xref: /linux/mm/rmap.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
29  *           anon_vma->rwsem
30  *             mm->page_table_lock or pte_lock
31  *               pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
32  *               swap_lock (in swap_duplicate, swap_info_get)
33  *                 mmlist_lock (in mmput, drain_mmlist and others)
34  *                 mapping->private_lock (in __set_page_dirty_buffers)
35  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
36  *                     i_pages lock (widely used)
37  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                   i_pages lock (widely used, in set_page_dirty,
41  *                             in arch-dependent flush_dcache_mmap_lock,
42  *                             within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * * hugetlbfs PageHuge() pages take locks in this order:
49  *         mapping->i_mmap_rwsem
50  *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *             page->flags PG_locked (lock_page)
52  */
53 
54 #include <linux/mm.h>
55 #include <linux/sched/mm.h>
56 #include <linux/sched/task.h>
57 #include <linux/pagemap.h>
58 #include <linux/swap.h>
59 #include <linux/swapops.h>
60 #include <linux/slab.h>
61 #include <linux/init.h>
62 #include <linux/ksm.h>
63 #include <linux/rmap.h>
64 #include <linux/rcupdate.h>
65 #include <linux/export.h>
66 #include <linux/memcontrol.h>
67 #include <linux/mmu_notifier.h>
68 #include <linux/migrate.h>
69 #include <linux/hugetlb.h>
70 #include <linux/huge_mm.h>
71 #include <linux/backing-dev.h>
72 #include <linux/page_idle.h>
73 #include <linux/memremap.h>
74 #include <linux/userfaultfd_k.h>
75 
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/tlb.h>
79 
80 #include "internal.h"
81 
82 static struct kmem_cache *anon_vma_cachep;
83 static struct kmem_cache *anon_vma_chain_cachep;
84 
85 static inline struct anon_vma *anon_vma_alloc(void)
86 {
87 	struct anon_vma *anon_vma;
88 
89 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
90 	if (anon_vma) {
91 		atomic_set(&anon_vma->refcount, 1);
92 		anon_vma->degree = 1;	/* Reference for first vma */
93 		anon_vma->parent = anon_vma;
94 		/*
95 		 * Initialise the anon_vma root to point to itself. If called
96 		 * from fork, the root will be reset to the parents anon_vma.
97 		 */
98 		anon_vma->root = anon_vma;
99 	}
100 
101 	return anon_vma;
102 }
103 
104 static inline void anon_vma_free(struct anon_vma *anon_vma)
105 {
106 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
107 
108 	/*
109 	 * Synchronize against page_lock_anon_vma_read() such that
110 	 * we can safely hold the lock without the anon_vma getting
111 	 * freed.
112 	 *
113 	 * Relies on the full mb implied by the atomic_dec_and_test() from
114 	 * put_anon_vma() against the acquire barrier implied by
115 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
116 	 *
117 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
118 	 *   down_read_trylock()		  atomic_dec_and_test()
119 	 *   LOCK				  MB
120 	 *   atomic_read()			  rwsem_is_locked()
121 	 *
122 	 * LOCK should suffice since the actual taking of the lock must
123 	 * happen _before_ what follows.
124 	 */
125 	might_sleep();
126 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
127 		anon_vma_lock_write(anon_vma);
128 		anon_vma_unlock_write(anon_vma);
129 	}
130 
131 	kmem_cache_free(anon_vma_cachep, anon_vma);
132 }
133 
134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
135 {
136 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
137 }
138 
139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
140 {
141 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
142 }
143 
144 static void anon_vma_chain_link(struct vm_area_struct *vma,
145 				struct anon_vma_chain *avc,
146 				struct anon_vma *anon_vma)
147 {
148 	avc->vma = vma;
149 	avc->anon_vma = anon_vma;
150 	list_add(&avc->same_vma, &vma->anon_vma_chain);
151 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
152 }
153 
154 /**
155  * __anon_vma_prepare - attach an anon_vma to a memory region
156  * @vma: the memory region in question
157  *
158  * This makes sure the memory mapping described by 'vma' has
159  * an 'anon_vma' attached to it, so that we can associate the
160  * anonymous pages mapped into it with that anon_vma.
161  *
162  * The common case will be that we already have one, which
163  * is handled inline by anon_vma_prepare(). But if
164  * not we either need to find an adjacent mapping that we
165  * can re-use the anon_vma from (very common when the only
166  * reason for splitting a vma has been mprotect()), or we
167  * allocate a new one.
168  *
169  * Anon-vma allocations are very subtle, because we may have
170  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
171  * and that may actually touch the spinlock even in the newly
172  * allocated vma (it depends on RCU to make sure that the
173  * anon_vma isn't actually destroyed).
174  *
175  * As a result, we need to do proper anon_vma locking even
176  * for the new allocation. At the same time, we do not want
177  * to do any locking for the common case of already having
178  * an anon_vma.
179  *
180  * This must be called with the mmap_sem held for reading.
181  */
182 int __anon_vma_prepare(struct vm_area_struct *vma)
183 {
184 	struct mm_struct *mm = vma->vm_mm;
185 	struct anon_vma *anon_vma, *allocated;
186 	struct anon_vma_chain *avc;
187 
188 	might_sleep();
189 
190 	avc = anon_vma_chain_alloc(GFP_KERNEL);
191 	if (!avc)
192 		goto out_enomem;
193 
194 	anon_vma = find_mergeable_anon_vma(vma);
195 	allocated = NULL;
196 	if (!anon_vma) {
197 		anon_vma = anon_vma_alloc();
198 		if (unlikely(!anon_vma))
199 			goto out_enomem_free_avc;
200 		allocated = anon_vma;
201 	}
202 
203 	anon_vma_lock_write(anon_vma);
204 	/* page_table_lock to protect against threads */
205 	spin_lock(&mm->page_table_lock);
206 	if (likely(!vma->anon_vma)) {
207 		vma->anon_vma = anon_vma;
208 		anon_vma_chain_link(vma, avc, anon_vma);
209 		/* vma reference or self-parent link for new root */
210 		anon_vma->degree++;
211 		allocated = NULL;
212 		avc = NULL;
213 	}
214 	spin_unlock(&mm->page_table_lock);
215 	anon_vma_unlock_write(anon_vma);
216 
217 	if (unlikely(allocated))
218 		put_anon_vma(allocated);
219 	if (unlikely(avc))
220 		anon_vma_chain_free(avc);
221 
222 	return 0;
223 
224  out_enomem_free_avc:
225 	anon_vma_chain_free(avc);
226  out_enomem:
227 	return -ENOMEM;
228 }
229 
230 /*
231  * This is a useful helper function for locking the anon_vma root as
232  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
233  * have the same vma.
234  *
235  * Such anon_vma's should have the same root, so you'd expect to see
236  * just a single mutex_lock for the whole traversal.
237  */
238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
239 {
240 	struct anon_vma *new_root = anon_vma->root;
241 	if (new_root != root) {
242 		if (WARN_ON_ONCE(root))
243 			up_write(&root->rwsem);
244 		root = new_root;
245 		down_write(&root->rwsem);
246 	}
247 	return root;
248 }
249 
250 static inline void unlock_anon_vma_root(struct anon_vma *root)
251 {
252 	if (root)
253 		up_write(&root->rwsem);
254 }
255 
256 /*
257  * Attach the anon_vmas from src to dst.
258  * Returns 0 on success, -ENOMEM on failure.
259  *
260  * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
261  * anon_vma_fork(). The first three want an exact copy of src, while the last
262  * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
263  * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
264  * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
265  *
266  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
267  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
268  * This prevents degradation of anon_vma hierarchy to endless linear chain in
269  * case of constantly forking task. On the other hand, an anon_vma with more
270  * than one child isn't reused even if there was no alive vma, thus rmap
271  * walker has a good chance of avoiding scanning the whole hierarchy when it
272  * searches where page is mapped.
273  */
274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
275 {
276 	struct anon_vma_chain *avc, *pavc;
277 	struct anon_vma *root = NULL;
278 	struct vm_area_struct *prev = dst->vm_prev, *pprev = src->vm_prev;
279 
280 	/*
281 	 * If parent share anon_vma with its vm_prev, keep this sharing in in
282 	 * child.
283 	 *
284 	 * 1. Parent has vm_prev, which implies we have vm_prev.
285 	 * 2. Parent and its vm_prev have the same anon_vma.
286 	 */
287 	if (!dst->anon_vma && src->anon_vma &&
288 	    pprev && pprev->anon_vma == src->anon_vma)
289 		dst->anon_vma = prev->anon_vma;
290 
291 
292 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
293 		struct anon_vma *anon_vma;
294 
295 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
296 		if (unlikely(!avc)) {
297 			unlock_anon_vma_root(root);
298 			root = NULL;
299 			avc = anon_vma_chain_alloc(GFP_KERNEL);
300 			if (!avc)
301 				goto enomem_failure;
302 		}
303 		anon_vma = pavc->anon_vma;
304 		root = lock_anon_vma_root(root, anon_vma);
305 		anon_vma_chain_link(dst, avc, anon_vma);
306 
307 		/*
308 		 * Reuse existing anon_vma if its degree lower than two,
309 		 * that means it has no vma and only one anon_vma child.
310 		 *
311 		 * Do not chose parent anon_vma, otherwise first child
312 		 * will always reuse it. Root anon_vma is never reused:
313 		 * it has self-parent reference and at least one child.
314 		 */
315 		if (!dst->anon_vma && src->anon_vma &&
316 		    anon_vma != src->anon_vma && anon_vma->degree < 2)
317 			dst->anon_vma = anon_vma;
318 	}
319 	if (dst->anon_vma)
320 		dst->anon_vma->degree++;
321 	unlock_anon_vma_root(root);
322 	return 0;
323 
324  enomem_failure:
325 	/*
326 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
327 	 * decremented in unlink_anon_vmas().
328 	 * We can safely do this because callers of anon_vma_clone() don't care
329 	 * about dst->anon_vma if anon_vma_clone() failed.
330 	 */
331 	dst->anon_vma = NULL;
332 	unlink_anon_vmas(dst);
333 	return -ENOMEM;
334 }
335 
336 /*
337  * Attach vma to its own anon_vma, as well as to the anon_vmas that
338  * the corresponding VMA in the parent process is attached to.
339  * Returns 0 on success, non-zero on failure.
340  */
341 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
342 {
343 	struct anon_vma_chain *avc;
344 	struct anon_vma *anon_vma;
345 	int error;
346 
347 	/* Don't bother if the parent process has no anon_vma here. */
348 	if (!pvma->anon_vma)
349 		return 0;
350 
351 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
352 	vma->anon_vma = NULL;
353 
354 	/*
355 	 * First, attach the new VMA to the parent VMA's anon_vmas,
356 	 * so rmap can find non-COWed pages in child processes.
357 	 */
358 	error = anon_vma_clone(vma, pvma);
359 	if (error)
360 		return error;
361 
362 	/* An existing anon_vma has been reused, all done then. */
363 	if (vma->anon_vma)
364 		return 0;
365 
366 	/* Then add our own anon_vma. */
367 	anon_vma = anon_vma_alloc();
368 	if (!anon_vma)
369 		goto out_error;
370 	avc = anon_vma_chain_alloc(GFP_KERNEL);
371 	if (!avc)
372 		goto out_error_free_anon_vma;
373 
374 	/*
375 	 * The root anon_vma's spinlock is the lock actually used when we
376 	 * lock any of the anon_vmas in this anon_vma tree.
377 	 */
378 	anon_vma->root = pvma->anon_vma->root;
379 	anon_vma->parent = pvma->anon_vma;
380 	/*
381 	 * With refcounts, an anon_vma can stay around longer than the
382 	 * process it belongs to. The root anon_vma needs to be pinned until
383 	 * this anon_vma is freed, because the lock lives in the root.
384 	 */
385 	get_anon_vma(anon_vma->root);
386 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
387 	vma->anon_vma = anon_vma;
388 	anon_vma_lock_write(anon_vma);
389 	anon_vma_chain_link(vma, avc, anon_vma);
390 	anon_vma->parent->degree++;
391 	anon_vma_unlock_write(anon_vma);
392 
393 	return 0;
394 
395  out_error_free_anon_vma:
396 	put_anon_vma(anon_vma);
397  out_error:
398 	unlink_anon_vmas(vma);
399 	return -ENOMEM;
400 }
401 
402 void unlink_anon_vmas(struct vm_area_struct *vma)
403 {
404 	struct anon_vma_chain *avc, *next;
405 	struct anon_vma *root = NULL;
406 
407 	/*
408 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
409 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
410 	 */
411 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
412 		struct anon_vma *anon_vma = avc->anon_vma;
413 
414 		root = lock_anon_vma_root(root, anon_vma);
415 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
416 
417 		/*
418 		 * Leave empty anon_vmas on the list - we'll need
419 		 * to free them outside the lock.
420 		 */
421 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
422 			anon_vma->parent->degree--;
423 			continue;
424 		}
425 
426 		list_del(&avc->same_vma);
427 		anon_vma_chain_free(avc);
428 	}
429 	if (vma->anon_vma)
430 		vma->anon_vma->degree--;
431 	unlock_anon_vma_root(root);
432 
433 	/*
434 	 * Iterate the list once more, it now only contains empty and unlinked
435 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
436 	 * needing to write-acquire the anon_vma->root->rwsem.
437 	 */
438 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
439 		struct anon_vma *anon_vma = avc->anon_vma;
440 
441 		VM_WARN_ON(anon_vma->degree);
442 		put_anon_vma(anon_vma);
443 
444 		list_del(&avc->same_vma);
445 		anon_vma_chain_free(avc);
446 	}
447 }
448 
449 static void anon_vma_ctor(void *data)
450 {
451 	struct anon_vma *anon_vma = data;
452 
453 	init_rwsem(&anon_vma->rwsem);
454 	atomic_set(&anon_vma->refcount, 0);
455 	anon_vma->rb_root = RB_ROOT_CACHED;
456 }
457 
458 void __init anon_vma_init(void)
459 {
460 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
461 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
462 			anon_vma_ctor);
463 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
464 			SLAB_PANIC|SLAB_ACCOUNT);
465 }
466 
467 /*
468  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
469  *
470  * Since there is no serialization what so ever against page_remove_rmap()
471  * the best this function can do is return a locked anon_vma that might
472  * have been relevant to this page.
473  *
474  * The page might have been remapped to a different anon_vma or the anon_vma
475  * returned may already be freed (and even reused).
476  *
477  * In case it was remapped to a different anon_vma, the new anon_vma will be a
478  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
479  * ensure that any anon_vma obtained from the page will still be valid for as
480  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
481  *
482  * All users of this function must be very careful when walking the anon_vma
483  * chain and verify that the page in question is indeed mapped in it
484  * [ something equivalent to page_mapped_in_vma() ].
485  *
486  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
487  * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
488  * if there is a mapcount, we can dereference the anon_vma after observing
489  * those.
490  */
491 struct anon_vma *page_get_anon_vma(struct page *page)
492 {
493 	struct anon_vma *anon_vma = NULL;
494 	unsigned long anon_mapping;
495 
496 	rcu_read_lock();
497 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
498 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
499 		goto out;
500 	if (!page_mapped(page))
501 		goto out;
502 
503 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
504 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
505 		anon_vma = NULL;
506 		goto out;
507 	}
508 
509 	/*
510 	 * If this page is still mapped, then its anon_vma cannot have been
511 	 * freed.  But if it has been unmapped, we have no security against the
512 	 * anon_vma structure being freed and reused (for another anon_vma:
513 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
514 	 * above cannot corrupt).
515 	 */
516 	if (!page_mapped(page)) {
517 		rcu_read_unlock();
518 		put_anon_vma(anon_vma);
519 		return NULL;
520 	}
521 out:
522 	rcu_read_unlock();
523 
524 	return anon_vma;
525 }
526 
527 /*
528  * Similar to page_get_anon_vma() except it locks the anon_vma.
529  *
530  * Its a little more complex as it tries to keep the fast path to a single
531  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
532  * reference like with page_get_anon_vma() and then block on the mutex.
533  */
534 struct anon_vma *page_lock_anon_vma_read(struct page *page)
535 {
536 	struct anon_vma *anon_vma = NULL;
537 	struct anon_vma *root_anon_vma;
538 	unsigned long anon_mapping;
539 
540 	rcu_read_lock();
541 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
542 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
543 		goto out;
544 	if (!page_mapped(page))
545 		goto out;
546 
547 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
548 	root_anon_vma = READ_ONCE(anon_vma->root);
549 	if (down_read_trylock(&root_anon_vma->rwsem)) {
550 		/*
551 		 * If the page is still mapped, then this anon_vma is still
552 		 * its anon_vma, and holding the mutex ensures that it will
553 		 * not go away, see anon_vma_free().
554 		 */
555 		if (!page_mapped(page)) {
556 			up_read(&root_anon_vma->rwsem);
557 			anon_vma = NULL;
558 		}
559 		goto out;
560 	}
561 
562 	/* trylock failed, we got to sleep */
563 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
564 		anon_vma = NULL;
565 		goto out;
566 	}
567 
568 	if (!page_mapped(page)) {
569 		rcu_read_unlock();
570 		put_anon_vma(anon_vma);
571 		return NULL;
572 	}
573 
574 	/* we pinned the anon_vma, its safe to sleep */
575 	rcu_read_unlock();
576 	anon_vma_lock_read(anon_vma);
577 
578 	if (atomic_dec_and_test(&anon_vma->refcount)) {
579 		/*
580 		 * Oops, we held the last refcount, release the lock
581 		 * and bail -- can't simply use put_anon_vma() because
582 		 * we'll deadlock on the anon_vma_lock_write() recursion.
583 		 */
584 		anon_vma_unlock_read(anon_vma);
585 		__put_anon_vma(anon_vma);
586 		anon_vma = NULL;
587 	}
588 
589 	return anon_vma;
590 
591 out:
592 	rcu_read_unlock();
593 	return anon_vma;
594 }
595 
596 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
597 {
598 	anon_vma_unlock_read(anon_vma);
599 }
600 
601 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
602 /*
603  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
604  * important if a PTE was dirty when it was unmapped that it's flushed
605  * before any IO is initiated on the page to prevent lost writes. Similarly,
606  * it must be flushed before freeing to prevent data leakage.
607  */
608 void try_to_unmap_flush(void)
609 {
610 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611 
612 	if (!tlb_ubc->flush_required)
613 		return;
614 
615 	arch_tlbbatch_flush(&tlb_ubc->arch);
616 	tlb_ubc->flush_required = false;
617 	tlb_ubc->writable = false;
618 }
619 
620 /* Flush iff there are potentially writable TLB entries that can race with IO */
621 void try_to_unmap_flush_dirty(void)
622 {
623 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
624 
625 	if (tlb_ubc->writable)
626 		try_to_unmap_flush();
627 }
628 
629 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
630 {
631 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
632 
633 	arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
634 	tlb_ubc->flush_required = true;
635 
636 	/*
637 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
638 	 * before the PTE is cleared.
639 	 */
640 	barrier();
641 	mm->tlb_flush_batched = true;
642 
643 	/*
644 	 * If the PTE was dirty then it's best to assume it's writable. The
645 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
646 	 * before the page is queued for IO.
647 	 */
648 	if (writable)
649 		tlb_ubc->writable = true;
650 }
651 
652 /*
653  * Returns true if the TLB flush should be deferred to the end of a batch of
654  * unmap operations to reduce IPIs.
655  */
656 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
657 {
658 	bool should_defer = false;
659 
660 	if (!(flags & TTU_BATCH_FLUSH))
661 		return false;
662 
663 	/* If remote CPUs need to be flushed then defer batch the flush */
664 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
665 		should_defer = true;
666 	put_cpu();
667 
668 	return should_defer;
669 }
670 
671 /*
672  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
673  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
674  * operation such as mprotect or munmap to race between reclaim unmapping
675  * the page and flushing the page. If this race occurs, it potentially allows
676  * access to data via a stale TLB entry. Tracking all mm's that have TLB
677  * batching in flight would be expensive during reclaim so instead track
678  * whether TLB batching occurred in the past and if so then do a flush here
679  * if required. This will cost one additional flush per reclaim cycle paid
680  * by the first operation at risk such as mprotect and mumap.
681  *
682  * This must be called under the PTL so that an access to tlb_flush_batched
683  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
684  * via the PTL.
685  */
686 void flush_tlb_batched_pending(struct mm_struct *mm)
687 {
688 	if (mm->tlb_flush_batched) {
689 		flush_tlb_mm(mm);
690 
691 		/*
692 		 * Do not allow the compiler to re-order the clearing of
693 		 * tlb_flush_batched before the tlb is flushed.
694 		 */
695 		barrier();
696 		mm->tlb_flush_batched = false;
697 	}
698 }
699 #else
700 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
701 {
702 }
703 
704 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
705 {
706 	return false;
707 }
708 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
709 
710 /*
711  * At what user virtual address is page expected in vma?
712  * Caller should check the page is actually part of the vma.
713  */
714 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
715 {
716 	unsigned long address;
717 	if (PageAnon(page)) {
718 		struct anon_vma *page__anon_vma = page_anon_vma(page);
719 		/*
720 		 * Note: swapoff's unuse_vma() is more efficient with this
721 		 * check, and needs it to match anon_vma when KSM is active.
722 		 */
723 		if (!vma->anon_vma || !page__anon_vma ||
724 		    vma->anon_vma->root != page__anon_vma->root)
725 			return -EFAULT;
726 	} else if (page->mapping) {
727 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
728 			return -EFAULT;
729 	} else
730 		return -EFAULT;
731 	address = __vma_address(page, vma);
732 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
733 		return -EFAULT;
734 	return address;
735 }
736 
737 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
738 {
739 	pgd_t *pgd;
740 	p4d_t *p4d;
741 	pud_t *pud;
742 	pmd_t *pmd = NULL;
743 	pmd_t pmde;
744 
745 	pgd = pgd_offset(mm, address);
746 	if (!pgd_present(*pgd))
747 		goto out;
748 
749 	p4d = p4d_offset(pgd, address);
750 	if (!p4d_present(*p4d))
751 		goto out;
752 
753 	pud = pud_offset(p4d, address);
754 	if (!pud_present(*pud))
755 		goto out;
756 
757 	pmd = pmd_offset(pud, address);
758 	/*
759 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
760 	 * without holding anon_vma lock for write.  So when looking for a
761 	 * genuine pmde (in which to find pte), test present and !THP together.
762 	 */
763 	pmde = *pmd;
764 	barrier();
765 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
766 		pmd = NULL;
767 out:
768 	return pmd;
769 }
770 
771 struct page_referenced_arg {
772 	int mapcount;
773 	int referenced;
774 	unsigned long vm_flags;
775 	struct mem_cgroup *memcg;
776 };
777 /*
778  * arg: page_referenced_arg will be passed
779  */
780 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
781 			unsigned long address, void *arg)
782 {
783 	struct page_referenced_arg *pra = arg;
784 	struct page_vma_mapped_walk pvmw = {
785 		.page = page,
786 		.vma = vma,
787 		.address = address,
788 	};
789 	int referenced = 0;
790 
791 	while (page_vma_mapped_walk(&pvmw)) {
792 		address = pvmw.address;
793 
794 		if (vma->vm_flags & VM_LOCKED) {
795 			page_vma_mapped_walk_done(&pvmw);
796 			pra->vm_flags |= VM_LOCKED;
797 			return false; /* To break the loop */
798 		}
799 
800 		if (pvmw.pte) {
801 			if (ptep_clear_flush_young_notify(vma, address,
802 						pvmw.pte)) {
803 				/*
804 				 * Don't treat a reference through
805 				 * a sequentially read mapping as such.
806 				 * If the page has been used in another mapping,
807 				 * we will catch it; if this other mapping is
808 				 * already gone, the unmap path will have set
809 				 * PG_referenced or activated the page.
810 				 */
811 				if (likely(!(vma->vm_flags & VM_SEQ_READ)))
812 					referenced++;
813 			}
814 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
815 			if (pmdp_clear_flush_young_notify(vma, address,
816 						pvmw.pmd))
817 				referenced++;
818 		} else {
819 			/* unexpected pmd-mapped page? */
820 			WARN_ON_ONCE(1);
821 		}
822 
823 		pra->mapcount--;
824 	}
825 
826 	if (referenced)
827 		clear_page_idle(page);
828 	if (test_and_clear_page_young(page))
829 		referenced++;
830 
831 	if (referenced) {
832 		pra->referenced++;
833 		pra->vm_flags |= vma->vm_flags;
834 	}
835 
836 	if (!pra->mapcount)
837 		return false; /* To break the loop */
838 
839 	return true;
840 }
841 
842 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
843 {
844 	struct page_referenced_arg *pra = arg;
845 	struct mem_cgroup *memcg = pra->memcg;
846 
847 	if (!mm_match_cgroup(vma->vm_mm, memcg))
848 		return true;
849 
850 	return false;
851 }
852 
853 /**
854  * page_referenced - test if the page was referenced
855  * @page: the page to test
856  * @is_locked: caller holds lock on the page
857  * @memcg: target memory cgroup
858  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
859  *
860  * Quick test_and_clear_referenced for all mappings to a page,
861  * returns the number of ptes which referenced the page.
862  */
863 int page_referenced(struct page *page,
864 		    int is_locked,
865 		    struct mem_cgroup *memcg,
866 		    unsigned long *vm_flags)
867 {
868 	int we_locked = 0;
869 	struct page_referenced_arg pra = {
870 		.mapcount = total_mapcount(page),
871 		.memcg = memcg,
872 	};
873 	struct rmap_walk_control rwc = {
874 		.rmap_one = page_referenced_one,
875 		.arg = (void *)&pra,
876 		.anon_lock = page_lock_anon_vma_read,
877 	};
878 
879 	*vm_flags = 0;
880 	if (!pra.mapcount)
881 		return 0;
882 
883 	if (!page_rmapping(page))
884 		return 0;
885 
886 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
887 		we_locked = trylock_page(page);
888 		if (!we_locked)
889 			return 1;
890 	}
891 
892 	/*
893 	 * If we are reclaiming on behalf of a cgroup, skip
894 	 * counting on behalf of references from different
895 	 * cgroups
896 	 */
897 	if (memcg) {
898 		rwc.invalid_vma = invalid_page_referenced_vma;
899 	}
900 
901 	rmap_walk(page, &rwc);
902 	*vm_flags = pra.vm_flags;
903 
904 	if (we_locked)
905 		unlock_page(page);
906 
907 	return pra.referenced;
908 }
909 
910 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
911 			    unsigned long address, void *arg)
912 {
913 	struct page_vma_mapped_walk pvmw = {
914 		.page = page,
915 		.vma = vma,
916 		.address = address,
917 		.flags = PVMW_SYNC,
918 	};
919 	struct mmu_notifier_range range;
920 	int *cleaned = arg;
921 
922 	/*
923 	 * We have to assume the worse case ie pmd for invalidation. Note that
924 	 * the page can not be free from this function.
925 	 */
926 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
927 				0, vma, vma->vm_mm, address,
928 				min(vma->vm_end, address + page_size(page)));
929 	mmu_notifier_invalidate_range_start(&range);
930 
931 	while (page_vma_mapped_walk(&pvmw)) {
932 		int ret = 0;
933 
934 		address = pvmw.address;
935 		if (pvmw.pte) {
936 			pte_t entry;
937 			pte_t *pte = pvmw.pte;
938 
939 			if (!pte_dirty(*pte) && !pte_write(*pte))
940 				continue;
941 
942 			flush_cache_page(vma, address, pte_pfn(*pte));
943 			entry = ptep_clear_flush(vma, address, pte);
944 			entry = pte_wrprotect(entry);
945 			entry = pte_mkclean(entry);
946 			set_pte_at(vma->vm_mm, address, pte, entry);
947 			ret = 1;
948 		} else {
949 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
950 			pmd_t *pmd = pvmw.pmd;
951 			pmd_t entry;
952 
953 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
954 				continue;
955 
956 			flush_cache_page(vma, address, page_to_pfn(page));
957 			entry = pmdp_invalidate(vma, address, pmd);
958 			entry = pmd_wrprotect(entry);
959 			entry = pmd_mkclean(entry);
960 			set_pmd_at(vma->vm_mm, address, pmd, entry);
961 			ret = 1;
962 #else
963 			/* unexpected pmd-mapped page? */
964 			WARN_ON_ONCE(1);
965 #endif
966 		}
967 
968 		/*
969 		 * No need to call mmu_notifier_invalidate_range() as we are
970 		 * downgrading page table protection not changing it to point
971 		 * to a new page.
972 		 *
973 		 * See Documentation/vm/mmu_notifier.rst
974 		 */
975 		if (ret)
976 			(*cleaned)++;
977 	}
978 
979 	mmu_notifier_invalidate_range_end(&range);
980 
981 	return true;
982 }
983 
984 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
985 {
986 	if (vma->vm_flags & VM_SHARED)
987 		return false;
988 
989 	return true;
990 }
991 
992 int page_mkclean(struct page *page)
993 {
994 	int cleaned = 0;
995 	struct address_space *mapping;
996 	struct rmap_walk_control rwc = {
997 		.arg = (void *)&cleaned,
998 		.rmap_one = page_mkclean_one,
999 		.invalid_vma = invalid_mkclean_vma,
1000 	};
1001 
1002 	BUG_ON(!PageLocked(page));
1003 
1004 	if (!page_mapped(page))
1005 		return 0;
1006 
1007 	mapping = page_mapping(page);
1008 	if (!mapping)
1009 		return 0;
1010 
1011 	rmap_walk(page, &rwc);
1012 
1013 	return cleaned;
1014 }
1015 EXPORT_SYMBOL_GPL(page_mkclean);
1016 
1017 /**
1018  * page_move_anon_rmap - move a page to our anon_vma
1019  * @page:	the page to move to our anon_vma
1020  * @vma:	the vma the page belongs to
1021  *
1022  * When a page belongs exclusively to one process after a COW event,
1023  * that page can be moved into the anon_vma that belongs to just that
1024  * process, so the rmap code will not search the parent or sibling
1025  * processes.
1026  */
1027 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1028 {
1029 	struct anon_vma *anon_vma = vma->anon_vma;
1030 
1031 	page = compound_head(page);
1032 
1033 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1034 	VM_BUG_ON_VMA(!anon_vma, vma);
1035 
1036 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1037 	/*
1038 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1039 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1040 	 * PageAnon()) will not see one without the other.
1041 	 */
1042 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1043 }
1044 
1045 /**
1046  * __page_set_anon_rmap - set up new anonymous rmap
1047  * @page:	Page or Hugepage to add to rmap
1048  * @vma:	VM area to add page to.
1049  * @address:	User virtual address of the mapping
1050  * @exclusive:	the page is exclusively owned by the current process
1051  */
1052 static void __page_set_anon_rmap(struct page *page,
1053 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1054 {
1055 	struct anon_vma *anon_vma = vma->anon_vma;
1056 
1057 	BUG_ON(!anon_vma);
1058 
1059 	if (PageAnon(page))
1060 		return;
1061 
1062 	/*
1063 	 * If the page isn't exclusively mapped into this vma,
1064 	 * we must use the _oldest_ possible anon_vma for the
1065 	 * page mapping!
1066 	 */
1067 	if (!exclusive)
1068 		anon_vma = anon_vma->root;
1069 
1070 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1071 	page->mapping = (struct address_space *) anon_vma;
1072 	page->index = linear_page_index(vma, address);
1073 }
1074 
1075 /**
1076  * __page_check_anon_rmap - sanity check anonymous rmap addition
1077  * @page:	the page to add the mapping to
1078  * @vma:	the vm area in which the mapping is added
1079  * @address:	the user virtual address mapped
1080  */
1081 static void __page_check_anon_rmap(struct page *page,
1082 	struct vm_area_struct *vma, unsigned long address)
1083 {
1084 	/*
1085 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1086 	 * be set up correctly at this point.
1087 	 *
1088 	 * We have exclusion against page_add_anon_rmap because the caller
1089 	 * always holds the page locked, except if called from page_dup_rmap,
1090 	 * in which case the page is already known to be setup.
1091 	 *
1092 	 * We have exclusion against page_add_new_anon_rmap because those pages
1093 	 * are initially only visible via the pagetables, and the pte is locked
1094 	 * over the call to page_add_new_anon_rmap.
1095 	 */
1096 	VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1097 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1098 		       page);
1099 }
1100 
1101 /**
1102  * page_add_anon_rmap - add pte mapping to an anonymous page
1103  * @page:	the page to add the mapping to
1104  * @vma:	the vm area in which the mapping is added
1105  * @address:	the user virtual address mapped
1106  * @compound:	charge the page as compound or small page
1107  *
1108  * The caller needs to hold the pte lock, and the page must be locked in
1109  * the anon_vma case: to serialize mapping,index checking after setting,
1110  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1111  * (but PageKsm is never downgraded to PageAnon).
1112  */
1113 void page_add_anon_rmap(struct page *page,
1114 	struct vm_area_struct *vma, unsigned long address, bool compound)
1115 {
1116 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1117 }
1118 
1119 /*
1120  * Special version of the above for do_swap_page, which often runs
1121  * into pages that are exclusively owned by the current process.
1122  * Everybody else should continue to use page_add_anon_rmap above.
1123  */
1124 void do_page_add_anon_rmap(struct page *page,
1125 	struct vm_area_struct *vma, unsigned long address, int flags)
1126 {
1127 	bool compound = flags & RMAP_COMPOUND;
1128 	bool first;
1129 
1130 	if (compound) {
1131 		atomic_t *mapcount;
1132 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1133 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1134 		mapcount = compound_mapcount_ptr(page);
1135 		first = atomic_inc_and_test(mapcount);
1136 	} else {
1137 		first = atomic_inc_and_test(&page->_mapcount);
1138 	}
1139 
1140 	if (first) {
1141 		int nr = compound ? hpage_nr_pages(page) : 1;
1142 		/*
1143 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1144 		 * these counters are not modified in interrupt context, and
1145 		 * pte lock(a spinlock) is held, which implies preemption
1146 		 * disabled.
1147 		 */
1148 		if (compound)
1149 			__inc_node_page_state(page, NR_ANON_THPS);
1150 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1151 	}
1152 	if (unlikely(PageKsm(page)))
1153 		return;
1154 
1155 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1156 
1157 	/* address might be in next vma when migration races vma_adjust */
1158 	if (first)
1159 		__page_set_anon_rmap(page, vma, address,
1160 				flags & RMAP_EXCLUSIVE);
1161 	else
1162 		__page_check_anon_rmap(page, vma, address);
1163 }
1164 
1165 /**
1166  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1167  * @page:	the page to add the mapping to
1168  * @vma:	the vm area in which the mapping is added
1169  * @address:	the user virtual address mapped
1170  * @compound:	charge the page as compound or small page
1171  *
1172  * Same as page_add_anon_rmap but must only be called on *new* pages.
1173  * This means the inc-and-test can be bypassed.
1174  * Page does not have to be locked.
1175  */
1176 void page_add_new_anon_rmap(struct page *page,
1177 	struct vm_area_struct *vma, unsigned long address, bool compound)
1178 {
1179 	int nr = compound ? hpage_nr_pages(page) : 1;
1180 
1181 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1182 	__SetPageSwapBacked(page);
1183 	if (compound) {
1184 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1185 		/* increment count (starts at -1) */
1186 		atomic_set(compound_mapcount_ptr(page), 0);
1187 		if (hpage_pincount_available(page))
1188 			atomic_set(compound_pincount_ptr(page), 0);
1189 
1190 		__inc_node_page_state(page, NR_ANON_THPS);
1191 	} else {
1192 		/* Anon THP always mapped first with PMD */
1193 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1194 		/* increment count (starts at -1) */
1195 		atomic_set(&page->_mapcount, 0);
1196 	}
1197 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1198 	__page_set_anon_rmap(page, vma, address, 1);
1199 }
1200 
1201 /**
1202  * page_add_file_rmap - add pte mapping to a file page
1203  * @page: the page to add the mapping to
1204  * @compound: charge the page as compound or small page
1205  *
1206  * The caller needs to hold the pte lock.
1207  */
1208 void page_add_file_rmap(struct page *page, bool compound)
1209 {
1210 	int i, nr = 1;
1211 
1212 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1213 	lock_page_memcg(page);
1214 	if (compound && PageTransHuge(page)) {
1215 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1216 			if (atomic_inc_and_test(&page[i]._mapcount))
1217 				nr++;
1218 		}
1219 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1220 			goto out;
1221 		if (PageSwapBacked(page))
1222 			__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1223 		else
1224 			__inc_node_page_state(page, NR_FILE_PMDMAPPED);
1225 	} else {
1226 		if (PageTransCompound(page) && page_mapping(page)) {
1227 			VM_WARN_ON_ONCE(!PageLocked(page));
1228 
1229 			SetPageDoubleMap(compound_head(page));
1230 			if (PageMlocked(page))
1231 				clear_page_mlock(compound_head(page));
1232 		}
1233 		if (!atomic_inc_and_test(&page->_mapcount))
1234 			goto out;
1235 	}
1236 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1237 out:
1238 	unlock_page_memcg(page);
1239 }
1240 
1241 static void page_remove_file_rmap(struct page *page, bool compound)
1242 {
1243 	int i, nr = 1;
1244 
1245 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1246 	lock_page_memcg(page);
1247 
1248 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1249 	if (unlikely(PageHuge(page))) {
1250 		/* hugetlb pages are always mapped with pmds */
1251 		atomic_dec(compound_mapcount_ptr(page));
1252 		goto out;
1253 	}
1254 
1255 	/* page still mapped by someone else? */
1256 	if (compound && PageTransHuge(page)) {
1257 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1258 			if (atomic_add_negative(-1, &page[i]._mapcount))
1259 				nr++;
1260 		}
1261 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1262 			goto out;
1263 		if (PageSwapBacked(page))
1264 			__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1265 		else
1266 			__dec_node_page_state(page, NR_FILE_PMDMAPPED);
1267 	} else {
1268 		if (!atomic_add_negative(-1, &page->_mapcount))
1269 			goto out;
1270 	}
1271 
1272 	/*
1273 	 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1274 	 * these counters are not modified in interrupt context, and
1275 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1276 	 */
1277 	__mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1278 
1279 	if (unlikely(PageMlocked(page)))
1280 		clear_page_mlock(page);
1281 out:
1282 	unlock_page_memcg(page);
1283 }
1284 
1285 static void page_remove_anon_compound_rmap(struct page *page)
1286 {
1287 	int i, nr;
1288 
1289 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1290 		return;
1291 
1292 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1293 	if (unlikely(PageHuge(page)))
1294 		return;
1295 
1296 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1297 		return;
1298 
1299 	__dec_node_page_state(page, NR_ANON_THPS);
1300 
1301 	if (TestClearPageDoubleMap(page)) {
1302 		/*
1303 		 * Subpages can be mapped with PTEs too. Check how many of
1304 		 * them are still mapped.
1305 		 */
1306 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1307 			if (atomic_add_negative(-1, &page[i]._mapcount))
1308 				nr++;
1309 		}
1310 
1311 		/*
1312 		 * Queue the page for deferred split if at least one small
1313 		 * page of the compound page is unmapped, but at least one
1314 		 * small page is still mapped.
1315 		 */
1316 		if (nr && nr < HPAGE_PMD_NR)
1317 			deferred_split_huge_page(page);
1318 	} else {
1319 		nr = HPAGE_PMD_NR;
1320 	}
1321 
1322 	if (unlikely(PageMlocked(page)))
1323 		clear_page_mlock(page);
1324 
1325 	if (nr)
1326 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1327 }
1328 
1329 /**
1330  * page_remove_rmap - take down pte mapping from a page
1331  * @page:	page to remove mapping from
1332  * @compound:	uncharge the page as compound or small page
1333  *
1334  * The caller needs to hold the pte lock.
1335  */
1336 void page_remove_rmap(struct page *page, bool compound)
1337 {
1338 	if (!PageAnon(page))
1339 		return page_remove_file_rmap(page, compound);
1340 
1341 	if (compound)
1342 		return page_remove_anon_compound_rmap(page);
1343 
1344 	/* page still mapped by someone else? */
1345 	if (!atomic_add_negative(-1, &page->_mapcount))
1346 		return;
1347 
1348 	/*
1349 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1350 	 * these counters are not modified in interrupt context, and
1351 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1352 	 */
1353 	__dec_node_page_state(page, NR_ANON_MAPPED);
1354 
1355 	if (unlikely(PageMlocked(page)))
1356 		clear_page_mlock(page);
1357 
1358 	if (PageTransCompound(page))
1359 		deferred_split_huge_page(compound_head(page));
1360 
1361 	/*
1362 	 * It would be tidy to reset the PageAnon mapping here,
1363 	 * but that might overwrite a racing page_add_anon_rmap
1364 	 * which increments mapcount after us but sets mapping
1365 	 * before us: so leave the reset to free_unref_page,
1366 	 * and remember that it's only reliable while mapped.
1367 	 * Leaving it set also helps swapoff to reinstate ptes
1368 	 * faster for those pages still in swapcache.
1369 	 */
1370 }
1371 
1372 /*
1373  * @arg: enum ttu_flags will be passed to this argument
1374  */
1375 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1376 		     unsigned long address, void *arg)
1377 {
1378 	struct mm_struct *mm = vma->vm_mm;
1379 	struct page_vma_mapped_walk pvmw = {
1380 		.page = page,
1381 		.vma = vma,
1382 		.address = address,
1383 	};
1384 	pte_t pteval;
1385 	struct page *subpage;
1386 	bool ret = true;
1387 	struct mmu_notifier_range range;
1388 	enum ttu_flags flags = (enum ttu_flags)arg;
1389 
1390 	/* munlock has nothing to gain from examining un-locked vmas */
1391 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1392 		return true;
1393 
1394 	if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1395 	    is_zone_device_page(page) && !is_device_private_page(page))
1396 		return true;
1397 
1398 	if (flags & TTU_SPLIT_HUGE_PMD) {
1399 		split_huge_pmd_address(vma, address,
1400 				flags & TTU_SPLIT_FREEZE, page);
1401 	}
1402 
1403 	/*
1404 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1405 	 * For hugetlb, it could be much worse if we need to do pud
1406 	 * invalidation in the case of pmd sharing.
1407 	 *
1408 	 * Note that the page can not be free in this function as call of
1409 	 * try_to_unmap() must hold a reference on the page.
1410 	 */
1411 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1412 				address,
1413 				min(vma->vm_end, address + page_size(page)));
1414 	if (PageHuge(page)) {
1415 		/*
1416 		 * If sharing is possible, start and end will be adjusted
1417 		 * accordingly.
1418 		 *
1419 		 * If called for a huge page, caller must hold i_mmap_rwsem
1420 		 * in write mode as it is possible to call huge_pmd_unshare.
1421 		 */
1422 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1423 						     &range.end);
1424 	}
1425 	mmu_notifier_invalidate_range_start(&range);
1426 
1427 	while (page_vma_mapped_walk(&pvmw)) {
1428 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1429 		/* PMD-mapped THP migration entry */
1430 		if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1431 			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1432 
1433 			set_pmd_migration_entry(&pvmw, page);
1434 			continue;
1435 		}
1436 #endif
1437 
1438 		/*
1439 		 * If the page is mlock()d, we cannot swap it out.
1440 		 * If it's recently referenced (perhaps page_referenced
1441 		 * skipped over this mm) then we should reactivate it.
1442 		 */
1443 		if (!(flags & TTU_IGNORE_MLOCK)) {
1444 			if (vma->vm_flags & VM_LOCKED) {
1445 				/* PTE-mapped THP are never mlocked */
1446 				if (!PageTransCompound(page)) {
1447 					/*
1448 					 * Holding pte lock, we do *not* need
1449 					 * mmap_sem here
1450 					 */
1451 					mlock_vma_page(page);
1452 				}
1453 				ret = false;
1454 				page_vma_mapped_walk_done(&pvmw);
1455 				break;
1456 			}
1457 			if (flags & TTU_MUNLOCK)
1458 				continue;
1459 		}
1460 
1461 		/* Unexpected PMD-mapped THP? */
1462 		VM_BUG_ON_PAGE(!pvmw.pte, page);
1463 
1464 		subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1465 		address = pvmw.address;
1466 
1467 		if (PageHuge(page)) {
1468 			/*
1469 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1470 			 * held in write mode.  Caller needs to explicitly
1471 			 * do this outside rmap routines.
1472 			 */
1473 			VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1474 			if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1475 				/*
1476 				 * huge_pmd_unshare unmapped an entire PMD
1477 				 * page.  There is no way of knowing exactly
1478 				 * which PMDs may be cached for this mm, so
1479 				 * we must flush them all.  start/end were
1480 				 * already adjusted above to cover this range.
1481 				 */
1482 				flush_cache_range(vma, range.start, range.end);
1483 				flush_tlb_range(vma, range.start, range.end);
1484 				mmu_notifier_invalidate_range(mm, range.start,
1485 							      range.end);
1486 
1487 				/*
1488 				 * The ref count of the PMD page was dropped
1489 				 * which is part of the way map counting
1490 				 * is done for shared PMDs.  Return 'true'
1491 				 * here.  When there is no other sharing,
1492 				 * huge_pmd_unshare returns false and we will
1493 				 * unmap the actual page and drop map count
1494 				 * to zero.
1495 				 */
1496 				page_vma_mapped_walk_done(&pvmw);
1497 				break;
1498 			}
1499 		}
1500 
1501 		if (IS_ENABLED(CONFIG_MIGRATION) &&
1502 		    (flags & TTU_MIGRATION) &&
1503 		    is_zone_device_page(page)) {
1504 			swp_entry_t entry;
1505 			pte_t swp_pte;
1506 
1507 			pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1508 
1509 			/*
1510 			 * Store the pfn of the page in a special migration
1511 			 * pte. do_swap_page() will wait until the migration
1512 			 * pte is removed and then restart fault handling.
1513 			 */
1514 			entry = make_migration_entry(page, 0);
1515 			swp_pte = swp_entry_to_pte(entry);
1516 			if (pte_soft_dirty(pteval))
1517 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1518 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1519 			/*
1520 			 * No need to invalidate here it will synchronize on
1521 			 * against the special swap migration pte.
1522 			 *
1523 			 * The assignment to subpage above was computed from a
1524 			 * swap PTE which results in an invalid pointer.
1525 			 * Since only PAGE_SIZE pages can currently be
1526 			 * migrated, just set it to page. This will need to be
1527 			 * changed when hugepage migrations to device private
1528 			 * memory are supported.
1529 			 */
1530 			subpage = page;
1531 			goto discard;
1532 		}
1533 
1534 		if (!(flags & TTU_IGNORE_ACCESS)) {
1535 			if (ptep_clear_flush_young_notify(vma, address,
1536 						pvmw.pte)) {
1537 				ret = false;
1538 				page_vma_mapped_walk_done(&pvmw);
1539 				break;
1540 			}
1541 		}
1542 
1543 		/* Nuke the page table entry. */
1544 		flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1545 		if (should_defer_flush(mm, flags)) {
1546 			/*
1547 			 * We clear the PTE but do not flush so potentially
1548 			 * a remote CPU could still be writing to the page.
1549 			 * If the entry was previously clean then the
1550 			 * architecture must guarantee that a clear->dirty
1551 			 * transition on a cached TLB entry is written through
1552 			 * and traps if the PTE is unmapped.
1553 			 */
1554 			pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1555 
1556 			set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1557 		} else {
1558 			pteval = ptep_clear_flush(vma, address, pvmw.pte);
1559 		}
1560 
1561 		/* Move the dirty bit to the page. Now the pte is gone. */
1562 		if (pte_dirty(pteval))
1563 			set_page_dirty(page);
1564 
1565 		/* Update high watermark before we lower rss */
1566 		update_hiwater_rss(mm);
1567 
1568 		if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1569 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1570 			if (PageHuge(page)) {
1571 				hugetlb_count_sub(compound_nr(page), mm);
1572 				set_huge_swap_pte_at(mm, address,
1573 						     pvmw.pte, pteval,
1574 						     vma_mmu_pagesize(vma));
1575 			} else {
1576 				dec_mm_counter(mm, mm_counter(page));
1577 				set_pte_at(mm, address, pvmw.pte, pteval);
1578 			}
1579 
1580 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1581 			/*
1582 			 * The guest indicated that the page content is of no
1583 			 * interest anymore. Simply discard the pte, vmscan
1584 			 * will take care of the rest.
1585 			 * A future reference will then fault in a new zero
1586 			 * page. When userfaultfd is active, we must not drop
1587 			 * this page though, as its main user (postcopy
1588 			 * migration) will not expect userfaults on already
1589 			 * copied pages.
1590 			 */
1591 			dec_mm_counter(mm, mm_counter(page));
1592 			/* We have to invalidate as we cleared the pte */
1593 			mmu_notifier_invalidate_range(mm, address,
1594 						      address + PAGE_SIZE);
1595 		} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1596 				(flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1597 			swp_entry_t entry;
1598 			pte_t swp_pte;
1599 
1600 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1601 				set_pte_at(mm, address, pvmw.pte, pteval);
1602 				ret = false;
1603 				page_vma_mapped_walk_done(&pvmw);
1604 				break;
1605 			}
1606 
1607 			/*
1608 			 * Store the pfn of the page in a special migration
1609 			 * pte. do_swap_page() will wait until the migration
1610 			 * pte is removed and then restart fault handling.
1611 			 */
1612 			entry = make_migration_entry(subpage,
1613 					pte_write(pteval));
1614 			swp_pte = swp_entry_to_pte(entry);
1615 			if (pte_soft_dirty(pteval))
1616 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1617 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1618 			/*
1619 			 * No need to invalidate here it will synchronize on
1620 			 * against the special swap migration pte.
1621 			 */
1622 		} else if (PageAnon(page)) {
1623 			swp_entry_t entry = { .val = page_private(subpage) };
1624 			pte_t swp_pte;
1625 			/*
1626 			 * Store the swap location in the pte.
1627 			 * See handle_pte_fault() ...
1628 			 */
1629 			if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1630 				WARN_ON_ONCE(1);
1631 				ret = false;
1632 				/* We have to invalidate as we cleared the pte */
1633 				mmu_notifier_invalidate_range(mm, address,
1634 							address + PAGE_SIZE);
1635 				page_vma_mapped_walk_done(&pvmw);
1636 				break;
1637 			}
1638 
1639 			/* MADV_FREE page check */
1640 			if (!PageSwapBacked(page)) {
1641 				if (!PageDirty(page)) {
1642 					/* Invalidate as we cleared the pte */
1643 					mmu_notifier_invalidate_range(mm,
1644 						address, address + PAGE_SIZE);
1645 					dec_mm_counter(mm, MM_ANONPAGES);
1646 					goto discard;
1647 				}
1648 
1649 				/*
1650 				 * If the page was redirtied, it cannot be
1651 				 * discarded. Remap the page to page table.
1652 				 */
1653 				set_pte_at(mm, address, pvmw.pte, pteval);
1654 				SetPageSwapBacked(page);
1655 				ret = false;
1656 				page_vma_mapped_walk_done(&pvmw);
1657 				break;
1658 			}
1659 
1660 			if (swap_duplicate(entry) < 0) {
1661 				set_pte_at(mm, address, pvmw.pte, pteval);
1662 				ret = false;
1663 				page_vma_mapped_walk_done(&pvmw);
1664 				break;
1665 			}
1666 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1667 				set_pte_at(mm, address, pvmw.pte, pteval);
1668 				ret = false;
1669 				page_vma_mapped_walk_done(&pvmw);
1670 				break;
1671 			}
1672 			if (list_empty(&mm->mmlist)) {
1673 				spin_lock(&mmlist_lock);
1674 				if (list_empty(&mm->mmlist))
1675 					list_add(&mm->mmlist, &init_mm.mmlist);
1676 				spin_unlock(&mmlist_lock);
1677 			}
1678 			dec_mm_counter(mm, MM_ANONPAGES);
1679 			inc_mm_counter(mm, MM_SWAPENTS);
1680 			swp_pte = swp_entry_to_pte(entry);
1681 			if (pte_soft_dirty(pteval))
1682 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1683 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1684 			/* Invalidate as we cleared the pte */
1685 			mmu_notifier_invalidate_range(mm, address,
1686 						      address + PAGE_SIZE);
1687 		} else {
1688 			/*
1689 			 * This is a locked file-backed page, thus it cannot
1690 			 * be removed from the page cache and replaced by a new
1691 			 * page before mmu_notifier_invalidate_range_end, so no
1692 			 * concurrent thread might update its page table to
1693 			 * point at new page while a device still is using this
1694 			 * page.
1695 			 *
1696 			 * See Documentation/vm/mmu_notifier.rst
1697 			 */
1698 			dec_mm_counter(mm, mm_counter_file(page));
1699 		}
1700 discard:
1701 		/*
1702 		 * No need to call mmu_notifier_invalidate_range() it has be
1703 		 * done above for all cases requiring it to happen under page
1704 		 * table lock before mmu_notifier_invalidate_range_end()
1705 		 *
1706 		 * See Documentation/vm/mmu_notifier.rst
1707 		 */
1708 		page_remove_rmap(subpage, PageHuge(page));
1709 		put_page(page);
1710 	}
1711 
1712 	mmu_notifier_invalidate_range_end(&range);
1713 
1714 	return ret;
1715 }
1716 
1717 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1718 {
1719 	return vma_is_temporary_stack(vma);
1720 }
1721 
1722 static int page_mapcount_is_zero(struct page *page)
1723 {
1724 	return !total_mapcount(page);
1725 }
1726 
1727 /**
1728  * try_to_unmap - try to remove all page table mappings to a page
1729  * @page: the page to get unmapped
1730  * @flags: action and flags
1731  *
1732  * Tries to remove all the page table entries which are mapping this
1733  * page, used in the pageout path.  Caller must hold the page lock.
1734  *
1735  * If unmap is successful, return true. Otherwise, false.
1736  */
1737 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1738 {
1739 	struct rmap_walk_control rwc = {
1740 		.rmap_one = try_to_unmap_one,
1741 		.arg = (void *)flags,
1742 		.done = page_mapcount_is_zero,
1743 		.anon_lock = page_lock_anon_vma_read,
1744 	};
1745 
1746 	/*
1747 	 * During exec, a temporary VMA is setup and later moved.
1748 	 * The VMA is moved under the anon_vma lock but not the
1749 	 * page tables leading to a race where migration cannot
1750 	 * find the migration ptes. Rather than increasing the
1751 	 * locking requirements of exec(), migration skips
1752 	 * temporary VMAs until after exec() completes.
1753 	 */
1754 	if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1755 	    && !PageKsm(page) && PageAnon(page))
1756 		rwc.invalid_vma = invalid_migration_vma;
1757 
1758 	if (flags & TTU_RMAP_LOCKED)
1759 		rmap_walk_locked(page, &rwc);
1760 	else
1761 		rmap_walk(page, &rwc);
1762 
1763 	return !page_mapcount(page) ? true : false;
1764 }
1765 
1766 static int page_not_mapped(struct page *page)
1767 {
1768 	return !page_mapped(page);
1769 };
1770 
1771 /**
1772  * try_to_munlock - try to munlock a page
1773  * @page: the page to be munlocked
1774  *
1775  * Called from munlock code.  Checks all of the VMAs mapping the page
1776  * to make sure nobody else has this page mlocked. The page will be
1777  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1778  */
1779 
1780 void try_to_munlock(struct page *page)
1781 {
1782 	struct rmap_walk_control rwc = {
1783 		.rmap_one = try_to_unmap_one,
1784 		.arg = (void *)TTU_MUNLOCK,
1785 		.done = page_not_mapped,
1786 		.anon_lock = page_lock_anon_vma_read,
1787 
1788 	};
1789 
1790 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1791 	VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1792 
1793 	rmap_walk(page, &rwc);
1794 }
1795 
1796 void __put_anon_vma(struct anon_vma *anon_vma)
1797 {
1798 	struct anon_vma *root = anon_vma->root;
1799 
1800 	anon_vma_free(anon_vma);
1801 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1802 		anon_vma_free(root);
1803 }
1804 
1805 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1806 					struct rmap_walk_control *rwc)
1807 {
1808 	struct anon_vma *anon_vma;
1809 
1810 	if (rwc->anon_lock)
1811 		return rwc->anon_lock(page);
1812 
1813 	/*
1814 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1815 	 * because that depends on page_mapped(); but not all its usages
1816 	 * are holding mmap_sem. Users without mmap_sem are required to
1817 	 * take a reference count to prevent the anon_vma disappearing
1818 	 */
1819 	anon_vma = page_anon_vma(page);
1820 	if (!anon_vma)
1821 		return NULL;
1822 
1823 	anon_vma_lock_read(anon_vma);
1824 	return anon_vma;
1825 }
1826 
1827 /*
1828  * rmap_walk_anon - do something to anonymous page using the object-based
1829  * rmap method
1830  * @page: the page to be handled
1831  * @rwc: control variable according to each walk type
1832  *
1833  * Find all the mappings of a page using the mapping pointer and the vma chains
1834  * contained in the anon_vma struct it points to.
1835  *
1836  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1837  * where the page was found will be held for write.  So, we won't recheck
1838  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1839  * LOCKED.
1840  */
1841 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1842 		bool locked)
1843 {
1844 	struct anon_vma *anon_vma;
1845 	pgoff_t pgoff_start, pgoff_end;
1846 	struct anon_vma_chain *avc;
1847 
1848 	if (locked) {
1849 		anon_vma = page_anon_vma(page);
1850 		/* anon_vma disappear under us? */
1851 		VM_BUG_ON_PAGE(!anon_vma, page);
1852 	} else {
1853 		anon_vma = rmap_walk_anon_lock(page, rwc);
1854 	}
1855 	if (!anon_vma)
1856 		return;
1857 
1858 	pgoff_start = page_to_pgoff(page);
1859 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1860 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1861 			pgoff_start, pgoff_end) {
1862 		struct vm_area_struct *vma = avc->vma;
1863 		unsigned long address = vma_address(page, vma);
1864 
1865 		cond_resched();
1866 
1867 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1868 			continue;
1869 
1870 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1871 			break;
1872 		if (rwc->done && rwc->done(page))
1873 			break;
1874 	}
1875 
1876 	if (!locked)
1877 		anon_vma_unlock_read(anon_vma);
1878 }
1879 
1880 /*
1881  * rmap_walk_file - do something to file page using the object-based rmap method
1882  * @page: the page to be handled
1883  * @rwc: control variable according to each walk type
1884  *
1885  * Find all the mappings of a page using the mapping pointer and the vma chains
1886  * contained in the address_space struct it points to.
1887  *
1888  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1889  * where the page was found will be held for write.  So, we won't recheck
1890  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1891  * LOCKED.
1892  */
1893 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1894 		bool locked)
1895 {
1896 	struct address_space *mapping = page_mapping(page);
1897 	pgoff_t pgoff_start, pgoff_end;
1898 	struct vm_area_struct *vma;
1899 
1900 	/*
1901 	 * The page lock not only makes sure that page->mapping cannot
1902 	 * suddenly be NULLified by truncation, it makes sure that the
1903 	 * structure at mapping cannot be freed and reused yet,
1904 	 * so we can safely take mapping->i_mmap_rwsem.
1905 	 */
1906 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1907 
1908 	if (!mapping)
1909 		return;
1910 
1911 	pgoff_start = page_to_pgoff(page);
1912 	pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1913 	if (!locked)
1914 		i_mmap_lock_read(mapping);
1915 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
1916 			pgoff_start, pgoff_end) {
1917 		unsigned long address = vma_address(page, vma);
1918 
1919 		cond_resched();
1920 
1921 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1922 			continue;
1923 
1924 		if (!rwc->rmap_one(page, vma, address, rwc->arg))
1925 			goto done;
1926 		if (rwc->done && rwc->done(page))
1927 			goto done;
1928 	}
1929 
1930 done:
1931 	if (!locked)
1932 		i_mmap_unlock_read(mapping);
1933 }
1934 
1935 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1936 {
1937 	if (unlikely(PageKsm(page)))
1938 		rmap_walk_ksm(page, rwc);
1939 	else if (PageAnon(page))
1940 		rmap_walk_anon(page, rwc, false);
1941 	else
1942 		rmap_walk_file(page, rwc, false);
1943 }
1944 
1945 /* Like rmap_walk, but caller holds relevant rmap lock */
1946 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1947 {
1948 	/* no ksm support for now */
1949 	VM_BUG_ON_PAGE(PageKsm(page), page);
1950 	if (PageAnon(page))
1951 		rmap_walk_anon(page, rwc, true);
1952 	else
1953 		rmap_walk_file(page, rwc, true);
1954 }
1955 
1956 #ifdef CONFIG_HUGETLB_PAGE
1957 /*
1958  * The following two functions are for anonymous (private mapped) hugepages.
1959  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1960  * and no lru code, because we handle hugepages differently from common pages.
1961  */
1962 void hugepage_add_anon_rmap(struct page *page,
1963 			    struct vm_area_struct *vma, unsigned long address)
1964 {
1965 	struct anon_vma *anon_vma = vma->anon_vma;
1966 	int first;
1967 
1968 	BUG_ON(!PageLocked(page));
1969 	BUG_ON(!anon_vma);
1970 	/* address might be in next vma when migration races vma_adjust */
1971 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1972 	if (first)
1973 		__page_set_anon_rmap(page, vma, address, 0);
1974 }
1975 
1976 void hugepage_add_new_anon_rmap(struct page *page,
1977 			struct vm_area_struct *vma, unsigned long address)
1978 {
1979 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1980 	atomic_set(compound_mapcount_ptr(page), 0);
1981 	if (hpage_pincount_available(page))
1982 		atomic_set(compound_pincount_ptr(page), 0);
1983 
1984 	__page_set_anon_rmap(page, vma, address, 1);
1985 }
1986 #endif /* CONFIG_HUGETLB_PAGE */
1987