106 {
1107 	struct mm_struct *mm = vma->vm_mm;
1108 	pgd_t *pgd;
1109 	pud_t *pud;
1110 	pmd_t *pmd;
1111 	pte_t *pte;
1112 	pte_t pteval;
1113 	spinlock_t *ptl;
1114 	struct page *page;
1115 	unsigned long address;
1116 	unsigned long end;
1117 	int ret = SWAP_AGAIN;
1118 	int locked_vma = 0;
1119 
1120 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1121 	end = address + CLUSTER_SIZE;
1122 	if (address < vma->vm_start)
1123 		address = vma->vm_start;
1124 	if (end > vma->vm_end)
1125 		end = vma->vm_end;
1126 
1127 	pgd = pgd_offset(mm, address);
1128 	if (!pgd_present(*pgd))
1129 		return ret;
1130 
1131 	pud = pud_offset(pgd, address);
1132 	if (!pud_present(*pud))
1133 		return ret;
1134 
1135 	pmd = pmd_offset(pud, address);
1136 	if (!pmd_present(*pmd))
1137 		return ret;
1138 
1139 	/*
1140 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1141 	 * keep the sem while scanning the cluster for mlocking pages.
1142 	 */
1143 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1144 		locked_vma = (vma->vm_flags & VM_LOCKED);
1145 		if (!locked_vma)
1146 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1147 	}
1148 
1149 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1150 
1151 	/* Update high watermark before we lower rss */
1152 	update_hiwater_rss(mm);
1153 
1154 	for (; address < end; pte++, address += PAGE_SIZE) {
1155 		if (!pte_present(*pte))
1156 			continue;
1157 		page = vm_normal_page(vma, address, *pte);
1158 		BUG_ON(!page || PageAnon(page));
1159 
1160 		if (locked_vma) {
1161 			mlock_vma_page(page);   /* no-op if already mlocked */
1162 			if (page == check_page)
1163 				ret = SWAP_MLOCK;
1164 			continue;	/* don't unmap */
1165 		}
1166 
1167 		if (ptep_clear_flush_young_notify(vma, address, pte))
1168 			continue;
1169 
1170 		/* Nuke the page table entry. */
1171 		flush_cache_page(vma, address, pte_pfn(*pte));
1172 		pteval = ptep_clear_flush_notify(vma, address, pte);
1173 
1174 		/* If nonlinear, store the file page offset in the pte. */
1175 		if (page->index != linear_page_index(vma, address))
1176 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1177 
1178 		/* Move the dirty bit to the physical page now the pte is gone. */
1179 		if (pte_dirty(pteval))
1180 			set_page_dirty(page);
1181 
1182 		page_remove_rmap(page);
1183 		page_cache_release(page);
1184 		dec_mm_counter(mm, MM_FILEPAGES);
1185 		(*mapcount)--;
1186 	}
1187 	pte_unmap_unlock(pte - 1, ptl);
1188 	if (locked_vma)
1189 		up_read(&vma->vm_mm->mmap_sem);
1190 	return ret;
1191 }
1192 
1193 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1194 {
1195 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1196 
1197 	if (!maybe_stack)
1198 		return false;
1199 
1200 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1201 						VM_STACK_INCOMPLETE_SETUP)
1202 		return true;
1203 
1204 	return false;
1205 }
1206 
1207 /**
1208  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1209  * rmap method
1210  * @page: the page to unmap/unlock
1211  * @flags: action and flags
1212  *
1213  * Find all the mappings of a page using the mapping pointer and the vma chains
1214  * contained in the anon_vma struct it points to.
1215  *
1216  * This function is only called from try_to_unmap/try_to_munlock for
1217  * anonymous pages.
1218  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1219  * where the page was found will be held for write.  So, we won't recheck
1220  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1221  * 'LOCKED.
1222  */
1223 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1224 {
1225 	struct anon_vma *anon_vma;
1226 	struct anon_vma_chain *avc;
1227 	int ret = SWAP_AGAIN;
1228 
1229 	anon_vma = page_lock_anon_vma(page);
1230 	if (!anon_vma)
1231 		return ret;
1232 
1233 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1234 		struct vm_area_struct *vma = avc->vma;
1235 		unsigned long address;
1236 
1237 		/*
1238 		 * During exec, a temporary VMA is setup and later moved.
1239 		 * The VMA is moved under the anon_vma lock but not the
1240 		 * page tables leading to a race where migration cannot
1241 		 * find the migration ptes. Rather than increasing the
1242 		 * locking requirements of exec(), migration skips
1243 		 * temporary VMAs until after exec() completes.
1244 		 */
1245 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1246 				is_vma_temporary_stack(vma))
1247 			continue;
1248 
1249 		address = vma_address(page, vma);
1250 		if (address == -EFAULT)
1251 			continue;
1252 		ret = try_to_unmap_one(page, vma, address, flags);
1253 		if (ret != SWAP_AGAIN || !page_mapped(page))
1254 			break;
1255 	}
1256 
1257 	page_unlock_anon_vma(anon_vma);
1258 	return ret;
1259 }
1260 
1261 /**
1262  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1263  * @page: the page to unmap/unlock
1264  * @flags: action and flags
1265  *
1266  * Find all the mappings of a page using the mapping pointer and the vma chains
1267  * contained in the address_space struct it points to.
1268  *
1269  * This function is only called from try_to_unmap/try_to_munlock for
1270  * object-based pages.
1271  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1272  * where the page was found will be held for write.  So, we won't recheck
1273  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1274  * 'LOCKED.
1275  */
1276 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1277 {
1278 	struct address_space *mapping = page->mapping;
1279 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1280 	struct vm_area_struct *vma;
1281 	struct prio_tree_iter iter;
1282 	int ret = SWAP_AGAIN;
1283 	unsigned long cursor;
1284 	unsigned long max_nl_cursor = 0;
1285 	unsigned long max_nl_size = 0;
1286 	unsigned int mapcount;
1287 
1288 	spin_lock(&mapping->i_mmap_lock);
1289 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1290 		unsigned long address = vma_address(page, vma);
1291 		if (address == -EFAULT)
1292 			continue;
1293 		ret = try_to_unmap_one(page, vma, address, flags);
1294 		if (ret != SWAP_AGAIN || !page_mapped(page))
1295 			goto out;
1296 	}
1297 
1298 	if (list_empty(&mapping->i_mmap_nonlinear))
1299 		goto out;
1300 
1301 	/*
1302 	 * We don't bother to try to find the munlocked page in nonlinears.
1303 	 * It's costly. Instead, later, page reclaim logic may call
1304 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1305 	 */
1306 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1307 		goto out;
1308 
1309 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1310 						shared.vm_set.list) {
1311 		cursor = (unsigned long) vma->vm_private_data;
1312 		if (cursor > max_nl_cursor)
1313 			max_nl_cursor = cursor;
1314 		cursor = vma->vm_end - vma->vm_start;
1315 		if (cursor > max_nl_size)
1316 			max_nl_size = cursor;
1317 	}
1318 
1319 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1320 		ret = SWAP_FAIL;
1321 		goto out;
1322 	}
1323 
1324 	/*
1325 	 * We don't try to search for this page in the nonlinear vmas,
1326 	 * and page_referenced wouldn't have found it anyway.  Instead
1327 	 * just walk the nonlinear vmas trying to age and unmap some.
1328 	 * The mapcount of the page we came in with is irrelevant,
1329 	 * but even so use it as a guide to how hard we should try?
1330 	 */
1331 	mapcount = page_mapcount(page);
1332 	if (!mapcount)
1333 		goto out;
1334 	cond_resched_lock(&mapping->i_mmap_lock);
1335 
1336 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1337 	if (max_nl_cursor == 0)
1338 		max_nl_cursor = CLUSTER_SIZE;
1339 
1340 	do {
1341 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1342 						shared.vm_set.list) {
1343 			cursor = (unsigned long) vma->vm_private_data;
1344 			while ( cursor < max_nl_cursor &&
1345 				cursor < vma->vm_end - vma->vm_start) {
1346 				if (try_to_unmap_cluster(cursor, &mapcount,
1347 						vma, page) == SWAP_MLOCK)
1348 					ret = SWAP_MLOCK;
1349 				cursor += CLUSTER_SIZE;
1350 				vma->vm_private_data = (void *) cursor;
1351 				if ((int)mapcount <= 0)
1352 					goto out;
1353 			}
1354 			vma->vm_private_data = (void *) max_nl_cursor;
1355 		}
1356 		cond_resched_lock(&mapping->i_mmap_lock);
1357 		max_nl_cursor += CLUSTER_SIZE;
1358 	} while (max_nl_cursor <= max_nl_size);
1359 
1360 	/*
1361 	 * Don't loop forever (perhaps all the remaining pages are
1362 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1363 	 * vmas, now forgetting on which ones it had fallen behind.
1364 	 */
1365 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1366 		vma->vm_private_data = NULL;
1367 out:
1368 	spin_unlock(&mapping->i_mmap_lock);
1369 	return ret;
1370 }
1371 
1372 /**
1373  * try_to_unmap - try to remove all page table mappings to a page
1374  * @page: the page to get unmapped
1375  * @flags: action and flags
1376  *
1377  * Tries to remove all the page table entries which are mapping this
1378  * page, used in the pageout path.  Caller must hold the page lock.
1379  * Return values are:
1380  *
1381  * SWAP_SUCCESS	- we succeeded in removing all mappings
1382  * SWAP_AGAIN	- we missed a mapping, try again later
1383  * SWAP_FAIL	- the page is unswappable
1384  * SWAP_MLOCK	- page is mlocked.
1385  */
1386 int try_to_unmap(struct page *page, enum ttu_flags flags)
1387 {
1388 	int ret;
1389 
1390 	BUG_ON(!PageLocked(page));
1391 
1392 	if (unlikely(PageKsm(page)))
1393 		ret = try_to_unmap_ksm(page, flags);
1394 	else if (PageAnon(page))
1395 		ret = try_to_unmap_anon(page, flags);
1396 	else
1397 		ret = try_to_unmap_file(page, flags);
1398 	if (ret != SWAP_MLOCK && !page_mapped(page))
1399 		ret = SWAP_SUCCESS;
1400 	return ret;
1401 }
1402 
1403 /**
1404  * try_to_munlock - try to munlock a page
1405  * @page: the page to be munlocked
1406  *
1407  * Called from munlock code.  Checks all of the VMAs mapping the page
1408  * to make sure nobody else has this page mlocked. The page will be
1409  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1410  *
1411  * Return values are:
1412  *
1413  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1414  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1415  * SWAP_FAIL	- page cannot be located at present
1416  * SWAP_MLOCK	- page is now mlocked.
1417  */
1418 int try_to_munlock(struct page *page)
1419 {
1420 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1421 
1422 	if (unlikely(PageKsm(page)))
1423 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1424 	else if (PageAnon(page))
1425 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1426 	else
1427 		return try_to_unmap_file(page, TTU_MUNLOCK);
1428 }
1429 
1430 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1431 /*
1432  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1433  * if necessary.  Be careful to do all the tests under the lock.  Once
1434  * we know we are the last user, nobody else can get a reference and we
1435  * can do the freeing without the lock.
1436  */
1437 void drop_anon_vma(struct anon_vma *anon_vma)
1438 {
1439 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1440 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1441 		struct anon_vma *root = anon_vma->root;
1442 		int empty = list_empty(&anon_vma->head);
1443 		int last_root_user = 0;
1444 		int root_empty = 0;
1445 
1446 		/*
1447 		 * The refcount on a non-root anon_vma got dropped.  Drop
1448 		 * the refcount on the root and check if we need to free it.
1449 		 */
1450 		if (empty && anon_vma != root) {
1451 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1452 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1453 			root_empty = list_empty(&root->head);
1454 		}
1455 		anon_vma_unlock(anon_vma);
1456 
1457 		if (empty) {
1458 			anon_vma_free(anon_vma);
1459 			if (root_empty && last_root_user)
1460 				anon_vma_free(root);
1461 		}
1462 	}
1463 }
1464 #endif
1465 
1466 #ifdef CONFIG_MIGRATION
1467 /*
1468  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1469  * Called by migrate.c to remove migration ptes, but might be used more later.
1470  */
1471 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1472 		struct vm_area_struct *, unsigned long, void *), void *arg)
1473 {
1474 	struct anon_vma *anon_vma;
1475 	struct anon_vma_chain *avc;
1476 	int ret = SWAP_AGAIN;
1477 
1478 	/*
1479 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1480 	 * because that depends on page_mapped(); but not all its usages
1481 	 * are holding mmap_sem. Users without mmap_sem are required to
1482 	 * take a reference count to prevent the anon_vma disappearing
1483 	 */
1484 	anon_vma = page_anon_vma(page);
1485 	if (!anon_vma)
1486 		return ret;
1487 	anon_vma_lock(anon_vma);
1488 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1489 		struct vm_area_struct *vma = avc->vma;
1490 		unsigned long address = vma_address(page, vma);
1491 		if (address == -EFAULT)
1492 			continue;
1493 		ret = rmap_one(page, vma, address, arg);
1494 		if (ret != SWAP_AGAIN)
1495 			break;
1496 	}
1497 	anon_vma_unlock(anon_vma);
1498 	return ret;
1499 }
1500 
1501 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1502 		struct vm_area_struct *, unsigned long, void *), void *arg)
1503 {
1504 	struct address_space *mapping = page->mapping;
1505 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1506 	struct vm_area_struct *vma;
1507 	struct prio_tree_iter iter;
1508 	int ret = SWAP_AGAIN;
1509 
1510 	if (!mapping)
1511 		return ret;
1512 	spin_lock(&mapping->i_mmap_lock);
1513 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1514 		unsigned long address = vma_address(page, vma);
1515 		if (address == -EFAULT)
1516 			continue;
1517 		ret = rmap_one(page, vma, address, arg);
1518 		if (ret != SWAP_AGAIN)
1519 			break;
1520 	}
1521 	/*
1522 	 * No nonlinear handling: being always shared, nonlinear vmas
1523 	 * never contain migration ptes.  Decide what to do about this
1524 	 * limitation to linear when we need rmap_walk() on nonlinear.
1525 	 */
1526 	spin_unlock(&mapping->i_mmap_lock);
1527 	return ret;
1528 }
1529 
1530 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1531 		struct vm_area_struct *, unsigned long, void *), void *arg)
1532 {
1533 	VM_BUG_ON(!PageLocked(page));
1534 
1535 	if (unlikely(PageKsm(page)))
1536 		return rmap_walk_ksm(page, rmap_one, arg);
1537 	else if (PageAnon(page))
1538 		return rmap_walk_anon(page, rmap_one, arg);
1539 	else
1540 		return rmap_walk_file(page, rmap_one, arg);
1541 }
1542 #endif /* CONFIG_MIGRATION */
1543 
1544 #ifdef CONFIG_HUGETLB_PAGE
1545 /*
1546  * The following three functions are for anonymous (private mapped) hugepages.
1547  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1548  * and no lru code, because we handle hugepages differently from common pages.
1549  */
1550 static void __hugepage_set_anon_rmap(struct page *page,
1551 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1552 {
1553 	struct anon_vma *anon_vma = vma->anon_vma;
1554 	BUG_ON(!anon_vma);
1555 	if (!exclusive) {
1556 		struct anon_vma_chain *avc;
1557 		avc = list_entry(vma->anon_vma_chain.prev,
1558 				 struct anon_vma_chain, same_vma);
1559 		anon_vma = avc->anon_vma;
1560 	}
1561 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1562 	page->mapping = (struct address_space *) anon_vma;
1563 	page->index = linear_page_index(vma, address);
1564 }
1565 
1566 void hugepage_add_anon_rmap(struct page *page,
1567 			    struct vm_area_struct *vma, unsigned long address)
1568 {
1569 	struct anon_vma *anon_vma = vma->anon_vma;
1570 	int first;
1571 	BUG_ON(!anon_vma);
1572 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1573 	first = atomic_inc_and_test(&page->_mapcount);
1574 	if (first)
1575 		__hugepage_set_anon_rmap(page, vma, address, 0);
1576 }
1577 
1578 void hugepage_add_new_anon_rmap(struct page *page,
1579 			struct vm_area_struct *vma, unsigned long address)
1580 {
1581 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1582 	atomic_set(&page->_mapcount, 0);
1583 	__hugepage_set_anon_rmap(page, vma, address, 1);
1584 }
1585 #endif /* CONFIG_HUGETLB_PAGE */
1586