xref: /linux/mm/rmap.c (revision cf4cebcec619d963fa7496018f03cb0ff00dc257)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                       folio_lock_memcg move_lock (in block_dirty_folio)
36  *                         i_pages lock (widely used)
37  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
38  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
41  *                       i_pages lock (widely used, in set_page_dirty,
42  *                                 in arch-dependent flush_dcache_mmap_lock,
43  *                                 within bdi.wb->list_lock in __sync_single_inode)
44  *
45  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
46  *   ->tasklist_lock
47  *     pte map lock
48  *
49  * hugetlbfs PageHuge() take locks in this order:
50  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
51  *     vma_lock (hugetlb specific lock for pmd_sharing)
52  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
53  *         folio_lock
54  */
55 
56 #include <linux/mm.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/task.h>
59 #include <linux/pagemap.h>
60 #include <linux/swap.h>
61 #include <linux/swapops.h>
62 #include <linux/slab.h>
63 #include <linux/init.h>
64 #include <linux/ksm.h>
65 #include <linux/rmap.h>
66 #include <linux/rcupdate.h>
67 #include <linux/export.h>
68 #include <linux/memcontrol.h>
69 #include <linux/mmu_notifier.h>
70 #include <linux/migrate.h>
71 #include <linux/hugetlb.h>
72 #include <linux/huge_mm.h>
73 #include <linux/backing-dev.h>
74 #include <linux/page_idle.h>
75 #include <linux/memremap.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/mm_inline.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 				      unsigned long uaddr)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 				      unsigned long uaddr)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /*
771  * At what user virtual address is page expected in vma?
772  * Caller should check the page is actually part of the vma.
773  */
774 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
775 {
776 	struct folio *folio = page_folio(page);
777 	pgoff_t pgoff;
778 
779 	if (folio_test_anon(folio)) {
780 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
781 		/*
782 		 * Note: swapoff's unuse_vma() is more efficient with this
783 		 * check, and needs it to match anon_vma when KSM is active.
784 		 */
785 		if (!vma->anon_vma || !page__anon_vma ||
786 		    vma->anon_vma->root != page__anon_vma->root)
787 			return -EFAULT;
788 	} else if (!vma->vm_file) {
789 		return -EFAULT;
790 	} else if (vma->vm_file->f_mapping != folio->mapping) {
791 		return -EFAULT;
792 	}
793 
794 	/* The !page__anon_vma above handles KSM folios */
795 	pgoff = folio->index + folio_page_idx(folio, page);
796 	return vma_address(vma, pgoff, 1);
797 }
798 
799 /*
800  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
801  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
802  * represents.
803  */
804 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
805 {
806 	pgd_t *pgd;
807 	p4d_t *p4d;
808 	pud_t *pud;
809 	pmd_t *pmd = NULL;
810 
811 	pgd = pgd_offset(mm, address);
812 	if (!pgd_present(*pgd))
813 		goto out;
814 
815 	p4d = p4d_offset(pgd, address);
816 	if (!p4d_present(*p4d))
817 		goto out;
818 
819 	pud = pud_offset(p4d, address);
820 	if (!pud_present(*pud))
821 		goto out;
822 
823 	pmd = pmd_offset(pud, address);
824 out:
825 	return pmd;
826 }
827 
828 struct folio_referenced_arg {
829 	int mapcount;
830 	int referenced;
831 	unsigned long vm_flags;
832 	struct mem_cgroup *memcg;
833 };
834 
835 /*
836  * arg: folio_referenced_arg will be passed
837  */
838 static bool folio_referenced_one(struct folio *folio,
839 		struct vm_area_struct *vma, unsigned long address, void *arg)
840 {
841 	struct folio_referenced_arg *pra = arg;
842 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
843 	int referenced = 0;
844 	unsigned long start = address, ptes = 0;
845 
846 	while (page_vma_mapped_walk(&pvmw)) {
847 		address = pvmw.address;
848 
849 		if (vma->vm_flags & VM_LOCKED) {
850 			if (!folio_test_large(folio) || !pvmw.pte) {
851 				/* Restore the mlock which got missed */
852 				mlock_vma_folio(folio, vma);
853 				page_vma_mapped_walk_done(&pvmw);
854 				pra->vm_flags |= VM_LOCKED;
855 				return false; /* To break the loop */
856 			}
857 			/*
858 			 * For large folio fully mapped to VMA, will
859 			 * be handled after the pvmw loop.
860 			 *
861 			 * For large folio cross VMA boundaries, it's
862 			 * expected to be picked  by page reclaim. But
863 			 * should skip reference of pages which are in
864 			 * the range of VM_LOCKED vma. As page reclaim
865 			 * should just count the reference of pages out
866 			 * the range of VM_LOCKED vma.
867 			 */
868 			ptes++;
869 			pra->mapcount--;
870 			continue;
871 		}
872 
873 		if (pvmw.pte) {
874 			if (lru_gen_enabled() &&
875 			    pte_young(ptep_get(pvmw.pte))) {
876 				lru_gen_look_around(&pvmw);
877 				referenced++;
878 			}
879 
880 			if (ptep_clear_flush_young_notify(vma, address,
881 						pvmw.pte))
882 				referenced++;
883 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
884 			if (pmdp_clear_flush_young_notify(vma, address,
885 						pvmw.pmd))
886 				referenced++;
887 		} else {
888 			/* unexpected pmd-mapped folio? */
889 			WARN_ON_ONCE(1);
890 		}
891 
892 		pra->mapcount--;
893 	}
894 
895 	if ((vma->vm_flags & VM_LOCKED) &&
896 			folio_test_large(folio) &&
897 			folio_within_vma(folio, vma)) {
898 		unsigned long s_align, e_align;
899 
900 		s_align = ALIGN_DOWN(start, PMD_SIZE);
901 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
902 
903 		/* folio doesn't cross page table boundary and fully mapped */
904 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
905 			/* Restore the mlock which got missed */
906 			mlock_vma_folio(folio, vma);
907 			pra->vm_flags |= VM_LOCKED;
908 			return false; /* To break the loop */
909 		}
910 	}
911 
912 	if (referenced)
913 		folio_clear_idle(folio);
914 	if (folio_test_clear_young(folio))
915 		referenced++;
916 
917 	if (referenced) {
918 		pra->referenced++;
919 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
920 	}
921 
922 	if (!pra->mapcount)
923 		return false; /* To break the loop */
924 
925 	return true;
926 }
927 
928 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
929 {
930 	struct folio_referenced_arg *pra = arg;
931 	struct mem_cgroup *memcg = pra->memcg;
932 
933 	/*
934 	 * Ignore references from this mapping if it has no recency. If the
935 	 * folio has been used in another mapping, we will catch it; if this
936 	 * other mapping is already gone, the unmap path will have set the
937 	 * referenced flag or activated the folio in zap_pte_range().
938 	 */
939 	if (!vma_has_recency(vma))
940 		return true;
941 
942 	/*
943 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
944 	 * of references from different cgroups.
945 	 */
946 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
947 		return true;
948 
949 	return false;
950 }
951 
952 /**
953  * folio_referenced() - Test if the folio was referenced.
954  * @folio: The folio to test.
955  * @is_locked: Caller holds lock on the folio.
956  * @memcg: target memory cgroup
957  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
958  *
959  * Quick test_and_clear_referenced for all mappings of a folio,
960  *
961  * Return: The number of mappings which referenced the folio. Return -1 if
962  * the function bailed out due to rmap lock contention.
963  */
964 int folio_referenced(struct folio *folio, int is_locked,
965 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
966 {
967 	bool we_locked = false;
968 	struct folio_referenced_arg pra = {
969 		.mapcount = folio_mapcount(folio),
970 		.memcg = memcg,
971 	};
972 	struct rmap_walk_control rwc = {
973 		.rmap_one = folio_referenced_one,
974 		.arg = (void *)&pra,
975 		.anon_lock = folio_lock_anon_vma_read,
976 		.try_lock = true,
977 		.invalid_vma = invalid_folio_referenced_vma,
978 	};
979 
980 	*vm_flags = 0;
981 	if (!pra.mapcount)
982 		return 0;
983 
984 	if (!folio_raw_mapping(folio))
985 		return 0;
986 
987 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
988 		we_locked = folio_trylock(folio);
989 		if (!we_locked)
990 			return 1;
991 	}
992 
993 	rmap_walk(folio, &rwc);
994 	*vm_flags = pra.vm_flags;
995 
996 	if (we_locked)
997 		folio_unlock(folio);
998 
999 	return rwc.contended ? -1 : pra.referenced;
1000 }
1001 
1002 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1003 {
1004 	int cleaned = 0;
1005 	struct vm_area_struct *vma = pvmw->vma;
1006 	struct mmu_notifier_range range;
1007 	unsigned long address = pvmw->address;
1008 
1009 	/*
1010 	 * We have to assume the worse case ie pmd for invalidation. Note that
1011 	 * the folio can not be freed from this function.
1012 	 */
1013 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1014 				vma->vm_mm, address, vma_address_end(pvmw));
1015 	mmu_notifier_invalidate_range_start(&range);
1016 
1017 	while (page_vma_mapped_walk(pvmw)) {
1018 		int ret = 0;
1019 
1020 		address = pvmw->address;
1021 		if (pvmw->pte) {
1022 			pte_t *pte = pvmw->pte;
1023 			pte_t entry = ptep_get(pte);
1024 
1025 			if (!pte_dirty(entry) && !pte_write(entry))
1026 				continue;
1027 
1028 			flush_cache_page(vma, address, pte_pfn(entry));
1029 			entry = ptep_clear_flush(vma, address, pte);
1030 			entry = pte_wrprotect(entry);
1031 			entry = pte_mkclean(entry);
1032 			set_pte_at(vma->vm_mm, address, pte, entry);
1033 			ret = 1;
1034 		} else {
1035 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1036 			pmd_t *pmd = pvmw->pmd;
1037 			pmd_t entry;
1038 
1039 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1040 				continue;
1041 
1042 			flush_cache_range(vma, address,
1043 					  address + HPAGE_PMD_SIZE);
1044 			entry = pmdp_invalidate(vma, address, pmd);
1045 			entry = pmd_wrprotect(entry);
1046 			entry = pmd_mkclean(entry);
1047 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1048 			ret = 1;
1049 #else
1050 			/* unexpected pmd-mapped folio? */
1051 			WARN_ON_ONCE(1);
1052 #endif
1053 		}
1054 
1055 		if (ret)
1056 			cleaned++;
1057 	}
1058 
1059 	mmu_notifier_invalidate_range_end(&range);
1060 
1061 	return cleaned;
1062 }
1063 
1064 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1065 			     unsigned long address, void *arg)
1066 {
1067 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1068 	int *cleaned = arg;
1069 
1070 	*cleaned += page_vma_mkclean_one(&pvmw);
1071 
1072 	return true;
1073 }
1074 
1075 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1076 {
1077 	if (vma->vm_flags & VM_SHARED)
1078 		return false;
1079 
1080 	return true;
1081 }
1082 
1083 int folio_mkclean(struct folio *folio)
1084 {
1085 	int cleaned = 0;
1086 	struct address_space *mapping;
1087 	struct rmap_walk_control rwc = {
1088 		.arg = (void *)&cleaned,
1089 		.rmap_one = page_mkclean_one,
1090 		.invalid_vma = invalid_mkclean_vma,
1091 	};
1092 
1093 	BUG_ON(!folio_test_locked(folio));
1094 
1095 	if (!folio_mapped(folio))
1096 		return 0;
1097 
1098 	mapping = folio_mapping(folio);
1099 	if (!mapping)
1100 		return 0;
1101 
1102 	rmap_walk(folio, &rwc);
1103 
1104 	return cleaned;
1105 }
1106 EXPORT_SYMBOL_GPL(folio_mkclean);
1107 
1108 /**
1109  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1110  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1111  *                     within the @vma of shared mappings. And since clean PTEs
1112  *                     should also be readonly, write protects them too.
1113  * @pfn: start pfn.
1114  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1115  * @pgoff: page offset that the @pfn mapped with.
1116  * @vma: vma that @pfn mapped within.
1117  *
1118  * Returns the number of cleaned PTEs (including PMDs).
1119  */
1120 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1121 		      struct vm_area_struct *vma)
1122 {
1123 	struct page_vma_mapped_walk pvmw = {
1124 		.pfn		= pfn,
1125 		.nr_pages	= nr_pages,
1126 		.pgoff		= pgoff,
1127 		.vma		= vma,
1128 		.flags		= PVMW_SYNC,
1129 	};
1130 
1131 	if (invalid_mkclean_vma(vma, NULL))
1132 		return 0;
1133 
1134 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1135 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1136 
1137 	return page_vma_mkclean_one(&pvmw);
1138 }
1139 
1140 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1141 		struct page *page, int nr_pages, enum rmap_level level,
1142 		int *nr_pmdmapped)
1143 {
1144 	atomic_t *mapped = &folio->_nr_pages_mapped;
1145 	const int orig_nr_pages = nr_pages;
1146 	int first, nr = 0;
1147 
1148 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1149 
1150 	switch (level) {
1151 	case RMAP_LEVEL_PTE:
1152 		if (!folio_test_large(folio)) {
1153 			nr = atomic_inc_and_test(&page->_mapcount);
1154 			break;
1155 		}
1156 
1157 		do {
1158 			first = atomic_inc_and_test(&page->_mapcount);
1159 			if (first) {
1160 				first = atomic_inc_return_relaxed(mapped);
1161 				if (first < ENTIRELY_MAPPED)
1162 					nr++;
1163 			}
1164 		} while (page++, --nr_pages > 0);
1165 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1166 		break;
1167 	case RMAP_LEVEL_PMD:
1168 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1169 		if (first) {
1170 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1171 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1172 				*nr_pmdmapped = folio_nr_pages(folio);
1173 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1174 				/* Raced ahead of a remove and another add? */
1175 				if (unlikely(nr < 0))
1176 					nr = 0;
1177 			} else {
1178 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1179 				nr = 0;
1180 			}
1181 		}
1182 		atomic_inc(&folio->_large_mapcount);
1183 		break;
1184 	}
1185 	return nr;
1186 }
1187 
1188 /**
1189  * folio_move_anon_rmap - move a folio to our anon_vma
1190  * @folio:	The folio to move to our anon_vma
1191  * @vma:	The vma the folio belongs to
1192  *
1193  * When a folio belongs exclusively to one process after a COW event,
1194  * that folio can be moved into the anon_vma that belongs to just that
1195  * process, so the rmap code will not search the parent or sibling processes.
1196  */
1197 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1198 {
1199 	void *anon_vma = vma->anon_vma;
1200 
1201 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1202 	VM_BUG_ON_VMA(!anon_vma, vma);
1203 
1204 	anon_vma += PAGE_MAPPING_ANON;
1205 	/*
1206 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1207 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1208 	 * folio_test_anon()) will not see one without the other.
1209 	 */
1210 	WRITE_ONCE(folio->mapping, anon_vma);
1211 }
1212 
1213 /**
1214  * __folio_set_anon - set up a new anonymous rmap for a folio
1215  * @folio:	The folio to set up the new anonymous rmap for.
1216  * @vma:	VM area to add the folio to.
1217  * @address:	User virtual address of the mapping
1218  * @exclusive:	Whether the folio is exclusive to the process.
1219  */
1220 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1221 			     unsigned long address, bool exclusive)
1222 {
1223 	struct anon_vma *anon_vma = vma->anon_vma;
1224 
1225 	BUG_ON(!anon_vma);
1226 
1227 	/*
1228 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1229 	 * possible anon_vma for the folio mapping!
1230 	 */
1231 	if (!exclusive)
1232 		anon_vma = anon_vma->root;
1233 
1234 	/*
1235 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1236 	 * Make sure the compiler doesn't split the stores of anon_vma and
1237 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1238 	 * could mistake the mapping for a struct address_space and crash.
1239 	 */
1240 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1241 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1242 	folio->index = linear_page_index(vma, address);
1243 }
1244 
1245 /**
1246  * __page_check_anon_rmap - sanity check anonymous rmap addition
1247  * @folio:	The folio containing @page.
1248  * @page:	the page to check the mapping of
1249  * @vma:	the vm area in which the mapping is added
1250  * @address:	the user virtual address mapped
1251  */
1252 static void __page_check_anon_rmap(struct folio *folio, struct page *page,
1253 	struct vm_area_struct *vma, unsigned long address)
1254 {
1255 	/*
1256 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1257 	 * be set up correctly at this point.
1258 	 *
1259 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1260 	 * always holds the page locked.
1261 	 *
1262 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1263 	 * are initially only visible via the pagetables, and the pte is locked
1264 	 * over the call to folio_add_new_anon_rmap.
1265 	 */
1266 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1267 			folio);
1268 	VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1269 		       page);
1270 }
1271 
1272 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1273 {
1274 	int idx;
1275 
1276 	if (nr) {
1277 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1278 		__lruvec_stat_mod_folio(folio, idx, nr);
1279 	}
1280 	if (nr_pmdmapped) {
1281 		if (folio_test_anon(folio)) {
1282 			idx = NR_ANON_THPS;
1283 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1284 		} else {
1285 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1286 			idx = folio_test_swapbacked(folio) ?
1287 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1288 			__mod_node_page_state(folio_pgdat(folio), idx,
1289 					      nr_pmdmapped);
1290 		}
1291 	}
1292 }
1293 
1294 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1295 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1296 		unsigned long address, rmap_t flags, enum rmap_level level)
1297 {
1298 	int i, nr, nr_pmdmapped = 0;
1299 
1300 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1301 
1302 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1303 
1304 	if (likely(!folio_test_ksm(folio)))
1305 		__page_check_anon_rmap(folio, page, vma, address);
1306 
1307 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1308 
1309 	if (flags & RMAP_EXCLUSIVE) {
1310 		switch (level) {
1311 		case RMAP_LEVEL_PTE:
1312 			for (i = 0; i < nr_pages; i++)
1313 				SetPageAnonExclusive(page + i);
1314 			break;
1315 		case RMAP_LEVEL_PMD:
1316 			SetPageAnonExclusive(page);
1317 			break;
1318 		}
1319 	}
1320 	for (i = 0; i < nr_pages; i++) {
1321 		struct page *cur_page = page + i;
1322 
1323 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1324 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1325 				  (folio_test_large(folio) &&
1326 				   folio_entire_mapcount(folio) > 1)) &&
1327 				 PageAnonExclusive(cur_page), folio);
1328 	}
1329 
1330 	/*
1331 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1332 	 * not easy to check whether the large folio is fully mapped to VMA
1333 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1334 	 * large folio.
1335 	 */
1336 	if (!folio_test_large(folio))
1337 		mlock_vma_folio(folio, vma);
1338 }
1339 
1340 /**
1341  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1342  * @folio:	The folio to add the mappings to
1343  * @page:	The first page to add
1344  * @nr_pages:	The number of pages which will be mapped
1345  * @vma:	The vm area in which the mappings are added
1346  * @address:	The user virtual address of the first page to map
1347  * @flags:	The rmap flags
1348  *
1349  * The page range of folio is defined by [first_page, first_page + nr_pages)
1350  *
1351  * The caller needs to hold the page table lock, and the page must be locked in
1352  * the anon_vma case: to serialize mapping,index checking after setting,
1353  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1354  * (but KSM folios are never downgraded).
1355  */
1356 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1357 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1358 		rmap_t flags)
1359 {
1360 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1361 			      RMAP_LEVEL_PTE);
1362 }
1363 
1364 /**
1365  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1366  * @folio:	The folio to add the mapping to
1367  * @page:	The first page to add
1368  * @vma:	The vm area in which the mapping is added
1369  * @address:	The user virtual address of the first page to map
1370  * @flags:	The rmap flags
1371  *
1372  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1373  *
1374  * The caller needs to hold the page table lock, and the page must be locked in
1375  * the anon_vma case: to serialize mapping,index checking after setting.
1376  */
1377 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1378 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1379 {
1380 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1381 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1382 			      RMAP_LEVEL_PMD);
1383 #else
1384 	WARN_ON_ONCE(true);
1385 #endif
1386 }
1387 
1388 /**
1389  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1390  * @folio:	The folio to add the mapping to.
1391  * @vma:	the vm area in which the mapping is added
1392  * @address:	the user virtual address mapped
1393  * @flags:	The rmap flags
1394  *
1395  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1396  * This means the inc-and-test can be bypassed.
1397  * The folio doesn't necessarily need to be locked while it's exclusive
1398  * unless two threads map it concurrently. However, the folio must be
1399  * locked if it's shared.
1400  *
1401  * If the folio is pmd-mappable, it is accounted as a THP.
1402  */
1403 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1404 		unsigned long address, rmap_t flags)
1405 {
1406 	const int nr = folio_nr_pages(folio);
1407 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1408 	int nr_pmdmapped = 0;
1409 
1410 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1411 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1412 	VM_BUG_ON_VMA(address < vma->vm_start ||
1413 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1414 
1415 	/*
1416 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1417 	 * under memory pressure.
1418 	 */
1419 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1420 		__folio_set_swapbacked(folio);
1421 	__folio_set_anon(folio, vma, address, exclusive);
1422 
1423 	if (likely(!folio_test_large(folio))) {
1424 		/* increment count (starts at -1) */
1425 		atomic_set(&folio->_mapcount, 0);
1426 		if (exclusive)
1427 			SetPageAnonExclusive(&folio->page);
1428 	} else if (!folio_test_pmd_mappable(folio)) {
1429 		int i;
1430 
1431 		for (i = 0; i < nr; i++) {
1432 			struct page *page = folio_page(folio, i);
1433 
1434 			/* increment count (starts at -1) */
1435 			atomic_set(&page->_mapcount, 0);
1436 			if (exclusive)
1437 				SetPageAnonExclusive(page);
1438 		}
1439 
1440 		/* increment count (starts at -1) */
1441 		atomic_set(&folio->_large_mapcount, nr - 1);
1442 		atomic_set(&folio->_nr_pages_mapped, nr);
1443 	} else {
1444 		/* increment count (starts at -1) */
1445 		atomic_set(&folio->_entire_mapcount, 0);
1446 		/* increment count (starts at -1) */
1447 		atomic_set(&folio->_large_mapcount, 0);
1448 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1449 		if (exclusive)
1450 			SetPageAnonExclusive(&folio->page);
1451 		nr_pmdmapped = nr;
1452 	}
1453 
1454 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1455 }
1456 
1457 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1458 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1459 		enum rmap_level level)
1460 {
1461 	int nr, nr_pmdmapped = 0;
1462 
1463 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1464 
1465 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1466 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1467 
1468 	/* See comments in folio_add_anon_rmap_*() */
1469 	if (!folio_test_large(folio))
1470 		mlock_vma_folio(folio, vma);
1471 }
1472 
1473 /**
1474  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1475  * @folio:	The folio to add the mappings to
1476  * @page:	The first page to add
1477  * @nr_pages:	The number of pages that will be mapped using PTEs
1478  * @vma:	The vm area in which the mappings are added
1479  *
1480  * The page range of the folio is defined by [page, page + nr_pages)
1481  *
1482  * The caller needs to hold the page table lock.
1483  */
1484 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1485 		int nr_pages, struct vm_area_struct *vma)
1486 {
1487 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1488 }
1489 
1490 /**
1491  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1492  * @folio:	The folio to add the mapping to
1493  * @page:	The first page to add
1494  * @vma:	The vm area in which the mapping is added
1495  *
1496  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1497  *
1498  * The caller needs to hold the page table lock.
1499  */
1500 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1501 		struct vm_area_struct *vma)
1502 {
1503 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1504 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1505 #else
1506 	WARN_ON_ONCE(true);
1507 #endif
1508 }
1509 
1510 static __always_inline void __folio_remove_rmap(struct folio *folio,
1511 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1512 		enum rmap_level level)
1513 {
1514 	atomic_t *mapped = &folio->_nr_pages_mapped;
1515 	int last, nr = 0, nr_pmdmapped = 0;
1516 	bool partially_mapped = false;
1517 
1518 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1519 
1520 	switch (level) {
1521 	case RMAP_LEVEL_PTE:
1522 		if (!folio_test_large(folio)) {
1523 			nr = atomic_add_negative(-1, &page->_mapcount);
1524 			break;
1525 		}
1526 
1527 		atomic_sub(nr_pages, &folio->_large_mapcount);
1528 		do {
1529 			last = atomic_add_negative(-1, &page->_mapcount);
1530 			if (last) {
1531 				last = atomic_dec_return_relaxed(mapped);
1532 				if (last < ENTIRELY_MAPPED)
1533 					nr++;
1534 			}
1535 		} while (page++, --nr_pages > 0);
1536 
1537 		partially_mapped = nr && atomic_read(mapped);
1538 		break;
1539 	case RMAP_LEVEL_PMD:
1540 		atomic_dec(&folio->_large_mapcount);
1541 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1542 		if (last) {
1543 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1544 			if (likely(nr < ENTIRELY_MAPPED)) {
1545 				nr_pmdmapped = folio_nr_pages(folio);
1546 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1547 				/* Raced ahead of another remove and an add? */
1548 				if (unlikely(nr < 0))
1549 					nr = 0;
1550 			} else {
1551 				/* An add of ENTIRELY_MAPPED raced ahead */
1552 				nr = 0;
1553 			}
1554 		}
1555 
1556 		partially_mapped = nr < nr_pmdmapped;
1557 		break;
1558 	}
1559 
1560 	if (nr) {
1561 		/*
1562 		 * Queue anon large folio for deferred split if at least one
1563 		 * page of the folio is unmapped and at least one page
1564 		 * is still mapped.
1565 		 *
1566 		 * Check partially_mapped first to ensure it is a large folio.
1567 		 */
1568 		if (folio_test_anon(folio) && partially_mapped &&
1569 		    list_empty(&folio->_deferred_list))
1570 			deferred_split_folio(folio);
1571 	}
1572 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1573 
1574 	/*
1575 	 * It would be tidy to reset folio_test_anon mapping when fully
1576 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1577 	 * which increments mapcount after us but sets mapping before us:
1578 	 * so leave the reset to free_pages_prepare, and remember that
1579 	 * it's only reliable while mapped.
1580 	 */
1581 
1582 	munlock_vma_folio(folio, vma);
1583 }
1584 
1585 /**
1586  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1587  * @folio:	The folio to remove the mappings from
1588  * @page:	The first page to remove
1589  * @nr_pages:	The number of pages that will be removed from the mapping
1590  * @vma:	The vm area from which the mappings are removed
1591  *
1592  * The page range of the folio is defined by [page, page + nr_pages)
1593  *
1594  * The caller needs to hold the page table lock.
1595  */
1596 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1597 		int nr_pages, struct vm_area_struct *vma)
1598 {
1599 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1600 }
1601 
1602 /**
1603  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1604  * @folio:	The folio to remove the mapping from
1605  * @page:	The first page to remove
1606  * @vma:	The vm area from which the mapping is removed
1607  *
1608  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1609  *
1610  * The caller needs to hold the page table lock.
1611  */
1612 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1613 		struct vm_area_struct *vma)
1614 {
1615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1616 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1617 #else
1618 	WARN_ON_ONCE(true);
1619 #endif
1620 }
1621 
1622 /*
1623  * @arg: enum ttu_flags will be passed to this argument
1624  */
1625 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1626 		     unsigned long address, void *arg)
1627 {
1628 	struct mm_struct *mm = vma->vm_mm;
1629 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1630 	pte_t pteval;
1631 	struct page *subpage;
1632 	bool anon_exclusive, ret = true;
1633 	struct mmu_notifier_range range;
1634 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1635 	unsigned long pfn;
1636 	unsigned long hsz = 0;
1637 
1638 	/*
1639 	 * When racing against e.g. zap_pte_range() on another cpu,
1640 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1641 	 * try_to_unmap() may return before page_mapped() has become false,
1642 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1643 	 */
1644 	if (flags & TTU_SYNC)
1645 		pvmw.flags = PVMW_SYNC;
1646 
1647 	/*
1648 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1649 	 * For hugetlb, it could be much worse if we need to do pud
1650 	 * invalidation in the case of pmd sharing.
1651 	 *
1652 	 * Note that the folio can not be freed in this function as call of
1653 	 * try_to_unmap() must hold a reference on the folio.
1654 	 */
1655 	range.end = vma_address_end(&pvmw);
1656 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1657 				address, range.end);
1658 	if (folio_test_hugetlb(folio)) {
1659 		/*
1660 		 * If sharing is possible, start and end will be adjusted
1661 		 * accordingly.
1662 		 */
1663 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1664 						     &range.end);
1665 
1666 		/* We need the huge page size for set_huge_pte_at() */
1667 		hsz = huge_page_size(hstate_vma(vma));
1668 	}
1669 	mmu_notifier_invalidate_range_start(&range);
1670 
1671 	while (page_vma_mapped_walk(&pvmw)) {
1672 		/*
1673 		 * If the folio is in an mlock()d vma, we must not swap it out.
1674 		 */
1675 		if (!(flags & TTU_IGNORE_MLOCK) &&
1676 		    (vma->vm_flags & VM_LOCKED)) {
1677 			/* Restore the mlock which got missed */
1678 			if (!folio_test_large(folio))
1679 				mlock_vma_folio(folio, vma);
1680 			goto walk_abort;
1681 		}
1682 
1683 		if (!pvmw.pte) {
1684 			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1685 						  folio))
1686 				goto walk_done;
1687 
1688 			if (flags & TTU_SPLIT_HUGE_PMD) {
1689 				/*
1690 				 * We temporarily have to drop the PTL and
1691 				 * restart so we can process the PTE-mapped THP.
1692 				 */
1693 				split_huge_pmd_locked(vma, pvmw.address,
1694 						      pvmw.pmd, false, folio);
1695 				flags &= ~TTU_SPLIT_HUGE_PMD;
1696 				page_vma_mapped_walk_restart(&pvmw);
1697 				continue;
1698 			}
1699 		}
1700 
1701 		/* Unexpected PMD-mapped THP? */
1702 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1703 
1704 		pfn = pte_pfn(ptep_get(pvmw.pte));
1705 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1706 		address = pvmw.address;
1707 		anon_exclusive = folio_test_anon(folio) &&
1708 				 PageAnonExclusive(subpage);
1709 
1710 		if (folio_test_hugetlb(folio)) {
1711 			bool anon = folio_test_anon(folio);
1712 
1713 			/*
1714 			 * The try_to_unmap() is only passed a hugetlb page
1715 			 * in the case where the hugetlb page is poisoned.
1716 			 */
1717 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1718 			/*
1719 			 * huge_pmd_unshare may unmap an entire PMD page.
1720 			 * There is no way of knowing exactly which PMDs may
1721 			 * be cached for this mm, so we must flush them all.
1722 			 * start/end were already adjusted above to cover this
1723 			 * range.
1724 			 */
1725 			flush_cache_range(vma, range.start, range.end);
1726 
1727 			/*
1728 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1729 			 * held in write mode.  Caller needs to explicitly
1730 			 * do this outside rmap routines.
1731 			 *
1732 			 * We also must hold hugetlb vma_lock in write mode.
1733 			 * Lock order dictates acquiring vma_lock BEFORE
1734 			 * i_mmap_rwsem.  We can only try lock here and fail
1735 			 * if unsuccessful.
1736 			 */
1737 			if (!anon) {
1738 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1739 				if (!hugetlb_vma_trylock_write(vma))
1740 					goto walk_abort;
1741 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1742 					hugetlb_vma_unlock_write(vma);
1743 					flush_tlb_range(vma,
1744 						range.start, range.end);
1745 					/*
1746 					 * The ref count of the PMD page was
1747 					 * dropped which is part of the way map
1748 					 * counting is done for shared PMDs.
1749 					 * Return 'true' here.  When there is
1750 					 * no other sharing, huge_pmd_unshare
1751 					 * returns false and we will unmap the
1752 					 * actual page and drop map count
1753 					 * to zero.
1754 					 */
1755 					goto walk_done;
1756 				}
1757 				hugetlb_vma_unlock_write(vma);
1758 			}
1759 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1760 		} else {
1761 			flush_cache_page(vma, address, pfn);
1762 			/* Nuke the page table entry. */
1763 			if (should_defer_flush(mm, flags)) {
1764 				/*
1765 				 * We clear the PTE but do not flush so potentially
1766 				 * a remote CPU could still be writing to the folio.
1767 				 * If the entry was previously clean then the
1768 				 * architecture must guarantee that a clear->dirty
1769 				 * transition on a cached TLB entry is written through
1770 				 * and traps if the PTE is unmapped.
1771 				 */
1772 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1773 
1774 				set_tlb_ubc_flush_pending(mm, pteval, address);
1775 			} else {
1776 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1777 			}
1778 		}
1779 
1780 		/*
1781 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1782 		 * we may want to replace a none pte with a marker pte if
1783 		 * it's file-backed, so we don't lose the tracking info.
1784 		 */
1785 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1786 
1787 		/* Set the dirty flag on the folio now the pte is gone. */
1788 		if (pte_dirty(pteval))
1789 			folio_mark_dirty(folio);
1790 
1791 		/* Update high watermark before we lower rss */
1792 		update_hiwater_rss(mm);
1793 
1794 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1795 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1796 			if (folio_test_hugetlb(folio)) {
1797 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1798 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1799 						hsz);
1800 			} else {
1801 				dec_mm_counter(mm, mm_counter(folio));
1802 				set_pte_at(mm, address, pvmw.pte, pteval);
1803 			}
1804 
1805 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1806 			/*
1807 			 * The guest indicated that the page content is of no
1808 			 * interest anymore. Simply discard the pte, vmscan
1809 			 * will take care of the rest.
1810 			 * A future reference will then fault in a new zero
1811 			 * page. When userfaultfd is active, we must not drop
1812 			 * this page though, as its main user (postcopy
1813 			 * migration) will not expect userfaults on already
1814 			 * copied pages.
1815 			 */
1816 			dec_mm_counter(mm, mm_counter(folio));
1817 		} else if (folio_test_anon(folio)) {
1818 			swp_entry_t entry = page_swap_entry(subpage);
1819 			pte_t swp_pte;
1820 			/*
1821 			 * Store the swap location in the pte.
1822 			 * See handle_pte_fault() ...
1823 			 */
1824 			if (unlikely(folio_test_swapbacked(folio) !=
1825 					folio_test_swapcache(folio))) {
1826 				WARN_ON_ONCE(1);
1827 				goto walk_abort;
1828 			}
1829 
1830 			/* MADV_FREE page check */
1831 			if (!folio_test_swapbacked(folio)) {
1832 				int ref_count, map_count;
1833 
1834 				/*
1835 				 * Synchronize with gup_pte_range():
1836 				 * - clear PTE; barrier; read refcount
1837 				 * - inc refcount; barrier; read PTE
1838 				 */
1839 				smp_mb();
1840 
1841 				ref_count = folio_ref_count(folio);
1842 				map_count = folio_mapcount(folio);
1843 
1844 				/*
1845 				 * Order reads for page refcount and dirty flag
1846 				 * (see comments in __remove_mapping()).
1847 				 */
1848 				smp_rmb();
1849 
1850 				/*
1851 				 * The only page refs must be one from isolation
1852 				 * plus the rmap(s) (dropped by discard:).
1853 				 */
1854 				if (ref_count == 1 + map_count &&
1855 				    (!folio_test_dirty(folio) ||
1856 				     /*
1857 				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1858 				      * ones can be dropped even if they've
1859 				      * been dirtied.
1860 				      */
1861 				     (vma->vm_flags & VM_DROPPABLE))) {
1862 					dec_mm_counter(mm, MM_ANONPAGES);
1863 					goto discard;
1864 				}
1865 
1866 				/*
1867 				 * If the folio was redirtied, it cannot be
1868 				 * discarded. Remap the page to page table.
1869 				 */
1870 				set_pte_at(mm, address, pvmw.pte, pteval);
1871 				/*
1872 				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1873 				 * never get swap backed on failure to drop.
1874 				 */
1875 				if (!(vma->vm_flags & VM_DROPPABLE))
1876 					folio_set_swapbacked(folio);
1877 				goto walk_abort;
1878 			}
1879 
1880 			if (swap_duplicate(entry) < 0) {
1881 				set_pte_at(mm, address, pvmw.pte, pteval);
1882 				goto walk_abort;
1883 			}
1884 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1885 				swap_free(entry);
1886 				set_pte_at(mm, address, pvmw.pte, pteval);
1887 				goto walk_abort;
1888 			}
1889 
1890 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1891 			if (anon_exclusive &&
1892 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1893 				swap_free(entry);
1894 				set_pte_at(mm, address, pvmw.pte, pteval);
1895 				goto walk_abort;
1896 			}
1897 			if (list_empty(&mm->mmlist)) {
1898 				spin_lock(&mmlist_lock);
1899 				if (list_empty(&mm->mmlist))
1900 					list_add(&mm->mmlist, &init_mm.mmlist);
1901 				spin_unlock(&mmlist_lock);
1902 			}
1903 			dec_mm_counter(mm, MM_ANONPAGES);
1904 			inc_mm_counter(mm, MM_SWAPENTS);
1905 			swp_pte = swp_entry_to_pte(entry);
1906 			if (anon_exclusive)
1907 				swp_pte = pte_swp_mkexclusive(swp_pte);
1908 			if (pte_soft_dirty(pteval))
1909 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1910 			if (pte_uffd_wp(pteval))
1911 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1912 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1913 		} else {
1914 			/*
1915 			 * This is a locked file-backed folio,
1916 			 * so it cannot be removed from the page
1917 			 * cache and replaced by a new folio before
1918 			 * mmu_notifier_invalidate_range_end, so no
1919 			 * concurrent thread might update its page table
1920 			 * to point at a new folio while a device is
1921 			 * still using this folio.
1922 			 *
1923 			 * See Documentation/mm/mmu_notifier.rst
1924 			 */
1925 			dec_mm_counter(mm, mm_counter_file(folio));
1926 		}
1927 discard:
1928 		if (unlikely(folio_test_hugetlb(folio)))
1929 			hugetlb_remove_rmap(folio);
1930 		else
1931 			folio_remove_rmap_pte(folio, subpage, vma);
1932 		if (vma->vm_flags & VM_LOCKED)
1933 			mlock_drain_local();
1934 		folio_put(folio);
1935 		continue;
1936 walk_abort:
1937 		ret = false;
1938 walk_done:
1939 		page_vma_mapped_walk_done(&pvmw);
1940 		break;
1941 	}
1942 
1943 	mmu_notifier_invalidate_range_end(&range);
1944 
1945 	return ret;
1946 }
1947 
1948 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1949 {
1950 	return vma_is_temporary_stack(vma);
1951 }
1952 
1953 static int folio_not_mapped(struct folio *folio)
1954 {
1955 	return !folio_mapped(folio);
1956 }
1957 
1958 /**
1959  * try_to_unmap - Try to remove all page table mappings to a folio.
1960  * @folio: The folio to unmap.
1961  * @flags: action and flags
1962  *
1963  * Tries to remove all the page table entries which are mapping this
1964  * folio.  It is the caller's responsibility to check if the folio is
1965  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1966  *
1967  * Context: Caller must hold the folio lock.
1968  */
1969 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1970 {
1971 	struct rmap_walk_control rwc = {
1972 		.rmap_one = try_to_unmap_one,
1973 		.arg = (void *)flags,
1974 		.done = folio_not_mapped,
1975 		.anon_lock = folio_lock_anon_vma_read,
1976 	};
1977 
1978 	if (flags & TTU_RMAP_LOCKED)
1979 		rmap_walk_locked(folio, &rwc);
1980 	else
1981 		rmap_walk(folio, &rwc);
1982 }
1983 
1984 /*
1985  * @arg: enum ttu_flags will be passed to this argument.
1986  *
1987  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1988  * containing migration entries.
1989  */
1990 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
1991 		     unsigned long address, void *arg)
1992 {
1993 	struct mm_struct *mm = vma->vm_mm;
1994 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1995 	pte_t pteval;
1996 	struct page *subpage;
1997 	bool anon_exclusive, ret = true;
1998 	struct mmu_notifier_range range;
1999 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2000 	unsigned long pfn;
2001 	unsigned long hsz = 0;
2002 
2003 	/*
2004 	 * When racing against e.g. zap_pte_range() on another cpu,
2005 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2006 	 * try_to_migrate() may return before page_mapped() has become false,
2007 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2008 	 */
2009 	if (flags & TTU_SYNC)
2010 		pvmw.flags = PVMW_SYNC;
2011 
2012 	/*
2013 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2014 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2015 	 */
2016 	if (flags & TTU_SPLIT_HUGE_PMD)
2017 		split_huge_pmd_address(vma, address, true, folio);
2018 
2019 	/*
2020 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2021 	 * For hugetlb, it could be much worse if we need to do pud
2022 	 * invalidation in the case of pmd sharing.
2023 	 *
2024 	 * Note that the page can not be free in this function as call of
2025 	 * try_to_unmap() must hold a reference on the page.
2026 	 */
2027 	range.end = vma_address_end(&pvmw);
2028 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2029 				address, range.end);
2030 	if (folio_test_hugetlb(folio)) {
2031 		/*
2032 		 * If sharing is possible, start and end will be adjusted
2033 		 * accordingly.
2034 		 */
2035 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2036 						     &range.end);
2037 
2038 		/* We need the huge page size for set_huge_pte_at() */
2039 		hsz = huge_page_size(hstate_vma(vma));
2040 	}
2041 	mmu_notifier_invalidate_range_start(&range);
2042 
2043 	while (page_vma_mapped_walk(&pvmw)) {
2044 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2045 		/* PMD-mapped THP migration entry */
2046 		if (!pvmw.pte) {
2047 			subpage = folio_page(folio,
2048 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2049 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2050 					!folio_test_pmd_mappable(folio), folio);
2051 
2052 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2053 				ret = false;
2054 				page_vma_mapped_walk_done(&pvmw);
2055 				break;
2056 			}
2057 			continue;
2058 		}
2059 #endif
2060 
2061 		/* Unexpected PMD-mapped THP? */
2062 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2063 
2064 		pfn = pte_pfn(ptep_get(pvmw.pte));
2065 
2066 		if (folio_is_zone_device(folio)) {
2067 			/*
2068 			 * Our PTE is a non-present device exclusive entry and
2069 			 * calculating the subpage as for the common case would
2070 			 * result in an invalid pointer.
2071 			 *
2072 			 * Since only PAGE_SIZE pages can currently be
2073 			 * migrated, just set it to page. This will need to be
2074 			 * changed when hugepage migrations to device private
2075 			 * memory are supported.
2076 			 */
2077 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2078 			subpage = &folio->page;
2079 		} else {
2080 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2081 		}
2082 		address = pvmw.address;
2083 		anon_exclusive = folio_test_anon(folio) &&
2084 				 PageAnonExclusive(subpage);
2085 
2086 		if (folio_test_hugetlb(folio)) {
2087 			bool anon = folio_test_anon(folio);
2088 
2089 			/*
2090 			 * huge_pmd_unshare may unmap an entire PMD page.
2091 			 * There is no way of knowing exactly which PMDs may
2092 			 * be cached for this mm, so we must flush them all.
2093 			 * start/end were already adjusted above to cover this
2094 			 * range.
2095 			 */
2096 			flush_cache_range(vma, range.start, range.end);
2097 
2098 			/*
2099 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2100 			 * held in write mode.  Caller needs to explicitly
2101 			 * do this outside rmap routines.
2102 			 *
2103 			 * We also must hold hugetlb vma_lock in write mode.
2104 			 * Lock order dictates acquiring vma_lock BEFORE
2105 			 * i_mmap_rwsem.  We can only try lock here and
2106 			 * fail if unsuccessful.
2107 			 */
2108 			if (!anon) {
2109 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2110 				if (!hugetlb_vma_trylock_write(vma)) {
2111 					page_vma_mapped_walk_done(&pvmw);
2112 					ret = false;
2113 					break;
2114 				}
2115 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2116 					hugetlb_vma_unlock_write(vma);
2117 					flush_tlb_range(vma,
2118 						range.start, range.end);
2119 
2120 					/*
2121 					 * The ref count of the PMD page was
2122 					 * dropped which is part of the way map
2123 					 * counting is done for shared PMDs.
2124 					 * Return 'true' here.  When there is
2125 					 * no other sharing, huge_pmd_unshare
2126 					 * returns false and we will unmap the
2127 					 * actual page and drop map count
2128 					 * to zero.
2129 					 */
2130 					page_vma_mapped_walk_done(&pvmw);
2131 					break;
2132 				}
2133 				hugetlb_vma_unlock_write(vma);
2134 			}
2135 			/* Nuke the hugetlb page table entry */
2136 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2137 		} else {
2138 			flush_cache_page(vma, address, pfn);
2139 			/* Nuke the page table entry. */
2140 			if (should_defer_flush(mm, flags)) {
2141 				/*
2142 				 * We clear the PTE but do not flush so potentially
2143 				 * a remote CPU could still be writing to the folio.
2144 				 * If the entry was previously clean then the
2145 				 * architecture must guarantee that a clear->dirty
2146 				 * transition on a cached TLB entry is written through
2147 				 * and traps if the PTE is unmapped.
2148 				 */
2149 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2150 
2151 				set_tlb_ubc_flush_pending(mm, pteval, address);
2152 			} else {
2153 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2154 			}
2155 		}
2156 
2157 		/* Set the dirty flag on the folio now the pte is gone. */
2158 		if (pte_dirty(pteval))
2159 			folio_mark_dirty(folio);
2160 
2161 		/* Update high watermark before we lower rss */
2162 		update_hiwater_rss(mm);
2163 
2164 		if (folio_is_device_private(folio)) {
2165 			unsigned long pfn = folio_pfn(folio);
2166 			swp_entry_t entry;
2167 			pte_t swp_pte;
2168 
2169 			if (anon_exclusive)
2170 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2171 									   subpage));
2172 
2173 			/*
2174 			 * Store the pfn of the page in a special migration
2175 			 * pte. do_swap_page() will wait until the migration
2176 			 * pte is removed and then restart fault handling.
2177 			 */
2178 			entry = pte_to_swp_entry(pteval);
2179 			if (is_writable_device_private_entry(entry))
2180 				entry = make_writable_migration_entry(pfn);
2181 			else if (anon_exclusive)
2182 				entry = make_readable_exclusive_migration_entry(pfn);
2183 			else
2184 				entry = make_readable_migration_entry(pfn);
2185 			swp_pte = swp_entry_to_pte(entry);
2186 
2187 			/*
2188 			 * pteval maps a zone device page and is therefore
2189 			 * a swap pte.
2190 			 */
2191 			if (pte_swp_soft_dirty(pteval))
2192 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2193 			if (pte_swp_uffd_wp(pteval))
2194 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2195 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2196 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2197 						folio_order(folio));
2198 			/*
2199 			 * No need to invalidate here it will synchronize on
2200 			 * against the special swap migration pte.
2201 			 */
2202 		} else if (PageHWPoison(subpage)) {
2203 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2204 			if (folio_test_hugetlb(folio)) {
2205 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2206 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2207 						hsz);
2208 			} else {
2209 				dec_mm_counter(mm, mm_counter(folio));
2210 				set_pte_at(mm, address, pvmw.pte, pteval);
2211 			}
2212 
2213 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2214 			/*
2215 			 * The guest indicated that the page content is of no
2216 			 * interest anymore. Simply discard the pte, vmscan
2217 			 * will take care of the rest.
2218 			 * A future reference will then fault in a new zero
2219 			 * page. When userfaultfd is active, we must not drop
2220 			 * this page though, as its main user (postcopy
2221 			 * migration) will not expect userfaults on already
2222 			 * copied pages.
2223 			 */
2224 			dec_mm_counter(mm, mm_counter(folio));
2225 		} else {
2226 			swp_entry_t entry;
2227 			pte_t swp_pte;
2228 
2229 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2230 				if (folio_test_hugetlb(folio))
2231 					set_huge_pte_at(mm, address, pvmw.pte,
2232 							pteval, hsz);
2233 				else
2234 					set_pte_at(mm, address, pvmw.pte, pteval);
2235 				ret = false;
2236 				page_vma_mapped_walk_done(&pvmw);
2237 				break;
2238 			}
2239 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2240 				       !anon_exclusive, subpage);
2241 
2242 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2243 			if (folio_test_hugetlb(folio)) {
2244 				if (anon_exclusive &&
2245 				    hugetlb_try_share_anon_rmap(folio)) {
2246 					set_huge_pte_at(mm, address, pvmw.pte,
2247 							pteval, hsz);
2248 					ret = false;
2249 					page_vma_mapped_walk_done(&pvmw);
2250 					break;
2251 				}
2252 			} else if (anon_exclusive &&
2253 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2254 				set_pte_at(mm, address, pvmw.pte, pteval);
2255 				ret = false;
2256 				page_vma_mapped_walk_done(&pvmw);
2257 				break;
2258 			}
2259 
2260 			/*
2261 			 * Store the pfn of the page in a special migration
2262 			 * pte. do_swap_page() will wait until the migration
2263 			 * pte is removed and then restart fault handling.
2264 			 */
2265 			if (pte_write(pteval))
2266 				entry = make_writable_migration_entry(
2267 							page_to_pfn(subpage));
2268 			else if (anon_exclusive)
2269 				entry = make_readable_exclusive_migration_entry(
2270 							page_to_pfn(subpage));
2271 			else
2272 				entry = make_readable_migration_entry(
2273 							page_to_pfn(subpage));
2274 			if (pte_young(pteval))
2275 				entry = make_migration_entry_young(entry);
2276 			if (pte_dirty(pteval))
2277 				entry = make_migration_entry_dirty(entry);
2278 			swp_pte = swp_entry_to_pte(entry);
2279 			if (pte_soft_dirty(pteval))
2280 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2281 			if (pte_uffd_wp(pteval))
2282 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2283 			if (folio_test_hugetlb(folio))
2284 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2285 						hsz);
2286 			else
2287 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2288 			trace_set_migration_pte(address, pte_val(swp_pte),
2289 						folio_order(folio));
2290 			/*
2291 			 * No need to invalidate here it will synchronize on
2292 			 * against the special swap migration pte.
2293 			 */
2294 		}
2295 
2296 		if (unlikely(folio_test_hugetlb(folio)))
2297 			hugetlb_remove_rmap(folio);
2298 		else
2299 			folio_remove_rmap_pte(folio, subpage, vma);
2300 		if (vma->vm_flags & VM_LOCKED)
2301 			mlock_drain_local();
2302 		folio_put(folio);
2303 	}
2304 
2305 	mmu_notifier_invalidate_range_end(&range);
2306 
2307 	return ret;
2308 }
2309 
2310 /**
2311  * try_to_migrate - try to replace all page table mappings with swap entries
2312  * @folio: the folio to replace page table entries for
2313  * @flags: action and flags
2314  *
2315  * Tries to remove all the page table entries which are mapping this folio and
2316  * replace them with special swap entries. Caller must hold the folio lock.
2317  */
2318 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2319 {
2320 	struct rmap_walk_control rwc = {
2321 		.rmap_one = try_to_migrate_one,
2322 		.arg = (void *)flags,
2323 		.done = folio_not_mapped,
2324 		.anon_lock = folio_lock_anon_vma_read,
2325 	};
2326 
2327 	/*
2328 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2329 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2330 	 */
2331 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2332 					TTU_SYNC | TTU_BATCH_FLUSH)))
2333 		return;
2334 
2335 	if (folio_is_zone_device(folio) &&
2336 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2337 		return;
2338 
2339 	/*
2340 	 * During exec, a temporary VMA is setup and later moved.
2341 	 * The VMA is moved under the anon_vma lock but not the
2342 	 * page tables leading to a race where migration cannot
2343 	 * find the migration ptes. Rather than increasing the
2344 	 * locking requirements of exec(), migration skips
2345 	 * temporary VMAs until after exec() completes.
2346 	 */
2347 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2348 		rwc.invalid_vma = invalid_migration_vma;
2349 
2350 	if (flags & TTU_RMAP_LOCKED)
2351 		rmap_walk_locked(folio, &rwc);
2352 	else
2353 		rmap_walk(folio, &rwc);
2354 }
2355 
2356 #ifdef CONFIG_DEVICE_PRIVATE
2357 struct make_exclusive_args {
2358 	struct mm_struct *mm;
2359 	unsigned long address;
2360 	void *owner;
2361 	bool valid;
2362 };
2363 
2364 static bool page_make_device_exclusive_one(struct folio *folio,
2365 		struct vm_area_struct *vma, unsigned long address, void *priv)
2366 {
2367 	struct mm_struct *mm = vma->vm_mm;
2368 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2369 	struct make_exclusive_args *args = priv;
2370 	pte_t pteval;
2371 	struct page *subpage;
2372 	bool ret = true;
2373 	struct mmu_notifier_range range;
2374 	swp_entry_t entry;
2375 	pte_t swp_pte;
2376 	pte_t ptent;
2377 
2378 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2379 				      vma->vm_mm, address, min(vma->vm_end,
2380 				      address + folio_size(folio)),
2381 				      args->owner);
2382 	mmu_notifier_invalidate_range_start(&range);
2383 
2384 	while (page_vma_mapped_walk(&pvmw)) {
2385 		/* Unexpected PMD-mapped THP? */
2386 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2387 
2388 		ptent = ptep_get(pvmw.pte);
2389 		if (!pte_present(ptent)) {
2390 			ret = false;
2391 			page_vma_mapped_walk_done(&pvmw);
2392 			break;
2393 		}
2394 
2395 		subpage = folio_page(folio,
2396 				pte_pfn(ptent) - folio_pfn(folio));
2397 		address = pvmw.address;
2398 
2399 		/* Nuke the page table entry. */
2400 		flush_cache_page(vma, address, pte_pfn(ptent));
2401 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2402 
2403 		/* Set the dirty flag on the folio now the pte is gone. */
2404 		if (pte_dirty(pteval))
2405 			folio_mark_dirty(folio);
2406 
2407 		/*
2408 		 * Check that our target page is still mapped at the expected
2409 		 * address.
2410 		 */
2411 		if (args->mm == mm && args->address == address &&
2412 		    pte_write(pteval))
2413 			args->valid = true;
2414 
2415 		/*
2416 		 * Store the pfn of the page in a special migration
2417 		 * pte. do_swap_page() will wait until the migration
2418 		 * pte is removed and then restart fault handling.
2419 		 */
2420 		if (pte_write(pteval))
2421 			entry = make_writable_device_exclusive_entry(
2422 							page_to_pfn(subpage));
2423 		else
2424 			entry = make_readable_device_exclusive_entry(
2425 							page_to_pfn(subpage));
2426 		swp_pte = swp_entry_to_pte(entry);
2427 		if (pte_soft_dirty(pteval))
2428 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2429 		if (pte_uffd_wp(pteval))
2430 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2431 
2432 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2433 
2434 		/*
2435 		 * There is a reference on the page for the swap entry which has
2436 		 * been removed, so shouldn't take another.
2437 		 */
2438 		folio_remove_rmap_pte(folio, subpage, vma);
2439 	}
2440 
2441 	mmu_notifier_invalidate_range_end(&range);
2442 
2443 	return ret;
2444 }
2445 
2446 /**
2447  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2448  * @folio: The folio to replace page table entries for.
2449  * @mm: The mm_struct where the folio is expected to be mapped.
2450  * @address: Address where the folio is expected to be mapped.
2451  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2452  *
2453  * Tries to remove all the page table entries which are mapping this
2454  * folio and replace them with special device exclusive swap entries to
2455  * grant a device exclusive access to the folio.
2456  *
2457  * Context: Caller must hold the folio lock.
2458  * Return: false if the page is still mapped, or if it could not be unmapped
2459  * from the expected address. Otherwise returns true (success).
2460  */
2461 static bool folio_make_device_exclusive(struct folio *folio,
2462 		struct mm_struct *mm, unsigned long address, void *owner)
2463 {
2464 	struct make_exclusive_args args = {
2465 		.mm = mm,
2466 		.address = address,
2467 		.owner = owner,
2468 		.valid = false,
2469 	};
2470 	struct rmap_walk_control rwc = {
2471 		.rmap_one = page_make_device_exclusive_one,
2472 		.done = folio_not_mapped,
2473 		.anon_lock = folio_lock_anon_vma_read,
2474 		.arg = &args,
2475 	};
2476 
2477 	/*
2478 	 * Restrict to anonymous folios for now to avoid potential writeback
2479 	 * issues.
2480 	 */
2481 	if (!folio_test_anon(folio))
2482 		return false;
2483 
2484 	rmap_walk(folio, &rwc);
2485 
2486 	return args.valid && !folio_mapcount(folio);
2487 }
2488 
2489 /**
2490  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2491  * @mm: mm_struct of associated target process
2492  * @start: start of the region to mark for exclusive device access
2493  * @end: end address of region
2494  * @pages: returns the pages which were successfully marked for exclusive access
2495  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2496  *
2497  * Returns: number of pages found in the range by GUP. A page is marked for
2498  * exclusive access only if the page pointer is non-NULL.
2499  *
2500  * This function finds ptes mapping page(s) to the given address range, locks
2501  * them and replaces mappings with special swap entries preventing userspace CPU
2502  * access. On fault these entries are replaced with the original mapping after
2503  * calling MMU notifiers.
2504  *
2505  * A driver using this to program access from a device must use a mmu notifier
2506  * critical section to hold a device specific lock during programming. Once
2507  * programming is complete it should drop the page lock and reference after
2508  * which point CPU access to the page will revoke the exclusive access.
2509  */
2510 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2511 				unsigned long end, struct page **pages,
2512 				void *owner)
2513 {
2514 	long npages = (end - start) >> PAGE_SHIFT;
2515 	long i;
2516 
2517 	npages = get_user_pages_remote(mm, start, npages,
2518 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2519 				       pages, NULL);
2520 	if (npages < 0)
2521 		return npages;
2522 
2523 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2524 		struct folio *folio = page_folio(pages[i]);
2525 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2526 			folio_put(folio);
2527 			pages[i] = NULL;
2528 			continue;
2529 		}
2530 
2531 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2532 			folio_unlock(folio);
2533 			folio_put(folio);
2534 			pages[i] = NULL;
2535 		}
2536 	}
2537 
2538 	return npages;
2539 }
2540 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2541 #endif
2542 
2543 void __put_anon_vma(struct anon_vma *anon_vma)
2544 {
2545 	struct anon_vma *root = anon_vma->root;
2546 
2547 	anon_vma_free(anon_vma);
2548 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2549 		anon_vma_free(root);
2550 }
2551 
2552 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio,
2553 					    struct rmap_walk_control *rwc)
2554 {
2555 	struct anon_vma *anon_vma;
2556 
2557 	if (rwc->anon_lock)
2558 		return rwc->anon_lock(folio, rwc);
2559 
2560 	/*
2561 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2562 	 * because that depends on page_mapped(); but not all its usages
2563 	 * are holding mmap_lock. Users without mmap_lock are required to
2564 	 * take a reference count to prevent the anon_vma disappearing
2565 	 */
2566 	anon_vma = folio_anon_vma(folio);
2567 	if (!anon_vma)
2568 		return NULL;
2569 
2570 	if (anon_vma_trylock_read(anon_vma))
2571 		goto out;
2572 
2573 	if (rwc->try_lock) {
2574 		anon_vma = NULL;
2575 		rwc->contended = true;
2576 		goto out;
2577 	}
2578 
2579 	anon_vma_lock_read(anon_vma);
2580 out:
2581 	return anon_vma;
2582 }
2583 
2584 /*
2585  * rmap_walk_anon - do something to anonymous page using the object-based
2586  * rmap method
2587  * @folio: the folio to be handled
2588  * @rwc: control variable according to each walk type
2589  * @locked: caller holds relevant rmap lock
2590  *
2591  * Find all the mappings of a folio using the mapping pointer and the vma
2592  * chains contained in the anon_vma struct it points to.
2593  */
2594 static void rmap_walk_anon(struct folio *folio,
2595 		struct rmap_walk_control *rwc, bool locked)
2596 {
2597 	struct anon_vma *anon_vma;
2598 	pgoff_t pgoff_start, pgoff_end;
2599 	struct anon_vma_chain *avc;
2600 
2601 	if (locked) {
2602 		anon_vma = folio_anon_vma(folio);
2603 		/* anon_vma disappear under us? */
2604 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2605 	} else {
2606 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2607 	}
2608 	if (!anon_vma)
2609 		return;
2610 
2611 	pgoff_start = folio_pgoff(folio);
2612 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2613 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2614 			pgoff_start, pgoff_end) {
2615 		struct vm_area_struct *vma = avc->vma;
2616 		unsigned long address = vma_address(vma, pgoff_start,
2617 				folio_nr_pages(folio));
2618 
2619 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2620 		cond_resched();
2621 
2622 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2623 			continue;
2624 
2625 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2626 			break;
2627 		if (rwc->done && rwc->done(folio))
2628 			break;
2629 	}
2630 
2631 	if (!locked)
2632 		anon_vma_unlock_read(anon_vma);
2633 }
2634 
2635 /*
2636  * rmap_walk_file - do something to file page using the object-based rmap method
2637  * @folio: the folio to be handled
2638  * @rwc: control variable according to each walk type
2639  * @locked: caller holds relevant rmap lock
2640  *
2641  * Find all the mappings of a folio using the mapping pointer and the vma chains
2642  * contained in the address_space struct it points to.
2643  */
2644 static void rmap_walk_file(struct folio *folio,
2645 		struct rmap_walk_control *rwc, bool locked)
2646 {
2647 	struct address_space *mapping = folio_mapping(folio);
2648 	pgoff_t pgoff_start, pgoff_end;
2649 	struct vm_area_struct *vma;
2650 
2651 	/*
2652 	 * The page lock not only makes sure that page->mapping cannot
2653 	 * suddenly be NULLified by truncation, it makes sure that the
2654 	 * structure at mapping cannot be freed and reused yet,
2655 	 * so we can safely take mapping->i_mmap_rwsem.
2656 	 */
2657 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2658 
2659 	if (!mapping)
2660 		return;
2661 
2662 	pgoff_start = folio_pgoff(folio);
2663 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2664 	if (!locked) {
2665 		if (i_mmap_trylock_read(mapping))
2666 			goto lookup;
2667 
2668 		if (rwc->try_lock) {
2669 			rwc->contended = true;
2670 			return;
2671 		}
2672 
2673 		i_mmap_lock_read(mapping);
2674 	}
2675 lookup:
2676 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2677 			pgoff_start, pgoff_end) {
2678 		unsigned long address = vma_address(vma, pgoff_start,
2679 			       folio_nr_pages(folio));
2680 
2681 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2682 		cond_resched();
2683 
2684 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2685 			continue;
2686 
2687 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2688 			goto done;
2689 		if (rwc->done && rwc->done(folio))
2690 			goto done;
2691 	}
2692 
2693 done:
2694 	if (!locked)
2695 		i_mmap_unlock_read(mapping);
2696 }
2697 
2698 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2699 {
2700 	if (unlikely(folio_test_ksm(folio)))
2701 		rmap_walk_ksm(folio, rwc);
2702 	else if (folio_test_anon(folio))
2703 		rmap_walk_anon(folio, rwc, false);
2704 	else
2705 		rmap_walk_file(folio, rwc, false);
2706 }
2707 
2708 /* Like rmap_walk, but caller holds relevant rmap lock */
2709 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2710 {
2711 	/* no ksm support for now */
2712 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2713 	if (folio_test_anon(folio))
2714 		rmap_walk_anon(folio, rwc, true);
2715 	else
2716 		rmap_walk_file(folio, rwc, true);
2717 }
2718 
2719 #ifdef CONFIG_HUGETLB_PAGE
2720 /*
2721  * The following two functions are for anonymous (private mapped) hugepages.
2722  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2723  * and no lru code, because we handle hugepages differently from common pages.
2724  */
2725 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2726 		unsigned long address, rmap_t flags)
2727 {
2728 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2729 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2730 
2731 	atomic_inc(&folio->_entire_mapcount);
2732 	atomic_inc(&folio->_large_mapcount);
2733 	if (flags & RMAP_EXCLUSIVE)
2734 		SetPageAnonExclusive(&folio->page);
2735 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2736 			 PageAnonExclusive(&folio->page), folio);
2737 }
2738 
2739 void hugetlb_add_new_anon_rmap(struct folio *folio,
2740 		struct vm_area_struct *vma, unsigned long address)
2741 {
2742 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2743 
2744 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2745 	/* increment count (starts at -1) */
2746 	atomic_set(&folio->_entire_mapcount, 0);
2747 	atomic_set(&folio->_large_mapcount, 0);
2748 	folio_clear_hugetlb_restore_reserve(folio);
2749 	__folio_set_anon(folio, vma, address, true);
2750 	SetPageAnonExclusive(&folio->page);
2751 }
2752 #endif /* CONFIG_HUGETLB_PAGE */
2753