1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem (vmtruncate_range) 25 * mm->mmap_sem 26 * page->flags PG_locked (lock_page) 27 * mapping->i_mmap_lock 28 * anon_vma->lock 29 * mm->page_table_lock or pte_lock 30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 31 * swap_lock (in swap_duplicate, swap_info_get) 32 * mmlist_lock (in mmput, drain_mmlist and others) 33 * mapping->private_lock (in __set_page_dirty_buffers) 34 * inode_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within inode_lock in __sync_single_inode) 39 * 40 * (code doesn't rely on that order so it could be switched around) 41 * ->tasklist_lock 42 * anon_vma->lock (memory_failure, collect_procs_anon) 43 * pte map lock 44 */ 45 46 #include <linux/mm.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/swapops.h> 50 #include <linux/slab.h> 51 #include <linux/init.h> 52 #include <linux/ksm.h> 53 #include <linux/rmap.h> 54 #include <linux/rcupdate.h> 55 #include <linux/module.h> 56 #include <linux/memcontrol.h> 57 #include <linux/mmu_notifier.h> 58 #include <linux/migrate.h> 59 #include <linux/hugetlb.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 71 } 72 73 void anon_vma_free(struct anon_vma *anon_vma) 74 { 75 kmem_cache_free(anon_vma_cachep, anon_vma); 76 } 77 78 static inline struct anon_vma_chain *anon_vma_chain_alloc(void) 79 { 80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); 81 } 82 83 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 84 { 85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 86 } 87 88 /** 89 * anon_vma_prepare - attach an anon_vma to a memory region 90 * @vma: the memory region in question 91 * 92 * This makes sure the memory mapping described by 'vma' has 93 * an 'anon_vma' attached to it, so that we can associate the 94 * anonymous pages mapped into it with that anon_vma. 95 * 96 * The common case will be that we already have one, but if 97 * if not we either need to find an adjacent mapping that we 98 * can re-use the anon_vma from (very common when the only 99 * reason for splitting a vma has been mprotect()), or we 100 * allocate a new one. 101 * 102 * Anon-vma allocations are very subtle, because we may have 103 * optimistically looked up an anon_vma in page_lock_anon_vma() 104 * and that may actually touch the spinlock even in the newly 105 * allocated vma (it depends on RCU to make sure that the 106 * anon_vma isn't actually destroyed). 107 * 108 * As a result, we need to do proper anon_vma locking even 109 * for the new allocation. At the same time, we do not want 110 * to do any locking for the common case of already having 111 * an anon_vma. 112 * 113 * This must be called with the mmap_sem held for reading. 114 */ 115 int anon_vma_prepare(struct vm_area_struct *vma) 116 { 117 struct anon_vma *anon_vma = vma->anon_vma; 118 struct anon_vma_chain *avc; 119 120 might_sleep(); 121 if (unlikely(!anon_vma)) { 122 struct mm_struct *mm = vma->vm_mm; 123 struct anon_vma *allocated; 124 125 avc = anon_vma_chain_alloc(); 126 if (!avc) 127 goto out_enomem; 128 129 anon_vma = find_mergeable_anon_vma(vma); 130 allocated = NULL; 131 if (!anon_vma) { 132 anon_vma = anon_vma_alloc(); 133 if (unlikely(!anon_vma)) 134 goto out_enomem_free_avc; 135 allocated = anon_vma; 136 /* 137 * This VMA had no anon_vma yet. This anon_vma is 138 * the root of any anon_vma tree that might form. 139 */ 140 anon_vma->root = anon_vma; 141 } 142 143 anon_vma_lock(anon_vma); 144 /* page_table_lock to protect against threads */ 145 spin_lock(&mm->page_table_lock); 146 if (likely(!vma->anon_vma)) { 147 vma->anon_vma = anon_vma; 148 avc->anon_vma = anon_vma; 149 avc->vma = vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 152 allocated = NULL; 153 avc = NULL; 154 } 155 spin_unlock(&mm->page_table_lock); 156 anon_vma_unlock(anon_vma); 157 158 if (unlikely(allocated)) 159 anon_vma_free(allocated); 160 if (unlikely(avc)) 161 anon_vma_chain_free(avc); 162 } 163 return 0; 164 165 out_enomem_free_avc: 166 anon_vma_chain_free(avc); 167 out_enomem: 168 return -ENOMEM; 169 } 170 171 static void anon_vma_chain_link(struct vm_area_struct *vma, 172 struct anon_vma_chain *avc, 173 struct anon_vma *anon_vma) 174 { 175 avc->vma = vma; 176 avc->anon_vma = anon_vma; 177 list_add(&avc->same_vma, &vma->anon_vma_chain); 178 179 anon_vma_lock(anon_vma); 180 list_add_tail(&avc->same_anon_vma, &anon_vma->head); 181 anon_vma_unlock(anon_vma); 182 } 183 184 /* 185 * Attach the anon_vmas from src to dst. 186 * Returns 0 on success, -ENOMEM on failure. 187 */ 188 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 189 { 190 struct anon_vma_chain *avc, *pavc; 191 192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 193 avc = anon_vma_chain_alloc(); 194 if (!avc) 195 goto enomem_failure; 196 anon_vma_chain_link(dst, avc, pavc->anon_vma); 197 } 198 return 0; 199 200 enomem_failure: 201 unlink_anon_vmas(dst); 202 return -ENOMEM; 203 } 204 205 /* 206 * Attach vma to its own anon_vma, as well as to the anon_vmas that 207 * the corresponding VMA in the parent process is attached to. 208 * Returns 0 on success, non-zero on failure. 209 */ 210 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 211 { 212 struct anon_vma_chain *avc; 213 struct anon_vma *anon_vma; 214 215 /* Don't bother if the parent process has no anon_vma here. */ 216 if (!pvma->anon_vma) 217 return 0; 218 219 /* 220 * First, attach the new VMA to the parent VMA's anon_vmas, 221 * so rmap can find non-COWed pages in child processes. 222 */ 223 if (anon_vma_clone(vma, pvma)) 224 return -ENOMEM; 225 226 /* Then add our own anon_vma. */ 227 anon_vma = anon_vma_alloc(); 228 if (!anon_vma) 229 goto out_error; 230 avc = anon_vma_chain_alloc(); 231 if (!avc) 232 goto out_error_free_anon_vma; 233 234 /* 235 * The root anon_vma's spinlock is the lock actually used when we 236 * lock any of the anon_vmas in this anon_vma tree. 237 */ 238 anon_vma->root = pvma->anon_vma->root; 239 /* 240 * With KSM refcounts, an anon_vma can stay around longer than the 241 * process it belongs to. The root anon_vma needs to be pinned 242 * until this anon_vma is freed, because the lock lives in the root. 243 */ 244 get_anon_vma(anon_vma->root); 245 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 246 vma->anon_vma = anon_vma; 247 anon_vma_chain_link(vma, avc, anon_vma); 248 249 return 0; 250 251 out_error_free_anon_vma: 252 anon_vma_free(anon_vma); 253 out_error: 254 unlink_anon_vmas(vma); 255 return -ENOMEM; 256 } 257 258 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) 259 { 260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma; 261 int empty; 262 263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */ 264 if (!anon_vma) 265 return; 266 267 anon_vma_lock(anon_vma); 268 list_del(&anon_vma_chain->same_anon_vma); 269 270 /* We must garbage collect the anon_vma if it's empty */ 271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); 272 anon_vma_unlock(anon_vma); 273 274 if (empty) { 275 /* We no longer need the root anon_vma */ 276 if (anon_vma->root != anon_vma) 277 drop_anon_vma(anon_vma->root); 278 anon_vma_free(anon_vma); 279 } 280 } 281 282 void unlink_anon_vmas(struct vm_area_struct *vma) 283 { 284 struct anon_vma_chain *avc, *next; 285 286 /* 287 * Unlink each anon_vma chained to the VMA. This list is ordered 288 * from newest to oldest, ensuring the root anon_vma gets freed last. 289 */ 290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 291 anon_vma_unlink(avc); 292 list_del(&avc->same_vma); 293 anon_vma_chain_free(avc); 294 } 295 } 296 297 static void anon_vma_ctor(void *data) 298 { 299 struct anon_vma *anon_vma = data; 300 301 spin_lock_init(&anon_vma->lock); 302 anonvma_external_refcount_init(anon_vma); 303 INIT_LIST_HEAD(&anon_vma->head); 304 } 305 306 void __init anon_vma_init(void) 307 { 308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 311 } 312 313 /* 314 * Getting a lock on a stable anon_vma from a page off the LRU is 315 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 316 */ 317 struct anon_vma *page_lock_anon_vma(struct page *page) 318 { 319 struct anon_vma *anon_vma; 320 unsigned long anon_mapping; 321 322 rcu_read_lock(); 323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 325 goto out; 326 if (!page_mapped(page)) 327 goto out; 328 329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 330 anon_vma_lock(anon_vma); 331 return anon_vma; 332 out: 333 rcu_read_unlock(); 334 return NULL; 335 } 336 337 void page_unlock_anon_vma(struct anon_vma *anon_vma) 338 { 339 anon_vma_unlock(anon_vma); 340 rcu_read_unlock(); 341 } 342 343 /* 344 * At what user virtual address is page expected in @vma? 345 * Returns virtual address or -EFAULT if page's index/offset is not 346 * within the range mapped the @vma. 347 */ 348 static inline unsigned long 349 vma_address(struct page *page, struct vm_area_struct *vma) 350 { 351 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 352 unsigned long address; 353 354 if (unlikely(is_vm_hugetlb_page(vma))) 355 pgoff = page->index << huge_page_order(page_hstate(page)); 356 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 357 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 358 /* page should be within @vma mapping range */ 359 return -EFAULT; 360 } 361 return address; 362 } 363 364 /* 365 * At what user virtual address is page expected in vma? 366 * Caller should check the page is actually part of the vma. 367 */ 368 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 369 { 370 if (PageAnon(page)) { 371 if (vma->anon_vma->root != page_anon_vma(page)->root) 372 return -EFAULT; 373 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 374 if (!vma->vm_file || 375 vma->vm_file->f_mapping != page->mapping) 376 return -EFAULT; 377 } else 378 return -EFAULT; 379 return vma_address(page, vma); 380 } 381 382 /* 383 * Check that @page is mapped at @address into @mm. 384 * 385 * If @sync is false, page_check_address may perform a racy check to avoid 386 * the page table lock when the pte is not present (helpful when reclaiming 387 * highly shared pages). 388 * 389 * On success returns with pte mapped and locked. 390 */ 391 pte_t *page_check_address(struct page *page, struct mm_struct *mm, 392 unsigned long address, spinlock_t **ptlp, int sync) 393 { 394 pgd_t *pgd; 395 pud_t *pud; 396 pmd_t *pmd; 397 pte_t *pte; 398 spinlock_t *ptl; 399 400 if (unlikely(PageHuge(page))) { 401 pte = huge_pte_offset(mm, address); 402 ptl = &mm->page_table_lock; 403 goto check; 404 } 405 406 pgd = pgd_offset(mm, address); 407 if (!pgd_present(*pgd)) 408 return NULL; 409 410 pud = pud_offset(pgd, address); 411 if (!pud_present(*pud)) 412 return NULL; 413 414 pmd = pmd_offset(pud, address); 415 if (!pmd_present(*pmd)) 416 return NULL; 417 418 pte = pte_offset_map(pmd, address); 419 /* Make a quick check before getting the lock */ 420 if (!sync && !pte_present(*pte)) { 421 pte_unmap(pte); 422 return NULL; 423 } 424 425 ptl = pte_lockptr(mm, pmd); 426 check: 427 spin_lock(ptl); 428 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 429 *ptlp = ptl; 430 return pte; 431 } 432 pte_unmap_unlock(pte, ptl); 433 return NULL; 434 } 435 436 /** 437 * page_mapped_in_vma - check whether a page is really mapped in a VMA 438 * @page: the page to test 439 * @vma: the VMA to test 440 * 441 * Returns 1 if the page is mapped into the page tables of the VMA, 0 442 * if the page is not mapped into the page tables of this VMA. Only 443 * valid for normal file or anonymous VMAs. 444 */ 445 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 446 { 447 unsigned long address; 448 pte_t *pte; 449 spinlock_t *ptl; 450 451 address = vma_address(page, vma); 452 if (address == -EFAULT) /* out of vma range */ 453 return 0; 454 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 455 if (!pte) /* the page is not in this mm */ 456 return 0; 457 pte_unmap_unlock(pte, ptl); 458 459 return 1; 460 } 461 462 /* 463 * Subfunctions of page_referenced: page_referenced_one called 464 * repeatedly from either page_referenced_anon or page_referenced_file. 465 */ 466 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 467 unsigned long address, unsigned int *mapcount, 468 unsigned long *vm_flags) 469 { 470 struct mm_struct *mm = vma->vm_mm; 471 pte_t *pte; 472 spinlock_t *ptl; 473 int referenced = 0; 474 475 pte = page_check_address(page, mm, address, &ptl, 0); 476 if (!pte) 477 goto out; 478 479 /* 480 * Don't want to elevate referenced for mlocked page that gets this far, 481 * in order that it progresses to try_to_unmap and is moved to the 482 * unevictable list. 483 */ 484 if (vma->vm_flags & VM_LOCKED) { 485 *mapcount = 1; /* break early from loop */ 486 *vm_flags |= VM_LOCKED; 487 goto out_unmap; 488 } 489 490 if (ptep_clear_flush_young_notify(vma, address, pte)) { 491 /* 492 * Don't treat a reference through a sequentially read 493 * mapping as such. If the page has been used in 494 * another mapping, we will catch it; if this other 495 * mapping is already gone, the unmap path will have 496 * set PG_referenced or activated the page. 497 */ 498 if (likely(!VM_SequentialReadHint(vma))) 499 referenced++; 500 } 501 502 /* Pretend the page is referenced if the task has the 503 swap token and is in the middle of a page fault. */ 504 if (mm != current->mm && has_swap_token(mm) && 505 rwsem_is_locked(&mm->mmap_sem)) 506 referenced++; 507 508 out_unmap: 509 (*mapcount)--; 510 pte_unmap_unlock(pte, ptl); 511 512 if (referenced) 513 *vm_flags |= vma->vm_flags; 514 out: 515 return referenced; 516 } 517 518 static int page_referenced_anon(struct page *page, 519 struct mem_cgroup *mem_cont, 520 unsigned long *vm_flags) 521 { 522 unsigned int mapcount; 523 struct anon_vma *anon_vma; 524 struct anon_vma_chain *avc; 525 int referenced = 0; 526 527 anon_vma = page_lock_anon_vma(page); 528 if (!anon_vma) 529 return referenced; 530 531 mapcount = page_mapcount(page); 532 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 533 struct vm_area_struct *vma = avc->vma; 534 unsigned long address = vma_address(page, vma); 535 if (address == -EFAULT) 536 continue; 537 /* 538 * If we are reclaiming on behalf of a cgroup, skip 539 * counting on behalf of references from different 540 * cgroups 541 */ 542 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 543 continue; 544 referenced += page_referenced_one(page, vma, address, 545 &mapcount, vm_flags); 546 if (!mapcount) 547 break; 548 } 549 550 page_unlock_anon_vma(anon_vma); 551 return referenced; 552 } 553 554 /** 555 * page_referenced_file - referenced check for object-based rmap 556 * @page: the page we're checking references on. 557 * @mem_cont: target memory controller 558 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 559 * 560 * For an object-based mapped page, find all the places it is mapped and 561 * check/clear the referenced flag. This is done by following the page->mapping 562 * pointer, then walking the chain of vmas it holds. It returns the number 563 * of references it found. 564 * 565 * This function is only called from page_referenced for object-based pages. 566 */ 567 static int page_referenced_file(struct page *page, 568 struct mem_cgroup *mem_cont, 569 unsigned long *vm_flags) 570 { 571 unsigned int mapcount; 572 struct address_space *mapping = page->mapping; 573 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 574 struct vm_area_struct *vma; 575 struct prio_tree_iter iter; 576 int referenced = 0; 577 578 /* 579 * The caller's checks on page->mapping and !PageAnon have made 580 * sure that this is a file page: the check for page->mapping 581 * excludes the case just before it gets set on an anon page. 582 */ 583 BUG_ON(PageAnon(page)); 584 585 /* 586 * The page lock not only makes sure that page->mapping cannot 587 * suddenly be NULLified by truncation, it makes sure that the 588 * structure at mapping cannot be freed and reused yet, 589 * so we can safely take mapping->i_mmap_lock. 590 */ 591 BUG_ON(!PageLocked(page)); 592 593 spin_lock(&mapping->i_mmap_lock); 594 595 /* 596 * i_mmap_lock does not stabilize mapcount at all, but mapcount 597 * is more likely to be accurate if we note it after spinning. 598 */ 599 mapcount = page_mapcount(page); 600 601 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 602 unsigned long address = vma_address(page, vma); 603 if (address == -EFAULT) 604 continue; 605 /* 606 * If we are reclaiming on behalf of a cgroup, skip 607 * counting on behalf of references from different 608 * cgroups 609 */ 610 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) 611 continue; 612 referenced += page_referenced_one(page, vma, address, 613 &mapcount, vm_flags); 614 if (!mapcount) 615 break; 616 } 617 618 spin_unlock(&mapping->i_mmap_lock); 619 return referenced; 620 } 621 622 /** 623 * page_referenced - test if the page was referenced 624 * @page: the page to test 625 * @is_locked: caller holds lock on the page 626 * @mem_cont: target memory controller 627 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 628 * 629 * Quick test_and_clear_referenced for all mappings to a page, 630 * returns the number of ptes which referenced the page. 631 */ 632 int page_referenced(struct page *page, 633 int is_locked, 634 struct mem_cgroup *mem_cont, 635 unsigned long *vm_flags) 636 { 637 int referenced = 0; 638 int we_locked = 0; 639 640 *vm_flags = 0; 641 if (page_mapped(page) && page_rmapping(page)) { 642 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 643 we_locked = trylock_page(page); 644 if (!we_locked) { 645 referenced++; 646 goto out; 647 } 648 } 649 if (unlikely(PageKsm(page))) 650 referenced += page_referenced_ksm(page, mem_cont, 651 vm_flags); 652 else if (PageAnon(page)) 653 referenced += page_referenced_anon(page, mem_cont, 654 vm_flags); 655 else if (page->mapping) 656 referenced += page_referenced_file(page, mem_cont, 657 vm_flags); 658 if (we_locked) 659 unlock_page(page); 660 } 661 out: 662 if (page_test_and_clear_young(page)) 663 referenced++; 664 665 return referenced; 666 } 667 668 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 669 unsigned long address) 670 { 671 struct mm_struct *mm = vma->vm_mm; 672 pte_t *pte; 673 spinlock_t *ptl; 674 int ret = 0; 675 676 pte = page_check_address(page, mm, address, &ptl, 1); 677 if (!pte) 678 goto out; 679 680 if (pte_dirty(*pte) || pte_write(*pte)) { 681 pte_t entry; 682 683 flush_cache_page(vma, address, pte_pfn(*pte)); 684 entry = ptep_clear_flush_notify(vma, address, pte); 685 entry = pte_wrprotect(entry); 686 entry = pte_mkclean(entry); 687 set_pte_at(mm, address, pte, entry); 688 ret = 1; 689 } 690 691 pte_unmap_unlock(pte, ptl); 692 out: 693 return ret; 694 } 695 696 static int page_mkclean_file(struct address_space *mapping, struct page *page) 697 { 698 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 699 struct vm_area_struct *vma; 700 struct prio_tree_iter iter; 701 int ret = 0; 702 703 BUG_ON(PageAnon(page)); 704 705 spin_lock(&mapping->i_mmap_lock); 706 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 707 if (vma->vm_flags & VM_SHARED) { 708 unsigned long address = vma_address(page, vma); 709 if (address == -EFAULT) 710 continue; 711 ret += page_mkclean_one(page, vma, address); 712 } 713 } 714 spin_unlock(&mapping->i_mmap_lock); 715 return ret; 716 } 717 718 int page_mkclean(struct page *page) 719 { 720 int ret = 0; 721 722 BUG_ON(!PageLocked(page)); 723 724 if (page_mapped(page)) { 725 struct address_space *mapping = page_mapping(page); 726 if (mapping) { 727 ret = page_mkclean_file(mapping, page); 728 if (page_test_dirty(page)) { 729 page_clear_dirty(page); 730 ret = 1; 731 } 732 } 733 } 734 735 return ret; 736 } 737 EXPORT_SYMBOL_GPL(page_mkclean); 738 739 /** 740 * page_move_anon_rmap - move a page to our anon_vma 741 * @page: the page to move to our anon_vma 742 * @vma: the vma the page belongs to 743 * @address: the user virtual address mapped 744 * 745 * When a page belongs exclusively to one process after a COW event, 746 * that page can be moved into the anon_vma that belongs to just that 747 * process, so the rmap code will not search the parent or sibling 748 * processes. 749 */ 750 void page_move_anon_rmap(struct page *page, 751 struct vm_area_struct *vma, unsigned long address) 752 { 753 struct anon_vma *anon_vma = vma->anon_vma; 754 755 VM_BUG_ON(!PageLocked(page)); 756 VM_BUG_ON(!anon_vma); 757 VM_BUG_ON(page->index != linear_page_index(vma, address)); 758 759 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 760 page->mapping = (struct address_space *) anon_vma; 761 } 762 763 /** 764 * __page_set_anon_rmap - setup new anonymous rmap 765 * @page: the page to add the mapping to 766 * @vma: the vm area in which the mapping is added 767 * @address: the user virtual address mapped 768 * @exclusive: the page is exclusively owned by the current process 769 */ 770 static void __page_set_anon_rmap(struct page *page, 771 struct vm_area_struct *vma, unsigned long address, int exclusive) 772 { 773 struct anon_vma *anon_vma = vma->anon_vma; 774 775 BUG_ON(!anon_vma); 776 777 /* 778 * If the page isn't exclusively mapped into this vma, 779 * we must use the _oldest_ possible anon_vma for the 780 * page mapping! 781 */ 782 if (!exclusive) { 783 if (PageAnon(page)) 784 return; 785 anon_vma = anon_vma->root; 786 } else { 787 /* 788 * In this case, swapped-out-but-not-discarded swap-cache 789 * is remapped. So, no need to update page->mapping here. 790 * We convice anon_vma poitned by page->mapping is not obsolete 791 * because vma->anon_vma is necessary to be a family of it. 792 */ 793 if (PageAnon(page)) 794 return; 795 } 796 797 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 798 page->mapping = (struct address_space *) anon_vma; 799 page->index = linear_page_index(vma, address); 800 } 801 802 /** 803 * __page_check_anon_rmap - sanity check anonymous rmap addition 804 * @page: the page to add the mapping to 805 * @vma: the vm area in which the mapping is added 806 * @address: the user virtual address mapped 807 */ 808 static void __page_check_anon_rmap(struct page *page, 809 struct vm_area_struct *vma, unsigned long address) 810 { 811 #ifdef CONFIG_DEBUG_VM 812 /* 813 * The page's anon-rmap details (mapping and index) are guaranteed to 814 * be set up correctly at this point. 815 * 816 * We have exclusion against page_add_anon_rmap because the caller 817 * always holds the page locked, except if called from page_dup_rmap, 818 * in which case the page is already known to be setup. 819 * 820 * We have exclusion against page_add_new_anon_rmap because those pages 821 * are initially only visible via the pagetables, and the pte is locked 822 * over the call to page_add_new_anon_rmap. 823 */ 824 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 825 BUG_ON(page->index != linear_page_index(vma, address)); 826 #endif 827 } 828 829 /** 830 * page_add_anon_rmap - add pte mapping to an anonymous page 831 * @page: the page to add the mapping to 832 * @vma: the vm area in which the mapping is added 833 * @address: the user virtual address mapped 834 * 835 * The caller needs to hold the pte lock, and the page must be locked in 836 * the anon_vma case: to serialize mapping,index checking after setting, 837 * and to ensure that PageAnon is not being upgraded racily to PageKsm 838 * (but PageKsm is never downgraded to PageAnon). 839 */ 840 void page_add_anon_rmap(struct page *page, 841 struct vm_area_struct *vma, unsigned long address) 842 { 843 do_page_add_anon_rmap(page, vma, address, 0); 844 } 845 846 /* 847 * Special version of the above for do_swap_page, which often runs 848 * into pages that are exclusively owned by the current process. 849 * Everybody else should continue to use page_add_anon_rmap above. 850 */ 851 void do_page_add_anon_rmap(struct page *page, 852 struct vm_area_struct *vma, unsigned long address, int exclusive) 853 { 854 int first = atomic_inc_and_test(&page->_mapcount); 855 if (first) 856 __inc_zone_page_state(page, NR_ANON_PAGES); 857 if (unlikely(PageKsm(page))) 858 return; 859 860 VM_BUG_ON(!PageLocked(page)); 861 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 862 if (first) 863 __page_set_anon_rmap(page, vma, address, exclusive); 864 else 865 __page_check_anon_rmap(page, vma, address); 866 } 867 868 /** 869 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 870 * @page: the page to add the mapping to 871 * @vma: the vm area in which the mapping is added 872 * @address: the user virtual address mapped 873 * 874 * Same as page_add_anon_rmap but must only be called on *new* pages. 875 * This means the inc-and-test can be bypassed. 876 * Page does not have to be locked. 877 */ 878 void page_add_new_anon_rmap(struct page *page, 879 struct vm_area_struct *vma, unsigned long address) 880 { 881 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 882 SetPageSwapBacked(page); 883 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 884 __inc_zone_page_state(page, NR_ANON_PAGES); 885 __page_set_anon_rmap(page, vma, address, 1); 886 if (page_evictable(page, vma)) 887 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 888 else 889 add_page_to_unevictable_list(page); 890 } 891 892 /** 893 * page_add_file_rmap - add pte mapping to a file page 894 * @page: the page to add the mapping to 895 * 896 * The caller needs to hold the pte lock. 897 */ 898 void page_add_file_rmap(struct page *page) 899 { 900 if (atomic_inc_and_test(&page->_mapcount)) { 901 __inc_zone_page_state(page, NR_FILE_MAPPED); 902 mem_cgroup_update_file_mapped(page, 1); 903 } 904 } 905 906 /** 907 * page_remove_rmap - take down pte mapping from a page 908 * @page: page to remove mapping from 909 * 910 * The caller needs to hold the pte lock. 911 */ 912 void page_remove_rmap(struct page *page) 913 { 914 /* page still mapped by someone else? */ 915 if (!atomic_add_negative(-1, &page->_mapcount)) 916 return; 917 918 /* 919 * Now that the last pte has gone, s390 must transfer dirty 920 * flag from storage key to struct page. We can usually skip 921 * this if the page is anon, so about to be freed; but perhaps 922 * not if it's in swapcache - there might be another pte slot 923 * containing the swap entry, but page not yet written to swap. 924 */ 925 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { 926 page_clear_dirty(page); 927 set_page_dirty(page); 928 } 929 /* 930 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 931 * and not charged by memcg for now. 932 */ 933 if (unlikely(PageHuge(page))) 934 return; 935 if (PageAnon(page)) { 936 mem_cgroup_uncharge_page(page); 937 __dec_zone_page_state(page, NR_ANON_PAGES); 938 } else { 939 __dec_zone_page_state(page, NR_FILE_MAPPED); 940 mem_cgroup_update_file_mapped(page, -1); 941 } 942 /* 943 * It would be tidy to reset the PageAnon mapping here, 944 * but that might overwrite a racing page_add_anon_rmap 945 * which increments mapcount after us but sets mapping 946 * before us: so leave the reset to free_hot_cold_page, 947 * and remember that it's only reliable while mapped. 948 * Leaving it set also helps swapoff to reinstate ptes 949 * faster for those pages still in swapcache. 950 */ 951 } 952 953 /* 954 * Subfunctions of try_to_unmap: try_to_unmap_one called 955 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 956 */ 957 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 958 unsigned long address, enum ttu_flags flags) 959 { 960 struct mm_struct *mm = vma->vm_mm; 961 pte_t *pte; 962 pte_t pteval; 963 spinlock_t *ptl; 964 int ret = SWAP_AGAIN; 965 966 pte = page_check_address(page, mm, address, &ptl, 0); 967 if (!pte) 968 goto out; 969 970 /* 971 * If the page is mlock()d, we cannot swap it out. 972 * If it's recently referenced (perhaps page_referenced 973 * skipped over this mm) then we should reactivate it. 974 */ 975 if (!(flags & TTU_IGNORE_MLOCK)) { 976 if (vma->vm_flags & VM_LOCKED) 977 goto out_mlock; 978 979 if (TTU_ACTION(flags) == TTU_MUNLOCK) 980 goto out_unmap; 981 } 982 if (!(flags & TTU_IGNORE_ACCESS)) { 983 if (ptep_clear_flush_young_notify(vma, address, pte)) { 984 ret = SWAP_FAIL; 985 goto out_unmap; 986 } 987 } 988 989 /* Nuke the page table entry. */ 990 flush_cache_page(vma, address, page_to_pfn(page)); 991 pteval = ptep_clear_flush_notify(vma, address, pte); 992 993 /* Move the dirty bit to the physical page now the pte is gone. */ 994 if (pte_dirty(pteval)) 995 set_page_dirty(page); 996 997 /* Update high watermark before we lower rss */ 998 update_hiwater_rss(mm); 999 1000 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1001 if (PageAnon(page)) 1002 dec_mm_counter(mm, MM_ANONPAGES); 1003 else 1004 dec_mm_counter(mm, MM_FILEPAGES); 1005 set_pte_at(mm, address, pte, 1006 swp_entry_to_pte(make_hwpoison_entry(page))); 1007 } else if (PageAnon(page)) { 1008 swp_entry_t entry = { .val = page_private(page) }; 1009 1010 if (PageSwapCache(page)) { 1011 /* 1012 * Store the swap location in the pte. 1013 * See handle_pte_fault() ... 1014 */ 1015 if (swap_duplicate(entry) < 0) { 1016 set_pte_at(mm, address, pte, pteval); 1017 ret = SWAP_FAIL; 1018 goto out_unmap; 1019 } 1020 if (list_empty(&mm->mmlist)) { 1021 spin_lock(&mmlist_lock); 1022 if (list_empty(&mm->mmlist)) 1023 list_add(&mm->mmlist, &init_mm.mmlist); 1024 spin_unlock(&mmlist_lock); 1025 } 1026 dec_mm_counter(mm, MM_ANONPAGES); 1027 inc_mm_counter(mm, MM_SWAPENTS); 1028 } else if (PAGE_MIGRATION) { 1029 /* 1030 * Store the pfn of the page in a special migration 1031 * pte. do_swap_page() will wait until the migration 1032 * pte is removed and then restart fault handling. 1033 */ 1034 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1035 entry = make_migration_entry(page, pte_write(pteval)); 1036 } 1037 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1038 BUG_ON(pte_file(*pte)); 1039 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { 1040 /* Establish migration entry for a file page */ 1041 swp_entry_t entry; 1042 entry = make_migration_entry(page, pte_write(pteval)); 1043 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1044 } else 1045 dec_mm_counter(mm, MM_FILEPAGES); 1046 1047 page_remove_rmap(page); 1048 page_cache_release(page); 1049 1050 out_unmap: 1051 pte_unmap_unlock(pte, ptl); 1052 out: 1053 return ret; 1054 1055 out_mlock: 1056 pte_unmap_unlock(pte, ptl); 1057 1058 1059 /* 1060 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1061 * unstable result and race. Plus, We can't wait here because 1062 * we now hold anon_vma->lock or mapping->i_mmap_lock. 1063 * if trylock failed, the page remain in evictable lru and later 1064 * vmscan could retry to move the page to unevictable lru if the 1065 * page is actually mlocked. 1066 */ 1067 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1068 if (vma->vm_flags & VM_LOCKED) { 1069 mlock_vma_page(page); 1070 ret = SWAP_MLOCK; 1071 } 1072 up_read(&vma->vm_mm->mmap_sem); 1073 } 1074 return ret; 1075 } 1076 1077 /* 1078 * objrmap doesn't work for nonlinear VMAs because the assumption that 1079 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1080 * Consequently, given a particular page and its ->index, we cannot locate the 1081 * ptes which are mapping that page without an exhaustive linear search. 1082 * 1083 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1084 * maps the file to which the target page belongs. The ->vm_private_data field 1085 * holds the current cursor into that scan. Successive searches will circulate 1086 * around the vma's virtual address space. 1087 * 1088 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1089 * more scanning pressure is placed against them as well. Eventually pages 1090 * will become fully unmapped and are eligible for eviction. 1091 * 1092 * For very sparsely populated VMAs this is a little inefficient - chances are 1093 * there there won't be many ptes located within the scan cluster. In this case 1094 * maybe we could scan further - to the end of the pte page, perhaps. 1095 * 1096 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1097 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1098 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1099 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1100 */ 1101 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1102 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1103 1104 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1105 struct vm_area_struct *vma, struct page *check_page) 1106 { 1107 struct mm_struct *mm = vma->vm_mm; 1108 pgd_t *pgd; 1109 pud_t *pud; 1110 pmd_t *pmd; 1111 pte_t *pte; 1112 pte_t pteval; 1113 spinlock_t *ptl; 1114 struct page *page; 1115 unsigned long address; 1116 unsigned long end; 1117 int ret = SWAP_AGAIN; 1118 int locked_vma = 0; 1119 1120 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1121 end = address + CLUSTER_SIZE; 1122 if (address < vma->vm_start) 1123 address = vma->vm_start; 1124 if (end > vma->vm_end) 1125 end = vma->vm_end; 1126 1127 pgd = pgd_offset(mm, address); 1128 if (!pgd_present(*pgd)) 1129 return ret; 1130 1131 pud = pud_offset(pgd, address); 1132 if (!pud_present(*pud)) 1133 return ret; 1134 1135 pmd = pmd_offset(pud, address); 1136 if (!pmd_present(*pmd)) 1137 return ret; 1138 1139 /* 1140 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1141 * keep the sem while scanning the cluster for mlocking pages. 1142 */ 1143 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1144 locked_vma = (vma->vm_flags & VM_LOCKED); 1145 if (!locked_vma) 1146 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1147 } 1148 1149 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1150 1151 /* Update high watermark before we lower rss */ 1152 update_hiwater_rss(mm); 1153 1154 for (; address < end; pte++, address += PAGE_SIZE) { 1155 if (!pte_present(*pte)) 1156 continue; 1157 page = vm_normal_page(vma, address, *pte); 1158 BUG_ON(!page || PageAnon(page)); 1159 1160 if (locked_vma) { 1161 mlock_vma_page(page); /* no-op if already mlocked */ 1162 if (page == check_page) 1163 ret = SWAP_MLOCK; 1164 continue; /* don't unmap */ 1165 } 1166 1167 if (ptep_clear_flush_young_notify(vma, address, pte)) 1168 continue; 1169 1170 /* Nuke the page table entry. */ 1171 flush_cache_page(vma, address, pte_pfn(*pte)); 1172 pteval = ptep_clear_flush_notify(vma, address, pte); 1173 1174 /* If nonlinear, store the file page offset in the pte. */ 1175 if (page->index != linear_page_index(vma, address)) 1176 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1177 1178 /* Move the dirty bit to the physical page now the pte is gone. */ 1179 if (pte_dirty(pteval)) 1180 set_page_dirty(page); 1181 1182 page_remove_rmap(page); 1183 page_cache_release(page); 1184 dec_mm_counter(mm, MM_FILEPAGES); 1185 (*mapcount)--; 1186 } 1187 pte_unmap_unlock(pte - 1, ptl); 1188 if (locked_vma) 1189 up_read(&vma->vm_mm->mmap_sem); 1190 return ret; 1191 } 1192 1193 static bool is_vma_temporary_stack(struct vm_area_struct *vma) 1194 { 1195 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1196 1197 if (!maybe_stack) 1198 return false; 1199 1200 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1201 VM_STACK_INCOMPLETE_SETUP) 1202 return true; 1203 1204 return false; 1205 } 1206 1207 /** 1208 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1209 * rmap method 1210 * @page: the page to unmap/unlock 1211 * @flags: action and flags 1212 * 1213 * Find all the mappings of a page using the mapping pointer and the vma chains 1214 * contained in the anon_vma struct it points to. 1215 * 1216 * This function is only called from try_to_unmap/try_to_munlock for 1217 * anonymous pages. 1218 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1219 * where the page was found will be held for write. So, we won't recheck 1220 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1221 * 'LOCKED. 1222 */ 1223 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1224 { 1225 struct anon_vma *anon_vma; 1226 struct anon_vma_chain *avc; 1227 int ret = SWAP_AGAIN; 1228 1229 anon_vma = page_lock_anon_vma(page); 1230 if (!anon_vma) 1231 return ret; 1232 1233 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1234 struct vm_area_struct *vma = avc->vma; 1235 unsigned long address; 1236 1237 /* 1238 * During exec, a temporary VMA is setup and later moved. 1239 * The VMA is moved under the anon_vma lock but not the 1240 * page tables leading to a race where migration cannot 1241 * find the migration ptes. Rather than increasing the 1242 * locking requirements of exec(), migration skips 1243 * temporary VMAs until after exec() completes. 1244 */ 1245 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && 1246 is_vma_temporary_stack(vma)) 1247 continue; 1248 1249 address = vma_address(page, vma); 1250 if (address == -EFAULT) 1251 continue; 1252 ret = try_to_unmap_one(page, vma, address, flags); 1253 if (ret != SWAP_AGAIN || !page_mapped(page)) 1254 break; 1255 } 1256 1257 page_unlock_anon_vma(anon_vma); 1258 return ret; 1259 } 1260 1261 /** 1262 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1263 * @page: the page to unmap/unlock 1264 * @flags: action and flags 1265 * 1266 * Find all the mappings of a page using the mapping pointer and the vma chains 1267 * contained in the address_space struct it points to. 1268 * 1269 * This function is only called from try_to_unmap/try_to_munlock for 1270 * object-based pages. 1271 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1272 * where the page was found will be held for write. So, we won't recheck 1273 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1274 * 'LOCKED. 1275 */ 1276 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1277 { 1278 struct address_space *mapping = page->mapping; 1279 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1280 struct vm_area_struct *vma; 1281 struct prio_tree_iter iter; 1282 int ret = SWAP_AGAIN; 1283 unsigned long cursor; 1284 unsigned long max_nl_cursor = 0; 1285 unsigned long max_nl_size = 0; 1286 unsigned int mapcount; 1287 1288 spin_lock(&mapping->i_mmap_lock); 1289 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1290 unsigned long address = vma_address(page, vma); 1291 if (address == -EFAULT) 1292 continue; 1293 ret = try_to_unmap_one(page, vma, address, flags); 1294 if (ret != SWAP_AGAIN || !page_mapped(page)) 1295 goto out; 1296 } 1297 1298 if (list_empty(&mapping->i_mmap_nonlinear)) 1299 goto out; 1300 1301 /* 1302 * We don't bother to try to find the munlocked page in nonlinears. 1303 * It's costly. Instead, later, page reclaim logic may call 1304 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1305 */ 1306 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1307 goto out; 1308 1309 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1310 shared.vm_set.list) { 1311 cursor = (unsigned long) vma->vm_private_data; 1312 if (cursor > max_nl_cursor) 1313 max_nl_cursor = cursor; 1314 cursor = vma->vm_end - vma->vm_start; 1315 if (cursor > max_nl_size) 1316 max_nl_size = cursor; 1317 } 1318 1319 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1320 ret = SWAP_FAIL; 1321 goto out; 1322 } 1323 1324 /* 1325 * We don't try to search for this page in the nonlinear vmas, 1326 * and page_referenced wouldn't have found it anyway. Instead 1327 * just walk the nonlinear vmas trying to age and unmap some. 1328 * The mapcount of the page we came in with is irrelevant, 1329 * but even so use it as a guide to how hard we should try? 1330 */ 1331 mapcount = page_mapcount(page); 1332 if (!mapcount) 1333 goto out; 1334 cond_resched_lock(&mapping->i_mmap_lock); 1335 1336 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1337 if (max_nl_cursor == 0) 1338 max_nl_cursor = CLUSTER_SIZE; 1339 1340 do { 1341 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1342 shared.vm_set.list) { 1343 cursor = (unsigned long) vma->vm_private_data; 1344 while ( cursor < max_nl_cursor && 1345 cursor < vma->vm_end - vma->vm_start) { 1346 if (try_to_unmap_cluster(cursor, &mapcount, 1347 vma, page) == SWAP_MLOCK) 1348 ret = SWAP_MLOCK; 1349 cursor += CLUSTER_SIZE; 1350 vma->vm_private_data = (void *) cursor; 1351 if ((int)mapcount <= 0) 1352 goto out; 1353 } 1354 vma->vm_private_data = (void *) max_nl_cursor; 1355 } 1356 cond_resched_lock(&mapping->i_mmap_lock); 1357 max_nl_cursor += CLUSTER_SIZE; 1358 } while (max_nl_cursor <= max_nl_size); 1359 1360 /* 1361 * Don't loop forever (perhaps all the remaining pages are 1362 * in locked vmas). Reset cursor on all unreserved nonlinear 1363 * vmas, now forgetting on which ones it had fallen behind. 1364 */ 1365 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1366 vma->vm_private_data = NULL; 1367 out: 1368 spin_unlock(&mapping->i_mmap_lock); 1369 return ret; 1370 } 1371 1372 /** 1373 * try_to_unmap - try to remove all page table mappings to a page 1374 * @page: the page to get unmapped 1375 * @flags: action and flags 1376 * 1377 * Tries to remove all the page table entries which are mapping this 1378 * page, used in the pageout path. Caller must hold the page lock. 1379 * Return values are: 1380 * 1381 * SWAP_SUCCESS - we succeeded in removing all mappings 1382 * SWAP_AGAIN - we missed a mapping, try again later 1383 * SWAP_FAIL - the page is unswappable 1384 * SWAP_MLOCK - page is mlocked. 1385 */ 1386 int try_to_unmap(struct page *page, enum ttu_flags flags) 1387 { 1388 int ret; 1389 1390 BUG_ON(!PageLocked(page)); 1391 1392 if (unlikely(PageKsm(page))) 1393 ret = try_to_unmap_ksm(page, flags); 1394 else if (PageAnon(page)) 1395 ret = try_to_unmap_anon(page, flags); 1396 else 1397 ret = try_to_unmap_file(page, flags); 1398 if (ret != SWAP_MLOCK && !page_mapped(page)) 1399 ret = SWAP_SUCCESS; 1400 return ret; 1401 } 1402 1403 /** 1404 * try_to_munlock - try to munlock a page 1405 * @page: the page to be munlocked 1406 * 1407 * Called from munlock code. Checks all of the VMAs mapping the page 1408 * to make sure nobody else has this page mlocked. The page will be 1409 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1410 * 1411 * Return values are: 1412 * 1413 * SWAP_AGAIN - no vma is holding page mlocked, or, 1414 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1415 * SWAP_FAIL - page cannot be located at present 1416 * SWAP_MLOCK - page is now mlocked. 1417 */ 1418 int try_to_munlock(struct page *page) 1419 { 1420 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1421 1422 if (unlikely(PageKsm(page))) 1423 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1424 else if (PageAnon(page)) 1425 return try_to_unmap_anon(page, TTU_MUNLOCK); 1426 else 1427 return try_to_unmap_file(page, TTU_MUNLOCK); 1428 } 1429 1430 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) 1431 /* 1432 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root 1433 * if necessary. Be careful to do all the tests under the lock. Once 1434 * we know we are the last user, nobody else can get a reference and we 1435 * can do the freeing without the lock. 1436 */ 1437 void drop_anon_vma(struct anon_vma *anon_vma) 1438 { 1439 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); 1440 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { 1441 struct anon_vma *root = anon_vma->root; 1442 int empty = list_empty(&anon_vma->head); 1443 int last_root_user = 0; 1444 int root_empty = 0; 1445 1446 /* 1447 * The refcount on a non-root anon_vma got dropped. Drop 1448 * the refcount on the root and check if we need to free it. 1449 */ 1450 if (empty && anon_vma != root) { 1451 BUG_ON(atomic_read(&root->external_refcount) <= 0); 1452 last_root_user = atomic_dec_and_test(&root->external_refcount); 1453 root_empty = list_empty(&root->head); 1454 } 1455 anon_vma_unlock(anon_vma); 1456 1457 if (empty) { 1458 anon_vma_free(anon_vma); 1459 if (root_empty && last_root_user) 1460 anon_vma_free(root); 1461 } 1462 } 1463 } 1464 #endif 1465 1466 #ifdef CONFIG_MIGRATION 1467 /* 1468 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1469 * Called by migrate.c to remove migration ptes, but might be used more later. 1470 */ 1471 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1472 struct vm_area_struct *, unsigned long, void *), void *arg) 1473 { 1474 struct anon_vma *anon_vma; 1475 struct anon_vma_chain *avc; 1476 int ret = SWAP_AGAIN; 1477 1478 /* 1479 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1480 * because that depends on page_mapped(); but not all its usages 1481 * are holding mmap_sem. Users without mmap_sem are required to 1482 * take a reference count to prevent the anon_vma disappearing 1483 */ 1484 anon_vma = page_anon_vma(page); 1485 if (!anon_vma) 1486 return ret; 1487 anon_vma_lock(anon_vma); 1488 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { 1489 struct vm_area_struct *vma = avc->vma; 1490 unsigned long address = vma_address(page, vma); 1491 if (address == -EFAULT) 1492 continue; 1493 ret = rmap_one(page, vma, address, arg); 1494 if (ret != SWAP_AGAIN) 1495 break; 1496 } 1497 anon_vma_unlock(anon_vma); 1498 return ret; 1499 } 1500 1501 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1502 struct vm_area_struct *, unsigned long, void *), void *arg) 1503 { 1504 struct address_space *mapping = page->mapping; 1505 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1506 struct vm_area_struct *vma; 1507 struct prio_tree_iter iter; 1508 int ret = SWAP_AGAIN; 1509 1510 if (!mapping) 1511 return ret; 1512 spin_lock(&mapping->i_mmap_lock); 1513 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 1514 unsigned long address = vma_address(page, vma); 1515 if (address == -EFAULT) 1516 continue; 1517 ret = rmap_one(page, vma, address, arg); 1518 if (ret != SWAP_AGAIN) 1519 break; 1520 } 1521 /* 1522 * No nonlinear handling: being always shared, nonlinear vmas 1523 * never contain migration ptes. Decide what to do about this 1524 * limitation to linear when we need rmap_walk() on nonlinear. 1525 */ 1526 spin_unlock(&mapping->i_mmap_lock); 1527 return ret; 1528 } 1529 1530 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1531 struct vm_area_struct *, unsigned long, void *), void *arg) 1532 { 1533 VM_BUG_ON(!PageLocked(page)); 1534 1535 if (unlikely(PageKsm(page))) 1536 return rmap_walk_ksm(page, rmap_one, arg); 1537 else if (PageAnon(page)) 1538 return rmap_walk_anon(page, rmap_one, arg); 1539 else 1540 return rmap_walk_file(page, rmap_one, arg); 1541 } 1542 #endif /* CONFIG_MIGRATION */ 1543 1544 #ifdef CONFIG_HUGETLB_PAGE 1545 /* 1546 * The following three functions are for anonymous (private mapped) hugepages. 1547 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1548 * and no lru code, because we handle hugepages differently from common pages. 1549 */ 1550 static void __hugepage_set_anon_rmap(struct page *page, 1551 struct vm_area_struct *vma, unsigned long address, int exclusive) 1552 { 1553 struct anon_vma *anon_vma = vma->anon_vma; 1554 BUG_ON(!anon_vma); 1555 if (!exclusive) { 1556 struct anon_vma_chain *avc; 1557 avc = list_entry(vma->anon_vma_chain.prev, 1558 struct anon_vma_chain, same_vma); 1559 anon_vma = avc->anon_vma; 1560 } 1561 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1562 page->mapping = (struct address_space *) anon_vma; 1563 page->index = linear_page_index(vma, address); 1564 } 1565 1566 void hugepage_add_anon_rmap(struct page *page, 1567 struct vm_area_struct *vma, unsigned long address) 1568 { 1569 struct anon_vma *anon_vma = vma->anon_vma; 1570 int first; 1571 BUG_ON(!anon_vma); 1572 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1573 first = atomic_inc_and_test(&page->_mapcount); 1574 if (first) 1575 __hugepage_set_anon_rmap(page, vma, address, 0); 1576 } 1577 1578 void hugepage_add_new_anon_rmap(struct page *page, 1579 struct vm_area_struct *vma, unsigned long address) 1580 { 1581 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1582 atomic_set(&page->_mapcount, 0); 1583 __hugepage_set_anon_rmap(page, vma, address, 1); 1584 } 1585 #endif /* CONFIG_HUGETLB_PAGE */ 1586