1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_rwsem 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 34 * mapping->tree_lock (widely used) 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 37 * sb_lock (within inode_lock in fs/fs-writeback.c) 38 * mapping->tree_lock (widely used, in set_page_dirty, 39 * in arch-dependent flush_dcache_mmap_lock, 40 * within bdi.wb->list_lock in __sync_single_inode) 41 * 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 43 * ->tasklist_lock 44 * pte map lock 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 #include <linux/export.h> 57 #include <linux/memcontrol.h> 58 #include <linux/mmu_notifier.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/backing-dev.h> 62 63 #include <asm/tlbflush.h> 64 65 #include <trace/events/tlb.h> 66 67 #include "internal.h" 68 69 static struct kmem_cache *anon_vma_cachep; 70 static struct kmem_cache *anon_vma_chain_cachep; 71 72 static inline struct anon_vma *anon_vma_alloc(void) 73 { 74 struct anon_vma *anon_vma; 75 76 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 77 if (anon_vma) { 78 atomic_set(&anon_vma->refcount, 1); 79 anon_vma->degree = 1; /* Reference for first vma */ 80 anon_vma->parent = anon_vma; 81 /* 82 * Initialise the anon_vma root to point to itself. If called 83 * from fork, the root will be reset to the parents anon_vma. 84 */ 85 anon_vma->root = anon_vma; 86 } 87 88 return anon_vma; 89 } 90 91 static inline void anon_vma_free(struct anon_vma *anon_vma) 92 { 93 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 94 95 /* 96 * Synchronize against page_lock_anon_vma_read() such that 97 * we can safely hold the lock without the anon_vma getting 98 * freed. 99 * 100 * Relies on the full mb implied by the atomic_dec_and_test() from 101 * put_anon_vma() against the acquire barrier implied by 102 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 103 * 104 * page_lock_anon_vma_read() VS put_anon_vma() 105 * down_read_trylock() atomic_dec_and_test() 106 * LOCK MB 107 * atomic_read() rwsem_is_locked() 108 * 109 * LOCK should suffice since the actual taking of the lock must 110 * happen _before_ what follows. 111 */ 112 might_sleep(); 113 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 114 anon_vma_lock_write(anon_vma); 115 anon_vma_unlock_write(anon_vma); 116 } 117 118 kmem_cache_free(anon_vma_cachep, anon_vma); 119 } 120 121 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 122 { 123 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 124 } 125 126 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 127 { 128 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 129 } 130 131 static void anon_vma_chain_link(struct vm_area_struct *vma, 132 struct anon_vma_chain *avc, 133 struct anon_vma *anon_vma) 134 { 135 avc->vma = vma; 136 avc->anon_vma = anon_vma; 137 list_add(&avc->same_vma, &vma->anon_vma_chain); 138 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 139 } 140 141 /** 142 * anon_vma_prepare - attach an anon_vma to a memory region 143 * @vma: the memory region in question 144 * 145 * This makes sure the memory mapping described by 'vma' has 146 * an 'anon_vma' attached to it, so that we can associate the 147 * anonymous pages mapped into it with that anon_vma. 148 * 149 * The common case will be that we already have one, but if 150 * not we either need to find an adjacent mapping that we 151 * can re-use the anon_vma from (very common when the only 152 * reason for splitting a vma has been mprotect()), or we 153 * allocate a new one. 154 * 155 * Anon-vma allocations are very subtle, because we may have 156 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 157 * and that may actually touch the spinlock even in the newly 158 * allocated vma (it depends on RCU to make sure that the 159 * anon_vma isn't actually destroyed). 160 * 161 * As a result, we need to do proper anon_vma locking even 162 * for the new allocation. At the same time, we do not want 163 * to do any locking for the common case of already having 164 * an anon_vma. 165 * 166 * This must be called with the mmap_sem held for reading. 167 */ 168 int anon_vma_prepare(struct vm_area_struct *vma) 169 { 170 struct anon_vma *anon_vma = vma->anon_vma; 171 struct anon_vma_chain *avc; 172 173 might_sleep(); 174 if (unlikely(!anon_vma)) { 175 struct mm_struct *mm = vma->vm_mm; 176 struct anon_vma *allocated; 177 178 avc = anon_vma_chain_alloc(GFP_KERNEL); 179 if (!avc) 180 goto out_enomem; 181 182 anon_vma = find_mergeable_anon_vma(vma); 183 allocated = NULL; 184 if (!anon_vma) { 185 anon_vma = anon_vma_alloc(); 186 if (unlikely(!anon_vma)) 187 goto out_enomem_free_avc; 188 allocated = anon_vma; 189 } 190 191 anon_vma_lock_write(anon_vma); 192 /* page_table_lock to protect against threads */ 193 spin_lock(&mm->page_table_lock); 194 if (likely(!vma->anon_vma)) { 195 vma->anon_vma = anon_vma; 196 anon_vma_chain_link(vma, avc, anon_vma); 197 /* vma reference or self-parent link for new root */ 198 anon_vma->degree++; 199 allocated = NULL; 200 avc = NULL; 201 } 202 spin_unlock(&mm->page_table_lock); 203 anon_vma_unlock_write(anon_vma); 204 205 if (unlikely(allocated)) 206 put_anon_vma(allocated); 207 if (unlikely(avc)) 208 anon_vma_chain_free(avc); 209 } 210 return 0; 211 212 out_enomem_free_avc: 213 anon_vma_chain_free(avc); 214 out_enomem: 215 return -ENOMEM; 216 } 217 218 /* 219 * This is a useful helper function for locking the anon_vma root as 220 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 221 * have the same vma. 222 * 223 * Such anon_vma's should have the same root, so you'd expect to see 224 * just a single mutex_lock for the whole traversal. 225 */ 226 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 227 { 228 struct anon_vma *new_root = anon_vma->root; 229 if (new_root != root) { 230 if (WARN_ON_ONCE(root)) 231 up_write(&root->rwsem); 232 root = new_root; 233 down_write(&root->rwsem); 234 } 235 return root; 236 } 237 238 static inline void unlock_anon_vma_root(struct anon_vma *root) 239 { 240 if (root) 241 up_write(&root->rwsem); 242 } 243 244 /* 245 * Attach the anon_vmas from src to dst. 246 * Returns 0 on success, -ENOMEM on failure. 247 * 248 * If dst->anon_vma is NULL this function tries to find and reuse existing 249 * anon_vma which has no vmas and only one child anon_vma. This prevents 250 * degradation of anon_vma hierarchy to endless linear chain in case of 251 * constantly forking task. On the other hand, an anon_vma with more than one 252 * child isn't reused even if there was no alive vma, thus rmap walker has a 253 * good chance of avoiding scanning the whole hierarchy when it searches where 254 * page is mapped. 255 */ 256 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 257 { 258 struct anon_vma_chain *avc, *pavc; 259 struct anon_vma *root = NULL; 260 261 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 262 struct anon_vma *anon_vma; 263 264 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 265 if (unlikely(!avc)) { 266 unlock_anon_vma_root(root); 267 root = NULL; 268 avc = anon_vma_chain_alloc(GFP_KERNEL); 269 if (!avc) 270 goto enomem_failure; 271 } 272 anon_vma = pavc->anon_vma; 273 root = lock_anon_vma_root(root, anon_vma); 274 anon_vma_chain_link(dst, avc, anon_vma); 275 276 /* 277 * Reuse existing anon_vma if its degree lower than two, 278 * that means it has no vma and only one anon_vma child. 279 * 280 * Do not chose parent anon_vma, otherwise first child 281 * will always reuse it. Root anon_vma is never reused: 282 * it has self-parent reference and at least one child. 283 */ 284 if (!dst->anon_vma && anon_vma != src->anon_vma && 285 anon_vma->degree < 2) 286 dst->anon_vma = anon_vma; 287 } 288 if (dst->anon_vma) 289 dst->anon_vma->degree++; 290 unlock_anon_vma_root(root); 291 return 0; 292 293 enomem_failure: 294 /* 295 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 296 * decremented in unlink_anon_vmas(). 297 * We can safely do this because callers of anon_vma_clone() don't care 298 * about dst->anon_vma if anon_vma_clone() failed. 299 */ 300 dst->anon_vma = NULL; 301 unlink_anon_vmas(dst); 302 return -ENOMEM; 303 } 304 305 /* 306 * Attach vma to its own anon_vma, as well as to the anon_vmas that 307 * the corresponding VMA in the parent process is attached to. 308 * Returns 0 on success, non-zero on failure. 309 */ 310 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 311 { 312 struct anon_vma_chain *avc; 313 struct anon_vma *anon_vma; 314 int error; 315 316 /* Don't bother if the parent process has no anon_vma here. */ 317 if (!pvma->anon_vma) 318 return 0; 319 320 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 321 vma->anon_vma = NULL; 322 323 /* 324 * First, attach the new VMA to the parent VMA's anon_vmas, 325 * so rmap can find non-COWed pages in child processes. 326 */ 327 error = anon_vma_clone(vma, pvma); 328 if (error) 329 return error; 330 331 /* An existing anon_vma has been reused, all done then. */ 332 if (vma->anon_vma) 333 return 0; 334 335 /* Then add our own anon_vma. */ 336 anon_vma = anon_vma_alloc(); 337 if (!anon_vma) 338 goto out_error; 339 avc = anon_vma_chain_alloc(GFP_KERNEL); 340 if (!avc) 341 goto out_error_free_anon_vma; 342 343 /* 344 * The root anon_vma's spinlock is the lock actually used when we 345 * lock any of the anon_vmas in this anon_vma tree. 346 */ 347 anon_vma->root = pvma->anon_vma->root; 348 anon_vma->parent = pvma->anon_vma; 349 /* 350 * With refcounts, an anon_vma can stay around longer than the 351 * process it belongs to. The root anon_vma needs to be pinned until 352 * this anon_vma is freed, because the lock lives in the root. 353 */ 354 get_anon_vma(anon_vma->root); 355 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 356 vma->anon_vma = anon_vma; 357 anon_vma_lock_write(anon_vma); 358 anon_vma_chain_link(vma, avc, anon_vma); 359 anon_vma->parent->degree++; 360 anon_vma_unlock_write(anon_vma); 361 362 return 0; 363 364 out_error_free_anon_vma: 365 put_anon_vma(anon_vma); 366 out_error: 367 unlink_anon_vmas(vma); 368 return -ENOMEM; 369 } 370 371 void unlink_anon_vmas(struct vm_area_struct *vma) 372 { 373 struct anon_vma_chain *avc, *next; 374 struct anon_vma *root = NULL; 375 376 /* 377 * Unlink each anon_vma chained to the VMA. This list is ordered 378 * from newest to oldest, ensuring the root anon_vma gets freed last. 379 */ 380 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 381 struct anon_vma *anon_vma = avc->anon_vma; 382 383 root = lock_anon_vma_root(root, anon_vma); 384 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 385 386 /* 387 * Leave empty anon_vmas on the list - we'll need 388 * to free them outside the lock. 389 */ 390 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 391 anon_vma->parent->degree--; 392 continue; 393 } 394 395 list_del(&avc->same_vma); 396 anon_vma_chain_free(avc); 397 } 398 if (vma->anon_vma) 399 vma->anon_vma->degree--; 400 unlock_anon_vma_root(root); 401 402 /* 403 * Iterate the list once more, it now only contains empty and unlinked 404 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 405 * needing to write-acquire the anon_vma->root->rwsem. 406 */ 407 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 408 struct anon_vma *anon_vma = avc->anon_vma; 409 410 BUG_ON(anon_vma->degree); 411 put_anon_vma(anon_vma); 412 413 list_del(&avc->same_vma); 414 anon_vma_chain_free(avc); 415 } 416 } 417 418 static void anon_vma_ctor(void *data) 419 { 420 struct anon_vma *anon_vma = data; 421 422 init_rwsem(&anon_vma->rwsem); 423 atomic_set(&anon_vma->refcount, 0); 424 anon_vma->rb_root = RB_ROOT; 425 } 426 427 void __init anon_vma_init(void) 428 { 429 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 430 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 431 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 432 } 433 434 /* 435 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 436 * 437 * Since there is no serialization what so ever against page_remove_rmap() 438 * the best this function can do is return a locked anon_vma that might 439 * have been relevant to this page. 440 * 441 * The page might have been remapped to a different anon_vma or the anon_vma 442 * returned may already be freed (and even reused). 443 * 444 * In case it was remapped to a different anon_vma, the new anon_vma will be a 445 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 446 * ensure that any anon_vma obtained from the page will still be valid for as 447 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 448 * 449 * All users of this function must be very careful when walking the anon_vma 450 * chain and verify that the page in question is indeed mapped in it 451 * [ something equivalent to page_mapped_in_vma() ]. 452 * 453 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 454 * that the anon_vma pointer from page->mapping is valid if there is a 455 * mapcount, we can dereference the anon_vma after observing those. 456 */ 457 struct anon_vma *page_get_anon_vma(struct page *page) 458 { 459 struct anon_vma *anon_vma = NULL; 460 unsigned long anon_mapping; 461 462 rcu_read_lock(); 463 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 464 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 465 goto out; 466 if (!page_mapped(page)) 467 goto out; 468 469 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 470 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 471 anon_vma = NULL; 472 goto out; 473 } 474 475 /* 476 * If this page is still mapped, then its anon_vma cannot have been 477 * freed. But if it has been unmapped, we have no security against the 478 * anon_vma structure being freed and reused (for another anon_vma: 479 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 480 * above cannot corrupt). 481 */ 482 if (!page_mapped(page)) { 483 rcu_read_unlock(); 484 put_anon_vma(anon_vma); 485 return NULL; 486 } 487 out: 488 rcu_read_unlock(); 489 490 return anon_vma; 491 } 492 493 /* 494 * Similar to page_get_anon_vma() except it locks the anon_vma. 495 * 496 * Its a little more complex as it tries to keep the fast path to a single 497 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 498 * reference like with page_get_anon_vma() and then block on the mutex. 499 */ 500 struct anon_vma *page_lock_anon_vma_read(struct page *page) 501 { 502 struct anon_vma *anon_vma = NULL; 503 struct anon_vma *root_anon_vma; 504 unsigned long anon_mapping; 505 506 rcu_read_lock(); 507 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 508 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 509 goto out; 510 if (!page_mapped(page)) 511 goto out; 512 513 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 514 root_anon_vma = READ_ONCE(anon_vma->root); 515 if (down_read_trylock(&root_anon_vma->rwsem)) { 516 /* 517 * If the page is still mapped, then this anon_vma is still 518 * its anon_vma, and holding the mutex ensures that it will 519 * not go away, see anon_vma_free(). 520 */ 521 if (!page_mapped(page)) { 522 up_read(&root_anon_vma->rwsem); 523 anon_vma = NULL; 524 } 525 goto out; 526 } 527 528 /* trylock failed, we got to sleep */ 529 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 530 anon_vma = NULL; 531 goto out; 532 } 533 534 if (!page_mapped(page)) { 535 rcu_read_unlock(); 536 put_anon_vma(anon_vma); 537 return NULL; 538 } 539 540 /* we pinned the anon_vma, its safe to sleep */ 541 rcu_read_unlock(); 542 anon_vma_lock_read(anon_vma); 543 544 if (atomic_dec_and_test(&anon_vma->refcount)) { 545 /* 546 * Oops, we held the last refcount, release the lock 547 * and bail -- can't simply use put_anon_vma() because 548 * we'll deadlock on the anon_vma_lock_write() recursion. 549 */ 550 anon_vma_unlock_read(anon_vma); 551 __put_anon_vma(anon_vma); 552 anon_vma = NULL; 553 } 554 555 return anon_vma; 556 557 out: 558 rcu_read_unlock(); 559 return anon_vma; 560 } 561 562 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 563 { 564 anon_vma_unlock_read(anon_vma); 565 } 566 567 /* 568 * At what user virtual address is page expected in @vma? 569 */ 570 static inline unsigned long 571 __vma_address(struct page *page, struct vm_area_struct *vma) 572 { 573 pgoff_t pgoff = page_to_pgoff(page); 574 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 575 } 576 577 inline unsigned long 578 vma_address(struct page *page, struct vm_area_struct *vma) 579 { 580 unsigned long address = __vma_address(page, vma); 581 582 /* page should be within @vma mapping range */ 583 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 584 585 return address; 586 } 587 588 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 589 static void percpu_flush_tlb_batch_pages(void *data) 590 { 591 /* 592 * All TLB entries are flushed on the assumption that it is 593 * cheaper to flush all TLBs and let them be refilled than 594 * flushing individual PFNs. Note that we do not track mm's 595 * to flush as that might simply be multiple full TLB flushes 596 * for no gain. 597 */ 598 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); 599 flush_tlb_local(); 600 } 601 602 /* 603 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 604 * important if a PTE was dirty when it was unmapped that it's flushed 605 * before any IO is initiated on the page to prevent lost writes. Similarly, 606 * it must be flushed before freeing to prevent data leakage. 607 */ 608 void try_to_unmap_flush(void) 609 { 610 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 611 int cpu; 612 613 if (!tlb_ubc->flush_required) 614 return; 615 616 cpu = get_cpu(); 617 618 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL); 619 620 if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) 621 percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask); 622 623 if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) { 624 smp_call_function_many(&tlb_ubc->cpumask, 625 percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true); 626 } 627 cpumask_clear(&tlb_ubc->cpumask); 628 tlb_ubc->flush_required = false; 629 tlb_ubc->writable = false; 630 put_cpu(); 631 } 632 633 /* Flush iff there are potentially writable TLB entries that can race with IO */ 634 void try_to_unmap_flush_dirty(void) 635 { 636 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 637 638 if (tlb_ubc->writable) 639 try_to_unmap_flush(); 640 } 641 642 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, 643 struct page *page, bool writable) 644 { 645 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 646 647 cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); 648 tlb_ubc->flush_required = true; 649 650 /* 651 * If the PTE was dirty then it's best to assume it's writable. The 652 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 653 * before the page is queued for IO. 654 */ 655 if (writable) 656 tlb_ubc->writable = true; 657 } 658 659 /* 660 * Returns true if the TLB flush should be deferred to the end of a batch of 661 * unmap operations to reduce IPIs. 662 */ 663 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 664 { 665 bool should_defer = false; 666 667 if (!(flags & TTU_BATCH_FLUSH)) 668 return false; 669 670 /* If remote CPUs need to be flushed then defer batch the flush */ 671 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) 672 should_defer = true; 673 put_cpu(); 674 675 return should_defer; 676 } 677 #else 678 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, 679 struct page *page, bool writable) 680 { 681 } 682 683 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 684 { 685 return false; 686 } 687 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 688 689 /* 690 * At what user virtual address is page expected in vma? 691 * Caller should check the page is actually part of the vma. 692 */ 693 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 694 { 695 unsigned long address; 696 if (PageAnon(page)) { 697 struct anon_vma *page__anon_vma = page_anon_vma(page); 698 /* 699 * Note: swapoff's unuse_vma() is more efficient with this 700 * check, and needs it to match anon_vma when KSM is active. 701 */ 702 if (!vma->anon_vma || !page__anon_vma || 703 vma->anon_vma->root != page__anon_vma->root) 704 return -EFAULT; 705 } else if (page->mapping) { 706 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 707 return -EFAULT; 708 } else 709 return -EFAULT; 710 address = __vma_address(page, vma); 711 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 712 return -EFAULT; 713 return address; 714 } 715 716 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 717 { 718 pgd_t *pgd; 719 pud_t *pud; 720 pmd_t *pmd = NULL; 721 pmd_t pmde; 722 723 pgd = pgd_offset(mm, address); 724 if (!pgd_present(*pgd)) 725 goto out; 726 727 pud = pud_offset(pgd, address); 728 if (!pud_present(*pud)) 729 goto out; 730 731 pmd = pmd_offset(pud, address); 732 /* 733 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 734 * without holding anon_vma lock for write. So when looking for a 735 * genuine pmde (in which to find pte), test present and !THP together. 736 */ 737 pmde = *pmd; 738 barrier(); 739 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 740 pmd = NULL; 741 out: 742 return pmd; 743 } 744 745 /* 746 * Check that @page is mapped at @address into @mm. 747 * 748 * If @sync is false, page_check_address may perform a racy check to avoid 749 * the page table lock when the pte is not present (helpful when reclaiming 750 * highly shared pages). 751 * 752 * On success returns with pte mapped and locked. 753 */ 754 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 755 unsigned long address, spinlock_t **ptlp, int sync) 756 { 757 pmd_t *pmd; 758 pte_t *pte; 759 spinlock_t *ptl; 760 761 if (unlikely(PageHuge(page))) { 762 /* when pud is not present, pte will be NULL */ 763 pte = huge_pte_offset(mm, address); 764 if (!pte) 765 return NULL; 766 767 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 768 goto check; 769 } 770 771 pmd = mm_find_pmd(mm, address); 772 if (!pmd) 773 return NULL; 774 775 pte = pte_offset_map(pmd, address); 776 /* Make a quick check before getting the lock */ 777 if (!sync && !pte_present(*pte)) { 778 pte_unmap(pte); 779 return NULL; 780 } 781 782 ptl = pte_lockptr(mm, pmd); 783 check: 784 spin_lock(ptl); 785 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 786 *ptlp = ptl; 787 return pte; 788 } 789 pte_unmap_unlock(pte, ptl); 790 return NULL; 791 } 792 793 /** 794 * page_mapped_in_vma - check whether a page is really mapped in a VMA 795 * @page: the page to test 796 * @vma: the VMA to test 797 * 798 * Returns 1 if the page is mapped into the page tables of the VMA, 0 799 * if the page is not mapped into the page tables of this VMA. Only 800 * valid for normal file or anonymous VMAs. 801 */ 802 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 803 { 804 unsigned long address; 805 pte_t *pte; 806 spinlock_t *ptl; 807 808 address = __vma_address(page, vma); 809 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 810 return 0; 811 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 812 if (!pte) /* the page is not in this mm */ 813 return 0; 814 pte_unmap_unlock(pte, ptl); 815 816 return 1; 817 } 818 819 struct page_referenced_arg { 820 int mapcount; 821 int referenced; 822 unsigned long vm_flags; 823 struct mem_cgroup *memcg; 824 }; 825 /* 826 * arg: page_referenced_arg will be passed 827 */ 828 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 829 unsigned long address, void *arg) 830 { 831 struct mm_struct *mm = vma->vm_mm; 832 spinlock_t *ptl; 833 int referenced = 0; 834 struct page_referenced_arg *pra = arg; 835 836 if (unlikely(PageTransHuge(page))) { 837 pmd_t *pmd; 838 839 /* 840 * rmap might return false positives; we must filter 841 * these out using page_check_address_pmd(). 842 */ 843 pmd = page_check_address_pmd(page, mm, address, 844 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 845 if (!pmd) 846 return SWAP_AGAIN; 847 848 if (vma->vm_flags & VM_LOCKED) { 849 spin_unlock(ptl); 850 pra->vm_flags |= VM_LOCKED; 851 return SWAP_FAIL; /* To break the loop */ 852 } 853 854 /* go ahead even if the pmd is pmd_trans_splitting() */ 855 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 856 referenced++; 857 spin_unlock(ptl); 858 } else { 859 pte_t *pte; 860 861 /* 862 * rmap might return false positives; we must filter 863 * these out using page_check_address(). 864 */ 865 pte = page_check_address(page, mm, address, &ptl, 0); 866 if (!pte) 867 return SWAP_AGAIN; 868 869 if (vma->vm_flags & VM_LOCKED) { 870 pte_unmap_unlock(pte, ptl); 871 pra->vm_flags |= VM_LOCKED; 872 return SWAP_FAIL; /* To break the loop */ 873 } 874 875 if (ptep_clear_flush_young_notify(vma, address, pte)) { 876 /* 877 * Don't treat a reference through a sequentially read 878 * mapping as such. If the page has been used in 879 * another mapping, we will catch it; if this other 880 * mapping is already gone, the unmap path will have 881 * set PG_referenced or activated the page. 882 */ 883 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 884 referenced++; 885 } 886 pte_unmap_unlock(pte, ptl); 887 } 888 889 if (referenced) { 890 pra->referenced++; 891 pra->vm_flags |= vma->vm_flags; 892 } 893 894 pra->mapcount--; 895 if (!pra->mapcount) 896 return SWAP_SUCCESS; /* To break the loop */ 897 898 return SWAP_AGAIN; 899 } 900 901 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 902 { 903 struct page_referenced_arg *pra = arg; 904 struct mem_cgroup *memcg = pra->memcg; 905 906 if (!mm_match_cgroup(vma->vm_mm, memcg)) 907 return true; 908 909 return false; 910 } 911 912 /** 913 * page_referenced - test if the page was referenced 914 * @page: the page to test 915 * @is_locked: caller holds lock on the page 916 * @memcg: target memory cgroup 917 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 918 * 919 * Quick test_and_clear_referenced for all mappings to a page, 920 * returns the number of ptes which referenced the page. 921 */ 922 int page_referenced(struct page *page, 923 int is_locked, 924 struct mem_cgroup *memcg, 925 unsigned long *vm_flags) 926 { 927 int ret; 928 int we_locked = 0; 929 struct page_referenced_arg pra = { 930 .mapcount = page_mapcount(page), 931 .memcg = memcg, 932 }; 933 struct rmap_walk_control rwc = { 934 .rmap_one = page_referenced_one, 935 .arg = (void *)&pra, 936 .anon_lock = page_lock_anon_vma_read, 937 }; 938 939 *vm_flags = 0; 940 if (!page_mapped(page)) 941 return 0; 942 943 if (!page_rmapping(page)) 944 return 0; 945 946 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 947 we_locked = trylock_page(page); 948 if (!we_locked) 949 return 1; 950 } 951 952 /* 953 * If we are reclaiming on behalf of a cgroup, skip 954 * counting on behalf of references from different 955 * cgroups 956 */ 957 if (memcg) { 958 rwc.invalid_vma = invalid_page_referenced_vma; 959 } 960 961 ret = rmap_walk(page, &rwc); 962 *vm_flags = pra.vm_flags; 963 964 if (we_locked) 965 unlock_page(page); 966 967 return pra.referenced; 968 } 969 970 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 971 unsigned long address, void *arg) 972 { 973 struct mm_struct *mm = vma->vm_mm; 974 pte_t *pte; 975 spinlock_t *ptl; 976 int ret = 0; 977 int *cleaned = arg; 978 979 pte = page_check_address(page, mm, address, &ptl, 1); 980 if (!pte) 981 goto out; 982 983 if (pte_dirty(*pte) || pte_write(*pte)) { 984 pte_t entry; 985 986 flush_cache_page(vma, address, pte_pfn(*pte)); 987 entry = ptep_clear_flush(vma, address, pte); 988 entry = pte_wrprotect(entry); 989 entry = pte_mkclean(entry); 990 set_pte_at(mm, address, pte, entry); 991 ret = 1; 992 } 993 994 pte_unmap_unlock(pte, ptl); 995 996 if (ret) { 997 mmu_notifier_invalidate_page(mm, address); 998 (*cleaned)++; 999 } 1000 out: 1001 return SWAP_AGAIN; 1002 } 1003 1004 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1005 { 1006 if (vma->vm_flags & VM_SHARED) 1007 return false; 1008 1009 return true; 1010 } 1011 1012 int page_mkclean(struct page *page) 1013 { 1014 int cleaned = 0; 1015 struct address_space *mapping; 1016 struct rmap_walk_control rwc = { 1017 .arg = (void *)&cleaned, 1018 .rmap_one = page_mkclean_one, 1019 .invalid_vma = invalid_mkclean_vma, 1020 }; 1021 1022 BUG_ON(!PageLocked(page)); 1023 1024 if (!page_mapped(page)) 1025 return 0; 1026 1027 mapping = page_mapping(page); 1028 if (!mapping) 1029 return 0; 1030 1031 rmap_walk(page, &rwc); 1032 1033 return cleaned; 1034 } 1035 EXPORT_SYMBOL_GPL(page_mkclean); 1036 1037 /** 1038 * page_move_anon_rmap - move a page to our anon_vma 1039 * @page: the page to move to our anon_vma 1040 * @vma: the vma the page belongs to 1041 * @address: the user virtual address mapped 1042 * 1043 * When a page belongs exclusively to one process after a COW event, 1044 * that page can be moved into the anon_vma that belongs to just that 1045 * process, so the rmap code will not search the parent or sibling 1046 * processes. 1047 */ 1048 void page_move_anon_rmap(struct page *page, 1049 struct vm_area_struct *vma, unsigned long address) 1050 { 1051 struct anon_vma *anon_vma = vma->anon_vma; 1052 1053 VM_BUG_ON_PAGE(!PageLocked(page), page); 1054 VM_BUG_ON_VMA(!anon_vma, vma); 1055 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 1056 1057 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1058 /* 1059 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1060 * simultaneously, so a concurrent reader (eg page_referenced()'s 1061 * PageAnon()) will not see one without the other. 1062 */ 1063 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 1064 } 1065 1066 /** 1067 * __page_set_anon_rmap - set up new anonymous rmap 1068 * @page: Page to add to rmap 1069 * @vma: VM area to add page to. 1070 * @address: User virtual address of the mapping 1071 * @exclusive: the page is exclusively owned by the current process 1072 */ 1073 static void __page_set_anon_rmap(struct page *page, 1074 struct vm_area_struct *vma, unsigned long address, int exclusive) 1075 { 1076 struct anon_vma *anon_vma = vma->anon_vma; 1077 1078 BUG_ON(!anon_vma); 1079 1080 if (PageAnon(page)) 1081 return; 1082 1083 /* 1084 * If the page isn't exclusively mapped into this vma, 1085 * we must use the _oldest_ possible anon_vma for the 1086 * page mapping! 1087 */ 1088 if (!exclusive) 1089 anon_vma = anon_vma->root; 1090 1091 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1092 page->mapping = (struct address_space *) anon_vma; 1093 page->index = linear_page_index(vma, address); 1094 } 1095 1096 /** 1097 * __page_check_anon_rmap - sanity check anonymous rmap addition 1098 * @page: the page to add the mapping to 1099 * @vma: the vm area in which the mapping is added 1100 * @address: the user virtual address mapped 1101 */ 1102 static void __page_check_anon_rmap(struct page *page, 1103 struct vm_area_struct *vma, unsigned long address) 1104 { 1105 #ifdef CONFIG_DEBUG_VM 1106 /* 1107 * The page's anon-rmap details (mapping and index) are guaranteed to 1108 * be set up correctly at this point. 1109 * 1110 * We have exclusion against page_add_anon_rmap because the caller 1111 * always holds the page locked, except if called from page_dup_rmap, 1112 * in which case the page is already known to be setup. 1113 * 1114 * We have exclusion against page_add_new_anon_rmap because those pages 1115 * are initially only visible via the pagetables, and the pte is locked 1116 * over the call to page_add_new_anon_rmap. 1117 */ 1118 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1119 BUG_ON(page->index != linear_page_index(vma, address)); 1120 #endif 1121 } 1122 1123 /** 1124 * page_add_anon_rmap - add pte mapping to an anonymous page 1125 * @page: the page to add the mapping to 1126 * @vma: the vm area in which the mapping is added 1127 * @address: the user virtual address mapped 1128 * 1129 * The caller needs to hold the pte lock, and the page must be locked in 1130 * the anon_vma case: to serialize mapping,index checking after setting, 1131 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1132 * (but PageKsm is never downgraded to PageAnon). 1133 */ 1134 void page_add_anon_rmap(struct page *page, 1135 struct vm_area_struct *vma, unsigned long address) 1136 { 1137 do_page_add_anon_rmap(page, vma, address, 0); 1138 } 1139 1140 /* 1141 * Special version of the above for do_swap_page, which often runs 1142 * into pages that are exclusively owned by the current process. 1143 * Everybody else should continue to use page_add_anon_rmap above. 1144 */ 1145 void do_page_add_anon_rmap(struct page *page, 1146 struct vm_area_struct *vma, unsigned long address, int exclusive) 1147 { 1148 int first = atomic_inc_and_test(&page->_mapcount); 1149 if (first) { 1150 /* 1151 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1152 * these counters are not modified in interrupt context, and 1153 * pte lock(a spinlock) is held, which implies preemption 1154 * disabled. 1155 */ 1156 if (PageTransHuge(page)) 1157 __inc_zone_page_state(page, 1158 NR_ANON_TRANSPARENT_HUGEPAGES); 1159 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1160 hpage_nr_pages(page)); 1161 } 1162 if (unlikely(PageKsm(page))) 1163 return; 1164 1165 VM_BUG_ON_PAGE(!PageLocked(page), page); 1166 /* address might be in next vma when migration races vma_adjust */ 1167 if (first) 1168 __page_set_anon_rmap(page, vma, address, exclusive); 1169 else 1170 __page_check_anon_rmap(page, vma, address); 1171 } 1172 1173 /** 1174 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1175 * @page: the page to add the mapping to 1176 * @vma: the vm area in which the mapping is added 1177 * @address: the user virtual address mapped 1178 * 1179 * Same as page_add_anon_rmap but must only be called on *new* pages. 1180 * This means the inc-and-test can be bypassed. 1181 * Page does not have to be locked. 1182 */ 1183 void page_add_new_anon_rmap(struct page *page, 1184 struct vm_area_struct *vma, unsigned long address) 1185 { 1186 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1187 SetPageSwapBacked(page); 1188 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1189 if (PageTransHuge(page)) 1190 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1191 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1192 hpage_nr_pages(page)); 1193 __page_set_anon_rmap(page, vma, address, 1); 1194 } 1195 1196 /** 1197 * page_add_file_rmap - add pte mapping to a file page 1198 * @page: the page to add the mapping to 1199 * 1200 * The caller needs to hold the pte lock. 1201 */ 1202 void page_add_file_rmap(struct page *page) 1203 { 1204 struct mem_cgroup *memcg; 1205 1206 memcg = mem_cgroup_begin_page_stat(page); 1207 if (atomic_inc_and_test(&page->_mapcount)) { 1208 __inc_zone_page_state(page, NR_FILE_MAPPED); 1209 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1210 } 1211 mem_cgroup_end_page_stat(memcg); 1212 } 1213 1214 static void page_remove_file_rmap(struct page *page) 1215 { 1216 struct mem_cgroup *memcg; 1217 1218 memcg = mem_cgroup_begin_page_stat(page); 1219 1220 /* page still mapped by someone else? */ 1221 if (!atomic_add_negative(-1, &page->_mapcount)) 1222 goto out; 1223 1224 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1225 if (unlikely(PageHuge(page))) 1226 goto out; 1227 1228 /* 1229 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1230 * these counters are not modified in interrupt context, and 1231 * pte lock(a spinlock) is held, which implies preemption disabled. 1232 */ 1233 __dec_zone_page_state(page, NR_FILE_MAPPED); 1234 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1235 1236 if (unlikely(PageMlocked(page))) 1237 clear_page_mlock(page); 1238 out: 1239 mem_cgroup_end_page_stat(memcg); 1240 } 1241 1242 /** 1243 * page_remove_rmap - take down pte mapping from a page 1244 * @page: page to remove mapping from 1245 * 1246 * The caller needs to hold the pte lock. 1247 */ 1248 void page_remove_rmap(struct page *page) 1249 { 1250 if (!PageAnon(page)) { 1251 page_remove_file_rmap(page); 1252 return; 1253 } 1254 1255 /* page still mapped by someone else? */ 1256 if (!atomic_add_negative(-1, &page->_mapcount)) 1257 return; 1258 1259 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1260 if (unlikely(PageHuge(page))) 1261 return; 1262 1263 /* 1264 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1265 * these counters are not modified in interrupt context, and 1266 * pte lock(a spinlock) is held, which implies preemption disabled. 1267 */ 1268 if (PageTransHuge(page)) 1269 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1270 1271 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1272 -hpage_nr_pages(page)); 1273 1274 if (unlikely(PageMlocked(page))) 1275 clear_page_mlock(page); 1276 1277 /* 1278 * It would be tidy to reset the PageAnon mapping here, 1279 * but that might overwrite a racing page_add_anon_rmap 1280 * which increments mapcount after us but sets mapping 1281 * before us: so leave the reset to free_hot_cold_page, 1282 * and remember that it's only reliable while mapped. 1283 * Leaving it set also helps swapoff to reinstate ptes 1284 * faster for those pages still in swapcache. 1285 */ 1286 } 1287 1288 /* 1289 * @arg: enum ttu_flags will be passed to this argument 1290 */ 1291 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1292 unsigned long address, void *arg) 1293 { 1294 struct mm_struct *mm = vma->vm_mm; 1295 pte_t *pte; 1296 pte_t pteval; 1297 spinlock_t *ptl; 1298 int ret = SWAP_AGAIN; 1299 enum ttu_flags flags = (enum ttu_flags)arg; 1300 1301 pte = page_check_address(page, mm, address, &ptl, 0); 1302 if (!pte) 1303 goto out; 1304 1305 /* 1306 * If the page is mlock()d, we cannot swap it out. 1307 * If it's recently referenced (perhaps page_referenced 1308 * skipped over this mm) then we should reactivate it. 1309 */ 1310 if (!(flags & TTU_IGNORE_MLOCK)) { 1311 if (vma->vm_flags & VM_LOCKED) 1312 goto out_mlock; 1313 1314 if (flags & TTU_MUNLOCK) 1315 goto out_unmap; 1316 } 1317 if (!(flags & TTU_IGNORE_ACCESS)) { 1318 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1319 ret = SWAP_FAIL; 1320 goto out_unmap; 1321 } 1322 } 1323 1324 /* Nuke the page table entry. */ 1325 flush_cache_page(vma, address, page_to_pfn(page)); 1326 if (should_defer_flush(mm, flags)) { 1327 /* 1328 * We clear the PTE but do not flush so potentially a remote 1329 * CPU could still be writing to the page. If the entry was 1330 * previously clean then the architecture must guarantee that 1331 * a clear->dirty transition on a cached TLB entry is written 1332 * through and traps if the PTE is unmapped. 1333 */ 1334 pteval = ptep_get_and_clear(mm, address, pte); 1335 1336 set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval)); 1337 } else { 1338 pteval = ptep_clear_flush(vma, address, pte); 1339 } 1340 1341 /* Move the dirty bit to the physical page now the pte is gone. */ 1342 if (pte_dirty(pteval)) 1343 set_page_dirty(page); 1344 1345 /* Update high watermark before we lower rss */ 1346 update_hiwater_rss(mm); 1347 1348 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1349 if (!PageHuge(page)) { 1350 if (PageAnon(page)) 1351 dec_mm_counter(mm, MM_ANONPAGES); 1352 else 1353 dec_mm_counter(mm, MM_FILEPAGES); 1354 } 1355 set_pte_at(mm, address, pte, 1356 swp_entry_to_pte(make_hwpoison_entry(page))); 1357 } else if (pte_unused(pteval)) { 1358 /* 1359 * The guest indicated that the page content is of no 1360 * interest anymore. Simply discard the pte, vmscan 1361 * will take care of the rest. 1362 */ 1363 if (PageAnon(page)) 1364 dec_mm_counter(mm, MM_ANONPAGES); 1365 else 1366 dec_mm_counter(mm, MM_FILEPAGES); 1367 } else if (PageAnon(page)) { 1368 swp_entry_t entry = { .val = page_private(page) }; 1369 pte_t swp_pte; 1370 1371 if (PageSwapCache(page)) { 1372 /* 1373 * Store the swap location in the pte. 1374 * See handle_pte_fault() ... 1375 */ 1376 if (swap_duplicate(entry) < 0) { 1377 set_pte_at(mm, address, pte, pteval); 1378 ret = SWAP_FAIL; 1379 goto out_unmap; 1380 } 1381 if (list_empty(&mm->mmlist)) { 1382 spin_lock(&mmlist_lock); 1383 if (list_empty(&mm->mmlist)) 1384 list_add(&mm->mmlist, &init_mm.mmlist); 1385 spin_unlock(&mmlist_lock); 1386 } 1387 dec_mm_counter(mm, MM_ANONPAGES); 1388 inc_mm_counter(mm, MM_SWAPENTS); 1389 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1390 /* 1391 * Store the pfn of the page in a special migration 1392 * pte. do_swap_page() will wait until the migration 1393 * pte is removed and then restart fault handling. 1394 */ 1395 BUG_ON(!(flags & TTU_MIGRATION)); 1396 entry = make_migration_entry(page, pte_write(pteval)); 1397 } 1398 swp_pte = swp_entry_to_pte(entry); 1399 if (pte_soft_dirty(pteval)) 1400 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1401 set_pte_at(mm, address, pte, swp_pte); 1402 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1403 (flags & TTU_MIGRATION)) { 1404 /* Establish migration entry for a file page */ 1405 swp_entry_t entry; 1406 entry = make_migration_entry(page, pte_write(pteval)); 1407 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1408 } else 1409 dec_mm_counter(mm, MM_FILEPAGES); 1410 1411 page_remove_rmap(page); 1412 page_cache_release(page); 1413 1414 out_unmap: 1415 pte_unmap_unlock(pte, ptl); 1416 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) 1417 mmu_notifier_invalidate_page(mm, address); 1418 out: 1419 return ret; 1420 1421 out_mlock: 1422 pte_unmap_unlock(pte, ptl); 1423 1424 1425 /* 1426 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1427 * unstable result and race. Plus, We can't wait here because 1428 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. 1429 * if trylock failed, the page remain in evictable lru and later 1430 * vmscan could retry to move the page to unevictable lru if the 1431 * page is actually mlocked. 1432 */ 1433 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1434 if (vma->vm_flags & VM_LOCKED) { 1435 mlock_vma_page(page); 1436 ret = SWAP_MLOCK; 1437 } 1438 up_read(&vma->vm_mm->mmap_sem); 1439 } 1440 return ret; 1441 } 1442 1443 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1444 { 1445 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1446 1447 if (!maybe_stack) 1448 return false; 1449 1450 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1451 VM_STACK_INCOMPLETE_SETUP) 1452 return true; 1453 1454 return false; 1455 } 1456 1457 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1458 { 1459 return is_vma_temporary_stack(vma); 1460 } 1461 1462 static int page_not_mapped(struct page *page) 1463 { 1464 return !page_mapped(page); 1465 }; 1466 1467 /** 1468 * try_to_unmap - try to remove all page table mappings to a page 1469 * @page: the page to get unmapped 1470 * @flags: action and flags 1471 * 1472 * Tries to remove all the page table entries which are mapping this 1473 * page, used in the pageout path. Caller must hold the page lock. 1474 * Return values are: 1475 * 1476 * SWAP_SUCCESS - we succeeded in removing all mappings 1477 * SWAP_AGAIN - we missed a mapping, try again later 1478 * SWAP_FAIL - the page is unswappable 1479 * SWAP_MLOCK - page is mlocked. 1480 */ 1481 int try_to_unmap(struct page *page, enum ttu_flags flags) 1482 { 1483 int ret; 1484 struct rmap_walk_control rwc = { 1485 .rmap_one = try_to_unmap_one, 1486 .arg = (void *)flags, 1487 .done = page_not_mapped, 1488 .anon_lock = page_lock_anon_vma_read, 1489 }; 1490 1491 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1492 1493 /* 1494 * During exec, a temporary VMA is setup and later moved. 1495 * The VMA is moved under the anon_vma lock but not the 1496 * page tables leading to a race where migration cannot 1497 * find the migration ptes. Rather than increasing the 1498 * locking requirements of exec(), migration skips 1499 * temporary VMAs until after exec() completes. 1500 */ 1501 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1502 rwc.invalid_vma = invalid_migration_vma; 1503 1504 ret = rmap_walk(page, &rwc); 1505 1506 if (ret != SWAP_MLOCK && !page_mapped(page)) 1507 ret = SWAP_SUCCESS; 1508 return ret; 1509 } 1510 1511 /** 1512 * try_to_munlock - try to munlock a page 1513 * @page: the page to be munlocked 1514 * 1515 * Called from munlock code. Checks all of the VMAs mapping the page 1516 * to make sure nobody else has this page mlocked. The page will be 1517 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1518 * 1519 * Return values are: 1520 * 1521 * SWAP_AGAIN - no vma is holding page mlocked, or, 1522 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1523 * SWAP_FAIL - page cannot be located at present 1524 * SWAP_MLOCK - page is now mlocked. 1525 */ 1526 int try_to_munlock(struct page *page) 1527 { 1528 int ret; 1529 struct rmap_walk_control rwc = { 1530 .rmap_one = try_to_unmap_one, 1531 .arg = (void *)TTU_MUNLOCK, 1532 .done = page_not_mapped, 1533 .anon_lock = page_lock_anon_vma_read, 1534 1535 }; 1536 1537 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1538 1539 ret = rmap_walk(page, &rwc); 1540 return ret; 1541 } 1542 1543 void __put_anon_vma(struct anon_vma *anon_vma) 1544 { 1545 struct anon_vma *root = anon_vma->root; 1546 1547 anon_vma_free(anon_vma); 1548 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1549 anon_vma_free(root); 1550 } 1551 1552 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1553 struct rmap_walk_control *rwc) 1554 { 1555 struct anon_vma *anon_vma; 1556 1557 if (rwc->anon_lock) 1558 return rwc->anon_lock(page); 1559 1560 /* 1561 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1562 * because that depends on page_mapped(); but not all its usages 1563 * are holding mmap_sem. Users without mmap_sem are required to 1564 * take a reference count to prevent the anon_vma disappearing 1565 */ 1566 anon_vma = page_anon_vma(page); 1567 if (!anon_vma) 1568 return NULL; 1569 1570 anon_vma_lock_read(anon_vma); 1571 return anon_vma; 1572 } 1573 1574 /* 1575 * rmap_walk_anon - do something to anonymous page using the object-based 1576 * rmap method 1577 * @page: the page to be handled 1578 * @rwc: control variable according to each walk type 1579 * 1580 * Find all the mappings of a page using the mapping pointer and the vma chains 1581 * contained in the anon_vma struct it points to. 1582 * 1583 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1584 * where the page was found will be held for write. So, we won't recheck 1585 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1586 * LOCKED. 1587 */ 1588 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1589 { 1590 struct anon_vma *anon_vma; 1591 pgoff_t pgoff; 1592 struct anon_vma_chain *avc; 1593 int ret = SWAP_AGAIN; 1594 1595 anon_vma = rmap_walk_anon_lock(page, rwc); 1596 if (!anon_vma) 1597 return ret; 1598 1599 pgoff = page_to_pgoff(page); 1600 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1601 struct vm_area_struct *vma = avc->vma; 1602 unsigned long address = vma_address(page, vma); 1603 1604 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1605 continue; 1606 1607 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1608 if (ret != SWAP_AGAIN) 1609 break; 1610 if (rwc->done && rwc->done(page)) 1611 break; 1612 } 1613 anon_vma_unlock_read(anon_vma); 1614 return ret; 1615 } 1616 1617 /* 1618 * rmap_walk_file - do something to file page using the object-based rmap method 1619 * @page: the page to be handled 1620 * @rwc: control variable according to each walk type 1621 * 1622 * Find all the mappings of a page using the mapping pointer and the vma chains 1623 * contained in the address_space struct it points to. 1624 * 1625 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1626 * where the page was found will be held for write. So, we won't recheck 1627 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1628 * LOCKED. 1629 */ 1630 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1631 { 1632 struct address_space *mapping = page->mapping; 1633 pgoff_t pgoff; 1634 struct vm_area_struct *vma; 1635 int ret = SWAP_AGAIN; 1636 1637 /* 1638 * The page lock not only makes sure that page->mapping cannot 1639 * suddenly be NULLified by truncation, it makes sure that the 1640 * structure at mapping cannot be freed and reused yet, 1641 * so we can safely take mapping->i_mmap_rwsem. 1642 */ 1643 VM_BUG_ON_PAGE(!PageLocked(page), page); 1644 1645 if (!mapping) 1646 return ret; 1647 1648 pgoff = page_to_pgoff(page); 1649 i_mmap_lock_read(mapping); 1650 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1651 unsigned long address = vma_address(page, vma); 1652 1653 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1654 continue; 1655 1656 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1657 if (ret != SWAP_AGAIN) 1658 goto done; 1659 if (rwc->done && rwc->done(page)) 1660 goto done; 1661 } 1662 1663 done: 1664 i_mmap_unlock_read(mapping); 1665 return ret; 1666 } 1667 1668 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1669 { 1670 if (unlikely(PageKsm(page))) 1671 return rmap_walk_ksm(page, rwc); 1672 else if (PageAnon(page)) 1673 return rmap_walk_anon(page, rwc); 1674 else 1675 return rmap_walk_file(page, rwc); 1676 } 1677 1678 #ifdef CONFIG_HUGETLB_PAGE 1679 /* 1680 * The following three functions are for anonymous (private mapped) hugepages. 1681 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1682 * and no lru code, because we handle hugepages differently from common pages. 1683 */ 1684 static void __hugepage_set_anon_rmap(struct page *page, 1685 struct vm_area_struct *vma, unsigned long address, int exclusive) 1686 { 1687 struct anon_vma *anon_vma = vma->anon_vma; 1688 1689 BUG_ON(!anon_vma); 1690 1691 if (PageAnon(page)) 1692 return; 1693 if (!exclusive) 1694 anon_vma = anon_vma->root; 1695 1696 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1697 page->mapping = (struct address_space *) anon_vma; 1698 page->index = linear_page_index(vma, address); 1699 } 1700 1701 void hugepage_add_anon_rmap(struct page *page, 1702 struct vm_area_struct *vma, unsigned long address) 1703 { 1704 struct anon_vma *anon_vma = vma->anon_vma; 1705 int first; 1706 1707 BUG_ON(!PageLocked(page)); 1708 BUG_ON(!anon_vma); 1709 /* address might be in next vma when migration races vma_adjust */ 1710 first = atomic_inc_and_test(&page->_mapcount); 1711 if (first) 1712 __hugepage_set_anon_rmap(page, vma, address, 0); 1713 } 1714 1715 void hugepage_add_new_anon_rmap(struct page *page, 1716 struct vm_area_struct *vma, unsigned long address) 1717 { 1718 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1719 atomic_set(&page->_mapcount, 0); 1720 __hugepage_set_anon_rmap(page, vma, address, 1); 1721 } 1722 #endif /* CONFIG_HUGETLB_PAGE */ 1723