xref: /linux/mm/rmap.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   inode->i_alloc_sem (vmtruncate_range)
25  *   mm->mmap_sem
26  *     page->flags PG_locked (lock_page)
27  *       mapping->i_mmap_lock
28  *         anon_vma->lock
29  *           mm->page_table_lock or pte_lock
30  *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31  *             swap_lock (in swap_duplicate, swap_info_get)
32  *               mmlist_lock (in mmput, drain_mmlist and others)
33  *               mapping->private_lock (in __set_page_dirty_buffers)
34  *               inode_lock (in set_page_dirty's __mark_inode_dirty)
35  *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36  *                 mapping->tree_lock (widely used, in set_page_dirty,
37  *                           in arch-dependent flush_dcache_mmap_lock,
38  *                           within inode_lock in __sync_single_inode)
39  */
40 
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 
52 #include <asm/tlbflush.h>
53 
54 struct kmem_cache *anon_vma_cachep;
55 
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57 {
58 #ifdef CONFIG_DEBUG_VM
59 	struct anon_vma *anon_vma = find_vma->anon_vma;
60 	struct vm_area_struct *vma;
61 	unsigned int mapcount = 0;
62 	int found = 0;
63 
64 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 		mapcount++;
66 		BUG_ON(mapcount > 100000);
67 		if (vma == find_vma)
68 			found = 1;
69 	}
70 	BUG_ON(!found);
71 #endif
72 }
73 
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
76 {
77 	struct anon_vma *anon_vma = vma->anon_vma;
78 
79 	might_sleep();
80 	if (unlikely(!anon_vma)) {
81 		struct mm_struct *mm = vma->vm_mm;
82 		struct anon_vma *allocated, *locked;
83 
84 		anon_vma = find_mergeable_anon_vma(vma);
85 		if (anon_vma) {
86 			allocated = NULL;
87 			locked = anon_vma;
88 			spin_lock(&locked->lock);
89 		} else {
90 			anon_vma = anon_vma_alloc();
91 			if (unlikely(!anon_vma))
92 				return -ENOMEM;
93 			allocated = anon_vma;
94 			locked = NULL;
95 		}
96 
97 		/* page_table_lock to protect against threads */
98 		spin_lock(&mm->page_table_lock);
99 		if (likely(!vma->anon_vma)) {
100 			vma->anon_vma = anon_vma;
101 			list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 			allocated = NULL;
103 		}
104 		spin_unlock(&mm->page_table_lock);
105 
106 		if (locked)
107 			spin_unlock(&locked->lock);
108 		if (unlikely(allocated))
109 			anon_vma_free(allocated);
110 	}
111 	return 0;
112 }
113 
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115 {
116 	BUG_ON(vma->anon_vma != next->anon_vma);
117 	list_del(&next->anon_vma_node);
118 }
119 
120 void __anon_vma_link(struct vm_area_struct *vma)
121 {
122 	struct anon_vma *anon_vma = vma->anon_vma;
123 
124 	if (anon_vma) {
125 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 		validate_anon_vma(vma);
127 	}
128 }
129 
130 void anon_vma_link(struct vm_area_struct *vma)
131 {
132 	struct anon_vma *anon_vma = vma->anon_vma;
133 
134 	if (anon_vma) {
135 		spin_lock(&anon_vma->lock);
136 		list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 		validate_anon_vma(vma);
138 		spin_unlock(&anon_vma->lock);
139 	}
140 }
141 
142 void anon_vma_unlink(struct vm_area_struct *vma)
143 {
144 	struct anon_vma *anon_vma = vma->anon_vma;
145 	int empty;
146 
147 	if (!anon_vma)
148 		return;
149 
150 	spin_lock(&anon_vma->lock);
151 	validate_anon_vma(vma);
152 	list_del(&vma->anon_vma_node);
153 
154 	/* We must garbage collect the anon_vma if it's empty */
155 	empty = list_empty(&anon_vma->head);
156 	spin_unlock(&anon_vma->lock);
157 
158 	if (empty)
159 		anon_vma_free(anon_vma);
160 }
161 
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 			  unsigned long flags)
164 {
165 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
166 						SLAB_CTOR_CONSTRUCTOR) {
167 		struct anon_vma *anon_vma = data;
168 
169 		spin_lock_init(&anon_vma->lock);
170 		INIT_LIST_HEAD(&anon_vma->head);
171 	}
172 }
173 
174 void __init anon_vma_init(void)
175 {
176 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
177 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
178 }
179 
180 /*
181  * Getting a lock on a stable anon_vma from a page off the LRU is
182  * tricky: page_lock_anon_vma rely on RCU to guard against the races.
183  */
184 static struct anon_vma *page_lock_anon_vma(struct page *page)
185 {
186 	struct anon_vma *anon_vma;
187 	unsigned long anon_mapping;
188 
189 	rcu_read_lock();
190 	anon_mapping = (unsigned long) page->mapping;
191 	if (!(anon_mapping & PAGE_MAPPING_ANON))
192 		goto out;
193 	if (!page_mapped(page))
194 		goto out;
195 
196 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
197 	spin_lock(&anon_vma->lock);
198 	return anon_vma;
199 out:
200 	rcu_read_unlock();
201 	return NULL;
202 }
203 
204 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
205 {
206 	spin_unlock(&anon_vma->lock);
207 	rcu_read_unlock();
208 }
209 
210 /*
211  * At what user virtual address is page expected in vma?
212  */
213 static inline unsigned long
214 vma_address(struct page *page, struct vm_area_struct *vma)
215 {
216 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
217 	unsigned long address;
218 
219 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
220 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
221 		/* page should be within any vma from prio_tree_next */
222 		BUG_ON(!PageAnon(page));
223 		return -EFAULT;
224 	}
225 	return address;
226 }
227 
228 /*
229  * At what user virtual address is page expected in vma? checking that the
230  * page matches the vma: currently only used on anon pages, by unuse_vma;
231  */
232 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
233 {
234 	if (PageAnon(page)) {
235 		if ((void *)vma->anon_vma !=
236 		    (void *)page->mapping - PAGE_MAPPING_ANON)
237 			return -EFAULT;
238 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
239 		if (!vma->vm_file ||
240 		    vma->vm_file->f_mapping != page->mapping)
241 			return -EFAULT;
242 	} else
243 		return -EFAULT;
244 	return vma_address(page, vma);
245 }
246 
247 /*
248  * Check that @page is mapped at @address into @mm.
249  *
250  * On success returns with pte mapped and locked.
251  */
252 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
253 			  unsigned long address, spinlock_t **ptlp)
254 {
255 	pgd_t *pgd;
256 	pud_t *pud;
257 	pmd_t *pmd;
258 	pte_t *pte;
259 	spinlock_t *ptl;
260 
261 	pgd = pgd_offset(mm, address);
262 	if (!pgd_present(*pgd))
263 		return NULL;
264 
265 	pud = pud_offset(pgd, address);
266 	if (!pud_present(*pud))
267 		return NULL;
268 
269 	pmd = pmd_offset(pud, address);
270 	if (!pmd_present(*pmd))
271 		return NULL;
272 
273 	pte = pte_offset_map(pmd, address);
274 	/* Make a quick check before getting the lock */
275 	if (!pte_present(*pte)) {
276 		pte_unmap(pte);
277 		return NULL;
278 	}
279 
280 	ptl = pte_lockptr(mm, pmd);
281 	spin_lock(ptl);
282 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
283 		*ptlp = ptl;
284 		return pte;
285 	}
286 	pte_unmap_unlock(pte, ptl);
287 	return NULL;
288 }
289 
290 /*
291  * Subfunctions of page_referenced: page_referenced_one called
292  * repeatedly from either page_referenced_anon or page_referenced_file.
293  */
294 static int page_referenced_one(struct page *page,
295 	struct vm_area_struct *vma, unsigned int *mapcount)
296 {
297 	struct mm_struct *mm = vma->vm_mm;
298 	unsigned long address;
299 	pte_t *pte;
300 	spinlock_t *ptl;
301 	int referenced = 0;
302 
303 	address = vma_address(page, vma);
304 	if (address == -EFAULT)
305 		goto out;
306 
307 	pte = page_check_address(page, mm, address, &ptl);
308 	if (!pte)
309 		goto out;
310 
311 	if (ptep_clear_flush_young(vma, address, pte))
312 		referenced++;
313 
314 	/* Pretend the page is referenced if the task has the
315 	   swap token and is in the middle of a page fault. */
316 	if (mm != current->mm && has_swap_token(mm) &&
317 			rwsem_is_locked(&mm->mmap_sem))
318 		referenced++;
319 
320 	(*mapcount)--;
321 	pte_unmap_unlock(pte, ptl);
322 out:
323 	return referenced;
324 }
325 
326 static int page_referenced_anon(struct page *page)
327 {
328 	unsigned int mapcount;
329 	struct anon_vma *anon_vma;
330 	struct vm_area_struct *vma;
331 	int referenced = 0;
332 
333 	anon_vma = page_lock_anon_vma(page);
334 	if (!anon_vma)
335 		return referenced;
336 
337 	mapcount = page_mapcount(page);
338 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
339 		referenced += page_referenced_one(page, vma, &mapcount);
340 		if (!mapcount)
341 			break;
342 	}
343 
344 	page_unlock_anon_vma(anon_vma);
345 	return referenced;
346 }
347 
348 /**
349  * page_referenced_file - referenced check for object-based rmap
350  * @page: the page we're checking references on.
351  *
352  * For an object-based mapped page, find all the places it is mapped and
353  * check/clear the referenced flag.  This is done by following the page->mapping
354  * pointer, then walking the chain of vmas it holds.  It returns the number
355  * of references it found.
356  *
357  * This function is only called from page_referenced for object-based pages.
358  */
359 static int page_referenced_file(struct page *page)
360 {
361 	unsigned int mapcount;
362 	struct address_space *mapping = page->mapping;
363 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
364 	struct vm_area_struct *vma;
365 	struct prio_tree_iter iter;
366 	int referenced = 0;
367 
368 	/*
369 	 * The caller's checks on page->mapping and !PageAnon have made
370 	 * sure that this is a file page: the check for page->mapping
371 	 * excludes the case just before it gets set on an anon page.
372 	 */
373 	BUG_ON(PageAnon(page));
374 
375 	/*
376 	 * The page lock not only makes sure that page->mapping cannot
377 	 * suddenly be NULLified by truncation, it makes sure that the
378 	 * structure at mapping cannot be freed and reused yet,
379 	 * so we can safely take mapping->i_mmap_lock.
380 	 */
381 	BUG_ON(!PageLocked(page));
382 
383 	spin_lock(&mapping->i_mmap_lock);
384 
385 	/*
386 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
387 	 * is more likely to be accurate if we note it after spinning.
388 	 */
389 	mapcount = page_mapcount(page);
390 
391 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
392 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
393 				  == (VM_LOCKED|VM_MAYSHARE)) {
394 			referenced++;
395 			break;
396 		}
397 		referenced += page_referenced_one(page, vma, &mapcount);
398 		if (!mapcount)
399 			break;
400 	}
401 
402 	spin_unlock(&mapping->i_mmap_lock);
403 	return referenced;
404 }
405 
406 /**
407  * page_referenced - test if the page was referenced
408  * @page: the page to test
409  * @is_locked: caller holds lock on the page
410  *
411  * Quick test_and_clear_referenced for all mappings to a page,
412  * returns the number of ptes which referenced the page.
413  */
414 int page_referenced(struct page *page, int is_locked)
415 {
416 	int referenced = 0;
417 
418 	if (page_test_and_clear_young(page))
419 		referenced++;
420 
421 	if (TestClearPageReferenced(page))
422 		referenced++;
423 
424 	if (page_mapped(page) && page->mapping) {
425 		if (PageAnon(page))
426 			referenced += page_referenced_anon(page);
427 		else if (is_locked)
428 			referenced += page_referenced_file(page);
429 		else if (TestSetPageLocked(page))
430 			referenced++;
431 		else {
432 			if (page->mapping)
433 				referenced += page_referenced_file(page);
434 			unlock_page(page);
435 		}
436 	}
437 	return referenced;
438 }
439 
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
441 {
442 	struct mm_struct *mm = vma->vm_mm;
443 	unsigned long address;
444 	pte_t *pte;
445 	spinlock_t *ptl;
446 	int ret = 0;
447 
448 	address = vma_address(page, vma);
449 	if (address == -EFAULT)
450 		goto out;
451 
452 	pte = page_check_address(page, mm, address, &ptl);
453 	if (!pte)
454 		goto out;
455 
456 	if (pte_dirty(*pte) || pte_write(*pte)) {
457 		pte_t entry;
458 
459 		flush_cache_page(vma, address, pte_pfn(*pte));
460 		entry = ptep_clear_flush(vma, address, pte);
461 		entry = pte_wrprotect(entry);
462 		entry = pte_mkclean(entry);
463 		set_pte_at(mm, address, pte, entry);
464 		lazy_mmu_prot_update(entry);
465 		ret = 1;
466 	}
467 
468 	pte_unmap_unlock(pte, ptl);
469 out:
470 	return ret;
471 }
472 
473 static int page_mkclean_file(struct address_space *mapping, struct page *page)
474 {
475 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476 	struct vm_area_struct *vma;
477 	struct prio_tree_iter iter;
478 	int ret = 0;
479 
480 	BUG_ON(PageAnon(page));
481 
482 	spin_lock(&mapping->i_mmap_lock);
483 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484 		if (vma->vm_flags & VM_SHARED)
485 			ret += page_mkclean_one(page, vma);
486 	}
487 	spin_unlock(&mapping->i_mmap_lock);
488 	return ret;
489 }
490 
491 int page_mkclean(struct page *page)
492 {
493 	int ret = 0;
494 
495 	BUG_ON(!PageLocked(page));
496 
497 	if (page_mapped(page)) {
498 		struct address_space *mapping = page_mapping(page);
499 		if (mapping)
500 			ret = page_mkclean_file(mapping, page);
501 	}
502 	if (page_test_and_clear_dirty(page))
503 		ret = 1;
504 
505 	return ret;
506 }
507 
508 /**
509  * page_set_anon_rmap - setup new anonymous rmap
510  * @page:	the page to add the mapping to
511  * @vma:	the vm area in which the mapping is added
512  * @address:	the user virtual address mapped
513  */
514 static void __page_set_anon_rmap(struct page *page,
515 	struct vm_area_struct *vma, unsigned long address)
516 {
517 	struct anon_vma *anon_vma = vma->anon_vma;
518 
519 	BUG_ON(!anon_vma);
520 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
521 	page->mapping = (struct address_space *) anon_vma;
522 
523 	page->index = linear_page_index(vma, address);
524 
525 	/*
526 	 * nr_mapped state can be updated without turning off
527 	 * interrupts because it is not modified via interrupt.
528 	 */
529 	__inc_zone_page_state(page, NR_ANON_PAGES);
530 }
531 
532 /**
533  * page_add_anon_rmap - add pte mapping to an anonymous page
534  * @page:	the page to add the mapping to
535  * @vma:	the vm area in which the mapping is added
536  * @address:	the user virtual address mapped
537  *
538  * The caller needs to hold the pte lock.
539  */
540 void page_add_anon_rmap(struct page *page,
541 	struct vm_area_struct *vma, unsigned long address)
542 {
543 	if (atomic_inc_and_test(&page->_mapcount))
544 		__page_set_anon_rmap(page, vma, address);
545 	/* else checking page index and mapping is racy */
546 }
547 
548 /*
549  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
550  * @page:	the page to add the mapping to
551  * @vma:	the vm area in which the mapping is added
552  * @address:	the user virtual address mapped
553  *
554  * Same as page_add_anon_rmap but must only be called on *new* pages.
555  * This means the inc-and-test can be bypassed.
556  */
557 void page_add_new_anon_rmap(struct page *page,
558 	struct vm_area_struct *vma, unsigned long address)
559 {
560 	atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
561 	__page_set_anon_rmap(page, vma, address);
562 }
563 
564 /**
565  * page_add_file_rmap - add pte mapping to a file page
566  * @page: the page to add the mapping to
567  *
568  * The caller needs to hold the pte lock.
569  */
570 void page_add_file_rmap(struct page *page)
571 {
572 	if (atomic_inc_and_test(&page->_mapcount))
573 		__inc_zone_page_state(page, NR_FILE_MAPPED);
574 }
575 
576 /**
577  * page_remove_rmap - take down pte mapping from a page
578  * @page: page to remove mapping from
579  *
580  * The caller needs to hold the pte lock.
581  */
582 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
583 {
584 	if (atomic_add_negative(-1, &page->_mapcount)) {
585 		if (unlikely(page_mapcount(page) < 0)) {
586 			printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
587 			printk (KERN_EMERG "  page pfn = %lx\n", page_to_pfn(page));
588 			printk (KERN_EMERG "  page->flags = %lx\n", page->flags);
589 			printk (KERN_EMERG "  page->count = %x\n", page_count(page));
590 			printk (KERN_EMERG "  page->mapping = %p\n", page->mapping);
591 			print_symbol (KERN_EMERG "  vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
592 			if (vma->vm_ops)
593 				print_symbol (KERN_EMERG "  vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
594 			if (vma->vm_file && vma->vm_file->f_op)
595 				print_symbol (KERN_EMERG "  vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
596 			BUG();
597 		}
598 
599 		/*
600 		 * It would be tidy to reset the PageAnon mapping here,
601 		 * but that might overwrite a racing page_add_anon_rmap
602 		 * which increments mapcount after us but sets mapping
603 		 * before us: so leave the reset to free_hot_cold_page,
604 		 * and remember that it's only reliable while mapped.
605 		 * Leaving it set also helps swapoff to reinstate ptes
606 		 * faster for those pages still in swapcache.
607 		 */
608 		if (page_test_and_clear_dirty(page))
609 			set_page_dirty(page);
610 		__dec_zone_page_state(page,
611 				PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
612 	}
613 }
614 
615 /*
616  * Subfunctions of try_to_unmap: try_to_unmap_one called
617  * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
618  */
619 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
620 				int migration)
621 {
622 	struct mm_struct *mm = vma->vm_mm;
623 	unsigned long address;
624 	pte_t *pte;
625 	pte_t pteval;
626 	spinlock_t *ptl;
627 	int ret = SWAP_AGAIN;
628 
629 	address = vma_address(page, vma);
630 	if (address == -EFAULT)
631 		goto out;
632 
633 	pte = page_check_address(page, mm, address, &ptl);
634 	if (!pte)
635 		goto out;
636 
637 	/*
638 	 * If the page is mlock()d, we cannot swap it out.
639 	 * If it's recently referenced (perhaps page_referenced
640 	 * skipped over this mm) then we should reactivate it.
641 	 */
642 	if (!migration && ((vma->vm_flags & VM_LOCKED) ||
643 			(ptep_clear_flush_young(vma, address, pte)))) {
644 		ret = SWAP_FAIL;
645 		goto out_unmap;
646 	}
647 
648 	/* Nuke the page table entry. */
649 	flush_cache_page(vma, address, page_to_pfn(page));
650 	pteval = ptep_clear_flush(vma, address, pte);
651 
652 	/* Move the dirty bit to the physical page now the pte is gone. */
653 	if (pte_dirty(pteval))
654 		set_page_dirty(page);
655 
656 	/* Update high watermark before we lower rss */
657 	update_hiwater_rss(mm);
658 
659 	if (PageAnon(page)) {
660 		swp_entry_t entry = { .val = page_private(page) };
661 
662 		if (PageSwapCache(page)) {
663 			/*
664 			 * Store the swap location in the pte.
665 			 * See handle_pte_fault() ...
666 			 */
667 			swap_duplicate(entry);
668 			if (list_empty(&mm->mmlist)) {
669 				spin_lock(&mmlist_lock);
670 				if (list_empty(&mm->mmlist))
671 					list_add(&mm->mmlist, &init_mm.mmlist);
672 				spin_unlock(&mmlist_lock);
673 			}
674 			dec_mm_counter(mm, anon_rss);
675 #ifdef CONFIG_MIGRATION
676 		} else {
677 			/*
678 			 * Store the pfn of the page in a special migration
679 			 * pte. do_swap_page() will wait until the migration
680 			 * pte is removed and then restart fault handling.
681 			 */
682 			BUG_ON(!migration);
683 			entry = make_migration_entry(page, pte_write(pteval));
684 #endif
685 		}
686 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
687 		BUG_ON(pte_file(*pte));
688 	} else
689 #ifdef CONFIG_MIGRATION
690 	if (migration) {
691 		/* Establish migration entry for a file page */
692 		swp_entry_t entry;
693 		entry = make_migration_entry(page, pte_write(pteval));
694 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
695 	} else
696 #endif
697 		dec_mm_counter(mm, file_rss);
698 
699 
700 	page_remove_rmap(page, vma);
701 	page_cache_release(page);
702 
703 out_unmap:
704 	pte_unmap_unlock(pte, ptl);
705 out:
706 	return ret;
707 }
708 
709 /*
710  * objrmap doesn't work for nonlinear VMAs because the assumption that
711  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
712  * Consequently, given a particular page and its ->index, we cannot locate the
713  * ptes which are mapping that page without an exhaustive linear search.
714  *
715  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
716  * maps the file to which the target page belongs.  The ->vm_private_data field
717  * holds the current cursor into that scan.  Successive searches will circulate
718  * around the vma's virtual address space.
719  *
720  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
721  * more scanning pressure is placed against them as well.   Eventually pages
722  * will become fully unmapped and are eligible for eviction.
723  *
724  * For very sparsely populated VMAs this is a little inefficient - chances are
725  * there there won't be many ptes located within the scan cluster.  In this case
726  * maybe we could scan further - to the end of the pte page, perhaps.
727  */
728 #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
729 #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
730 
731 static void try_to_unmap_cluster(unsigned long cursor,
732 	unsigned int *mapcount, struct vm_area_struct *vma)
733 {
734 	struct mm_struct *mm = vma->vm_mm;
735 	pgd_t *pgd;
736 	pud_t *pud;
737 	pmd_t *pmd;
738 	pte_t *pte;
739 	pte_t pteval;
740 	spinlock_t *ptl;
741 	struct page *page;
742 	unsigned long address;
743 	unsigned long end;
744 
745 	address = (vma->vm_start + cursor) & CLUSTER_MASK;
746 	end = address + CLUSTER_SIZE;
747 	if (address < vma->vm_start)
748 		address = vma->vm_start;
749 	if (end > vma->vm_end)
750 		end = vma->vm_end;
751 
752 	pgd = pgd_offset(mm, address);
753 	if (!pgd_present(*pgd))
754 		return;
755 
756 	pud = pud_offset(pgd, address);
757 	if (!pud_present(*pud))
758 		return;
759 
760 	pmd = pmd_offset(pud, address);
761 	if (!pmd_present(*pmd))
762 		return;
763 
764 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
765 
766 	/* Update high watermark before we lower rss */
767 	update_hiwater_rss(mm);
768 
769 	for (; address < end; pte++, address += PAGE_SIZE) {
770 		if (!pte_present(*pte))
771 			continue;
772 		page = vm_normal_page(vma, address, *pte);
773 		BUG_ON(!page || PageAnon(page));
774 
775 		if (ptep_clear_flush_young(vma, address, pte))
776 			continue;
777 
778 		/* Nuke the page table entry. */
779 		flush_cache_page(vma, address, pte_pfn(*pte));
780 		pteval = ptep_clear_flush(vma, address, pte);
781 
782 		/* If nonlinear, store the file page offset in the pte. */
783 		if (page->index != linear_page_index(vma, address))
784 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
785 
786 		/* Move the dirty bit to the physical page now the pte is gone. */
787 		if (pte_dirty(pteval))
788 			set_page_dirty(page);
789 
790 		page_remove_rmap(page, vma);
791 		page_cache_release(page);
792 		dec_mm_counter(mm, file_rss);
793 		(*mapcount)--;
794 	}
795 	pte_unmap_unlock(pte - 1, ptl);
796 }
797 
798 static int try_to_unmap_anon(struct page *page, int migration)
799 {
800 	struct anon_vma *anon_vma;
801 	struct vm_area_struct *vma;
802 	int ret = SWAP_AGAIN;
803 
804 	anon_vma = page_lock_anon_vma(page);
805 	if (!anon_vma)
806 		return ret;
807 
808 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
809 		ret = try_to_unmap_one(page, vma, migration);
810 		if (ret == SWAP_FAIL || !page_mapped(page))
811 			break;
812 	}
813 
814 	page_unlock_anon_vma(anon_vma);
815 	return ret;
816 }
817 
818 /**
819  * try_to_unmap_file - unmap file page using the object-based rmap method
820  * @page: the page to unmap
821  *
822  * Find all the mappings of a page using the mapping pointer and the vma chains
823  * contained in the address_space struct it points to.
824  *
825  * This function is only called from try_to_unmap for object-based pages.
826  */
827 static int try_to_unmap_file(struct page *page, int migration)
828 {
829 	struct address_space *mapping = page->mapping;
830 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
831 	struct vm_area_struct *vma;
832 	struct prio_tree_iter iter;
833 	int ret = SWAP_AGAIN;
834 	unsigned long cursor;
835 	unsigned long max_nl_cursor = 0;
836 	unsigned long max_nl_size = 0;
837 	unsigned int mapcount;
838 
839 	spin_lock(&mapping->i_mmap_lock);
840 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
841 		ret = try_to_unmap_one(page, vma, migration);
842 		if (ret == SWAP_FAIL || !page_mapped(page))
843 			goto out;
844 	}
845 
846 	if (list_empty(&mapping->i_mmap_nonlinear))
847 		goto out;
848 
849 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
850 						shared.vm_set.list) {
851 		if ((vma->vm_flags & VM_LOCKED) && !migration)
852 			continue;
853 		cursor = (unsigned long) vma->vm_private_data;
854 		if (cursor > max_nl_cursor)
855 			max_nl_cursor = cursor;
856 		cursor = vma->vm_end - vma->vm_start;
857 		if (cursor > max_nl_size)
858 			max_nl_size = cursor;
859 	}
860 
861 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */
862 		ret = SWAP_FAIL;
863 		goto out;
864 	}
865 
866 	/*
867 	 * We don't try to search for this page in the nonlinear vmas,
868 	 * and page_referenced wouldn't have found it anyway.  Instead
869 	 * just walk the nonlinear vmas trying to age and unmap some.
870 	 * The mapcount of the page we came in with is irrelevant,
871 	 * but even so use it as a guide to how hard we should try?
872 	 */
873 	mapcount = page_mapcount(page);
874 	if (!mapcount)
875 		goto out;
876 	cond_resched_lock(&mapping->i_mmap_lock);
877 
878 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
879 	if (max_nl_cursor == 0)
880 		max_nl_cursor = CLUSTER_SIZE;
881 
882 	do {
883 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
884 						shared.vm_set.list) {
885 			if ((vma->vm_flags & VM_LOCKED) && !migration)
886 				continue;
887 			cursor = (unsigned long) vma->vm_private_data;
888 			while ( cursor < max_nl_cursor &&
889 				cursor < vma->vm_end - vma->vm_start) {
890 				try_to_unmap_cluster(cursor, &mapcount, vma);
891 				cursor += CLUSTER_SIZE;
892 				vma->vm_private_data = (void *) cursor;
893 				if ((int)mapcount <= 0)
894 					goto out;
895 			}
896 			vma->vm_private_data = (void *) max_nl_cursor;
897 		}
898 		cond_resched_lock(&mapping->i_mmap_lock);
899 		max_nl_cursor += CLUSTER_SIZE;
900 	} while (max_nl_cursor <= max_nl_size);
901 
902 	/*
903 	 * Don't loop forever (perhaps all the remaining pages are
904 	 * in locked vmas).  Reset cursor on all unreserved nonlinear
905 	 * vmas, now forgetting on which ones it had fallen behind.
906 	 */
907 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
908 		vma->vm_private_data = NULL;
909 out:
910 	spin_unlock(&mapping->i_mmap_lock);
911 	return ret;
912 }
913 
914 /**
915  * try_to_unmap - try to remove all page table mappings to a page
916  * @page: the page to get unmapped
917  *
918  * Tries to remove all the page table entries which are mapping this
919  * page, used in the pageout path.  Caller must hold the page lock.
920  * Return values are:
921  *
922  * SWAP_SUCCESS	- we succeeded in removing all mappings
923  * SWAP_AGAIN	- we missed a mapping, try again later
924  * SWAP_FAIL	- the page is unswappable
925  */
926 int try_to_unmap(struct page *page, int migration)
927 {
928 	int ret;
929 
930 	BUG_ON(!PageLocked(page));
931 
932 	if (PageAnon(page))
933 		ret = try_to_unmap_anon(page, migration);
934 	else
935 		ret = try_to_unmap_file(page, migration);
936 
937 	if (!page_mapped(page))
938 		ret = SWAP_SUCCESS;
939 	return ret;
940 }
941 
942