xref: /linux/mm/rmap.c (revision c7e1e3ccfbd153c890240a391f258efaedfa94d0)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       mapping->i_mmap_rwsem
27  *         anon_vma->rwsem
28  *           mm->page_table_lock or pte_lock
29  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  *             swap_lock (in swap_duplicate, swap_info_get)
31  *               mmlist_lock (in mmput, drain_mmlist and others)
32  *               mapping->private_lock (in __set_page_dirty_buffers)
33  *                 mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34  *                   mapping->tree_lock (widely used)
35  *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36  *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
38  *                 mapping->tree_lock (widely used, in set_page_dirty,
39  *                           in arch-dependent flush_dcache_mmap_lock,
40  *                           within bdi.wb->list_lock in __sync_single_inode)
41  *
42  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
43  *   ->tasklist_lock
44  *     pte map lock
45  */
46 
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 
63 #include <asm/tlbflush.h>
64 
65 #include <trace/events/tlb.h>
66 
67 #include "internal.h"
68 
69 static struct kmem_cache *anon_vma_cachep;
70 static struct kmem_cache *anon_vma_chain_cachep;
71 
72 static inline struct anon_vma *anon_vma_alloc(void)
73 {
74 	struct anon_vma *anon_vma;
75 
76 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
77 	if (anon_vma) {
78 		atomic_set(&anon_vma->refcount, 1);
79 		anon_vma->degree = 1;	/* Reference for first vma */
80 		anon_vma->parent = anon_vma;
81 		/*
82 		 * Initialise the anon_vma root to point to itself. If called
83 		 * from fork, the root will be reset to the parents anon_vma.
84 		 */
85 		anon_vma->root = anon_vma;
86 	}
87 
88 	return anon_vma;
89 }
90 
91 static inline void anon_vma_free(struct anon_vma *anon_vma)
92 {
93 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
94 
95 	/*
96 	 * Synchronize against page_lock_anon_vma_read() such that
97 	 * we can safely hold the lock without the anon_vma getting
98 	 * freed.
99 	 *
100 	 * Relies on the full mb implied by the atomic_dec_and_test() from
101 	 * put_anon_vma() against the acquire barrier implied by
102 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
103 	 *
104 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
105 	 *   down_read_trylock()		  atomic_dec_and_test()
106 	 *   LOCK				  MB
107 	 *   atomic_read()			  rwsem_is_locked()
108 	 *
109 	 * LOCK should suffice since the actual taking of the lock must
110 	 * happen _before_ what follows.
111 	 */
112 	might_sleep();
113 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
114 		anon_vma_lock_write(anon_vma);
115 		anon_vma_unlock_write(anon_vma);
116 	}
117 
118 	kmem_cache_free(anon_vma_cachep, anon_vma);
119 }
120 
121 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
122 {
123 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
124 }
125 
126 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
127 {
128 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
129 }
130 
131 static void anon_vma_chain_link(struct vm_area_struct *vma,
132 				struct anon_vma_chain *avc,
133 				struct anon_vma *anon_vma)
134 {
135 	avc->vma = vma;
136 	avc->anon_vma = anon_vma;
137 	list_add(&avc->same_vma, &vma->anon_vma_chain);
138 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
139 }
140 
141 /**
142  * anon_vma_prepare - attach an anon_vma to a memory region
143  * @vma: the memory region in question
144  *
145  * This makes sure the memory mapping described by 'vma' has
146  * an 'anon_vma' attached to it, so that we can associate the
147  * anonymous pages mapped into it with that anon_vma.
148  *
149  * The common case will be that we already have one, but if
150  * not we either need to find an adjacent mapping that we
151  * can re-use the anon_vma from (very common when the only
152  * reason for splitting a vma has been mprotect()), or we
153  * allocate a new one.
154  *
155  * Anon-vma allocations are very subtle, because we may have
156  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
157  * and that may actually touch the spinlock even in the newly
158  * allocated vma (it depends on RCU to make sure that the
159  * anon_vma isn't actually destroyed).
160  *
161  * As a result, we need to do proper anon_vma locking even
162  * for the new allocation. At the same time, we do not want
163  * to do any locking for the common case of already having
164  * an anon_vma.
165  *
166  * This must be called with the mmap_sem held for reading.
167  */
168 int anon_vma_prepare(struct vm_area_struct *vma)
169 {
170 	struct anon_vma *anon_vma = vma->anon_vma;
171 	struct anon_vma_chain *avc;
172 
173 	might_sleep();
174 	if (unlikely(!anon_vma)) {
175 		struct mm_struct *mm = vma->vm_mm;
176 		struct anon_vma *allocated;
177 
178 		avc = anon_vma_chain_alloc(GFP_KERNEL);
179 		if (!avc)
180 			goto out_enomem;
181 
182 		anon_vma = find_mergeable_anon_vma(vma);
183 		allocated = NULL;
184 		if (!anon_vma) {
185 			anon_vma = anon_vma_alloc();
186 			if (unlikely(!anon_vma))
187 				goto out_enomem_free_avc;
188 			allocated = anon_vma;
189 		}
190 
191 		anon_vma_lock_write(anon_vma);
192 		/* page_table_lock to protect against threads */
193 		spin_lock(&mm->page_table_lock);
194 		if (likely(!vma->anon_vma)) {
195 			vma->anon_vma = anon_vma;
196 			anon_vma_chain_link(vma, avc, anon_vma);
197 			/* vma reference or self-parent link for new root */
198 			anon_vma->degree++;
199 			allocated = NULL;
200 			avc = NULL;
201 		}
202 		spin_unlock(&mm->page_table_lock);
203 		anon_vma_unlock_write(anon_vma);
204 
205 		if (unlikely(allocated))
206 			put_anon_vma(allocated);
207 		if (unlikely(avc))
208 			anon_vma_chain_free(avc);
209 	}
210 	return 0;
211 
212  out_enomem_free_avc:
213 	anon_vma_chain_free(avc);
214  out_enomem:
215 	return -ENOMEM;
216 }
217 
218 /*
219  * This is a useful helper function for locking the anon_vma root as
220  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
221  * have the same vma.
222  *
223  * Such anon_vma's should have the same root, so you'd expect to see
224  * just a single mutex_lock for the whole traversal.
225  */
226 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
227 {
228 	struct anon_vma *new_root = anon_vma->root;
229 	if (new_root != root) {
230 		if (WARN_ON_ONCE(root))
231 			up_write(&root->rwsem);
232 		root = new_root;
233 		down_write(&root->rwsem);
234 	}
235 	return root;
236 }
237 
238 static inline void unlock_anon_vma_root(struct anon_vma *root)
239 {
240 	if (root)
241 		up_write(&root->rwsem);
242 }
243 
244 /*
245  * Attach the anon_vmas from src to dst.
246  * Returns 0 on success, -ENOMEM on failure.
247  *
248  * If dst->anon_vma is NULL this function tries to find and reuse existing
249  * anon_vma which has no vmas and only one child anon_vma. This prevents
250  * degradation of anon_vma hierarchy to endless linear chain in case of
251  * constantly forking task. On the other hand, an anon_vma with more than one
252  * child isn't reused even if there was no alive vma, thus rmap walker has a
253  * good chance of avoiding scanning the whole hierarchy when it searches where
254  * page is mapped.
255  */
256 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
257 {
258 	struct anon_vma_chain *avc, *pavc;
259 	struct anon_vma *root = NULL;
260 
261 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
262 		struct anon_vma *anon_vma;
263 
264 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
265 		if (unlikely(!avc)) {
266 			unlock_anon_vma_root(root);
267 			root = NULL;
268 			avc = anon_vma_chain_alloc(GFP_KERNEL);
269 			if (!avc)
270 				goto enomem_failure;
271 		}
272 		anon_vma = pavc->anon_vma;
273 		root = lock_anon_vma_root(root, anon_vma);
274 		anon_vma_chain_link(dst, avc, anon_vma);
275 
276 		/*
277 		 * Reuse existing anon_vma if its degree lower than two,
278 		 * that means it has no vma and only one anon_vma child.
279 		 *
280 		 * Do not chose parent anon_vma, otherwise first child
281 		 * will always reuse it. Root anon_vma is never reused:
282 		 * it has self-parent reference and at least one child.
283 		 */
284 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
285 				anon_vma->degree < 2)
286 			dst->anon_vma = anon_vma;
287 	}
288 	if (dst->anon_vma)
289 		dst->anon_vma->degree++;
290 	unlock_anon_vma_root(root);
291 	return 0;
292 
293  enomem_failure:
294 	/*
295 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
296 	 * decremented in unlink_anon_vmas().
297 	 * We can safely do this because callers of anon_vma_clone() don't care
298 	 * about dst->anon_vma if anon_vma_clone() failed.
299 	 */
300 	dst->anon_vma = NULL;
301 	unlink_anon_vmas(dst);
302 	return -ENOMEM;
303 }
304 
305 /*
306  * Attach vma to its own anon_vma, as well as to the anon_vmas that
307  * the corresponding VMA in the parent process is attached to.
308  * Returns 0 on success, non-zero on failure.
309  */
310 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
311 {
312 	struct anon_vma_chain *avc;
313 	struct anon_vma *anon_vma;
314 	int error;
315 
316 	/* Don't bother if the parent process has no anon_vma here. */
317 	if (!pvma->anon_vma)
318 		return 0;
319 
320 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
321 	vma->anon_vma = NULL;
322 
323 	/*
324 	 * First, attach the new VMA to the parent VMA's anon_vmas,
325 	 * so rmap can find non-COWed pages in child processes.
326 	 */
327 	error = anon_vma_clone(vma, pvma);
328 	if (error)
329 		return error;
330 
331 	/* An existing anon_vma has been reused, all done then. */
332 	if (vma->anon_vma)
333 		return 0;
334 
335 	/* Then add our own anon_vma. */
336 	anon_vma = anon_vma_alloc();
337 	if (!anon_vma)
338 		goto out_error;
339 	avc = anon_vma_chain_alloc(GFP_KERNEL);
340 	if (!avc)
341 		goto out_error_free_anon_vma;
342 
343 	/*
344 	 * The root anon_vma's spinlock is the lock actually used when we
345 	 * lock any of the anon_vmas in this anon_vma tree.
346 	 */
347 	anon_vma->root = pvma->anon_vma->root;
348 	anon_vma->parent = pvma->anon_vma;
349 	/*
350 	 * With refcounts, an anon_vma can stay around longer than the
351 	 * process it belongs to. The root anon_vma needs to be pinned until
352 	 * this anon_vma is freed, because the lock lives in the root.
353 	 */
354 	get_anon_vma(anon_vma->root);
355 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
356 	vma->anon_vma = anon_vma;
357 	anon_vma_lock_write(anon_vma);
358 	anon_vma_chain_link(vma, avc, anon_vma);
359 	anon_vma->parent->degree++;
360 	anon_vma_unlock_write(anon_vma);
361 
362 	return 0;
363 
364  out_error_free_anon_vma:
365 	put_anon_vma(anon_vma);
366  out_error:
367 	unlink_anon_vmas(vma);
368 	return -ENOMEM;
369 }
370 
371 void unlink_anon_vmas(struct vm_area_struct *vma)
372 {
373 	struct anon_vma_chain *avc, *next;
374 	struct anon_vma *root = NULL;
375 
376 	/*
377 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
378 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
379 	 */
380 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
381 		struct anon_vma *anon_vma = avc->anon_vma;
382 
383 		root = lock_anon_vma_root(root, anon_vma);
384 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
385 
386 		/*
387 		 * Leave empty anon_vmas on the list - we'll need
388 		 * to free them outside the lock.
389 		 */
390 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
391 			anon_vma->parent->degree--;
392 			continue;
393 		}
394 
395 		list_del(&avc->same_vma);
396 		anon_vma_chain_free(avc);
397 	}
398 	if (vma->anon_vma)
399 		vma->anon_vma->degree--;
400 	unlock_anon_vma_root(root);
401 
402 	/*
403 	 * Iterate the list once more, it now only contains empty and unlinked
404 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
405 	 * needing to write-acquire the anon_vma->root->rwsem.
406 	 */
407 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
408 		struct anon_vma *anon_vma = avc->anon_vma;
409 
410 		BUG_ON(anon_vma->degree);
411 		put_anon_vma(anon_vma);
412 
413 		list_del(&avc->same_vma);
414 		anon_vma_chain_free(avc);
415 	}
416 }
417 
418 static void anon_vma_ctor(void *data)
419 {
420 	struct anon_vma *anon_vma = data;
421 
422 	init_rwsem(&anon_vma->rwsem);
423 	atomic_set(&anon_vma->refcount, 0);
424 	anon_vma->rb_root = RB_ROOT;
425 }
426 
427 void __init anon_vma_init(void)
428 {
429 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
430 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
431 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
432 }
433 
434 /*
435  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
436  *
437  * Since there is no serialization what so ever against page_remove_rmap()
438  * the best this function can do is return a locked anon_vma that might
439  * have been relevant to this page.
440  *
441  * The page might have been remapped to a different anon_vma or the anon_vma
442  * returned may already be freed (and even reused).
443  *
444  * In case it was remapped to a different anon_vma, the new anon_vma will be a
445  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
446  * ensure that any anon_vma obtained from the page will still be valid for as
447  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
448  *
449  * All users of this function must be very careful when walking the anon_vma
450  * chain and verify that the page in question is indeed mapped in it
451  * [ something equivalent to page_mapped_in_vma() ].
452  *
453  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
454  * that the anon_vma pointer from page->mapping is valid if there is a
455  * mapcount, we can dereference the anon_vma after observing those.
456  */
457 struct anon_vma *page_get_anon_vma(struct page *page)
458 {
459 	struct anon_vma *anon_vma = NULL;
460 	unsigned long anon_mapping;
461 
462 	rcu_read_lock();
463 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
464 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
465 		goto out;
466 	if (!page_mapped(page))
467 		goto out;
468 
469 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
470 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
471 		anon_vma = NULL;
472 		goto out;
473 	}
474 
475 	/*
476 	 * If this page is still mapped, then its anon_vma cannot have been
477 	 * freed.  But if it has been unmapped, we have no security against the
478 	 * anon_vma structure being freed and reused (for another anon_vma:
479 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
480 	 * above cannot corrupt).
481 	 */
482 	if (!page_mapped(page)) {
483 		rcu_read_unlock();
484 		put_anon_vma(anon_vma);
485 		return NULL;
486 	}
487 out:
488 	rcu_read_unlock();
489 
490 	return anon_vma;
491 }
492 
493 /*
494  * Similar to page_get_anon_vma() except it locks the anon_vma.
495  *
496  * Its a little more complex as it tries to keep the fast path to a single
497  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
498  * reference like with page_get_anon_vma() and then block on the mutex.
499  */
500 struct anon_vma *page_lock_anon_vma_read(struct page *page)
501 {
502 	struct anon_vma *anon_vma = NULL;
503 	struct anon_vma *root_anon_vma;
504 	unsigned long anon_mapping;
505 
506 	rcu_read_lock();
507 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
508 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
509 		goto out;
510 	if (!page_mapped(page))
511 		goto out;
512 
513 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
514 	root_anon_vma = READ_ONCE(anon_vma->root);
515 	if (down_read_trylock(&root_anon_vma->rwsem)) {
516 		/*
517 		 * If the page is still mapped, then this anon_vma is still
518 		 * its anon_vma, and holding the mutex ensures that it will
519 		 * not go away, see anon_vma_free().
520 		 */
521 		if (!page_mapped(page)) {
522 			up_read(&root_anon_vma->rwsem);
523 			anon_vma = NULL;
524 		}
525 		goto out;
526 	}
527 
528 	/* trylock failed, we got to sleep */
529 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
530 		anon_vma = NULL;
531 		goto out;
532 	}
533 
534 	if (!page_mapped(page)) {
535 		rcu_read_unlock();
536 		put_anon_vma(anon_vma);
537 		return NULL;
538 	}
539 
540 	/* we pinned the anon_vma, its safe to sleep */
541 	rcu_read_unlock();
542 	anon_vma_lock_read(anon_vma);
543 
544 	if (atomic_dec_and_test(&anon_vma->refcount)) {
545 		/*
546 		 * Oops, we held the last refcount, release the lock
547 		 * and bail -- can't simply use put_anon_vma() because
548 		 * we'll deadlock on the anon_vma_lock_write() recursion.
549 		 */
550 		anon_vma_unlock_read(anon_vma);
551 		__put_anon_vma(anon_vma);
552 		anon_vma = NULL;
553 	}
554 
555 	return anon_vma;
556 
557 out:
558 	rcu_read_unlock();
559 	return anon_vma;
560 }
561 
562 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
563 {
564 	anon_vma_unlock_read(anon_vma);
565 }
566 
567 /*
568  * At what user virtual address is page expected in @vma?
569  */
570 static inline unsigned long
571 __vma_address(struct page *page, struct vm_area_struct *vma)
572 {
573 	pgoff_t pgoff = page_to_pgoff(page);
574 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
575 }
576 
577 inline unsigned long
578 vma_address(struct page *page, struct vm_area_struct *vma)
579 {
580 	unsigned long address = __vma_address(page, vma);
581 
582 	/* page should be within @vma mapping range */
583 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
584 
585 	return address;
586 }
587 
588 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
589 static void percpu_flush_tlb_batch_pages(void *data)
590 {
591 	/*
592 	 * All TLB entries are flushed on the assumption that it is
593 	 * cheaper to flush all TLBs and let them be refilled than
594 	 * flushing individual PFNs. Note that we do not track mm's
595 	 * to flush as that might simply be multiple full TLB flushes
596 	 * for no gain.
597 	 */
598 	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
599 	flush_tlb_local();
600 }
601 
602 /*
603  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
604  * important if a PTE was dirty when it was unmapped that it's flushed
605  * before any IO is initiated on the page to prevent lost writes. Similarly,
606  * it must be flushed before freeing to prevent data leakage.
607  */
608 void try_to_unmap_flush(void)
609 {
610 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
611 	int cpu;
612 
613 	if (!tlb_ubc->flush_required)
614 		return;
615 
616 	cpu = get_cpu();
617 
618 	trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL);
619 
620 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask))
621 		percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask);
622 
623 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) {
624 		smp_call_function_many(&tlb_ubc->cpumask,
625 			percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true);
626 	}
627 	cpumask_clear(&tlb_ubc->cpumask);
628 	tlb_ubc->flush_required = false;
629 	tlb_ubc->writable = false;
630 	put_cpu();
631 }
632 
633 /* Flush iff there are potentially writable TLB entries that can race with IO */
634 void try_to_unmap_flush_dirty(void)
635 {
636 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
637 
638 	if (tlb_ubc->writable)
639 		try_to_unmap_flush();
640 }
641 
642 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
643 		struct page *page, bool writable)
644 {
645 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
646 
647 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
648 	tlb_ubc->flush_required = true;
649 
650 	/*
651 	 * If the PTE was dirty then it's best to assume it's writable. The
652 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
653 	 * before the page is queued for IO.
654 	 */
655 	if (writable)
656 		tlb_ubc->writable = true;
657 }
658 
659 /*
660  * Returns true if the TLB flush should be deferred to the end of a batch of
661  * unmap operations to reduce IPIs.
662  */
663 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
664 {
665 	bool should_defer = false;
666 
667 	if (!(flags & TTU_BATCH_FLUSH))
668 		return false;
669 
670 	/* If remote CPUs need to be flushed then defer batch the flush */
671 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
672 		should_defer = true;
673 	put_cpu();
674 
675 	return should_defer;
676 }
677 #else
678 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
679 		struct page *page, bool writable)
680 {
681 }
682 
683 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
684 {
685 	return false;
686 }
687 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
688 
689 /*
690  * At what user virtual address is page expected in vma?
691  * Caller should check the page is actually part of the vma.
692  */
693 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
694 {
695 	unsigned long address;
696 	if (PageAnon(page)) {
697 		struct anon_vma *page__anon_vma = page_anon_vma(page);
698 		/*
699 		 * Note: swapoff's unuse_vma() is more efficient with this
700 		 * check, and needs it to match anon_vma when KSM is active.
701 		 */
702 		if (!vma->anon_vma || !page__anon_vma ||
703 		    vma->anon_vma->root != page__anon_vma->root)
704 			return -EFAULT;
705 	} else if (page->mapping) {
706 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
707 			return -EFAULT;
708 	} else
709 		return -EFAULT;
710 	address = __vma_address(page, vma);
711 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
712 		return -EFAULT;
713 	return address;
714 }
715 
716 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
717 {
718 	pgd_t *pgd;
719 	pud_t *pud;
720 	pmd_t *pmd = NULL;
721 	pmd_t pmde;
722 
723 	pgd = pgd_offset(mm, address);
724 	if (!pgd_present(*pgd))
725 		goto out;
726 
727 	pud = pud_offset(pgd, address);
728 	if (!pud_present(*pud))
729 		goto out;
730 
731 	pmd = pmd_offset(pud, address);
732 	/*
733 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
734 	 * without holding anon_vma lock for write.  So when looking for a
735 	 * genuine pmde (in which to find pte), test present and !THP together.
736 	 */
737 	pmde = *pmd;
738 	barrier();
739 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
740 		pmd = NULL;
741 out:
742 	return pmd;
743 }
744 
745 /*
746  * Check that @page is mapped at @address into @mm.
747  *
748  * If @sync is false, page_check_address may perform a racy check to avoid
749  * the page table lock when the pte is not present (helpful when reclaiming
750  * highly shared pages).
751  *
752  * On success returns with pte mapped and locked.
753  */
754 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
755 			  unsigned long address, spinlock_t **ptlp, int sync)
756 {
757 	pmd_t *pmd;
758 	pte_t *pte;
759 	spinlock_t *ptl;
760 
761 	if (unlikely(PageHuge(page))) {
762 		/* when pud is not present, pte will be NULL */
763 		pte = huge_pte_offset(mm, address);
764 		if (!pte)
765 			return NULL;
766 
767 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
768 		goto check;
769 	}
770 
771 	pmd = mm_find_pmd(mm, address);
772 	if (!pmd)
773 		return NULL;
774 
775 	pte = pte_offset_map(pmd, address);
776 	/* Make a quick check before getting the lock */
777 	if (!sync && !pte_present(*pte)) {
778 		pte_unmap(pte);
779 		return NULL;
780 	}
781 
782 	ptl = pte_lockptr(mm, pmd);
783 check:
784 	spin_lock(ptl);
785 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
786 		*ptlp = ptl;
787 		return pte;
788 	}
789 	pte_unmap_unlock(pte, ptl);
790 	return NULL;
791 }
792 
793 /**
794  * page_mapped_in_vma - check whether a page is really mapped in a VMA
795  * @page: the page to test
796  * @vma: the VMA to test
797  *
798  * Returns 1 if the page is mapped into the page tables of the VMA, 0
799  * if the page is not mapped into the page tables of this VMA.  Only
800  * valid for normal file or anonymous VMAs.
801  */
802 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
803 {
804 	unsigned long address;
805 	pte_t *pte;
806 	spinlock_t *ptl;
807 
808 	address = __vma_address(page, vma);
809 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
810 		return 0;
811 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
812 	if (!pte)			/* the page is not in this mm */
813 		return 0;
814 	pte_unmap_unlock(pte, ptl);
815 
816 	return 1;
817 }
818 
819 struct page_referenced_arg {
820 	int mapcount;
821 	int referenced;
822 	unsigned long vm_flags;
823 	struct mem_cgroup *memcg;
824 };
825 /*
826  * arg: page_referenced_arg will be passed
827  */
828 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
829 			unsigned long address, void *arg)
830 {
831 	struct mm_struct *mm = vma->vm_mm;
832 	spinlock_t *ptl;
833 	int referenced = 0;
834 	struct page_referenced_arg *pra = arg;
835 
836 	if (unlikely(PageTransHuge(page))) {
837 		pmd_t *pmd;
838 
839 		/*
840 		 * rmap might return false positives; we must filter
841 		 * these out using page_check_address_pmd().
842 		 */
843 		pmd = page_check_address_pmd(page, mm, address,
844 					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
845 		if (!pmd)
846 			return SWAP_AGAIN;
847 
848 		if (vma->vm_flags & VM_LOCKED) {
849 			spin_unlock(ptl);
850 			pra->vm_flags |= VM_LOCKED;
851 			return SWAP_FAIL; /* To break the loop */
852 		}
853 
854 		/* go ahead even if the pmd is pmd_trans_splitting() */
855 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
856 			referenced++;
857 		spin_unlock(ptl);
858 	} else {
859 		pte_t *pte;
860 
861 		/*
862 		 * rmap might return false positives; we must filter
863 		 * these out using page_check_address().
864 		 */
865 		pte = page_check_address(page, mm, address, &ptl, 0);
866 		if (!pte)
867 			return SWAP_AGAIN;
868 
869 		if (vma->vm_flags & VM_LOCKED) {
870 			pte_unmap_unlock(pte, ptl);
871 			pra->vm_flags |= VM_LOCKED;
872 			return SWAP_FAIL; /* To break the loop */
873 		}
874 
875 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
876 			/*
877 			 * Don't treat a reference through a sequentially read
878 			 * mapping as such.  If the page has been used in
879 			 * another mapping, we will catch it; if this other
880 			 * mapping is already gone, the unmap path will have
881 			 * set PG_referenced or activated the page.
882 			 */
883 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
884 				referenced++;
885 		}
886 		pte_unmap_unlock(pte, ptl);
887 	}
888 
889 	if (referenced) {
890 		pra->referenced++;
891 		pra->vm_flags |= vma->vm_flags;
892 	}
893 
894 	pra->mapcount--;
895 	if (!pra->mapcount)
896 		return SWAP_SUCCESS; /* To break the loop */
897 
898 	return SWAP_AGAIN;
899 }
900 
901 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
902 {
903 	struct page_referenced_arg *pra = arg;
904 	struct mem_cgroup *memcg = pra->memcg;
905 
906 	if (!mm_match_cgroup(vma->vm_mm, memcg))
907 		return true;
908 
909 	return false;
910 }
911 
912 /**
913  * page_referenced - test if the page was referenced
914  * @page: the page to test
915  * @is_locked: caller holds lock on the page
916  * @memcg: target memory cgroup
917  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
918  *
919  * Quick test_and_clear_referenced for all mappings to a page,
920  * returns the number of ptes which referenced the page.
921  */
922 int page_referenced(struct page *page,
923 		    int is_locked,
924 		    struct mem_cgroup *memcg,
925 		    unsigned long *vm_flags)
926 {
927 	int ret;
928 	int we_locked = 0;
929 	struct page_referenced_arg pra = {
930 		.mapcount = page_mapcount(page),
931 		.memcg = memcg,
932 	};
933 	struct rmap_walk_control rwc = {
934 		.rmap_one = page_referenced_one,
935 		.arg = (void *)&pra,
936 		.anon_lock = page_lock_anon_vma_read,
937 	};
938 
939 	*vm_flags = 0;
940 	if (!page_mapped(page))
941 		return 0;
942 
943 	if (!page_rmapping(page))
944 		return 0;
945 
946 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
947 		we_locked = trylock_page(page);
948 		if (!we_locked)
949 			return 1;
950 	}
951 
952 	/*
953 	 * If we are reclaiming on behalf of a cgroup, skip
954 	 * counting on behalf of references from different
955 	 * cgroups
956 	 */
957 	if (memcg) {
958 		rwc.invalid_vma = invalid_page_referenced_vma;
959 	}
960 
961 	ret = rmap_walk(page, &rwc);
962 	*vm_flags = pra.vm_flags;
963 
964 	if (we_locked)
965 		unlock_page(page);
966 
967 	return pra.referenced;
968 }
969 
970 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
971 			    unsigned long address, void *arg)
972 {
973 	struct mm_struct *mm = vma->vm_mm;
974 	pte_t *pte;
975 	spinlock_t *ptl;
976 	int ret = 0;
977 	int *cleaned = arg;
978 
979 	pte = page_check_address(page, mm, address, &ptl, 1);
980 	if (!pte)
981 		goto out;
982 
983 	if (pte_dirty(*pte) || pte_write(*pte)) {
984 		pte_t entry;
985 
986 		flush_cache_page(vma, address, pte_pfn(*pte));
987 		entry = ptep_clear_flush(vma, address, pte);
988 		entry = pte_wrprotect(entry);
989 		entry = pte_mkclean(entry);
990 		set_pte_at(mm, address, pte, entry);
991 		ret = 1;
992 	}
993 
994 	pte_unmap_unlock(pte, ptl);
995 
996 	if (ret) {
997 		mmu_notifier_invalidate_page(mm, address);
998 		(*cleaned)++;
999 	}
1000 out:
1001 	return SWAP_AGAIN;
1002 }
1003 
1004 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1005 {
1006 	if (vma->vm_flags & VM_SHARED)
1007 		return false;
1008 
1009 	return true;
1010 }
1011 
1012 int page_mkclean(struct page *page)
1013 {
1014 	int cleaned = 0;
1015 	struct address_space *mapping;
1016 	struct rmap_walk_control rwc = {
1017 		.arg = (void *)&cleaned,
1018 		.rmap_one = page_mkclean_one,
1019 		.invalid_vma = invalid_mkclean_vma,
1020 	};
1021 
1022 	BUG_ON(!PageLocked(page));
1023 
1024 	if (!page_mapped(page))
1025 		return 0;
1026 
1027 	mapping = page_mapping(page);
1028 	if (!mapping)
1029 		return 0;
1030 
1031 	rmap_walk(page, &rwc);
1032 
1033 	return cleaned;
1034 }
1035 EXPORT_SYMBOL_GPL(page_mkclean);
1036 
1037 /**
1038  * page_move_anon_rmap - move a page to our anon_vma
1039  * @page:	the page to move to our anon_vma
1040  * @vma:	the vma the page belongs to
1041  * @address:	the user virtual address mapped
1042  *
1043  * When a page belongs exclusively to one process after a COW event,
1044  * that page can be moved into the anon_vma that belongs to just that
1045  * process, so the rmap code will not search the parent or sibling
1046  * processes.
1047  */
1048 void page_move_anon_rmap(struct page *page,
1049 	struct vm_area_struct *vma, unsigned long address)
1050 {
1051 	struct anon_vma *anon_vma = vma->anon_vma;
1052 
1053 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1054 	VM_BUG_ON_VMA(!anon_vma, vma);
1055 	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
1056 
1057 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1058 	/*
1059 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1060 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1061 	 * PageAnon()) will not see one without the other.
1062 	 */
1063 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1064 }
1065 
1066 /**
1067  * __page_set_anon_rmap - set up new anonymous rmap
1068  * @page:	Page to add to rmap
1069  * @vma:	VM area to add page to.
1070  * @address:	User virtual address of the mapping
1071  * @exclusive:	the page is exclusively owned by the current process
1072  */
1073 static void __page_set_anon_rmap(struct page *page,
1074 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1075 {
1076 	struct anon_vma *anon_vma = vma->anon_vma;
1077 
1078 	BUG_ON(!anon_vma);
1079 
1080 	if (PageAnon(page))
1081 		return;
1082 
1083 	/*
1084 	 * If the page isn't exclusively mapped into this vma,
1085 	 * we must use the _oldest_ possible anon_vma for the
1086 	 * page mapping!
1087 	 */
1088 	if (!exclusive)
1089 		anon_vma = anon_vma->root;
1090 
1091 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1092 	page->mapping = (struct address_space *) anon_vma;
1093 	page->index = linear_page_index(vma, address);
1094 }
1095 
1096 /**
1097  * __page_check_anon_rmap - sanity check anonymous rmap addition
1098  * @page:	the page to add the mapping to
1099  * @vma:	the vm area in which the mapping is added
1100  * @address:	the user virtual address mapped
1101  */
1102 static void __page_check_anon_rmap(struct page *page,
1103 	struct vm_area_struct *vma, unsigned long address)
1104 {
1105 #ifdef CONFIG_DEBUG_VM
1106 	/*
1107 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1108 	 * be set up correctly at this point.
1109 	 *
1110 	 * We have exclusion against page_add_anon_rmap because the caller
1111 	 * always holds the page locked, except if called from page_dup_rmap,
1112 	 * in which case the page is already known to be setup.
1113 	 *
1114 	 * We have exclusion against page_add_new_anon_rmap because those pages
1115 	 * are initially only visible via the pagetables, and the pte is locked
1116 	 * over the call to page_add_new_anon_rmap.
1117 	 */
1118 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1119 	BUG_ON(page->index != linear_page_index(vma, address));
1120 #endif
1121 }
1122 
1123 /**
1124  * page_add_anon_rmap - add pte mapping to an anonymous page
1125  * @page:	the page to add the mapping to
1126  * @vma:	the vm area in which the mapping is added
1127  * @address:	the user virtual address mapped
1128  *
1129  * The caller needs to hold the pte lock, and the page must be locked in
1130  * the anon_vma case: to serialize mapping,index checking after setting,
1131  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1132  * (but PageKsm is never downgraded to PageAnon).
1133  */
1134 void page_add_anon_rmap(struct page *page,
1135 	struct vm_area_struct *vma, unsigned long address)
1136 {
1137 	do_page_add_anon_rmap(page, vma, address, 0);
1138 }
1139 
1140 /*
1141  * Special version of the above for do_swap_page, which often runs
1142  * into pages that are exclusively owned by the current process.
1143  * Everybody else should continue to use page_add_anon_rmap above.
1144  */
1145 void do_page_add_anon_rmap(struct page *page,
1146 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1147 {
1148 	int first = atomic_inc_and_test(&page->_mapcount);
1149 	if (first) {
1150 		/*
1151 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1152 		 * these counters are not modified in interrupt context, and
1153 		 * pte lock(a spinlock) is held, which implies preemption
1154 		 * disabled.
1155 		 */
1156 		if (PageTransHuge(page))
1157 			__inc_zone_page_state(page,
1158 					      NR_ANON_TRANSPARENT_HUGEPAGES);
1159 		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1160 				hpage_nr_pages(page));
1161 	}
1162 	if (unlikely(PageKsm(page)))
1163 		return;
1164 
1165 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1166 	/* address might be in next vma when migration races vma_adjust */
1167 	if (first)
1168 		__page_set_anon_rmap(page, vma, address, exclusive);
1169 	else
1170 		__page_check_anon_rmap(page, vma, address);
1171 }
1172 
1173 /**
1174  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1175  * @page:	the page to add the mapping to
1176  * @vma:	the vm area in which the mapping is added
1177  * @address:	the user virtual address mapped
1178  *
1179  * Same as page_add_anon_rmap but must only be called on *new* pages.
1180  * This means the inc-and-test can be bypassed.
1181  * Page does not have to be locked.
1182  */
1183 void page_add_new_anon_rmap(struct page *page,
1184 	struct vm_area_struct *vma, unsigned long address)
1185 {
1186 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1187 	SetPageSwapBacked(page);
1188 	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1189 	if (PageTransHuge(page))
1190 		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1191 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1192 			hpage_nr_pages(page));
1193 	__page_set_anon_rmap(page, vma, address, 1);
1194 }
1195 
1196 /**
1197  * page_add_file_rmap - add pte mapping to a file page
1198  * @page: the page to add the mapping to
1199  *
1200  * The caller needs to hold the pte lock.
1201  */
1202 void page_add_file_rmap(struct page *page)
1203 {
1204 	struct mem_cgroup *memcg;
1205 
1206 	memcg = mem_cgroup_begin_page_stat(page);
1207 	if (atomic_inc_and_test(&page->_mapcount)) {
1208 		__inc_zone_page_state(page, NR_FILE_MAPPED);
1209 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1210 	}
1211 	mem_cgroup_end_page_stat(memcg);
1212 }
1213 
1214 static void page_remove_file_rmap(struct page *page)
1215 {
1216 	struct mem_cgroup *memcg;
1217 
1218 	memcg = mem_cgroup_begin_page_stat(page);
1219 
1220 	/* page still mapped by someone else? */
1221 	if (!atomic_add_negative(-1, &page->_mapcount))
1222 		goto out;
1223 
1224 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1225 	if (unlikely(PageHuge(page)))
1226 		goto out;
1227 
1228 	/*
1229 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1230 	 * these counters are not modified in interrupt context, and
1231 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1232 	 */
1233 	__dec_zone_page_state(page, NR_FILE_MAPPED);
1234 	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1235 
1236 	if (unlikely(PageMlocked(page)))
1237 		clear_page_mlock(page);
1238 out:
1239 	mem_cgroup_end_page_stat(memcg);
1240 }
1241 
1242 /**
1243  * page_remove_rmap - take down pte mapping from a page
1244  * @page: page to remove mapping from
1245  *
1246  * The caller needs to hold the pte lock.
1247  */
1248 void page_remove_rmap(struct page *page)
1249 {
1250 	if (!PageAnon(page)) {
1251 		page_remove_file_rmap(page);
1252 		return;
1253 	}
1254 
1255 	/* page still mapped by someone else? */
1256 	if (!atomic_add_negative(-1, &page->_mapcount))
1257 		return;
1258 
1259 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1260 	if (unlikely(PageHuge(page)))
1261 		return;
1262 
1263 	/*
1264 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1265 	 * these counters are not modified in interrupt context, and
1266 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1267 	 */
1268 	if (PageTransHuge(page))
1269 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1270 
1271 	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1272 			      -hpage_nr_pages(page));
1273 
1274 	if (unlikely(PageMlocked(page)))
1275 		clear_page_mlock(page);
1276 
1277 	/*
1278 	 * It would be tidy to reset the PageAnon mapping here,
1279 	 * but that might overwrite a racing page_add_anon_rmap
1280 	 * which increments mapcount after us but sets mapping
1281 	 * before us: so leave the reset to free_hot_cold_page,
1282 	 * and remember that it's only reliable while mapped.
1283 	 * Leaving it set also helps swapoff to reinstate ptes
1284 	 * faster for those pages still in swapcache.
1285 	 */
1286 }
1287 
1288 /*
1289  * @arg: enum ttu_flags will be passed to this argument
1290  */
1291 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1292 		     unsigned long address, void *arg)
1293 {
1294 	struct mm_struct *mm = vma->vm_mm;
1295 	pte_t *pte;
1296 	pte_t pteval;
1297 	spinlock_t *ptl;
1298 	int ret = SWAP_AGAIN;
1299 	enum ttu_flags flags = (enum ttu_flags)arg;
1300 
1301 	pte = page_check_address(page, mm, address, &ptl, 0);
1302 	if (!pte)
1303 		goto out;
1304 
1305 	/*
1306 	 * If the page is mlock()d, we cannot swap it out.
1307 	 * If it's recently referenced (perhaps page_referenced
1308 	 * skipped over this mm) then we should reactivate it.
1309 	 */
1310 	if (!(flags & TTU_IGNORE_MLOCK)) {
1311 		if (vma->vm_flags & VM_LOCKED)
1312 			goto out_mlock;
1313 
1314 		if (flags & TTU_MUNLOCK)
1315 			goto out_unmap;
1316 	}
1317 	if (!(flags & TTU_IGNORE_ACCESS)) {
1318 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1319 			ret = SWAP_FAIL;
1320 			goto out_unmap;
1321 		}
1322   	}
1323 
1324 	/* Nuke the page table entry. */
1325 	flush_cache_page(vma, address, page_to_pfn(page));
1326 	if (should_defer_flush(mm, flags)) {
1327 		/*
1328 		 * We clear the PTE but do not flush so potentially a remote
1329 		 * CPU could still be writing to the page. If the entry was
1330 		 * previously clean then the architecture must guarantee that
1331 		 * a clear->dirty transition on a cached TLB entry is written
1332 		 * through and traps if the PTE is unmapped.
1333 		 */
1334 		pteval = ptep_get_and_clear(mm, address, pte);
1335 
1336 		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1337 	} else {
1338 		pteval = ptep_clear_flush(vma, address, pte);
1339 	}
1340 
1341 	/* Move the dirty bit to the physical page now the pte is gone. */
1342 	if (pte_dirty(pteval))
1343 		set_page_dirty(page);
1344 
1345 	/* Update high watermark before we lower rss */
1346 	update_hiwater_rss(mm);
1347 
1348 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1349 		if (!PageHuge(page)) {
1350 			if (PageAnon(page))
1351 				dec_mm_counter(mm, MM_ANONPAGES);
1352 			else
1353 				dec_mm_counter(mm, MM_FILEPAGES);
1354 		}
1355 		set_pte_at(mm, address, pte,
1356 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1357 	} else if (pte_unused(pteval)) {
1358 		/*
1359 		 * The guest indicated that the page content is of no
1360 		 * interest anymore. Simply discard the pte, vmscan
1361 		 * will take care of the rest.
1362 		 */
1363 		if (PageAnon(page))
1364 			dec_mm_counter(mm, MM_ANONPAGES);
1365 		else
1366 			dec_mm_counter(mm, MM_FILEPAGES);
1367 	} else if (PageAnon(page)) {
1368 		swp_entry_t entry = { .val = page_private(page) };
1369 		pte_t swp_pte;
1370 
1371 		if (PageSwapCache(page)) {
1372 			/*
1373 			 * Store the swap location in the pte.
1374 			 * See handle_pte_fault() ...
1375 			 */
1376 			if (swap_duplicate(entry) < 0) {
1377 				set_pte_at(mm, address, pte, pteval);
1378 				ret = SWAP_FAIL;
1379 				goto out_unmap;
1380 			}
1381 			if (list_empty(&mm->mmlist)) {
1382 				spin_lock(&mmlist_lock);
1383 				if (list_empty(&mm->mmlist))
1384 					list_add(&mm->mmlist, &init_mm.mmlist);
1385 				spin_unlock(&mmlist_lock);
1386 			}
1387 			dec_mm_counter(mm, MM_ANONPAGES);
1388 			inc_mm_counter(mm, MM_SWAPENTS);
1389 		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1390 			/*
1391 			 * Store the pfn of the page in a special migration
1392 			 * pte. do_swap_page() will wait until the migration
1393 			 * pte is removed and then restart fault handling.
1394 			 */
1395 			BUG_ON(!(flags & TTU_MIGRATION));
1396 			entry = make_migration_entry(page, pte_write(pteval));
1397 		}
1398 		swp_pte = swp_entry_to_pte(entry);
1399 		if (pte_soft_dirty(pteval))
1400 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1401 		set_pte_at(mm, address, pte, swp_pte);
1402 	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1403 		   (flags & TTU_MIGRATION)) {
1404 		/* Establish migration entry for a file page */
1405 		swp_entry_t entry;
1406 		entry = make_migration_entry(page, pte_write(pteval));
1407 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1408 	} else
1409 		dec_mm_counter(mm, MM_FILEPAGES);
1410 
1411 	page_remove_rmap(page);
1412 	page_cache_release(page);
1413 
1414 out_unmap:
1415 	pte_unmap_unlock(pte, ptl);
1416 	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1417 		mmu_notifier_invalidate_page(mm, address);
1418 out:
1419 	return ret;
1420 
1421 out_mlock:
1422 	pte_unmap_unlock(pte, ptl);
1423 
1424 
1425 	/*
1426 	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1427 	 * unstable result and race. Plus, We can't wait here because
1428 	 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1429 	 * if trylock failed, the page remain in evictable lru and later
1430 	 * vmscan could retry to move the page to unevictable lru if the
1431 	 * page is actually mlocked.
1432 	 */
1433 	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1434 		if (vma->vm_flags & VM_LOCKED) {
1435 			mlock_vma_page(page);
1436 			ret = SWAP_MLOCK;
1437 		}
1438 		up_read(&vma->vm_mm->mmap_sem);
1439 	}
1440 	return ret;
1441 }
1442 
1443 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1444 {
1445 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1446 
1447 	if (!maybe_stack)
1448 		return false;
1449 
1450 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1451 						VM_STACK_INCOMPLETE_SETUP)
1452 		return true;
1453 
1454 	return false;
1455 }
1456 
1457 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1458 {
1459 	return is_vma_temporary_stack(vma);
1460 }
1461 
1462 static int page_not_mapped(struct page *page)
1463 {
1464 	return !page_mapped(page);
1465 };
1466 
1467 /**
1468  * try_to_unmap - try to remove all page table mappings to a page
1469  * @page: the page to get unmapped
1470  * @flags: action and flags
1471  *
1472  * Tries to remove all the page table entries which are mapping this
1473  * page, used in the pageout path.  Caller must hold the page lock.
1474  * Return values are:
1475  *
1476  * SWAP_SUCCESS	- we succeeded in removing all mappings
1477  * SWAP_AGAIN	- we missed a mapping, try again later
1478  * SWAP_FAIL	- the page is unswappable
1479  * SWAP_MLOCK	- page is mlocked.
1480  */
1481 int try_to_unmap(struct page *page, enum ttu_flags flags)
1482 {
1483 	int ret;
1484 	struct rmap_walk_control rwc = {
1485 		.rmap_one = try_to_unmap_one,
1486 		.arg = (void *)flags,
1487 		.done = page_not_mapped,
1488 		.anon_lock = page_lock_anon_vma_read,
1489 	};
1490 
1491 	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1492 
1493 	/*
1494 	 * During exec, a temporary VMA is setup and later moved.
1495 	 * The VMA is moved under the anon_vma lock but not the
1496 	 * page tables leading to a race where migration cannot
1497 	 * find the migration ptes. Rather than increasing the
1498 	 * locking requirements of exec(), migration skips
1499 	 * temporary VMAs until after exec() completes.
1500 	 */
1501 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1502 		rwc.invalid_vma = invalid_migration_vma;
1503 
1504 	ret = rmap_walk(page, &rwc);
1505 
1506 	if (ret != SWAP_MLOCK && !page_mapped(page))
1507 		ret = SWAP_SUCCESS;
1508 	return ret;
1509 }
1510 
1511 /**
1512  * try_to_munlock - try to munlock a page
1513  * @page: the page to be munlocked
1514  *
1515  * Called from munlock code.  Checks all of the VMAs mapping the page
1516  * to make sure nobody else has this page mlocked. The page will be
1517  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1518  *
1519  * Return values are:
1520  *
1521  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1522  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1523  * SWAP_FAIL	- page cannot be located at present
1524  * SWAP_MLOCK	- page is now mlocked.
1525  */
1526 int try_to_munlock(struct page *page)
1527 {
1528 	int ret;
1529 	struct rmap_walk_control rwc = {
1530 		.rmap_one = try_to_unmap_one,
1531 		.arg = (void *)TTU_MUNLOCK,
1532 		.done = page_not_mapped,
1533 		.anon_lock = page_lock_anon_vma_read,
1534 
1535 	};
1536 
1537 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1538 
1539 	ret = rmap_walk(page, &rwc);
1540 	return ret;
1541 }
1542 
1543 void __put_anon_vma(struct anon_vma *anon_vma)
1544 {
1545 	struct anon_vma *root = anon_vma->root;
1546 
1547 	anon_vma_free(anon_vma);
1548 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1549 		anon_vma_free(root);
1550 }
1551 
1552 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1553 					struct rmap_walk_control *rwc)
1554 {
1555 	struct anon_vma *anon_vma;
1556 
1557 	if (rwc->anon_lock)
1558 		return rwc->anon_lock(page);
1559 
1560 	/*
1561 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1562 	 * because that depends on page_mapped(); but not all its usages
1563 	 * are holding mmap_sem. Users without mmap_sem are required to
1564 	 * take a reference count to prevent the anon_vma disappearing
1565 	 */
1566 	anon_vma = page_anon_vma(page);
1567 	if (!anon_vma)
1568 		return NULL;
1569 
1570 	anon_vma_lock_read(anon_vma);
1571 	return anon_vma;
1572 }
1573 
1574 /*
1575  * rmap_walk_anon - do something to anonymous page using the object-based
1576  * rmap method
1577  * @page: the page to be handled
1578  * @rwc: control variable according to each walk type
1579  *
1580  * Find all the mappings of a page using the mapping pointer and the vma chains
1581  * contained in the anon_vma struct it points to.
1582  *
1583  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1584  * where the page was found will be held for write.  So, we won't recheck
1585  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1586  * LOCKED.
1587  */
1588 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1589 {
1590 	struct anon_vma *anon_vma;
1591 	pgoff_t pgoff;
1592 	struct anon_vma_chain *avc;
1593 	int ret = SWAP_AGAIN;
1594 
1595 	anon_vma = rmap_walk_anon_lock(page, rwc);
1596 	if (!anon_vma)
1597 		return ret;
1598 
1599 	pgoff = page_to_pgoff(page);
1600 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1601 		struct vm_area_struct *vma = avc->vma;
1602 		unsigned long address = vma_address(page, vma);
1603 
1604 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1605 			continue;
1606 
1607 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1608 		if (ret != SWAP_AGAIN)
1609 			break;
1610 		if (rwc->done && rwc->done(page))
1611 			break;
1612 	}
1613 	anon_vma_unlock_read(anon_vma);
1614 	return ret;
1615 }
1616 
1617 /*
1618  * rmap_walk_file - do something to file page using the object-based rmap method
1619  * @page: the page to be handled
1620  * @rwc: control variable according to each walk type
1621  *
1622  * Find all the mappings of a page using the mapping pointer and the vma chains
1623  * contained in the address_space struct it points to.
1624  *
1625  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1626  * where the page was found will be held for write.  So, we won't recheck
1627  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1628  * LOCKED.
1629  */
1630 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1631 {
1632 	struct address_space *mapping = page->mapping;
1633 	pgoff_t pgoff;
1634 	struct vm_area_struct *vma;
1635 	int ret = SWAP_AGAIN;
1636 
1637 	/*
1638 	 * The page lock not only makes sure that page->mapping cannot
1639 	 * suddenly be NULLified by truncation, it makes sure that the
1640 	 * structure at mapping cannot be freed and reused yet,
1641 	 * so we can safely take mapping->i_mmap_rwsem.
1642 	 */
1643 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1644 
1645 	if (!mapping)
1646 		return ret;
1647 
1648 	pgoff = page_to_pgoff(page);
1649 	i_mmap_lock_read(mapping);
1650 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1651 		unsigned long address = vma_address(page, vma);
1652 
1653 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1654 			continue;
1655 
1656 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1657 		if (ret != SWAP_AGAIN)
1658 			goto done;
1659 		if (rwc->done && rwc->done(page))
1660 			goto done;
1661 	}
1662 
1663 done:
1664 	i_mmap_unlock_read(mapping);
1665 	return ret;
1666 }
1667 
1668 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1669 {
1670 	if (unlikely(PageKsm(page)))
1671 		return rmap_walk_ksm(page, rwc);
1672 	else if (PageAnon(page))
1673 		return rmap_walk_anon(page, rwc);
1674 	else
1675 		return rmap_walk_file(page, rwc);
1676 }
1677 
1678 #ifdef CONFIG_HUGETLB_PAGE
1679 /*
1680  * The following three functions are for anonymous (private mapped) hugepages.
1681  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1682  * and no lru code, because we handle hugepages differently from common pages.
1683  */
1684 static void __hugepage_set_anon_rmap(struct page *page,
1685 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1686 {
1687 	struct anon_vma *anon_vma = vma->anon_vma;
1688 
1689 	BUG_ON(!anon_vma);
1690 
1691 	if (PageAnon(page))
1692 		return;
1693 	if (!exclusive)
1694 		anon_vma = anon_vma->root;
1695 
1696 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1697 	page->mapping = (struct address_space *) anon_vma;
1698 	page->index = linear_page_index(vma, address);
1699 }
1700 
1701 void hugepage_add_anon_rmap(struct page *page,
1702 			    struct vm_area_struct *vma, unsigned long address)
1703 {
1704 	struct anon_vma *anon_vma = vma->anon_vma;
1705 	int first;
1706 
1707 	BUG_ON(!PageLocked(page));
1708 	BUG_ON(!anon_vma);
1709 	/* address might be in next vma when migration races vma_adjust */
1710 	first = atomic_inc_and_test(&page->_mapcount);
1711 	if (first)
1712 		__hugepage_set_anon_rmap(page, vma, address, 0);
1713 }
1714 
1715 void hugepage_add_new_anon_rmap(struct page *page,
1716 			struct vm_area_struct *vma, unsigned long address)
1717 {
1718 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1719 	atomic_set(&page->_mapcount, 0);
1720 	__hugepage_set_anon_rmap(page, vma, address, 1);
1721 }
1722 #endif /* CONFIG_HUGETLB_PAGE */
1723