1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_mutex 27 * anon_vma->mutex 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 35 * sb_lock (within inode_lock in fs/fs-writeback.c) 36 * mapping->tree_lock (widely used, in set_page_dirty, 37 * in arch-dependent flush_dcache_mmap_lock, 38 * within bdi.wb->list_lock in __sync_single_inode) 39 * 40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) 41 * ->tasklist_lock 42 * pte map lock 43 */ 44 45 #include <linux/mm.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/slab.h> 50 #include <linux/init.h> 51 #include <linux/ksm.h> 52 #include <linux/rmap.h> 53 #include <linux/rcupdate.h> 54 #include <linux/export.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/migrate.h> 58 #include <linux/hugetlb.h> 59 #include <linux/backing-dev.h> 60 61 #include <asm/tlbflush.h> 62 63 #include "internal.h" 64 65 static struct kmem_cache *anon_vma_cachep; 66 static struct kmem_cache *anon_vma_chain_cachep; 67 68 static inline struct anon_vma *anon_vma_alloc(void) 69 { 70 struct anon_vma *anon_vma; 71 72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 73 if (anon_vma) { 74 atomic_set(&anon_vma->refcount, 1); 75 /* 76 * Initialise the anon_vma root to point to itself. If called 77 * from fork, the root will be reset to the parents anon_vma. 78 */ 79 anon_vma->root = anon_vma; 80 } 81 82 return anon_vma; 83 } 84 85 static inline void anon_vma_free(struct anon_vma *anon_vma) 86 { 87 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 88 89 /* 90 * Synchronize against page_lock_anon_vma() such that 91 * we can safely hold the lock without the anon_vma getting 92 * freed. 93 * 94 * Relies on the full mb implied by the atomic_dec_and_test() from 95 * put_anon_vma() against the acquire barrier implied by 96 * mutex_trylock() from page_lock_anon_vma(). This orders: 97 * 98 * page_lock_anon_vma() VS put_anon_vma() 99 * mutex_trylock() atomic_dec_and_test() 100 * LOCK MB 101 * atomic_read() mutex_is_locked() 102 * 103 * LOCK should suffice since the actual taking of the lock must 104 * happen _before_ what follows. 105 */ 106 if (mutex_is_locked(&anon_vma->root->mutex)) { 107 anon_vma_lock(anon_vma); 108 anon_vma_unlock(anon_vma); 109 } 110 111 kmem_cache_free(anon_vma_cachep, anon_vma); 112 } 113 114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 115 { 116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 117 } 118 119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 120 { 121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 122 } 123 124 static void anon_vma_chain_link(struct vm_area_struct *vma, 125 struct anon_vma_chain *avc, 126 struct anon_vma *anon_vma) 127 { 128 avc->vma = vma; 129 avc->anon_vma = anon_vma; 130 list_add(&avc->same_vma, &vma->anon_vma_chain); 131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 132 } 133 134 /** 135 * anon_vma_prepare - attach an anon_vma to a memory region 136 * @vma: the memory region in question 137 * 138 * This makes sure the memory mapping described by 'vma' has 139 * an 'anon_vma' attached to it, so that we can associate the 140 * anonymous pages mapped into it with that anon_vma. 141 * 142 * The common case will be that we already have one, but if 143 * not we either need to find an adjacent mapping that we 144 * can re-use the anon_vma from (very common when the only 145 * reason for splitting a vma has been mprotect()), or we 146 * allocate a new one. 147 * 148 * Anon-vma allocations are very subtle, because we may have 149 * optimistically looked up an anon_vma in page_lock_anon_vma() 150 * and that may actually touch the spinlock even in the newly 151 * allocated vma (it depends on RCU to make sure that the 152 * anon_vma isn't actually destroyed). 153 * 154 * As a result, we need to do proper anon_vma locking even 155 * for the new allocation. At the same time, we do not want 156 * to do any locking for the common case of already having 157 * an anon_vma. 158 * 159 * This must be called with the mmap_sem held for reading. 160 */ 161 int anon_vma_prepare(struct vm_area_struct *vma) 162 { 163 struct anon_vma *anon_vma = vma->anon_vma; 164 struct anon_vma_chain *avc; 165 166 might_sleep(); 167 if (unlikely(!anon_vma)) { 168 struct mm_struct *mm = vma->vm_mm; 169 struct anon_vma *allocated; 170 171 avc = anon_vma_chain_alloc(GFP_KERNEL); 172 if (!avc) 173 goto out_enomem; 174 175 anon_vma = find_mergeable_anon_vma(vma); 176 allocated = NULL; 177 if (!anon_vma) { 178 anon_vma = anon_vma_alloc(); 179 if (unlikely(!anon_vma)) 180 goto out_enomem_free_avc; 181 allocated = anon_vma; 182 } 183 184 anon_vma_lock(anon_vma); 185 /* page_table_lock to protect against threads */ 186 spin_lock(&mm->page_table_lock); 187 if (likely(!vma->anon_vma)) { 188 vma->anon_vma = anon_vma; 189 anon_vma_chain_link(vma, avc, anon_vma); 190 allocated = NULL; 191 avc = NULL; 192 } 193 spin_unlock(&mm->page_table_lock); 194 anon_vma_unlock(anon_vma); 195 196 if (unlikely(allocated)) 197 put_anon_vma(allocated); 198 if (unlikely(avc)) 199 anon_vma_chain_free(avc); 200 } 201 return 0; 202 203 out_enomem_free_avc: 204 anon_vma_chain_free(avc); 205 out_enomem: 206 return -ENOMEM; 207 } 208 209 /* 210 * This is a useful helper function for locking the anon_vma root as 211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 212 * have the same vma. 213 * 214 * Such anon_vma's should have the same root, so you'd expect to see 215 * just a single mutex_lock for the whole traversal. 216 */ 217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 218 { 219 struct anon_vma *new_root = anon_vma->root; 220 if (new_root != root) { 221 if (WARN_ON_ONCE(root)) 222 mutex_unlock(&root->mutex); 223 root = new_root; 224 mutex_lock(&root->mutex); 225 } 226 return root; 227 } 228 229 static inline void unlock_anon_vma_root(struct anon_vma *root) 230 { 231 if (root) 232 mutex_unlock(&root->mutex); 233 } 234 235 /* 236 * Attach the anon_vmas from src to dst. 237 * Returns 0 on success, -ENOMEM on failure. 238 */ 239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 240 { 241 struct anon_vma_chain *avc, *pavc; 242 struct anon_vma *root = NULL; 243 244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 245 struct anon_vma *anon_vma; 246 247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 248 if (unlikely(!avc)) { 249 unlock_anon_vma_root(root); 250 root = NULL; 251 avc = anon_vma_chain_alloc(GFP_KERNEL); 252 if (!avc) 253 goto enomem_failure; 254 } 255 anon_vma = pavc->anon_vma; 256 root = lock_anon_vma_root(root, anon_vma); 257 anon_vma_chain_link(dst, avc, anon_vma); 258 } 259 unlock_anon_vma_root(root); 260 return 0; 261 262 enomem_failure: 263 unlink_anon_vmas(dst); 264 return -ENOMEM; 265 } 266 267 /* 268 * Attach vma to its own anon_vma, as well as to the anon_vmas that 269 * the corresponding VMA in the parent process is attached to. 270 * Returns 0 on success, non-zero on failure. 271 */ 272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 273 { 274 struct anon_vma_chain *avc; 275 struct anon_vma *anon_vma; 276 277 /* Don't bother if the parent process has no anon_vma here. */ 278 if (!pvma->anon_vma) 279 return 0; 280 281 /* 282 * First, attach the new VMA to the parent VMA's anon_vmas, 283 * so rmap can find non-COWed pages in child processes. 284 */ 285 if (anon_vma_clone(vma, pvma)) 286 return -ENOMEM; 287 288 /* Then add our own anon_vma. */ 289 anon_vma = anon_vma_alloc(); 290 if (!anon_vma) 291 goto out_error; 292 avc = anon_vma_chain_alloc(GFP_KERNEL); 293 if (!avc) 294 goto out_error_free_anon_vma; 295 296 /* 297 * The root anon_vma's spinlock is the lock actually used when we 298 * lock any of the anon_vmas in this anon_vma tree. 299 */ 300 anon_vma->root = pvma->anon_vma->root; 301 /* 302 * With refcounts, an anon_vma can stay around longer than the 303 * process it belongs to. The root anon_vma needs to be pinned until 304 * this anon_vma is freed, because the lock lives in the root. 305 */ 306 get_anon_vma(anon_vma->root); 307 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 308 vma->anon_vma = anon_vma; 309 anon_vma_lock(anon_vma); 310 anon_vma_chain_link(vma, avc, anon_vma); 311 anon_vma_unlock(anon_vma); 312 313 return 0; 314 315 out_error_free_anon_vma: 316 put_anon_vma(anon_vma); 317 out_error: 318 unlink_anon_vmas(vma); 319 return -ENOMEM; 320 } 321 322 void unlink_anon_vmas(struct vm_area_struct *vma) 323 { 324 struct anon_vma_chain *avc, *next; 325 struct anon_vma *root = NULL; 326 327 /* 328 * Unlink each anon_vma chained to the VMA. This list is ordered 329 * from newest to oldest, ensuring the root anon_vma gets freed last. 330 */ 331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 332 struct anon_vma *anon_vma = avc->anon_vma; 333 334 root = lock_anon_vma_root(root, anon_vma); 335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 336 337 /* 338 * Leave empty anon_vmas on the list - we'll need 339 * to free them outside the lock. 340 */ 341 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) 342 continue; 343 344 list_del(&avc->same_vma); 345 anon_vma_chain_free(avc); 346 } 347 unlock_anon_vma_root(root); 348 349 /* 350 * Iterate the list once more, it now only contains empty and unlinked 351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 352 * needing to acquire the anon_vma->root->mutex. 353 */ 354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 355 struct anon_vma *anon_vma = avc->anon_vma; 356 357 put_anon_vma(anon_vma); 358 359 list_del(&avc->same_vma); 360 anon_vma_chain_free(avc); 361 } 362 } 363 364 static void anon_vma_ctor(void *data) 365 { 366 struct anon_vma *anon_vma = data; 367 368 mutex_init(&anon_vma->mutex); 369 atomic_set(&anon_vma->refcount, 0); 370 anon_vma->rb_root = RB_ROOT; 371 } 372 373 void __init anon_vma_init(void) 374 { 375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 378 } 379 380 /* 381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 382 * 383 * Since there is no serialization what so ever against page_remove_rmap() 384 * the best this function can do is return a locked anon_vma that might 385 * have been relevant to this page. 386 * 387 * The page might have been remapped to a different anon_vma or the anon_vma 388 * returned may already be freed (and even reused). 389 * 390 * In case it was remapped to a different anon_vma, the new anon_vma will be a 391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 392 * ensure that any anon_vma obtained from the page will still be valid for as 393 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 394 * 395 * All users of this function must be very careful when walking the anon_vma 396 * chain and verify that the page in question is indeed mapped in it 397 * [ something equivalent to page_mapped_in_vma() ]. 398 * 399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 400 * that the anon_vma pointer from page->mapping is valid if there is a 401 * mapcount, we can dereference the anon_vma after observing those. 402 */ 403 struct anon_vma *page_get_anon_vma(struct page *page) 404 { 405 struct anon_vma *anon_vma = NULL; 406 unsigned long anon_mapping; 407 408 rcu_read_lock(); 409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 411 goto out; 412 if (!page_mapped(page)) 413 goto out; 414 415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 416 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 417 anon_vma = NULL; 418 goto out; 419 } 420 421 /* 422 * If this page is still mapped, then its anon_vma cannot have been 423 * freed. But if it has been unmapped, we have no security against the 424 * anon_vma structure being freed and reused (for another anon_vma: 425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 426 * above cannot corrupt). 427 */ 428 if (!page_mapped(page)) { 429 put_anon_vma(anon_vma); 430 anon_vma = NULL; 431 } 432 out: 433 rcu_read_unlock(); 434 435 return anon_vma; 436 } 437 438 /* 439 * Similar to page_get_anon_vma() except it locks the anon_vma. 440 * 441 * Its a little more complex as it tries to keep the fast path to a single 442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 443 * reference like with page_get_anon_vma() and then block on the mutex. 444 */ 445 struct anon_vma *page_lock_anon_vma(struct page *page) 446 { 447 struct anon_vma *anon_vma = NULL; 448 struct anon_vma *root_anon_vma; 449 unsigned long anon_mapping; 450 451 rcu_read_lock(); 452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); 453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 454 goto out; 455 if (!page_mapped(page)) 456 goto out; 457 458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 459 root_anon_vma = ACCESS_ONCE(anon_vma->root); 460 if (mutex_trylock(&root_anon_vma->mutex)) { 461 /* 462 * If the page is still mapped, then this anon_vma is still 463 * its anon_vma, and holding the mutex ensures that it will 464 * not go away, see anon_vma_free(). 465 */ 466 if (!page_mapped(page)) { 467 mutex_unlock(&root_anon_vma->mutex); 468 anon_vma = NULL; 469 } 470 goto out; 471 } 472 473 /* trylock failed, we got to sleep */ 474 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 475 anon_vma = NULL; 476 goto out; 477 } 478 479 if (!page_mapped(page)) { 480 put_anon_vma(anon_vma); 481 anon_vma = NULL; 482 goto out; 483 } 484 485 /* we pinned the anon_vma, its safe to sleep */ 486 rcu_read_unlock(); 487 anon_vma_lock(anon_vma); 488 489 if (atomic_dec_and_test(&anon_vma->refcount)) { 490 /* 491 * Oops, we held the last refcount, release the lock 492 * and bail -- can't simply use put_anon_vma() because 493 * we'll deadlock on the anon_vma_lock() recursion. 494 */ 495 anon_vma_unlock(anon_vma); 496 __put_anon_vma(anon_vma); 497 anon_vma = NULL; 498 } 499 500 return anon_vma; 501 502 out: 503 rcu_read_unlock(); 504 return anon_vma; 505 } 506 507 void page_unlock_anon_vma(struct anon_vma *anon_vma) 508 { 509 anon_vma_unlock(anon_vma); 510 } 511 512 /* 513 * At what user virtual address is page expected in @vma? 514 */ 515 static inline unsigned long 516 __vma_address(struct page *page, struct vm_area_struct *vma) 517 { 518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 519 520 if (unlikely(is_vm_hugetlb_page(vma))) 521 pgoff = page->index << huge_page_order(page_hstate(page)); 522 523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 524 } 525 526 inline unsigned long 527 vma_address(struct page *page, struct vm_area_struct *vma) 528 { 529 unsigned long address = __vma_address(page, vma); 530 531 /* page should be within @vma mapping range */ 532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 533 534 return address; 535 } 536 537 /* 538 * At what user virtual address is page expected in vma? 539 * Caller should check the page is actually part of the vma. 540 */ 541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 542 { 543 unsigned long address; 544 if (PageAnon(page)) { 545 struct anon_vma *page__anon_vma = page_anon_vma(page); 546 /* 547 * Note: swapoff's unuse_vma() is more efficient with this 548 * check, and needs it to match anon_vma when KSM is active. 549 */ 550 if (!vma->anon_vma || !page__anon_vma || 551 vma->anon_vma->root != page__anon_vma->root) 552 return -EFAULT; 553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 554 if (!vma->vm_file || 555 vma->vm_file->f_mapping != page->mapping) 556 return -EFAULT; 557 } else 558 return -EFAULT; 559 address = __vma_address(page, vma); 560 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 561 return -EFAULT; 562 return address; 563 } 564 565 /* 566 * Check that @page is mapped at @address into @mm. 567 * 568 * If @sync is false, page_check_address may perform a racy check to avoid 569 * the page table lock when the pte is not present (helpful when reclaiming 570 * highly shared pages). 571 * 572 * On success returns with pte mapped and locked. 573 */ 574 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 575 unsigned long address, spinlock_t **ptlp, int sync) 576 { 577 pgd_t *pgd; 578 pud_t *pud; 579 pmd_t *pmd; 580 pte_t *pte; 581 spinlock_t *ptl; 582 583 if (unlikely(PageHuge(page))) { 584 pte = huge_pte_offset(mm, address); 585 ptl = &mm->page_table_lock; 586 goto check; 587 } 588 589 pgd = pgd_offset(mm, address); 590 if (!pgd_present(*pgd)) 591 return NULL; 592 593 pud = pud_offset(pgd, address); 594 if (!pud_present(*pud)) 595 return NULL; 596 597 pmd = pmd_offset(pud, address); 598 if (!pmd_present(*pmd)) 599 return NULL; 600 if (pmd_trans_huge(*pmd)) 601 return NULL; 602 603 pte = pte_offset_map(pmd, address); 604 /* Make a quick check before getting the lock */ 605 if (!sync && !pte_present(*pte)) { 606 pte_unmap(pte); 607 return NULL; 608 } 609 610 ptl = pte_lockptr(mm, pmd); 611 check: 612 spin_lock(ptl); 613 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 614 *ptlp = ptl; 615 return pte; 616 } 617 pte_unmap_unlock(pte, ptl); 618 return NULL; 619 } 620 621 /** 622 * page_mapped_in_vma - check whether a page is really mapped in a VMA 623 * @page: the page to test 624 * @vma: the VMA to test 625 * 626 * Returns 1 if the page is mapped into the page tables of the VMA, 0 627 * if the page is not mapped into the page tables of this VMA. Only 628 * valid for normal file or anonymous VMAs. 629 */ 630 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 631 { 632 unsigned long address; 633 pte_t *pte; 634 spinlock_t *ptl; 635 636 address = __vma_address(page, vma); 637 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 638 return 0; 639 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 640 if (!pte) /* the page is not in this mm */ 641 return 0; 642 pte_unmap_unlock(pte, ptl); 643 644 return 1; 645 } 646 647 /* 648 * Subfunctions of page_referenced: page_referenced_one called 649 * repeatedly from either page_referenced_anon or page_referenced_file. 650 */ 651 int page_referenced_one(struct page *page, struct vm_area_struct *vma, 652 unsigned long address, unsigned int *mapcount, 653 unsigned long *vm_flags) 654 { 655 struct mm_struct *mm = vma->vm_mm; 656 int referenced = 0; 657 658 if (unlikely(PageTransHuge(page))) { 659 pmd_t *pmd; 660 661 spin_lock(&mm->page_table_lock); 662 /* 663 * rmap might return false positives; we must filter 664 * these out using page_check_address_pmd(). 665 */ 666 pmd = page_check_address_pmd(page, mm, address, 667 PAGE_CHECK_ADDRESS_PMD_FLAG); 668 if (!pmd) { 669 spin_unlock(&mm->page_table_lock); 670 goto out; 671 } 672 673 if (vma->vm_flags & VM_LOCKED) { 674 spin_unlock(&mm->page_table_lock); 675 *mapcount = 0; /* break early from loop */ 676 *vm_flags |= VM_LOCKED; 677 goto out; 678 } 679 680 /* go ahead even if the pmd is pmd_trans_splitting() */ 681 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 682 referenced++; 683 spin_unlock(&mm->page_table_lock); 684 } else { 685 pte_t *pte; 686 spinlock_t *ptl; 687 688 /* 689 * rmap might return false positives; we must filter 690 * these out using page_check_address(). 691 */ 692 pte = page_check_address(page, mm, address, &ptl, 0); 693 if (!pte) 694 goto out; 695 696 if (vma->vm_flags & VM_LOCKED) { 697 pte_unmap_unlock(pte, ptl); 698 *mapcount = 0; /* break early from loop */ 699 *vm_flags |= VM_LOCKED; 700 goto out; 701 } 702 703 if (ptep_clear_flush_young_notify(vma, address, pte)) { 704 /* 705 * Don't treat a reference through a sequentially read 706 * mapping as such. If the page has been used in 707 * another mapping, we will catch it; if this other 708 * mapping is already gone, the unmap path will have 709 * set PG_referenced or activated the page. 710 */ 711 if (likely(!VM_SequentialReadHint(vma))) 712 referenced++; 713 } 714 pte_unmap_unlock(pte, ptl); 715 } 716 717 (*mapcount)--; 718 719 if (referenced) 720 *vm_flags |= vma->vm_flags; 721 out: 722 return referenced; 723 } 724 725 static int page_referenced_anon(struct page *page, 726 struct mem_cgroup *memcg, 727 unsigned long *vm_flags) 728 { 729 unsigned int mapcount; 730 struct anon_vma *anon_vma; 731 pgoff_t pgoff; 732 struct anon_vma_chain *avc; 733 int referenced = 0; 734 735 anon_vma = page_lock_anon_vma(page); 736 if (!anon_vma) 737 return referenced; 738 739 mapcount = page_mapcount(page); 740 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 741 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 742 struct vm_area_struct *vma = avc->vma; 743 unsigned long address = vma_address(page, vma); 744 /* 745 * If we are reclaiming on behalf of a cgroup, skip 746 * counting on behalf of references from different 747 * cgroups 748 */ 749 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 750 continue; 751 referenced += page_referenced_one(page, vma, address, 752 &mapcount, vm_flags); 753 if (!mapcount) 754 break; 755 } 756 757 page_unlock_anon_vma(anon_vma); 758 return referenced; 759 } 760 761 /** 762 * page_referenced_file - referenced check for object-based rmap 763 * @page: the page we're checking references on. 764 * @memcg: target memory control group 765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 766 * 767 * For an object-based mapped page, find all the places it is mapped and 768 * check/clear the referenced flag. This is done by following the page->mapping 769 * pointer, then walking the chain of vmas it holds. It returns the number 770 * of references it found. 771 * 772 * This function is only called from page_referenced for object-based pages. 773 */ 774 static int page_referenced_file(struct page *page, 775 struct mem_cgroup *memcg, 776 unsigned long *vm_flags) 777 { 778 unsigned int mapcount; 779 struct address_space *mapping = page->mapping; 780 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 781 struct vm_area_struct *vma; 782 int referenced = 0; 783 784 /* 785 * The caller's checks on page->mapping and !PageAnon have made 786 * sure that this is a file page: the check for page->mapping 787 * excludes the case just before it gets set on an anon page. 788 */ 789 BUG_ON(PageAnon(page)); 790 791 /* 792 * The page lock not only makes sure that page->mapping cannot 793 * suddenly be NULLified by truncation, it makes sure that the 794 * structure at mapping cannot be freed and reused yet, 795 * so we can safely take mapping->i_mmap_mutex. 796 */ 797 BUG_ON(!PageLocked(page)); 798 799 mutex_lock(&mapping->i_mmap_mutex); 800 801 /* 802 * i_mmap_mutex does not stabilize mapcount at all, but mapcount 803 * is more likely to be accurate if we note it after spinning. 804 */ 805 mapcount = page_mapcount(page); 806 807 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 808 unsigned long address = vma_address(page, vma); 809 /* 810 * If we are reclaiming on behalf of a cgroup, skip 811 * counting on behalf of references from different 812 * cgroups 813 */ 814 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 815 continue; 816 referenced += page_referenced_one(page, vma, address, 817 &mapcount, vm_flags); 818 if (!mapcount) 819 break; 820 } 821 822 mutex_unlock(&mapping->i_mmap_mutex); 823 return referenced; 824 } 825 826 /** 827 * page_referenced - test if the page was referenced 828 * @page: the page to test 829 * @is_locked: caller holds lock on the page 830 * @memcg: target memory cgroup 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 832 * 833 * Quick test_and_clear_referenced for all mappings to a page, 834 * returns the number of ptes which referenced the page. 835 */ 836 int page_referenced(struct page *page, 837 int is_locked, 838 struct mem_cgroup *memcg, 839 unsigned long *vm_flags) 840 { 841 int referenced = 0; 842 int we_locked = 0; 843 844 *vm_flags = 0; 845 if (page_mapped(page) && page_rmapping(page)) { 846 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 847 we_locked = trylock_page(page); 848 if (!we_locked) { 849 referenced++; 850 goto out; 851 } 852 } 853 if (unlikely(PageKsm(page))) 854 referenced += page_referenced_ksm(page, memcg, 855 vm_flags); 856 else if (PageAnon(page)) 857 referenced += page_referenced_anon(page, memcg, 858 vm_flags); 859 else if (page->mapping) 860 referenced += page_referenced_file(page, memcg, 861 vm_flags); 862 if (we_locked) 863 unlock_page(page); 864 865 if (page_test_and_clear_young(page_to_pfn(page))) 866 referenced++; 867 } 868 out: 869 return referenced; 870 } 871 872 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 873 unsigned long address) 874 { 875 struct mm_struct *mm = vma->vm_mm; 876 pte_t *pte; 877 spinlock_t *ptl; 878 int ret = 0; 879 880 pte = page_check_address(page, mm, address, &ptl, 1); 881 if (!pte) 882 goto out; 883 884 if (pte_dirty(*pte) || pte_write(*pte)) { 885 pte_t entry; 886 887 flush_cache_page(vma, address, pte_pfn(*pte)); 888 entry = ptep_clear_flush(vma, address, pte); 889 entry = pte_wrprotect(entry); 890 entry = pte_mkclean(entry); 891 set_pte_at(mm, address, pte, entry); 892 ret = 1; 893 } 894 895 pte_unmap_unlock(pte, ptl); 896 897 if (ret) 898 mmu_notifier_invalidate_page(mm, address); 899 out: 900 return ret; 901 } 902 903 static int page_mkclean_file(struct address_space *mapping, struct page *page) 904 { 905 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 906 struct vm_area_struct *vma; 907 int ret = 0; 908 909 BUG_ON(PageAnon(page)); 910 911 mutex_lock(&mapping->i_mmap_mutex); 912 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 913 if (vma->vm_flags & VM_SHARED) { 914 unsigned long address = vma_address(page, vma); 915 ret += page_mkclean_one(page, vma, address); 916 } 917 } 918 mutex_unlock(&mapping->i_mmap_mutex); 919 return ret; 920 } 921 922 int page_mkclean(struct page *page) 923 { 924 int ret = 0; 925 926 BUG_ON(!PageLocked(page)); 927 928 if (page_mapped(page)) { 929 struct address_space *mapping = page_mapping(page); 930 if (mapping) 931 ret = page_mkclean_file(mapping, page); 932 } 933 934 return ret; 935 } 936 EXPORT_SYMBOL_GPL(page_mkclean); 937 938 /** 939 * page_move_anon_rmap - move a page to our anon_vma 940 * @page: the page to move to our anon_vma 941 * @vma: the vma the page belongs to 942 * @address: the user virtual address mapped 943 * 944 * When a page belongs exclusively to one process after a COW event, 945 * that page can be moved into the anon_vma that belongs to just that 946 * process, so the rmap code will not search the parent or sibling 947 * processes. 948 */ 949 void page_move_anon_rmap(struct page *page, 950 struct vm_area_struct *vma, unsigned long address) 951 { 952 struct anon_vma *anon_vma = vma->anon_vma; 953 954 VM_BUG_ON(!PageLocked(page)); 955 VM_BUG_ON(!anon_vma); 956 VM_BUG_ON(page->index != linear_page_index(vma, address)); 957 958 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 959 page->mapping = (struct address_space *) anon_vma; 960 } 961 962 /** 963 * __page_set_anon_rmap - set up new anonymous rmap 964 * @page: Page to add to rmap 965 * @vma: VM area to add page to. 966 * @address: User virtual address of the mapping 967 * @exclusive: the page is exclusively owned by the current process 968 */ 969 static void __page_set_anon_rmap(struct page *page, 970 struct vm_area_struct *vma, unsigned long address, int exclusive) 971 { 972 struct anon_vma *anon_vma = vma->anon_vma; 973 974 BUG_ON(!anon_vma); 975 976 if (PageAnon(page)) 977 return; 978 979 /* 980 * If the page isn't exclusively mapped into this vma, 981 * we must use the _oldest_ possible anon_vma for the 982 * page mapping! 983 */ 984 if (!exclusive) 985 anon_vma = anon_vma->root; 986 987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 988 page->mapping = (struct address_space *) anon_vma; 989 page->index = linear_page_index(vma, address); 990 } 991 992 /** 993 * __page_check_anon_rmap - sanity check anonymous rmap addition 994 * @page: the page to add the mapping to 995 * @vma: the vm area in which the mapping is added 996 * @address: the user virtual address mapped 997 */ 998 static void __page_check_anon_rmap(struct page *page, 999 struct vm_area_struct *vma, unsigned long address) 1000 { 1001 #ifdef CONFIG_DEBUG_VM 1002 /* 1003 * The page's anon-rmap details (mapping and index) are guaranteed to 1004 * be set up correctly at this point. 1005 * 1006 * We have exclusion against page_add_anon_rmap because the caller 1007 * always holds the page locked, except if called from page_dup_rmap, 1008 * in which case the page is already known to be setup. 1009 * 1010 * We have exclusion against page_add_new_anon_rmap because those pages 1011 * are initially only visible via the pagetables, and the pte is locked 1012 * over the call to page_add_new_anon_rmap. 1013 */ 1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1015 BUG_ON(page->index != linear_page_index(vma, address)); 1016 #endif 1017 } 1018 1019 /** 1020 * page_add_anon_rmap - add pte mapping to an anonymous page 1021 * @page: the page to add the mapping to 1022 * @vma: the vm area in which the mapping is added 1023 * @address: the user virtual address mapped 1024 * 1025 * The caller needs to hold the pte lock, and the page must be locked in 1026 * the anon_vma case: to serialize mapping,index checking after setting, 1027 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1028 * (but PageKsm is never downgraded to PageAnon). 1029 */ 1030 void page_add_anon_rmap(struct page *page, 1031 struct vm_area_struct *vma, unsigned long address) 1032 { 1033 do_page_add_anon_rmap(page, vma, address, 0); 1034 } 1035 1036 /* 1037 * Special version of the above for do_swap_page, which often runs 1038 * into pages that are exclusively owned by the current process. 1039 * Everybody else should continue to use page_add_anon_rmap above. 1040 */ 1041 void do_page_add_anon_rmap(struct page *page, 1042 struct vm_area_struct *vma, unsigned long address, int exclusive) 1043 { 1044 int first = atomic_inc_and_test(&page->_mapcount); 1045 if (first) { 1046 if (!PageTransHuge(page)) 1047 __inc_zone_page_state(page, NR_ANON_PAGES); 1048 else 1049 __inc_zone_page_state(page, 1050 NR_ANON_TRANSPARENT_HUGEPAGES); 1051 } 1052 if (unlikely(PageKsm(page))) 1053 return; 1054 1055 VM_BUG_ON(!PageLocked(page)); 1056 /* address might be in next vma when migration races vma_adjust */ 1057 if (first) 1058 __page_set_anon_rmap(page, vma, address, exclusive); 1059 else 1060 __page_check_anon_rmap(page, vma, address); 1061 } 1062 1063 /** 1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1065 * @page: the page to add the mapping to 1066 * @vma: the vm area in which the mapping is added 1067 * @address: the user virtual address mapped 1068 * 1069 * Same as page_add_anon_rmap but must only be called on *new* pages. 1070 * This means the inc-and-test can be bypassed. 1071 * Page does not have to be locked. 1072 */ 1073 void page_add_new_anon_rmap(struct page *page, 1074 struct vm_area_struct *vma, unsigned long address) 1075 { 1076 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1077 SetPageSwapBacked(page); 1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1079 if (!PageTransHuge(page)) 1080 __inc_zone_page_state(page, NR_ANON_PAGES); 1081 else 1082 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1083 __page_set_anon_rmap(page, vma, address, 1); 1084 if (!mlocked_vma_newpage(vma, page)) 1085 lru_cache_add_lru(page, LRU_ACTIVE_ANON); 1086 else 1087 add_page_to_unevictable_list(page); 1088 } 1089 1090 /** 1091 * page_add_file_rmap - add pte mapping to a file page 1092 * @page: the page to add the mapping to 1093 * 1094 * The caller needs to hold the pte lock. 1095 */ 1096 void page_add_file_rmap(struct page *page) 1097 { 1098 bool locked; 1099 unsigned long flags; 1100 1101 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1102 if (atomic_inc_and_test(&page->_mapcount)) { 1103 __inc_zone_page_state(page, NR_FILE_MAPPED); 1104 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); 1105 } 1106 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1107 } 1108 1109 /** 1110 * page_remove_rmap - take down pte mapping from a page 1111 * @page: page to remove mapping from 1112 * 1113 * The caller needs to hold the pte lock. 1114 */ 1115 void page_remove_rmap(struct page *page) 1116 { 1117 struct address_space *mapping = page_mapping(page); 1118 bool anon = PageAnon(page); 1119 bool locked; 1120 unsigned long flags; 1121 1122 /* 1123 * The anon case has no mem_cgroup page_stat to update; but may 1124 * uncharge_page() below, where the lock ordering can deadlock if 1125 * we hold the lock against page_stat move: so avoid it on anon. 1126 */ 1127 if (!anon) 1128 mem_cgroup_begin_update_page_stat(page, &locked, &flags); 1129 1130 /* page still mapped by someone else? */ 1131 if (!atomic_add_negative(-1, &page->_mapcount)) 1132 goto out; 1133 1134 /* 1135 * Now that the last pte has gone, s390 must transfer dirty 1136 * flag from storage key to struct page. We can usually skip 1137 * this if the page is anon, so about to be freed; but perhaps 1138 * not if it's in swapcache - there might be another pte slot 1139 * containing the swap entry, but page not yet written to swap. 1140 * 1141 * And we can skip it on file pages, so long as the filesystem 1142 * participates in dirty tracking; but need to catch shm and tmpfs 1143 * and ramfs pages which have been modified since creation by read 1144 * fault. 1145 * 1146 * Note that mapping must be decided above, before decrementing 1147 * mapcount (which luckily provides a barrier): once page is unmapped, 1148 * it could be truncated and page->mapping reset to NULL at any moment. 1149 * Note also that we are relying on page_mapping(page) to set mapping 1150 * to &swapper_space when PageSwapCache(page). 1151 */ 1152 if (mapping && !mapping_cap_account_dirty(mapping) && 1153 page_test_and_clear_dirty(page_to_pfn(page), 1)) 1154 set_page_dirty(page); 1155 /* 1156 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED 1157 * and not charged by memcg for now. 1158 */ 1159 if (unlikely(PageHuge(page))) 1160 goto out; 1161 if (anon) { 1162 mem_cgroup_uncharge_page(page); 1163 if (!PageTransHuge(page)) 1164 __dec_zone_page_state(page, NR_ANON_PAGES); 1165 else 1166 __dec_zone_page_state(page, 1167 NR_ANON_TRANSPARENT_HUGEPAGES); 1168 } else { 1169 __dec_zone_page_state(page, NR_FILE_MAPPED); 1170 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); 1171 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1172 } 1173 if (unlikely(PageMlocked(page))) 1174 clear_page_mlock(page); 1175 /* 1176 * It would be tidy to reset the PageAnon mapping here, 1177 * but that might overwrite a racing page_add_anon_rmap 1178 * which increments mapcount after us but sets mapping 1179 * before us: so leave the reset to free_hot_cold_page, 1180 * and remember that it's only reliable while mapped. 1181 * Leaving it set also helps swapoff to reinstate ptes 1182 * faster for those pages still in swapcache. 1183 */ 1184 return; 1185 out: 1186 if (!anon) 1187 mem_cgroup_end_update_page_stat(page, &locked, &flags); 1188 } 1189 1190 /* 1191 * Subfunctions of try_to_unmap: try_to_unmap_one called 1192 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file. 1193 */ 1194 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1195 unsigned long address, enum ttu_flags flags) 1196 { 1197 struct mm_struct *mm = vma->vm_mm; 1198 pte_t *pte; 1199 pte_t pteval; 1200 spinlock_t *ptl; 1201 int ret = SWAP_AGAIN; 1202 1203 pte = page_check_address(page, mm, address, &ptl, 0); 1204 if (!pte) 1205 goto out; 1206 1207 /* 1208 * If the page is mlock()d, we cannot swap it out. 1209 * If it's recently referenced (perhaps page_referenced 1210 * skipped over this mm) then we should reactivate it. 1211 */ 1212 if (!(flags & TTU_IGNORE_MLOCK)) { 1213 if (vma->vm_flags & VM_LOCKED) 1214 goto out_mlock; 1215 1216 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1217 goto out_unmap; 1218 } 1219 if (!(flags & TTU_IGNORE_ACCESS)) { 1220 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1221 ret = SWAP_FAIL; 1222 goto out_unmap; 1223 } 1224 } 1225 1226 /* Nuke the page table entry. */ 1227 flush_cache_page(vma, address, page_to_pfn(page)); 1228 pteval = ptep_clear_flush(vma, address, pte); 1229 1230 /* Move the dirty bit to the physical page now the pte is gone. */ 1231 if (pte_dirty(pteval)) 1232 set_page_dirty(page); 1233 1234 /* Update high watermark before we lower rss */ 1235 update_hiwater_rss(mm); 1236 1237 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1238 if (PageAnon(page)) 1239 dec_mm_counter(mm, MM_ANONPAGES); 1240 else 1241 dec_mm_counter(mm, MM_FILEPAGES); 1242 set_pte_at(mm, address, pte, 1243 swp_entry_to_pte(make_hwpoison_entry(page))); 1244 } else if (PageAnon(page)) { 1245 swp_entry_t entry = { .val = page_private(page) }; 1246 1247 if (PageSwapCache(page)) { 1248 /* 1249 * Store the swap location in the pte. 1250 * See handle_pte_fault() ... 1251 */ 1252 if (swap_duplicate(entry) < 0) { 1253 set_pte_at(mm, address, pte, pteval); 1254 ret = SWAP_FAIL; 1255 goto out_unmap; 1256 } 1257 if (list_empty(&mm->mmlist)) { 1258 spin_lock(&mmlist_lock); 1259 if (list_empty(&mm->mmlist)) 1260 list_add(&mm->mmlist, &init_mm.mmlist); 1261 spin_unlock(&mmlist_lock); 1262 } 1263 dec_mm_counter(mm, MM_ANONPAGES); 1264 inc_mm_counter(mm, MM_SWAPENTS); 1265 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1266 /* 1267 * Store the pfn of the page in a special migration 1268 * pte. do_swap_page() will wait until the migration 1269 * pte is removed and then restart fault handling. 1270 */ 1271 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); 1272 entry = make_migration_entry(page, pte_write(pteval)); 1273 } 1274 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1275 BUG_ON(pte_file(*pte)); 1276 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1277 (TTU_ACTION(flags) == TTU_MIGRATION)) { 1278 /* Establish migration entry for a file page */ 1279 swp_entry_t entry; 1280 entry = make_migration_entry(page, pte_write(pteval)); 1281 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1282 } else 1283 dec_mm_counter(mm, MM_FILEPAGES); 1284 1285 page_remove_rmap(page); 1286 page_cache_release(page); 1287 1288 out_unmap: 1289 pte_unmap_unlock(pte, ptl); 1290 if (ret != SWAP_FAIL) 1291 mmu_notifier_invalidate_page(mm, address); 1292 out: 1293 return ret; 1294 1295 out_mlock: 1296 pte_unmap_unlock(pte, ptl); 1297 1298 1299 /* 1300 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1301 * unstable result and race. Plus, We can't wait here because 1302 * we now hold anon_vma->mutex or mapping->i_mmap_mutex. 1303 * if trylock failed, the page remain in evictable lru and later 1304 * vmscan could retry to move the page to unevictable lru if the 1305 * page is actually mlocked. 1306 */ 1307 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1308 if (vma->vm_flags & VM_LOCKED) { 1309 mlock_vma_page(page); 1310 ret = SWAP_MLOCK; 1311 } 1312 up_read(&vma->vm_mm->mmap_sem); 1313 } 1314 return ret; 1315 } 1316 1317 /* 1318 * objrmap doesn't work for nonlinear VMAs because the assumption that 1319 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 1320 * Consequently, given a particular page and its ->index, we cannot locate the 1321 * ptes which are mapping that page without an exhaustive linear search. 1322 * 1323 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 1324 * maps the file to which the target page belongs. The ->vm_private_data field 1325 * holds the current cursor into that scan. Successive searches will circulate 1326 * around the vma's virtual address space. 1327 * 1328 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 1329 * more scanning pressure is placed against them as well. Eventually pages 1330 * will become fully unmapped and are eligible for eviction. 1331 * 1332 * For very sparsely populated VMAs this is a little inefficient - chances are 1333 * there there won't be many ptes located within the scan cluster. In this case 1334 * maybe we could scan further - to the end of the pte page, perhaps. 1335 * 1336 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can 1337 * acquire it without blocking. If vma locked, mlock the pages in the cluster, 1338 * rather than unmapping them. If we encounter the "check_page" that vmscan is 1339 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. 1340 */ 1341 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 1342 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 1343 1344 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, 1345 struct vm_area_struct *vma, struct page *check_page) 1346 { 1347 struct mm_struct *mm = vma->vm_mm; 1348 pgd_t *pgd; 1349 pud_t *pud; 1350 pmd_t *pmd; 1351 pte_t *pte; 1352 pte_t pteval; 1353 spinlock_t *ptl; 1354 struct page *page; 1355 unsigned long address; 1356 unsigned long mmun_start; /* For mmu_notifiers */ 1357 unsigned long mmun_end; /* For mmu_notifiers */ 1358 unsigned long end; 1359 int ret = SWAP_AGAIN; 1360 int locked_vma = 0; 1361 1362 address = (vma->vm_start + cursor) & CLUSTER_MASK; 1363 end = address + CLUSTER_SIZE; 1364 if (address < vma->vm_start) 1365 address = vma->vm_start; 1366 if (end > vma->vm_end) 1367 end = vma->vm_end; 1368 1369 pgd = pgd_offset(mm, address); 1370 if (!pgd_present(*pgd)) 1371 return ret; 1372 1373 pud = pud_offset(pgd, address); 1374 if (!pud_present(*pud)) 1375 return ret; 1376 1377 pmd = pmd_offset(pud, address); 1378 if (!pmd_present(*pmd)) 1379 return ret; 1380 1381 mmun_start = address; 1382 mmun_end = end; 1383 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1384 1385 /* 1386 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, 1387 * keep the sem while scanning the cluster for mlocking pages. 1388 */ 1389 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1390 locked_vma = (vma->vm_flags & VM_LOCKED); 1391 if (!locked_vma) 1392 up_read(&vma->vm_mm->mmap_sem); /* don't need it */ 1393 } 1394 1395 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1396 1397 /* Update high watermark before we lower rss */ 1398 update_hiwater_rss(mm); 1399 1400 for (; address < end; pte++, address += PAGE_SIZE) { 1401 if (!pte_present(*pte)) 1402 continue; 1403 page = vm_normal_page(vma, address, *pte); 1404 BUG_ON(!page || PageAnon(page)); 1405 1406 if (locked_vma) { 1407 mlock_vma_page(page); /* no-op if already mlocked */ 1408 if (page == check_page) 1409 ret = SWAP_MLOCK; 1410 continue; /* don't unmap */ 1411 } 1412 1413 if (ptep_clear_flush_young_notify(vma, address, pte)) 1414 continue; 1415 1416 /* Nuke the page table entry. */ 1417 flush_cache_page(vma, address, pte_pfn(*pte)); 1418 pteval = ptep_clear_flush(vma, address, pte); 1419 1420 /* If nonlinear, store the file page offset in the pte. */ 1421 if (page->index != linear_page_index(vma, address)) 1422 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 1423 1424 /* Move the dirty bit to the physical page now the pte is gone. */ 1425 if (pte_dirty(pteval)) 1426 set_page_dirty(page); 1427 1428 page_remove_rmap(page); 1429 page_cache_release(page); 1430 dec_mm_counter(mm, MM_FILEPAGES); 1431 (*mapcount)--; 1432 } 1433 pte_unmap_unlock(pte - 1, ptl); 1434 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1435 if (locked_vma) 1436 up_read(&vma->vm_mm->mmap_sem); 1437 return ret; 1438 } 1439 1440 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1441 { 1442 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1443 1444 if (!maybe_stack) 1445 return false; 1446 1447 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1448 VM_STACK_INCOMPLETE_SETUP) 1449 return true; 1450 1451 return false; 1452 } 1453 1454 /** 1455 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based 1456 * rmap method 1457 * @page: the page to unmap/unlock 1458 * @flags: action and flags 1459 * 1460 * Find all the mappings of a page using the mapping pointer and the vma chains 1461 * contained in the anon_vma struct it points to. 1462 * 1463 * This function is only called from try_to_unmap/try_to_munlock for 1464 * anonymous pages. 1465 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1466 * where the page was found will be held for write. So, we won't recheck 1467 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1468 * 'LOCKED. 1469 */ 1470 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) 1471 { 1472 struct anon_vma *anon_vma; 1473 pgoff_t pgoff; 1474 struct anon_vma_chain *avc; 1475 int ret = SWAP_AGAIN; 1476 1477 anon_vma = page_lock_anon_vma(page); 1478 if (!anon_vma) 1479 return ret; 1480 1481 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1482 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1483 struct vm_area_struct *vma = avc->vma; 1484 unsigned long address; 1485 1486 /* 1487 * During exec, a temporary VMA is setup and later moved. 1488 * The VMA is moved under the anon_vma lock but not the 1489 * page tables leading to a race where migration cannot 1490 * find the migration ptes. Rather than increasing the 1491 * locking requirements of exec(), migration skips 1492 * temporary VMAs until after exec() completes. 1493 */ 1494 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && 1495 is_vma_temporary_stack(vma)) 1496 continue; 1497 1498 address = vma_address(page, vma); 1499 ret = try_to_unmap_one(page, vma, address, flags); 1500 if (ret != SWAP_AGAIN || !page_mapped(page)) 1501 break; 1502 } 1503 1504 page_unlock_anon_vma(anon_vma); 1505 return ret; 1506 } 1507 1508 /** 1509 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method 1510 * @page: the page to unmap/unlock 1511 * @flags: action and flags 1512 * 1513 * Find all the mappings of a page using the mapping pointer and the vma chains 1514 * contained in the address_space struct it points to. 1515 * 1516 * This function is only called from try_to_unmap/try_to_munlock for 1517 * object-based pages. 1518 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1519 * where the page was found will be held for write. So, we won't recheck 1520 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1521 * 'LOCKED. 1522 */ 1523 static int try_to_unmap_file(struct page *page, enum ttu_flags flags) 1524 { 1525 struct address_space *mapping = page->mapping; 1526 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1527 struct vm_area_struct *vma; 1528 int ret = SWAP_AGAIN; 1529 unsigned long cursor; 1530 unsigned long max_nl_cursor = 0; 1531 unsigned long max_nl_size = 0; 1532 unsigned int mapcount; 1533 1534 mutex_lock(&mapping->i_mmap_mutex); 1535 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1536 unsigned long address = vma_address(page, vma); 1537 ret = try_to_unmap_one(page, vma, address, flags); 1538 if (ret != SWAP_AGAIN || !page_mapped(page)) 1539 goto out; 1540 } 1541 1542 if (list_empty(&mapping->i_mmap_nonlinear)) 1543 goto out; 1544 1545 /* 1546 * We don't bother to try to find the munlocked page in nonlinears. 1547 * It's costly. Instead, later, page reclaim logic may call 1548 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. 1549 */ 1550 if (TTU_ACTION(flags) == TTU_MUNLOCK) 1551 goto out; 1552 1553 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1554 shared.nonlinear) { 1555 cursor = (unsigned long) vma->vm_private_data; 1556 if (cursor > max_nl_cursor) 1557 max_nl_cursor = cursor; 1558 cursor = vma->vm_end - vma->vm_start; 1559 if (cursor > max_nl_size) 1560 max_nl_size = cursor; 1561 } 1562 1563 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ 1564 ret = SWAP_FAIL; 1565 goto out; 1566 } 1567 1568 /* 1569 * We don't try to search for this page in the nonlinear vmas, 1570 * and page_referenced wouldn't have found it anyway. Instead 1571 * just walk the nonlinear vmas trying to age and unmap some. 1572 * The mapcount of the page we came in with is irrelevant, 1573 * but even so use it as a guide to how hard we should try? 1574 */ 1575 mapcount = page_mapcount(page); 1576 if (!mapcount) 1577 goto out; 1578 cond_resched(); 1579 1580 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 1581 if (max_nl_cursor == 0) 1582 max_nl_cursor = CLUSTER_SIZE; 1583 1584 do { 1585 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 1586 shared.nonlinear) { 1587 cursor = (unsigned long) vma->vm_private_data; 1588 while ( cursor < max_nl_cursor && 1589 cursor < vma->vm_end - vma->vm_start) { 1590 if (try_to_unmap_cluster(cursor, &mapcount, 1591 vma, page) == SWAP_MLOCK) 1592 ret = SWAP_MLOCK; 1593 cursor += CLUSTER_SIZE; 1594 vma->vm_private_data = (void *) cursor; 1595 if ((int)mapcount <= 0) 1596 goto out; 1597 } 1598 vma->vm_private_data = (void *) max_nl_cursor; 1599 } 1600 cond_resched(); 1601 max_nl_cursor += CLUSTER_SIZE; 1602 } while (max_nl_cursor <= max_nl_size); 1603 1604 /* 1605 * Don't loop forever (perhaps all the remaining pages are 1606 * in locked vmas). Reset cursor on all unreserved nonlinear 1607 * vmas, now forgetting on which ones it had fallen behind. 1608 */ 1609 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) 1610 vma->vm_private_data = NULL; 1611 out: 1612 mutex_unlock(&mapping->i_mmap_mutex); 1613 return ret; 1614 } 1615 1616 /** 1617 * try_to_unmap - try to remove all page table mappings to a page 1618 * @page: the page to get unmapped 1619 * @flags: action and flags 1620 * 1621 * Tries to remove all the page table entries which are mapping this 1622 * page, used in the pageout path. Caller must hold the page lock. 1623 * Return values are: 1624 * 1625 * SWAP_SUCCESS - we succeeded in removing all mappings 1626 * SWAP_AGAIN - we missed a mapping, try again later 1627 * SWAP_FAIL - the page is unswappable 1628 * SWAP_MLOCK - page is mlocked. 1629 */ 1630 int try_to_unmap(struct page *page, enum ttu_flags flags) 1631 { 1632 int ret; 1633 1634 BUG_ON(!PageLocked(page)); 1635 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); 1636 1637 if (unlikely(PageKsm(page))) 1638 ret = try_to_unmap_ksm(page, flags); 1639 else if (PageAnon(page)) 1640 ret = try_to_unmap_anon(page, flags); 1641 else 1642 ret = try_to_unmap_file(page, flags); 1643 if (ret != SWAP_MLOCK && !page_mapped(page)) 1644 ret = SWAP_SUCCESS; 1645 return ret; 1646 } 1647 1648 /** 1649 * try_to_munlock - try to munlock a page 1650 * @page: the page to be munlocked 1651 * 1652 * Called from munlock code. Checks all of the VMAs mapping the page 1653 * to make sure nobody else has this page mlocked. The page will be 1654 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1655 * 1656 * Return values are: 1657 * 1658 * SWAP_AGAIN - no vma is holding page mlocked, or, 1659 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1660 * SWAP_FAIL - page cannot be located at present 1661 * SWAP_MLOCK - page is now mlocked. 1662 */ 1663 int try_to_munlock(struct page *page) 1664 { 1665 VM_BUG_ON(!PageLocked(page) || PageLRU(page)); 1666 1667 if (unlikely(PageKsm(page))) 1668 return try_to_unmap_ksm(page, TTU_MUNLOCK); 1669 else if (PageAnon(page)) 1670 return try_to_unmap_anon(page, TTU_MUNLOCK); 1671 else 1672 return try_to_unmap_file(page, TTU_MUNLOCK); 1673 } 1674 1675 void __put_anon_vma(struct anon_vma *anon_vma) 1676 { 1677 struct anon_vma *root = anon_vma->root; 1678 1679 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1680 anon_vma_free(root); 1681 1682 anon_vma_free(anon_vma); 1683 } 1684 1685 #ifdef CONFIG_MIGRATION 1686 /* 1687 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): 1688 * Called by migrate.c to remove migration ptes, but might be used more later. 1689 */ 1690 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, 1691 struct vm_area_struct *, unsigned long, void *), void *arg) 1692 { 1693 struct anon_vma *anon_vma; 1694 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1695 struct anon_vma_chain *avc; 1696 int ret = SWAP_AGAIN; 1697 1698 /* 1699 * Note: remove_migration_ptes() cannot use page_lock_anon_vma() 1700 * because that depends on page_mapped(); but not all its usages 1701 * are holding mmap_sem. Users without mmap_sem are required to 1702 * take a reference count to prevent the anon_vma disappearing 1703 */ 1704 anon_vma = page_anon_vma(page); 1705 if (!anon_vma) 1706 return ret; 1707 anon_vma_lock(anon_vma); 1708 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1709 struct vm_area_struct *vma = avc->vma; 1710 unsigned long address = vma_address(page, vma); 1711 ret = rmap_one(page, vma, address, arg); 1712 if (ret != SWAP_AGAIN) 1713 break; 1714 } 1715 anon_vma_unlock(anon_vma); 1716 return ret; 1717 } 1718 1719 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, 1720 struct vm_area_struct *, unsigned long, void *), void *arg) 1721 { 1722 struct address_space *mapping = page->mapping; 1723 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 1724 struct vm_area_struct *vma; 1725 int ret = SWAP_AGAIN; 1726 1727 if (!mapping) 1728 return ret; 1729 mutex_lock(&mapping->i_mmap_mutex); 1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1731 unsigned long address = vma_address(page, vma); 1732 ret = rmap_one(page, vma, address, arg); 1733 if (ret != SWAP_AGAIN) 1734 break; 1735 } 1736 /* 1737 * No nonlinear handling: being always shared, nonlinear vmas 1738 * never contain migration ptes. Decide what to do about this 1739 * limitation to linear when we need rmap_walk() on nonlinear. 1740 */ 1741 mutex_unlock(&mapping->i_mmap_mutex); 1742 return ret; 1743 } 1744 1745 int rmap_walk(struct page *page, int (*rmap_one)(struct page *, 1746 struct vm_area_struct *, unsigned long, void *), void *arg) 1747 { 1748 VM_BUG_ON(!PageLocked(page)); 1749 1750 if (unlikely(PageKsm(page))) 1751 return rmap_walk_ksm(page, rmap_one, arg); 1752 else if (PageAnon(page)) 1753 return rmap_walk_anon(page, rmap_one, arg); 1754 else 1755 return rmap_walk_file(page, rmap_one, arg); 1756 } 1757 #endif /* CONFIG_MIGRATION */ 1758 1759 #ifdef CONFIG_HUGETLB_PAGE 1760 /* 1761 * The following three functions are for anonymous (private mapped) hugepages. 1762 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1763 * and no lru code, because we handle hugepages differently from common pages. 1764 */ 1765 static void __hugepage_set_anon_rmap(struct page *page, 1766 struct vm_area_struct *vma, unsigned long address, int exclusive) 1767 { 1768 struct anon_vma *anon_vma = vma->anon_vma; 1769 1770 BUG_ON(!anon_vma); 1771 1772 if (PageAnon(page)) 1773 return; 1774 if (!exclusive) 1775 anon_vma = anon_vma->root; 1776 1777 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1778 page->mapping = (struct address_space *) anon_vma; 1779 page->index = linear_page_index(vma, address); 1780 } 1781 1782 void hugepage_add_anon_rmap(struct page *page, 1783 struct vm_area_struct *vma, unsigned long address) 1784 { 1785 struct anon_vma *anon_vma = vma->anon_vma; 1786 int first; 1787 1788 BUG_ON(!PageLocked(page)); 1789 BUG_ON(!anon_vma); 1790 /* address might be in next vma when migration races vma_adjust */ 1791 first = atomic_inc_and_test(&page->_mapcount); 1792 if (first) 1793 __hugepage_set_anon_rmap(page, vma, address, 0); 1794 } 1795 1796 void hugepage_add_new_anon_rmap(struct page *page, 1797 struct vm_area_struct *vma, unsigned long address) 1798 { 1799 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1800 atomic_set(&page->_mapcount, 0); 1801 __hugepage_set_anon_rmap(page, vma, address, 1); 1802 } 1803 #endif /* CONFIG_HUGETLB_PAGE */ 1804