1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) * (see huegtlbfs below) 26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) 27 * mapping->i_mmap_rwsem 28 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 29 * anon_vma->rwsem 30 * mm->page_table_lock or pte_lock 31 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page) 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in __set_page_dirty_buffers) 35 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 36 * i_pages lock (widely used) 37 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 38 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 39 * sb_lock (within inode_lock in fs/fs-writeback.c) 40 * i_pages lock (widely used, in set_page_dirty, 41 * in arch-dependent flush_dcache_mmap_lock, 42 * within bdi.wb->list_lock in __sync_single_inode) 43 * 44 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 45 * ->tasklist_lock 46 * pte map lock 47 * 48 * * hugetlbfs PageHuge() pages take locks in this order: 49 * mapping->i_mmap_rwsem 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * page->flags PG_locked (lock_page) 52 */ 53 54 #include <linux/mm.h> 55 #include <linux/sched/mm.h> 56 #include <linux/sched/task.h> 57 #include <linux/pagemap.h> 58 #include <linux/swap.h> 59 #include <linux/swapops.h> 60 #include <linux/slab.h> 61 #include <linux/init.h> 62 #include <linux/ksm.h> 63 #include <linux/rmap.h> 64 #include <linux/rcupdate.h> 65 #include <linux/export.h> 66 #include <linux/memcontrol.h> 67 #include <linux/mmu_notifier.h> 68 #include <linux/migrate.h> 69 #include <linux/hugetlb.h> 70 #include <linux/huge_mm.h> 71 #include <linux/backing-dev.h> 72 #include <linux/page_idle.h> 73 #include <linux/memremap.h> 74 #include <linux/userfaultfd_k.h> 75 76 #include <asm/tlbflush.h> 77 78 #include <trace/events/tlb.h> 79 80 #include "internal.h" 81 82 static struct kmem_cache *anon_vma_cachep; 83 static struct kmem_cache *anon_vma_chain_cachep; 84 85 static inline struct anon_vma *anon_vma_alloc(void) 86 { 87 struct anon_vma *anon_vma; 88 89 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 90 if (anon_vma) { 91 atomic_set(&anon_vma->refcount, 1); 92 anon_vma->degree = 1; /* Reference for first vma */ 93 anon_vma->parent = anon_vma; 94 /* 95 * Initialise the anon_vma root to point to itself. If called 96 * from fork, the root will be reset to the parents anon_vma. 97 */ 98 anon_vma->root = anon_vma; 99 } 100 101 return anon_vma; 102 } 103 104 static inline void anon_vma_free(struct anon_vma *anon_vma) 105 { 106 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 107 108 /* 109 * Synchronize against page_lock_anon_vma_read() such that 110 * we can safely hold the lock without the anon_vma getting 111 * freed. 112 * 113 * Relies on the full mb implied by the atomic_dec_and_test() from 114 * put_anon_vma() against the acquire barrier implied by 115 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 116 * 117 * page_lock_anon_vma_read() VS put_anon_vma() 118 * down_read_trylock() atomic_dec_and_test() 119 * LOCK MB 120 * atomic_read() rwsem_is_locked() 121 * 122 * LOCK should suffice since the actual taking of the lock must 123 * happen _before_ what follows. 124 */ 125 might_sleep(); 126 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 127 anon_vma_lock_write(anon_vma); 128 anon_vma_unlock_write(anon_vma); 129 } 130 131 kmem_cache_free(anon_vma_cachep, anon_vma); 132 } 133 134 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 135 { 136 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 137 } 138 139 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 140 { 141 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 142 } 143 144 static void anon_vma_chain_link(struct vm_area_struct *vma, 145 struct anon_vma_chain *avc, 146 struct anon_vma *anon_vma) 147 { 148 avc->vma = vma; 149 avc->anon_vma = anon_vma; 150 list_add(&avc->same_vma, &vma->anon_vma_chain); 151 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 152 } 153 154 /** 155 * __anon_vma_prepare - attach an anon_vma to a memory region 156 * @vma: the memory region in question 157 * 158 * This makes sure the memory mapping described by 'vma' has 159 * an 'anon_vma' attached to it, so that we can associate the 160 * anonymous pages mapped into it with that anon_vma. 161 * 162 * The common case will be that we already have one, which 163 * is handled inline by anon_vma_prepare(). But if 164 * not we either need to find an adjacent mapping that we 165 * can re-use the anon_vma from (very common when the only 166 * reason for splitting a vma has been mprotect()), or we 167 * allocate a new one. 168 * 169 * Anon-vma allocations are very subtle, because we may have 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 171 * and that may actually touch the spinlock even in the newly 172 * allocated vma (it depends on RCU to make sure that the 173 * anon_vma isn't actually destroyed). 174 * 175 * As a result, we need to do proper anon_vma locking even 176 * for the new allocation. At the same time, we do not want 177 * to do any locking for the common case of already having 178 * an anon_vma. 179 * 180 * This must be called with the mmap_sem held for reading. 181 */ 182 int __anon_vma_prepare(struct vm_area_struct *vma) 183 { 184 struct mm_struct *mm = vma->vm_mm; 185 struct anon_vma *anon_vma, *allocated; 186 struct anon_vma_chain *avc; 187 188 might_sleep(); 189 190 avc = anon_vma_chain_alloc(GFP_KERNEL); 191 if (!avc) 192 goto out_enomem; 193 194 anon_vma = find_mergeable_anon_vma(vma); 195 allocated = NULL; 196 if (!anon_vma) { 197 anon_vma = anon_vma_alloc(); 198 if (unlikely(!anon_vma)) 199 goto out_enomem_free_avc; 200 allocated = anon_vma; 201 } 202 203 anon_vma_lock_write(anon_vma); 204 /* page_table_lock to protect against threads */ 205 spin_lock(&mm->page_table_lock); 206 if (likely(!vma->anon_vma)) { 207 vma->anon_vma = anon_vma; 208 anon_vma_chain_link(vma, avc, anon_vma); 209 /* vma reference or self-parent link for new root */ 210 anon_vma->degree++; 211 allocated = NULL; 212 avc = NULL; 213 } 214 spin_unlock(&mm->page_table_lock); 215 anon_vma_unlock_write(anon_vma); 216 217 if (unlikely(allocated)) 218 put_anon_vma(allocated); 219 if (unlikely(avc)) 220 anon_vma_chain_free(avc); 221 222 return 0; 223 224 out_enomem_free_avc: 225 anon_vma_chain_free(avc); 226 out_enomem: 227 return -ENOMEM; 228 } 229 230 /* 231 * This is a useful helper function for locking the anon_vma root as 232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 233 * have the same vma. 234 * 235 * Such anon_vma's should have the same root, so you'd expect to see 236 * just a single mutex_lock for the whole traversal. 237 */ 238 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 239 { 240 struct anon_vma *new_root = anon_vma->root; 241 if (new_root != root) { 242 if (WARN_ON_ONCE(root)) 243 up_write(&root->rwsem); 244 root = new_root; 245 down_write(&root->rwsem); 246 } 247 return root; 248 } 249 250 static inline void unlock_anon_vma_root(struct anon_vma *root) 251 { 252 if (root) 253 up_write(&root->rwsem); 254 } 255 256 /* 257 * Attach the anon_vmas from src to dst. 258 * Returns 0 on success, -ENOMEM on failure. 259 * 260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and 261 * anon_vma_fork(). The first three want an exact copy of src, while the last 262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent 263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, 264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma). 265 * 266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 267 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 268 * This prevents degradation of anon_vma hierarchy to endless linear chain in 269 * case of constantly forking task. On the other hand, an anon_vma with more 270 * than one child isn't reused even if there was no alive vma, thus rmap 271 * walker has a good chance of avoiding scanning the whole hierarchy when it 272 * searches where page is mapped. 273 */ 274 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 275 { 276 struct anon_vma_chain *avc, *pavc; 277 struct anon_vma *root = NULL; 278 struct vm_area_struct *prev = dst->vm_prev, *pprev = src->vm_prev; 279 280 /* 281 * If parent share anon_vma with its vm_prev, keep this sharing in in 282 * child. 283 * 284 * 1. Parent has vm_prev, which implies we have vm_prev. 285 * 2. Parent and its vm_prev have the same anon_vma. 286 */ 287 if (!dst->anon_vma && src->anon_vma && 288 pprev && pprev->anon_vma == src->anon_vma) 289 dst->anon_vma = prev->anon_vma; 290 291 292 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 293 struct anon_vma *anon_vma; 294 295 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 296 if (unlikely(!avc)) { 297 unlock_anon_vma_root(root); 298 root = NULL; 299 avc = anon_vma_chain_alloc(GFP_KERNEL); 300 if (!avc) 301 goto enomem_failure; 302 } 303 anon_vma = pavc->anon_vma; 304 root = lock_anon_vma_root(root, anon_vma); 305 anon_vma_chain_link(dst, avc, anon_vma); 306 307 /* 308 * Reuse existing anon_vma if its degree lower than two, 309 * that means it has no vma and only one anon_vma child. 310 * 311 * Do not chose parent anon_vma, otherwise first child 312 * will always reuse it. Root anon_vma is never reused: 313 * it has self-parent reference and at least one child. 314 */ 315 if (!dst->anon_vma && src->anon_vma && 316 anon_vma != src->anon_vma && anon_vma->degree < 2) 317 dst->anon_vma = anon_vma; 318 } 319 if (dst->anon_vma) 320 dst->anon_vma->degree++; 321 unlock_anon_vma_root(root); 322 return 0; 323 324 enomem_failure: 325 /* 326 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 327 * decremented in unlink_anon_vmas(). 328 * We can safely do this because callers of anon_vma_clone() don't care 329 * about dst->anon_vma if anon_vma_clone() failed. 330 */ 331 dst->anon_vma = NULL; 332 unlink_anon_vmas(dst); 333 return -ENOMEM; 334 } 335 336 /* 337 * Attach vma to its own anon_vma, as well as to the anon_vmas that 338 * the corresponding VMA in the parent process is attached to. 339 * Returns 0 on success, non-zero on failure. 340 */ 341 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 342 { 343 struct anon_vma_chain *avc; 344 struct anon_vma *anon_vma; 345 int error; 346 347 /* Don't bother if the parent process has no anon_vma here. */ 348 if (!pvma->anon_vma) 349 return 0; 350 351 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 352 vma->anon_vma = NULL; 353 354 /* 355 * First, attach the new VMA to the parent VMA's anon_vmas, 356 * so rmap can find non-COWed pages in child processes. 357 */ 358 error = anon_vma_clone(vma, pvma); 359 if (error) 360 return error; 361 362 /* An existing anon_vma has been reused, all done then. */ 363 if (vma->anon_vma) 364 return 0; 365 366 /* Then add our own anon_vma. */ 367 anon_vma = anon_vma_alloc(); 368 if (!anon_vma) 369 goto out_error; 370 avc = anon_vma_chain_alloc(GFP_KERNEL); 371 if (!avc) 372 goto out_error_free_anon_vma; 373 374 /* 375 * The root anon_vma's spinlock is the lock actually used when we 376 * lock any of the anon_vmas in this anon_vma tree. 377 */ 378 anon_vma->root = pvma->anon_vma->root; 379 anon_vma->parent = pvma->anon_vma; 380 /* 381 * With refcounts, an anon_vma can stay around longer than the 382 * process it belongs to. The root anon_vma needs to be pinned until 383 * this anon_vma is freed, because the lock lives in the root. 384 */ 385 get_anon_vma(anon_vma->root); 386 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 387 vma->anon_vma = anon_vma; 388 anon_vma_lock_write(anon_vma); 389 anon_vma_chain_link(vma, avc, anon_vma); 390 anon_vma->parent->degree++; 391 anon_vma_unlock_write(anon_vma); 392 393 return 0; 394 395 out_error_free_anon_vma: 396 put_anon_vma(anon_vma); 397 out_error: 398 unlink_anon_vmas(vma); 399 return -ENOMEM; 400 } 401 402 void unlink_anon_vmas(struct vm_area_struct *vma) 403 { 404 struct anon_vma_chain *avc, *next; 405 struct anon_vma *root = NULL; 406 407 /* 408 * Unlink each anon_vma chained to the VMA. This list is ordered 409 * from newest to oldest, ensuring the root anon_vma gets freed last. 410 */ 411 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 412 struct anon_vma *anon_vma = avc->anon_vma; 413 414 root = lock_anon_vma_root(root, anon_vma); 415 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 416 417 /* 418 * Leave empty anon_vmas on the list - we'll need 419 * to free them outside the lock. 420 */ 421 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 422 anon_vma->parent->degree--; 423 continue; 424 } 425 426 list_del(&avc->same_vma); 427 anon_vma_chain_free(avc); 428 } 429 if (vma->anon_vma) 430 vma->anon_vma->degree--; 431 unlock_anon_vma_root(root); 432 433 /* 434 * Iterate the list once more, it now only contains empty and unlinked 435 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 436 * needing to write-acquire the anon_vma->root->rwsem. 437 */ 438 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 439 struct anon_vma *anon_vma = avc->anon_vma; 440 441 VM_WARN_ON(anon_vma->degree); 442 put_anon_vma(anon_vma); 443 444 list_del(&avc->same_vma); 445 anon_vma_chain_free(avc); 446 } 447 } 448 449 static void anon_vma_ctor(void *data) 450 { 451 struct anon_vma *anon_vma = data; 452 453 init_rwsem(&anon_vma->rwsem); 454 atomic_set(&anon_vma->refcount, 0); 455 anon_vma->rb_root = RB_ROOT_CACHED; 456 } 457 458 void __init anon_vma_init(void) 459 { 460 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 461 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 462 anon_vma_ctor); 463 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 464 SLAB_PANIC|SLAB_ACCOUNT); 465 } 466 467 /* 468 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 469 * 470 * Since there is no serialization what so ever against page_remove_rmap() 471 * the best this function can do is return a locked anon_vma that might 472 * have been relevant to this page. 473 * 474 * The page might have been remapped to a different anon_vma or the anon_vma 475 * returned may already be freed (and even reused). 476 * 477 * In case it was remapped to a different anon_vma, the new anon_vma will be a 478 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 479 * ensure that any anon_vma obtained from the page will still be valid for as 480 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 481 * 482 * All users of this function must be very careful when walking the anon_vma 483 * chain and verify that the page in question is indeed mapped in it 484 * [ something equivalent to page_mapped_in_vma() ]. 485 * 486 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 487 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid 488 * if there is a mapcount, we can dereference the anon_vma after observing 489 * those. 490 */ 491 struct anon_vma *page_get_anon_vma(struct page *page) 492 { 493 struct anon_vma *anon_vma = NULL; 494 unsigned long anon_mapping; 495 496 rcu_read_lock(); 497 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 498 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 499 goto out; 500 if (!page_mapped(page)) 501 goto out; 502 503 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 504 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 505 anon_vma = NULL; 506 goto out; 507 } 508 509 /* 510 * If this page is still mapped, then its anon_vma cannot have been 511 * freed. But if it has been unmapped, we have no security against the 512 * anon_vma structure being freed and reused (for another anon_vma: 513 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 514 * above cannot corrupt). 515 */ 516 if (!page_mapped(page)) { 517 rcu_read_unlock(); 518 put_anon_vma(anon_vma); 519 return NULL; 520 } 521 out: 522 rcu_read_unlock(); 523 524 return anon_vma; 525 } 526 527 /* 528 * Similar to page_get_anon_vma() except it locks the anon_vma. 529 * 530 * Its a little more complex as it tries to keep the fast path to a single 531 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 532 * reference like with page_get_anon_vma() and then block on the mutex. 533 */ 534 struct anon_vma *page_lock_anon_vma_read(struct page *page) 535 { 536 struct anon_vma *anon_vma = NULL; 537 struct anon_vma *root_anon_vma; 538 unsigned long anon_mapping; 539 540 rcu_read_lock(); 541 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 542 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 543 goto out; 544 if (!page_mapped(page)) 545 goto out; 546 547 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 548 root_anon_vma = READ_ONCE(anon_vma->root); 549 if (down_read_trylock(&root_anon_vma->rwsem)) { 550 /* 551 * If the page is still mapped, then this anon_vma is still 552 * its anon_vma, and holding the mutex ensures that it will 553 * not go away, see anon_vma_free(). 554 */ 555 if (!page_mapped(page)) { 556 up_read(&root_anon_vma->rwsem); 557 anon_vma = NULL; 558 } 559 goto out; 560 } 561 562 /* trylock failed, we got to sleep */ 563 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 564 anon_vma = NULL; 565 goto out; 566 } 567 568 if (!page_mapped(page)) { 569 rcu_read_unlock(); 570 put_anon_vma(anon_vma); 571 return NULL; 572 } 573 574 /* we pinned the anon_vma, its safe to sleep */ 575 rcu_read_unlock(); 576 anon_vma_lock_read(anon_vma); 577 578 if (atomic_dec_and_test(&anon_vma->refcount)) { 579 /* 580 * Oops, we held the last refcount, release the lock 581 * and bail -- can't simply use put_anon_vma() because 582 * we'll deadlock on the anon_vma_lock_write() recursion. 583 */ 584 anon_vma_unlock_read(anon_vma); 585 __put_anon_vma(anon_vma); 586 anon_vma = NULL; 587 } 588 589 return anon_vma; 590 591 out: 592 rcu_read_unlock(); 593 return anon_vma; 594 } 595 596 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 597 { 598 anon_vma_unlock_read(anon_vma); 599 } 600 601 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 602 /* 603 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 604 * important if a PTE was dirty when it was unmapped that it's flushed 605 * before any IO is initiated on the page to prevent lost writes. Similarly, 606 * it must be flushed before freeing to prevent data leakage. 607 */ 608 void try_to_unmap_flush(void) 609 { 610 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 611 612 if (!tlb_ubc->flush_required) 613 return; 614 615 arch_tlbbatch_flush(&tlb_ubc->arch); 616 tlb_ubc->flush_required = false; 617 tlb_ubc->writable = false; 618 } 619 620 /* Flush iff there are potentially writable TLB entries that can race with IO */ 621 void try_to_unmap_flush_dirty(void) 622 { 623 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 624 625 if (tlb_ubc->writable) 626 try_to_unmap_flush(); 627 } 628 629 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 630 { 631 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 632 633 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); 634 tlb_ubc->flush_required = true; 635 636 /* 637 * Ensure compiler does not re-order the setting of tlb_flush_batched 638 * before the PTE is cleared. 639 */ 640 barrier(); 641 mm->tlb_flush_batched = true; 642 643 /* 644 * If the PTE was dirty then it's best to assume it's writable. The 645 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 646 * before the page is queued for IO. 647 */ 648 if (writable) 649 tlb_ubc->writable = true; 650 } 651 652 /* 653 * Returns true if the TLB flush should be deferred to the end of a batch of 654 * unmap operations to reduce IPIs. 655 */ 656 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 657 { 658 bool should_defer = false; 659 660 if (!(flags & TTU_BATCH_FLUSH)) 661 return false; 662 663 /* If remote CPUs need to be flushed then defer batch the flush */ 664 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 665 should_defer = true; 666 put_cpu(); 667 668 return should_defer; 669 } 670 671 /* 672 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 673 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 674 * operation such as mprotect or munmap to race between reclaim unmapping 675 * the page and flushing the page. If this race occurs, it potentially allows 676 * access to data via a stale TLB entry. Tracking all mm's that have TLB 677 * batching in flight would be expensive during reclaim so instead track 678 * whether TLB batching occurred in the past and if so then do a flush here 679 * if required. This will cost one additional flush per reclaim cycle paid 680 * by the first operation at risk such as mprotect and mumap. 681 * 682 * This must be called under the PTL so that an access to tlb_flush_batched 683 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 684 * via the PTL. 685 */ 686 void flush_tlb_batched_pending(struct mm_struct *mm) 687 { 688 if (mm->tlb_flush_batched) { 689 flush_tlb_mm(mm); 690 691 /* 692 * Do not allow the compiler to re-order the clearing of 693 * tlb_flush_batched before the tlb is flushed. 694 */ 695 barrier(); 696 mm->tlb_flush_batched = false; 697 } 698 } 699 #else 700 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) 701 { 702 } 703 704 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 705 { 706 return false; 707 } 708 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 709 710 /* 711 * At what user virtual address is page expected in vma? 712 * Caller should check the page is actually part of the vma. 713 */ 714 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 715 { 716 unsigned long address; 717 if (PageAnon(page)) { 718 struct anon_vma *page__anon_vma = page_anon_vma(page); 719 /* 720 * Note: swapoff's unuse_vma() is more efficient with this 721 * check, and needs it to match anon_vma when KSM is active. 722 */ 723 if (!vma->anon_vma || !page__anon_vma || 724 vma->anon_vma->root != page__anon_vma->root) 725 return -EFAULT; 726 } else if (page->mapping) { 727 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 728 return -EFAULT; 729 } else 730 return -EFAULT; 731 address = __vma_address(page, vma); 732 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 733 return -EFAULT; 734 return address; 735 } 736 737 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 738 { 739 pgd_t *pgd; 740 p4d_t *p4d; 741 pud_t *pud; 742 pmd_t *pmd = NULL; 743 pmd_t pmde; 744 745 pgd = pgd_offset(mm, address); 746 if (!pgd_present(*pgd)) 747 goto out; 748 749 p4d = p4d_offset(pgd, address); 750 if (!p4d_present(*p4d)) 751 goto out; 752 753 pud = pud_offset(p4d, address); 754 if (!pud_present(*pud)) 755 goto out; 756 757 pmd = pmd_offset(pud, address); 758 /* 759 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 760 * without holding anon_vma lock for write. So when looking for a 761 * genuine pmde (in which to find pte), test present and !THP together. 762 */ 763 pmde = *pmd; 764 barrier(); 765 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 766 pmd = NULL; 767 out: 768 return pmd; 769 } 770 771 struct page_referenced_arg { 772 int mapcount; 773 int referenced; 774 unsigned long vm_flags; 775 struct mem_cgroup *memcg; 776 }; 777 /* 778 * arg: page_referenced_arg will be passed 779 */ 780 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, 781 unsigned long address, void *arg) 782 { 783 struct page_referenced_arg *pra = arg; 784 struct page_vma_mapped_walk pvmw = { 785 .page = page, 786 .vma = vma, 787 .address = address, 788 }; 789 int referenced = 0; 790 791 while (page_vma_mapped_walk(&pvmw)) { 792 address = pvmw.address; 793 794 if (vma->vm_flags & VM_LOCKED) { 795 page_vma_mapped_walk_done(&pvmw); 796 pra->vm_flags |= VM_LOCKED; 797 return false; /* To break the loop */ 798 } 799 800 if (pvmw.pte) { 801 if (ptep_clear_flush_young_notify(vma, address, 802 pvmw.pte)) { 803 /* 804 * Don't treat a reference through 805 * a sequentially read mapping as such. 806 * If the page has been used in another mapping, 807 * we will catch it; if this other mapping is 808 * already gone, the unmap path will have set 809 * PG_referenced or activated the page. 810 */ 811 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 812 referenced++; 813 } 814 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 815 if (pmdp_clear_flush_young_notify(vma, address, 816 pvmw.pmd)) 817 referenced++; 818 } else { 819 /* unexpected pmd-mapped page? */ 820 WARN_ON_ONCE(1); 821 } 822 823 pra->mapcount--; 824 } 825 826 if (referenced) 827 clear_page_idle(page); 828 if (test_and_clear_page_young(page)) 829 referenced++; 830 831 if (referenced) { 832 pra->referenced++; 833 pra->vm_flags |= vma->vm_flags; 834 } 835 836 if (!pra->mapcount) 837 return false; /* To break the loop */ 838 839 return true; 840 } 841 842 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 843 { 844 struct page_referenced_arg *pra = arg; 845 struct mem_cgroup *memcg = pra->memcg; 846 847 if (!mm_match_cgroup(vma->vm_mm, memcg)) 848 return true; 849 850 return false; 851 } 852 853 /** 854 * page_referenced - test if the page was referenced 855 * @page: the page to test 856 * @is_locked: caller holds lock on the page 857 * @memcg: target memory cgroup 858 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 859 * 860 * Quick test_and_clear_referenced for all mappings to a page, 861 * returns the number of ptes which referenced the page. 862 */ 863 int page_referenced(struct page *page, 864 int is_locked, 865 struct mem_cgroup *memcg, 866 unsigned long *vm_flags) 867 { 868 int we_locked = 0; 869 struct page_referenced_arg pra = { 870 .mapcount = total_mapcount(page), 871 .memcg = memcg, 872 }; 873 struct rmap_walk_control rwc = { 874 .rmap_one = page_referenced_one, 875 .arg = (void *)&pra, 876 .anon_lock = page_lock_anon_vma_read, 877 }; 878 879 *vm_flags = 0; 880 if (!pra.mapcount) 881 return 0; 882 883 if (!page_rmapping(page)) 884 return 0; 885 886 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 887 we_locked = trylock_page(page); 888 if (!we_locked) 889 return 1; 890 } 891 892 /* 893 * If we are reclaiming on behalf of a cgroup, skip 894 * counting on behalf of references from different 895 * cgroups 896 */ 897 if (memcg) { 898 rwc.invalid_vma = invalid_page_referenced_vma; 899 } 900 901 rmap_walk(page, &rwc); 902 *vm_flags = pra.vm_flags; 903 904 if (we_locked) 905 unlock_page(page); 906 907 return pra.referenced; 908 } 909 910 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, 911 unsigned long address, void *arg) 912 { 913 struct page_vma_mapped_walk pvmw = { 914 .page = page, 915 .vma = vma, 916 .address = address, 917 .flags = PVMW_SYNC, 918 }; 919 struct mmu_notifier_range range; 920 int *cleaned = arg; 921 922 /* 923 * We have to assume the worse case ie pmd for invalidation. Note that 924 * the page can not be free from this function. 925 */ 926 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 927 0, vma, vma->vm_mm, address, 928 min(vma->vm_end, address + page_size(page))); 929 mmu_notifier_invalidate_range_start(&range); 930 931 while (page_vma_mapped_walk(&pvmw)) { 932 int ret = 0; 933 934 address = pvmw.address; 935 if (pvmw.pte) { 936 pte_t entry; 937 pte_t *pte = pvmw.pte; 938 939 if (!pte_dirty(*pte) && !pte_write(*pte)) 940 continue; 941 942 flush_cache_page(vma, address, pte_pfn(*pte)); 943 entry = ptep_clear_flush(vma, address, pte); 944 entry = pte_wrprotect(entry); 945 entry = pte_mkclean(entry); 946 set_pte_at(vma->vm_mm, address, pte, entry); 947 ret = 1; 948 } else { 949 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 950 pmd_t *pmd = pvmw.pmd; 951 pmd_t entry; 952 953 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 954 continue; 955 956 flush_cache_page(vma, address, page_to_pfn(page)); 957 entry = pmdp_invalidate(vma, address, pmd); 958 entry = pmd_wrprotect(entry); 959 entry = pmd_mkclean(entry); 960 set_pmd_at(vma->vm_mm, address, pmd, entry); 961 ret = 1; 962 #else 963 /* unexpected pmd-mapped page? */ 964 WARN_ON_ONCE(1); 965 #endif 966 } 967 968 /* 969 * No need to call mmu_notifier_invalidate_range() as we are 970 * downgrading page table protection not changing it to point 971 * to a new page. 972 * 973 * See Documentation/vm/mmu_notifier.rst 974 */ 975 if (ret) 976 (*cleaned)++; 977 } 978 979 mmu_notifier_invalidate_range_end(&range); 980 981 return true; 982 } 983 984 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 985 { 986 if (vma->vm_flags & VM_SHARED) 987 return false; 988 989 return true; 990 } 991 992 int page_mkclean(struct page *page) 993 { 994 int cleaned = 0; 995 struct address_space *mapping; 996 struct rmap_walk_control rwc = { 997 .arg = (void *)&cleaned, 998 .rmap_one = page_mkclean_one, 999 .invalid_vma = invalid_mkclean_vma, 1000 }; 1001 1002 BUG_ON(!PageLocked(page)); 1003 1004 if (!page_mapped(page)) 1005 return 0; 1006 1007 mapping = page_mapping(page); 1008 if (!mapping) 1009 return 0; 1010 1011 rmap_walk(page, &rwc); 1012 1013 return cleaned; 1014 } 1015 EXPORT_SYMBOL_GPL(page_mkclean); 1016 1017 /** 1018 * page_move_anon_rmap - move a page to our anon_vma 1019 * @page: the page to move to our anon_vma 1020 * @vma: the vma the page belongs to 1021 * 1022 * When a page belongs exclusively to one process after a COW event, 1023 * that page can be moved into the anon_vma that belongs to just that 1024 * process, so the rmap code will not search the parent or sibling 1025 * processes. 1026 */ 1027 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) 1028 { 1029 struct anon_vma *anon_vma = vma->anon_vma; 1030 1031 page = compound_head(page); 1032 1033 VM_BUG_ON_PAGE(!PageLocked(page), page); 1034 VM_BUG_ON_VMA(!anon_vma, vma); 1035 1036 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1037 /* 1038 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1039 * simultaneously, so a concurrent reader (eg page_referenced()'s 1040 * PageAnon()) will not see one without the other. 1041 */ 1042 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1043 } 1044 1045 /** 1046 * __page_set_anon_rmap - set up new anonymous rmap 1047 * @page: Page or Hugepage to add to rmap 1048 * @vma: VM area to add page to. 1049 * @address: User virtual address of the mapping 1050 * @exclusive: the page is exclusively owned by the current process 1051 */ 1052 static void __page_set_anon_rmap(struct page *page, 1053 struct vm_area_struct *vma, unsigned long address, int exclusive) 1054 { 1055 struct anon_vma *anon_vma = vma->anon_vma; 1056 1057 BUG_ON(!anon_vma); 1058 1059 if (PageAnon(page)) 1060 return; 1061 1062 /* 1063 * If the page isn't exclusively mapped into this vma, 1064 * we must use the _oldest_ possible anon_vma for the 1065 * page mapping! 1066 */ 1067 if (!exclusive) 1068 anon_vma = anon_vma->root; 1069 1070 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1071 page->mapping = (struct address_space *) anon_vma; 1072 page->index = linear_page_index(vma, address); 1073 } 1074 1075 /** 1076 * __page_check_anon_rmap - sanity check anonymous rmap addition 1077 * @page: the page to add the mapping to 1078 * @vma: the vm area in which the mapping is added 1079 * @address: the user virtual address mapped 1080 */ 1081 static void __page_check_anon_rmap(struct page *page, 1082 struct vm_area_struct *vma, unsigned long address) 1083 { 1084 /* 1085 * The page's anon-rmap details (mapping and index) are guaranteed to 1086 * be set up correctly at this point. 1087 * 1088 * We have exclusion against page_add_anon_rmap because the caller 1089 * always holds the page locked, except if called from page_dup_rmap, 1090 * in which case the page is already known to be setup. 1091 * 1092 * We have exclusion against page_add_new_anon_rmap because those pages 1093 * are initially only visible via the pagetables, and the pte is locked 1094 * over the call to page_add_new_anon_rmap. 1095 */ 1096 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); 1097 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1098 page); 1099 } 1100 1101 /** 1102 * page_add_anon_rmap - add pte mapping to an anonymous page 1103 * @page: the page to add the mapping to 1104 * @vma: the vm area in which the mapping is added 1105 * @address: the user virtual address mapped 1106 * @compound: charge the page as compound or small page 1107 * 1108 * The caller needs to hold the pte lock, and the page must be locked in 1109 * the anon_vma case: to serialize mapping,index checking after setting, 1110 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1111 * (but PageKsm is never downgraded to PageAnon). 1112 */ 1113 void page_add_anon_rmap(struct page *page, 1114 struct vm_area_struct *vma, unsigned long address, bool compound) 1115 { 1116 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); 1117 } 1118 1119 /* 1120 * Special version of the above for do_swap_page, which often runs 1121 * into pages that are exclusively owned by the current process. 1122 * Everybody else should continue to use page_add_anon_rmap above. 1123 */ 1124 void do_page_add_anon_rmap(struct page *page, 1125 struct vm_area_struct *vma, unsigned long address, int flags) 1126 { 1127 bool compound = flags & RMAP_COMPOUND; 1128 bool first; 1129 1130 if (compound) { 1131 atomic_t *mapcount; 1132 VM_BUG_ON_PAGE(!PageLocked(page), page); 1133 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1134 mapcount = compound_mapcount_ptr(page); 1135 first = atomic_inc_and_test(mapcount); 1136 } else { 1137 first = atomic_inc_and_test(&page->_mapcount); 1138 } 1139 1140 if (first) { 1141 int nr = compound ? hpage_nr_pages(page) : 1; 1142 /* 1143 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1144 * these counters are not modified in interrupt context, and 1145 * pte lock(a spinlock) is held, which implies preemption 1146 * disabled. 1147 */ 1148 if (compound) 1149 __inc_node_page_state(page, NR_ANON_THPS); 1150 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1151 } 1152 if (unlikely(PageKsm(page))) 1153 return; 1154 1155 VM_BUG_ON_PAGE(!PageLocked(page), page); 1156 1157 /* address might be in next vma when migration races vma_adjust */ 1158 if (first) 1159 __page_set_anon_rmap(page, vma, address, 1160 flags & RMAP_EXCLUSIVE); 1161 else 1162 __page_check_anon_rmap(page, vma, address); 1163 } 1164 1165 /** 1166 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1167 * @page: the page to add the mapping to 1168 * @vma: the vm area in which the mapping is added 1169 * @address: the user virtual address mapped 1170 * @compound: charge the page as compound or small page 1171 * 1172 * Same as page_add_anon_rmap but must only be called on *new* pages. 1173 * This means the inc-and-test can be bypassed. 1174 * Page does not have to be locked. 1175 */ 1176 void page_add_new_anon_rmap(struct page *page, 1177 struct vm_area_struct *vma, unsigned long address, bool compound) 1178 { 1179 int nr = compound ? hpage_nr_pages(page) : 1; 1180 1181 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1182 __SetPageSwapBacked(page); 1183 if (compound) { 1184 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 1185 /* increment count (starts at -1) */ 1186 atomic_set(compound_mapcount_ptr(page), 0); 1187 if (hpage_pincount_available(page)) 1188 atomic_set(compound_pincount_ptr(page), 0); 1189 1190 __inc_node_page_state(page, NR_ANON_THPS); 1191 } else { 1192 /* Anon THP always mapped first with PMD */ 1193 VM_BUG_ON_PAGE(PageTransCompound(page), page); 1194 /* increment count (starts at -1) */ 1195 atomic_set(&page->_mapcount, 0); 1196 } 1197 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); 1198 __page_set_anon_rmap(page, vma, address, 1); 1199 } 1200 1201 /** 1202 * page_add_file_rmap - add pte mapping to a file page 1203 * @page: the page to add the mapping to 1204 * @compound: charge the page as compound or small page 1205 * 1206 * The caller needs to hold the pte lock. 1207 */ 1208 void page_add_file_rmap(struct page *page, bool compound) 1209 { 1210 int i, nr = 1; 1211 1212 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); 1213 lock_page_memcg(page); 1214 if (compound && PageTransHuge(page)) { 1215 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1216 if (atomic_inc_and_test(&page[i]._mapcount)) 1217 nr++; 1218 } 1219 if (!atomic_inc_and_test(compound_mapcount_ptr(page))) 1220 goto out; 1221 if (PageSwapBacked(page)) 1222 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); 1223 else 1224 __inc_node_page_state(page, NR_FILE_PMDMAPPED); 1225 } else { 1226 if (PageTransCompound(page) && page_mapping(page)) { 1227 VM_WARN_ON_ONCE(!PageLocked(page)); 1228 1229 SetPageDoubleMap(compound_head(page)); 1230 if (PageMlocked(page)) 1231 clear_page_mlock(compound_head(page)); 1232 } 1233 if (!atomic_inc_and_test(&page->_mapcount)) 1234 goto out; 1235 } 1236 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); 1237 out: 1238 unlock_page_memcg(page); 1239 } 1240 1241 static void page_remove_file_rmap(struct page *page, bool compound) 1242 { 1243 int i, nr = 1; 1244 1245 VM_BUG_ON_PAGE(compound && !PageHead(page), page); 1246 lock_page_memcg(page); 1247 1248 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1249 if (unlikely(PageHuge(page))) { 1250 /* hugetlb pages are always mapped with pmds */ 1251 atomic_dec(compound_mapcount_ptr(page)); 1252 goto out; 1253 } 1254 1255 /* page still mapped by someone else? */ 1256 if (compound && PageTransHuge(page)) { 1257 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1258 if (atomic_add_negative(-1, &page[i]._mapcount)) 1259 nr++; 1260 } 1261 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1262 goto out; 1263 if (PageSwapBacked(page)) 1264 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); 1265 else 1266 __dec_node_page_state(page, NR_FILE_PMDMAPPED); 1267 } else { 1268 if (!atomic_add_negative(-1, &page->_mapcount)) 1269 goto out; 1270 } 1271 1272 /* 1273 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because 1274 * these counters are not modified in interrupt context, and 1275 * pte lock(a spinlock) is held, which implies preemption disabled. 1276 */ 1277 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); 1278 1279 if (unlikely(PageMlocked(page))) 1280 clear_page_mlock(page); 1281 out: 1282 unlock_page_memcg(page); 1283 } 1284 1285 static void page_remove_anon_compound_rmap(struct page *page) 1286 { 1287 int i, nr; 1288 1289 if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) 1290 return; 1291 1292 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1293 if (unlikely(PageHuge(page))) 1294 return; 1295 1296 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 1297 return; 1298 1299 __dec_node_page_state(page, NR_ANON_THPS); 1300 1301 if (TestClearPageDoubleMap(page)) { 1302 /* 1303 * Subpages can be mapped with PTEs too. Check how many of 1304 * them are still mapped. 1305 */ 1306 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { 1307 if (atomic_add_negative(-1, &page[i]._mapcount)) 1308 nr++; 1309 } 1310 1311 /* 1312 * Queue the page for deferred split if at least one small 1313 * page of the compound page is unmapped, but at least one 1314 * small page is still mapped. 1315 */ 1316 if (nr && nr < HPAGE_PMD_NR) 1317 deferred_split_huge_page(page); 1318 } else { 1319 nr = HPAGE_PMD_NR; 1320 } 1321 1322 if (unlikely(PageMlocked(page))) 1323 clear_page_mlock(page); 1324 1325 if (nr) 1326 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); 1327 } 1328 1329 /** 1330 * page_remove_rmap - take down pte mapping from a page 1331 * @page: page to remove mapping from 1332 * @compound: uncharge the page as compound or small page 1333 * 1334 * The caller needs to hold the pte lock. 1335 */ 1336 void page_remove_rmap(struct page *page, bool compound) 1337 { 1338 if (!PageAnon(page)) 1339 return page_remove_file_rmap(page, compound); 1340 1341 if (compound) 1342 return page_remove_anon_compound_rmap(page); 1343 1344 /* page still mapped by someone else? */ 1345 if (!atomic_add_negative(-1, &page->_mapcount)) 1346 return; 1347 1348 /* 1349 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1350 * these counters are not modified in interrupt context, and 1351 * pte lock(a spinlock) is held, which implies preemption disabled. 1352 */ 1353 __dec_node_page_state(page, NR_ANON_MAPPED); 1354 1355 if (unlikely(PageMlocked(page))) 1356 clear_page_mlock(page); 1357 1358 if (PageTransCompound(page)) 1359 deferred_split_huge_page(compound_head(page)); 1360 1361 /* 1362 * It would be tidy to reset the PageAnon mapping here, 1363 * but that might overwrite a racing page_add_anon_rmap 1364 * which increments mapcount after us but sets mapping 1365 * before us: so leave the reset to free_unref_page, 1366 * and remember that it's only reliable while mapped. 1367 * Leaving it set also helps swapoff to reinstate ptes 1368 * faster for those pages still in swapcache. 1369 */ 1370 } 1371 1372 /* 1373 * @arg: enum ttu_flags will be passed to this argument 1374 */ 1375 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1376 unsigned long address, void *arg) 1377 { 1378 struct mm_struct *mm = vma->vm_mm; 1379 struct page_vma_mapped_walk pvmw = { 1380 .page = page, 1381 .vma = vma, 1382 .address = address, 1383 }; 1384 pte_t pteval; 1385 struct page *subpage; 1386 bool ret = true; 1387 struct mmu_notifier_range range; 1388 enum ttu_flags flags = (enum ttu_flags)arg; 1389 1390 /* munlock has nothing to gain from examining un-locked vmas */ 1391 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) 1392 return true; 1393 1394 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1395 is_zone_device_page(page) && !is_device_private_page(page)) 1396 return true; 1397 1398 if (flags & TTU_SPLIT_HUGE_PMD) { 1399 split_huge_pmd_address(vma, address, 1400 flags & TTU_SPLIT_FREEZE, page); 1401 } 1402 1403 /* 1404 * For THP, we have to assume the worse case ie pmd for invalidation. 1405 * For hugetlb, it could be much worse if we need to do pud 1406 * invalidation in the case of pmd sharing. 1407 * 1408 * Note that the page can not be free in this function as call of 1409 * try_to_unmap() must hold a reference on the page. 1410 */ 1411 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1412 address, 1413 min(vma->vm_end, address + page_size(page))); 1414 if (PageHuge(page)) { 1415 /* 1416 * If sharing is possible, start and end will be adjusted 1417 * accordingly. 1418 * 1419 * If called for a huge page, caller must hold i_mmap_rwsem 1420 * in write mode as it is possible to call huge_pmd_unshare. 1421 */ 1422 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1423 &range.end); 1424 } 1425 mmu_notifier_invalidate_range_start(&range); 1426 1427 while (page_vma_mapped_walk(&pvmw)) { 1428 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1429 /* PMD-mapped THP migration entry */ 1430 if (!pvmw.pte && (flags & TTU_MIGRATION)) { 1431 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); 1432 1433 set_pmd_migration_entry(&pvmw, page); 1434 continue; 1435 } 1436 #endif 1437 1438 /* 1439 * If the page is mlock()d, we cannot swap it out. 1440 * If it's recently referenced (perhaps page_referenced 1441 * skipped over this mm) then we should reactivate it. 1442 */ 1443 if (!(flags & TTU_IGNORE_MLOCK)) { 1444 if (vma->vm_flags & VM_LOCKED) { 1445 /* PTE-mapped THP are never mlocked */ 1446 if (!PageTransCompound(page)) { 1447 /* 1448 * Holding pte lock, we do *not* need 1449 * mmap_sem here 1450 */ 1451 mlock_vma_page(page); 1452 } 1453 ret = false; 1454 page_vma_mapped_walk_done(&pvmw); 1455 break; 1456 } 1457 if (flags & TTU_MUNLOCK) 1458 continue; 1459 } 1460 1461 /* Unexpected PMD-mapped THP? */ 1462 VM_BUG_ON_PAGE(!pvmw.pte, page); 1463 1464 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); 1465 address = pvmw.address; 1466 1467 if (PageHuge(page)) { 1468 /* 1469 * To call huge_pmd_unshare, i_mmap_rwsem must be 1470 * held in write mode. Caller needs to explicitly 1471 * do this outside rmap routines. 1472 */ 1473 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1474 if (huge_pmd_unshare(mm, &address, pvmw.pte)) { 1475 /* 1476 * huge_pmd_unshare unmapped an entire PMD 1477 * page. There is no way of knowing exactly 1478 * which PMDs may be cached for this mm, so 1479 * we must flush them all. start/end were 1480 * already adjusted above to cover this range. 1481 */ 1482 flush_cache_range(vma, range.start, range.end); 1483 flush_tlb_range(vma, range.start, range.end); 1484 mmu_notifier_invalidate_range(mm, range.start, 1485 range.end); 1486 1487 /* 1488 * The ref count of the PMD page was dropped 1489 * which is part of the way map counting 1490 * is done for shared PMDs. Return 'true' 1491 * here. When there is no other sharing, 1492 * huge_pmd_unshare returns false and we will 1493 * unmap the actual page and drop map count 1494 * to zero. 1495 */ 1496 page_vma_mapped_walk_done(&pvmw); 1497 break; 1498 } 1499 } 1500 1501 if (IS_ENABLED(CONFIG_MIGRATION) && 1502 (flags & TTU_MIGRATION) && 1503 is_zone_device_page(page)) { 1504 swp_entry_t entry; 1505 pte_t swp_pte; 1506 1507 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); 1508 1509 /* 1510 * Store the pfn of the page in a special migration 1511 * pte. do_swap_page() will wait until the migration 1512 * pte is removed and then restart fault handling. 1513 */ 1514 entry = make_migration_entry(page, 0); 1515 swp_pte = swp_entry_to_pte(entry); 1516 if (pte_soft_dirty(pteval)) 1517 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1518 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 1519 /* 1520 * No need to invalidate here it will synchronize on 1521 * against the special swap migration pte. 1522 * 1523 * The assignment to subpage above was computed from a 1524 * swap PTE which results in an invalid pointer. 1525 * Since only PAGE_SIZE pages can currently be 1526 * migrated, just set it to page. This will need to be 1527 * changed when hugepage migrations to device private 1528 * memory are supported. 1529 */ 1530 subpage = page; 1531 goto discard; 1532 } 1533 1534 if (!(flags & TTU_IGNORE_ACCESS)) { 1535 if (ptep_clear_flush_young_notify(vma, address, 1536 pvmw.pte)) { 1537 ret = false; 1538 page_vma_mapped_walk_done(&pvmw); 1539 break; 1540 } 1541 } 1542 1543 /* Nuke the page table entry. */ 1544 flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); 1545 if (should_defer_flush(mm, flags)) { 1546 /* 1547 * We clear the PTE but do not flush so potentially 1548 * a remote CPU could still be writing to the page. 1549 * If the entry was previously clean then the 1550 * architecture must guarantee that a clear->dirty 1551 * transition on a cached TLB entry is written through 1552 * and traps if the PTE is unmapped. 1553 */ 1554 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1555 1556 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); 1557 } else { 1558 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1559 } 1560 1561 /* Move the dirty bit to the page. Now the pte is gone. */ 1562 if (pte_dirty(pteval)) 1563 set_page_dirty(page); 1564 1565 /* Update high watermark before we lower rss */ 1566 update_hiwater_rss(mm); 1567 1568 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1569 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1570 if (PageHuge(page)) { 1571 hugetlb_count_sub(compound_nr(page), mm); 1572 set_huge_swap_pte_at(mm, address, 1573 pvmw.pte, pteval, 1574 vma_mmu_pagesize(vma)); 1575 } else { 1576 dec_mm_counter(mm, mm_counter(page)); 1577 set_pte_at(mm, address, pvmw.pte, pteval); 1578 } 1579 1580 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1581 /* 1582 * The guest indicated that the page content is of no 1583 * interest anymore. Simply discard the pte, vmscan 1584 * will take care of the rest. 1585 * A future reference will then fault in a new zero 1586 * page. When userfaultfd is active, we must not drop 1587 * this page though, as its main user (postcopy 1588 * migration) will not expect userfaults on already 1589 * copied pages. 1590 */ 1591 dec_mm_counter(mm, mm_counter(page)); 1592 /* We have to invalidate as we cleared the pte */ 1593 mmu_notifier_invalidate_range(mm, address, 1594 address + PAGE_SIZE); 1595 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1596 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { 1597 swp_entry_t entry; 1598 pte_t swp_pte; 1599 1600 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1601 set_pte_at(mm, address, pvmw.pte, pteval); 1602 ret = false; 1603 page_vma_mapped_walk_done(&pvmw); 1604 break; 1605 } 1606 1607 /* 1608 * Store the pfn of the page in a special migration 1609 * pte. do_swap_page() will wait until the migration 1610 * pte is removed and then restart fault handling. 1611 */ 1612 entry = make_migration_entry(subpage, 1613 pte_write(pteval)); 1614 swp_pte = swp_entry_to_pte(entry); 1615 if (pte_soft_dirty(pteval)) 1616 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1617 set_pte_at(mm, address, pvmw.pte, swp_pte); 1618 /* 1619 * No need to invalidate here it will synchronize on 1620 * against the special swap migration pte. 1621 */ 1622 } else if (PageAnon(page)) { 1623 swp_entry_t entry = { .val = page_private(subpage) }; 1624 pte_t swp_pte; 1625 /* 1626 * Store the swap location in the pte. 1627 * See handle_pte_fault() ... 1628 */ 1629 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { 1630 WARN_ON_ONCE(1); 1631 ret = false; 1632 /* We have to invalidate as we cleared the pte */ 1633 mmu_notifier_invalidate_range(mm, address, 1634 address + PAGE_SIZE); 1635 page_vma_mapped_walk_done(&pvmw); 1636 break; 1637 } 1638 1639 /* MADV_FREE page check */ 1640 if (!PageSwapBacked(page)) { 1641 if (!PageDirty(page)) { 1642 /* Invalidate as we cleared the pte */ 1643 mmu_notifier_invalidate_range(mm, 1644 address, address + PAGE_SIZE); 1645 dec_mm_counter(mm, MM_ANONPAGES); 1646 goto discard; 1647 } 1648 1649 /* 1650 * If the page was redirtied, it cannot be 1651 * discarded. Remap the page to page table. 1652 */ 1653 set_pte_at(mm, address, pvmw.pte, pteval); 1654 SetPageSwapBacked(page); 1655 ret = false; 1656 page_vma_mapped_walk_done(&pvmw); 1657 break; 1658 } 1659 1660 if (swap_duplicate(entry) < 0) { 1661 set_pte_at(mm, address, pvmw.pte, pteval); 1662 ret = false; 1663 page_vma_mapped_walk_done(&pvmw); 1664 break; 1665 } 1666 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1667 set_pte_at(mm, address, pvmw.pte, pteval); 1668 ret = false; 1669 page_vma_mapped_walk_done(&pvmw); 1670 break; 1671 } 1672 if (list_empty(&mm->mmlist)) { 1673 spin_lock(&mmlist_lock); 1674 if (list_empty(&mm->mmlist)) 1675 list_add(&mm->mmlist, &init_mm.mmlist); 1676 spin_unlock(&mmlist_lock); 1677 } 1678 dec_mm_counter(mm, MM_ANONPAGES); 1679 inc_mm_counter(mm, MM_SWAPENTS); 1680 swp_pte = swp_entry_to_pte(entry); 1681 if (pte_soft_dirty(pteval)) 1682 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1683 set_pte_at(mm, address, pvmw.pte, swp_pte); 1684 /* Invalidate as we cleared the pte */ 1685 mmu_notifier_invalidate_range(mm, address, 1686 address + PAGE_SIZE); 1687 } else { 1688 /* 1689 * This is a locked file-backed page, thus it cannot 1690 * be removed from the page cache and replaced by a new 1691 * page before mmu_notifier_invalidate_range_end, so no 1692 * concurrent thread might update its page table to 1693 * point at new page while a device still is using this 1694 * page. 1695 * 1696 * See Documentation/vm/mmu_notifier.rst 1697 */ 1698 dec_mm_counter(mm, mm_counter_file(page)); 1699 } 1700 discard: 1701 /* 1702 * No need to call mmu_notifier_invalidate_range() it has be 1703 * done above for all cases requiring it to happen under page 1704 * table lock before mmu_notifier_invalidate_range_end() 1705 * 1706 * See Documentation/vm/mmu_notifier.rst 1707 */ 1708 page_remove_rmap(subpage, PageHuge(page)); 1709 put_page(page); 1710 } 1711 1712 mmu_notifier_invalidate_range_end(&range); 1713 1714 return ret; 1715 } 1716 1717 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1718 { 1719 return vma_is_temporary_stack(vma); 1720 } 1721 1722 static int page_mapcount_is_zero(struct page *page) 1723 { 1724 return !total_mapcount(page); 1725 } 1726 1727 /** 1728 * try_to_unmap - try to remove all page table mappings to a page 1729 * @page: the page to get unmapped 1730 * @flags: action and flags 1731 * 1732 * Tries to remove all the page table entries which are mapping this 1733 * page, used in the pageout path. Caller must hold the page lock. 1734 * 1735 * If unmap is successful, return true. Otherwise, false. 1736 */ 1737 bool try_to_unmap(struct page *page, enum ttu_flags flags) 1738 { 1739 struct rmap_walk_control rwc = { 1740 .rmap_one = try_to_unmap_one, 1741 .arg = (void *)flags, 1742 .done = page_mapcount_is_zero, 1743 .anon_lock = page_lock_anon_vma_read, 1744 }; 1745 1746 /* 1747 * During exec, a temporary VMA is setup and later moved. 1748 * The VMA is moved under the anon_vma lock but not the 1749 * page tables leading to a race where migration cannot 1750 * find the migration ptes. Rather than increasing the 1751 * locking requirements of exec(), migration skips 1752 * temporary VMAs until after exec() completes. 1753 */ 1754 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) 1755 && !PageKsm(page) && PageAnon(page)) 1756 rwc.invalid_vma = invalid_migration_vma; 1757 1758 if (flags & TTU_RMAP_LOCKED) 1759 rmap_walk_locked(page, &rwc); 1760 else 1761 rmap_walk(page, &rwc); 1762 1763 return !page_mapcount(page) ? true : false; 1764 } 1765 1766 static int page_not_mapped(struct page *page) 1767 { 1768 return !page_mapped(page); 1769 }; 1770 1771 /** 1772 * try_to_munlock - try to munlock a page 1773 * @page: the page to be munlocked 1774 * 1775 * Called from munlock code. Checks all of the VMAs mapping the page 1776 * to make sure nobody else has this page mlocked. The page will be 1777 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1778 */ 1779 1780 void try_to_munlock(struct page *page) 1781 { 1782 struct rmap_walk_control rwc = { 1783 .rmap_one = try_to_unmap_one, 1784 .arg = (void *)TTU_MUNLOCK, 1785 .done = page_not_mapped, 1786 .anon_lock = page_lock_anon_vma_read, 1787 1788 }; 1789 1790 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1791 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); 1792 1793 rmap_walk(page, &rwc); 1794 } 1795 1796 void __put_anon_vma(struct anon_vma *anon_vma) 1797 { 1798 struct anon_vma *root = anon_vma->root; 1799 1800 anon_vma_free(anon_vma); 1801 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1802 anon_vma_free(root); 1803 } 1804 1805 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1806 struct rmap_walk_control *rwc) 1807 { 1808 struct anon_vma *anon_vma; 1809 1810 if (rwc->anon_lock) 1811 return rwc->anon_lock(page); 1812 1813 /* 1814 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1815 * because that depends on page_mapped(); but not all its usages 1816 * are holding mmap_sem. Users without mmap_sem are required to 1817 * take a reference count to prevent the anon_vma disappearing 1818 */ 1819 anon_vma = page_anon_vma(page); 1820 if (!anon_vma) 1821 return NULL; 1822 1823 anon_vma_lock_read(anon_vma); 1824 return anon_vma; 1825 } 1826 1827 /* 1828 * rmap_walk_anon - do something to anonymous page using the object-based 1829 * rmap method 1830 * @page: the page to be handled 1831 * @rwc: control variable according to each walk type 1832 * 1833 * Find all the mappings of a page using the mapping pointer and the vma chains 1834 * contained in the anon_vma struct it points to. 1835 * 1836 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1837 * where the page was found will be held for write. So, we won't recheck 1838 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1839 * LOCKED. 1840 */ 1841 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, 1842 bool locked) 1843 { 1844 struct anon_vma *anon_vma; 1845 pgoff_t pgoff_start, pgoff_end; 1846 struct anon_vma_chain *avc; 1847 1848 if (locked) { 1849 anon_vma = page_anon_vma(page); 1850 /* anon_vma disappear under us? */ 1851 VM_BUG_ON_PAGE(!anon_vma, page); 1852 } else { 1853 anon_vma = rmap_walk_anon_lock(page, rwc); 1854 } 1855 if (!anon_vma) 1856 return; 1857 1858 pgoff_start = page_to_pgoff(page); 1859 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1860 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 1861 pgoff_start, pgoff_end) { 1862 struct vm_area_struct *vma = avc->vma; 1863 unsigned long address = vma_address(page, vma); 1864 1865 cond_resched(); 1866 1867 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1868 continue; 1869 1870 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1871 break; 1872 if (rwc->done && rwc->done(page)) 1873 break; 1874 } 1875 1876 if (!locked) 1877 anon_vma_unlock_read(anon_vma); 1878 } 1879 1880 /* 1881 * rmap_walk_file - do something to file page using the object-based rmap method 1882 * @page: the page to be handled 1883 * @rwc: control variable according to each walk type 1884 * 1885 * Find all the mappings of a page using the mapping pointer and the vma chains 1886 * contained in the address_space struct it points to. 1887 * 1888 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1889 * where the page was found will be held for write. So, we won't recheck 1890 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1891 * LOCKED. 1892 */ 1893 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, 1894 bool locked) 1895 { 1896 struct address_space *mapping = page_mapping(page); 1897 pgoff_t pgoff_start, pgoff_end; 1898 struct vm_area_struct *vma; 1899 1900 /* 1901 * The page lock not only makes sure that page->mapping cannot 1902 * suddenly be NULLified by truncation, it makes sure that the 1903 * structure at mapping cannot be freed and reused yet, 1904 * so we can safely take mapping->i_mmap_rwsem. 1905 */ 1906 VM_BUG_ON_PAGE(!PageLocked(page), page); 1907 1908 if (!mapping) 1909 return; 1910 1911 pgoff_start = page_to_pgoff(page); 1912 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; 1913 if (!locked) 1914 i_mmap_lock_read(mapping); 1915 vma_interval_tree_foreach(vma, &mapping->i_mmap, 1916 pgoff_start, pgoff_end) { 1917 unsigned long address = vma_address(page, vma); 1918 1919 cond_resched(); 1920 1921 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1922 continue; 1923 1924 if (!rwc->rmap_one(page, vma, address, rwc->arg)) 1925 goto done; 1926 if (rwc->done && rwc->done(page)) 1927 goto done; 1928 } 1929 1930 done: 1931 if (!locked) 1932 i_mmap_unlock_read(mapping); 1933 } 1934 1935 void rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1936 { 1937 if (unlikely(PageKsm(page))) 1938 rmap_walk_ksm(page, rwc); 1939 else if (PageAnon(page)) 1940 rmap_walk_anon(page, rwc, false); 1941 else 1942 rmap_walk_file(page, rwc, false); 1943 } 1944 1945 /* Like rmap_walk, but caller holds relevant rmap lock */ 1946 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) 1947 { 1948 /* no ksm support for now */ 1949 VM_BUG_ON_PAGE(PageKsm(page), page); 1950 if (PageAnon(page)) 1951 rmap_walk_anon(page, rwc, true); 1952 else 1953 rmap_walk_file(page, rwc, true); 1954 } 1955 1956 #ifdef CONFIG_HUGETLB_PAGE 1957 /* 1958 * The following two functions are for anonymous (private mapped) hugepages. 1959 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1960 * and no lru code, because we handle hugepages differently from common pages. 1961 */ 1962 void hugepage_add_anon_rmap(struct page *page, 1963 struct vm_area_struct *vma, unsigned long address) 1964 { 1965 struct anon_vma *anon_vma = vma->anon_vma; 1966 int first; 1967 1968 BUG_ON(!PageLocked(page)); 1969 BUG_ON(!anon_vma); 1970 /* address might be in next vma when migration races vma_adjust */ 1971 first = atomic_inc_and_test(compound_mapcount_ptr(page)); 1972 if (first) 1973 __page_set_anon_rmap(page, vma, address, 0); 1974 } 1975 1976 void hugepage_add_new_anon_rmap(struct page *page, 1977 struct vm_area_struct *vma, unsigned long address) 1978 { 1979 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1980 atomic_set(compound_mapcount_ptr(page), 0); 1981 if (hpage_pincount_available(page)) 1982 atomic_set(compound_pincount_ptr(page), 0); 1983 1984 __page_set_anon_rmap(page, vma, address, 1); 1985 } 1986 #endif /* CONFIG_HUGETLB_PAGE */ 1987