xref: /linux/mm/rmap.c (revision cf02820041668b14cbfa0fbd2bab45ac79bd6174)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_mutex
27  *         anon_vma->mutex
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex      (memory_failure, collect_procs_anon)
41  *   ->tasklist_lock
42  *     pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70 	struct anon_vma *anon_vma;
71 
72 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 	if (anon_vma) {
74 		atomic_set(&anon_vma->refcount, 1);
75 		/*
76 		 * Initialise the anon_vma root to point to itself. If called
77 		 * from fork, the root will be reset to the parents anon_vma.
78 		 */
79 		anon_vma->root = anon_vma;
80 	}
81 
82 	return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89 	/*
90 	 * Synchronize against page_lock_anon_vma() such that
91 	 * we can safely hold the lock without the anon_vma getting
92 	 * freed.
93 	 *
94 	 * Relies on the full mb implied by the atomic_dec_and_test() from
95 	 * put_anon_vma() against the acquire barrier implied by
96 	 * mutex_trylock() from page_lock_anon_vma(). This orders:
97 	 *
98 	 * page_lock_anon_vma()		VS	put_anon_vma()
99 	 *   mutex_trylock()			  atomic_dec_and_test()
100 	 *   LOCK				  MB
101 	 *   atomic_read()			  mutex_is_locked()
102 	 *
103 	 * LOCK should suffice since the actual taking of the lock must
104 	 * happen _before_ what follows.
105 	 */
106 	if (mutex_is_locked(&anon_vma->root->mutex)) {
107 		anon_vma_lock(anon_vma);
108 		anon_vma_unlock(anon_vma);
109 	}
110 
111 	kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113 
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118 
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123 
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 				struct anon_vma_chain *avc,
126 				struct anon_vma *anon_vma)
127 {
128 	avc->vma = vma;
129 	avc->anon_vma = anon_vma;
130 	list_add(&avc->same_vma, &vma->anon_vma_chain);
131 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133 
134 /**
135  * anon_vma_prepare - attach an anon_vma to a memory region
136  * @vma: the memory region in question
137  *
138  * This makes sure the memory mapping described by 'vma' has
139  * an 'anon_vma' attached to it, so that we can associate the
140  * anonymous pages mapped into it with that anon_vma.
141  *
142  * The common case will be that we already have one, but if
143  * not we either need to find an adjacent mapping that we
144  * can re-use the anon_vma from (very common when the only
145  * reason for splitting a vma has been mprotect()), or we
146  * allocate a new one.
147  *
148  * Anon-vma allocations are very subtle, because we may have
149  * optimistically looked up an anon_vma in page_lock_anon_vma()
150  * and that may actually touch the spinlock even in the newly
151  * allocated vma (it depends on RCU to make sure that the
152  * anon_vma isn't actually destroyed).
153  *
154  * As a result, we need to do proper anon_vma locking even
155  * for the new allocation. At the same time, we do not want
156  * to do any locking for the common case of already having
157  * an anon_vma.
158  *
159  * This must be called with the mmap_sem held for reading.
160  */
161 int anon_vma_prepare(struct vm_area_struct *vma)
162 {
163 	struct anon_vma *anon_vma = vma->anon_vma;
164 	struct anon_vma_chain *avc;
165 
166 	might_sleep();
167 	if (unlikely(!anon_vma)) {
168 		struct mm_struct *mm = vma->vm_mm;
169 		struct anon_vma *allocated;
170 
171 		avc = anon_vma_chain_alloc(GFP_KERNEL);
172 		if (!avc)
173 			goto out_enomem;
174 
175 		anon_vma = find_mergeable_anon_vma(vma);
176 		allocated = NULL;
177 		if (!anon_vma) {
178 			anon_vma = anon_vma_alloc();
179 			if (unlikely(!anon_vma))
180 				goto out_enomem_free_avc;
181 			allocated = anon_vma;
182 		}
183 
184 		anon_vma_lock(anon_vma);
185 		/* page_table_lock to protect against threads */
186 		spin_lock(&mm->page_table_lock);
187 		if (likely(!vma->anon_vma)) {
188 			vma->anon_vma = anon_vma;
189 			anon_vma_chain_link(vma, avc, anon_vma);
190 			allocated = NULL;
191 			avc = NULL;
192 		}
193 		spin_unlock(&mm->page_table_lock);
194 		anon_vma_unlock(anon_vma);
195 
196 		if (unlikely(allocated))
197 			put_anon_vma(allocated);
198 		if (unlikely(avc))
199 			anon_vma_chain_free(avc);
200 	}
201 	return 0;
202 
203  out_enomem_free_avc:
204 	anon_vma_chain_free(avc);
205  out_enomem:
206 	return -ENOMEM;
207 }
208 
209 /*
210  * This is a useful helper function for locking the anon_vma root as
211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212  * have the same vma.
213  *
214  * Such anon_vma's should have the same root, so you'd expect to see
215  * just a single mutex_lock for the whole traversal.
216  */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219 	struct anon_vma *new_root = anon_vma->root;
220 	if (new_root != root) {
221 		if (WARN_ON_ONCE(root))
222 			mutex_unlock(&root->mutex);
223 		root = new_root;
224 		mutex_lock(&root->mutex);
225 	}
226 	return root;
227 }
228 
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231 	if (root)
232 		mutex_unlock(&root->mutex);
233 }
234 
235 /*
236  * Attach the anon_vmas from src to dst.
237  * Returns 0 on success, -ENOMEM on failure.
238  */
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240 {
241 	struct anon_vma_chain *avc, *pavc;
242 	struct anon_vma *root = NULL;
243 
244 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 		struct anon_vma *anon_vma;
246 
247 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 		if (unlikely(!avc)) {
249 			unlock_anon_vma_root(root);
250 			root = NULL;
251 			avc = anon_vma_chain_alloc(GFP_KERNEL);
252 			if (!avc)
253 				goto enomem_failure;
254 		}
255 		anon_vma = pavc->anon_vma;
256 		root = lock_anon_vma_root(root, anon_vma);
257 		anon_vma_chain_link(dst, avc, anon_vma);
258 	}
259 	unlock_anon_vma_root(root);
260 	return 0;
261 
262  enomem_failure:
263 	unlink_anon_vmas(dst);
264 	return -ENOMEM;
265 }
266 
267 /*
268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
269  * the corresponding VMA in the parent process is attached to.
270  * Returns 0 on success, non-zero on failure.
271  */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274 	struct anon_vma_chain *avc;
275 	struct anon_vma *anon_vma;
276 
277 	/* Don't bother if the parent process has no anon_vma here. */
278 	if (!pvma->anon_vma)
279 		return 0;
280 
281 	/*
282 	 * First, attach the new VMA to the parent VMA's anon_vmas,
283 	 * so rmap can find non-COWed pages in child processes.
284 	 */
285 	if (anon_vma_clone(vma, pvma))
286 		return -ENOMEM;
287 
288 	/* Then add our own anon_vma. */
289 	anon_vma = anon_vma_alloc();
290 	if (!anon_vma)
291 		goto out_error;
292 	avc = anon_vma_chain_alloc(GFP_KERNEL);
293 	if (!avc)
294 		goto out_error_free_anon_vma;
295 
296 	/*
297 	 * The root anon_vma's spinlock is the lock actually used when we
298 	 * lock any of the anon_vmas in this anon_vma tree.
299 	 */
300 	anon_vma->root = pvma->anon_vma->root;
301 	/*
302 	 * With refcounts, an anon_vma can stay around longer than the
303 	 * process it belongs to. The root anon_vma needs to be pinned until
304 	 * this anon_vma is freed, because the lock lives in the root.
305 	 */
306 	get_anon_vma(anon_vma->root);
307 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
308 	vma->anon_vma = anon_vma;
309 	anon_vma_lock(anon_vma);
310 	anon_vma_chain_link(vma, avc, anon_vma);
311 	anon_vma_unlock(anon_vma);
312 
313 	return 0;
314 
315  out_error_free_anon_vma:
316 	put_anon_vma(anon_vma);
317  out_error:
318 	unlink_anon_vmas(vma);
319 	return -ENOMEM;
320 }
321 
322 void unlink_anon_vmas(struct vm_area_struct *vma)
323 {
324 	struct anon_vma_chain *avc, *next;
325 	struct anon_vma *root = NULL;
326 
327 	/*
328 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
329 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
330 	 */
331 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 		struct anon_vma *anon_vma = avc->anon_vma;
333 
334 		root = lock_anon_vma_root(root, anon_vma);
335 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336 
337 		/*
338 		 * Leave empty anon_vmas on the list - we'll need
339 		 * to free them outside the lock.
340 		 */
341 		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 			continue;
343 
344 		list_del(&avc->same_vma);
345 		anon_vma_chain_free(avc);
346 	}
347 	unlock_anon_vma_root(root);
348 
349 	/*
350 	 * Iterate the list once more, it now only contains empty and unlinked
351 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 	 * needing to acquire the anon_vma->root->mutex.
353 	 */
354 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 		struct anon_vma *anon_vma = avc->anon_vma;
356 
357 		put_anon_vma(anon_vma);
358 
359 		list_del(&avc->same_vma);
360 		anon_vma_chain_free(avc);
361 	}
362 }
363 
364 static void anon_vma_ctor(void *data)
365 {
366 	struct anon_vma *anon_vma = data;
367 
368 	mutex_init(&anon_vma->mutex);
369 	atomic_set(&anon_vma->refcount, 0);
370 	anon_vma->rb_root = RB_ROOT;
371 }
372 
373 void __init anon_vma_init(void)
374 {
375 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379 
380 /*
381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382  *
383  * Since there is no serialization what so ever against page_remove_rmap()
384  * the best this function can do is return a locked anon_vma that might
385  * have been relevant to this page.
386  *
387  * The page might have been remapped to a different anon_vma or the anon_vma
388  * returned may already be freed (and even reused).
389  *
390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392  * ensure that any anon_vma obtained from the page will still be valid for as
393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394  *
395  * All users of this function must be very careful when walking the anon_vma
396  * chain and verify that the page in question is indeed mapped in it
397  * [ something equivalent to page_mapped_in_vma() ].
398  *
399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400  * that the anon_vma pointer from page->mapping is valid if there is a
401  * mapcount, we can dereference the anon_vma after observing those.
402  */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405 	struct anon_vma *anon_vma = NULL;
406 	unsigned long anon_mapping;
407 
408 	rcu_read_lock();
409 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 		goto out;
412 	if (!page_mapped(page))
413 		goto out;
414 
415 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 		anon_vma = NULL;
418 		goto out;
419 	}
420 
421 	/*
422 	 * If this page is still mapped, then its anon_vma cannot have been
423 	 * freed.  But if it has been unmapped, we have no security against the
424 	 * anon_vma structure being freed and reused (for another anon_vma:
425 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 	 * above cannot corrupt).
427 	 */
428 	if (!page_mapped(page)) {
429 		put_anon_vma(anon_vma);
430 		anon_vma = NULL;
431 	}
432 out:
433 	rcu_read_unlock();
434 
435 	return anon_vma;
436 }
437 
438 /*
439  * Similar to page_get_anon_vma() except it locks the anon_vma.
440  *
441  * Its a little more complex as it tries to keep the fast path to a single
442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443  * reference like with page_get_anon_vma() and then block on the mutex.
444  */
445 struct anon_vma *page_lock_anon_vma(struct page *page)
446 {
447 	struct anon_vma *anon_vma = NULL;
448 	struct anon_vma *root_anon_vma;
449 	unsigned long anon_mapping;
450 
451 	rcu_read_lock();
452 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 		goto out;
455 	if (!page_mapped(page))
456 		goto out;
457 
458 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 	root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 	if (mutex_trylock(&root_anon_vma->mutex)) {
461 		/*
462 		 * If the page is still mapped, then this anon_vma is still
463 		 * its anon_vma, and holding the mutex ensures that it will
464 		 * not go away, see anon_vma_free().
465 		 */
466 		if (!page_mapped(page)) {
467 			mutex_unlock(&root_anon_vma->mutex);
468 			anon_vma = NULL;
469 		}
470 		goto out;
471 	}
472 
473 	/* trylock failed, we got to sleep */
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	if (!page_mapped(page)) {
480 		put_anon_vma(anon_vma);
481 		anon_vma = NULL;
482 		goto out;
483 	}
484 
485 	/* we pinned the anon_vma, its safe to sleep */
486 	rcu_read_unlock();
487 	anon_vma_lock(anon_vma);
488 
489 	if (atomic_dec_and_test(&anon_vma->refcount)) {
490 		/*
491 		 * Oops, we held the last refcount, release the lock
492 		 * and bail -- can't simply use put_anon_vma() because
493 		 * we'll deadlock on the anon_vma_lock() recursion.
494 		 */
495 		anon_vma_unlock(anon_vma);
496 		__put_anon_vma(anon_vma);
497 		anon_vma = NULL;
498 	}
499 
500 	return anon_vma;
501 
502 out:
503 	rcu_read_unlock();
504 	return anon_vma;
505 }
506 
507 void page_unlock_anon_vma(struct anon_vma *anon_vma)
508 {
509 	anon_vma_unlock(anon_vma);
510 }
511 
512 /*
513  * At what user virtual address is page expected in @vma?
514  */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 
520 	if (unlikely(is_vm_hugetlb_page(vma)))
521 		pgoff = page->index << huge_page_order(page_hstate(page));
522 
523 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529 	unsigned long address = __vma_address(page, vma);
530 
531 	/* page should be within @vma mapping range */
532 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 
534 	return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543 	unsigned long address;
544 	if (PageAnon(page)) {
545 		struct anon_vma *page__anon_vma = page_anon_vma(page);
546 		/*
547 		 * Note: swapoff's unuse_vma() is more efficient with this
548 		 * check, and needs it to match anon_vma when KSM is active.
549 		 */
550 		if (!vma->anon_vma || !page__anon_vma ||
551 		    vma->anon_vma->root != page__anon_vma->root)
552 			return -EFAULT;
553 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 		if (!vma->vm_file ||
555 		    vma->vm_file->f_mapping != page->mapping)
556 			return -EFAULT;
557 	} else
558 		return -EFAULT;
559 	address = __vma_address(page, vma);
560 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 		return -EFAULT;
562 	return address;
563 }
564 
565 /*
566  * Check that @page is mapped at @address into @mm.
567  *
568  * If @sync is false, page_check_address may perform a racy check to avoid
569  * the page table lock when the pte is not present (helpful when reclaiming
570  * highly shared pages).
571  *
572  * On success returns with pte mapped and locked.
573  */
574 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
575 			  unsigned long address, spinlock_t **ptlp, int sync)
576 {
577 	pgd_t *pgd;
578 	pud_t *pud;
579 	pmd_t *pmd;
580 	pte_t *pte;
581 	spinlock_t *ptl;
582 
583 	if (unlikely(PageHuge(page))) {
584 		pte = huge_pte_offset(mm, address);
585 		ptl = &mm->page_table_lock;
586 		goto check;
587 	}
588 
589 	pgd = pgd_offset(mm, address);
590 	if (!pgd_present(*pgd))
591 		return NULL;
592 
593 	pud = pud_offset(pgd, address);
594 	if (!pud_present(*pud))
595 		return NULL;
596 
597 	pmd = pmd_offset(pud, address);
598 	if (!pmd_present(*pmd))
599 		return NULL;
600 	if (pmd_trans_huge(*pmd))
601 		return NULL;
602 
603 	pte = pte_offset_map(pmd, address);
604 	/* Make a quick check before getting the lock */
605 	if (!sync && !pte_present(*pte)) {
606 		pte_unmap(pte);
607 		return NULL;
608 	}
609 
610 	ptl = pte_lockptr(mm, pmd);
611 check:
612 	spin_lock(ptl);
613 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
614 		*ptlp = ptl;
615 		return pte;
616 	}
617 	pte_unmap_unlock(pte, ptl);
618 	return NULL;
619 }
620 
621 /**
622  * page_mapped_in_vma - check whether a page is really mapped in a VMA
623  * @page: the page to test
624  * @vma: the VMA to test
625  *
626  * Returns 1 if the page is mapped into the page tables of the VMA, 0
627  * if the page is not mapped into the page tables of this VMA.  Only
628  * valid for normal file or anonymous VMAs.
629  */
630 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
631 {
632 	unsigned long address;
633 	pte_t *pte;
634 	spinlock_t *ptl;
635 
636 	address = __vma_address(page, vma);
637 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
638 		return 0;
639 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
640 	if (!pte)			/* the page is not in this mm */
641 		return 0;
642 	pte_unmap_unlock(pte, ptl);
643 
644 	return 1;
645 }
646 
647 /*
648  * Subfunctions of page_referenced: page_referenced_one called
649  * repeatedly from either page_referenced_anon or page_referenced_file.
650  */
651 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
652 			unsigned long address, unsigned int *mapcount,
653 			unsigned long *vm_flags)
654 {
655 	struct mm_struct *mm = vma->vm_mm;
656 	int referenced = 0;
657 
658 	if (unlikely(PageTransHuge(page))) {
659 		pmd_t *pmd;
660 
661 		spin_lock(&mm->page_table_lock);
662 		/*
663 		 * rmap might return false positives; we must filter
664 		 * these out using page_check_address_pmd().
665 		 */
666 		pmd = page_check_address_pmd(page, mm, address,
667 					     PAGE_CHECK_ADDRESS_PMD_FLAG);
668 		if (!pmd) {
669 			spin_unlock(&mm->page_table_lock);
670 			goto out;
671 		}
672 
673 		if (vma->vm_flags & VM_LOCKED) {
674 			spin_unlock(&mm->page_table_lock);
675 			*mapcount = 0;	/* break early from loop */
676 			*vm_flags |= VM_LOCKED;
677 			goto out;
678 		}
679 
680 		/* go ahead even if the pmd is pmd_trans_splitting() */
681 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
682 			referenced++;
683 		spin_unlock(&mm->page_table_lock);
684 	} else {
685 		pte_t *pte;
686 		spinlock_t *ptl;
687 
688 		/*
689 		 * rmap might return false positives; we must filter
690 		 * these out using page_check_address().
691 		 */
692 		pte = page_check_address(page, mm, address, &ptl, 0);
693 		if (!pte)
694 			goto out;
695 
696 		if (vma->vm_flags & VM_LOCKED) {
697 			pte_unmap_unlock(pte, ptl);
698 			*mapcount = 0;	/* break early from loop */
699 			*vm_flags |= VM_LOCKED;
700 			goto out;
701 		}
702 
703 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
704 			/*
705 			 * Don't treat a reference through a sequentially read
706 			 * mapping as such.  If the page has been used in
707 			 * another mapping, we will catch it; if this other
708 			 * mapping is already gone, the unmap path will have
709 			 * set PG_referenced or activated the page.
710 			 */
711 			if (likely(!VM_SequentialReadHint(vma)))
712 				referenced++;
713 		}
714 		pte_unmap_unlock(pte, ptl);
715 	}
716 
717 	(*mapcount)--;
718 
719 	if (referenced)
720 		*vm_flags |= vma->vm_flags;
721 out:
722 	return referenced;
723 }
724 
725 static int page_referenced_anon(struct page *page,
726 				struct mem_cgroup *memcg,
727 				unsigned long *vm_flags)
728 {
729 	unsigned int mapcount;
730 	struct anon_vma *anon_vma;
731 	pgoff_t pgoff;
732 	struct anon_vma_chain *avc;
733 	int referenced = 0;
734 
735 	anon_vma = page_lock_anon_vma(page);
736 	if (!anon_vma)
737 		return referenced;
738 
739 	mapcount = page_mapcount(page);
740 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
741 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
742 		struct vm_area_struct *vma = avc->vma;
743 		unsigned long address = vma_address(page, vma);
744 		/*
745 		 * If we are reclaiming on behalf of a cgroup, skip
746 		 * counting on behalf of references from different
747 		 * cgroups
748 		 */
749 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
750 			continue;
751 		referenced += page_referenced_one(page, vma, address,
752 						  &mapcount, vm_flags);
753 		if (!mapcount)
754 			break;
755 	}
756 
757 	page_unlock_anon_vma(anon_vma);
758 	return referenced;
759 }
760 
761 /**
762  * page_referenced_file - referenced check for object-based rmap
763  * @page: the page we're checking references on.
764  * @memcg: target memory control group
765  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
766  *
767  * For an object-based mapped page, find all the places it is mapped and
768  * check/clear the referenced flag.  This is done by following the page->mapping
769  * pointer, then walking the chain of vmas it holds.  It returns the number
770  * of references it found.
771  *
772  * This function is only called from page_referenced for object-based pages.
773  */
774 static int page_referenced_file(struct page *page,
775 				struct mem_cgroup *memcg,
776 				unsigned long *vm_flags)
777 {
778 	unsigned int mapcount;
779 	struct address_space *mapping = page->mapping;
780 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
781 	struct vm_area_struct *vma;
782 	int referenced = 0;
783 
784 	/*
785 	 * The caller's checks on page->mapping and !PageAnon have made
786 	 * sure that this is a file page: the check for page->mapping
787 	 * excludes the case just before it gets set on an anon page.
788 	 */
789 	BUG_ON(PageAnon(page));
790 
791 	/*
792 	 * The page lock not only makes sure that page->mapping cannot
793 	 * suddenly be NULLified by truncation, it makes sure that the
794 	 * structure at mapping cannot be freed and reused yet,
795 	 * so we can safely take mapping->i_mmap_mutex.
796 	 */
797 	BUG_ON(!PageLocked(page));
798 
799 	mutex_lock(&mapping->i_mmap_mutex);
800 
801 	/*
802 	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
803 	 * is more likely to be accurate if we note it after spinning.
804 	 */
805 	mapcount = page_mapcount(page);
806 
807 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
808 		unsigned long address = vma_address(page, vma);
809 		/*
810 		 * If we are reclaiming on behalf of a cgroup, skip
811 		 * counting on behalf of references from different
812 		 * cgroups
813 		 */
814 		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
815 			continue;
816 		referenced += page_referenced_one(page, vma, address,
817 						  &mapcount, vm_flags);
818 		if (!mapcount)
819 			break;
820 	}
821 
822 	mutex_unlock(&mapping->i_mmap_mutex);
823 	return referenced;
824 }
825 
826 /**
827  * page_referenced - test if the page was referenced
828  * @page: the page to test
829  * @is_locked: caller holds lock on the page
830  * @memcg: target memory cgroup
831  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832  *
833  * Quick test_and_clear_referenced for all mappings to a page,
834  * returns the number of ptes which referenced the page.
835  */
836 int page_referenced(struct page *page,
837 		    int is_locked,
838 		    struct mem_cgroup *memcg,
839 		    unsigned long *vm_flags)
840 {
841 	int referenced = 0;
842 	int we_locked = 0;
843 
844 	*vm_flags = 0;
845 	if (page_mapped(page) && page_rmapping(page)) {
846 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
847 			we_locked = trylock_page(page);
848 			if (!we_locked) {
849 				referenced++;
850 				goto out;
851 			}
852 		}
853 		if (unlikely(PageKsm(page)))
854 			referenced += page_referenced_ksm(page, memcg,
855 								vm_flags);
856 		else if (PageAnon(page))
857 			referenced += page_referenced_anon(page, memcg,
858 								vm_flags);
859 		else if (page->mapping)
860 			referenced += page_referenced_file(page, memcg,
861 								vm_flags);
862 		if (we_locked)
863 			unlock_page(page);
864 
865 		if (page_test_and_clear_young(page_to_pfn(page)))
866 			referenced++;
867 	}
868 out:
869 	return referenced;
870 }
871 
872 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
873 			    unsigned long address)
874 {
875 	struct mm_struct *mm = vma->vm_mm;
876 	pte_t *pte;
877 	spinlock_t *ptl;
878 	int ret = 0;
879 
880 	pte = page_check_address(page, mm, address, &ptl, 1);
881 	if (!pte)
882 		goto out;
883 
884 	if (pte_dirty(*pte) || pte_write(*pte)) {
885 		pte_t entry;
886 
887 		flush_cache_page(vma, address, pte_pfn(*pte));
888 		entry = ptep_clear_flush(vma, address, pte);
889 		entry = pte_wrprotect(entry);
890 		entry = pte_mkclean(entry);
891 		set_pte_at(mm, address, pte, entry);
892 		ret = 1;
893 	}
894 
895 	pte_unmap_unlock(pte, ptl);
896 
897 	if (ret)
898 		mmu_notifier_invalidate_page(mm, address);
899 out:
900 	return ret;
901 }
902 
903 static int page_mkclean_file(struct address_space *mapping, struct page *page)
904 {
905 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
906 	struct vm_area_struct *vma;
907 	int ret = 0;
908 
909 	BUG_ON(PageAnon(page));
910 
911 	mutex_lock(&mapping->i_mmap_mutex);
912 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
913 		if (vma->vm_flags & VM_SHARED) {
914 			unsigned long address = vma_address(page, vma);
915 			ret += page_mkclean_one(page, vma, address);
916 		}
917 	}
918 	mutex_unlock(&mapping->i_mmap_mutex);
919 	return ret;
920 }
921 
922 int page_mkclean(struct page *page)
923 {
924 	int ret = 0;
925 
926 	BUG_ON(!PageLocked(page));
927 
928 	if (page_mapped(page)) {
929 		struct address_space *mapping = page_mapping(page);
930 		if (mapping)
931 			ret = page_mkclean_file(mapping, page);
932 	}
933 
934 	return ret;
935 }
936 EXPORT_SYMBOL_GPL(page_mkclean);
937 
938 /**
939  * page_move_anon_rmap - move a page to our anon_vma
940  * @page:	the page to move to our anon_vma
941  * @vma:	the vma the page belongs to
942  * @address:	the user virtual address mapped
943  *
944  * When a page belongs exclusively to one process after a COW event,
945  * that page can be moved into the anon_vma that belongs to just that
946  * process, so the rmap code will not search the parent or sibling
947  * processes.
948  */
949 void page_move_anon_rmap(struct page *page,
950 	struct vm_area_struct *vma, unsigned long address)
951 {
952 	struct anon_vma *anon_vma = vma->anon_vma;
953 
954 	VM_BUG_ON(!PageLocked(page));
955 	VM_BUG_ON(!anon_vma);
956 	VM_BUG_ON(page->index != linear_page_index(vma, address));
957 
958 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
959 	page->mapping = (struct address_space *) anon_vma;
960 }
961 
962 /**
963  * __page_set_anon_rmap - set up new anonymous rmap
964  * @page:	Page to add to rmap
965  * @vma:	VM area to add page to.
966  * @address:	User virtual address of the mapping
967  * @exclusive:	the page is exclusively owned by the current process
968  */
969 static void __page_set_anon_rmap(struct page *page,
970 	struct vm_area_struct *vma, unsigned long address, int exclusive)
971 {
972 	struct anon_vma *anon_vma = vma->anon_vma;
973 
974 	BUG_ON(!anon_vma);
975 
976 	if (PageAnon(page))
977 		return;
978 
979 	/*
980 	 * If the page isn't exclusively mapped into this vma,
981 	 * we must use the _oldest_ possible anon_vma for the
982 	 * page mapping!
983 	 */
984 	if (!exclusive)
985 		anon_vma = anon_vma->root;
986 
987 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988 	page->mapping = (struct address_space *) anon_vma;
989 	page->index = linear_page_index(vma, address);
990 }
991 
992 /**
993  * __page_check_anon_rmap - sanity check anonymous rmap addition
994  * @page:	the page to add the mapping to
995  * @vma:	the vm area in which the mapping is added
996  * @address:	the user virtual address mapped
997  */
998 static void __page_check_anon_rmap(struct page *page,
999 	struct vm_area_struct *vma, unsigned long address)
1000 {
1001 #ifdef CONFIG_DEBUG_VM
1002 	/*
1003 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 	 * be set up correctly at this point.
1005 	 *
1006 	 * We have exclusion against page_add_anon_rmap because the caller
1007 	 * always holds the page locked, except if called from page_dup_rmap,
1008 	 * in which case the page is already known to be setup.
1009 	 *
1010 	 * We have exclusion against page_add_new_anon_rmap because those pages
1011 	 * are initially only visible via the pagetables, and the pte is locked
1012 	 * over the call to page_add_new_anon_rmap.
1013 	 */
1014 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1015 	BUG_ON(page->index != linear_page_index(vma, address));
1016 #endif
1017 }
1018 
1019 /**
1020  * page_add_anon_rmap - add pte mapping to an anonymous page
1021  * @page:	the page to add the mapping to
1022  * @vma:	the vm area in which the mapping is added
1023  * @address:	the user virtual address mapped
1024  *
1025  * The caller needs to hold the pte lock, and the page must be locked in
1026  * the anon_vma case: to serialize mapping,index checking after setting,
1027  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1028  * (but PageKsm is never downgraded to PageAnon).
1029  */
1030 void page_add_anon_rmap(struct page *page,
1031 	struct vm_area_struct *vma, unsigned long address)
1032 {
1033 	do_page_add_anon_rmap(page, vma, address, 0);
1034 }
1035 
1036 /*
1037  * Special version of the above for do_swap_page, which often runs
1038  * into pages that are exclusively owned by the current process.
1039  * Everybody else should continue to use page_add_anon_rmap above.
1040  */
1041 void do_page_add_anon_rmap(struct page *page,
1042 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1043 {
1044 	int first = atomic_inc_and_test(&page->_mapcount);
1045 	if (first) {
1046 		if (!PageTransHuge(page))
1047 			__inc_zone_page_state(page, NR_ANON_PAGES);
1048 		else
1049 			__inc_zone_page_state(page,
1050 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1051 	}
1052 	if (unlikely(PageKsm(page)))
1053 		return;
1054 
1055 	VM_BUG_ON(!PageLocked(page));
1056 	/* address might be in next vma when migration races vma_adjust */
1057 	if (first)
1058 		__page_set_anon_rmap(page, vma, address, exclusive);
1059 	else
1060 		__page_check_anon_rmap(page, vma, address);
1061 }
1062 
1063 /**
1064  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065  * @page:	the page to add the mapping to
1066  * @vma:	the vm area in which the mapping is added
1067  * @address:	the user virtual address mapped
1068  *
1069  * Same as page_add_anon_rmap but must only be called on *new* pages.
1070  * This means the inc-and-test can be bypassed.
1071  * Page does not have to be locked.
1072  */
1073 void page_add_new_anon_rmap(struct page *page,
1074 	struct vm_area_struct *vma, unsigned long address)
1075 {
1076 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1077 	SetPageSwapBacked(page);
1078 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079 	if (!PageTransHuge(page))
1080 		__inc_zone_page_state(page, NR_ANON_PAGES);
1081 	else
1082 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1083 	__page_set_anon_rmap(page, vma, address, 1);
1084 	if (!mlocked_vma_newpage(vma, page))
1085 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1086 	else
1087 		add_page_to_unevictable_list(page);
1088 }
1089 
1090 /**
1091  * page_add_file_rmap - add pte mapping to a file page
1092  * @page: the page to add the mapping to
1093  *
1094  * The caller needs to hold the pte lock.
1095  */
1096 void page_add_file_rmap(struct page *page)
1097 {
1098 	bool locked;
1099 	unsigned long flags;
1100 
1101 	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1102 	if (atomic_inc_and_test(&page->_mapcount)) {
1103 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1104 		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1105 	}
1106 	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1107 }
1108 
1109 /**
1110  * page_remove_rmap - take down pte mapping from a page
1111  * @page: page to remove mapping from
1112  *
1113  * The caller needs to hold the pte lock.
1114  */
1115 void page_remove_rmap(struct page *page)
1116 {
1117 	struct address_space *mapping = page_mapping(page);
1118 	bool anon = PageAnon(page);
1119 	bool locked;
1120 	unsigned long flags;
1121 
1122 	/*
1123 	 * The anon case has no mem_cgroup page_stat to update; but may
1124 	 * uncharge_page() below, where the lock ordering can deadlock if
1125 	 * we hold the lock against page_stat move: so avoid it on anon.
1126 	 */
1127 	if (!anon)
1128 		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1129 
1130 	/* page still mapped by someone else? */
1131 	if (!atomic_add_negative(-1, &page->_mapcount))
1132 		goto out;
1133 
1134 	/*
1135 	 * Now that the last pte has gone, s390 must transfer dirty
1136 	 * flag from storage key to struct page.  We can usually skip
1137 	 * this if the page is anon, so about to be freed; but perhaps
1138 	 * not if it's in swapcache - there might be another pte slot
1139 	 * containing the swap entry, but page not yet written to swap.
1140 	 *
1141 	 * And we can skip it on file pages, so long as the filesystem
1142 	 * participates in dirty tracking; but need to catch shm and tmpfs
1143 	 * and ramfs pages which have been modified since creation by read
1144 	 * fault.
1145 	 *
1146 	 * Note that mapping must be decided above, before decrementing
1147 	 * mapcount (which luckily provides a barrier): once page is unmapped,
1148 	 * it could be truncated and page->mapping reset to NULL at any moment.
1149 	 * Note also that we are relying on page_mapping(page) to set mapping
1150 	 * to &swapper_space when PageSwapCache(page).
1151 	 */
1152 	if (mapping && !mapping_cap_account_dirty(mapping) &&
1153 	    page_test_and_clear_dirty(page_to_pfn(page), 1))
1154 		set_page_dirty(page);
1155 	/*
1156 	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1157 	 * and not charged by memcg for now.
1158 	 */
1159 	if (unlikely(PageHuge(page)))
1160 		goto out;
1161 	if (anon) {
1162 		mem_cgroup_uncharge_page(page);
1163 		if (!PageTransHuge(page))
1164 			__dec_zone_page_state(page, NR_ANON_PAGES);
1165 		else
1166 			__dec_zone_page_state(page,
1167 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1168 	} else {
1169 		__dec_zone_page_state(page, NR_FILE_MAPPED);
1170 		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1171 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1172 	}
1173 	if (unlikely(PageMlocked(page)))
1174 		clear_page_mlock(page);
1175 	/*
1176 	 * It would be tidy to reset the PageAnon mapping here,
1177 	 * but that might overwrite a racing page_add_anon_rmap
1178 	 * which increments mapcount after us but sets mapping
1179 	 * before us: so leave the reset to free_hot_cold_page,
1180 	 * and remember that it's only reliable while mapped.
1181 	 * Leaving it set also helps swapoff to reinstate ptes
1182 	 * faster for those pages still in swapcache.
1183 	 */
1184 	return;
1185 out:
1186 	if (!anon)
1187 		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1188 }
1189 
1190 /*
1191  * Subfunctions of try_to_unmap: try_to_unmap_one called
1192  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1193  */
1194 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1195 		     unsigned long address, enum ttu_flags flags)
1196 {
1197 	struct mm_struct *mm = vma->vm_mm;
1198 	pte_t *pte;
1199 	pte_t pteval;
1200 	spinlock_t *ptl;
1201 	int ret = SWAP_AGAIN;
1202 
1203 	pte = page_check_address(page, mm, address, &ptl, 0);
1204 	if (!pte)
1205 		goto out;
1206 
1207 	/*
1208 	 * If the page is mlock()d, we cannot swap it out.
1209 	 * If it's recently referenced (perhaps page_referenced
1210 	 * skipped over this mm) then we should reactivate it.
1211 	 */
1212 	if (!(flags & TTU_IGNORE_MLOCK)) {
1213 		if (vma->vm_flags & VM_LOCKED)
1214 			goto out_mlock;
1215 
1216 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1217 			goto out_unmap;
1218 	}
1219 	if (!(flags & TTU_IGNORE_ACCESS)) {
1220 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1221 			ret = SWAP_FAIL;
1222 			goto out_unmap;
1223 		}
1224   	}
1225 
1226 	/* Nuke the page table entry. */
1227 	flush_cache_page(vma, address, page_to_pfn(page));
1228 	pteval = ptep_clear_flush(vma, address, pte);
1229 
1230 	/* Move the dirty bit to the physical page now the pte is gone. */
1231 	if (pte_dirty(pteval))
1232 		set_page_dirty(page);
1233 
1234 	/* Update high watermark before we lower rss */
1235 	update_hiwater_rss(mm);
1236 
1237 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1238 		if (PageAnon(page))
1239 			dec_mm_counter(mm, MM_ANONPAGES);
1240 		else
1241 			dec_mm_counter(mm, MM_FILEPAGES);
1242 		set_pte_at(mm, address, pte,
1243 				swp_entry_to_pte(make_hwpoison_entry(page)));
1244 	} else if (PageAnon(page)) {
1245 		swp_entry_t entry = { .val = page_private(page) };
1246 
1247 		if (PageSwapCache(page)) {
1248 			/*
1249 			 * Store the swap location in the pte.
1250 			 * See handle_pte_fault() ...
1251 			 */
1252 			if (swap_duplicate(entry) < 0) {
1253 				set_pte_at(mm, address, pte, pteval);
1254 				ret = SWAP_FAIL;
1255 				goto out_unmap;
1256 			}
1257 			if (list_empty(&mm->mmlist)) {
1258 				spin_lock(&mmlist_lock);
1259 				if (list_empty(&mm->mmlist))
1260 					list_add(&mm->mmlist, &init_mm.mmlist);
1261 				spin_unlock(&mmlist_lock);
1262 			}
1263 			dec_mm_counter(mm, MM_ANONPAGES);
1264 			inc_mm_counter(mm, MM_SWAPENTS);
1265 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1266 			/*
1267 			 * Store the pfn of the page in a special migration
1268 			 * pte. do_swap_page() will wait until the migration
1269 			 * pte is removed and then restart fault handling.
1270 			 */
1271 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1272 			entry = make_migration_entry(page, pte_write(pteval));
1273 		}
1274 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1275 		BUG_ON(pte_file(*pte));
1276 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1277 		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1278 		/* Establish migration entry for a file page */
1279 		swp_entry_t entry;
1280 		entry = make_migration_entry(page, pte_write(pteval));
1281 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1282 	} else
1283 		dec_mm_counter(mm, MM_FILEPAGES);
1284 
1285 	page_remove_rmap(page);
1286 	page_cache_release(page);
1287 
1288 out_unmap:
1289 	pte_unmap_unlock(pte, ptl);
1290 	if (ret != SWAP_FAIL)
1291 		mmu_notifier_invalidate_page(mm, address);
1292 out:
1293 	return ret;
1294 
1295 out_mlock:
1296 	pte_unmap_unlock(pte, ptl);
1297 
1298 
1299 	/*
1300 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1301 	 * unstable result and race. Plus, We can't wait here because
1302 	 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1303 	 * if trylock failed, the page remain in evictable lru and later
1304 	 * vmscan could retry to move the page to unevictable lru if the
1305 	 * page is actually mlocked.
1306 	 */
1307 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1308 		if (vma->vm_flags & VM_LOCKED) {
1309 			mlock_vma_page(page);
1310 			ret = SWAP_MLOCK;
1311 		}
1312 		up_read(&vma->vm_mm->mmap_sem);
1313 	}
1314 	return ret;
1315 }
1316 
1317 /*
1318  * objrmap doesn't work for nonlinear VMAs because the assumption that
1319  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1320  * Consequently, given a particular page and its ->index, we cannot locate the
1321  * ptes which are mapping that page without an exhaustive linear search.
1322  *
1323  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1324  * maps the file to which the target page belongs.  The ->vm_private_data field
1325  * holds the current cursor into that scan.  Successive searches will circulate
1326  * around the vma's virtual address space.
1327  *
1328  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1329  * more scanning pressure is placed against them as well.   Eventually pages
1330  * will become fully unmapped and are eligible for eviction.
1331  *
1332  * For very sparsely populated VMAs this is a little inefficient - chances are
1333  * there there won't be many ptes located within the scan cluster.  In this case
1334  * maybe we could scan further - to the end of the pte page, perhaps.
1335  *
1336  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1337  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1338  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1339  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1340  */
1341 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1342 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1343 
1344 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1345 		struct vm_area_struct *vma, struct page *check_page)
1346 {
1347 	struct mm_struct *mm = vma->vm_mm;
1348 	pgd_t *pgd;
1349 	pud_t *pud;
1350 	pmd_t *pmd;
1351 	pte_t *pte;
1352 	pte_t pteval;
1353 	spinlock_t *ptl;
1354 	struct page *page;
1355 	unsigned long address;
1356 	unsigned long mmun_start;	/* For mmu_notifiers */
1357 	unsigned long mmun_end;		/* For mmu_notifiers */
1358 	unsigned long end;
1359 	int ret = SWAP_AGAIN;
1360 	int locked_vma = 0;
1361 
1362 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363 	end = address + CLUSTER_SIZE;
1364 	if (address < vma->vm_start)
1365 		address = vma->vm_start;
1366 	if (end > vma->vm_end)
1367 		end = vma->vm_end;
1368 
1369 	pgd = pgd_offset(mm, address);
1370 	if (!pgd_present(*pgd))
1371 		return ret;
1372 
1373 	pud = pud_offset(pgd, address);
1374 	if (!pud_present(*pud))
1375 		return ret;
1376 
1377 	pmd = pmd_offset(pud, address);
1378 	if (!pmd_present(*pmd))
1379 		return ret;
1380 
1381 	mmun_start = address;
1382 	mmun_end   = end;
1383 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1384 
1385 	/*
1386 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1387 	 * keep the sem while scanning the cluster for mlocking pages.
1388 	 */
1389 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1390 		locked_vma = (vma->vm_flags & VM_LOCKED);
1391 		if (!locked_vma)
1392 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1393 	}
1394 
1395 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1396 
1397 	/* Update high watermark before we lower rss */
1398 	update_hiwater_rss(mm);
1399 
1400 	for (; address < end; pte++, address += PAGE_SIZE) {
1401 		if (!pte_present(*pte))
1402 			continue;
1403 		page = vm_normal_page(vma, address, *pte);
1404 		BUG_ON(!page || PageAnon(page));
1405 
1406 		if (locked_vma) {
1407 			mlock_vma_page(page);   /* no-op if already mlocked */
1408 			if (page == check_page)
1409 				ret = SWAP_MLOCK;
1410 			continue;	/* don't unmap */
1411 		}
1412 
1413 		if (ptep_clear_flush_young_notify(vma, address, pte))
1414 			continue;
1415 
1416 		/* Nuke the page table entry. */
1417 		flush_cache_page(vma, address, pte_pfn(*pte));
1418 		pteval = ptep_clear_flush(vma, address, pte);
1419 
1420 		/* If nonlinear, store the file page offset in the pte. */
1421 		if (page->index != linear_page_index(vma, address))
1422 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1423 
1424 		/* Move the dirty bit to the physical page now the pte is gone. */
1425 		if (pte_dirty(pteval))
1426 			set_page_dirty(page);
1427 
1428 		page_remove_rmap(page);
1429 		page_cache_release(page);
1430 		dec_mm_counter(mm, MM_FILEPAGES);
1431 		(*mapcount)--;
1432 	}
1433 	pte_unmap_unlock(pte - 1, ptl);
1434 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1435 	if (locked_vma)
1436 		up_read(&vma->vm_mm->mmap_sem);
1437 	return ret;
1438 }
1439 
1440 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1441 {
1442 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1443 
1444 	if (!maybe_stack)
1445 		return false;
1446 
1447 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1448 						VM_STACK_INCOMPLETE_SETUP)
1449 		return true;
1450 
1451 	return false;
1452 }
1453 
1454 /**
1455  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1456  * rmap method
1457  * @page: the page to unmap/unlock
1458  * @flags: action and flags
1459  *
1460  * Find all the mappings of a page using the mapping pointer and the vma chains
1461  * contained in the anon_vma struct it points to.
1462  *
1463  * This function is only called from try_to_unmap/try_to_munlock for
1464  * anonymous pages.
1465  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1466  * where the page was found will be held for write.  So, we won't recheck
1467  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1468  * 'LOCKED.
1469  */
1470 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1471 {
1472 	struct anon_vma *anon_vma;
1473 	pgoff_t pgoff;
1474 	struct anon_vma_chain *avc;
1475 	int ret = SWAP_AGAIN;
1476 
1477 	anon_vma = page_lock_anon_vma(page);
1478 	if (!anon_vma)
1479 		return ret;
1480 
1481 	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1482 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1483 		struct vm_area_struct *vma = avc->vma;
1484 		unsigned long address;
1485 
1486 		/*
1487 		 * During exec, a temporary VMA is setup and later moved.
1488 		 * The VMA is moved under the anon_vma lock but not the
1489 		 * page tables leading to a race where migration cannot
1490 		 * find the migration ptes. Rather than increasing the
1491 		 * locking requirements of exec(), migration skips
1492 		 * temporary VMAs until after exec() completes.
1493 		 */
1494 		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1495 				is_vma_temporary_stack(vma))
1496 			continue;
1497 
1498 		address = vma_address(page, vma);
1499 		ret = try_to_unmap_one(page, vma, address, flags);
1500 		if (ret != SWAP_AGAIN || !page_mapped(page))
1501 			break;
1502 	}
1503 
1504 	page_unlock_anon_vma(anon_vma);
1505 	return ret;
1506 }
1507 
1508 /**
1509  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1510  * @page: the page to unmap/unlock
1511  * @flags: action and flags
1512  *
1513  * Find all the mappings of a page using the mapping pointer and the vma chains
1514  * contained in the address_space struct it points to.
1515  *
1516  * This function is only called from try_to_unmap/try_to_munlock for
1517  * object-based pages.
1518  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1519  * where the page was found will be held for write.  So, we won't recheck
1520  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1521  * 'LOCKED.
1522  */
1523 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1524 {
1525 	struct address_space *mapping = page->mapping;
1526 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1527 	struct vm_area_struct *vma;
1528 	int ret = SWAP_AGAIN;
1529 	unsigned long cursor;
1530 	unsigned long max_nl_cursor = 0;
1531 	unsigned long max_nl_size = 0;
1532 	unsigned int mapcount;
1533 
1534 	mutex_lock(&mapping->i_mmap_mutex);
1535 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1536 		unsigned long address = vma_address(page, vma);
1537 		ret = try_to_unmap_one(page, vma, address, flags);
1538 		if (ret != SWAP_AGAIN || !page_mapped(page))
1539 			goto out;
1540 	}
1541 
1542 	if (list_empty(&mapping->i_mmap_nonlinear))
1543 		goto out;
1544 
1545 	/*
1546 	 * We don't bother to try to find the munlocked page in nonlinears.
1547 	 * It's costly. Instead, later, page reclaim logic may call
1548 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1549 	 */
1550 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1551 		goto out;
1552 
1553 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554 							shared.nonlinear) {
1555 		cursor = (unsigned long) vma->vm_private_data;
1556 		if (cursor > max_nl_cursor)
1557 			max_nl_cursor = cursor;
1558 		cursor = vma->vm_end - vma->vm_start;
1559 		if (cursor > max_nl_size)
1560 			max_nl_size = cursor;
1561 	}
1562 
1563 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1564 		ret = SWAP_FAIL;
1565 		goto out;
1566 	}
1567 
1568 	/*
1569 	 * We don't try to search for this page in the nonlinear vmas,
1570 	 * and page_referenced wouldn't have found it anyway.  Instead
1571 	 * just walk the nonlinear vmas trying to age and unmap some.
1572 	 * The mapcount of the page we came in with is irrelevant,
1573 	 * but even so use it as a guide to how hard we should try?
1574 	 */
1575 	mapcount = page_mapcount(page);
1576 	if (!mapcount)
1577 		goto out;
1578 	cond_resched();
1579 
1580 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1581 	if (max_nl_cursor == 0)
1582 		max_nl_cursor = CLUSTER_SIZE;
1583 
1584 	do {
1585 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1586 							shared.nonlinear) {
1587 			cursor = (unsigned long) vma->vm_private_data;
1588 			while ( cursor < max_nl_cursor &&
1589 				cursor < vma->vm_end - vma->vm_start) {
1590 				if (try_to_unmap_cluster(cursor, &mapcount,
1591 						vma, page) == SWAP_MLOCK)
1592 					ret = SWAP_MLOCK;
1593 				cursor += CLUSTER_SIZE;
1594 				vma->vm_private_data = (void *) cursor;
1595 				if ((int)mapcount <= 0)
1596 					goto out;
1597 			}
1598 			vma->vm_private_data = (void *) max_nl_cursor;
1599 		}
1600 		cond_resched();
1601 		max_nl_cursor += CLUSTER_SIZE;
1602 	} while (max_nl_cursor <= max_nl_size);
1603 
1604 	/*
1605 	 * Don't loop forever (perhaps all the remaining pages are
1606 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1607 	 * vmas, now forgetting on which ones it had fallen behind.
1608 	 */
1609 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1610 		vma->vm_private_data = NULL;
1611 out:
1612 	mutex_unlock(&mapping->i_mmap_mutex);
1613 	return ret;
1614 }
1615 
1616 /**
1617  * try_to_unmap - try to remove all page table mappings to a page
1618  * @page: the page to get unmapped
1619  * @flags: action and flags
1620  *
1621  * Tries to remove all the page table entries which are mapping this
1622  * page, used in the pageout path.  Caller must hold the page lock.
1623  * Return values are:
1624  *
1625  * SWAP_SUCCESS	- we succeeded in removing all mappings
1626  * SWAP_AGAIN	- we missed a mapping, try again later
1627  * SWAP_FAIL	- the page is unswappable
1628  * SWAP_MLOCK	- page is mlocked.
1629  */
1630 int try_to_unmap(struct page *page, enum ttu_flags flags)
1631 {
1632 	int ret;
1633 
1634 	BUG_ON(!PageLocked(page));
1635 	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1636 
1637 	if (unlikely(PageKsm(page)))
1638 		ret = try_to_unmap_ksm(page, flags);
1639 	else if (PageAnon(page))
1640 		ret = try_to_unmap_anon(page, flags);
1641 	else
1642 		ret = try_to_unmap_file(page, flags);
1643 	if (ret != SWAP_MLOCK && !page_mapped(page))
1644 		ret = SWAP_SUCCESS;
1645 	return ret;
1646 }
1647 
1648 /**
1649  * try_to_munlock - try to munlock a page
1650  * @page: the page to be munlocked
1651  *
1652  * Called from munlock code.  Checks all of the VMAs mapping the page
1653  * to make sure nobody else has this page mlocked. The page will be
1654  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1655  *
1656  * Return values are:
1657  *
1658  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1659  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1660  * SWAP_FAIL	- page cannot be located at present
1661  * SWAP_MLOCK	- page is now mlocked.
1662  */
1663 int try_to_munlock(struct page *page)
1664 {
1665 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1666 
1667 	if (unlikely(PageKsm(page)))
1668 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1669 	else if (PageAnon(page))
1670 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1671 	else
1672 		return try_to_unmap_file(page, TTU_MUNLOCK);
1673 }
1674 
1675 void __put_anon_vma(struct anon_vma *anon_vma)
1676 {
1677 	struct anon_vma *root = anon_vma->root;
1678 
1679 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1680 		anon_vma_free(root);
1681 
1682 	anon_vma_free(anon_vma);
1683 }
1684 
1685 #ifdef CONFIG_MIGRATION
1686 /*
1687  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688  * Called by migrate.c to remove migration ptes, but might be used more later.
1689  */
1690 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1691 		struct vm_area_struct *, unsigned long, void *), void *arg)
1692 {
1693 	struct anon_vma *anon_vma;
1694 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1695 	struct anon_vma_chain *avc;
1696 	int ret = SWAP_AGAIN;
1697 
1698 	/*
1699 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1700 	 * because that depends on page_mapped(); but not all its usages
1701 	 * are holding mmap_sem. Users without mmap_sem are required to
1702 	 * take a reference count to prevent the anon_vma disappearing
1703 	 */
1704 	anon_vma = page_anon_vma(page);
1705 	if (!anon_vma)
1706 		return ret;
1707 	anon_vma_lock(anon_vma);
1708 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1709 		struct vm_area_struct *vma = avc->vma;
1710 		unsigned long address = vma_address(page, vma);
1711 		ret = rmap_one(page, vma, address, arg);
1712 		if (ret != SWAP_AGAIN)
1713 			break;
1714 	}
1715 	anon_vma_unlock(anon_vma);
1716 	return ret;
1717 }
1718 
1719 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1720 		struct vm_area_struct *, unsigned long, void *), void *arg)
1721 {
1722 	struct address_space *mapping = page->mapping;
1723 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1724 	struct vm_area_struct *vma;
1725 	int ret = SWAP_AGAIN;
1726 
1727 	if (!mapping)
1728 		return ret;
1729 	mutex_lock(&mapping->i_mmap_mutex);
1730 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1731 		unsigned long address = vma_address(page, vma);
1732 		ret = rmap_one(page, vma, address, arg);
1733 		if (ret != SWAP_AGAIN)
1734 			break;
1735 	}
1736 	/*
1737 	 * No nonlinear handling: being always shared, nonlinear vmas
1738 	 * never contain migration ptes.  Decide what to do about this
1739 	 * limitation to linear when we need rmap_walk() on nonlinear.
1740 	 */
1741 	mutex_unlock(&mapping->i_mmap_mutex);
1742 	return ret;
1743 }
1744 
1745 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1746 		struct vm_area_struct *, unsigned long, void *), void *arg)
1747 {
1748 	VM_BUG_ON(!PageLocked(page));
1749 
1750 	if (unlikely(PageKsm(page)))
1751 		return rmap_walk_ksm(page, rmap_one, arg);
1752 	else if (PageAnon(page))
1753 		return rmap_walk_anon(page, rmap_one, arg);
1754 	else
1755 		return rmap_walk_file(page, rmap_one, arg);
1756 }
1757 #endif /* CONFIG_MIGRATION */
1758 
1759 #ifdef CONFIG_HUGETLB_PAGE
1760 /*
1761  * The following three functions are for anonymous (private mapped) hugepages.
1762  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763  * and no lru code, because we handle hugepages differently from common pages.
1764  */
1765 static void __hugepage_set_anon_rmap(struct page *page,
1766 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1767 {
1768 	struct anon_vma *anon_vma = vma->anon_vma;
1769 
1770 	BUG_ON(!anon_vma);
1771 
1772 	if (PageAnon(page))
1773 		return;
1774 	if (!exclusive)
1775 		anon_vma = anon_vma->root;
1776 
1777 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1778 	page->mapping = (struct address_space *) anon_vma;
1779 	page->index = linear_page_index(vma, address);
1780 }
1781 
1782 void hugepage_add_anon_rmap(struct page *page,
1783 			    struct vm_area_struct *vma, unsigned long address)
1784 {
1785 	struct anon_vma *anon_vma = vma->anon_vma;
1786 	int first;
1787 
1788 	BUG_ON(!PageLocked(page));
1789 	BUG_ON(!anon_vma);
1790 	/* address might be in next vma when migration races vma_adjust */
1791 	first = atomic_inc_and_test(&page->_mapcount);
1792 	if (first)
1793 		__hugepage_set_anon_rmap(page, vma, address, 0);
1794 }
1795 
1796 void hugepage_add_new_anon_rmap(struct page *page,
1797 			struct vm_area_struct *vma, unsigned long address)
1798 {
1799 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1800 	atomic_set(&page->_mapcount, 0);
1801 	__hugepage_set_anon_rmap(page, vma, address, 1);
1802 }
1803 #endif /* CONFIG_HUGETLB_PAGE */
1804