xref: /linux/mm/rmap.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  *
40  * (code doesn't rely on that order so it could be switched around)
41  * ->tasklist_lock
42  *   anon_vma->lock      (memory_failure, collect_procs_anon)
43  *     pte map lock
44  */
45 
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
59 
60 #include <asm/tlbflush.h>
61 
62 #include "internal.h"
63 
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
66 
67 static inline struct anon_vma *anon_vma_alloc(void)
68 {
69 	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70 }
71 
72 void anon_vma_free(struct anon_vma *anon_vma)
73 {
74 	kmem_cache_free(anon_vma_cachep, anon_vma);
75 }
76 
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78 {
79 	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80 }
81 
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83 {
84 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85 }
86 
87 /**
88  * anon_vma_prepare - attach an anon_vma to a memory region
89  * @vma: the memory region in question
90  *
91  * This makes sure the memory mapping described by 'vma' has
92  * an 'anon_vma' attached to it, so that we can associate the
93  * anonymous pages mapped into it with that anon_vma.
94  *
95  * The common case will be that we already have one, but if
96  * if not we either need to find an adjacent mapping that we
97  * can re-use the anon_vma from (very common when the only
98  * reason for splitting a vma has been mprotect()), or we
99  * allocate a new one.
100  *
101  * Anon-vma allocations are very subtle, because we may have
102  * optimistically looked up an anon_vma in page_lock_anon_vma()
103  * and that may actually touch the spinlock even in the newly
104  * allocated vma (it depends on RCU to make sure that the
105  * anon_vma isn't actually destroyed).
106  *
107  * As a result, we need to do proper anon_vma locking even
108  * for the new allocation. At the same time, we do not want
109  * to do any locking for the common case of already having
110  * an anon_vma.
111  *
112  * This must be called with the mmap_sem held for reading.
113  */
114 int anon_vma_prepare(struct vm_area_struct *vma)
115 {
116 	struct anon_vma *anon_vma = vma->anon_vma;
117 	struct anon_vma_chain *avc;
118 
119 	might_sleep();
120 	if (unlikely(!anon_vma)) {
121 		struct mm_struct *mm = vma->vm_mm;
122 		struct anon_vma *allocated;
123 
124 		avc = anon_vma_chain_alloc();
125 		if (!avc)
126 			goto out_enomem;
127 
128 		anon_vma = find_mergeable_anon_vma(vma);
129 		allocated = NULL;
130 		if (!anon_vma) {
131 			anon_vma = anon_vma_alloc();
132 			if (unlikely(!anon_vma))
133 				goto out_enomem_free_avc;
134 			allocated = anon_vma;
135 			/*
136 			 * This VMA had no anon_vma yet.  This anon_vma is
137 			 * the root of any anon_vma tree that might form.
138 			 */
139 			anon_vma->root = anon_vma;
140 		}
141 
142 		anon_vma_lock(anon_vma);
143 		/* page_table_lock to protect against threads */
144 		spin_lock(&mm->page_table_lock);
145 		if (likely(!vma->anon_vma)) {
146 			vma->anon_vma = anon_vma;
147 			avc->anon_vma = anon_vma;
148 			avc->vma = vma;
149 			list_add(&avc->same_vma, &vma->anon_vma_chain);
150 			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
151 			allocated = NULL;
152 			avc = NULL;
153 		}
154 		spin_unlock(&mm->page_table_lock);
155 		anon_vma_unlock(anon_vma);
156 
157 		if (unlikely(allocated))
158 			anon_vma_free(allocated);
159 		if (unlikely(avc))
160 			anon_vma_chain_free(avc);
161 	}
162 	return 0;
163 
164  out_enomem_free_avc:
165 	anon_vma_chain_free(avc);
166  out_enomem:
167 	return -ENOMEM;
168 }
169 
170 static void anon_vma_chain_link(struct vm_area_struct *vma,
171 				struct anon_vma_chain *avc,
172 				struct anon_vma *anon_vma)
173 {
174 	avc->vma = vma;
175 	avc->anon_vma = anon_vma;
176 	list_add(&avc->same_vma, &vma->anon_vma_chain);
177 
178 	anon_vma_lock(anon_vma);
179 	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
180 	anon_vma_unlock(anon_vma);
181 }
182 
183 /*
184  * Attach the anon_vmas from src to dst.
185  * Returns 0 on success, -ENOMEM on failure.
186  */
187 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
188 {
189 	struct anon_vma_chain *avc, *pavc;
190 
191 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
192 		avc = anon_vma_chain_alloc();
193 		if (!avc)
194 			goto enomem_failure;
195 		anon_vma_chain_link(dst, avc, pavc->anon_vma);
196 	}
197 	return 0;
198 
199  enomem_failure:
200 	unlink_anon_vmas(dst);
201 	return -ENOMEM;
202 }
203 
204 /*
205  * Attach vma to its own anon_vma, as well as to the anon_vmas that
206  * the corresponding VMA in the parent process is attached to.
207  * Returns 0 on success, non-zero on failure.
208  */
209 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
210 {
211 	struct anon_vma_chain *avc;
212 	struct anon_vma *anon_vma;
213 
214 	/* Don't bother if the parent process has no anon_vma here. */
215 	if (!pvma->anon_vma)
216 		return 0;
217 
218 	/*
219 	 * First, attach the new VMA to the parent VMA's anon_vmas,
220 	 * so rmap can find non-COWed pages in child processes.
221 	 */
222 	if (anon_vma_clone(vma, pvma))
223 		return -ENOMEM;
224 
225 	/* Then add our own anon_vma. */
226 	anon_vma = anon_vma_alloc();
227 	if (!anon_vma)
228 		goto out_error;
229 	avc = anon_vma_chain_alloc();
230 	if (!avc)
231 		goto out_error_free_anon_vma;
232 
233 	/*
234 	 * The root anon_vma's spinlock is the lock actually used when we
235 	 * lock any of the anon_vmas in this anon_vma tree.
236 	 */
237 	anon_vma->root = pvma->anon_vma->root;
238 	/*
239 	 * With KSM refcounts, an anon_vma can stay around longer than the
240 	 * process it belongs to.  The root anon_vma needs to be pinned
241 	 * until this anon_vma is freed, because the lock lives in the root.
242 	 */
243 	get_anon_vma(anon_vma->root);
244 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
245 	vma->anon_vma = anon_vma;
246 	anon_vma_chain_link(vma, avc, anon_vma);
247 
248 	return 0;
249 
250  out_error_free_anon_vma:
251 	anon_vma_free(anon_vma);
252  out_error:
253 	unlink_anon_vmas(vma);
254 	return -ENOMEM;
255 }
256 
257 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
258 {
259 	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
260 	int empty;
261 
262 	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
263 	if (!anon_vma)
264 		return;
265 
266 	anon_vma_lock(anon_vma);
267 	list_del(&anon_vma_chain->same_anon_vma);
268 
269 	/* We must garbage collect the anon_vma if it's empty */
270 	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
271 	anon_vma_unlock(anon_vma);
272 
273 	if (empty) {
274 		/* We no longer need the root anon_vma */
275 		if (anon_vma->root != anon_vma)
276 			drop_anon_vma(anon_vma->root);
277 		anon_vma_free(anon_vma);
278 	}
279 }
280 
281 void unlink_anon_vmas(struct vm_area_struct *vma)
282 {
283 	struct anon_vma_chain *avc, *next;
284 
285 	/*
286 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
287 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
288 	 */
289 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
290 		anon_vma_unlink(avc);
291 		list_del(&avc->same_vma);
292 		anon_vma_chain_free(avc);
293 	}
294 }
295 
296 static void anon_vma_ctor(void *data)
297 {
298 	struct anon_vma *anon_vma = data;
299 
300 	spin_lock_init(&anon_vma->lock);
301 	anonvma_external_refcount_init(anon_vma);
302 	INIT_LIST_HEAD(&anon_vma->head);
303 }
304 
305 void __init anon_vma_init(void)
306 {
307 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
308 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
309 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
310 }
311 
312 /*
313  * Getting a lock on a stable anon_vma from a page off the LRU is
314  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
315  */
316 struct anon_vma *page_lock_anon_vma(struct page *page)
317 {
318 	struct anon_vma *anon_vma;
319 	unsigned long anon_mapping;
320 
321 	rcu_read_lock();
322 	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
323 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
324 		goto out;
325 	if (!page_mapped(page))
326 		goto out;
327 
328 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
329 	anon_vma_lock(anon_vma);
330 	return anon_vma;
331 out:
332 	rcu_read_unlock();
333 	return NULL;
334 }
335 
336 void page_unlock_anon_vma(struct anon_vma *anon_vma)
337 {
338 	anon_vma_unlock(anon_vma);
339 	rcu_read_unlock();
340 }
341 
342 /*
343  * At what user virtual address is page expected in @vma?
344  * Returns virtual address or -EFAULT if page's index/offset is not
345  * within the range mapped the @vma.
346  */
347 static inline unsigned long
348 vma_address(struct page *page, struct vm_area_struct *vma)
349 {
350 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
351 	unsigned long address;
352 
353 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
354 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
355 		/* page should be within @vma mapping range */
356 		return -EFAULT;
357 	}
358 	return address;
359 }
360 
361 /*
362  * At what user virtual address is page expected in vma?
363  * Caller should check the page is actually part of the vma.
364  */
365 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
366 {
367 	if (PageAnon(page)) {
368 		if (vma->anon_vma->root != page_anon_vma(page)->root)
369 			return -EFAULT;
370 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
371 		if (!vma->vm_file ||
372 		    vma->vm_file->f_mapping != page->mapping)
373 			return -EFAULT;
374 	} else
375 		return -EFAULT;
376 	return vma_address(page, vma);
377 }
378 
379 /*
380  * Check that @page is mapped at @address into @mm.
381  *
382  * If @sync is false, page_check_address may perform a racy check to avoid
383  * the page table lock when the pte is not present (helpful when reclaiming
384  * highly shared pages).
385  *
386  * On success returns with pte mapped and locked.
387  */
388 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
389 			  unsigned long address, spinlock_t **ptlp, int sync)
390 {
391 	pgd_t *pgd;
392 	pud_t *pud;
393 	pmd_t *pmd;
394 	pte_t *pte;
395 	spinlock_t *ptl;
396 
397 	pgd = pgd_offset(mm, address);
398 	if (!pgd_present(*pgd))
399 		return NULL;
400 
401 	pud = pud_offset(pgd, address);
402 	if (!pud_present(*pud))
403 		return NULL;
404 
405 	pmd = pmd_offset(pud, address);
406 	if (!pmd_present(*pmd))
407 		return NULL;
408 
409 	pte = pte_offset_map(pmd, address);
410 	/* Make a quick check before getting the lock */
411 	if (!sync && !pte_present(*pte)) {
412 		pte_unmap(pte);
413 		return NULL;
414 	}
415 
416 	ptl = pte_lockptr(mm, pmd);
417 	spin_lock(ptl);
418 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
419 		*ptlp = ptl;
420 		return pte;
421 	}
422 	pte_unmap_unlock(pte, ptl);
423 	return NULL;
424 }
425 
426 /**
427  * page_mapped_in_vma - check whether a page is really mapped in a VMA
428  * @page: the page to test
429  * @vma: the VMA to test
430  *
431  * Returns 1 if the page is mapped into the page tables of the VMA, 0
432  * if the page is not mapped into the page tables of this VMA.  Only
433  * valid for normal file or anonymous VMAs.
434  */
435 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
436 {
437 	unsigned long address;
438 	pte_t *pte;
439 	spinlock_t *ptl;
440 
441 	address = vma_address(page, vma);
442 	if (address == -EFAULT)		/* out of vma range */
443 		return 0;
444 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
445 	if (!pte)			/* the page is not in this mm */
446 		return 0;
447 	pte_unmap_unlock(pte, ptl);
448 
449 	return 1;
450 }
451 
452 /*
453  * Subfunctions of page_referenced: page_referenced_one called
454  * repeatedly from either page_referenced_anon or page_referenced_file.
455  */
456 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
457 			unsigned long address, unsigned int *mapcount,
458 			unsigned long *vm_flags)
459 {
460 	struct mm_struct *mm = vma->vm_mm;
461 	pte_t *pte;
462 	spinlock_t *ptl;
463 	int referenced = 0;
464 
465 	pte = page_check_address(page, mm, address, &ptl, 0);
466 	if (!pte)
467 		goto out;
468 
469 	/*
470 	 * Don't want to elevate referenced for mlocked page that gets this far,
471 	 * in order that it progresses to try_to_unmap and is moved to the
472 	 * unevictable list.
473 	 */
474 	if (vma->vm_flags & VM_LOCKED) {
475 		*mapcount = 1;	/* break early from loop */
476 		*vm_flags |= VM_LOCKED;
477 		goto out_unmap;
478 	}
479 
480 	if (ptep_clear_flush_young_notify(vma, address, pte)) {
481 		/*
482 		 * Don't treat a reference through a sequentially read
483 		 * mapping as such.  If the page has been used in
484 		 * another mapping, we will catch it; if this other
485 		 * mapping is already gone, the unmap path will have
486 		 * set PG_referenced or activated the page.
487 		 */
488 		if (likely(!VM_SequentialReadHint(vma)))
489 			referenced++;
490 	}
491 
492 	/* Pretend the page is referenced if the task has the
493 	   swap token and is in the middle of a page fault. */
494 	if (mm != current->mm && has_swap_token(mm) &&
495 			rwsem_is_locked(&mm->mmap_sem))
496 		referenced++;
497 
498 out_unmap:
499 	(*mapcount)--;
500 	pte_unmap_unlock(pte, ptl);
501 
502 	if (referenced)
503 		*vm_flags |= vma->vm_flags;
504 out:
505 	return referenced;
506 }
507 
508 static int page_referenced_anon(struct page *page,
509 				struct mem_cgroup *mem_cont,
510 				unsigned long *vm_flags)
511 {
512 	unsigned int mapcount;
513 	struct anon_vma *anon_vma;
514 	struct anon_vma_chain *avc;
515 	int referenced = 0;
516 
517 	anon_vma = page_lock_anon_vma(page);
518 	if (!anon_vma)
519 		return referenced;
520 
521 	mapcount = page_mapcount(page);
522 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
523 		struct vm_area_struct *vma = avc->vma;
524 		unsigned long address = vma_address(page, vma);
525 		if (address == -EFAULT)
526 			continue;
527 		/*
528 		 * If we are reclaiming on behalf of a cgroup, skip
529 		 * counting on behalf of references from different
530 		 * cgroups
531 		 */
532 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
533 			continue;
534 		referenced += page_referenced_one(page, vma, address,
535 						  &mapcount, vm_flags);
536 		if (!mapcount)
537 			break;
538 	}
539 
540 	page_unlock_anon_vma(anon_vma);
541 	return referenced;
542 }
543 
544 /**
545  * page_referenced_file - referenced check for object-based rmap
546  * @page: the page we're checking references on.
547  * @mem_cont: target memory controller
548  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
549  *
550  * For an object-based mapped page, find all the places it is mapped and
551  * check/clear the referenced flag.  This is done by following the page->mapping
552  * pointer, then walking the chain of vmas it holds.  It returns the number
553  * of references it found.
554  *
555  * This function is only called from page_referenced for object-based pages.
556  */
557 static int page_referenced_file(struct page *page,
558 				struct mem_cgroup *mem_cont,
559 				unsigned long *vm_flags)
560 {
561 	unsigned int mapcount;
562 	struct address_space *mapping = page->mapping;
563 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
564 	struct vm_area_struct *vma;
565 	struct prio_tree_iter iter;
566 	int referenced = 0;
567 
568 	/*
569 	 * The caller's checks on page->mapping and !PageAnon have made
570 	 * sure that this is a file page: the check for page->mapping
571 	 * excludes the case just before it gets set on an anon page.
572 	 */
573 	BUG_ON(PageAnon(page));
574 
575 	/*
576 	 * The page lock not only makes sure that page->mapping cannot
577 	 * suddenly be NULLified by truncation, it makes sure that the
578 	 * structure at mapping cannot be freed and reused yet,
579 	 * so we can safely take mapping->i_mmap_lock.
580 	 */
581 	BUG_ON(!PageLocked(page));
582 
583 	spin_lock(&mapping->i_mmap_lock);
584 
585 	/*
586 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
587 	 * is more likely to be accurate if we note it after spinning.
588 	 */
589 	mapcount = page_mapcount(page);
590 
591 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
592 		unsigned long address = vma_address(page, vma);
593 		if (address == -EFAULT)
594 			continue;
595 		/*
596 		 * If we are reclaiming on behalf of a cgroup, skip
597 		 * counting on behalf of references from different
598 		 * cgroups
599 		 */
600 		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
601 			continue;
602 		referenced += page_referenced_one(page, vma, address,
603 						  &mapcount, vm_flags);
604 		if (!mapcount)
605 			break;
606 	}
607 
608 	spin_unlock(&mapping->i_mmap_lock);
609 	return referenced;
610 }
611 
612 /**
613  * page_referenced - test if the page was referenced
614  * @page: the page to test
615  * @is_locked: caller holds lock on the page
616  * @mem_cont: target memory controller
617  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
618  *
619  * Quick test_and_clear_referenced for all mappings to a page,
620  * returns the number of ptes which referenced the page.
621  */
622 int page_referenced(struct page *page,
623 		    int is_locked,
624 		    struct mem_cgroup *mem_cont,
625 		    unsigned long *vm_flags)
626 {
627 	int referenced = 0;
628 	int we_locked = 0;
629 
630 	*vm_flags = 0;
631 	if (page_mapped(page) && page_rmapping(page)) {
632 		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
633 			we_locked = trylock_page(page);
634 			if (!we_locked) {
635 				referenced++;
636 				goto out;
637 			}
638 		}
639 		if (unlikely(PageKsm(page)))
640 			referenced += page_referenced_ksm(page, mem_cont,
641 								vm_flags);
642 		else if (PageAnon(page))
643 			referenced += page_referenced_anon(page, mem_cont,
644 								vm_flags);
645 		else if (page->mapping)
646 			referenced += page_referenced_file(page, mem_cont,
647 								vm_flags);
648 		if (we_locked)
649 			unlock_page(page);
650 	}
651 out:
652 	if (page_test_and_clear_young(page))
653 		referenced++;
654 
655 	return referenced;
656 }
657 
658 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
659 			    unsigned long address)
660 {
661 	struct mm_struct *mm = vma->vm_mm;
662 	pte_t *pte;
663 	spinlock_t *ptl;
664 	int ret = 0;
665 
666 	pte = page_check_address(page, mm, address, &ptl, 1);
667 	if (!pte)
668 		goto out;
669 
670 	if (pte_dirty(*pte) || pte_write(*pte)) {
671 		pte_t entry;
672 
673 		flush_cache_page(vma, address, pte_pfn(*pte));
674 		entry = ptep_clear_flush_notify(vma, address, pte);
675 		entry = pte_wrprotect(entry);
676 		entry = pte_mkclean(entry);
677 		set_pte_at(mm, address, pte, entry);
678 		ret = 1;
679 	}
680 
681 	pte_unmap_unlock(pte, ptl);
682 out:
683 	return ret;
684 }
685 
686 static int page_mkclean_file(struct address_space *mapping, struct page *page)
687 {
688 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
689 	struct vm_area_struct *vma;
690 	struct prio_tree_iter iter;
691 	int ret = 0;
692 
693 	BUG_ON(PageAnon(page));
694 
695 	spin_lock(&mapping->i_mmap_lock);
696 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
697 		if (vma->vm_flags & VM_SHARED) {
698 			unsigned long address = vma_address(page, vma);
699 			if (address == -EFAULT)
700 				continue;
701 			ret += page_mkclean_one(page, vma, address);
702 		}
703 	}
704 	spin_unlock(&mapping->i_mmap_lock);
705 	return ret;
706 }
707 
708 int page_mkclean(struct page *page)
709 {
710 	int ret = 0;
711 
712 	BUG_ON(!PageLocked(page));
713 
714 	if (page_mapped(page)) {
715 		struct address_space *mapping = page_mapping(page);
716 		if (mapping) {
717 			ret = page_mkclean_file(mapping, page);
718 			if (page_test_dirty(page)) {
719 				page_clear_dirty(page);
720 				ret = 1;
721 			}
722 		}
723 	}
724 
725 	return ret;
726 }
727 EXPORT_SYMBOL_GPL(page_mkclean);
728 
729 /**
730  * page_move_anon_rmap - move a page to our anon_vma
731  * @page:	the page to move to our anon_vma
732  * @vma:	the vma the page belongs to
733  * @address:	the user virtual address mapped
734  *
735  * When a page belongs exclusively to one process after a COW event,
736  * that page can be moved into the anon_vma that belongs to just that
737  * process, so the rmap code will not search the parent or sibling
738  * processes.
739  */
740 void page_move_anon_rmap(struct page *page,
741 	struct vm_area_struct *vma, unsigned long address)
742 {
743 	struct anon_vma *anon_vma = vma->anon_vma;
744 
745 	VM_BUG_ON(!PageLocked(page));
746 	VM_BUG_ON(!anon_vma);
747 	VM_BUG_ON(page->index != linear_page_index(vma, address));
748 
749 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
750 	page->mapping = (struct address_space *) anon_vma;
751 }
752 
753 /**
754  * __page_set_anon_rmap - setup new anonymous rmap
755  * @page:	the page to add the mapping to
756  * @vma:	the vm area in which the mapping is added
757  * @address:	the user virtual address mapped
758  * @exclusive:	the page is exclusively owned by the current process
759  */
760 static void __page_set_anon_rmap(struct page *page,
761 	struct vm_area_struct *vma, unsigned long address, int exclusive)
762 {
763 	struct anon_vma *anon_vma = vma->anon_vma;
764 
765 	BUG_ON(!anon_vma);
766 
767 	/*
768 	 * If the page isn't exclusively mapped into this vma,
769 	 * we must use the _oldest_ possible anon_vma for the
770 	 * page mapping!
771 	 */
772 	if (!exclusive) {
773 		if (PageAnon(page))
774 			return;
775 		anon_vma = anon_vma->root;
776 	} else {
777 		/*
778 		 * In this case, swapped-out-but-not-discarded swap-cache
779 		 * is remapped. So, no need to update page->mapping here.
780 		 * We convice anon_vma poitned by page->mapping is not obsolete
781 		 * because vma->anon_vma is necessary to be a family of it.
782 		 */
783 		if (PageAnon(page))
784 			return;
785 	}
786 
787 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
788 	page->mapping = (struct address_space *) anon_vma;
789 	page->index = linear_page_index(vma, address);
790 }
791 
792 /**
793  * __page_check_anon_rmap - sanity check anonymous rmap addition
794  * @page:	the page to add the mapping to
795  * @vma:	the vm area in which the mapping is added
796  * @address:	the user virtual address mapped
797  */
798 static void __page_check_anon_rmap(struct page *page,
799 	struct vm_area_struct *vma, unsigned long address)
800 {
801 #ifdef CONFIG_DEBUG_VM
802 	/*
803 	 * The page's anon-rmap details (mapping and index) are guaranteed to
804 	 * be set up correctly at this point.
805 	 *
806 	 * We have exclusion against page_add_anon_rmap because the caller
807 	 * always holds the page locked, except if called from page_dup_rmap,
808 	 * in which case the page is already known to be setup.
809 	 *
810 	 * We have exclusion against page_add_new_anon_rmap because those pages
811 	 * are initially only visible via the pagetables, and the pte is locked
812 	 * over the call to page_add_new_anon_rmap.
813 	 */
814 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
815 	BUG_ON(page->index != linear_page_index(vma, address));
816 #endif
817 }
818 
819 /**
820  * page_add_anon_rmap - add pte mapping to an anonymous page
821  * @page:	the page to add the mapping to
822  * @vma:	the vm area in which the mapping is added
823  * @address:	the user virtual address mapped
824  *
825  * The caller needs to hold the pte lock, and the page must be locked in
826  * the anon_vma case: to serialize mapping,index checking after setting,
827  * and to ensure that PageAnon is not being upgraded racily to PageKsm
828  * (but PageKsm is never downgraded to PageAnon).
829  */
830 void page_add_anon_rmap(struct page *page,
831 	struct vm_area_struct *vma, unsigned long address)
832 {
833 	do_page_add_anon_rmap(page, vma, address, 0);
834 }
835 
836 /*
837  * Special version of the above for do_swap_page, which often runs
838  * into pages that are exclusively owned by the current process.
839  * Everybody else should continue to use page_add_anon_rmap above.
840  */
841 void do_page_add_anon_rmap(struct page *page,
842 	struct vm_area_struct *vma, unsigned long address, int exclusive)
843 {
844 	int first = atomic_inc_and_test(&page->_mapcount);
845 	if (first)
846 		__inc_zone_page_state(page, NR_ANON_PAGES);
847 	if (unlikely(PageKsm(page)))
848 		return;
849 
850 	VM_BUG_ON(!PageLocked(page));
851 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
852 	if (first)
853 		__page_set_anon_rmap(page, vma, address, exclusive);
854 	else
855 		__page_check_anon_rmap(page, vma, address);
856 }
857 
858 /**
859  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
860  * @page:	the page to add the mapping to
861  * @vma:	the vm area in which the mapping is added
862  * @address:	the user virtual address mapped
863  *
864  * Same as page_add_anon_rmap but must only be called on *new* pages.
865  * This means the inc-and-test can be bypassed.
866  * Page does not have to be locked.
867  */
868 void page_add_new_anon_rmap(struct page *page,
869 	struct vm_area_struct *vma, unsigned long address)
870 {
871 	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
872 	SetPageSwapBacked(page);
873 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
874 	__inc_zone_page_state(page, NR_ANON_PAGES);
875 	__page_set_anon_rmap(page, vma, address, 1);
876 	if (page_evictable(page, vma))
877 		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
878 	else
879 		add_page_to_unevictable_list(page);
880 }
881 
882 /**
883  * page_add_file_rmap - add pte mapping to a file page
884  * @page: the page to add the mapping to
885  *
886  * The caller needs to hold the pte lock.
887  */
888 void page_add_file_rmap(struct page *page)
889 {
890 	if (atomic_inc_and_test(&page->_mapcount)) {
891 		__inc_zone_page_state(page, NR_FILE_MAPPED);
892 		mem_cgroup_update_file_mapped(page, 1);
893 	}
894 }
895 
896 /**
897  * page_remove_rmap - take down pte mapping from a page
898  * @page: page to remove mapping from
899  *
900  * The caller needs to hold the pte lock.
901  */
902 void page_remove_rmap(struct page *page)
903 {
904 	/* page still mapped by someone else? */
905 	if (!atomic_add_negative(-1, &page->_mapcount))
906 		return;
907 
908 	/*
909 	 * Now that the last pte has gone, s390 must transfer dirty
910 	 * flag from storage key to struct page.  We can usually skip
911 	 * this if the page is anon, so about to be freed; but perhaps
912 	 * not if it's in swapcache - there might be another pte slot
913 	 * containing the swap entry, but page not yet written to swap.
914 	 */
915 	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
916 		page_clear_dirty(page);
917 		set_page_dirty(page);
918 	}
919 	if (PageAnon(page)) {
920 		mem_cgroup_uncharge_page(page);
921 		__dec_zone_page_state(page, NR_ANON_PAGES);
922 	} else {
923 		__dec_zone_page_state(page, NR_FILE_MAPPED);
924 		mem_cgroup_update_file_mapped(page, -1);
925 	}
926 	/*
927 	 * It would be tidy to reset the PageAnon mapping here,
928 	 * but that might overwrite a racing page_add_anon_rmap
929 	 * which increments mapcount after us but sets mapping
930 	 * before us: so leave the reset to free_hot_cold_page,
931 	 * and remember that it's only reliable while mapped.
932 	 * Leaving it set also helps swapoff to reinstate ptes
933 	 * faster for those pages still in swapcache.
934 	 */
935 }
936 
937 /*
938  * Subfunctions of try_to_unmap: try_to_unmap_one called
939  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
940  */
941 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
942 		     unsigned long address, enum ttu_flags flags)
943 {
944 	struct mm_struct *mm = vma->vm_mm;
945 	pte_t *pte;
946 	pte_t pteval;
947 	spinlock_t *ptl;
948 	int ret = SWAP_AGAIN;
949 
950 	pte = page_check_address(page, mm, address, &ptl, 0);
951 	if (!pte)
952 		goto out;
953 
954 	/*
955 	 * If the page is mlock()d, we cannot swap it out.
956 	 * If it's recently referenced (perhaps page_referenced
957 	 * skipped over this mm) then we should reactivate it.
958 	 */
959 	if (!(flags & TTU_IGNORE_MLOCK)) {
960 		if (vma->vm_flags & VM_LOCKED)
961 			goto out_mlock;
962 
963 		if (TTU_ACTION(flags) == TTU_MUNLOCK)
964 			goto out_unmap;
965 	}
966 	if (!(flags & TTU_IGNORE_ACCESS)) {
967 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
968 			ret = SWAP_FAIL;
969 			goto out_unmap;
970 		}
971   	}
972 
973 	/* Nuke the page table entry. */
974 	flush_cache_page(vma, address, page_to_pfn(page));
975 	pteval = ptep_clear_flush_notify(vma, address, pte);
976 
977 	/* Move the dirty bit to the physical page now the pte is gone. */
978 	if (pte_dirty(pteval))
979 		set_page_dirty(page);
980 
981 	/* Update high watermark before we lower rss */
982 	update_hiwater_rss(mm);
983 
984 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
985 		if (PageAnon(page))
986 			dec_mm_counter(mm, MM_ANONPAGES);
987 		else
988 			dec_mm_counter(mm, MM_FILEPAGES);
989 		set_pte_at(mm, address, pte,
990 				swp_entry_to_pte(make_hwpoison_entry(page)));
991 	} else if (PageAnon(page)) {
992 		swp_entry_t entry = { .val = page_private(page) };
993 
994 		if (PageSwapCache(page)) {
995 			/*
996 			 * Store the swap location in the pte.
997 			 * See handle_pte_fault() ...
998 			 */
999 			if (swap_duplicate(entry) < 0) {
1000 				set_pte_at(mm, address, pte, pteval);
1001 				ret = SWAP_FAIL;
1002 				goto out_unmap;
1003 			}
1004 			if (list_empty(&mm->mmlist)) {
1005 				spin_lock(&mmlist_lock);
1006 				if (list_empty(&mm->mmlist))
1007 					list_add(&mm->mmlist, &init_mm.mmlist);
1008 				spin_unlock(&mmlist_lock);
1009 			}
1010 			dec_mm_counter(mm, MM_ANONPAGES);
1011 			inc_mm_counter(mm, MM_SWAPENTS);
1012 		} else if (PAGE_MIGRATION) {
1013 			/*
1014 			 * Store the pfn of the page in a special migration
1015 			 * pte. do_swap_page() will wait until the migration
1016 			 * pte is removed and then restart fault handling.
1017 			 */
1018 			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1019 			entry = make_migration_entry(page, pte_write(pteval));
1020 		}
1021 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1022 		BUG_ON(pte_file(*pte));
1023 	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1024 		/* Establish migration entry for a file page */
1025 		swp_entry_t entry;
1026 		entry = make_migration_entry(page, pte_write(pteval));
1027 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1028 	} else
1029 		dec_mm_counter(mm, MM_FILEPAGES);
1030 
1031 	page_remove_rmap(page);
1032 	page_cache_release(page);
1033 
1034 out_unmap:
1035 	pte_unmap_unlock(pte, ptl);
1036 out:
1037 	return ret;
1038 
1039 out_mlock:
1040 	pte_unmap_unlock(pte, ptl);
1041 
1042 
1043 	/*
1044 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1045 	 * unstable result and race. Plus, We can't wait here because
1046 	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1047 	 * if trylock failed, the page remain in evictable lru and later
1048 	 * vmscan could retry to move the page to unevictable lru if the
1049 	 * page is actually mlocked.
1050 	 */
1051 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1052 		if (vma->vm_flags & VM_LOCKED) {
1053 			mlock_vma_page(page);
1054 			ret = SWAP_MLOCK;
1055 		}
1056 		up_read(&vma->vm_mm->mmap_sem);
1057 	}
1058 	return ret;
1059 }
1060 
1061 /*
1062  * objrmap doesn't work for nonlinear VMAs because the assumption that
1063  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1064  * Consequently, given a particular page and its ->index, we cannot locate the
1065  * ptes which are mapping that page without an exhaustive linear search.
1066  *
1067  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1068  * maps the file to which the target page belongs.  The ->vm_private_data field
1069  * holds the current cursor into that scan.  Successive searches will circulate
1070  * around the vma's virtual address space.
1071  *
1072  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1073  * more scanning pressure is placed against them as well.   Eventually pages
1074  * will become fully unmapped and are eligible for eviction.
1075  *
1076  * For very sparsely populated VMAs this is a little inefficient - chances are
1077  * there there won't be many ptes located within the scan cluster.  In this case
1078  * maybe we could scan further - to the end of the pte page, perhaps.
1079  *
1080  * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1081  * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1082  * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1083  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1084  */
1085 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1086 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1087 
1088 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1089 		struct vm_area_struct *vma, struct page *check_page)
1090 {
1091 	struct mm_struct *mm = vma->vm_mm;
1092 	pgd_t *pgd;
1093 	pud_t *pud;
1094 	pmd_t *pmd;
1095 	pte_t *pte;
1096 	pte_t pteval;
1097 	spinlock_t *ptl;
1098 	struct page *page;
1099 	unsigned long address;
1100 	unsigned long end;
1101 	int ret = SWAP_AGAIN;
1102 	int locked_vma = 0;
1103 
1104 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1105 	end = address + CLUSTER_SIZE;
1106 	if (address < vma->vm_start)
1107 		address = vma->vm_start;
1108 	if (end > vma->vm_end)
1109 		end = vma->vm_end;
1110 
1111 	pgd = pgd_offset(mm, address);
1112 	if (!pgd_present(*pgd))
1113 		return ret;
1114 
1115 	pud = pud_offset(pgd, address);
1116 	if (!pud_present(*pud))
1117 		return ret;
1118 
1119 	pmd = pmd_offset(pud, address);
1120 	if (!pmd_present(*pmd))
1121 		return ret;
1122 
1123 	/*
1124 	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1125 	 * keep the sem while scanning the cluster for mlocking pages.
1126 	 */
1127 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1128 		locked_vma = (vma->vm_flags & VM_LOCKED);
1129 		if (!locked_vma)
1130 			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1131 	}
1132 
1133 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1134 
1135 	/* Update high watermark before we lower rss */
1136 	update_hiwater_rss(mm);
1137 
1138 	for (; address < end; pte++, address += PAGE_SIZE) {
1139 		if (!pte_present(*pte))
1140 			continue;
1141 		page = vm_normal_page(vma, address, *pte);
1142 		BUG_ON(!page || PageAnon(page));
1143 
1144 		if (locked_vma) {
1145 			mlock_vma_page(page);   /* no-op if already mlocked */
1146 			if (page == check_page)
1147 				ret = SWAP_MLOCK;
1148 			continue;	/* don't unmap */
1149 		}
1150 
1151 		if (ptep_clear_flush_young_notify(vma, address, pte))
1152 			continue;
1153 
1154 		/* Nuke the page table entry. */
1155 		flush_cache_page(vma, address, pte_pfn(*pte));
1156 		pteval = ptep_clear_flush_notify(vma, address, pte);
1157 
1158 		/* If nonlinear, store the file page offset in the pte. */
1159 		if (page->index != linear_page_index(vma, address))
1160 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1161 
1162 		/* Move the dirty bit to the physical page now the pte is gone. */
1163 		if (pte_dirty(pteval))
1164 			set_page_dirty(page);
1165 
1166 		page_remove_rmap(page);
1167 		page_cache_release(page);
1168 		dec_mm_counter(mm, MM_FILEPAGES);
1169 		(*mapcount)--;
1170 	}
1171 	pte_unmap_unlock(pte - 1, ptl);
1172 	if (locked_vma)
1173 		up_read(&vma->vm_mm->mmap_sem);
1174 	return ret;
1175 }
1176 
1177 static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1178 {
1179 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1180 
1181 	if (!maybe_stack)
1182 		return false;
1183 
1184 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1185 						VM_STACK_INCOMPLETE_SETUP)
1186 		return true;
1187 
1188 	return false;
1189 }
1190 
1191 /**
1192  * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1193  * rmap method
1194  * @page: the page to unmap/unlock
1195  * @flags: action and flags
1196  *
1197  * Find all the mappings of a page using the mapping pointer and the vma chains
1198  * contained in the anon_vma struct it points to.
1199  *
1200  * This function is only called from try_to_unmap/try_to_munlock for
1201  * anonymous pages.
1202  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1203  * where the page was found will be held for write.  So, we won't recheck
1204  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1205  * 'LOCKED.
1206  */
1207 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1208 {
1209 	struct anon_vma *anon_vma;
1210 	struct anon_vma_chain *avc;
1211 	int ret = SWAP_AGAIN;
1212 
1213 	anon_vma = page_lock_anon_vma(page);
1214 	if (!anon_vma)
1215 		return ret;
1216 
1217 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1218 		struct vm_area_struct *vma = avc->vma;
1219 		unsigned long address;
1220 
1221 		/*
1222 		 * During exec, a temporary VMA is setup and later moved.
1223 		 * The VMA is moved under the anon_vma lock but not the
1224 		 * page tables leading to a race where migration cannot
1225 		 * find the migration ptes. Rather than increasing the
1226 		 * locking requirements of exec(), migration skips
1227 		 * temporary VMAs until after exec() completes.
1228 		 */
1229 		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1230 				is_vma_temporary_stack(vma))
1231 			continue;
1232 
1233 		address = vma_address(page, vma);
1234 		if (address == -EFAULT)
1235 			continue;
1236 		ret = try_to_unmap_one(page, vma, address, flags);
1237 		if (ret != SWAP_AGAIN || !page_mapped(page))
1238 			break;
1239 	}
1240 
1241 	page_unlock_anon_vma(anon_vma);
1242 	return ret;
1243 }
1244 
1245 /**
1246  * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1247  * @page: the page to unmap/unlock
1248  * @flags: action and flags
1249  *
1250  * Find all the mappings of a page using the mapping pointer and the vma chains
1251  * contained in the address_space struct it points to.
1252  *
1253  * This function is only called from try_to_unmap/try_to_munlock for
1254  * object-based pages.
1255  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1256  * where the page was found will be held for write.  So, we won't recheck
1257  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1258  * 'LOCKED.
1259  */
1260 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1261 {
1262 	struct address_space *mapping = page->mapping;
1263 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1264 	struct vm_area_struct *vma;
1265 	struct prio_tree_iter iter;
1266 	int ret = SWAP_AGAIN;
1267 	unsigned long cursor;
1268 	unsigned long max_nl_cursor = 0;
1269 	unsigned long max_nl_size = 0;
1270 	unsigned int mapcount;
1271 
1272 	spin_lock(&mapping->i_mmap_lock);
1273 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1274 		unsigned long address = vma_address(page, vma);
1275 		if (address == -EFAULT)
1276 			continue;
1277 		ret = try_to_unmap_one(page, vma, address, flags);
1278 		if (ret != SWAP_AGAIN || !page_mapped(page))
1279 			goto out;
1280 	}
1281 
1282 	if (list_empty(&mapping->i_mmap_nonlinear))
1283 		goto out;
1284 
1285 	/*
1286 	 * We don't bother to try to find the munlocked page in nonlinears.
1287 	 * It's costly. Instead, later, page reclaim logic may call
1288 	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1289 	 */
1290 	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1291 		goto out;
1292 
1293 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1294 						shared.vm_set.list) {
1295 		cursor = (unsigned long) vma->vm_private_data;
1296 		if (cursor > max_nl_cursor)
1297 			max_nl_cursor = cursor;
1298 		cursor = vma->vm_end - vma->vm_start;
1299 		if (cursor > max_nl_size)
1300 			max_nl_size = cursor;
1301 	}
1302 
1303 	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1304 		ret = SWAP_FAIL;
1305 		goto out;
1306 	}
1307 
1308 	/*
1309 	 * We don't try to search for this page in the nonlinear vmas,
1310 	 * and page_referenced wouldn't have found it anyway.  Instead
1311 	 * just walk the nonlinear vmas trying to age and unmap some.
1312 	 * The mapcount of the page we came in with is irrelevant,
1313 	 * but even so use it as a guide to how hard we should try?
1314 	 */
1315 	mapcount = page_mapcount(page);
1316 	if (!mapcount)
1317 		goto out;
1318 	cond_resched_lock(&mapping->i_mmap_lock);
1319 
1320 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1321 	if (max_nl_cursor == 0)
1322 		max_nl_cursor = CLUSTER_SIZE;
1323 
1324 	do {
1325 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1326 						shared.vm_set.list) {
1327 			cursor = (unsigned long) vma->vm_private_data;
1328 			while ( cursor < max_nl_cursor &&
1329 				cursor < vma->vm_end - vma->vm_start) {
1330 				if (try_to_unmap_cluster(cursor, &mapcount,
1331 						vma, page) == SWAP_MLOCK)
1332 					ret = SWAP_MLOCK;
1333 				cursor += CLUSTER_SIZE;
1334 				vma->vm_private_data = (void *) cursor;
1335 				if ((int)mapcount <= 0)
1336 					goto out;
1337 			}
1338 			vma->vm_private_data = (void *) max_nl_cursor;
1339 		}
1340 		cond_resched_lock(&mapping->i_mmap_lock);
1341 		max_nl_cursor += CLUSTER_SIZE;
1342 	} while (max_nl_cursor <= max_nl_size);
1343 
1344 	/*
1345 	 * Don't loop forever (perhaps all the remaining pages are
1346 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1347 	 * vmas, now forgetting on which ones it had fallen behind.
1348 	 */
1349 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1350 		vma->vm_private_data = NULL;
1351 out:
1352 	spin_unlock(&mapping->i_mmap_lock);
1353 	return ret;
1354 }
1355 
1356 /**
1357  * try_to_unmap - try to remove all page table mappings to a page
1358  * @page: the page to get unmapped
1359  * @flags: action and flags
1360  *
1361  * Tries to remove all the page table entries which are mapping this
1362  * page, used in the pageout path.  Caller must hold the page lock.
1363  * Return values are:
1364  *
1365  * SWAP_SUCCESS	- we succeeded in removing all mappings
1366  * SWAP_AGAIN	- we missed a mapping, try again later
1367  * SWAP_FAIL	- the page is unswappable
1368  * SWAP_MLOCK	- page is mlocked.
1369  */
1370 int try_to_unmap(struct page *page, enum ttu_flags flags)
1371 {
1372 	int ret;
1373 
1374 	BUG_ON(!PageLocked(page));
1375 
1376 	if (unlikely(PageKsm(page)))
1377 		ret = try_to_unmap_ksm(page, flags);
1378 	else if (PageAnon(page))
1379 		ret = try_to_unmap_anon(page, flags);
1380 	else
1381 		ret = try_to_unmap_file(page, flags);
1382 	if (ret != SWAP_MLOCK && !page_mapped(page))
1383 		ret = SWAP_SUCCESS;
1384 	return ret;
1385 }
1386 
1387 /**
1388  * try_to_munlock - try to munlock a page
1389  * @page: the page to be munlocked
1390  *
1391  * Called from munlock code.  Checks all of the VMAs mapping the page
1392  * to make sure nobody else has this page mlocked. The page will be
1393  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1394  *
1395  * Return values are:
1396  *
1397  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1398  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1399  * SWAP_FAIL	- page cannot be located at present
1400  * SWAP_MLOCK	- page is now mlocked.
1401  */
1402 int try_to_munlock(struct page *page)
1403 {
1404 	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1405 
1406 	if (unlikely(PageKsm(page)))
1407 		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1408 	else if (PageAnon(page))
1409 		return try_to_unmap_anon(page, TTU_MUNLOCK);
1410 	else
1411 		return try_to_unmap_file(page, TTU_MUNLOCK);
1412 }
1413 
1414 #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1415 /*
1416  * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1417  * if necessary.  Be careful to do all the tests under the lock.  Once
1418  * we know we are the last user, nobody else can get a reference and we
1419  * can do the freeing without the lock.
1420  */
1421 void drop_anon_vma(struct anon_vma *anon_vma)
1422 {
1423 	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
1424 	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1425 		struct anon_vma *root = anon_vma->root;
1426 		int empty = list_empty(&anon_vma->head);
1427 		int last_root_user = 0;
1428 		int root_empty = 0;
1429 
1430 		/*
1431 		 * The refcount on a non-root anon_vma got dropped.  Drop
1432 		 * the refcount on the root and check if we need to free it.
1433 		 */
1434 		if (empty && anon_vma != root) {
1435 			BUG_ON(atomic_read(&root->external_refcount) <= 0);
1436 			last_root_user = atomic_dec_and_test(&root->external_refcount);
1437 			root_empty = list_empty(&root->head);
1438 		}
1439 		anon_vma_unlock(anon_vma);
1440 
1441 		if (empty) {
1442 			anon_vma_free(anon_vma);
1443 			if (root_empty && last_root_user)
1444 				anon_vma_free(root);
1445 		}
1446 	}
1447 }
1448 #endif
1449 
1450 #ifdef CONFIG_MIGRATION
1451 /*
1452  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1453  * Called by migrate.c to remove migration ptes, but might be used more later.
1454  */
1455 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1456 		struct vm_area_struct *, unsigned long, void *), void *arg)
1457 {
1458 	struct anon_vma *anon_vma;
1459 	struct anon_vma_chain *avc;
1460 	int ret = SWAP_AGAIN;
1461 
1462 	/*
1463 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1464 	 * because that depends on page_mapped(); but not all its usages
1465 	 * are holding mmap_sem. Users without mmap_sem are required to
1466 	 * take a reference count to prevent the anon_vma disappearing
1467 	 */
1468 	anon_vma = page_anon_vma(page);
1469 	if (!anon_vma)
1470 		return ret;
1471 	anon_vma_lock(anon_vma);
1472 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1473 		struct vm_area_struct *vma = avc->vma;
1474 		unsigned long address = vma_address(page, vma);
1475 		if (address == -EFAULT)
1476 			continue;
1477 		ret = rmap_one(page, vma, address, arg);
1478 		if (ret != SWAP_AGAIN)
1479 			break;
1480 	}
1481 	anon_vma_unlock(anon_vma);
1482 	return ret;
1483 }
1484 
1485 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1486 		struct vm_area_struct *, unsigned long, void *), void *arg)
1487 {
1488 	struct address_space *mapping = page->mapping;
1489 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1490 	struct vm_area_struct *vma;
1491 	struct prio_tree_iter iter;
1492 	int ret = SWAP_AGAIN;
1493 
1494 	if (!mapping)
1495 		return ret;
1496 	spin_lock(&mapping->i_mmap_lock);
1497 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1498 		unsigned long address = vma_address(page, vma);
1499 		if (address == -EFAULT)
1500 			continue;
1501 		ret = rmap_one(page, vma, address, arg);
1502 		if (ret != SWAP_AGAIN)
1503 			break;
1504 	}
1505 	/*
1506 	 * No nonlinear handling: being always shared, nonlinear vmas
1507 	 * never contain migration ptes.  Decide what to do about this
1508 	 * limitation to linear when we need rmap_walk() on nonlinear.
1509 	 */
1510 	spin_unlock(&mapping->i_mmap_lock);
1511 	return ret;
1512 }
1513 
1514 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1515 		struct vm_area_struct *, unsigned long, void *), void *arg)
1516 {
1517 	VM_BUG_ON(!PageLocked(page));
1518 
1519 	if (unlikely(PageKsm(page)))
1520 		return rmap_walk_ksm(page, rmap_one, arg);
1521 	else if (PageAnon(page))
1522 		return rmap_walk_anon(page, rmap_one, arg);
1523 	else
1524 		return rmap_walk_file(page, rmap_one, arg);
1525 }
1526 #endif /* CONFIG_MIGRATION */
1527