xref: /linux/mm/rmap.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_rwsem	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_lock
25  *     mapping->invalidate_lock (in filemap_fault)
26  *       folio_lock
27  *         hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below)
28  *           vma_start_write
29  *             mapping->i_mmap_rwsem
30  *               anon_vma->rwsem
31  *                 mm->page_table_lock or pte_lock
32  *                   swap_lock (in swap_duplicate, swap_info_get)
33  *                     mmlist_lock (in mmput, drain_mmlist and others)
34  *                     mapping->private_lock (in block_dirty_folio)
35  *                         i_pages lock (widely used)
36  *                           lruvec->lru_lock (in folio_lruvec_lock_irq)
37  *                     inode->i_lock (in set_page_dirty's __mark_inode_dirty)
38  *                     bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
39  *                       sb_lock (within inode_lock in fs/fs-writeback.c)
40  *                       i_pages lock (widely used, in set_page_dirty,
41  *                                 in arch-dependent flush_dcache_mmap_lock,
42  *                                 within bdi.wb->list_lock in __sync_single_inode)
43  *
44  * anon_vma->rwsem,mapping->i_mmap_rwsem   (memory_failure, collect_procs_anon)
45  *   ->tasklist_lock
46  *     pte map lock
47  *
48  * hugetlbfs PageHuge() take locks in this order:
49  *   hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
50  *     vma_lock (hugetlb specific lock for pmd_sharing)
51  *       mapping->i_mmap_rwsem (also used for hugetlb pmd sharing)
52  *         folio_lock
53  */
54 
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77 #include <linux/oom.h>
78 
79 #include <asm/tlbflush.h>
80 
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/tlb.h>
83 #include <trace/events/migrate.h>
84 
85 #include "internal.h"
86 
87 static struct kmem_cache *anon_vma_cachep;
88 static struct kmem_cache *anon_vma_chain_cachep;
89 
90 static inline struct anon_vma *anon_vma_alloc(void)
91 {
92 	struct anon_vma *anon_vma;
93 
94 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
95 	if (anon_vma) {
96 		atomic_set(&anon_vma->refcount, 1);
97 		anon_vma->num_children = 0;
98 		anon_vma->num_active_vmas = 0;
99 		anon_vma->parent = anon_vma;
100 		/*
101 		 * Initialise the anon_vma root to point to itself. If called
102 		 * from fork, the root will be reset to the parents anon_vma.
103 		 */
104 		anon_vma->root = anon_vma;
105 	}
106 
107 	return anon_vma;
108 }
109 
110 static inline void anon_vma_free(struct anon_vma *anon_vma)
111 {
112 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
113 
114 	/*
115 	 * Synchronize against folio_lock_anon_vma_read() such that
116 	 * we can safely hold the lock without the anon_vma getting
117 	 * freed.
118 	 *
119 	 * Relies on the full mb implied by the atomic_dec_and_test() from
120 	 * put_anon_vma() against the acquire barrier implied by
121 	 * down_read_trylock() from folio_lock_anon_vma_read(). This orders:
122 	 *
123 	 * folio_lock_anon_vma_read()	VS	put_anon_vma()
124 	 *   down_read_trylock()		  atomic_dec_and_test()
125 	 *   LOCK				  MB
126 	 *   atomic_read()			  rwsem_is_locked()
127 	 *
128 	 * LOCK should suffice since the actual taking of the lock must
129 	 * happen _before_ what follows.
130 	 */
131 	might_sleep();
132 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
133 		anon_vma_lock_write(anon_vma);
134 		anon_vma_unlock_write(anon_vma);
135 	}
136 
137 	kmem_cache_free(anon_vma_cachep, anon_vma);
138 }
139 
140 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
141 {
142 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
143 }
144 
145 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
146 {
147 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
148 }
149 
150 static void anon_vma_chain_link(struct vm_area_struct *vma,
151 				struct anon_vma_chain *avc,
152 				struct anon_vma *anon_vma)
153 {
154 	avc->vma = vma;
155 	avc->anon_vma = anon_vma;
156 	list_add(&avc->same_vma, &vma->anon_vma_chain);
157 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
158 }
159 
160 /**
161  * __anon_vma_prepare - attach an anon_vma to a memory region
162  * @vma: the memory region in question
163  *
164  * This makes sure the memory mapping described by 'vma' has
165  * an 'anon_vma' attached to it, so that we can associate the
166  * anonymous pages mapped into it with that anon_vma.
167  *
168  * The common case will be that we already have one, which
169  * is handled inline by anon_vma_prepare(). But if
170  * not we either need to find an adjacent mapping that we
171  * can re-use the anon_vma from (very common when the only
172  * reason for splitting a vma has been mprotect()), or we
173  * allocate a new one.
174  *
175  * Anon-vma allocations are very subtle, because we may have
176  * optimistically looked up an anon_vma in folio_lock_anon_vma_read()
177  * and that may actually touch the rwsem even in the newly
178  * allocated vma (it depends on RCU to make sure that the
179  * anon_vma isn't actually destroyed).
180  *
181  * As a result, we need to do proper anon_vma locking even
182  * for the new allocation. At the same time, we do not want
183  * to do any locking for the common case of already having
184  * an anon_vma.
185  */
186 int __anon_vma_prepare(struct vm_area_struct *vma)
187 {
188 	struct mm_struct *mm = vma->vm_mm;
189 	struct anon_vma *anon_vma, *allocated;
190 	struct anon_vma_chain *avc;
191 
192 	mmap_assert_locked(mm);
193 	might_sleep();
194 
195 	avc = anon_vma_chain_alloc(GFP_KERNEL);
196 	if (!avc)
197 		goto out_enomem;
198 
199 	anon_vma = find_mergeable_anon_vma(vma);
200 	allocated = NULL;
201 	if (!anon_vma) {
202 		anon_vma = anon_vma_alloc();
203 		if (unlikely(!anon_vma))
204 			goto out_enomem_free_avc;
205 		anon_vma->num_children++; /* self-parent link for new root */
206 		allocated = anon_vma;
207 	}
208 
209 	anon_vma_lock_write(anon_vma);
210 	/* page_table_lock to protect against threads */
211 	spin_lock(&mm->page_table_lock);
212 	if (likely(!vma->anon_vma)) {
213 		vma->anon_vma = anon_vma;
214 		anon_vma_chain_link(vma, avc, anon_vma);
215 		anon_vma->num_active_vmas++;
216 		allocated = NULL;
217 		avc = NULL;
218 	}
219 	spin_unlock(&mm->page_table_lock);
220 	anon_vma_unlock_write(anon_vma);
221 
222 	if (unlikely(allocated))
223 		put_anon_vma(allocated);
224 	if (unlikely(avc))
225 		anon_vma_chain_free(avc);
226 
227 	return 0;
228 
229  out_enomem_free_avc:
230 	anon_vma_chain_free(avc);
231  out_enomem:
232 	return -ENOMEM;
233 }
234 
235 /*
236  * This is a useful helper function for locking the anon_vma root as
237  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238  * have the same vma.
239  *
240  * Such anon_vma's should have the same root, so you'd expect to see
241  * just a single mutex_lock for the whole traversal.
242  */
243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 	struct anon_vma *new_root = anon_vma->root;
246 	if (new_root != root) {
247 		if (WARN_ON_ONCE(root))
248 			up_write(&root->rwsem);
249 		root = new_root;
250 		down_write(&root->rwsem);
251 	}
252 	return root;
253 }
254 
255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 	if (root)
258 		up_write(&root->rwsem);
259 }
260 
261 /*
262  * Attach the anon_vmas from src to dst.
263  * Returns 0 on success, -ENOMEM on failure.
264  *
265  * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(),
266  * copy_vma() and anon_vma_fork(). The first four want an exact copy of src,
267  * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to
268  * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before
269  * call, we can identify this case by checking (!dst->anon_vma &&
270  * src->anon_vma).
271  *
272  * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
273  * and reuse existing anon_vma which has no vmas and only one child anon_vma.
274  * This prevents degradation of anon_vma hierarchy to endless linear chain in
275  * case of constantly forking task. On the other hand, an anon_vma with more
276  * than one child isn't reused even if there was no alive vma, thus rmap
277  * walker has a good chance of avoiding scanning the whole hierarchy when it
278  * searches where page is mapped.
279  */
280 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
281 {
282 	struct anon_vma_chain *avc, *pavc;
283 	struct anon_vma *root = NULL;
284 
285 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
286 		struct anon_vma *anon_vma;
287 
288 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
289 		if (unlikely(!avc)) {
290 			unlock_anon_vma_root(root);
291 			root = NULL;
292 			avc = anon_vma_chain_alloc(GFP_KERNEL);
293 			if (!avc)
294 				goto enomem_failure;
295 		}
296 		anon_vma = pavc->anon_vma;
297 		root = lock_anon_vma_root(root, anon_vma);
298 		anon_vma_chain_link(dst, avc, anon_vma);
299 
300 		/*
301 		 * Reuse existing anon_vma if it has no vma and only one
302 		 * anon_vma child.
303 		 *
304 		 * Root anon_vma is never reused:
305 		 * it has self-parent reference and at least one child.
306 		 */
307 		if (!dst->anon_vma && src->anon_vma &&
308 		    anon_vma->num_children < 2 &&
309 		    anon_vma->num_active_vmas == 0)
310 			dst->anon_vma = anon_vma;
311 	}
312 	if (dst->anon_vma)
313 		dst->anon_vma->num_active_vmas++;
314 	unlock_anon_vma_root(root);
315 	return 0;
316 
317  enomem_failure:
318 	/*
319 	 * dst->anon_vma is dropped here otherwise its num_active_vmas can
320 	 * be incorrectly decremented in unlink_anon_vmas().
321 	 * We can safely do this because callers of anon_vma_clone() don't care
322 	 * about dst->anon_vma if anon_vma_clone() failed.
323 	 */
324 	dst->anon_vma = NULL;
325 	unlink_anon_vmas(dst);
326 	return -ENOMEM;
327 }
328 
329 /*
330  * Attach vma to its own anon_vma, as well as to the anon_vmas that
331  * the corresponding VMA in the parent process is attached to.
332  * Returns 0 on success, non-zero on failure.
333  */
334 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
335 {
336 	struct anon_vma_chain *avc;
337 	struct anon_vma *anon_vma;
338 	int error;
339 
340 	/* Don't bother if the parent process has no anon_vma here. */
341 	if (!pvma->anon_vma)
342 		return 0;
343 
344 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
345 	vma->anon_vma = NULL;
346 
347 	/*
348 	 * First, attach the new VMA to the parent VMA's anon_vmas,
349 	 * so rmap can find non-COWed pages in child processes.
350 	 */
351 	error = anon_vma_clone(vma, pvma);
352 	if (error)
353 		return error;
354 
355 	/* An existing anon_vma has been reused, all done then. */
356 	if (vma->anon_vma)
357 		return 0;
358 
359 	/* Then add our own anon_vma. */
360 	anon_vma = anon_vma_alloc();
361 	if (!anon_vma)
362 		goto out_error;
363 	anon_vma->num_active_vmas++;
364 	avc = anon_vma_chain_alloc(GFP_KERNEL);
365 	if (!avc)
366 		goto out_error_free_anon_vma;
367 
368 	/*
369 	 * The root anon_vma's rwsem is the lock actually used when we
370 	 * lock any of the anon_vmas in this anon_vma tree.
371 	 */
372 	anon_vma->root = pvma->anon_vma->root;
373 	anon_vma->parent = pvma->anon_vma;
374 	/*
375 	 * With refcounts, an anon_vma can stay around longer than the
376 	 * process it belongs to. The root anon_vma needs to be pinned until
377 	 * this anon_vma is freed, because the lock lives in the root.
378 	 */
379 	get_anon_vma(anon_vma->root);
380 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
381 	vma->anon_vma = anon_vma;
382 	anon_vma_lock_write(anon_vma);
383 	anon_vma_chain_link(vma, avc, anon_vma);
384 	anon_vma->parent->num_children++;
385 	anon_vma_unlock_write(anon_vma);
386 
387 	return 0;
388 
389  out_error_free_anon_vma:
390 	put_anon_vma(anon_vma);
391  out_error:
392 	unlink_anon_vmas(vma);
393 	return -ENOMEM;
394 }
395 
396 void unlink_anon_vmas(struct vm_area_struct *vma)
397 {
398 	struct anon_vma_chain *avc, *next;
399 	struct anon_vma *root = NULL;
400 
401 	/*
402 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
403 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
404 	 */
405 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
406 		struct anon_vma *anon_vma = avc->anon_vma;
407 
408 		root = lock_anon_vma_root(root, anon_vma);
409 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
410 
411 		/*
412 		 * Leave empty anon_vmas on the list - we'll need
413 		 * to free them outside the lock.
414 		 */
415 		if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
416 			anon_vma->parent->num_children--;
417 			continue;
418 		}
419 
420 		list_del(&avc->same_vma);
421 		anon_vma_chain_free(avc);
422 	}
423 	if (vma->anon_vma) {
424 		vma->anon_vma->num_active_vmas--;
425 
426 		/*
427 		 * vma would still be needed after unlink, and anon_vma will be prepared
428 		 * when handle fault.
429 		 */
430 		vma->anon_vma = NULL;
431 	}
432 	unlock_anon_vma_root(root);
433 
434 	/*
435 	 * Iterate the list once more, it now only contains empty and unlinked
436 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
437 	 * needing to write-acquire the anon_vma->root->rwsem.
438 	 */
439 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
440 		struct anon_vma *anon_vma = avc->anon_vma;
441 
442 		VM_WARN_ON(anon_vma->num_children);
443 		VM_WARN_ON(anon_vma->num_active_vmas);
444 		put_anon_vma(anon_vma);
445 
446 		list_del(&avc->same_vma);
447 		anon_vma_chain_free(avc);
448 	}
449 }
450 
451 static void anon_vma_ctor(void *data)
452 {
453 	struct anon_vma *anon_vma = data;
454 
455 	init_rwsem(&anon_vma->rwsem);
456 	atomic_set(&anon_vma->refcount, 0);
457 	anon_vma->rb_root = RB_ROOT_CACHED;
458 }
459 
460 void __init anon_vma_init(void)
461 {
462 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
463 			0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
464 			anon_vma_ctor);
465 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
466 			SLAB_PANIC|SLAB_ACCOUNT);
467 }
468 
469 /*
470  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
471  *
472  * Since there is no serialization what so ever against folio_remove_rmap_*()
473  * the best this function can do is return a refcount increased anon_vma
474  * that might have been relevant to this page.
475  *
476  * The page might have been remapped to a different anon_vma or the anon_vma
477  * returned may already be freed (and even reused).
478  *
479  * In case it was remapped to a different anon_vma, the new anon_vma will be a
480  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
481  * ensure that any anon_vma obtained from the page will still be valid for as
482  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
483  *
484  * All users of this function must be very careful when walking the anon_vma
485  * chain and verify that the page in question is indeed mapped in it
486  * [ something equivalent to page_mapped_in_vma() ].
487  *
488  * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
489  * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid
490  * if there is a mapcount, we can dereference the anon_vma after observing
491  * those.
492  *
493  * NOTE: the caller should normally hold folio lock when calling this.  If
494  * not, the caller needs to double check the anon_vma didn't change after
495  * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it
496  * concurrently without folio lock protection). See folio_lock_anon_vma_read()
497  * which has already covered that, and comment above remap_pages().
498  */
499 struct anon_vma *folio_get_anon_vma(const struct folio *folio)
500 {
501 	struct anon_vma *anon_vma = NULL;
502 	unsigned long anon_mapping;
503 
504 	rcu_read_lock();
505 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
506 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
507 		goto out;
508 	if (!folio_mapped(folio))
509 		goto out;
510 
511 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
512 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
513 		anon_vma = NULL;
514 		goto out;
515 	}
516 
517 	/*
518 	 * If this folio is still mapped, then its anon_vma cannot have been
519 	 * freed.  But if it has been unmapped, we have no security against the
520 	 * anon_vma structure being freed and reused (for another anon_vma:
521 	 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
522 	 * above cannot corrupt).
523 	 */
524 	if (!folio_mapped(folio)) {
525 		rcu_read_unlock();
526 		put_anon_vma(anon_vma);
527 		return NULL;
528 	}
529 out:
530 	rcu_read_unlock();
531 
532 	return anon_vma;
533 }
534 
535 /*
536  * Similar to folio_get_anon_vma() except it locks the anon_vma.
537  *
538  * Its a little more complex as it tries to keep the fast path to a single
539  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
540  * reference like with folio_get_anon_vma() and then block on the mutex
541  * on !rwc->try_lock case.
542  */
543 struct anon_vma *folio_lock_anon_vma_read(const struct folio *folio,
544 					  struct rmap_walk_control *rwc)
545 {
546 	struct anon_vma *anon_vma = NULL;
547 	struct anon_vma *root_anon_vma;
548 	unsigned long anon_mapping;
549 
550 retry:
551 	rcu_read_lock();
552 	anon_mapping = (unsigned long)READ_ONCE(folio->mapping);
553 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
554 		goto out;
555 	if (!folio_mapped(folio))
556 		goto out;
557 
558 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
559 	root_anon_vma = READ_ONCE(anon_vma->root);
560 	if (down_read_trylock(&root_anon_vma->rwsem)) {
561 		/*
562 		 * folio_move_anon_rmap() might have changed the anon_vma as we
563 		 * might not hold the folio lock here.
564 		 */
565 		if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
566 			     anon_mapping)) {
567 			up_read(&root_anon_vma->rwsem);
568 			rcu_read_unlock();
569 			goto retry;
570 		}
571 
572 		/*
573 		 * If the folio is still mapped, then this anon_vma is still
574 		 * its anon_vma, and holding the mutex ensures that it will
575 		 * not go away, see anon_vma_free().
576 		 */
577 		if (!folio_mapped(folio)) {
578 			up_read(&root_anon_vma->rwsem);
579 			anon_vma = NULL;
580 		}
581 		goto out;
582 	}
583 
584 	if (rwc && rwc->try_lock) {
585 		anon_vma = NULL;
586 		rwc->contended = true;
587 		goto out;
588 	}
589 
590 	/* trylock failed, we got to sleep */
591 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
592 		anon_vma = NULL;
593 		goto out;
594 	}
595 
596 	if (!folio_mapped(folio)) {
597 		rcu_read_unlock();
598 		put_anon_vma(anon_vma);
599 		return NULL;
600 	}
601 
602 	/* we pinned the anon_vma, its safe to sleep */
603 	rcu_read_unlock();
604 	anon_vma_lock_read(anon_vma);
605 
606 	/*
607 	 * folio_move_anon_rmap() might have changed the anon_vma as we might
608 	 * not hold the folio lock here.
609 	 */
610 	if (unlikely((unsigned long)READ_ONCE(folio->mapping) !=
611 		     anon_mapping)) {
612 		anon_vma_unlock_read(anon_vma);
613 		put_anon_vma(anon_vma);
614 		anon_vma = NULL;
615 		goto retry;
616 	}
617 
618 	if (atomic_dec_and_test(&anon_vma->refcount)) {
619 		/*
620 		 * Oops, we held the last refcount, release the lock
621 		 * and bail -- can't simply use put_anon_vma() because
622 		 * we'll deadlock on the anon_vma_lock_write() recursion.
623 		 */
624 		anon_vma_unlock_read(anon_vma);
625 		__put_anon_vma(anon_vma);
626 		anon_vma = NULL;
627 	}
628 
629 	return anon_vma;
630 
631 out:
632 	rcu_read_unlock();
633 	return anon_vma;
634 }
635 
636 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
637 /*
638  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
639  * important if a PTE was dirty when it was unmapped that it's flushed
640  * before any IO is initiated on the page to prevent lost writes. Similarly,
641  * it must be flushed before freeing to prevent data leakage.
642  */
643 void try_to_unmap_flush(void)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	if (!tlb_ubc->flush_required)
648 		return;
649 
650 	arch_tlbbatch_flush(&tlb_ubc->arch);
651 	tlb_ubc->flush_required = false;
652 	tlb_ubc->writable = false;
653 }
654 
655 /* Flush iff there are potentially writable TLB entries that can race with IO */
656 void try_to_unmap_flush_dirty(void)
657 {
658 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
659 
660 	if (tlb_ubc->writable)
661 		try_to_unmap_flush();
662 }
663 
664 /*
665  * Bits 0-14 of mm->tlb_flush_batched record pending generations.
666  * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
667  */
668 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT	16
669 #define TLB_FLUSH_BATCH_PENDING_MASK			\
670 	((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
671 #define TLB_FLUSH_BATCH_PENDING_LARGE			\
672 	(TLB_FLUSH_BATCH_PENDING_MASK / 2)
673 
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
675 				      unsigned long uaddr)
676 {
677 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
678 	int batch;
679 	bool writable = pte_dirty(pteval);
680 
681 	if (!pte_accessible(mm, pteval))
682 		return;
683 
684 	arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr);
685 	tlb_ubc->flush_required = true;
686 
687 	/*
688 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
689 	 * before the PTE is cleared.
690 	 */
691 	barrier();
692 	batch = atomic_read(&mm->tlb_flush_batched);
693 retry:
694 	if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
695 		/*
696 		 * Prevent `pending' from catching up with `flushed' because of
697 		 * overflow.  Reset `pending' and `flushed' to be 1 and 0 if
698 		 * `pending' becomes large.
699 		 */
700 		if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1))
701 			goto retry;
702 	} else {
703 		atomic_inc(&mm->tlb_flush_batched);
704 	}
705 
706 	/*
707 	 * If the PTE was dirty then it's best to assume it's writable. The
708 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
709 	 * before the page is queued for IO.
710 	 */
711 	if (writable)
712 		tlb_ubc->writable = true;
713 }
714 
715 /*
716  * Returns true if the TLB flush should be deferred to the end of a batch of
717  * unmap operations to reduce IPIs.
718  */
719 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
720 {
721 	if (!(flags & TTU_BATCH_FLUSH))
722 		return false;
723 
724 	return arch_tlbbatch_should_defer(mm);
725 }
726 
727 /*
728  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
729  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
730  * operation such as mprotect or munmap to race between reclaim unmapping
731  * the page and flushing the page. If this race occurs, it potentially allows
732  * access to data via a stale TLB entry. Tracking all mm's that have TLB
733  * batching in flight would be expensive during reclaim so instead track
734  * whether TLB batching occurred in the past and if so then do a flush here
735  * if required. This will cost one additional flush per reclaim cycle paid
736  * by the first operation at risk such as mprotect and mumap.
737  *
738  * This must be called under the PTL so that an access to tlb_flush_batched
739  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
740  * via the PTL.
741  */
742 void flush_tlb_batched_pending(struct mm_struct *mm)
743 {
744 	int batch = atomic_read(&mm->tlb_flush_batched);
745 	int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
746 	int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
747 
748 	if (pending != flushed) {
749 		arch_flush_tlb_batched_pending(mm);
750 		/*
751 		 * If the new TLB flushing is pending during flushing, leave
752 		 * mm->tlb_flush_batched as is, to avoid losing flushing.
753 		 */
754 		atomic_cmpxchg(&mm->tlb_flush_batched, batch,
755 			       pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
756 	}
757 }
758 #else
759 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval,
760 				      unsigned long uaddr)
761 {
762 }
763 
764 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
765 {
766 	return false;
767 }
768 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
769 
770 /**
771  * page_address_in_vma - The virtual address of a page in this VMA.
772  * @folio: The folio containing the page.
773  * @page: The page within the folio.
774  * @vma: The VMA we need to know the address in.
775  *
776  * Calculates the user virtual address of this page in the specified VMA.
777  * It is the caller's responsibililty to check the page is actually
778  * within the VMA.  There may not currently be a PTE pointing at this
779  * page, but if a page fault occurs at this address, this is the page
780  * which will be accessed.
781  *
782  * Context: Caller should hold a reference to the folio.  Caller should
783  * hold a lock (eg the i_mmap_lock or the mmap_lock) which keeps the
784  * VMA from being altered.
785  *
786  * Return: The virtual address corresponding to this page in the VMA.
787  */
788 unsigned long page_address_in_vma(const struct folio *folio,
789 		const struct page *page, const struct vm_area_struct *vma)
790 {
791 	if (folio_test_anon(folio)) {
792 		struct anon_vma *page__anon_vma = folio_anon_vma(folio);
793 		/*
794 		 * Note: swapoff's unuse_vma() is more efficient with this
795 		 * check, and needs it to match anon_vma when KSM is active.
796 		 */
797 		if (!vma->anon_vma || !page__anon_vma ||
798 		    vma->anon_vma->root != page__anon_vma->root)
799 			return -EFAULT;
800 	} else if (!vma->vm_file) {
801 		return -EFAULT;
802 	} else if (vma->vm_file->f_mapping != folio->mapping) {
803 		return -EFAULT;
804 	}
805 
806 	/* KSM folios don't reach here because of the !page__anon_vma check */
807 	return vma_address(vma, page_pgoff(folio, page), 1);
808 }
809 
810 /*
811  * Returns the actual pmd_t* where we expect 'address' to be mapped from, or
812  * NULL if it doesn't exist.  No guarantees / checks on what the pmd_t*
813  * represents.
814  */
815 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
816 {
817 	pgd_t *pgd;
818 	p4d_t *p4d;
819 	pud_t *pud;
820 	pmd_t *pmd = NULL;
821 
822 	pgd = pgd_offset(mm, address);
823 	if (!pgd_present(*pgd))
824 		goto out;
825 
826 	p4d = p4d_offset(pgd, address);
827 	if (!p4d_present(*p4d))
828 		goto out;
829 
830 	pud = pud_offset(p4d, address);
831 	if (!pud_present(*pud))
832 		goto out;
833 
834 	pmd = pmd_offset(pud, address);
835 out:
836 	return pmd;
837 }
838 
839 struct folio_referenced_arg {
840 	int mapcount;
841 	int referenced;
842 	unsigned long vm_flags;
843 	struct mem_cgroup *memcg;
844 };
845 
846 /*
847  * arg: folio_referenced_arg will be passed
848  */
849 static bool folio_referenced_one(struct folio *folio,
850 		struct vm_area_struct *vma, unsigned long address, void *arg)
851 {
852 	struct folio_referenced_arg *pra = arg;
853 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
854 	int referenced = 0;
855 	unsigned long start = address, ptes = 0;
856 
857 	while (page_vma_mapped_walk(&pvmw)) {
858 		address = pvmw.address;
859 
860 		if (vma->vm_flags & VM_LOCKED) {
861 			if (!folio_test_large(folio) || !pvmw.pte) {
862 				/* Restore the mlock which got missed */
863 				mlock_vma_folio(folio, vma);
864 				page_vma_mapped_walk_done(&pvmw);
865 				pra->vm_flags |= VM_LOCKED;
866 				return false; /* To break the loop */
867 			}
868 			/*
869 			 * For large folio fully mapped to VMA, will
870 			 * be handled after the pvmw loop.
871 			 *
872 			 * For large folio cross VMA boundaries, it's
873 			 * expected to be picked  by page reclaim. But
874 			 * should skip reference of pages which are in
875 			 * the range of VM_LOCKED vma. As page reclaim
876 			 * should just count the reference of pages out
877 			 * the range of VM_LOCKED vma.
878 			 */
879 			ptes++;
880 			pra->mapcount--;
881 			continue;
882 		}
883 
884 		/*
885 		 * Skip the non-shared swapbacked folio mapped solely by
886 		 * the exiting or OOM-reaped process. This avoids redundant
887 		 * swap-out followed by an immediate unmap.
888 		 */
889 		if ((!atomic_read(&vma->vm_mm->mm_users) ||
890 		    check_stable_address_space(vma->vm_mm)) &&
891 		    folio_test_anon(folio) && folio_test_swapbacked(folio) &&
892 		    !folio_likely_mapped_shared(folio)) {
893 			pra->referenced = -1;
894 			page_vma_mapped_walk_done(&pvmw);
895 			return false;
896 		}
897 
898 		if (lru_gen_enabled() && pvmw.pte) {
899 			if (lru_gen_look_around(&pvmw))
900 				referenced++;
901 		} else if (pvmw.pte) {
902 			if (ptep_clear_flush_young_notify(vma, address,
903 						pvmw.pte))
904 				referenced++;
905 		} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
906 			if (pmdp_clear_flush_young_notify(vma, address,
907 						pvmw.pmd))
908 				referenced++;
909 		} else {
910 			/* unexpected pmd-mapped folio? */
911 			WARN_ON_ONCE(1);
912 		}
913 
914 		pra->mapcount--;
915 	}
916 
917 	if ((vma->vm_flags & VM_LOCKED) &&
918 			folio_test_large(folio) &&
919 			folio_within_vma(folio, vma)) {
920 		unsigned long s_align, e_align;
921 
922 		s_align = ALIGN_DOWN(start, PMD_SIZE);
923 		e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE);
924 
925 		/* folio doesn't cross page table boundary and fully mapped */
926 		if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) {
927 			/* Restore the mlock which got missed */
928 			mlock_vma_folio(folio, vma);
929 			pra->vm_flags |= VM_LOCKED;
930 			return false; /* To break the loop */
931 		}
932 	}
933 
934 	if (referenced)
935 		folio_clear_idle(folio);
936 	if (folio_test_clear_young(folio))
937 		referenced++;
938 
939 	if (referenced) {
940 		pra->referenced++;
941 		pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
942 	}
943 
944 	if (!pra->mapcount)
945 		return false; /* To break the loop */
946 
947 	return true;
948 }
949 
950 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg)
951 {
952 	struct folio_referenced_arg *pra = arg;
953 	struct mem_cgroup *memcg = pra->memcg;
954 
955 	/*
956 	 * Ignore references from this mapping if it has no recency. If the
957 	 * folio has been used in another mapping, we will catch it; if this
958 	 * other mapping is already gone, the unmap path will have set the
959 	 * referenced flag or activated the folio in zap_pte_range().
960 	 */
961 	if (!vma_has_recency(vma))
962 		return true;
963 
964 	/*
965 	 * If we are reclaiming on behalf of a cgroup, skip counting on behalf
966 	 * of references from different cgroups.
967 	 */
968 	if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
969 		return true;
970 
971 	return false;
972 }
973 
974 /**
975  * folio_referenced() - Test if the folio was referenced.
976  * @folio: The folio to test.
977  * @is_locked: Caller holds lock on the folio.
978  * @memcg: target memory cgroup
979  * @vm_flags: A combination of all the vma->vm_flags which referenced the folio.
980  *
981  * Quick test_and_clear_referenced for all mappings of a folio,
982  *
983  * Return: The number of mappings which referenced the folio. Return -1 if
984  * the function bailed out due to rmap lock contention.
985  */
986 int folio_referenced(struct folio *folio, int is_locked,
987 		     struct mem_cgroup *memcg, unsigned long *vm_flags)
988 {
989 	bool we_locked = false;
990 	struct folio_referenced_arg pra = {
991 		.mapcount = folio_mapcount(folio),
992 		.memcg = memcg,
993 	};
994 	struct rmap_walk_control rwc = {
995 		.rmap_one = folio_referenced_one,
996 		.arg = (void *)&pra,
997 		.anon_lock = folio_lock_anon_vma_read,
998 		.try_lock = true,
999 		.invalid_vma = invalid_folio_referenced_vma,
1000 	};
1001 
1002 	*vm_flags = 0;
1003 	if (!pra.mapcount)
1004 		return 0;
1005 
1006 	if (!folio_raw_mapping(folio))
1007 		return 0;
1008 
1009 	if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) {
1010 		we_locked = folio_trylock(folio);
1011 		if (!we_locked)
1012 			return 1;
1013 	}
1014 
1015 	rmap_walk(folio, &rwc);
1016 	*vm_flags = pra.vm_flags;
1017 
1018 	if (we_locked)
1019 		folio_unlock(folio);
1020 
1021 	return rwc.contended ? -1 : pra.referenced;
1022 }
1023 
1024 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw)
1025 {
1026 	int cleaned = 0;
1027 	struct vm_area_struct *vma = pvmw->vma;
1028 	struct mmu_notifier_range range;
1029 	unsigned long address = pvmw->address;
1030 
1031 	/*
1032 	 * We have to assume the worse case ie pmd for invalidation. Note that
1033 	 * the folio can not be freed from this function.
1034 	 */
1035 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0,
1036 				vma->vm_mm, address, vma_address_end(pvmw));
1037 	mmu_notifier_invalidate_range_start(&range);
1038 
1039 	while (page_vma_mapped_walk(pvmw)) {
1040 		int ret = 0;
1041 
1042 		address = pvmw->address;
1043 		if (pvmw->pte) {
1044 			pte_t *pte = pvmw->pte;
1045 			pte_t entry = ptep_get(pte);
1046 
1047 			if (!pte_dirty(entry) && !pte_write(entry))
1048 				continue;
1049 
1050 			flush_cache_page(vma, address, pte_pfn(entry));
1051 			entry = ptep_clear_flush(vma, address, pte);
1052 			entry = pte_wrprotect(entry);
1053 			entry = pte_mkclean(entry);
1054 			set_pte_at(vma->vm_mm, address, pte, entry);
1055 			ret = 1;
1056 		} else {
1057 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1058 			pmd_t *pmd = pvmw->pmd;
1059 			pmd_t entry;
1060 
1061 			if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
1062 				continue;
1063 
1064 			flush_cache_range(vma, address,
1065 					  address + HPAGE_PMD_SIZE);
1066 			entry = pmdp_invalidate(vma, address, pmd);
1067 			entry = pmd_wrprotect(entry);
1068 			entry = pmd_mkclean(entry);
1069 			set_pmd_at(vma->vm_mm, address, pmd, entry);
1070 			ret = 1;
1071 #else
1072 			/* unexpected pmd-mapped folio? */
1073 			WARN_ON_ONCE(1);
1074 #endif
1075 		}
1076 
1077 		if (ret)
1078 			cleaned++;
1079 	}
1080 
1081 	mmu_notifier_invalidate_range_end(&range);
1082 
1083 	return cleaned;
1084 }
1085 
1086 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma,
1087 			     unsigned long address, void *arg)
1088 {
1089 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC);
1090 	int *cleaned = arg;
1091 
1092 	*cleaned += page_vma_mkclean_one(&pvmw);
1093 
1094 	return true;
1095 }
1096 
1097 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1098 {
1099 	if (vma->vm_flags & VM_SHARED)
1100 		return false;
1101 
1102 	return true;
1103 }
1104 
1105 int folio_mkclean(struct folio *folio)
1106 {
1107 	int cleaned = 0;
1108 	struct address_space *mapping;
1109 	struct rmap_walk_control rwc = {
1110 		.arg = (void *)&cleaned,
1111 		.rmap_one = page_mkclean_one,
1112 		.invalid_vma = invalid_mkclean_vma,
1113 	};
1114 
1115 	BUG_ON(!folio_test_locked(folio));
1116 
1117 	if (!folio_mapped(folio))
1118 		return 0;
1119 
1120 	mapping = folio_mapping(folio);
1121 	if (!mapping)
1122 		return 0;
1123 
1124 	rmap_walk(folio, &rwc);
1125 
1126 	return cleaned;
1127 }
1128 EXPORT_SYMBOL_GPL(folio_mkclean);
1129 
1130 /**
1131  * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of
1132  *                     [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff)
1133  *                     within the @vma of shared mappings. And since clean PTEs
1134  *                     should also be readonly, write protects them too.
1135  * @pfn: start pfn.
1136  * @nr_pages: number of physically contiguous pages srarting with @pfn.
1137  * @pgoff: page offset that the @pfn mapped with.
1138  * @vma: vma that @pfn mapped within.
1139  *
1140  * Returns the number of cleaned PTEs (including PMDs).
1141  */
1142 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff,
1143 		      struct vm_area_struct *vma)
1144 {
1145 	struct page_vma_mapped_walk pvmw = {
1146 		.pfn		= pfn,
1147 		.nr_pages	= nr_pages,
1148 		.pgoff		= pgoff,
1149 		.vma		= vma,
1150 		.flags		= PVMW_SYNC,
1151 	};
1152 
1153 	if (invalid_mkclean_vma(vma, NULL))
1154 		return 0;
1155 
1156 	pvmw.address = vma_address(vma, pgoff, nr_pages);
1157 	VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma);
1158 
1159 	return page_vma_mkclean_one(&pvmw);
1160 }
1161 
1162 static __always_inline unsigned int __folio_add_rmap(struct folio *folio,
1163 		struct page *page, int nr_pages, enum rmap_level level,
1164 		int *nr_pmdmapped)
1165 {
1166 	atomic_t *mapped = &folio->_nr_pages_mapped;
1167 	const int orig_nr_pages = nr_pages;
1168 	int first = 0, nr = 0;
1169 
1170 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1171 
1172 	switch (level) {
1173 	case RMAP_LEVEL_PTE:
1174 		if (!folio_test_large(folio)) {
1175 			nr = atomic_inc_and_test(&folio->_mapcount);
1176 			break;
1177 		}
1178 
1179 		do {
1180 			first += atomic_inc_and_test(&page->_mapcount);
1181 		} while (page++, --nr_pages > 0);
1182 
1183 		if (first &&
1184 		    atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED)
1185 			nr = first;
1186 
1187 		atomic_add(orig_nr_pages, &folio->_large_mapcount);
1188 		break;
1189 	case RMAP_LEVEL_PMD:
1190 		first = atomic_inc_and_test(&folio->_entire_mapcount);
1191 		if (first) {
1192 			nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped);
1193 			if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) {
1194 				*nr_pmdmapped = folio_nr_pages(folio);
1195 				nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1196 				/* Raced ahead of a remove and another add? */
1197 				if (unlikely(nr < 0))
1198 					nr = 0;
1199 			} else {
1200 				/* Raced ahead of a remove of ENTIRELY_MAPPED */
1201 				nr = 0;
1202 			}
1203 		}
1204 		atomic_inc(&folio->_large_mapcount);
1205 		break;
1206 	}
1207 	return nr;
1208 }
1209 
1210 /**
1211  * folio_move_anon_rmap - move a folio to our anon_vma
1212  * @folio:	The folio to move to our anon_vma
1213  * @vma:	The vma the folio belongs to
1214  *
1215  * When a folio belongs exclusively to one process after a COW event,
1216  * that folio can be moved into the anon_vma that belongs to just that
1217  * process, so the rmap code will not search the parent or sibling processes.
1218  */
1219 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma)
1220 {
1221 	void *anon_vma = vma->anon_vma;
1222 
1223 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1224 	VM_BUG_ON_VMA(!anon_vma, vma);
1225 
1226 	anon_vma += PAGE_MAPPING_ANON;
1227 	/*
1228 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1229 	 * simultaneously, so a concurrent reader (eg folio_referenced()'s
1230 	 * folio_test_anon()) will not see one without the other.
1231 	 */
1232 	WRITE_ONCE(folio->mapping, anon_vma);
1233 }
1234 
1235 /**
1236  * __folio_set_anon - set up a new anonymous rmap for a folio
1237  * @folio:	The folio to set up the new anonymous rmap for.
1238  * @vma:	VM area to add the folio to.
1239  * @address:	User virtual address of the mapping
1240  * @exclusive:	Whether the folio is exclusive to the process.
1241  */
1242 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma,
1243 			     unsigned long address, bool exclusive)
1244 {
1245 	struct anon_vma *anon_vma = vma->anon_vma;
1246 
1247 	BUG_ON(!anon_vma);
1248 
1249 	/*
1250 	 * If the folio isn't exclusive to this vma, we must use the _oldest_
1251 	 * possible anon_vma for the folio mapping!
1252 	 */
1253 	if (!exclusive)
1254 		anon_vma = anon_vma->root;
1255 
1256 	/*
1257 	 * page_idle does a lockless/optimistic rmap scan on folio->mapping.
1258 	 * Make sure the compiler doesn't split the stores of anon_vma and
1259 	 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1260 	 * could mistake the mapping for a struct address_space and crash.
1261 	 */
1262 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1263 	WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma);
1264 	folio->index = linear_page_index(vma, address);
1265 }
1266 
1267 /**
1268  * __page_check_anon_rmap - sanity check anonymous rmap addition
1269  * @folio:	The folio containing @page.
1270  * @page:	the page to check the mapping of
1271  * @vma:	the vm area in which the mapping is added
1272  * @address:	the user virtual address mapped
1273  */
1274 static void __page_check_anon_rmap(const struct folio *folio,
1275 		const struct page *page, struct vm_area_struct *vma,
1276 		unsigned long address)
1277 {
1278 	/*
1279 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1280 	 * be set up correctly at this point.
1281 	 *
1282 	 * We have exclusion against folio_add_anon_rmap_*() because the caller
1283 	 * always holds the page locked.
1284 	 *
1285 	 * We have exclusion against folio_add_new_anon_rmap because those pages
1286 	 * are initially only visible via the pagetables, and the pte is locked
1287 	 * over the call to folio_add_new_anon_rmap.
1288 	 */
1289 	VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root,
1290 			folio);
1291 	VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address),
1292 		       page);
1293 }
1294 
1295 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped)
1296 {
1297 	int idx;
1298 
1299 	if (nr) {
1300 		idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED;
1301 		__lruvec_stat_mod_folio(folio, idx, nr);
1302 	}
1303 	if (nr_pmdmapped) {
1304 		if (folio_test_anon(folio)) {
1305 			idx = NR_ANON_THPS;
1306 			__lruvec_stat_mod_folio(folio, idx, nr_pmdmapped);
1307 		} else {
1308 			/* NR_*_PMDMAPPED are not maintained per-memcg */
1309 			idx = folio_test_swapbacked(folio) ?
1310 				NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED;
1311 			__mod_node_page_state(folio_pgdat(folio), idx,
1312 					      nr_pmdmapped);
1313 		}
1314 	}
1315 }
1316 
1317 static __always_inline void __folio_add_anon_rmap(struct folio *folio,
1318 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1319 		unsigned long address, rmap_t flags, enum rmap_level level)
1320 {
1321 	int i, nr, nr_pmdmapped = 0;
1322 
1323 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
1324 
1325 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1326 
1327 	if (likely(!folio_test_ksm(folio)))
1328 		__page_check_anon_rmap(folio, page, vma, address);
1329 
1330 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1331 
1332 	if (flags & RMAP_EXCLUSIVE) {
1333 		switch (level) {
1334 		case RMAP_LEVEL_PTE:
1335 			for (i = 0; i < nr_pages; i++)
1336 				SetPageAnonExclusive(page + i);
1337 			break;
1338 		case RMAP_LEVEL_PMD:
1339 			SetPageAnonExclusive(page);
1340 			break;
1341 		}
1342 	}
1343 	for (i = 0; i < nr_pages; i++) {
1344 		struct page *cur_page = page + i;
1345 
1346 		/* While PTE-mapping a THP we have a PMD and a PTE mapping. */
1347 		VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 ||
1348 				  (folio_test_large(folio) &&
1349 				   folio_entire_mapcount(folio) > 1)) &&
1350 				 PageAnonExclusive(cur_page), folio);
1351 	}
1352 
1353 	/*
1354 	 * For large folio, only mlock it if it's fully mapped to VMA. It's
1355 	 * not easy to check whether the large folio is fully mapped to VMA
1356 	 * here. Only mlock normal 4K folio and leave page reclaim to handle
1357 	 * large folio.
1358 	 */
1359 	if (!folio_test_large(folio))
1360 		mlock_vma_folio(folio, vma);
1361 }
1362 
1363 /**
1364  * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio
1365  * @folio:	The folio to add the mappings to
1366  * @page:	The first page to add
1367  * @nr_pages:	The number of pages which will be mapped
1368  * @vma:	The vm area in which the mappings are added
1369  * @address:	The user virtual address of the first page to map
1370  * @flags:	The rmap flags
1371  *
1372  * The page range of folio is defined by [first_page, first_page + nr_pages)
1373  *
1374  * The caller needs to hold the page table lock, and the page must be locked in
1375  * the anon_vma case: to serialize mapping,index checking after setting,
1376  * and to ensure that an anon folio is not being upgraded racily to a KSM folio
1377  * (but KSM folios are never downgraded).
1378  */
1379 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page,
1380 		int nr_pages, struct vm_area_struct *vma, unsigned long address,
1381 		rmap_t flags)
1382 {
1383 	__folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags,
1384 			      RMAP_LEVEL_PTE);
1385 }
1386 
1387 /**
1388  * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio
1389  * @folio:	The folio to add the mapping to
1390  * @page:	The first page to add
1391  * @vma:	The vm area in which the mapping is added
1392  * @address:	The user virtual address of the first page to map
1393  * @flags:	The rmap flags
1394  *
1395  * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR)
1396  *
1397  * The caller needs to hold the page table lock, and the page must be locked in
1398  * the anon_vma case: to serialize mapping,index checking after setting.
1399  */
1400 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page,
1401 		struct vm_area_struct *vma, unsigned long address, rmap_t flags)
1402 {
1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404 	__folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags,
1405 			      RMAP_LEVEL_PMD);
1406 #else
1407 	WARN_ON_ONCE(true);
1408 #endif
1409 }
1410 
1411 /**
1412  * folio_add_new_anon_rmap - Add mapping to a new anonymous folio.
1413  * @folio:	The folio to add the mapping to.
1414  * @vma:	the vm area in which the mapping is added
1415  * @address:	the user virtual address mapped
1416  * @flags:	The rmap flags
1417  *
1418  * Like folio_add_anon_rmap_*() but must only be called on *new* folios.
1419  * This means the inc-and-test can be bypassed.
1420  * The folio doesn't necessarily need to be locked while it's exclusive
1421  * unless two threads map it concurrently. However, the folio must be
1422  * locked if it's shared.
1423  *
1424  * If the folio is pmd-mappable, it is accounted as a THP.
1425  */
1426 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
1427 		unsigned long address, rmap_t flags)
1428 {
1429 	const int nr = folio_nr_pages(folio);
1430 	const bool exclusive = flags & RMAP_EXCLUSIVE;
1431 	int nr_pmdmapped = 0;
1432 
1433 	VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio);
1434 	VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio);
1435 	VM_BUG_ON_VMA(address < vma->vm_start ||
1436 			address + (nr << PAGE_SHIFT) > vma->vm_end, vma);
1437 
1438 	/*
1439 	 * VM_DROPPABLE mappings don't swap; instead they're just dropped when
1440 	 * under memory pressure.
1441 	 */
1442 	if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE))
1443 		__folio_set_swapbacked(folio);
1444 	__folio_set_anon(folio, vma, address, exclusive);
1445 
1446 	if (likely(!folio_test_large(folio))) {
1447 		/* increment count (starts at -1) */
1448 		atomic_set(&folio->_mapcount, 0);
1449 		if (exclusive)
1450 			SetPageAnonExclusive(&folio->page);
1451 	} else if (!folio_test_pmd_mappable(folio)) {
1452 		int i;
1453 
1454 		for (i = 0; i < nr; i++) {
1455 			struct page *page = folio_page(folio, i);
1456 
1457 			/* increment count (starts at -1) */
1458 			atomic_set(&page->_mapcount, 0);
1459 			if (exclusive)
1460 				SetPageAnonExclusive(page);
1461 		}
1462 
1463 		/* increment count (starts at -1) */
1464 		atomic_set(&folio->_large_mapcount, nr - 1);
1465 		atomic_set(&folio->_nr_pages_mapped, nr);
1466 	} else {
1467 		/* increment count (starts at -1) */
1468 		atomic_set(&folio->_entire_mapcount, 0);
1469 		/* increment count (starts at -1) */
1470 		atomic_set(&folio->_large_mapcount, 0);
1471 		atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED);
1472 		if (exclusive)
1473 			SetPageAnonExclusive(&folio->page);
1474 		nr_pmdmapped = nr;
1475 	}
1476 
1477 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1478 	mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1);
1479 }
1480 
1481 static __always_inline void __folio_add_file_rmap(struct folio *folio,
1482 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1483 		enum rmap_level level)
1484 {
1485 	int nr, nr_pmdmapped = 0;
1486 
1487 	VM_WARN_ON_FOLIO(folio_test_anon(folio), folio);
1488 
1489 	nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped);
1490 	__folio_mod_stat(folio, nr, nr_pmdmapped);
1491 
1492 	/* See comments in folio_add_anon_rmap_*() */
1493 	if (!folio_test_large(folio))
1494 		mlock_vma_folio(folio, vma);
1495 }
1496 
1497 /**
1498  * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio
1499  * @folio:	The folio to add the mappings to
1500  * @page:	The first page to add
1501  * @nr_pages:	The number of pages that will be mapped using PTEs
1502  * @vma:	The vm area in which the mappings are added
1503  *
1504  * The page range of the folio is defined by [page, page + nr_pages)
1505  *
1506  * The caller needs to hold the page table lock.
1507  */
1508 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page,
1509 		int nr_pages, struct vm_area_struct *vma)
1510 {
1511 	__folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1512 }
1513 
1514 /**
1515  * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio
1516  * @folio:	The folio to add the mapping to
1517  * @page:	The first page to add
1518  * @vma:	The vm area in which the mapping is added
1519  *
1520  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1521  *
1522  * The caller needs to hold the page table lock.
1523  */
1524 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page,
1525 		struct vm_area_struct *vma)
1526 {
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 	__folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1529 #else
1530 	WARN_ON_ONCE(true);
1531 #endif
1532 }
1533 
1534 static __always_inline void __folio_remove_rmap(struct folio *folio,
1535 		struct page *page, int nr_pages, struct vm_area_struct *vma,
1536 		enum rmap_level level)
1537 {
1538 	atomic_t *mapped = &folio->_nr_pages_mapped;
1539 	int last = 0, nr = 0, nr_pmdmapped = 0;
1540 	bool partially_mapped = false;
1541 
1542 	__folio_rmap_sanity_checks(folio, page, nr_pages, level);
1543 
1544 	switch (level) {
1545 	case RMAP_LEVEL_PTE:
1546 		if (!folio_test_large(folio)) {
1547 			nr = atomic_add_negative(-1, &folio->_mapcount);
1548 			break;
1549 		}
1550 
1551 		atomic_sub(nr_pages, &folio->_large_mapcount);
1552 		do {
1553 			last += atomic_add_negative(-1, &page->_mapcount);
1554 		} while (page++, --nr_pages > 0);
1555 
1556 		if (last &&
1557 		    atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED)
1558 			nr = last;
1559 
1560 		partially_mapped = nr && atomic_read(mapped);
1561 		break;
1562 	case RMAP_LEVEL_PMD:
1563 		atomic_dec(&folio->_large_mapcount);
1564 		last = atomic_add_negative(-1, &folio->_entire_mapcount);
1565 		if (last) {
1566 			nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped);
1567 			if (likely(nr < ENTIRELY_MAPPED)) {
1568 				nr_pmdmapped = folio_nr_pages(folio);
1569 				nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED);
1570 				/* Raced ahead of another remove and an add? */
1571 				if (unlikely(nr < 0))
1572 					nr = 0;
1573 			} else {
1574 				/* An add of ENTIRELY_MAPPED raced ahead */
1575 				nr = 0;
1576 			}
1577 		}
1578 
1579 		partially_mapped = nr && nr < nr_pmdmapped;
1580 		break;
1581 	}
1582 
1583 	/*
1584 	 * Queue anon large folio for deferred split if at least one page of
1585 	 * the folio is unmapped and at least one page is still mapped.
1586 	 *
1587 	 * Check partially_mapped first to ensure it is a large folio.
1588 	 */
1589 	if (partially_mapped && folio_test_anon(folio) &&
1590 	    !folio_test_partially_mapped(folio))
1591 		deferred_split_folio(folio, true);
1592 
1593 	__folio_mod_stat(folio, -nr, -nr_pmdmapped);
1594 
1595 	/*
1596 	 * It would be tidy to reset folio_test_anon mapping when fully
1597 	 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*()
1598 	 * which increments mapcount after us but sets mapping before us:
1599 	 * so leave the reset to free_pages_prepare, and remember that
1600 	 * it's only reliable while mapped.
1601 	 */
1602 
1603 	munlock_vma_folio(folio, vma);
1604 }
1605 
1606 /**
1607  * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio
1608  * @folio:	The folio to remove the mappings from
1609  * @page:	The first page to remove
1610  * @nr_pages:	The number of pages that will be removed from the mapping
1611  * @vma:	The vm area from which the mappings are removed
1612  *
1613  * The page range of the folio is defined by [page, page + nr_pages)
1614  *
1615  * The caller needs to hold the page table lock.
1616  */
1617 void folio_remove_rmap_ptes(struct folio *folio, struct page *page,
1618 		int nr_pages, struct vm_area_struct *vma)
1619 {
1620 	__folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE);
1621 }
1622 
1623 /**
1624  * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio
1625  * @folio:	The folio to remove the mapping from
1626  * @page:	The first page to remove
1627  * @vma:	The vm area from which the mapping is removed
1628  *
1629  * The page range of the folio is defined by [page, page + HPAGE_PMD_NR)
1630  *
1631  * The caller needs to hold the page table lock.
1632  */
1633 void folio_remove_rmap_pmd(struct folio *folio, struct page *page,
1634 		struct vm_area_struct *vma)
1635 {
1636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1637 	__folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD);
1638 #else
1639 	WARN_ON_ONCE(true);
1640 #endif
1641 }
1642 
1643 /*
1644  * @arg: enum ttu_flags will be passed to this argument
1645  */
1646 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma,
1647 		     unsigned long address, void *arg)
1648 {
1649 	struct mm_struct *mm = vma->vm_mm;
1650 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
1651 	pte_t pteval;
1652 	struct page *subpage;
1653 	bool anon_exclusive, ret = true;
1654 	struct mmu_notifier_range range;
1655 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
1656 	unsigned long pfn;
1657 	unsigned long hsz = 0;
1658 
1659 	/*
1660 	 * When racing against e.g. zap_pte_range() on another cpu,
1661 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
1662 	 * try_to_unmap() may return before page_mapped() has become false,
1663 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
1664 	 */
1665 	if (flags & TTU_SYNC)
1666 		pvmw.flags = PVMW_SYNC;
1667 
1668 	/*
1669 	 * For THP, we have to assume the worse case ie pmd for invalidation.
1670 	 * For hugetlb, it could be much worse if we need to do pud
1671 	 * invalidation in the case of pmd sharing.
1672 	 *
1673 	 * Note that the folio can not be freed in this function as call of
1674 	 * try_to_unmap() must hold a reference on the folio.
1675 	 */
1676 	range.end = vma_address_end(&pvmw);
1677 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1678 				address, range.end);
1679 	if (folio_test_hugetlb(folio)) {
1680 		/*
1681 		 * If sharing is possible, start and end will be adjusted
1682 		 * accordingly.
1683 		 */
1684 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1685 						     &range.end);
1686 
1687 		/* We need the huge page size for set_huge_pte_at() */
1688 		hsz = huge_page_size(hstate_vma(vma));
1689 	}
1690 	mmu_notifier_invalidate_range_start(&range);
1691 
1692 	while (page_vma_mapped_walk(&pvmw)) {
1693 		/*
1694 		 * If the folio is in an mlock()d vma, we must not swap it out.
1695 		 */
1696 		if (!(flags & TTU_IGNORE_MLOCK) &&
1697 		    (vma->vm_flags & VM_LOCKED)) {
1698 			/* Restore the mlock which got missed */
1699 			if (!folio_test_large(folio))
1700 				mlock_vma_folio(folio, vma);
1701 			goto walk_abort;
1702 		}
1703 
1704 		if (!pvmw.pte) {
1705 			if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd,
1706 						  folio))
1707 				goto walk_done;
1708 
1709 			if (flags & TTU_SPLIT_HUGE_PMD) {
1710 				/*
1711 				 * We temporarily have to drop the PTL and
1712 				 * restart so we can process the PTE-mapped THP.
1713 				 */
1714 				split_huge_pmd_locked(vma, pvmw.address,
1715 						      pvmw.pmd, false, folio);
1716 				flags &= ~TTU_SPLIT_HUGE_PMD;
1717 				page_vma_mapped_walk_restart(&pvmw);
1718 				continue;
1719 			}
1720 		}
1721 
1722 		/* Unexpected PMD-mapped THP? */
1723 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
1724 
1725 		pfn = pte_pfn(ptep_get(pvmw.pte));
1726 		subpage = folio_page(folio, pfn - folio_pfn(folio));
1727 		address = pvmw.address;
1728 		anon_exclusive = folio_test_anon(folio) &&
1729 				 PageAnonExclusive(subpage);
1730 
1731 		if (folio_test_hugetlb(folio)) {
1732 			bool anon = folio_test_anon(folio);
1733 
1734 			/*
1735 			 * The try_to_unmap() is only passed a hugetlb page
1736 			 * in the case where the hugetlb page is poisoned.
1737 			 */
1738 			VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage);
1739 			/*
1740 			 * huge_pmd_unshare may unmap an entire PMD page.
1741 			 * There is no way of knowing exactly which PMDs may
1742 			 * be cached for this mm, so we must flush them all.
1743 			 * start/end were already adjusted above to cover this
1744 			 * range.
1745 			 */
1746 			flush_cache_range(vma, range.start, range.end);
1747 
1748 			/*
1749 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
1750 			 * held in write mode.  Caller needs to explicitly
1751 			 * do this outside rmap routines.
1752 			 *
1753 			 * We also must hold hugetlb vma_lock in write mode.
1754 			 * Lock order dictates acquiring vma_lock BEFORE
1755 			 * i_mmap_rwsem.  We can only try lock here and fail
1756 			 * if unsuccessful.
1757 			 */
1758 			if (!anon) {
1759 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1760 				if (!hugetlb_vma_trylock_write(vma))
1761 					goto walk_abort;
1762 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
1763 					hugetlb_vma_unlock_write(vma);
1764 					flush_tlb_range(vma,
1765 						range.start, range.end);
1766 					/*
1767 					 * The ref count of the PMD page was
1768 					 * dropped which is part of the way map
1769 					 * counting is done for shared PMDs.
1770 					 * Return 'true' here.  When there is
1771 					 * no other sharing, huge_pmd_unshare
1772 					 * returns false and we will unmap the
1773 					 * actual page and drop map count
1774 					 * to zero.
1775 					 */
1776 					goto walk_done;
1777 				}
1778 				hugetlb_vma_unlock_write(vma);
1779 			}
1780 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
1781 		} else {
1782 			flush_cache_page(vma, address, pfn);
1783 			/* Nuke the page table entry. */
1784 			if (should_defer_flush(mm, flags)) {
1785 				/*
1786 				 * We clear the PTE but do not flush so potentially
1787 				 * a remote CPU could still be writing to the folio.
1788 				 * If the entry was previously clean then the
1789 				 * architecture must guarantee that a clear->dirty
1790 				 * transition on a cached TLB entry is written through
1791 				 * and traps if the PTE is unmapped.
1792 				 */
1793 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1794 
1795 				set_tlb_ubc_flush_pending(mm, pteval, address);
1796 			} else {
1797 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
1798 			}
1799 		}
1800 
1801 		/*
1802 		 * Now the pte is cleared. If this pte was uffd-wp armed,
1803 		 * we may want to replace a none pte with a marker pte if
1804 		 * it's file-backed, so we don't lose the tracking info.
1805 		 */
1806 		pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval);
1807 
1808 		/* Set the dirty flag on the folio now the pte is gone. */
1809 		if (pte_dirty(pteval))
1810 			folio_mark_dirty(folio);
1811 
1812 		/* Update high watermark before we lower rss */
1813 		update_hiwater_rss(mm);
1814 
1815 		if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) {
1816 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1817 			if (folio_test_hugetlb(folio)) {
1818 				hugetlb_count_sub(folio_nr_pages(folio), mm);
1819 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
1820 						hsz);
1821 			} else {
1822 				dec_mm_counter(mm, mm_counter(folio));
1823 				set_pte_at(mm, address, pvmw.pte, pteval);
1824 			}
1825 
1826 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1827 			/*
1828 			 * The guest indicated that the page content is of no
1829 			 * interest anymore. Simply discard the pte, vmscan
1830 			 * will take care of the rest.
1831 			 * A future reference will then fault in a new zero
1832 			 * page. When userfaultfd is active, we must not drop
1833 			 * this page though, as its main user (postcopy
1834 			 * migration) will not expect userfaults on already
1835 			 * copied pages.
1836 			 */
1837 			dec_mm_counter(mm, mm_counter(folio));
1838 		} else if (folio_test_anon(folio)) {
1839 			swp_entry_t entry = page_swap_entry(subpage);
1840 			pte_t swp_pte;
1841 			/*
1842 			 * Store the swap location in the pte.
1843 			 * See handle_pte_fault() ...
1844 			 */
1845 			if (unlikely(folio_test_swapbacked(folio) !=
1846 					folio_test_swapcache(folio))) {
1847 				WARN_ON_ONCE(1);
1848 				goto walk_abort;
1849 			}
1850 
1851 			/* MADV_FREE page check */
1852 			if (!folio_test_swapbacked(folio)) {
1853 				int ref_count, map_count;
1854 
1855 				/*
1856 				 * Synchronize with gup_pte_range():
1857 				 * - clear PTE; barrier; read refcount
1858 				 * - inc refcount; barrier; read PTE
1859 				 */
1860 				smp_mb();
1861 
1862 				ref_count = folio_ref_count(folio);
1863 				map_count = folio_mapcount(folio);
1864 
1865 				/*
1866 				 * Order reads for page refcount and dirty flag
1867 				 * (see comments in __remove_mapping()).
1868 				 */
1869 				smp_rmb();
1870 
1871 				/*
1872 				 * The only page refs must be one from isolation
1873 				 * plus the rmap(s) (dropped by discard:).
1874 				 */
1875 				if (ref_count == 1 + map_count &&
1876 				    (!folio_test_dirty(folio) ||
1877 				     /*
1878 				      * Unlike MADV_FREE mappings, VM_DROPPABLE
1879 				      * ones can be dropped even if they've
1880 				      * been dirtied.
1881 				      */
1882 				     (vma->vm_flags & VM_DROPPABLE))) {
1883 					dec_mm_counter(mm, MM_ANONPAGES);
1884 					goto discard;
1885 				}
1886 
1887 				/*
1888 				 * If the folio was redirtied, it cannot be
1889 				 * discarded. Remap the page to page table.
1890 				 */
1891 				set_pte_at(mm, address, pvmw.pte, pteval);
1892 				/*
1893 				 * Unlike MADV_FREE mappings, VM_DROPPABLE ones
1894 				 * never get swap backed on failure to drop.
1895 				 */
1896 				if (!(vma->vm_flags & VM_DROPPABLE))
1897 					folio_set_swapbacked(folio);
1898 				goto walk_abort;
1899 			}
1900 
1901 			if (swap_duplicate(entry) < 0) {
1902 				set_pte_at(mm, address, pvmw.pte, pteval);
1903 				goto walk_abort;
1904 			}
1905 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1906 				swap_free(entry);
1907 				set_pte_at(mm, address, pvmw.pte, pteval);
1908 				goto walk_abort;
1909 			}
1910 
1911 			/* See folio_try_share_anon_rmap(): clear PTE first. */
1912 			if (anon_exclusive &&
1913 			    folio_try_share_anon_rmap_pte(folio, subpage)) {
1914 				swap_free(entry);
1915 				set_pte_at(mm, address, pvmw.pte, pteval);
1916 				goto walk_abort;
1917 			}
1918 			if (list_empty(&mm->mmlist)) {
1919 				spin_lock(&mmlist_lock);
1920 				if (list_empty(&mm->mmlist))
1921 					list_add(&mm->mmlist, &init_mm.mmlist);
1922 				spin_unlock(&mmlist_lock);
1923 			}
1924 			dec_mm_counter(mm, MM_ANONPAGES);
1925 			inc_mm_counter(mm, MM_SWAPENTS);
1926 			swp_pte = swp_entry_to_pte(entry);
1927 			if (anon_exclusive)
1928 				swp_pte = pte_swp_mkexclusive(swp_pte);
1929 			if (pte_soft_dirty(pteval))
1930 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
1931 			if (pte_uffd_wp(pteval))
1932 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
1933 			set_pte_at(mm, address, pvmw.pte, swp_pte);
1934 		} else {
1935 			/*
1936 			 * This is a locked file-backed folio,
1937 			 * so it cannot be removed from the page
1938 			 * cache and replaced by a new folio before
1939 			 * mmu_notifier_invalidate_range_end, so no
1940 			 * concurrent thread might update its page table
1941 			 * to point at a new folio while a device is
1942 			 * still using this folio.
1943 			 *
1944 			 * See Documentation/mm/mmu_notifier.rst
1945 			 */
1946 			dec_mm_counter(mm, mm_counter_file(folio));
1947 		}
1948 discard:
1949 		if (unlikely(folio_test_hugetlb(folio)))
1950 			hugetlb_remove_rmap(folio);
1951 		else
1952 			folio_remove_rmap_pte(folio, subpage, vma);
1953 		if (vma->vm_flags & VM_LOCKED)
1954 			mlock_drain_local();
1955 		folio_put(folio);
1956 		continue;
1957 walk_abort:
1958 		ret = false;
1959 walk_done:
1960 		page_vma_mapped_walk_done(&pvmw);
1961 		break;
1962 	}
1963 
1964 	mmu_notifier_invalidate_range_end(&range);
1965 
1966 	return ret;
1967 }
1968 
1969 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1970 {
1971 	return vma_is_temporary_stack(vma);
1972 }
1973 
1974 static int folio_not_mapped(struct folio *folio)
1975 {
1976 	return !folio_mapped(folio);
1977 }
1978 
1979 /**
1980  * try_to_unmap - Try to remove all page table mappings to a folio.
1981  * @folio: The folio to unmap.
1982  * @flags: action and flags
1983  *
1984  * Tries to remove all the page table entries which are mapping this
1985  * folio.  It is the caller's responsibility to check if the folio is
1986  * still mapped if needed (use TTU_SYNC to prevent accounting races).
1987  *
1988  * Context: Caller must hold the folio lock.
1989  */
1990 void try_to_unmap(struct folio *folio, enum ttu_flags flags)
1991 {
1992 	struct rmap_walk_control rwc = {
1993 		.rmap_one = try_to_unmap_one,
1994 		.arg = (void *)flags,
1995 		.done = folio_not_mapped,
1996 		.anon_lock = folio_lock_anon_vma_read,
1997 	};
1998 
1999 	if (flags & TTU_RMAP_LOCKED)
2000 		rmap_walk_locked(folio, &rwc);
2001 	else
2002 		rmap_walk(folio, &rwc);
2003 }
2004 
2005 /*
2006  * @arg: enum ttu_flags will be passed to this argument.
2007  *
2008  * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
2009  * containing migration entries.
2010  */
2011 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma,
2012 		     unsigned long address, void *arg)
2013 {
2014 	struct mm_struct *mm = vma->vm_mm;
2015 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2016 	pte_t pteval;
2017 	struct page *subpage;
2018 	bool anon_exclusive, ret = true;
2019 	struct mmu_notifier_range range;
2020 	enum ttu_flags flags = (enum ttu_flags)(long)arg;
2021 	unsigned long pfn;
2022 	unsigned long hsz = 0;
2023 
2024 	/*
2025 	 * When racing against e.g. zap_pte_range() on another cpu,
2026 	 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(),
2027 	 * try_to_migrate() may return before page_mapped() has become false,
2028 	 * if page table locking is skipped: use TTU_SYNC to wait for that.
2029 	 */
2030 	if (flags & TTU_SYNC)
2031 		pvmw.flags = PVMW_SYNC;
2032 
2033 	/*
2034 	 * unmap_page() in mm/huge_memory.c is the only user of migration with
2035 	 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
2036 	 */
2037 	if (flags & TTU_SPLIT_HUGE_PMD)
2038 		split_huge_pmd_address(vma, address, true, folio);
2039 
2040 	/*
2041 	 * For THP, we have to assume the worse case ie pmd for invalidation.
2042 	 * For hugetlb, it could be much worse if we need to do pud
2043 	 * invalidation in the case of pmd sharing.
2044 	 *
2045 	 * Note that the page can not be free in this function as call of
2046 	 * try_to_unmap() must hold a reference on the page.
2047 	 */
2048 	range.end = vma_address_end(&pvmw);
2049 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2050 				address, range.end);
2051 	if (folio_test_hugetlb(folio)) {
2052 		/*
2053 		 * If sharing is possible, start and end will be adjusted
2054 		 * accordingly.
2055 		 */
2056 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
2057 						     &range.end);
2058 
2059 		/* We need the huge page size for set_huge_pte_at() */
2060 		hsz = huge_page_size(hstate_vma(vma));
2061 	}
2062 	mmu_notifier_invalidate_range_start(&range);
2063 
2064 	while (page_vma_mapped_walk(&pvmw)) {
2065 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2066 		/* PMD-mapped THP migration entry */
2067 		if (!pvmw.pte) {
2068 			subpage = folio_page(folio,
2069 				pmd_pfn(*pvmw.pmd) - folio_pfn(folio));
2070 			VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
2071 					!folio_test_pmd_mappable(folio), folio);
2072 
2073 			if (set_pmd_migration_entry(&pvmw, subpage)) {
2074 				ret = false;
2075 				page_vma_mapped_walk_done(&pvmw);
2076 				break;
2077 			}
2078 			continue;
2079 		}
2080 #endif
2081 
2082 		/* Unexpected PMD-mapped THP? */
2083 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2084 
2085 		pfn = pte_pfn(ptep_get(pvmw.pte));
2086 
2087 		if (folio_is_zone_device(folio)) {
2088 			/*
2089 			 * Our PTE is a non-present device exclusive entry and
2090 			 * calculating the subpage as for the common case would
2091 			 * result in an invalid pointer.
2092 			 *
2093 			 * Since only PAGE_SIZE pages can currently be
2094 			 * migrated, just set it to page. This will need to be
2095 			 * changed when hugepage migrations to device private
2096 			 * memory are supported.
2097 			 */
2098 			VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio);
2099 			subpage = &folio->page;
2100 		} else {
2101 			subpage = folio_page(folio, pfn - folio_pfn(folio));
2102 		}
2103 		address = pvmw.address;
2104 		anon_exclusive = folio_test_anon(folio) &&
2105 				 PageAnonExclusive(subpage);
2106 
2107 		if (folio_test_hugetlb(folio)) {
2108 			bool anon = folio_test_anon(folio);
2109 
2110 			/*
2111 			 * huge_pmd_unshare may unmap an entire PMD page.
2112 			 * There is no way of knowing exactly which PMDs may
2113 			 * be cached for this mm, so we must flush them all.
2114 			 * start/end were already adjusted above to cover this
2115 			 * range.
2116 			 */
2117 			flush_cache_range(vma, range.start, range.end);
2118 
2119 			/*
2120 			 * To call huge_pmd_unshare, i_mmap_rwsem must be
2121 			 * held in write mode.  Caller needs to explicitly
2122 			 * do this outside rmap routines.
2123 			 *
2124 			 * We also must hold hugetlb vma_lock in write mode.
2125 			 * Lock order dictates acquiring vma_lock BEFORE
2126 			 * i_mmap_rwsem.  We can only try lock here and
2127 			 * fail if unsuccessful.
2128 			 */
2129 			if (!anon) {
2130 				VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
2131 				if (!hugetlb_vma_trylock_write(vma)) {
2132 					page_vma_mapped_walk_done(&pvmw);
2133 					ret = false;
2134 					break;
2135 				}
2136 				if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) {
2137 					hugetlb_vma_unlock_write(vma);
2138 					flush_tlb_range(vma,
2139 						range.start, range.end);
2140 
2141 					/*
2142 					 * The ref count of the PMD page was
2143 					 * dropped which is part of the way map
2144 					 * counting is done for shared PMDs.
2145 					 * Return 'true' here.  When there is
2146 					 * no other sharing, huge_pmd_unshare
2147 					 * returns false and we will unmap the
2148 					 * actual page and drop map count
2149 					 * to zero.
2150 					 */
2151 					page_vma_mapped_walk_done(&pvmw);
2152 					break;
2153 				}
2154 				hugetlb_vma_unlock_write(vma);
2155 			}
2156 			/* Nuke the hugetlb page table entry */
2157 			pteval = huge_ptep_clear_flush(vma, address, pvmw.pte);
2158 		} else {
2159 			flush_cache_page(vma, address, pfn);
2160 			/* Nuke the page table entry. */
2161 			if (should_defer_flush(mm, flags)) {
2162 				/*
2163 				 * We clear the PTE but do not flush so potentially
2164 				 * a remote CPU could still be writing to the folio.
2165 				 * If the entry was previously clean then the
2166 				 * architecture must guarantee that a clear->dirty
2167 				 * transition on a cached TLB entry is written through
2168 				 * and traps if the PTE is unmapped.
2169 				 */
2170 				pteval = ptep_get_and_clear(mm, address, pvmw.pte);
2171 
2172 				set_tlb_ubc_flush_pending(mm, pteval, address);
2173 			} else {
2174 				pteval = ptep_clear_flush(vma, address, pvmw.pte);
2175 			}
2176 		}
2177 
2178 		/* Set the dirty flag on the folio now the pte is gone. */
2179 		if (pte_dirty(pteval))
2180 			folio_mark_dirty(folio);
2181 
2182 		/* Update high watermark before we lower rss */
2183 		update_hiwater_rss(mm);
2184 
2185 		if (folio_is_device_private(folio)) {
2186 			unsigned long pfn = folio_pfn(folio);
2187 			swp_entry_t entry;
2188 			pte_t swp_pte;
2189 
2190 			if (anon_exclusive)
2191 				WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio,
2192 									   subpage));
2193 
2194 			/*
2195 			 * Store the pfn of the page in a special migration
2196 			 * pte. do_swap_page() will wait until the migration
2197 			 * pte is removed and then restart fault handling.
2198 			 */
2199 			entry = pte_to_swp_entry(pteval);
2200 			if (is_writable_device_private_entry(entry))
2201 				entry = make_writable_migration_entry(pfn);
2202 			else if (anon_exclusive)
2203 				entry = make_readable_exclusive_migration_entry(pfn);
2204 			else
2205 				entry = make_readable_migration_entry(pfn);
2206 			swp_pte = swp_entry_to_pte(entry);
2207 
2208 			/*
2209 			 * pteval maps a zone device page and is therefore
2210 			 * a swap pte.
2211 			 */
2212 			if (pte_swp_soft_dirty(pteval))
2213 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2214 			if (pte_swp_uffd_wp(pteval))
2215 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2216 			set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
2217 			trace_set_migration_pte(pvmw.address, pte_val(swp_pte),
2218 						folio_order(folio));
2219 			/*
2220 			 * No need to invalidate here it will synchronize on
2221 			 * against the special swap migration pte.
2222 			 */
2223 		} else if (PageHWPoison(subpage)) {
2224 			pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
2225 			if (folio_test_hugetlb(folio)) {
2226 				hugetlb_count_sub(folio_nr_pages(folio), mm);
2227 				set_huge_pte_at(mm, address, pvmw.pte, pteval,
2228 						hsz);
2229 			} else {
2230 				dec_mm_counter(mm, mm_counter(folio));
2231 				set_pte_at(mm, address, pvmw.pte, pteval);
2232 			}
2233 
2234 		} else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
2235 			/*
2236 			 * The guest indicated that the page content is of no
2237 			 * interest anymore. Simply discard the pte, vmscan
2238 			 * will take care of the rest.
2239 			 * A future reference will then fault in a new zero
2240 			 * page. When userfaultfd is active, we must not drop
2241 			 * this page though, as its main user (postcopy
2242 			 * migration) will not expect userfaults on already
2243 			 * copied pages.
2244 			 */
2245 			dec_mm_counter(mm, mm_counter(folio));
2246 		} else {
2247 			swp_entry_t entry;
2248 			pte_t swp_pte;
2249 
2250 			if (arch_unmap_one(mm, vma, address, pteval) < 0) {
2251 				if (folio_test_hugetlb(folio))
2252 					set_huge_pte_at(mm, address, pvmw.pte,
2253 							pteval, hsz);
2254 				else
2255 					set_pte_at(mm, address, pvmw.pte, pteval);
2256 				ret = false;
2257 				page_vma_mapped_walk_done(&pvmw);
2258 				break;
2259 			}
2260 			VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) &&
2261 				       !anon_exclusive, subpage);
2262 
2263 			/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
2264 			if (folio_test_hugetlb(folio)) {
2265 				if (anon_exclusive &&
2266 				    hugetlb_try_share_anon_rmap(folio)) {
2267 					set_huge_pte_at(mm, address, pvmw.pte,
2268 							pteval, hsz);
2269 					ret = false;
2270 					page_vma_mapped_walk_done(&pvmw);
2271 					break;
2272 				}
2273 			} else if (anon_exclusive &&
2274 				   folio_try_share_anon_rmap_pte(folio, subpage)) {
2275 				set_pte_at(mm, address, pvmw.pte, pteval);
2276 				ret = false;
2277 				page_vma_mapped_walk_done(&pvmw);
2278 				break;
2279 			}
2280 
2281 			/*
2282 			 * Store the pfn of the page in a special migration
2283 			 * pte. do_swap_page() will wait until the migration
2284 			 * pte is removed and then restart fault handling.
2285 			 */
2286 			if (pte_write(pteval))
2287 				entry = make_writable_migration_entry(
2288 							page_to_pfn(subpage));
2289 			else if (anon_exclusive)
2290 				entry = make_readable_exclusive_migration_entry(
2291 							page_to_pfn(subpage));
2292 			else
2293 				entry = make_readable_migration_entry(
2294 							page_to_pfn(subpage));
2295 			if (pte_young(pteval))
2296 				entry = make_migration_entry_young(entry);
2297 			if (pte_dirty(pteval))
2298 				entry = make_migration_entry_dirty(entry);
2299 			swp_pte = swp_entry_to_pte(entry);
2300 			if (pte_soft_dirty(pteval))
2301 				swp_pte = pte_swp_mksoft_dirty(swp_pte);
2302 			if (pte_uffd_wp(pteval))
2303 				swp_pte = pte_swp_mkuffd_wp(swp_pte);
2304 			if (folio_test_hugetlb(folio))
2305 				set_huge_pte_at(mm, address, pvmw.pte, swp_pte,
2306 						hsz);
2307 			else
2308 				set_pte_at(mm, address, pvmw.pte, swp_pte);
2309 			trace_set_migration_pte(address, pte_val(swp_pte),
2310 						folio_order(folio));
2311 			/*
2312 			 * No need to invalidate here it will synchronize on
2313 			 * against the special swap migration pte.
2314 			 */
2315 		}
2316 
2317 		if (unlikely(folio_test_hugetlb(folio)))
2318 			hugetlb_remove_rmap(folio);
2319 		else
2320 			folio_remove_rmap_pte(folio, subpage, vma);
2321 		if (vma->vm_flags & VM_LOCKED)
2322 			mlock_drain_local();
2323 		folio_put(folio);
2324 	}
2325 
2326 	mmu_notifier_invalidate_range_end(&range);
2327 
2328 	return ret;
2329 }
2330 
2331 /**
2332  * try_to_migrate - try to replace all page table mappings with swap entries
2333  * @folio: the folio to replace page table entries for
2334  * @flags: action and flags
2335  *
2336  * Tries to remove all the page table entries which are mapping this folio and
2337  * replace them with special swap entries. Caller must hold the folio lock.
2338  */
2339 void try_to_migrate(struct folio *folio, enum ttu_flags flags)
2340 {
2341 	struct rmap_walk_control rwc = {
2342 		.rmap_one = try_to_migrate_one,
2343 		.arg = (void *)flags,
2344 		.done = folio_not_mapped,
2345 		.anon_lock = folio_lock_anon_vma_read,
2346 	};
2347 
2348 	/*
2349 	 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2350 	 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags.
2351 	 */
2352 	if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2353 					TTU_SYNC | TTU_BATCH_FLUSH)))
2354 		return;
2355 
2356 	if (folio_is_zone_device(folio) &&
2357 	    (!folio_is_device_private(folio) && !folio_is_device_coherent(folio)))
2358 		return;
2359 
2360 	/*
2361 	 * During exec, a temporary VMA is setup and later moved.
2362 	 * The VMA is moved under the anon_vma lock but not the
2363 	 * page tables leading to a race where migration cannot
2364 	 * find the migration ptes. Rather than increasing the
2365 	 * locking requirements of exec(), migration skips
2366 	 * temporary VMAs until after exec() completes.
2367 	 */
2368 	if (!folio_test_ksm(folio) && folio_test_anon(folio))
2369 		rwc.invalid_vma = invalid_migration_vma;
2370 
2371 	if (flags & TTU_RMAP_LOCKED)
2372 		rmap_walk_locked(folio, &rwc);
2373 	else
2374 		rmap_walk(folio, &rwc);
2375 }
2376 
2377 #ifdef CONFIG_DEVICE_PRIVATE
2378 struct make_exclusive_args {
2379 	struct mm_struct *mm;
2380 	unsigned long address;
2381 	void *owner;
2382 	bool valid;
2383 };
2384 
2385 static bool page_make_device_exclusive_one(struct folio *folio,
2386 		struct vm_area_struct *vma, unsigned long address, void *priv)
2387 {
2388 	struct mm_struct *mm = vma->vm_mm;
2389 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0);
2390 	struct make_exclusive_args *args = priv;
2391 	pte_t pteval;
2392 	struct page *subpage;
2393 	bool ret = true;
2394 	struct mmu_notifier_range range;
2395 	swp_entry_t entry;
2396 	pte_t swp_pte;
2397 	pte_t ptent;
2398 
2399 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
2400 				      vma->vm_mm, address, min(vma->vm_end,
2401 				      address + folio_size(folio)),
2402 				      args->owner);
2403 	mmu_notifier_invalidate_range_start(&range);
2404 
2405 	while (page_vma_mapped_walk(&pvmw)) {
2406 		/* Unexpected PMD-mapped THP? */
2407 		VM_BUG_ON_FOLIO(!pvmw.pte, folio);
2408 
2409 		ptent = ptep_get(pvmw.pte);
2410 		if (!pte_present(ptent)) {
2411 			ret = false;
2412 			page_vma_mapped_walk_done(&pvmw);
2413 			break;
2414 		}
2415 
2416 		subpage = folio_page(folio,
2417 				pte_pfn(ptent) - folio_pfn(folio));
2418 		address = pvmw.address;
2419 
2420 		/* Nuke the page table entry. */
2421 		flush_cache_page(vma, address, pte_pfn(ptent));
2422 		pteval = ptep_clear_flush(vma, address, pvmw.pte);
2423 
2424 		/* Set the dirty flag on the folio now the pte is gone. */
2425 		if (pte_dirty(pteval))
2426 			folio_mark_dirty(folio);
2427 
2428 		/*
2429 		 * Check that our target page is still mapped at the expected
2430 		 * address.
2431 		 */
2432 		if (args->mm == mm && args->address == address &&
2433 		    pte_write(pteval))
2434 			args->valid = true;
2435 
2436 		/*
2437 		 * Store the pfn of the page in a special migration
2438 		 * pte. do_swap_page() will wait until the migration
2439 		 * pte is removed and then restart fault handling.
2440 		 */
2441 		if (pte_write(pteval))
2442 			entry = make_writable_device_exclusive_entry(
2443 							page_to_pfn(subpage));
2444 		else
2445 			entry = make_readable_device_exclusive_entry(
2446 							page_to_pfn(subpage));
2447 		swp_pte = swp_entry_to_pte(entry);
2448 		if (pte_soft_dirty(pteval))
2449 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
2450 		if (pte_uffd_wp(pteval))
2451 			swp_pte = pte_swp_mkuffd_wp(swp_pte);
2452 
2453 		set_pte_at(mm, address, pvmw.pte, swp_pte);
2454 
2455 		/*
2456 		 * There is a reference on the page for the swap entry which has
2457 		 * been removed, so shouldn't take another.
2458 		 */
2459 		folio_remove_rmap_pte(folio, subpage, vma);
2460 	}
2461 
2462 	mmu_notifier_invalidate_range_end(&range);
2463 
2464 	return ret;
2465 }
2466 
2467 /**
2468  * folio_make_device_exclusive - Mark the folio exclusively owned by a device.
2469  * @folio: The folio to replace page table entries for.
2470  * @mm: The mm_struct where the folio is expected to be mapped.
2471  * @address: Address where the folio is expected to be mapped.
2472  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2473  *
2474  * Tries to remove all the page table entries which are mapping this
2475  * folio and replace them with special device exclusive swap entries to
2476  * grant a device exclusive access to the folio.
2477  *
2478  * Context: Caller must hold the folio lock.
2479  * Return: false if the page is still mapped, or if it could not be unmapped
2480  * from the expected address. Otherwise returns true (success).
2481  */
2482 static bool folio_make_device_exclusive(struct folio *folio,
2483 		struct mm_struct *mm, unsigned long address, void *owner)
2484 {
2485 	struct make_exclusive_args args = {
2486 		.mm = mm,
2487 		.address = address,
2488 		.owner = owner,
2489 		.valid = false,
2490 	};
2491 	struct rmap_walk_control rwc = {
2492 		.rmap_one = page_make_device_exclusive_one,
2493 		.done = folio_not_mapped,
2494 		.anon_lock = folio_lock_anon_vma_read,
2495 		.arg = &args,
2496 	};
2497 
2498 	/*
2499 	 * Restrict to anonymous folios for now to avoid potential writeback
2500 	 * issues.
2501 	 */
2502 	if (!folio_test_anon(folio))
2503 		return false;
2504 
2505 	rmap_walk(folio, &rwc);
2506 
2507 	return args.valid && !folio_mapcount(folio);
2508 }
2509 
2510 /**
2511  * make_device_exclusive_range() - Mark a range for exclusive use by a device
2512  * @mm: mm_struct of associated target process
2513  * @start: start of the region to mark for exclusive device access
2514  * @end: end address of region
2515  * @pages: returns the pages which were successfully marked for exclusive access
2516  * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2517  *
2518  * Returns: number of pages found in the range by GUP. A page is marked for
2519  * exclusive access only if the page pointer is non-NULL.
2520  *
2521  * This function finds ptes mapping page(s) to the given address range, locks
2522  * them and replaces mappings with special swap entries preventing userspace CPU
2523  * access. On fault these entries are replaced with the original mapping after
2524  * calling MMU notifiers.
2525  *
2526  * A driver using this to program access from a device must use a mmu notifier
2527  * critical section to hold a device specific lock during programming. Once
2528  * programming is complete it should drop the page lock and reference after
2529  * which point CPU access to the page will revoke the exclusive access.
2530  */
2531 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2532 				unsigned long end, struct page **pages,
2533 				void *owner)
2534 {
2535 	long npages = (end - start) >> PAGE_SHIFT;
2536 	long i;
2537 
2538 	npages = get_user_pages_remote(mm, start, npages,
2539 				       FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2540 				       pages, NULL);
2541 	if (npages < 0)
2542 		return npages;
2543 
2544 	for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2545 		struct folio *folio = page_folio(pages[i]);
2546 		if (PageTail(pages[i]) || !folio_trylock(folio)) {
2547 			folio_put(folio);
2548 			pages[i] = NULL;
2549 			continue;
2550 		}
2551 
2552 		if (!folio_make_device_exclusive(folio, mm, start, owner)) {
2553 			folio_unlock(folio);
2554 			folio_put(folio);
2555 			pages[i] = NULL;
2556 		}
2557 	}
2558 
2559 	return npages;
2560 }
2561 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2562 #endif
2563 
2564 void __put_anon_vma(struct anon_vma *anon_vma)
2565 {
2566 	struct anon_vma *root = anon_vma->root;
2567 
2568 	anon_vma_free(anon_vma);
2569 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2570 		anon_vma_free(root);
2571 }
2572 
2573 static struct anon_vma *rmap_walk_anon_lock(const struct folio *folio,
2574 					    struct rmap_walk_control *rwc)
2575 {
2576 	struct anon_vma *anon_vma;
2577 
2578 	if (rwc->anon_lock)
2579 		return rwc->anon_lock(folio, rwc);
2580 
2581 	/*
2582 	 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read()
2583 	 * because that depends on page_mapped(); but not all its usages
2584 	 * are holding mmap_lock. Users without mmap_lock are required to
2585 	 * take a reference count to prevent the anon_vma disappearing
2586 	 */
2587 	anon_vma = folio_anon_vma(folio);
2588 	if (!anon_vma)
2589 		return NULL;
2590 
2591 	if (anon_vma_trylock_read(anon_vma))
2592 		goto out;
2593 
2594 	if (rwc->try_lock) {
2595 		anon_vma = NULL;
2596 		rwc->contended = true;
2597 		goto out;
2598 	}
2599 
2600 	anon_vma_lock_read(anon_vma);
2601 out:
2602 	return anon_vma;
2603 }
2604 
2605 /*
2606  * rmap_walk_anon - do something to anonymous page using the object-based
2607  * rmap method
2608  * @folio: the folio to be handled
2609  * @rwc: control variable according to each walk type
2610  * @locked: caller holds relevant rmap lock
2611  *
2612  * Find all the mappings of a folio using the mapping pointer and the vma
2613  * chains contained in the anon_vma struct it points to.
2614  */
2615 static void rmap_walk_anon(struct folio *folio,
2616 		struct rmap_walk_control *rwc, bool locked)
2617 {
2618 	struct anon_vma *anon_vma;
2619 	pgoff_t pgoff_start, pgoff_end;
2620 	struct anon_vma_chain *avc;
2621 
2622 	if (locked) {
2623 		anon_vma = folio_anon_vma(folio);
2624 		/* anon_vma disappear under us? */
2625 		VM_BUG_ON_FOLIO(!anon_vma, folio);
2626 	} else {
2627 		anon_vma = rmap_walk_anon_lock(folio, rwc);
2628 	}
2629 	if (!anon_vma)
2630 		return;
2631 
2632 	pgoff_start = folio_pgoff(folio);
2633 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2634 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2635 			pgoff_start, pgoff_end) {
2636 		struct vm_area_struct *vma = avc->vma;
2637 		unsigned long address = vma_address(vma, pgoff_start,
2638 				folio_nr_pages(folio));
2639 
2640 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2641 		cond_resched();
2642 
2643 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2644 			continue;
2645 
2646 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2647 			break;
2648 		if (rwc->done && rwc->done(folio))
2649 			break;
2650 	}
2651 
2652 	if (!locked)
2653 		anon_vma_unlock_read(anon_vma);
2654 }
2655 
2656 /*
2657  * rmap_walk_file - do something to file page using the object-based rmap method
2658  * @folio: the folio to be handled
2659  * @rwc: control variable according to each walk type
2660  * @locked: caller holds relevant rmap lock
2661  *
2662  * Find all the mappings of a folio using the mapping pointer and the vma chains
2663  * contained in the address_space struct it points to.
2664  */
2665 static void rmap_walk_file(struct folio *folio,
2666 		struct rmap_walk_control *rwc, bool locked)
2667 {
2668 	struct address_space *mapping = folio_mapping(folio);
2669 	pgoff_t pgoff_start, pgoff_end;
2670 	struct vm_area_struct *vma;
2671 
2672 	/*
2673 	 * The page lock not only makes sure that page->mapping cannot
2674 	 * suddenly be NULLified by truncation, it makes sure that the
2675 	 * structure at mapping cannot be freed and reused yet,
2676 	 * so we can safely take mapping->i_mmap_rwsem.
2677 	 */
2678 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2679 
2680 	if (!mapping)
2681 		return;
2682 
2683 	pgoff_start = folio_pgoff(folio);
2684 	pgoff_end = pgoff_start + folio_nr_pages(folio) - 1;
2685 	if (!locked) {
2686 		if (i_mmap_trylock_read(mapping))
2687 			goto lookup;
2688 
2689 		if (rwc->try_lock) {
2690 			rwc->contended = true;
2691 			return;
2692 		}
2693 
2694 		i_mmap_lock_read(mapping);
2695 	}
2696 lookup:
2697 	vma_interval_tree_foreach(vma, &mapping->i_mmap,
2698 			pgoff_start, pgoff_end) {
2699 		unsigned long address = vma_address(vma, pgoff_start,
2700 			       folio_nr_pages(folio));
2701 
2702 		VM_BUG_ON_VMA(address == -EFAULT, vma);
2703 		cond_resched();
2704 
2705 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2706 			continue;
2707 
2708 		if (!rwc->rmap_one(folio, vma, address, rwc->arg))
2709 			goto done;
2710 		if (rwc->done && rwc->done(folio))
2711 			goto done;
2712 	}
2713 
2714 done:
2715 	if (!locked)
2716 		i_mmap_unlock_read(mapping);
2717 }
2718 
2719 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc)
2720 {
2721 	if (unlikely(folio_test_ksm(folio)))
2722 		rmap_walk_ksm(folio, rwc);
2723 	else if (folio_test_anon(folio))
2724 		rmap_walk_anon(folio, rwc, false);
2725 	else
2726 		rmap_walk_file(folio, rwc, false);
2727 }
2728 
2729 /* Like rmap_walk, but caller holds relevant rmap lock */
2730 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc)
2731 {
2732 	/* no ksm support for now */
2733 	VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio);
2734 	if (folio_test_anon(folio))
2735 		rmap_walk_anon(folio, rwc, true);
2736 	else
2737 		rmap_walk_file(folio, rwc, true);
2738 }
2739 
2740 #ifdef CONFIG_HUGETLB_PAGE
2741 /*
2742  * The following two functions are for anonymous (private mapped) hugepages.
2743  * Unlike common anonymous pages, anonymous hugepages have no accounting code
2744  * and no lru code, because we handle hugepages differently from common pages.
2745  */
2746 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma,
2747 		unsigned long address, rmap_t flags)
2748 {
2749 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2750 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2751 
2752 	atomic_inc(&folio->_entire_mapcount);
2753 	atomic_inc(&folio->_large_mapcount);
2754 	if (flags & RMAP_EXCLUSIVE)
2755 		SetPageAnonExclusive(&folio->page);
2756 	VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 &&
2757 			 PageAnonExclusive(&folio->page), folio);
2758 }
2759 
2760 void hugetlb_add_new_anon_rmap(struct folio *folio,
2761 		struct vm_area_struct *vma, unsigned long address)
2762 {
2763 	VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio);
2764 
2765 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2766 	/* increment count (starts at -1) */
2767 	atomic_set(&folio->_entire_mapcount, 0);
2768 	atomic_set(&folio->_large_mapcount, 0);
2769 	folio_clear_hugetlb_restore_reserve(folio);
2770 	__folio_set_anon(folio, vma, address, true);
2771 	SetPageAnonExclusive(&folio->page);
2772 }
2773 #endif /* CONFIG_HUGETLB_PAGE */
2774