1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_rwsem (while writing or truncating, not reading or faulting) 24 * mm->mmap_lock 25 * mapping->invalidate_lock (in filemap_fault) 26 * folio_lock 27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share, see hugetlbfs below) 28 * vma_start_write 29 * mapping->i_mmap_rwsem 30 * anon_vma->rwsem 31 * mm->page_table_lock or pte_lock 32 * swap_lock (in swap_duplicate, swap_info_get) 33 * mmlist_lock (in mmput, drain_mmlist and others) 34 * mapping->private_lock (in block_dirty_folio) 35 * folio_lock_memcg move_lock (in block_dirty_folio) 36 * i_pages lock (widely used) 37 * lruvec->lru_lock (in folio_lruvec_lock_irq) 38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 40 * sb_lock (within inode_lock in fs/fs-writeback.c) 41 * i_pages lock (widely used, in set_page_dirty, 42 * in arch-dependent flush_dcache_mmap_lock, 43 * within bdi.wb->list_lock in __sync_single_inode) 44 * 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) 46 * ->tasklist_lock 47 * pte map lock 48 * 49 * hugetlbfs PageHuge() take locks in this order: 50 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) 51 * vma_lock (hugetlb specific lock for pmd_sharing) 52 * mapping->i_mmap_rwsem (also used for hugetlb pmd sharing) 53 * folio_lock 54 */ 55 56 #include <linux/mm.h> 57 #include <linux/sched/mm.h> 58 #include <linux/sched/task.h> 59 #include <linux/pagemap.h> 60 #include <linux/swap.h> 61 #include <linux/swapops.h> 62 #include <linux/slab.h> 63 #include <linux/init.h> 64 #include <linux/ksm.h> 65 #include <linux/rmap.h> 66 #include <linux/rcupdate.h> 67 #include <linux/export.h> 68 #include <linux/memcontrol.h> 69 #include <linux/mmu_notifier.h> 70 #include <linux/migrate.h> 71 #include <linux/hugetlb.h> 72 #include <linux/huge_mm.h> 73 #include <linux/backing-dev.h> 74 #include <linux/page_idle.h> 75 #include <linux/memremap.h> 76 #include <linux/userfaultfd_k.h> 77 #include <linux/mm_inline.h> 78 #include <linux/oom.h> 79 80 #include <asm/tlbflush.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <trace/events/tlb.h> 84 #include <trace/events/migrate.h> 85 86 #include "internal.h" 87 88 static struct kmem_cache *anon_vma_cachep; 89 static struct kmem_cache *anon_vma_chain_cachep; 90 91 static inline struct anon_vma *anon_vma_alloc(void) 92 { 93 struct anon_vma *anon_vma; 94 95 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 96 if (anon_vma) { 97 atomic_set(&anon_vma->refcount, 1); 98 anon_vma->num_children = 0; 99 anon_vma->num_active_vmas = 0; 100 anon_vma->parent = anon_vma; 101 /* 102 * Initialise the anon_vma root to point to itself. If called 103 * from fork, the root will be reset to the parents anon_vma. 104 */ 105 anon_vma->root = anon_vma; 106 } 107 108 return anon_vma; 109 } 110 111 static inline void anon_vma_free(struct anon_vma *anon_vma) 112 { 113 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 114 115 /* 116 * Synchronize against folio_lock_anon_vma_read() such that 117 * we can safely hold the lock without the anon_vma getting 118 * freed. 119 * 120 * Relies on the full mb implied by the atomic_dec_and_test() from 121 * put_anon_vma() against the acquire barrier implied by 122 * down_read_trylock() from folio_lock_anon_vma_read(). This orders: 123 * 124 * folio_lock_anon_vma_read() VS put_anon_vma() 125 * down_read_trylock() atomic_dec_and_test() 126 * LOCK MB 127 * atomic_read() rwsem_is_locked() 128 * 129 * LOCK should suffice since the actual taking of the lock must 130 * happen _before_ what follows. 131 */ 132 might_sleep(); 133 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 134 anon_vma_lock_write(anon_vma); 135 anon_vma_unlock_write(anon_vma); 136 } 137 138 kmem_cache_free(anon_vma_cachep, anon_vma); 139 } 140 141 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 142 { 143 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 144 } 145 146 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 147 { 148 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 149 } 150 151 static void anon_vma_chain_link(struct vm_area_struct *vma, 152 struct anon_vma_chain *avc, 153 struct anon_vma *anon_vma) 154 { 155 avc->vma = vma; 156 avc->anon_vma = anon_vma; 157 list_add(&avc->same_vma, &vma->anon_vma_chain); 158 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 159 } 160 161 /** 162 * __anon_vma_prepare - attach an anon_vma to a memory region 163 * @vma: the memory region in question 164 * 165 * This makes sure the memory mapping described by 'vma' has 166 * an 'anon_vma' attached to it, so that we can associate the 167 * anonymous pages mapped into it with that anon_vma. 168 * 169 * The common case will be that we already have one, which 170 * is handled inline by anon_vma_prepare(). But if 171 * not we either need to find an adjacent mapping that we 172 * can re-use the anon_vma from (very common when the only 173 * reason for splitting a vma has been mprotect()), or we 174 * allocate a new one. 175 * 176 * Anon-vma allocations are very subtle, because we may have 177 * optimistically looked up an anon_vma in folio_lock_anon_vma_read() 178 * and that may actually touch the rwsem even in the newly 179 * allocated vma (it depends on RCU to make sure that the 180 * anon_vma isn't actually destroyed). 181 * 182 * As a result, we need to do proper anon_vma locking even 183 * for the new allocation. At the same time, we do not want 184 * to do any locking for the common case of already having 185 * an anon_vma. 186 */ 187 int __anon_vma_prepare(struct vm_area_struct *vma) 188 { 189 struct mm_struct *mm = vma->vm_mm; 190 struct anon_vma *anon_vma, *allocated; 191 struct anon_vma_chain *avc; 192 193 mmap_assert_locked(mm); 194 might_sleep(); 195 196 avc = anon_vma_chain_alloc(GFP_KERNEL); 197 if (!avc) 198 goto out_enomem; 199 200 anon_vma = find_mergeable_anon_vma(vma); 201 allocated = NULL; 202 if (!anon_vma) { 203 anon_vma = anon_vma_alloc(); 204 if (unlikely(!anon_vma)) 205 goto out_enomem_free_avc; 206 anon_vma->num_children++; /* self-parent link for new root */ 207 allocated = anon_vma; 208 } 209 210 anon_vma_lock_write(anon_vma); 211 /* page_table_lock to protect against threads */ 212 spin_lock(&mm->page_table_lock); 213 if (likely(!vma->anon_vma)) { 214 vma->anon_vma = anon_vma; 215 anon_vma_chain_link(vma, avc, anon_vma); 216 anon_vma->num_active_vmas++; 217 allocated = NULL; 218 avc = NULL; 219 } 220 spin_unlock(&mm->page_table_lock); 221 anon_vma_unlock_write(anon_vma); 222 223 if (unlikely(allocated)) 224 put_anon_vma(allocated); 225 if (unlikely(avc)) 226 anon_vma_chain_free(avc); 227 228 return 0; 229 230 out_enomem_free_avc: 231 anon_vma_chain_free(avc); 232 out_enomem: 233 return -ENOMEM; 234 } 235 236 /* 237 * This is a useful helper function for locking the anon_vma root as 238 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 239 * have the same vma. 240 * 241 * Such anon_vma's should have the same root, so you'd expect to see 242 * just a single mutex_lock for the whole traversal. 243 */ 244 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 245 { 246 struct anon_vma *new_root = anon_vma->root; 247 if (new_root != root) { 248 if (WARN_ON_ONCE(root)) 249 up_write(&root->rwsem); 250 root = new_root; 251 down_write(&root->rwsem); 252 } 253 return root; 254 } 255 256 static inline void unlock_anon_vma_root(struct anon_vma *root) 257 { 258 if (root) 259 up_write(&root->rwsem); 260 } 261 262 /* 263 * Attach the anon_vmas from src to dst. 264 * Returns 0 on success, -ENOMEM on failure. 265 * 266 * anon_vma_clone() is called by vma_expand(), vma_merge(), __split_vma(), 267 * copy_vma() and anon_vma_fork(). The first four want an exact copy of src, 268 * while the last one, anon_vma_fork(), may try to reuse an existing anon_vma to 269 * prevent endless growth of anon_vma. Since dst->anon_vma is set to NULL before 270 * call, we can identify this case by checking (!dst->anon_vma && 271 * src->anon_vma). 272 * 273 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find 274 * and reuse existing anon_vma which has no vmas and only one child anon_vma. 275 * This prevents degradation of anon_vma hierarchy to endless linear chain in 276 * case of constantly forking task. On the other hand, an anon_vma with more 277 * than one child isn't reused even if there was no alive vma, thus rmap 278 * walker has a good chance of avoiding scanning the whole hierarchy when it 279 * searches where page is mapped. 280 */ 281 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 282 { 283 struct anon_vma_chain *avc, *pavc; 284 struct anon_vma *root = NULL; 285 286 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 287 struct anon_vma *anon_vma; 288 289 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 290 if (unlikely(!avc)) { 291 unlock_anon_vma_root(root); 292 root = NULL; 293 avc = anon_vma_chain_alloc(GFP_KERNEL); 294 if (!avc) 295 goto enomem_failure; 296 } 297 anon_vma = pavc->anon_vma; 298 root = lock_anon_vma_root(root, anon_vma); 299 anon_vma_chain_link(dst, avc, anon_vma); 300 301 /* 302 * Reuse existing anon_vma if it has no vma and only one 303 * anon_vma child. 304 * 305 * Root anon_vma is never reused: 306 * it has self-parent reference and at least one child. 307 */ 308 if (!dst->anon_vma && src->anon_vma && 309 anon_vma->num_children < 2 && 310 anon_vma->num_active_vmas == 0) 311 dst->anon_vma = anon_vma; 312 } 313 if (dst->anon_vma) 314 dst->anon_vma->num_active_vmas++; 315 unlock_anon_vma_root(root); 316 return 0; 317 318 enomem_failure: 319 /* 320 * dst->anon_vma is dropped here otherwise its num_active_vmas can 321 * be incorrectly decremented in unlink_anon_vmas(). 322 * We can safely do this because callers of anon_vma_clone() don't care 323 * about dst->anon_vma if anon_vma_clone() failed. 324 */ 325 dst->anon_vma = NULL; 326 unlink_anon_vmas(dst); 327 return -ENOMEM; 328 } 329 330 /* 331 * Attach vma to its own anon_vma, as well as to the anon_vmas that 332 * the corresponding VMA in the parent process is attached to. 333 * Returns 0 on success, non-zero on failure. 334 */ 335 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 336 { 337 struct anon_vma_chain *avc; 338 struct anon_vma *anon_vma; 339 int error; 340 341 /* Don't bother if the parent process has no anon_vma here. */ 342 if (!pvma->anon_vma) 343 return 0; 344 345 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 346 vma->anon_vma = NULL; 347 348 /* 349 * First, attach the new VMA to the parent VMA's anon_vmas, 350 * so rmap can find non-COWed pages in child processes. 351 */ 352 error = anon_vma_clone(vma, pvma); 353 if (error) 354 return error; 355 356 /* An existing anon_vma has been reused, all done then. */ 357 if (vma->anon_vma) 358 return 0; 359 360 /* Then add our own anon_vma. */ 361 anon_vma = anon_vma_alloc(); 362 if (!anon_vma) 363 goto out_error; 364 anon_vma->num_active_vmas++; 365 avc = anon_vma_chain_alloc(GFP_KERNEL); 366 if (!avc) 367 goto out_error_free_anon_vma; 368 369 /* 370 * The root anon_vma's rwsem is the lock actually used when we 371 * lock any of the anon_vmas in this anon_vma tree. 372 */ 373 anon_vma->root = pvma->anon_vma->root; 374 anon_vma->parent = pvma->anon_vma; 375 /* 376 * With refcounts, an anon_vma can stay around longer than the 377 * process it belongs to. The root anon_vma needs to be pinned until 378 * this anon_vma is freed, because the lock lives in the root. 379 */ 380 get_anon_vma(anon_vma->root); 381 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 382 vma->anon_vma = anon_vma; 383 anon_vma_lock_write(anon_vma); 384 anon_vma_chain_link(vma, avc, anon_vma); 385 anon_vma->parent->num_children++; 386 anon_vma_unlock_write(anon_vma); 387 388 return 0; 389 390 out_error_free_anon_vma: 391 put_anon_vma(anon_vma); 392 out_error: 393 unlink_anon_vmas(vma); 394 return -ENOMEM; 395 } 396 397 void unlink_anon_vmas(struct vm_area_struct *vma) 398 { 399 struct anon_vma_chain *avc, *next; 400 struct anon_vma *root = NULL; 401 402 /* 403 * Unlink each anon_vma chained to the VMA. This list is ordered 404 * from newest to oldest, ensuring the root anon_vma gets freed last. 405 */ 406 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 407 struct anon_vma *anon_vma = avc->anon_vma; 408 409 root = lock_anon_vma_root(root, anon_vma); 410 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 411 412 /* 413 * Leave empty anon_vmas on the list - we'll need 414 * to free them outside the lock. 415 */ 416 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { 417 anon_vma->parent->num_children--; 418 continue; 419 } 420 421 list_del(&avc->same_vma); 422 anon_vma_chain_free(avc); 423 } 424 if (vma->anon_vma) { 425 vma->anon_vma->num_active_vmas--; 426 427 /* 428 * vma would still be needed after unlink, and anon_vma will be prepared 429 * when handle fault. 430 */ 431 vma->anon_vma = NULL; 432 } 433 unlock_anon_vma_root(root); 434 435 /* 436 * Iterate the list once more, it now only contains empty and unlinked 437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 438 * needing to write-acquire the anon_vma->root->rwsem. 439 */ 440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 441 struct anon_vma *anon_vma = avc->anon_vma; 442 443 VM_WARN_ON(anon_vma->num_children); 444 VM_WARN_ON(anon_vma->num_active_vmas); 445 put_anon_vma(anon_vma); 446 447 list_del(&avc->same_vma); 448 anon_vma_chain_free(avc); 449 } 450 } 451 452 static void anon_vma_ctor(void *data) 453 { 454 struct anon_vma *anon_vma = data; 455 456 init_rwsem(&anon_vma->rwsem); 457 atomic_set(&anon_vma->refcount, 0); 458 anon_vma->rb_root = RB_ROOT_CACHED; 459 } 460 461 void __init anon_vma_init(void) 462 { 463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, 465 anon_vma_ctor); 466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, 467 SLAB_PANIC|SLAB_ACCOUNT); 468 } 469 470 /* 471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 472 * 473 * Since there is no serialization what so ever against folio_remove_rmap_*() 474 * the best this function can do is return a refcount increased anon_vma 475 * that might have been relevant to this page. 476 * 477 * The page might have been remapped to a different anon_vma or the anon_vma 478 * returned may already be freed (and even reused). 479 * 480 * In case it was remapped to a different anon_vma, the new anon_vma will be a 481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 482 * ensure that any anon_vma obtained from the page will still be valid for as 483 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 484 * 485 * All users of this function must be very careful when walking the anon_vma 486 * chain and verify that the page in question is indeed mapped in it 487 * [ something equivalent to page_mapped_in_vma() ]. 488 * 489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from 490 * folio_remove_rmap_*() that the anon_vma pointer from page->mapping is valid 491 * if there is a mapcount, we can dereference the anon_vma after observing 492 * those. 493 * 494 * NOTE: the caller should normally hold folio lock when calling this. If 495 * not, the caller needs to double check the anon_vma didn't change after 496 * taking the anon_vma lock for either read or write (UFFDIO_MOVE can modify it 497 * concurrently without folio lock protection). See folio_lock_anon_vma_read() 498 * which has already covered that, and comment above remap_pages(). 499 */ 500 struct anon_vma *folio_get_anon_vma(struct folio *folio) 501 { 502 struct anon_vma *anon_vma = NULL; 503 unsigned long anon_mapping; 504 505 rcu_read_lock(); 506 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 507 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 508 goto out; 509 if (!folio_mapped(folio)) 510 goto out; 511 512 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 513 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 514 anon_vma = NULL; 515 goto out; 516 } 517 518 /* 519 * If this folio is still mapped, then its anon_vma cannot have been 520 * freed. But if it has been unmapped, we have no security against the 521 * anon_vma structure being freed and reused (for another anon_vma: 522 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() 523 * above cannot corrupt). 524 */ 525 if (!folio_mapped(folio)) { 526 rcu_read_unlock(); 527 put_anon_vma(anon_vma); 528 return NULL; 529 } 530 out: 531 rcu_read_unlock(); 532 533 return anon_vma; 534 } 535 536 /* 537 * Similar to folio_get_anon_vma() except it locks the anon_vma. 538 * 539 * Its a little more complex as it tries to keep the fast path to a single 540 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 541 * reference like with folio_get_anon_vma() and then block on the mutex 542 * on !rwc->try_lock case. 543 */ 544 struct anon_vma *folio_lock_anon_vma_read(struct folio *folio, 545 struct rmap_walk_control *rwc) 546 { 547 struct anon_vma *anon_vma = NULL; 548 struct anon_vma *root_anon_vma; 549 unsigned long anon_mapping; 550 551 retry: 552 rcu_read_lock(); 553 anon_mapping = (unsigned long)READ_ONCE(folio->mapping); 554 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 555 goto out; 556 if (!folio_mapped(folio)) 557 goto out; 558 559 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 560 root_anon_vma = READ_ONCE(anon_vma->root); 561 if (down_read_trylock(&root_anon_vma->rwsem)) { 562 /* 563 * folio_move_anon_rmap() might have changed the anon_vma as we 564 * might not hold the folio lock here. 565 */ 566 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 567 anon_mapping)) { 568 up_read(&root_anon_vma->rwsem); 569 rcu_read_unlock(); 570 goto retry; 571 } 572 573 /* 574 * If the folio is still mapped, then this anon_vma is still 575 * its anon_vma, and holding the mutex ensures that it will 576 * not go away, see anon_vma_free(). 577 */ 578 if (!folio_mapped(folio)) { 579 up_read(&root_anon_vma->rwsem); 580 anon_vma = NULL; 581 } 582 goto out; 583 } 584 585 if (rwc && rwc->try_lock) { 586 anon_vma = NULL; 587 rwc->contended = true; 588 goto out; 589 } 590 591 /* trylock failed, we got to sleep */ 592 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 593 anon_vma = NULL; 594 goto out; 595 } 596 597 if (!folio_mapped(folio)) { 598 rcu_read_unlock(); 599 put_anon_vma(anon_vma); 600 return NULL; 601 } 602 603 /* we pinned the anon_vma, its safe to sleep */ 604 rcu_read_unlock(); 605 anon_vma_lock_read(anon_vma); 606 607 /* 608 * folio_move_anon_rmap() might have changed the anon_vma as we might 609 * not hold the folio lock here. 610 */ 611 if (unlikely((unsigned long)READ_ONCE(folio->mapping) != 612 anon_mapping)) { 613 anon_vma_unlock_read(anon_vma); 614 put_anon_vma(anon_vma); 615 anon_vma = NULL; 616 goto retry; 617 } 618 619 if (atomic_dec_and_test(&anon_vma->refcount)) { 620 /* 621 * Oops, we held the last refcount, release the lock 622 * and bail -- can't simply use put_anon_vma() because 623 * we'll deadlock on the anon_vma_lock_write() recursion. 624 */ 625 anon_vma_unlock_read(anon_vma); 626 __put_anon_vma(anon_vma); 627 anon_vma = NULL; 628 } 629 630 return anon_vma; 631 632 out: 633 rcu_read_unlock(); 634 return anon_vma; 635 } 636 637 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 638 /* 639 * Flush TLB entries for recently unmapped pages from remote CPUs. It is 640 * important if a PTE was dirty when it was unmapped that it's flushed 641 * before any IO is initiated on the page to prevent lost writes. Similarly, 642 * it must be flushed before freeing to prevent data leakage. 643 */ 644 void try_to_unmap_flush(void) 645 { 646 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 647 648 if (!tlb_ubc->flush_required) 649 return; 650 651 arch_tlbbatch_flush(&tlb_ubc->arch); 652 tlb_ubc->flush_required = false; 653 tlb_ubc->writable = false; 654 } 655 656 /* Flush iff there are potentially writable TLB entries that can race with IO */ 657 void try_to_unmap_flush_dirty(void) 658 { 659 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 660 661 if (tlb_ubc->writable) 662 try_to_unmap_flush(); 663 } 664 665 /* 666 * Bits 0-14 of mm->tlb_flush_batched record pending generations. 667 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. 668 */ 669 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 670 #define TLB_FLUSH_BATCH_PENDING_MASK \ 671 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) 672 #define TLB_FLUSH_BATCH_PENDING_LARGE \ 673 (TLB_FLUSH_BATCH_PENDING_MASK / 2) 674 675 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 676 unsigned long uaddr) 677 { 678 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; 679 int batch; 680 bool writable = pte_dirty(pteval); 681 682 if (!pte_accessible(mm, pteval)) 683 return; 684 685 arch_tlbbatch_add_pending(&tlb_ubc->arch, mm, uaddr); 686 tlb_ubc->flush_required = true; 687 688 /* 689 * Ensure compiler does not re-order the setting of tlb_flush_batched 690 * before the PTE is cleared. 691 */ 692 barrier(); 693 batch = atomic_read(&mm->tlb_flush_batched); 694 retry: 695 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { 696 /* 697 * Prevent `pending' from catching up with `flushed' because of 698 * overflow. Reset `pending' and `flushed' to be 1 and 0 if 699 * `pending' becomes large. 700 */ 701 if (!atomic_try_cmpxchg(&mm->tlb_flush_batched, &batch, 1)) 702 goto retry; 703 } else { 704 atomic_inc(&mm->tlb_flush_batched); 705 } 706 707 /* 708 * If the PTE was dirty then it's best to assume it's writable. The 709 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() 710 * before the page is queued for IO. 711 */ 712 if (writable) 713 tlb_ubc->writable = true; 714 } 715 716 /* 717 * Returns true if the TLB flush should be deferred to the end of a batch of 718 * unmap operations to reduce IPIs. 719 */ 720 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 721 { 722 if (!(flags & TTU_BATCH_FLUSH)) 723 return false; 724 725 return arch_tlbbatch_should_defer(mm); 726 } 727 728 /* 729 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to 730 * releasing the PTL if TLB flushes are batched. It's possible for a parallel 731 * operation such as mprotect or munmap to race between reclaim unmapping 732 * the page and flushing the page. If this race occurs, it potentially allows 733 * access to data via a stale TLB entry. Tracking all mm's that have TLB 734 * batching in flight would be expensive during reclaim so instead track 735 * whether TLB batching occurred in the past and if so then do a flush here 736 * if required. This will cost one additional flush per reclaim cycle paid 737 * by the first operation at risk such as mprotect and mumap. 738 * 739 * This must be called under the PTL so that an access to tlb_flush_batched 740 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise 741 * via the PTL. 742 */ 743 void flush_tlb_batched_pending(struct mm_struct *mm) 744 { 745 int batch = atomic_read(&mm->tlb_flush_batched); 746 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; 747 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; 748 749 if (pending != flushed) { 750 arch_flush_tlb_batched_pending(mm); 751 /* 752 * If the new TLB flushing is pending during flushing, leave 753 * mm->tlb_flush_batched as is, to avoid losing flushing. 754 */ 755 atomic_cmpxchg(&mm->tlb_flush_batched, batch, 756 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); 757 } 758 } 759 #else 760 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, pte_t pteval, 761 unsigned long uaddr) 762 { 763 } 764 765 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) 766 { 767 return false; 768 } 769 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 770 771 /* 772 * At what user virtual address is page expected in vma? 773 * Caller should check the page is actually part of the vma. 774 */ 775 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 776 { 777 struct folio *folio = page_folio(page); 778 pgoff_t pgoff; 779 780 if (folio_test_anon(folio)) { 781 struct anon_vma *page__anon_vma = folio_anon_vma(folio); 782 /* 783 * Note: swapoff's unuse_vma() is more efficient with this 784 * check, and needs it to match anon_vma when KSM is active. 785 */ 786 if (!vma->anon_vma || !page__anon_vma || 787 vma->anon_vma->root != page__anon_vma->root) 788 return -EFAULT; 789 } else if (!vma->vm_file) { 790 return -EFAULT; 791 } else if (vma->vm_file->f_mapping != folio->mapping) { 792 return -EFAULT; 793 } 794 795 /* The !page__anon_vma above handles KSM folios */ 796 pgoff = folio->index + folio_page_idx(folio, page); 797 return vma_address(vma, pgoff, 1); 798 } 799 800 /* 801 * Returns the actual pmd_t* where we expect 'address' to be mapped from, or 802 * NULL if it doesn't exist. No guarantees / checks on what the pmd_t* 803 * represents. 804 */ 805 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 806 { 807 pgd_t *pgd; 808 p4d_t *p4d; 809 pud_t *pud; 810 pmd_t *pmd = NULL; 811 812 pgd = pgd_offset(mm, address); 813 if (!pgd_present(*pgd)) 814 goto out; 815 816 p4d = p4d_offset(pgd, address); 817 if (!p4d_present(*p4d)) 818 goto out; 819 820 pud = pud_offset(p4d, address); 821 if (!pud_present(*pud)) 822 goto out; 823 824 pmd = pmd_offset(pud, address); 825 out: 826 return pmd; 827 } 828 829 struct folio_referenced_arg { 830 int mapcount; 831 int referenced; 832 unsigned long vm_flags; 833 struct mem_cgroup *memcg; 834 }; 835 836 /* 837 * arg: folio_referenced_arg will be passed 838 */ 839 static bool folio_referenced_one(struct folio *folio, 840 struct vm_area_struct *vma, unsigned long address, void *arg) 841 { 842 struct folio_referenced_arg *pra = arg; 843 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 844 int referenced = 0; 845 unsigned long start = address, ptes = 0; 846 847 while (page_vma_mapped_walk(&pvmw)) { 848 address = pvmw.address; 849 850 if (vma->vm_flags & VM_LOCKED) { 851 if (!folio_test_large(folio) || !pvmw.pte) { 852 /* Restore the mlock which got missed */ 853 mlock_vma_folio(folio, vma); 854 page_vma_mapped_walk_done(&pvmw); 855 pra->vm_flags |= VM_LOCKED; 856 return false; /* To break the loop */ 857 } 858 /* 859 * For large folio fully mapped to VMA, will 860 * be handled after the pvmw loop. 861 * 862 * For large folio cross VMA boundaries, it's 863 * expected to be picked by page reclaim. But 864 * should skip reference of pages which are in 865 * the range of VM_LOCKED vma. As page reclaim 866 * should just count the reference of pages out 867 * the range of VM_LOCKED vma. 868 */ 869 ptes++; 870 pra->mapcount--; 871 continue; 872 } 873 874 /* 875 * Skip the non-shared swapbacked folio mapped solely by 876 * the exiting or OOM-reaped process. This avoids redundant 877 * swap-out followed by an immediate unmap. 878 */ 879 if ((!atomic_read(&vma->vm_mm->mm_users) || 880 check_stable_address_space(vma->vm_mm)) && 881 folio_test_anon(folio) && folio_test_swapbacked(folio) && 882 !folio_likely_mapped_shared(folio)) { 883 pra->referenced = -1; 884 page_vma_mapped_walk_done(&pvmw); 885 return false; 886 } 887 888 if (lru_gen_enabled() && pvmw.pte) { 889 if (lru_gen_look_around(&pvmw)) 890 referenced++; 891 } else if (pvmw.pte) { 892 if (ptep_clear_flush_young_notify(vma, address, 893 pvmw.pte)) 894 referenced++; 895 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { 896 if (pmdp_clear_flush_young_notify(vma, address, 897 pvmw.pmd)) 898 referenced++; 899 } else { 900 /* unexpected pmd-mapped folio? */ 901 WARN_ON_ONCE(1); 902 } 903 904 pra->mapcount--; 905 } 906 907 if ((vma->vm_flags & VM_LOCKED) && 908 folio_test_large(folio) && 909 folio_within_vma(folio, vma)) { 910 unsigned long s_align, e_align; 911 912 s_align = ALIGN_DOWN(start, PMD_SIZE); 913 e_align = ALIGN_DOWN(start + folio_size(folio) - 1, PMD_SIZE); 914 915 /* folio doesn't cross page table boundary and fully mapped */ 916 if ((s_align == e_align) && (ptes == folio_nr_pages(folio))) { 917 /* Restore the mlock which got missed */ 918 mlock_vma_folio(folio, vma); 919 pra->vm_flags |= VM_LOCKED; 920 return false; /* To break the loop */ 921 } 922 } 923 924 if (referenced) 925 folio_clear_idle(folio); 926 if (folio_test_clear_young(folio)) 927 referenced++; 928 929 if (referenced) { 930 pra->referenced++; 931 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; 932 } 933 934 if (!pra->mapcount) 935 return false; /* To break the loop */ 936 937 return true; 938 } 939 940 static bool invalid_folio_referenced_vma(struct vm_area_struct *vma, void *arg) 941 { 942 struct folio_referenced_arg *pra = arg; 943 struct mem_cgroup *memcg = pra->memcg; 944 945 /* 946 * Ignore references from this mapping if it has no recency. If the 947 * folio has been used in another mapping, we will catch it; if this 948 * other mapping is already gone, the unmap path will have set the 949 * referenced flag or activated the folio in zap_pte_range(). 950 */ 951 if (!vma_has_recency(vma)) 952 return true; 953 954 /* 955 * If we are reclaiming on behalf of a cgroup, skip counting on behalf 956 * of references from different cgroups. 957 */ 958 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg)) 959 return true; 960 961 return false; 962 } 963 964 /** 965 * folio_referenced() - Test if the folio was referenced. 966 * @folio: The folio to test. 967 * @is_locked: Caller holds lock on the folio. 968 * @memcg: target memory cgroup 969 * @vm_flags: A combination of all the vma->vm_flags which referenced the folio. 970 * 971 * Quick test_and_clear_referenced for all mappings of a folio, 972 * 973 * Return: The number of mappings which referenced the folio. Return -1 if 974 * the function bailed out due to rmap lock contention. 975 */ 976 int folio_referenced(struct folio *folio, int is_locked, 977 struct mem_cgroup *memcg, unsigned long *vm_flags) 978 { 979 bool we_locked = false; 980 struct folio_referenced_arg pra = { 981 .mapcount = folio_mapcount(folio), 982 .memcg = memcg, 983 }; 984 struct rmap_walk_control rwc = { 985 .rmap_one = folio_referenced_one, 986 .arg = (void *)&pra, 987 .anon_lock = folio_lock_anon_vma_read, 988 .try_lock = true, 989 .invalid_vma = invalid_folio_referenced_vma, 990 }; 991 992 *vm_flags = 0; 993 if (!pra.mapcount) 994 return 0; 995 996 if (!folio_raw_mapping(folio)) 997 return 0; 998 999 if (!is_locked && (!folio_test_anon(folio) || folio_test_ksm(folio))) { 1000 we_locked = folio_trylock(folio); 1001 if (!we_locked) 1002 return 1; 1003 } 1004 1005 rmap_walk(folio, &rwc); 1006 *vm_flags = pra.vm_flags; 1007 1008 if (we_locked) 1009 folio_unlock(folio); 1010 1011 return rwc.contended ? -1 : pra.referenced; 1012 } 1013 1014 static int page_vma_mkclean_one(struct page_vma_mapped_walk *pvmw) 1015 { 1016 int cleaned = 0; 1017 struct vm_area_struct *vma = pvmw->vma; 1018 struct mmu_notifier_range range; 1019 unsigned long address = pvmw->address; 1020 1021 /* 1022 * We have to assume the worse case ie pmd for invalidation. Note that 1023 * the folio can not be freed from this function. 1024 */ 1025 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, 1026 vma->vm_mm, address, vma_address_end(pvmw)); 1027 mmu_notifier_invalidate_range_start(&range); 1028 1029 while (page_vma_mapped_walk(pvmw)) { 1030 int ret = 0; 1031 1032 address = pvmw->address; 1033 if (pvmw->pte) { 1034 pte_t *pte = pvmw->pte; 1035 pte_t entry = ptep_get(pte); 1036 1037 if (!pte_dirty(entry) && !pte_write(entry)) 1038 continue; 1039 1040 flush_cache_page(vma, address, pte_pfn(entry)); 1041 entry = ptep_clear_flush(vma, address, pte); 1042 entry = pte_wrprotect(entry); 1043 entry = pte_mkclean(entry); 1044 set_pte_at(vma->vm_mm, address, pte, entry); 1045 ret = 1; 1046 } else { 1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1048 pmd_t *pmd = pvmw->pmd; 1049 pmd_t entry; 1050 1051 if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) 1052 continue; 1053 1054 flush_cache_range(vma, address, 1055 address + HPAGE_PMD_SIZE); 1056 entry = pmdp_invalidate(vma, address, pmd); 1057 entry = pmd_wrprotect(entry); 1058 entry = pmd_mkclean(entry); 1059 set_pmd_at(vma->vm_mm, address, pmd, entry); 1060 ret = 1; 1061 #else 1062 /* unexpected pmd-mapped folio? */ 1063 WARN_ON_ONCE(1); 1064 #endif 1065 } 1066 1067 if (ret) 1068 cleaned++; 1069 } 1070 1071 mmu_notifier_invalidate_range_end(&range); 1072 1073 return cleaned; 1074 } 1075 1076 static bool page_mkclean_one(struct folio *folio, struct vm_area_struct *vma, 1077 unsigned long address, void *arg) 1078 { 1079 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, PVMW_SYNC); 1080 int *cleaned = arg; 1081 1082 *cleaned += page_vma_mkclean_one(&pvmw); 1083 1084 return true; 1085 } 1086 1087 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 1088 { 1089 if (vma->vm_flags & VM_SHARED) 1090 return false; 1091 1092 return true; 1093 } 1094 1095 int folio_mkclean(struct folio *folio) 1096 { 1097 int cleaned = 0; 1098 struct address_space *mapping; 1099 struct rmap_walk_control rwc = { 1100 .arg = (void *)&cleaned, 1101 .rmap_one = page_mkclean_one, 1102 .invalid_vma = invalid_mkclean_vma, 1103 }; 1104 1105 BUG_ON(!folio_test_locked(folio)); 1106 1107 if (!folio_mapped(folio)) 1108 return 0; 1109 1110 mapping = folio_mapping(folio); 1111 if (!mapping) 1112 return 0; 1113 1114 rmap_walk(folio, &rwc); 1115 1116 return cleaned; 1117 } 1118 EXPORT_SYMBOL_GPL(folio_mkclean); 1119 1120 /** 1121 * pfn_mkclean_range - Cleans the PTEs (including PMDs) mapped with range of 1122 * [@pfn, @pfn + @nr_pages) at the specific offset (@pgoff) 1123 * within the @vma of shared mappings. And since clean PTEs 1124 * should also be readonly, write protects them too. 1125 * @pfn: start pfn. 1126 * @nr_pages: number of physically contiguous pages srarting with @pfn. 1127 * @pgoff: page offset that the @pfn mapped with. 1128 * @vma: vma that @pfn mapped within. 1129 * 1130 * Returns the number of cleaned PTEs (including PMDs). 1131 */ 1132 int pfn_mkclean_range(unsigned long pfn, unsigned long nr_pages, pgoff_t pgoff, 1133 struct vm_area_struct *vma) 1134 { 1135 struct page_vma_mapped_walk pvmw = { 1136 .pfn = pfn, 1137 .nr_pages = nr_pages, 1138 .pgoff = pgoff, 1139 .vma = vma, 1140 .flags = PVMW_SYNC, 1141 }; 1142 1143 if (invalid_mkclean_vma(vma, NULL)) 1144 return 0; 1145 1146 pvmw.address = vma_address(vma, pgoff, nr_pages); 1147 VM_BUG_ON_VMA(pvmw.address == -EFAULT, vma); 1148 1149 return page_vma_mkclean_one(&pvmw); 1150 } 1151 1152 static __always_inline unsigned int __folio_add_rmap(struct folio *folio, 1153 struct page *page, int nr_pages, enum rmap_level level, 1154 int *nr_pmdmapped) 1155 { 1156 atomic_t *mapped = &folio->_nr_pages_mapped; 1157 const int orig_nr_pages = nr_pages; 1158 int first = 0, nr = 0; 1159 1160 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1161 1162 switch (level) { 1163 case RMAP_LEVEL_PTE: 1164 if (!folio_test_large(folio)) { 1165 nr = atomic_inc_and_test(&folio->_mapcount); 1166 break; 1167 } 1168 1169 do { 1170 first += atomic_inc_and_test(&page->_mapcount); 1171 } while (page++, --nr_pages > 0); 1172 1173 if (first && 1174 atomic_add_return_relaxed(first, mapped) < ENTIRELY_MAPPED) 1175 nr = first; 1176 1177 atomic_add(orig_nr_pages, &folio->_large_mapcount); 1178 break; 1179 case RMAP_LEVEL_PMD: 1180 first = atomic_inc_and_test(&folio->_entire_mapcount); 1181 if (first) { 1182 nr = atomic_add_return_relaxed(ENTIRELY_MAPPED, mapped); 1183 if (likely(nr < ENTIRELY_MAPPED + ENTIRELY_MAPPED)) { 1184 *nr_pmdmapped = folio_nr_pages(folio); 1185 nr = *nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1186 /* Raced ahead of a remove and another add? */ 1187 if (unlikely(nr < 0)) 1188 nr = 0; 1189 } else { 1190 /* Raced ahead of a remove of ENTIRELY_MAPPED */ 1191 nr = 0; 1192 } 1193 } 1194 atomic_inc(&folio->_large_mapcount); 1195 break; 1196 } 1197 return nr; 1198 } 1199 1200 /** 1201 * folio_move_anon_rmap - move a folio to our anon_vma 1202 * @folio: The folio to move to our anon_vma 1203 * @vma: The vma the folio belongs to 1204 * 1205 * When a folio belongs exclusively to one process after a COW event, 1206 * that folio can be moved into the anon_vma that belongs to just that 1207 * process, so the rmap code will not search the parent or sibling processes. 1208 */ 1209 void folio_move_anon_rmap(struct folio *folio, struct vm_area_struct *vma) 1210 { 1211 void *anon_vma = vma->anon_vma; 1212 1213 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1214 VM_BUG_ON_VMA(!anon_vma, vma); 1215 1216 anon_vma += PAGE_MAPPING_ANON; 1217 /* 1218 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 1219 * simultaneously, so a concurrent reader (eg folio_referenced()'s 1220 * folio_test_anon()) will not see one without the other. 1221 */ 1222 WRITE_ONCE(folio->mapping, anon_vma); 1223 } 1224 1225 /** 1226 * __folio_set_anon - set up a new anonymous rmap for a folio 1227 * @folio: The folio to set up the new anonymous rmap for. 1228 * @vma: VM area to add the folio to. 1229 * @address: User virtual address of the mapping 1230 * @exclusive: Whether the folio is exclusive to the process. 1231 */ 1232 static void __folio_set_anon(struct folio *folio, struct vm_area_struct *vma, 1233 unsigned long address, bool exclusive) 1234 { 1235 struct anon_vma *anon_vma = vma->anon_vma; 1236 1237 BUG_ON(!anon_vma); 1238 1239 /* 1240 * If the folio isn't exclusive to this vma, we must use the _oldest_ 1241 * possible anon_vma for the folio mapping! 1242 */ 1243 if (!exclusive) 1244 anon_vma = anon_vma->root; 1245 1246 /* 1247 * page_idle does a lockless/optimistic rmap scan on folio->mapping. 1248 * Make sure the compiler doesn't split the stores of anon_vma and 1249 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code 1250 * could mistake the mapping for a struct address_space and crash. 1251 */ 1252 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1253 WRITE_ONCE(folio->mapping, (struct address_space *) anon_vma); 1254 folio->index = linear_page_index(vma, address); 1255 } 1256 1257 /** 1258 * __page_check_anon_rmap - sanity check anonymous rmap addition 1259 * @folio: The folio containing @page. 1260 * @page: the page to check the mapping of 1261 * @vma: the vm area in which the mapping is added 1262 * @address: the user virtual address mapped 1263 */ 1264 static void __page_check_anon_rmap(struct folio *folio, struct page *page, 1265 struct vm_area_struct *vma, unsigned long address) 1266 { 1267 /* 1268 * The page's anon-rmap details (mapping and index) are guaranteed to 1269 * be set up correctly at this point. 1270 * 1271 * We have exclusion against folio_add_anon_rmap_*() because the caller 1272 * always holds the page locked. 1273 * 1274 * We have exclusion against folio_add_new_anon_rmap because those pages 1275 * are initially only visible via the pagetables, and the pte is locked 1276 * over the call to folio_add_new_anon_rmap. 1277 */ 1278 VM_BUG_ON_FOLIO(folio_anon_vma(folio)->root != vma->anon_vma->root, 1279 folio); 1280 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), 1281 page); 1282 } 1283 1284 static void __folio_mod_stat(struct folio *folio, int nr, int nr_pmdmapped) 1285 { 1286 int idx; 1287 1288 if (nr) { 1289 idx = folio_test_anon(folio) ? NR_ANON_MAPPED : NR_FILE_MAPPED; 1290 __lruvec_stat_mod_folio(folio, idx, nr); 1291 } 1292 if (nr_pmdmapped) { 1293 if (folio_test_anon(folio)) { 1294 idx = NR_ANON_THPS; 1295 __lruvec_stat_mod_folio(folio, idx, nr_pmdmapped); 1296 } else { 1297 /* NR_*_PMDMAPPED are not maintained per-memcg */ 1298 idx = folio_test_swapbacked(folio) ? 1299 NR_SHMEM_PMDMAPPED : NR_FILE_PMDMAPPED; 1300 __mod_node_page_state(folio_pgdat(folio), idx, 1301 nr_pmdmapped); 1302 } 1303 } 1304 } 1305 1306 static __always_inline void __folio_add_anon_rmap(struct folio *folio, 1307 struct page *page, int nr_pages, struct vm_area_struct *vma, 1308 unsigned long address, rmap_t flags, enum rmap_level level) 1309 { 1310 int i, nr, nr_pmdmapped = 0; 1311 1312 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 1313 1314 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1315 1316 if (likely(!folio_test_ksm(folio))) 1317 __page_check_anon_rmap(folio, page, vma, address); 1318 1319 __folio_mod_stat(folio, nr, nr_pmdmapped); 1320 1321 if (flags & RMAP_EXCLUSIVE) { 1322 switch (level) { 1323 case RMAP_LEVEL_PTE: 1324 for (i = 0; i < nr_pages; i++) 1325 SetPageAnonExclusive(page + i); 1326 break; 1327 case RMAP_LEVEL_PMD: 1328 SetPageAnonExclusive(page); 1329 break; 1330 } 1331 } 1332 for (i = 0; i < nr_pages; i++) { 1333 struct page *cur_page = page + i; 1334 1335 /* While PTE-mapping a THP we have a PMD and a PTE mapping. */ 1336 VM_WARN_ON_FOLIO((atomic_read(&cur_page->_mapcount) > 0 || 1337 (folio_test_large(folio) && 1338 folio_entire_mapcount(folio) > 1)) && 1339 PageAnonExclusive(cur_page), folio); 1340 } 1341 1342 /* 1343 * For large folio, only mlock it if it's fully mapped to VMA. It's 1344 * not easy to check whether the large folio is fully mapped to VMA 1345 * here. Only mlock normal 4K folio and leave page reclaim to handle 1346 * large folio. 1347 */ 1348 if (!folio_test_large(folio)) 1349 mlock_vma_folio(folio, vma); 1350 } 1351 1352 /** 1353 * folio_add_anon_rmap_ptes - add PTE mappings to a page range of an anon folio 1354 * @folio: The folio to add the mappings to 1355 * @page: The first page to add 1356 * @nr_pages: The number of pages which will be mapped 1357 * @vma: The vm area in which the mappings are added 1358 * @address: The user virtual address of the first page to map 1359 * @flags: The rmap flags 1360 * 1361 * The page range of folio is defined by [first_page, first_page + nr_pages) 1362 * 1363 * The caller needs to hold the page table lock, and the page must be locked in 1364 * the anon_vma case: to serialize mapping,index checking after setting, 1365 * and to ensure that an anon folio is not being upgraded racily to a KSM folio 1366 * (but KSM folios are never downgraded). 1367 */ 1368 void folio_add_anon_rmap_ptes(struct folio *folio, struct page *page, 1369 int nr_pages, struct vm_area_struct *vma, unsigned long address, 1370 rmap_t flags) 1371 { 1372 __folio_add_anon_rmap(folio, page, nr_pages, vma, address, flags, 1373 RMAP_LEVEL_PTE); 1374 } 1375 1376 /** 1377 * folio_add_anon_rmap_pmd - add a PMD mapping to a page range of an anon folio 1378 * @folio: The folio to add the mapping to 1379 * @page: The first page to add 1380 * @vma: The vm area in which the mapping is added 1381 * @address: The user virtual address of the first page to map 1382 * @flags: The rmap flags 1383 * 1384 * The page range of folio is defined by [first_page, first_page + HPAGE_PMD_NR) 1385 * 1386 * The caller needs to hold the page table lock, and the page must be locked in 1387 * the anon_vma case: to serialize mapping,index checking after setting. 1388 */ 1389 void folio_add_anon_rmap_pmd(struct folio *folio, struct page *page, 1390 struct vm_area_struct *vma, unsigned long address, rmap_t flags) 1391 { 1392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1393 __folio_add_anon_rmap(folio, page, HPAGE_PMD_NR, vma, address, flags, 1394 RMAP_LEVEL_PMD); 1395 #else 1396 WARN_ON_ONCE(true); 1397 #endif 1398 } 1399 1400 /** 1401 * folio_add_new_anon_rmap - Add mapping to a new anonymous folio. 1402 * @folio: The folio to add the mapping to. 1403 * @vma: the vm area in which the mapping is added 1404 * @address: the user virtual address mapped 1405 * @flags: The rmap flags 1406 * 1407 * Like folio_add_anon_rmap_*() but must only be called on *new* folios. 1408 * This means the inc-and-test can be bypassed. 1409 * The folio doesn't necessarily need to be locked while it's exclusive 1410 * unless two threads map it concurrently. However, the folio must be 1411 * locked if it's shared. 1412 * 1413 * If the folio is pmd-mappable, it is accounted as a THP. 1414 */ 1415 void folio_add_new_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 1416 unsigned long address, rmap_t flags) 1417 { 1418 const int nr = folio_nr_pages(folio); 1419 const bool exclusive = flags & RMAP_EXCLUSIVE; 1420 int nr_pmdmapped = 0; 1421 1422 VM_WARN_ON_FOLIO(folio_test_hugetlb(folio), folio); 1423 VM_WARN_ON_FOLIO(!exclusive && !folio_test_locked(folio), folio); 1424 VM_BUG_ON_VMA(address < vma->vm_start || 1425 address + (nr << PAGE_SHIFT) > vma->vm_end, vma); 1426 1427 /* 1428 * VM_DROPPABLE mappings don't swap; instead they're just dropped when 1429 * under memory pressure. 1430 */ 1431 if (!folio_test_swapbacked(folio) && !(vma->vm_flags & VM_DROPPABLE)) 1432 __folio_set_swapbacked(folio); 1433 __folio_set_anon(folio, vma, address, exclusive); 1434 1435 if (likely(!folio_test_large(folio))) { 1436 /* increment count (starts at -1) */ 1437 atomic_set(&folio->_mapcount, 0); 1438 if (exclusive) 1439 SetPageAnonExclusive(&folio->page); 1440 } else if (!folio_test_pmd_mappable(folio)) { 1441 int i; 1442 1443 for (i = 0; i < nr; i++) { 1444 struct page *page = folio_page(folio, i); 1445 1446 /* increment count (starts at -1) */ 1447 atomic_set(&page->_mapcount, 0); 1448 if (exclusive) 1449 SetPageAnonExclusive(page); 1450 } 1451 1452 /* increment count (starts at -1) */ 1453 atomic_set(&folio->_large_mapcount, nr - 1); 1454 atomic_set(&folio->_nr_pages_mapped, nr); 1455 } else { 1456 /* increment count (starts at -1) */ 1457 atomic_set(&folio->_entire_mapcount, 0); 1458 /* increment count (starts at -1) */ 1459 atomic_set(&folio->_large_mapcount, 0); 1460 atomic_set(&folio->_nr_pages_mapped, ENTIRELY_MAPPED); 1461 if (exclusive) 1462 SetPageAnonExclusive(&folio->page); 1463 nr_pmdmapped = nr; 1464 } 1465 1466 __folio_mod_stat(folio, nr, nr_pmdmapped); 1467 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON, 1); 1468 } 1469 1470 static __always_inline void __folio_add_file_rmap(struct folio *folio, 1471 struct page *page, int nr_pages, struct vm_area_struct *vma, 1472 enum rmap_level level) 1473 { 1474 int nr, nr_pmdmapped = 0; 1475 1476 VM_WARN_ON_FOLIO(folio_test_anon(folio), folio); 1477 1478 nr = __folio_add_rmap(folio, page, nr_pages, level, &nr_pmdmapped); 1479 __folio_mod_stat(folio, nr, nr_pmdmapped); 1480 1481 /* See comments in folio_add_anon_rmap_*() */ 1482 if (!folio_test_large(folio)) 1483 mlock_vma_folio(folio, vma); 1484 } 1485 1486 /** 1487 * folio_add_file_rmap_ptes - add PTE mappings to a page range of a folio 1488 * @folio: The folio to add the mappings to 1489 * @page: The first page to add 1490 * @nr_pages: The number of pages that will be mapped using PTEs 1491 * @vma: The vm area in which the mappings are added 1492 * 1493 * The page range of the folio is defined by [page, page + nr_pages) 1494 * 1495 * The caller needs to hold the page table lock. 1496 */ 1497 void folio_add_file_rmap_ptes(struct folio *folio, struct page *page, 1498 int nr_pages, struct vm_area_struct *vma) 1499 { 1500 __folio_add_file_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1501 } 1502 1503 /** 1504 * folio_add_file_rmap_pmd - add a PMD mapping to a page range of a folio 1505 * @folio: The folio to add the mapping to 1506 * @page: The first page to add 1507 * @vma: The vm area in which the mapping is added 1508 * 1509 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1510 * 1511 * The caller needs to hold the page table lock. 1512 */ 1513 void folio_add_file_rmap_pmd(struct folio *folio, struct page *page, 1514 struct vm_area_struct *vma) 1515 { 1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1517 __folio_add_file_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1518 #else 1519 WARN_ON_ONCE(true); 1520 #endif 1521 } 1522 1523 static __always_inline void __folio_remove_rmap(struct folio *folio, 1524 struct page *page, int nr_pages, struct vm_area_struct *vma, 1525 enum rmap_level level) 1526 { 1527 atomic_t *mapped = &folio->_nr_pages_mapped; 1528 int last = 0, nr = 0, nr_pmdmapped = 0; 1529 bool partially_mapped = false; 1530 1531 __folio_rmap_sanity_checks(folio, page, nr_pages, level); 1532 1533 switch (level) { 1534 case RMAP_LEVEL_PTE: 1535 if (!folio_test_large(folio)) { 1536 nr = atomic_add_negative(-1, &folio->_mapcount); 1537 break; 1538 } 1539 1540 atomic_sub(nr_pages, &folio->_large_mapcount); 1541 do { 1542 last += atomic_add_negative(-1, &page->_mapcount); 1543 } while (page++, --nr_pages > 0); 1544 1545 if (last && 1546 atomic_sub_return_relaxed(last, mapped) < ENTIRELY_MAPPED) 1547 nr = last; 1548 1549 partially_mapped = nr && atomic_read(mapped); 1550 break; 1551 case RMAP_LEVEL_PMD: 1552 atomic_dec(&folio->_large_mapcount); 1553 last = atomic_add_negative(-1, &folio->_entire_mapcount); 1554 if (last) { 1555 nr = atomic_sub_return_relaxed(ENTIRELY_MAPPED, mapped); 1556 if (likely(nr < ENTIRELY_MAPPED)) { 1557 nr_pmdmapped = folio_nr_pages(folio); 1558 nr = nr_pmdmapped - (nr & FOLIO_PAGES_MAPPED); 1559 /* Raced ahead of another remove and an add? */ 1560 if (unlikely(nr < 0)) 1561 nr = 0; 1562 } else { 1563 /* An add of ENTIRELY_MAPPED raced ahead */ 1564 nr = 0; 1565 } 1566 } 1567 1568 partially_mapped = nr && nr < nr_pmdmapped; 1569 break; 1570 } 1571 1572 /* 1573 * Queue anon large folio for deferred split if at least one page of 1574 * the folio is unmapped and at least one page is still mapped. 1575 * 1576 * Check partially_mapped first to ensure it is a large folio. 1577 */ 1578 if (partially_mapped && folio_test_anon(folio) && 1579 !folio_test_partially_mapped(folio)) 1580 deferred_split_folio(folio, true); 1581 1582 __folio_mod_stat(folio, -nr, -nr_pmdmapped); 1583 1584 /* 1585 * It would be tidy to reset folio_test_anon mapping when fully 1586 * unmapped, but that might overwrite a racing folio_add_anon_rmap_*() 1587 * which increments mapcount after us but sets mapping before us: 1588 * so leave the reset to free_pages_prepare, and remember that 1589 * it's only reliable while mapped. 1590 */ 1591 1592 munlock_vma_folio(folio, vma); 1593 } 1594 1595 /** 1596 * folio_remove_rmap_ptes - remove PTE mappings from a page range of a folio 1597 * @folio: The folio to remove the mappings from 1598 * @page: The first page to remove 1599 * @nr_pages: The number of pages that will be removed from the mapping 1600 * @vma: The vm area from which the mappings are removed 1601 * 1602 * The page range of the folio is defined by [page, page + nr_pages) 1603 * 1604 * The caller needs to hold the page table lock. 1605 */ 1606 void folio_remove_rmap_ptes(struct folio *folio, struct page *page, 1607 int nr_pages, struct vm_area_struct *vma) 1608 { 1609 __folio_remove_rmap(folio, page, nr_pages, vma, RMAP_LEVEL_PTE); 1610 } 1611 1612 /** 1613 * folio_remove_rmap_pmd - remove a PMD mapping from a page range of a folio 1614 * @folio: The folio to remove the mapping from 1615 * @page: The first page to remove 1616 * @vma: The vm area from which the mapping is removed 1617 * 1618 * The page range of the folio is defined by [page, page + HPAGE_PMD_NR) 1619 * 1620 * The caller needs to hold the page table lock. 1621 */ 1622 void folio_remove_rmap_pmd(struct folio *folio, struct page *page, 1623 struct vm_area_struct *vma) 1624 { 1625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1626 __folio_remove_rmap(folio, page, HPAGE_PMD_NR, vma, RMAP_LEVEL_PMD); 1627 #else 1628 WARN_ON_ONCE(true); 1629 #endif 1630 } 1631 1632 /* 1633 * @arg: enum ttu_flags will be passed to this argument 1634 */ 1635 static bool try_to_unmap_one(struct folio *folio, struct vm_area_struct *vma, 1636 unsigned long address, void *arg) 1637 { 1638 struct mm_struct *mm = vma->vm_mm; 1639 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 1640 pte_t pteval; 1641 struct page *subpage; 1642 bool anon_exclusive, ret = true; 1643 struct mmu_notifier_range range; 1644 enum ttu_flags flags = (enum ttu_flags)(long)arg; 1645 unsigned long pfn; 1646 unsigned long hsz = 0; 1647 1648 /* 1649 * When racing against e.g. zap_pte_range() on another cpu, 1650 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 1651 * try_to_unmap() may return before page_mapped() has become false, 1652 * if page table locking is skipped: use TTU_SYNC to wait for that. 1653 */ 1654 if (flags & TTU_SYNC) 1655 pvmw.flags = PVMW_SYNC; 1656 1657 /* 1658 * For THP, we have to assume the worse case ie pmd for invalidation. 1659 * For hugetlb, it could be much worse if we need to do pud 1660 * invalidation in the case of pmd sharing. 1661 * 1662 * Note that the folio can not be freed in this function as call of 1663 * try_to_unmap() must hold a reference on the folio. 1664 */ 1665 range.end = vma_address_end(&pvmw); 1666 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1667 address, range.end); 1668 if (folio_test_hugetlb(folio)) { 1669 /* 1670 * If sharing is possible, start and end will be adjusted 1671 * accordingly. 1672 */ 1673 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1674 &range.end); 1675 1676 /* We need the huge page size for set_huge_pte_at() */ 1677 hsz = huge_page_size(hstate_vma(vma)); 1678 } 1679 mmu_notifier_invalidate_range_start(&range); 1680 1681 while (page_vma_mapped_walk(&pvmw)) { 1682 /* 1683 * If the folio is in an mlock()d vma, we must not swap it out. 1684 */ 1685 if (!(flags & TTU_IGNORE_MLOCK) && 1686 (vma->vm_flags & VM_LOCKED)) { 1687 /* Restore the mlock which got missed */ 1688 if (!folio_test_large(folio)) 1689 mlock_vma_folio(folio, vma); 1690 goto walk_abort; 1691 } 1692 1693 if (!pvmw.pte) { 1694 if (unmap_huge_pmd_locked(vma, pvmw.address, pvmw.pmd, 1695 folio)) 1696 goto walk_done; 1697 1698 if (flags & TTU_SPLIT_HUGE_PMD) { 1699 /* 1700 * We temporarily have to drop the PTL and 1701 * restart so we can process the PTE-mapped THP. 1702 */ 1703 split_huge_pmd_locked(vma, pvmw.address, 1704 pvmw.pmd, false, folio); 1705 flags &= ~TTU_SPLIT_HUGE_PMD; 1706 page_vma_mapped_walk_restart(&pvmw); 1707 continue; 1708 } 1709 } 1710 1711 /* Unexpected PMD-mapped THP? */ 1712 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 1713 1714 pfn = pte_pfn(ptep_get(pvmw.pte)); 1715 subpage = folio_page(folio, pfn - folio_pfn(folio)); 1716 address = pvmw.address; 1717 anon_exclusive = folio_test_anon(folio) && 1718 PageAnonExclusive(subpage); 1719 1720 if (folio_test_hugetlb(folio)) { 1721 bool anon = folio_test_anon(folio); 1722 1723 /* 1724 * The try_to_unmap() is only passed a hugetlb page 1725 * in the case where the hugetlb page is poisoned. 1726 */ 1727 VM_BUG_ON_PAGE(!PageHWPoison(subpage), subpage); 1728 /* 1729 * huge_pmd_unshare may unmap an entire PMD page. 1730 * There is no way of knowing exactly which PMDs may 1731 * be cached for this mm, so we must flush them all. 1732 * start/end were already adjusted above to cover this 1733 * range. 1734 */ 1735 flush_cache_range(vma, range.start, range.end); 1736 1737 /* 1738 * To call huge_pmd_unshare, i_mmap_rwsem must be 1739 * held in write mode. Caller needs to explicitly 1740 * do this outside rmap routines. 1741 * 1742 * We also must hold hugetlb vma_lock in write mode. 1743 * Lock order dictates acquiring vma_lock BEFORE 1744 * i_mmap_rwsem. We can only try lock here and fail 1745 * if unsuccessful. 1746 */ 1747 if (!anon) { 1748 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 1749 if (!hugetlb_vma_trylock_write(vma)) 1750 goto walk_abort; 1751 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 1752 hugetlb_vma_unlock_write(vma); 1753 flush_tlb_range(vma, 1754 range.start, range.end); 1755 /* 1756 * The ref count of the PMD page was 1757 * dropped which is part of the way map 1758 * counting is done for shared PMDs. 1759 * Return 'true' here. When there is 1760 * no other sharing, huge_pmd_unshare 1761 * returns false and we will unmap the 1762 * actual page and drop map count 1763 * to zero. 1764 */ 1765 goto walk_done; 1766 } 1767 hugetlb_vma_unlock_write(vma); 1768 } 1769 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 1770 } else { 1771 flush_cache_page(vma, address, pfn); 1772 /* Nuke the page table entry. */ 1773 if (should_defer_flush(mm, flags)) { 1774 /* 1775 * We clear the PTE but do not flush so potentially 1776 * a remote CPU could still be writing to the folio. 1777 * If the entry was previously clean then the 1778 * architecture must guarantee that a clear->dirty 1779 * transition on a cached TLB entry is written through 1780 * and traps if the PTE is unmapped. 1781 */ 1782 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 1783 1784 set_tlb_ubc_flush_pending(mm, pteval, address); 1785 } else { 1786 pteval = ptep_clear_flush(vma, address, pvmw.pte); 1787 } 1788 } 1789 1790 /* 1791 * Now the pte is cleared. If this pte was uffd-wp armed, 1792 * we may want to replace a none pte with a marker pte if 1793 * it's file-backed, so we don't lose the tracking info. 1794 */ 1795 pte_install_uffd_wp_if_needed(vma, address, pvmw.pte, pteval); 1796 1797 /* Set the dirty flag on the folio now the pte is gone. */ 1798 if (pte_dirty(pteval)) 1799 folio_mark_dirty(folio); 1800 1801 /* Update high watermark before we lower rss */ 1802 update_hiwater_rss(mm); 1803 1804 if (PageHWPoison(subpage) && (flags & TTU_HWPOISON)) { 1805 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 1806 if (folio_test_hugetlb(folio)) { 1807 hugetlb_count_sub(folio_nr_pages(folio), mm); 1808 set_huge_pte_at(mm, address, pvmw.pte, pteval, 1809 hsz); 1810 } else { 1811 dec_mm_counter(mm, mm_counter(folio)); 1812 set_pte_at(mm, address, pvmw.pte, pteval); 1813 } 1814 1815 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 1816 /* 1817 * The guest indicated that the page content is of no 1818 * interest anymore. Simply discard the pte, vmscan 1819 * will take care of the rest. 1820 * A future reference will then fault in a new zero 1821 * page. When userfaultfd is active, we must not drop 1822 * this page though, as its main user (postcopy 1823 * migration) will not expect userfaults on already 1824 * copied pages. 1825 */ 1826 dec_mm_counter(mm, mm_counter(folio)); 1827 } else if (folio_test_anon(folio)) { 1828 swp_entry_t entry = page_swap_entry(subpage); 1829 pte_t swp_pte; 1830 /* 1831 * Store the swap location in the pte. 1832 * See handle_pte_fault() ... 1833 */ 1834 if (unlikely(folio_test_swapbacked(folio) != 1835 folio_test_swapcache(folio))) { 1836 WARN_ON_ONCE(1); 1837 goto walk_abort; 1838 } 1839 1840 /* MADV_FREE page check */ 1841 if (!folio_test_swapbacked(folio)) { 1842 int ref_count, map_count; 1843 1844 /* 1845 * Synchronize with gup_pte_range(): 1846 * - clear PTE; barrier; read refcount 1847 * - inc refcount; barrier; read PTE 1848 */ 1849 smp_mb(); 1850 1851 ref_count = folio_ref_count(folio); 1852 map_count = folio_mapcount(folio); 1853 1854 /* 1855 * Order reads for page refcount and dirty flag 1856 * (see comments in __remove_mapping()). 1857 */ 1858 smp_rmb(); 1859 1860 /* 1861 * The only page refs must be one from isolation 1862 * plus the rmap(s) (dropped by discard:). 1863 */ 1864 if (ref_count == 1 + map_count && 1865 (!folio_test_dirty(folio) || 1866 /* 1867 * Unlike MADV_FREE mappings, VM_DROPPABLE 1868 * ones can be dropped even if they've 1869 * been dirtied. 1870 */ 1871 (vma->vm_flags & VM_DROPPABLE))) { 1872 dec_mm_counter(mm, MM_ANONPAGES); 1873 goto discard; 1874 } 1875 1876 /* 1877 * If the folio was redirtied, it cannot be 1878 * discarded. Remap the page to page table. 1879 */ 1880 set_pte_at(mm, address, pvmw.pte, pteval); 1881 /* 1882 * Unlike MADV_FREE mappings, VM_DROPPABLE ones 1883 * never get swap backed on failure to drop. 1884 */ 1885 if (!(vma->vm_flags & VM_DROPPABLE)) 1886 folio_set_swapbacked(folio); 1887 goto walk_abort; 1888 } 1889 1890 if (swap_duplicate(entry) < 0) { 1891 set_pte_at(mm, address, pvmw.pte, pteval); 1892 goto walk_abort; 1893 } 1894 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 1895 swap_free(entry); 1896 set_pte_at(mm, address, pvmw.pte, pteval); 1897 goto walk_abort; 1898 } 1899 1900 /* See folio_try_share_anon_rmap(): clear PTE first. */ 1901 if (anon_exclusive && 1902 folio_try_share_anon_rmap_pte(folio, subpage)) { 1903 swap_free(entry); 1904 set_pte_at(mm, address, pvmw.pte, pteval); 1905 goto walk_abort; 1906 } 1907 if (list_empty(&mm->mmlist)) { 1908 spin_lock(&mmlist_lock); 1909 if (list_empty(&mm->mmlist)) 1910 list_add(&mm->mmlist, &init_mm.mmlist); 1911 spin_unlock(&mmlist_lock); 1912 } 1913 dec_mm_counter(mm, MM_ANONPAGES); 1914 inc_mm_counter(mm, MM_SWAPENTS); 1915 swp_pte = swp_entry_to_pte(entry); 1916 if (anon_exclusive) 1917 swp_pte = pte_swp_mkexclusive(swp_pte); 1918 if (pte_soft_dirty(pteval)) 1919 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1920 if (pte_uffd_wp(pteval)) 1921 swp_pte = pte_swp_mkuffd_wp(swp_pte); 1922 set_pte_at(mm, address, pvmw.pte, swp_pte); 1923 } else { 1924 /* 1925 * This is a locked file-backed folio, 1926 * so it cannot be removed from the page 1927 * cache and replaced by a new folio before 1928 * mmu_notifier_invalidate_range_end, so no 1929 * concurrent thread might update its page table 1930 * to point at a new folio while a device is 1931 * still using this folio. 1932 * 1933 * See Documentation/mm/mmu_notifier.rst 1934 */ 1935 dec_mm_counter(mm, mm_counter_file(folio)); 1936 } 1937 discard: 1938 if (unlikely(folio_test_hugetlb(folio))) 1939 hugetlb_remove_rmap(folio); 1940 else 1941 folio_remove_rmap_pte(folio, subpage, vma); 1942 if (vma->vm_flags & VM_LOCKED) 1943 mlock_drain_local(); 1944 folio_put(folio); 1945 continue; 1946 walk_abort: 1947 ret = false; 1948 walk_done: 1949 page_vma_mapped_walk_done(&pvmw); 1950 break; 1951 } 1952 1953 mmu_notifier_invalidate_range_end(&range); 1954 1955 return ret; 1956 } 1957 1958 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1959 { 1960 return vma_is_temporary_stack(vma); 1961 } 1962 1963 static int folio_not_mapped(struct folio *folio) 1964 { 1965 return !folio_mapped(folio); 1966 } 1967 1968 /** 1969 * try_to_unmap - Try to remove all page table mappings to a folio. 1970 * @folio: The folio to unmap. 1971 * @flags: action and flags 1972 * 1973 * Tries to remove all the page table entries which are mapping this 1974 * folio. It is the caller's responsibility to check if the folio is 1975 * still mapped if needed (use TTU_SYNC to prevent accounting races). 1976 * 1977 * Context: Caller must hold the folio lock. 1978 */ 1979 void try_to_unmap(struct folio *folio, enum ttu_flags flags) 1980 { 1981 struct rmap_walk_control rwc = { 1982 .rmap_one = try_to_unmap_one, 1983 .arg = (void *)flags, 1984 .done = folio_not_mapped, 1985 .anon_lock = folio_lock_anon_vma_read, 1986 }; 1987 1988 if (flags & TTU_RMAP_LOCKED) 1989 rmap_walk_locked(folio, &rwc); 1990 else 1991 rmap_walk(folio, &rwc); 1992 } 1993 1994 /* 1995 * @arg: enum ttu_flags will be passed to this argument. 1996 * 1997 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs 1998 * containing migration entries. 1999 */ 2000 static bool try_to_migrate_one(struct folio *folio, struct vm_area_struct *vma, 2001 unsigned long address, void *arg) 2002 { 2003 struct mm_struct *mm = vma->vm_mm; 2004 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2005 pte_t pteval; 2006 struct page *subpage; 2007 bool anon_exclusive, ret = true; 2008 struct mmu_notifier_range range; 2009 enum ttu_flags flags = (enum ttu_flags)(long)arg; 2010 unsigned long pfn; 2011 unsigned long hsz = 0; 2012 2013 /* 2014 * When racing against e.g. zap_pte_range() on another cpu, 2015 * in between its ptep_get_and_clear_full() and folio_remove_rmap_*(), 2016 * try_to_migrate() may return before page_mapped() has become false, 2017 * if page table locking is skipped: use TTU_SYNC to wait for that. 2018 */ 2019 if (flags & TTU_SYNC) 2020 pvmw.flags = PVMW_SYNC; 2021 2022 /* 2023 * unmap_page() in mm/huge_memory.c is the only user of migration with 2024 * TTU_SPLIT_HUGE_PMD and it wants to freeze. 2025 */ 2026 if (flags & TTU_SPLIT_HUGE_PMD) 2027 split_huge_pmd_address(vma, address, true, folio); 2028 2029 /* 2030 * For THP, we have to assume the worse case ie pmd for invalidation. 2031 * For hugetlb, it could be much worse if we need to do pud 2032 * invalidation in the case of pmd sharing. 2033 * 2034 * Note that the page can not be free in this function as call of 2035 * try_to_unmap() must hold a reference on the page. 2036 */ 2037 range.end = vma_address_end(&pvmw); 2038 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2039 address, range.end); 2040 if (folio_test_hugetlb(folio)) { 2041 /* 2042 * If sharing is possible, start and end will be adjusted 2043 * accordingly. 2044 */ 2045 adjust_range_if_pmd_sharing_possible(vma, &range.start, 2046 &range.end); 2047 2048 /* We need the huge page size for set_huge_pte_at() */ 2049 hsz = huge_page_size(hstate_vma(vma)); 2050 } 2051 mmu_notifier_invalidate_range_start(&range); 2052 2053 while (page_vma_mapped_walk(&pvmw)) { 2054 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2055 /* PMD-mapped THP migration entry */ 2056 if (!pvmw.pte) { 2057 subpage = folio_page(folio, 2058 pmd_pfn(*pvmw.pmd) - folio_pfn(folio)); 2059 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) || 2060 !folio_test_pmd_mappable(folio), folio); 2061 2062 if (set_pmd_migration_entry(&pvmw, subpage)) { 2063 ret = false; 2064 page_vma_mapped_walk_done(&pvmw); 2065 break; 2066 } 2067 continue; 2068 } 2069 #endif 2070 2071 /* Unexpected PMD-mapped THP? */ 2072 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2073 2074 pfn = pte_pfn(ptep_get(pvmw.pte)); 2075 2076 if (folio_is_zone_device(folio)) { 2077 /* 2078 * Our PTE is a non-present device exclusive entry and 2079 * calculating the subpage as for the common case would 2080 * result in an invalid pointer. 2081 * 2082 * Since only PAGE_SIZE pages can currently be 2083 * migrated, just set it to page. This will need to be 2084 * changed when hugepage migrations to device private 2085 * memory are supported. 2086 */ 2087 VM_BUG_ON_FOLIO(folio_nr_pages(folio) > 1, folio); 2088 subpage = &folio->page; 2089 } else { 2090 subpage = folio_page(folio, pfn - folio_pfn(folio)); 2091 } 2092 address = pvmw.address; 2093 anon_exclusive = folio_test_anon(folio) && 2094 PageAnonExclusive(subpage); 2095 2096 if (folio_test_hugetlb(folio)) { 2097 bool anon = folio_test_anon(folio); 2098 2099 /* 2100 * huge_pmd_unshare may unmap an entire PMD page. 2101 * There is no way of knowing exactly which PMDs may 2102 * be cached for this mm, so we must flush them all. 2103 * start/end were already adjusted above to cover this 2104 * range. 2105 */ 2106 flush_cache_range(vma, range.start, range.end); 2107 2108 /* 2109 * To call huge_pmd_unshare, i_mmap_rwsem must be 2110 * held in write mode. Caller needs to explicitly 2111 * do this outside rmap routines. 2112 * 2113 * We also must hold hugetlb vma_lock in write mode. 2114 * Lock order dictates acquiring vma_lock BEFORE 2115 * i_mmap_rwsem. We can only try lock here and 2116 * fail if unsuccessful. 2117 */ 2118 if (!anon) { 2119 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); 2120 if (!hugetlb_vma_trylock_write(vma)) { 2121 page_vma_mapped_walk_done(&pvmw); 2122 ret = false; 2123 break; 2124 } 2125 if (huge_pmd_unshare(mm, vma, address, pvmw.pte)) { 2126 hugetlb_vma_unlock_write(vma); 2127 flush_tlb_range(vma, 2128 range.start, range.end); 2129 2130 /* 2131 * The ref count of the PMD page was 2132 * dropped which is part of the way map 2133 * counting is done for shared PMDs. 2134 * Return 'true' here. When there is 2135 * no other sharing, huge_pmd_unshare 2136 * returns false and we will unmap the 2137 * actual page and drop map count 2138 * to zero. 2139 */ 2140 page_vma_mapped_walk_done(&pvmw); 2141 break; 2142 } 2143 hugetlb_vma_unlock_write(vma); 2144 } 2145 /* Nuke the hugetlb page table entry */ 2146 pteval = huge_ptep_clear_flush(vma, address, pvmw.pte); 2147 } else { 2148 flush_cache_page(vma, address, pfn); 2149 /* Nuke the page table entry. */ 2150 if (should_defer_flush(mm, flags)) { 2151 /* 2152 * We clear the PTE but do not flush so potentially 2153 * a remote CPU could still be writing to the folio. 2154 * If the entry was previously clean then the 2155 * architecture must guarantee that a clear->dirty 2156 * transition on a cached TLB entry is written through 2157 * and traps if the PTE is unmapped. 2158 */ 2159 pteval = ptep_get_and_clear(mm, address, pvmw.pte); 2160 2161 set_tlb_ubc_flush_pending(mm, pteval, address); 2162 } else { 2163 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2164 } 2165 } 2166 2167 /* Set the dirty flag on the folio now the pte is gone. */ 2168 if (pte_dirty(pteval)) 2169 folio_mark_dirty(folio); 2170 2171 /* Update high watermark before we lower rss */ 2172 update_hiwater_rss(mm); 2173 2174 if (folio_is_device_private(folio)) { 2175 unsigned long pfn = folio_pfn(folio); 2176 swp_entry_t entry; 2177 pte_t swp_pte; 2178 2179 if (anon_exclusive) 2180 WARN_ON_ONCE(folio_try_share_anon_rmap_pte(folio, 2181 subpage)); 2182 2183 /* 2184 * Store the pfn of the page in a special migration 2185 * pte. do_swap_page() will wait until the migration 2186 * pte is removed and then restart fault handling. 2187 */ 2188 entry = pte_to_swp_entry(pteval); 2189 if (is_writable_device_private_entry(entry)) 2190 entry = make_writable_migration_entry(pfn); 2191 else if (anon_exclusive) 2192 entry = make_readable_exclusive_migration_entry(pfn); 2193 else 2194 entry = make_readable_migration_entry(pfn); 2195 swp_pte = swp_entry_to_pte(entry); 2196 2197 /* 2198 * pteval maps a zone device page and is therefore 2199 * a swap pte. 2200 */ 2201 if (pte_swp_soft_dirty(pteval)) 2202 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2203 if (pte_swp_uffd_wp(pteval)) 2204 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2205 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); 2206 trace_set_migration_pte(pvmw.address, pte_val(swp_pte), 2207 folio_order(folio)); 2208 /* 2209 * No need to invalidate here it will synchronize on 2210 * against the special swap migration pte. 2211 */ 2212 } else if (PageHWPoison(subpage)) { 2213 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); 2214 if (folio_test_hugetlb(folio)) { 2215 hugetlb_count_sub(folio_nr_pages(folio), mm); 2216 set_huge_pte_at(mm, address, pvmw.pte, pteval, 2217 hsz); 2218 } else { 2219 dec_mm_counter(mm, mm_counter(folio)); 2220 set_pte_at(mm, address, pvmw.pte, pteval); 2221 } 2222 2223 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { 2224 /* 2225 * The guest indicated that the page content is of no 2226 * interest anymore. Simply discard the pte, vmscan 2227 * will take care of the rest. 2228 * A future reference will then fault in a new zero 2229 * page. When userfaultfd is active, we must not drop 2230 * this page though, as its main user (postcopy 2231 * migration) will not expect userfaults on already 2232 * copied pages. 2233 */ 2234 dec_mm_counter(mm, mm_counter(folio)); 2235 } else { 2236 swp_entry_t entry; 2237 pte_t swp_pte; 2238 2239 if (arch_unmap_one(mm, vma, address, pteval) < 0) { 2240 if (folio_test_hugetlb(folio)) 2241 set_huge_pte_at(mm, address, pvmw.pte, 2242 pteval, hsz); 2243 else 2244 set_pte_at(mm, address, pvmw.pte, pteval); 2245 ret = false; 2246 page_vma_mapped_walk_done(&pvmw); 2247 break; 2248 } 2249 VM_BUG_ON_PAGE(pte_write(pteval) && folio_test_anon(folio) && 2250 !anon_exclusive, subpage); 2251 2252 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 2253 if (folio_test_hugetlb(folio)) { 2254 if (anon_exclusive && 2255 hugetlb_try_share_anon_rmap(folio)) { 2256 set_huge_pte_at(mm, address, pvmw.pte, 2257 pteval, hsz); 2258 ret = false; 2259 page_vma_mapped_walk_done(&pvmw); 2260 break; 2261 } 2262 } else if (anon_exclusive && 2263 folio_try_share_anon_rmap_pte(folio, subpage)) { 2264 set_pte_at(mm, address, pvmw.pte, pteval); 2265 ret = false; 2266 page_vma_mapped_walk_done(&pvmw); 2267 break; 2268 } 2269 2270 /* 2271 * Store the pfn of the page in a special migration 2272 * pte. do_swap_page() will wait until the migration 2273 * pte is removed and then restart fault handling. 2274 */ 2275 if (pte_write(pteval)) 2276 entry = make_writable_migration_entry( 2277 page_to_pfn(subpage)); 2278 else if (anon_exclusive) 2279 entry = make_readable_exclusive_migration_entry( 2280 page_to_pfn(subpage)); 2281 else 2282 entry = make_readable_migration_entry( 2283 page_to_pfn(subpage)); 2284 if (pte_young(pteval)) 2285 entry = make_migration_entry_young(entry); 2286 if (pte_dirty(pteval)) 2287 entry = make_migration_entry_dirty(entry); 2288 swp_pte = swp_entry_to_pte(entry); 2289 if (pte_soft_dirty(pteval)) 2290 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2291 if (pte_uffd_wp(pteval)) 2292 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2293 if (folio_test_hugetlb(folio)) 2294 set_huge_pte_at(mm, address, pvmw.pte, swp_pte, 2295 hsz); 2296 else 2297 set_pte_at(mm, address, pvmw.pte, swp_pte); 2298 trace_set_migration_pte(address, pte_val(swp_pte), 2299 folio_order(folio)); 2300 /* 2301 * No need to invalidate here it will synchronize on 2302 * against the special swap migration pte. 2303 */ 2304 } 2305 2306 if (unlikely(folio_test_hugetlb(folio))) 2307 hugetlb_remove_rmap(folio); 2308 else 2309 folio_remove_rmap_pte(folio, subpage, vma); 2310 if (vma->vm_flags & VM_LOCKED) 2311 mlock_drain_local(); 2312 folio_put(folio); 2313 } 2314 2315 mmu_notifier_invalidate_range_end(&range); 2316 2317 return ret; 2318 } 2319 2320 /** 2321 * try_to_migrate - try to replace all page table mappings with swap entries 2322 * @folio: the folio to replace page table entries for 2323 * @flags: action and flags 2324 * 2325 * Tries to remove all the page table entries which are mapping this folio and 2326 * replace them with special swap entries. Caller must hold the folio lock. 2327 */ 2328 void try_to_migrate(struct folio *folio, enum ttu_flags flags) 2329 { 2330 struct rmap_walk_control rwc = { 2331 .rmap_one = try_to_migrate_one, 2332 .arg = (void *)flags, 2333 .done = folio_not_mapped, 2334 .anon_lock = folio_lock_anon_vma_read, 2335 }; 2336 2337 /* 2338 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and 2339 * TTU_SPLIT_HUGE_PMD, TTU_SYNC, and TTU_BATCH_FLUSH flags. 2340 */ 2341 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2342 TTU_SYNC | TTU_BATCH_FLUSH))) 2343 return; 2344 2345 if (folio_is_zone_device(folio) && 2346 (!folio_is_device_private(folio) && !folio_is_device_coherent(folio))) 2347 return; 2348 2349 /* 2350 * During exec, a temporary VMA is setup and later moved. 2351 * The VMA is moved under the anon_vma lock but not the 2352 * page tables leading to a race where migration cannot 2353 * find the migration ptes. Rather than increasing the 2354 * locking requirements of exec(), migration skips 2355 * temporary VMAs until after exec() completes. 2356 */ 2357 if (!folio_test_ksm(folio) && folio_test_anon(folio)) 2358 rwc.invalid_vma = invalid_migration_vma; 2359 2360 if (flags & TTU_RMAP_LOCKED) 2361 rmap_walk_locked(folio, &rwc); 2362 else 2363 rmap_walk(folio, &rwc); 2364 } 2365 2366 #ifdef CONFIG_DEVICE_PRIVATE 2367 struct make_exclusive_args { 2368 struct mm_struct *mm; 2369 unsigned long address; 2370 void *owner; 2371 bool valid; 2372 }; 2373 2374 static bool page_make_device_exclusive_one(struct folio *folio, 2375 struct vm_area_struct *vma, unsigned long address, void *priv) 2376 { 2377 struct mm_struct *mm = vma->vm_mm; 2378 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, address, 0); 2379 struct make_exclusive_args *args = priv; 2380 pte_t pteval; 2381 struct page *subpage; 2382 bool ret = true; 2383 struct mmu_notifier_range range; 2384 swp_entry_t entry; 2385 pte_t swp_pte; 2386 pte_t ptent; 2387 2388 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 2389 vma->vm_mm, address, min(vma->vm_end, 2390 address + folio_size(folio)), 2391 args->owner); 2392 mmu_notifier_invalidate_range_start(&range); 2393 2394 while (page_vma_mapped_walk(&pvmw)) { 2395 /* Unexpected PMD-mapped THP? */ 2396 VM_BUG_ON_FOLIO(!pvmw.pte, folio); 2397 2398 ptent = ptep_get(pvmw.pte); 2399 if (!pte_present(ptent)) { 2400 ret = false; 2401 page_vma_mapped_walk_done(&pvmw); 2402 break; 2403 } 2404 2405 subpage = folio_page(folio, 2406 pte_pfn(ptent) - folio_pfn(folio)); 2407 address = pvmw.address; 2408 2409 /* Nuke the page table entry. */ 2410 flush_cache_page(vma, address, pte_pfn(ptent)); 2411 pteval = ptep_clear_flush(vma, address, pvmw.pte); 2412 2413 /* Set the dirty flag on the folio now the pte is gone. */ 2414 if (pte_dirty(pteval)) 2415 folio_mark_dirty(folio); 2416 2417 /* 2418 * Check that our target page is still mapped at the expected 2419 * address. 2420 */ 2421 if (args->mm == mm && args->address == address && 2422 pte_write(pteval)) 2423 args->valid = true; 2424 2425 /* 2426 * Store the pfn of the page in a special migration 2427 * pte. do_swap_page() will wait until the migration 2428 * pte is removed and then restart fault handling. 2429 */ 2430 if (pte_write(pteval)) 2431 entry = make_writable_device_exclusive_entry( 2432 page_to_pfn(subpage)); 2433 else 2434 entry = make_readable_device_exclusive_entry( 2435 page_to_pfn(subpage)); 2436 swp_pte = swp_entry_to_pte(entry); 2437 if (pte_soft_dirty(pteval)) 2438 swp_pte = pte_swp_mksoft_dirty(swp_pte); 2439 if (pte_uffd_wp(pteval)) 2440 swp_pte = pte_swp_mkuffd_wp(swp_pte); 2441 2442 set_pte_at(mm, address, pvmw.pte, swp_pte); 2443 2444 /* 2445 * There is a reference on the page for the swap entry which has 2446 * been removed, so shouldn't take another. 2447 */ 2448 folio_remove_rmap_pte(folio, subpage, vma); 2449 } 2450 2451 mmu_notifier_invalidate_range_end(&range); 2452 2453 return ret; 2454 } 2455 2456 /** 2457 * folio_make_device_exclusive - Mark the folio exclusively owned by a device. 2458 * @folio: The folio to replace page table entries for. 2459 * @mm: The mm_struct where the folio is expected to be mapped. 2460 * @address: Address where the folio is expected to be mapped. 2461 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks 2462 * 2463 * Tries to remove all the page table entries which are mapping this 2464 * folio and replace them with special device exclusive swap entries to 2465 * grant a device exclusive access to the folio. 2466 * 2467 * Context: Caller must hold the folio lock. 2468 * Return: false if the page is still mapped, or if it could not be unmapped 2469 * from the expected address. Otherwise returns true (success). 2470 */ 2471 static bool folio_make_device_exclusive(struct folio *folio, 2472 struct mm_struct *mm, unsigned long address, void *owner) 2473 { 2474 struct make_exclusive_args args = { 2475 .mm = mm, 2476 .address = address, 2477 .owner = owner, 2478 .valid = false, 2479 }; 2480 struct rmap_walk_control rwc = { 2481 .rmap_one = page_make_device_exclusive_one, 2482 .done = folio_not_mapped, 2483 .anon_lock = folio_lock_anon_vma_read, 2484 .arg = &args, 2485 }; 2486 2487 /* 2488 * Restrict to anonymous folios for now to avoid potential writeback 2489 * issues. 2490 */ 2491 if (!folio_test_anon(folio)) 2492 return false; 2493 2494 rmap_walk(folio, &rwc); 2495 2496 return args.valid && !folio_mapcount(folio); 2497 } 2498 2499 /** 2500 * make_device_exclusive_range() - Mark a range for exclusive use by a device 2501 * @mm: mm_struct of associated target process 2502 * @start: start of the region to mark for exclusive device access 2503 * @end: end address of region 2504 * @pages: returns the pages which were successfully marked for exclusive access 2505 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering 2506 * 2507 * Returns: number of pages found in the range by GUP. A page is marked for 2508 * exclusive access only if the page pointer is non-NULL. 2509 * 2510 * This function finds ptes mapping page(s) to the given address range, locks 2511 * them and replaces mappings with special swap entries preventing userspace CPU 2512 * access. On fault these entries are replaced with the original mapping after 2513 * calling MMU notifiers. 2514 * 2515 * A driver using this to program access from a device must use a mmu notifier 2516 * critical section to hold a device specific lock during programming. Once 2517 * programming is complete it should drop the page lock and reference after 2518 * which point CPU access to the page will revoke the exclusive access. 2519 */ 2520 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, 2521 unsigned long end, struct page **pages, 2522 void *owner) 2523 { 2524 long npages = (end - start) >> PAGE_SHIFT; 2525 long i; 2526 2527 npages = get_user_pages_remote(mm, start, npages, 2528 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, 2529 pages, NULL); 2530 if (npages < 0) 2531 return npages; 2532 2533 for (i = 0; i < npages; i++, start += PAGE_SIZE) { 2534 struct folio *folio = page_folio(pages[i]); 2535 if (PageTail(pages[i]) || !folio_trylock(folio)) { 2536 folio_put(folio); 2537 pages[i] = NULL; 2538 continue; 2539 } 2540 2541 if (!folio_make_device_exclusive(folio, mm, start, owner)) { 2542 folio_unlock(folio); 2543 folio_put(folio); 2544 pages[i] = NULL; 2545 } 2546 } 2547 2548 return npages; 2549 } 2550 EXPORT_SYMBOL_GPL(make_device_exclusive_range); 2551 #endif 2552 2553 void __put_anon_vma(struct anon_vma *anon_vma) 2554 { 2555 struct anon_vma *root = anon_vma->root; 2556 2557 anon_vma_free(anon_vma); 2558 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 2559 anon_vma_free(root); 2560 } 2561 2562 static struct anon_vma *rmap_walk_anon_lock(struct folio *folio, 2563 struct rmap_walk_control *rwc) 2564 { 2565 struct anon_vma *anon_vma; 2566 2567 if (rwc->anon_lock) 2568 return rwc->anon_lock(folio, rwc); 2569 2570 /* 2571 * Note: remove_migration_ptes() cannot use folio_lock_anon_vma_read() 2572 * because that depends on page_mapped(); but not all its usages 2573 * are holding mmap_lock. Users without mmap_lock are required to 2574 * take a reference count to prevent the anon_vma disappearing 2575 */ 2576 anon_vma = folio_anon_vma(folio); 2577 if (!anon_vma) 2578 return NULL; 2579 2580 if (anon_vma_trylock_read(anon_vma)) 2581 goto out; 2582 2583 if (rwc->try_lock) { 2584 anon_vma = NULL; 2585 rwc->contended = true; 2586 goto out; 2587 } 2588 2589 anon_vma_lock_read(anon_vma); 2590 out: 2591 return anon_vma; 2592 } 2593 2594 /* 2595 * rmap_walk_anon - do something to anonymous page using the object-based 2596 * rmap method 2597 * @folio: the folio to be handled 2598 * @rwc: control variable according to each walk type 2599 * @locked: caller holds relevant rmap lock 2600 * 2601 * Find all the mappings of a folio using the mapping pointer and the vma 2602 * chains contained in the anon_vma struct it points to. 2603 */ 2604 static void rmap_walk_anon(struct folio *folio, 2605 struct rmap_walk_control *rwc, bool locked) 2606 { 2607 struct anon_vma *anon_vma; 2608 pgoff_t pgoff_start, pgoff_end; 2609 struct anon_vma_chain *avc; 2610 2611 if (locked) { 2612 anon_vma = folio_anon_vma(folio); 2613 /* anon_vma disappear under us? */ 2614 VM_BUG_ON_FOLIO(!anon_vma, folio); 2615 } else { 2616 anon_vma = rmap_walk_anon_lock(folio, rwc); 2617 } 2618 if (!anon_vma) 2619 return; 2620 2621 pgoff_start = folio_pgoff(folio); 2622 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2623 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, 2624 pgoff_start, pgoff_end) { 2625 struct vm_area_struct *vma = avc->vma; 2626 unsigned long address = vma_address(vma, pgoff_start, 2627 folio_nr_pages(folio)); 2628 2629 VM_BUG_ON_VMA(address == -EFAULT, vma); 2630 cond_resched(); 2631 2632 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2633 continue; 2634 2635 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2636 break; 2637 if (rwc->done && rwc->done(folio)) 2638 break; 2639 } 2640 2641 if (!locked) 2642 anon_vma_unlock_read(anon_vma); 2643 } 2644 2645 /* 2646 * rmap_walk_file - do something to file page using the object-based rmap method 2647 * @folio: the folio to be handled 2648 * @rwc: control variable according to each walk type 2649 * @locked: caller holds relevant rmap lock 2650 * 2651 * Find all the mappings of a folio using the mapping pointer and the vma chains 2652 * contained in the address_space struct it points to. 2653 */ 2654 static void rmap_walk_file(struct folio *folio, 2655 struct rmap_walk_control *rwc, bool locked) 2656 { 2657 struct address_space *mapping = folio_mapping(folio); 2658 pgoff_t pgoff_start, pgoff_end; 2659 struct vm_area_struct *vma; 2660 2661 /* 2662 * The page lock not only makes sure that page->mapping cannot 2663 * suddenly be NULLified by truncation, it makes sure that the 2664 * structure at mapping cannot be freed and reused yet, 2665 * so we can safely take mapping->i_mmap_rwsem. 2666 */ 2667 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2668 2669 if (!mapping) 2670 return; 2671 2672 pgoff_start = folio_pgoff(folio); 2673 pgoff_end = pgoff_start + folio_nr_pages(folio) - 1; 2674 if (!locked) { 2675 if (i_mmap_trylock_read(mapping)) 2676 goto lookup; 2677 2678 if (rwc->try_lock) { 2679 rwc->contended = true; 2680 return; 2681 } 2682 2683 i_mmap_lock_read(mapping); 2684 } 2685 lookup: 2686 vma_interval_tree_foreach(vma, &mapping->i_mmap, 2687 pgoff_start, pgoff_end) { 2688 unsigned long address = vma_address(vma, pgoff_start, 2689 folio_nr_pages(folio)); 2690 2691 VM_BUG_ON_VMA(address == -EFAULT, vma); 2692 cond_resched(); 2693 2694 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2695 continue; 2696 2697 if (!rwc->rmap_one(folio, vma, address, rwc->arg)) 2698 goto done; 2699 if (rwc->done && rwc->done(folio)) 2700 goto done; 2701 } 2702 2703 done: 2704 if (!locked) 2705 i_mmap_unlock_read(mapping); 2706 } 2707 2708 void rmap_walk(struct folio *folio, struct rmap_walk_control *rwc) 2709 { 2710 if (unlikely(folio_test_ksm(folio))) 2711 rmap_walk_ksm(folio, rwc); 2712 else if (folio_test_anon(folio)) 2713 rmap_walk_anon(folio, rwc, false); 2714 else 2715 rmap_walk_file(folio, rwc, false); 2716 } 2717 2718 /* Like rmap_walk, but caller holds relevant rmap lock */ 2719 void rmap_walk_locked(struct folio *folio, struct rmap_walk_control *rwc) 2720 { 2721 /* no ksm support for now */ 2722 VM_BUG_ON_FOLIO(folio_test_ksm(folio), folio); 2723 if (folio_test_anon(folio)) 2724 rmap_walk_anon(folio, rwc, true); 2725 else 2726 rmap_walk_file(folio, rwc, true); 2727 } 2728 2729 #ifdef CONFIG_HUGETLB_PAGE 2730 /* 2731 * The following two functions are for anonymous (private mapped) hugepages. 2732 * Unlike common anonymous pages, anonymous hugepages have no accounting code 2733 * and no lru code, because we handle hugepages differently from common pages. 2734 */ 2735 void hugetlb_add_anon_rmap(struct folio *folio, struct vm_area_struct *vma, 2736 unsigned long address, rmap_t flags) 2737 { 2738 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2739 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2740 2741 atomic_inc(&folio->_entire_mapcount); 2742 atomic_inc(&folio->_large_mapcount); 2743 if (flags & RMAP_EXCLUSIVE) 2744 SetPageAnonExclusive(&folio->page); 2745 VM_WARN_ON_FOLIO(folio_entire_mapcount(folio) > 1 && 2746 PageAnonExclusive(&folio->page), folio); 2747 } 2748 2749 void hugetlb_add_new_anon_rmap(struct folio *folio, 2750 struct vm_area_struct *vma, unsigned long address) 2751 { 2752 VM_WARN_ON_FOLIO(!folio_test_hugetlb(folio), folio); 2753 2754 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 2755 /* increment count (starts at -1) */ 2756 atomic_set(&folio->_entire_mapcount, 0); 2757 atomic_set(&folio->_large_mapcount, 0); 2758 folio_clear_hugetlb_restore_reserve(folio); 2759 __folio_set_anon(folio, vma, address, true); 2760 SetPageAnonExclusive(&folio->page); 2761 } 2762 #endif /* CONFIG_HUGETLB_PAGE */ 2763