1 /* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins 2003, 2004 18 */ 19 20 /* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * mm->mmap_sem 25 * page->flags PG_locked (lock_page) 26 * mapping->i_mmap_rwsem 27 * anon_vma->rwsem 28 * mm->page_table_lock or pte_lock 29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 30 * swap_lock (in swap_duplicate, swap_info_get) 31 * mmlist_lock (in mmput, drain_mmlist and others) 32 * mapping->private_lock (in __set_page_dirty_buffers) 33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) 34 * mapping->tree_lock (widely used) 35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty) 36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) 37 * sb_lock (within inode_lock in fs/fs-writeback.c) 38 * mapping->tree_lock (widely used, in set_page_dirty, 39 * in arch-dependent flush_dcache_mmap_lock, 40 * within bdi.wb->list_lock in __sync_single_inode) 41 * 42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) 43 * ->tasklist_lock 44 * pte map lock 45 */ 46 47 #include <linux/mm.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/swapops.h> 51 #include <linux/slab.h> 52 #include <linux/init.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/rcupdate.h> 56 #include <linux/export.h> 57 #include <linux/memcontrol.h> 58 #include <linux/mmu_notifier.h> 59 #include <linux/migrate.h> 60 #include <linux/hugetlb.h> 61 #include <linux/backing-dev.h> 62 63 #include <asm/tlbflush.h> 64 65 #include "internal.h" 66 67 static struct kmem_cache *anon_vma_cachep; 68 static struct kmem_cache *anon_vma_chain_cachep; 69 70 static inline struct anon_vma *anon_vma_alloc(void) 71 { 72 struct anon_vma *anon_vma; 73 74 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); 75 if (anon_vma) { 76 atomic_set(&anon_vma->refcount, 1); 77 anon_vma->degree = 1; /* Reference for first vma */ 78 anon_vma->parent = anon_vma; 79 /* 80 * Initialise the anon_vma root to point to itself. If called 81 * from fork, the root will be reset to the parents anon_vma. 82 */ 83 anon_vma->root = anon_vma; 84 } 85 86 return anon_vma; 87 } 88 89 static inline void anon_vma_free(struct anon_vma *anon_vma) 90 { 91 VM_BUG_ON(atomic_read(&anon_vma->refcount)); 92 93 /* 94 * Synchronize against page_lock_anon_vma_read() such that 95 * we can safely hold the lock without the anon_vma getting 96 * freed. 97 * 98 * Relies on the full mb implied by the atomic_dec_and_test() from 99 * put_anon_vma() against the acquire barrier implied by 100 * down_read_trylock() from page_lock_anon_vma_read(). This orders: 101 * 102 * page_lock_anon_vma_read() VS put_anon_vma() 103 * down_read_trylock() atomic_dec_and_test() 104 * LOCK MB 105 * atomic_read() rwsem_is_locked() 106 * 107 * LOCK should suffice since the actual taking of the lock must 108 * happen _before_ what follows. 109 */ 110 might_sleep(); 111 if (rwsem_is_locked(&anon_vma->root->rwsem)) { 112 anon_vma_lock_write(anon_vma); 113 anon_vma_unlock_write(anon_vma); 114 } 115 116 kmem_cache_free(anon_vma_cachep, anon_vma); 117 } 118 119 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) 120 { 121 return kmem_cache_alloc(anon_vma_chain_cachep, gfp); 122 } 123 124 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) 125 { 126 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); 127 } 128 129 static void anon_vma_chain_link(struct vm_area_struct *vma, 130 struct anon_vma_chain *avc, 131 struct anon_vma *anon_vma) 132 { 133 avc->vma = vma; 134 avc->anon_vma = anon_vma; 135 list_add(&avc->same_vma, &vma->anon_vma_chain); 136 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); 137 } 138 139 /** 140 * anon_vma_prepare - attach an anon_vma to a memory region 141 * @vma: the memory region in question 142 * 143 * This makes sure the memory mapping described by 'vma' has 144 * an 'anon_vma' attached to it, so that we can associate the 145 * anonymous pages mapped into it with that anon_vma. 146 * 147 * The common case will be that we already have one, but if 148 * not we either need to find an adjacent mapping that we 149 * can re-use the anon_vma from (very common when the only 150 * reason for splitting a vma has been mprotect()), or we 151 * allocate a new one. 152 * 153 * Anon-vma allocations are very subtle, because we may have 154 * optimistically looked up an anon_vma in page_lock_anon_vma_read() 155 * and that may actually touch the spinlock even in the newly 156 * allocated vma (it depends on RCU to make sure that the 157 * anon_vma isn't actually destroyed). 158 * 159 * As a result, we need to do proper anon_vma locking even 160 * for the new allocation. At the same time, we do not want 161 * to do any locking for the common case of already having 162 * an anon_vma. 163 * 164 * This must be called with the mmap_sem held for reading. 165 */ 166 int anon_vma_prepare(struct vm_area_struct *vma) 167 { 168 struct anon_vma *anon_vma = vma->anon_vma; 169 struct anon_vma_chain *avc; 170 171 might_sleep(); 172 if (unlikely(!anon_vma)) { 173 struct mm_struct *mm = vma->vm_mm; 174 struct anon_vma *allocated; 175 176 avc = anon_vma_chain_alloc(GFP_KERNEL); 177 if (!avc) 178 goto out_enomem; 179 180 anon_vma = find_mergeable_anon_vma(vma); 181 allocated = NULL; 182 if (!anon_vma) { 183 anon_vma = anon_vma_alloc(); 184 if (unlikely(!anon_vma)) 185 goto out_enomem_free_avc; 186 allocated = anon_vma; 187 } 188 189 anon_vma_lock_write(anon_vma); 190 /* page_table_lock to protect against threads */ 191 spin_lock(&mm->page_table_lock); 192 if (likely(!vma->anon_vma)) { 193 vma->anon_vma = anon_vma; 194 anon_vma_chain_link(vma, avc, anon_vma); 195 /* vma reference or self-parent link for new root */ 196 anon_vma->degree++; 197 allocated = NULL; 198 avc = NULL; 199 } 200 spin_unlock(&mm->page_table_lock); 201 anon_vma_unlock_write(anon_vma); 202 203 if (unlikely(allocated)) 204 put_anon_vma(allocated); 205 if (unlikely(avc)) 206 anon_vma_chain_free(avc); 207 } 208 return 0; 209 210 out_enomem_free_avc: 211 anon_vma_chain_free(avc); 212 out_enomem: 213 return -ENOMEM; 214 } 215 216 /* 217 * This is a useful helper function for locking the anon_vma root as 218 * we traverse the vma->anon_vma_chain, looping over anon_vma's that 219 * have the same vma. 220 * 221 * Such anon_vma's should have the same root, so you'd expect to see 222 * just a single mutex_lock for the whole traversal. 223 */ 224 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) 225 { 226 struct anon_vma *new_root = anon_vma->root; 227 if (new_root != root) { 228 if (WARN_ON_ONCE(root)) 229 up_write(&root->rwsem); 230 root = new_root; 231 down_write(&root->rwsem); 232 } 233 return root; 234 } 235 236 static inline void unlock_anon_vma_root(struct anon_vma *root) 237 { 238 if (root) 239 up_write(&root->rwsem); 240 } 241 242 /* 243 * Attach the anon_vmas from src to dst. 244 * Returns 0 on success, -ENOMEM on failure. 245 * 246 * If dst->anon_vma is NULL this function tries to find and reuse existing 247 * anon_vma which has no vmas and only one child anon_vma. This prevents 248 * degradation of anon_vma hierarchy to endless linear chain in case of 249 * constantly forking task. On the other hand, an anon_vma with more than one 250 * child isn't reused even if there was no alive vma, thus rmap walker has a 251 * good chance of avoiding scanning the whole hierarchy when it searches where 252 * page is mapped. 253 */ 254 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) 255 { 256 struct anon_vma_chain *avc, *pavc; 257 struct anon_vma *root = NULL; 258 259 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { 260 struct anon_vma *anon_vma; 261 262 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); 263 if (unlikely(!avc)) { 264 unlock_anon_vma_root(root); 265 root = NULL; 266 avc = anon_vma_chain_alloc(GFP_KERNEL); 267 if (!avc) 268 goto enomem_failure; 269 } 270 anon_vma = pavc->anon_vma; 271 root = lock_anon_vma_root(root, anon_vma); 272 anon_vma_chain_link(dst, avc, anon_vma); 273 274 /* 275 * Reuse existing anon_vma if its degree lower than two, 276 * that means it has no vma and only one anon_vma child. 277 * 278 * Do not chose parent anon_vma, otherwise first child 279 * will always reuse it. Root anon_vma is never reused: 280 * it has self-parent reference and at least one child. 281 */ 282 if (!dst->anon_vma && anon_vma != src->anon_vma && 283 anon_vma->degree < 2) 284 dst->anon_vma = anon_vma; 285 } 286 if (dst->anon_vma) 287 dst->anon_vma->degree++; 288 unlock_anon_vma_root(root); 289 return 0; 290 291 enomem_failure: 292 /* 293 * dst->anon_vma is dropped here otherwise its degree can be incorrectly 294 * decremented in unlink_anon_vmas(). 295 * We can safely do this because callers of anon_vma_clone() don't care 296 * about dst->anon_vma if anon_vma_clone() failed. 297 */ 298 dst->anon_vma = NULL; 299 unlink_anon_vmas(dst); 300 return -ENOMEM; 301 } 302 303 /* 304 * Attach vma to its own anon_vma, as well as to the anon_vmas that 305 * the corresponding VMA in the parent process is attached to. 306 * Returns 0 on success, non-zero on failure. 307 */ 308 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) 309 { 310 struct anon_vma_chain *avc; 311 struct anon_vma *anon_vma; 312 int error; 313 314 /* Don't bother if the parent process has no anon_vma here. */ 315 if (!pvma->anon_vma) 316 return 0; 317 318 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ 319 vma->anon_vma = NULL; 320 321 /* 322 * First, attach the new VMA to the parent VMA's anon_vmas, 323 * so rmap can find non-COWed pages in child processes. 324 */ 325 error = anon_vma_clone(vma, pvma); 326 if (error) 327 return error; 328 329 /* An existing anon_vma has been reused, all done then. */ 330 if (vma->anon_vma) 331 return 0; 332 333 /* Then add our own anon_vma. */ 334 anon_vma = anon_vma_alloc(); 335 if (!anon_vma) 336 goto out_error; 337 avc = anon_vma_chain_alloc(GFP_KERNEL); 338 if (!avc) 339 goto out_error_free_anon_vma; 340 341 /* 342 * The root anon_vma's spinlock is the lock actually used when we 343 * lock any of the anon_vmas in this anon_vma tree. 344 */ 345 anon_vma->root = pvma->anon_vma->root; 346 anon_vma->parent = pvma->anon_vma; 347 /* 348 * With refcounts, an anon_vma can stay around longer than the 349 * process it belongs to. The root anon_vma needs to be pinned until 350 * this anon_vma is freed, because the lock lives in the root. 351 */ 352 get_anon_vma(anon_vma->root); 353 /* Mark this anon_vma as the one where our new (COWed) pages go. */ 354 vma->anon_vma = anon_vma; 355 anon_vma_lock_write(anon_vma); 356 anon_vma_chain_link(vma, avc, anon_vma); 357 anon_vma->parent->degree++; 358 anon_vma_unlock_write(anon_vma); 359 360 return 0; 361 362 out_error_free_anon_vma: 363 put_anon_vma(anon_vma); 364 out_error: 365 unlink_anon_vmas(vma); 366 return -ENOMEM; 367 } 368 369 void unlink_anon_vmas(struct vm_area_struct *vma) 370 { 371 struct anon_vma_chain *avc, *next; 372 struct anon_vma *root = NULL; 373 374 /* 375 * Unlink each anon_vma chained to the VMA. This list is ordered 376 * from newest to oldest, ensuring the root anon_vma gets freed last. 377 */ 378 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 379 struct anon_vma *anon_vma = avc->anon_vma; 380 381 root = lock_anon_vma_root(root, anon_vma); 382 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); 383 384 /* 385 * Leave empty anon_vmas on the list - we'll need 386 * to free them outside the lock. 387 */ 388 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { 389 anon_vma->parent->degree--; 390 continue; 391 } 392 393 list_del(&avc->same_vma); 394 anon_vma_chain_free(avc); 395 } 396 if (vma->anon_vma) 397 vma->anon_vma->degree--; 398 unlock_anon_vma_root(root); 399 400 /* 401 * Iterate the list once more, it now only contains empty and unlinked 402 * anon_vmas, destroy them. Could not do before due to __put_anon_vma() 403 * needing to write-acquire the anon_vma->root->rwsem. 404 */ 405 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { 406 struct anon_vma *anon_vma = avc->anon_vma; 407 408 BUG_ON(anon_vma->degree); 409 put_anon_vma(anon_vma); 410 411 list_del(&avc->same_vma); 412 anon_vma_chain_free(avc); 413 } 414 } 415 416 static void anon_vma_ctor(void *data) 417 { 418 struct anon_vma *anon_vma = data; 419 420 init_rwsem(&anon_vma->rwsem); 421 atomic_set(&anon_vma->refcount, 0); 422 anon_vma->rb_root = RB_ROOT; 423 } 424 425 void __init anon_vma_init(void) 426 { 427 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 428 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); 429 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); 430 } 431 432 /* 433 * Getting a lock on a stable anon_vma from a page off the LRU is tricky! 434 * 435 * Since there is no serialization what so ever against page_remove_rmap() 436 * the best this function can do is return a locked anon_vma that might 437 * have been relevant to this page. 438 * 439 * The page might have been remapped to a different anon_vma or the anon_vma 440 * returned may already be freed (and even reused). 441 * 442 * In case it was remapped to a different anon_vma, the new anon_vma will be a 443 * child of the old anon_vma, and the anon_vma lifetime rules will therefore 444 * ensure that any anon_vma obtained from the page will still be valid for as 445 * long as we observe page_mapped() [ hence all those page_mapped() tests ]. 446 * 447 * All users of this function must be very careful when walking the anon_vma 448 * chain and verify that the page in question is indeed mapped in it 449 * [ something equivalent to page_mapped_in_vma() ]. 450 * 451 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() 452 * that the anon_vma pointer from page->mapping is valid if there is a 453 * mapcount, we can dereference the anon_vma after observing those. 454 */ 455 struct anon_vma *page_get_anon_vma(struct page *page) 456 { 457 struct anon_vma *anon_vma = NULL; 458 unsigned long anon_mapping; 459 460 rcu_read_lock(); 461 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 462 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 463 goto out; 464 if (!page_mapped(page)) 465 goto out; 466 467 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 468 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 469 anon_vma = NULL; 470 goto out; 471 } 472 473 /* 474 * If this page is still mapped, then its anon_vma cannot have been 475 * freed. But if it has been unmapped, we have no security against the 476 * anon_vma structure being freed and reused (for another anon_vma: 477 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() 478 * above cannot corrupt). 479 */ 480 if (!page_mapped(page)) { 481 rcu_read_unlock(); 482 put_anon_vma(anon_vma); 483 return NULL; 484 } 485 out: 486 rcu_read_unlock(); 487 488 return anon_vma; 489 } 490 491 /* 492 * Similar to page_get_anon_vma() except it locks the anon_vma. 493 * 494 * Its a little more complex as it tries to keep the fast path to a single 495 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a 496 * reference like with page_get_anon_vma() and then block on the mutex. 497 */ 498 struct anon_vma *page_lock_anon_vma_read(struct page *page) 499 { 500 struct anon_vma *anon_vma = NULL; 501 struct anon_vma *root_anon_vma; 502 unsigned long anon_mapping; 503 504 rcu_read_lock(); 505 anon_mapping = (unsigned long)READ_ONCE(page->mapping); 506 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 507 goto out; 508 if (!page_mapped(page)) 509 goto out; 510 511 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 512 root_anon_vma = READ_ONCE(anon_vma->root); 513 if (down_read_trylock(&root_anon_vma->rwsem)) { 514 /* 515 * If the page is still mapped, then this anon_vma is still 516 * its anon_vma, and holding the mutex ensures that it will 517 * not go away, see anon_vma_free(). 518 */ 519 if (!page_mapped(page)) { 520 up_read(&root_anon_vma->rwsem); 521 anon_vma = NULL; 522 } 523 goto out; 524 } 525 526 /* trylock failed, we got to sleep */ 527 if (!atomic_inc_not_zero(&anon_vma->refcount)) { 528 anon_vma = NULL; 529 goto out; 530 } 531 532 if (!page_mapped(page)) { 533 rcu_read_unlock(); 534 put_anon_vma(anon_vma); 535 return NULL; 536 } 537 538 /* we pinned the anon_vma, its safe to sleep */ 539 rcu_read_unlock(); 540 anon_vma_lock_read(anon_vma); 541 542 if (atomic_dec_and_test(&anon_vma->refcount)) { 543 /* 544 * Oops, we held the last refcount, release the lock 545 * and bail -- can't simply use put_anon_vma() because 546 * we'll deadlock on the anon_vma_lock_write() recursion. 547 */ 548 anon_vma_unlock_read(anon_vma); 549 __put_anon_vma(anon_vma); 550 anon_vma = NULL; 551 } 552 553 return anon_vma; 554 555 out: 556 rcu_read_unlock(); 557 return anon_vma; 558 } 559 560 void page_unlock_anon_vma_read(struct anon_vma *anon_vma) 561 { 562 anon_vma_unlock_read(anon_vma); 563 } 564 565 /* 566 * At what user virtual address is page expected in @vma? 567 */ 568 static inline unsigned long 569 __vma_address(struct page *page, struct vm_area_struct *vma) 570 { 571 pgoff_t pgoff = page_to_pgoff(page); 572 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 573 } 574 575 inline unsigned long 576 vma_address(struct page *page, struct vm_area_struct *vma) 577 { 578 unsigned long address = __vma_address(page, vma); 579 580 /* page should be within @vma mapping range */ 581 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 582 583 return address; 584 } 585 586 /* 587 * At what user virtual address is page expected in vma? 588 * Caller should check the page is actually part of the vma. 589 */ 590 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 591 { 592 unsigned long address; 593 if (PageAnon(page)) { 594 struct anon_vma *page__anon_vma = page_anon_vma(page); 595 /* 596 * Note: swapoff's unuse_vma() is more efficient with this 597 * check, and needs it to match anon_vma when KSM is active. 598 */ 599 if (!vma->anon_vma || !page__anon_vma || 600 vma->anon_vma->root != page__anon_vma->root) 601 return -EFAULT; 602 } else if (page->mapping) { 603 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) 604 return -EFAULT; 605 } else 606 return -EFAULT; 607 address = __vma_address(page, vma); 608 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 609 return -EFAULT; 610 return address; 611 } 612 613 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) 614 { 615 pgd_t *pgd; 616 pud_t *pud; 617 pmd_t *pmd = NULL; 618 pmd_t pmde; 619 620 pgd = pgd_offset(mm, address); 621 if (!pgd_present(*pgd)) 622 goto out; 623 624 pud = pud_offset(pgd, address); 625 if (!pud_present(*pud)) 626 goto out; 627 628 pmd = pmd_offset(pud, address); 629 /* 630 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 631 * without holding anon_vma lock for write. So when looking for a 632 * genuine pmde (in which to find pte), test present and !THP together. 633 */ 634 pmde = *pmd; 635 barrier(); 636 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 637 pmd = NULL; 638 out: 639 return pmd; 640 } 641 642 /* 643 * Check that @page is mapped at @address into @mm. 644 * 645 * If @sync is false, page_check_address may perform a racy check to avoid 646 * the page table lock when the pte is not present (helpful when reclaiming 647 * highly shared pages). 648 * 649 * On success returns with pte mapped and locked. 650 */ 651 pte_t *__page_check_address(struct page *page, struct mm_struct *mm, 652 unsigned long address, spinlock_t **ptlp, int sync) 653 { 654 pmd_t *pmd; 655 pte_t *pte; 656 spinlock_t *ptl; 657 658 if (unlikely(PageHuge(page))) { 659 /* when pud is not present, pte will be NULL */ 660 pte = huge_pte_offset(mm, address); 661 if (!pte) 662 return NULL; 663 664 ptl = huge_pte_lockptr(page_hstate(page), mm, pte); 665 goto check; 666 } 667 668 pmd = mm_find_pmd(mm, address); 669 if (!pmd) 670 return NULL; 671 672 pte = pte_offset_map(pmd, address); 673 /* Make a quick check before getting the lock */ 674 if (!sync && !pte_present(*pte)) { 675 pte_unmap(pte); 676 return NULL; 677 } 678 679 ptl = pte_lockptr(mm, pmd); 680 check: 681 spin_lock(ptl); 682 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 683 *ptlp = ptl; 684 return pte; 685 } 686 pte_unmap_unlock(pte, ptl); 687 return NULL; 688 } 689 690 /** 691 * page_mapped_in_vma - check whether a page is really mapped in a VMA 692 * @page: the page to test 693 * @vma: the VMA to test 694 * 695 * Returns 1 if the page is mapped into the page tables of the VMA, 0 696 * if the page is not mapped into the page tables of this VMA. Only 697 * valid for normal file or anonymous VMAs. 698 */ 699 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) 700 { 701 unsigned long address; 702 pte_t *pte; 703 spinlock_t *ptl; 704 705 address = __vma_address(page, vma); 706 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 707 return 0; 708 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); 709 if (!pte) /* the page is not in this mm */ 710 return 0; 711 pte_unmap_unlock(pte, ptl); 712 713 return 1; 714 } 715 716 struct page_referenced_arg { 717 int mapcount; 718 int referenced; 719 unsigned long vm_flags; 720 struct mem_cgroup *memcg; 721 }; 722 /* 723 * arg: page_referenced_arg will be passed 724 */ 725 static int page_referenced_one(struct page *page, struct vm_area_struct *vma, 726 unsigned long address, void *arg) 727 { 728 struct mm_struct *mm = vma->vm_mm; 729 spinlock_t *ptl; 730 int referenced = 0; 731 struct page_referenced_arg *pra = arg; 732 733 if (unlikely(PageTransHuge(page))) { 734 pmd_t *pmd; 735 736 /* 737 * rmap might return false positives; we must filter 738 * these out using page_check_address_pmd(). 739 */ 740 pmd = page_check_address_pmd(page, mm, address, 741 PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); 742 if (!pmd) 743 return SWAP_AGAIN; 744 745 if (vma->vm_flags & VM_LOCKED) { 746 spin_unlock(ptl); 747 pra->vm_flags |= VM_LOCKED; 748 return SWAP_FAIL; /* To break the loop */ 749 } 750 751 /* go ahead even if the pmd is pmd_trans_splitting() */ 752 if (pmdp_clear_flush_young_notify(vma, address, pmd)) 753 referenced++; 754 spin_unlock(ptl); 755 } else { 756 pte_t *pte; 757 758 /* 759 * rmap might return false positives; we must filter 760 * these out using page_check_address(). 761 */ 762 pte = page_check_address(page, mm, address, &ptl, 0); 763 if (!pte) 764 return SWAP_AGAIN; 765 766 if (vma->vm_flags & VM_LOCKED) { 767 pte_unmap_unlock(pte, ptl); 768 pra->vm_flags |= VM_LOCKED; 769 return SWAP_FAIL; /* To break the loop */ 770 } 771 772 if (ptep_clear_flush_young_notify(vma, address, pte)) { 773 /* 774 * Don't treat a reference through a sequentially read 775 * mapping as such. If the page has been used in 776 * another mapping, we will catch it; if this other 777 * mapping is already gone, the unmap path will have 778 * set PG_referenced or activated the page. 779 */ 780 if (likely(!(vma->vm_flags & VM_SEQ_READ))) 781 referenced++; 782 } 783 pte_unmap_unlock(pte, ptl); 784 } 785 786 if (referenced) { 787 pra->referenced++; 788 pra->vm_flags |= vma->vm_flags; 789 } 790 791 pra->mapcount--; 792 if (!pra->mapcount) 793 return SWAP_SUCCESS; /* To break the loop */ 794 795 return SWAP_AGAIN; 796 } 797 798 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) 799 { 800 struct page_referenced_arg *pra = arg; 801 struct mem_cgroup *memcg = pra->memcg; 802 803 if (!mm_match_cgroup(vma->vm_mm, memcg)) 804 return true; 805 806 return false; 807 } 808 809 /** 810 * page_referenced - test if the page was referenced 811 * @page: the page to test 812 * @is_locked: caller holds lock on the page 813 * @memcg: target memory cgroup 814 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page 815 * 816 * Quick test_and_clear_referenced for all mappings to a page, 817 * returns the number of ptes which referenced the page. 818 */ 819 int page_referenced(struct page *page, 820 int is_locked, 821 struct mem_cgroup *memcg, 822 unsigned long *vm_flags) 823 { 824 int ret; 825 int we_locked = 0; 826 struct page_referenced_arg pra = { 827 .mapcount = page_mapcount(page), 828 .memcg = memcg, 829 }; 830 struct rmap_walk_control rwc = { 831 .rmap_one = page_referenced_one, 832 .arg = (void *)&pra, 833 .anon_lock = page_lock_anon_vma_read, 834 }; 835 836 *vm_flags = 0; 837 if (!page_mapped(page)) 838 return 0; 839 840 if (!page_rmapping(page)) 841 return 0; 842 843 if (!is_locked && (!PageAnon(page) || PageKsm(page))) { 844 we_locked = trylock_page(page); 845 if (!we_locked) 846 return 1; 847 } 848 849 /* 850 * If we are reclaiming on behalf of a cgroup, skip 851 * counting on behalf of references from different 852 * cgroups 853 */ 854 if (memcg) { 855 rwc.invalid_vma = invalid_page_referenced_vma; 856 } 857 858 ret = rmap_walk(page, &rwc); 859 *vm_flags = pra.vm_flags; 860 861 if (we_locked) 862 unlock_page(page); 863 864 return pra.referenced; 865 } 866 867 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, 868 unsigned long address, void *arg) 869 { 870 struct mm_struct *mm = vma->vm_mm; 871 pte_t *pte; 872 spinlock_t *ptl; 873 int ret = 0; 874 int *cleaned = arg; 875 876 pte = page_check_address(page, mm, address, &ptl, 1); 877 if (!pte) 878 goto out; 879 880 if (pte_dirty(*pte) || pte_write(*pte)) { 881 pte_t entry; 882 883 flush_cache_page(vma, address, pte_pfn(*pte)); 884 entry = ptep_clear_flush(vma, address, pte); 885 entry = pte_wrprotect(entry); 886 entry = pte_mkclean(entry); 887 set_pte_at(mm, address, pte, entry); 888 ret = 1; 889 } 890 891 pte_unmap_unlock(pte, ptl); 892 893 if (ret) { 894 mmu_notifier_invalidate_page(mm, address); 895 (*cleaned)++; 896 } 897 out: 898 return SWAP_AGAIN; 899 } 900 901 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) 902 { 903 if (vma->vm_flags & VM_SHARED) 904 return false; 905 906 return true; 907 } 908 909 int page_mkclean(struct page *page) 910 { 911 int cleaned = 0; 912 struct address_space *mapping; 913 struct rmap_walk_control rwc = { 914 .arg = (void *)&cleaned, 915 .rmap_one = page_mkclean_one, 916 .invalid_vma = invalid_mkclean_vma, 917 }; 918 919 BUG_ON(!PageLocked(page)); 920 921 if (!page_mapped(page)) 922 return 0; 923 924 mapping = page_mapping(page); 925 if (!mapping) 926 return 0; 927 928 rmap_walk(page, &rwc); 929 930 return cleaned; 931 } 932 EXPORT_SYMBOL_GPL(page_mkclean); 933 934 /** 935 * page_move_anon_rmap - move a page to our anon_vma 936 * @page: the page to move to our anon_vma 937 * @vma: the vma the page belongs to 938 * @address: the user virtual address mapped 939 * 940 * When a page belongs exclusively to one process after a COW event, 941 * that page can be moved into the anon_vma that belongs to just that 942 * process, so the rmap code will not search the parent or sibling 943 * processes. 944 */ 945 void page_move_anon_rmap(struct page *page, 946 struct vm_area_struct *vma, unsigned long address) 947 { 948 struct anon_vma *anon_vma = vma->anon_vma; 949 950 VM_BUG_ON_PAGE(!PageLocked(page), page); 951 VM_BUG_ON_VMA(!anon_vma, vma); 952 VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); 953 954 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 955 /* 956 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written 957 * simultaneously, so a concurrent reader (eg page_referenced()'s 958 * PageAnon()) will not see one without the other. 959 */ 960 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); 961 } 962 963 /** 964 * __page_set_anon_rmap - set up new anonymous rmap 965 * @page: Page to add to rmap 966 * @vma: VM area to add page to. 967 * @address: User virtual address of the mapping 968 * @exclusive: the page is exclusively owned by the current process 969 */ 970 static void __page_set_anon_rmap(struct page *page, 971 struct vm_area_struct *vma, unsigned long address, int exclusive) 972 { 973 struct anon_vma *anon_vma = vma->anon_vma; 974 975 BUG_ON(!anon_vma); 976 977 if (PageAnon(page)) 978 return; 979 980 /* 981 * If the page isn't exclusively mapped into this vma, 982 * we must use the _oldest_ possible anon_vma for the 983 * page mapping! 984 */ 985 if (!exclusive) 986 anon_vma = anon_vma->root; 987 988 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 989 page->mapping = (struct address_space *) anon_vma; 990 page->index = linear_page_index(vma, address); 991 } 992 993 /** 994 * __page_check_anon_rmap - sanity check anonymous rmap addition 995 * @page: the page to add the mapping to 996 * @vma: the vm area in which the mapping is added 997 * @address: the user virtual address mapped 998 */ 999 static void __page_check_anon_rmap(struct page *page, 1000 struct vm_area_struct *vma, unsigned long address) 1001 { 1002 #ifdef CONFIG_DEBUG_VM 1003 /* 1004 * The page's anon-rmap details (mapping and index) are guaranteed to 1005 * be set up correctly at this point. 1006 * 1007 * We have exclusion against page_add_anon_rmap because the caller 1008 * always holds the page locked, except if called from page_dup_rmap, 1009 * in which case the page is already known to be setup. 1010 * 1011 * We have exclusion against page_add_new_anon_rmap because those pages 1012 * are initially only visible via the pagetables, and the pte is locked 1013 * over the call to page_add_new_anon_rmap. 1014 */ 1015 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); 1016 BUG_ON(page->index != linear_page_index(vma, address)); 1017 #endif 1018 } 1019 1020 /** 1021 * page_add_anon_rmap - add pte mapping to an anonymous page 1022 * @page: the page to add the mapping to 1023 * @vma: the vm area in which the mapping is added 1024 * @address: the user virtual address mapped 1025 * 1026 * The caller needs to hold the pte lock, and the page must be locked in 1027 * the anon_vma case: to serialize mapping,index checking after setting, 1028 * and to ensure that PageAnon is not being upgraded racily to PageKsm 1029 * (but PageKsm is never downgraded to PageAnon). 1030 */ 1031 void page_add_anon_rmap(struct page *page, 1032 struct vm_area_struct *vma, unsigned long address) 1033 { 1034 do_page_add_anon_rmap(page, vma, address, 0); 1035 } 1036 1037 /* 1038 * Special version of the above for do_swap_page, which often runs 1039 * into pages that are exclusively owned by the current process. 1040 * Everybody else should continue to use page_add_anon_rmap above. 1041 */ 1042 void do_page_add_anon_rmap(struct page *page, 1043 struct vm_area_struct *vma, unsigned long address, int exclusive) 1044 { 1045 int first = atomic_inc_and_test(&page->_mapcount); 1046 if (first) { 1047 /* 1048 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1049 * these counters are not modified in interrupt context, and 1050 * pte lock(a spinlock) is held, which implies preemption 1051 * disabled. 1052 */ 1053 if (PageTransHuge(page)) 1054 __inc_zone_page_state(page, 1055 NR_ANON_TRANSPARENT_HUGEPAGES); 1056 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1057 hpage_nr_pages(page)); 1058 } 1059 if (unlikely(PageKsm(page))) 1060 return; 1061 1062 VM_BUG_ON_PAGE(!PageLocked(page), page); 1063 /* address might be in next vma when migration races vma_adjust */ 1064 if (first) 1065 __page_set_anon_rmap(page, vma, address, exclusive); 1066 else 1067 __page_check_anon_rmap(page, vma, address); 1068 } 1069 1070 /** 1071 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 1072 * @page: the page to add the mapping to 1073 * @vma: the vm area in which the mapping is added 1074 * @address: the user virtual address mapped 1075 * 1076 * Same as page_add_anon_rmap but must only be called on *new* pages. 1077 * This means the inc-and-test can be bypassed. 1078 * Page does not have to be locked. 1079 */ 1080 void page_add_new_anon_rmap(struct page *page, 1081 struct vm_area_struct *vma, unsigned long address) 1082 { 1083 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 1084 SetPageSwapBacked(page); 1085 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ 1086 if (PageTransHuge(page)) 1087 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1088 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1089 hpage_nr_pages(page)); 1090 __page_set_anon_rmap(page, vma, address, 1); 1091 } 1092 1093 /** 1094 * page_add_file_rmap - add pte mapping to a file page 1095 * @page: the page to add the mapping to 1096 * 1097 * The caller needs to hold the pte lock. 1098 */ 1099 void page_add_file_rmap(struct page *page) 1100 { 1101 struct mem_cgroup *memcg; 1102 1103 memcg = mem_cgroup_begin_page_stat(page); 1104 if (atomic_inc_and_test(&page->_mapcount)) { 1105 __inc_zone_page_state(page, NR_FILE_MAPPED); 1106 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1107 } 1108 mem_cgroup_end_page_stat(memcg); 1109 } 1110 1111 static void page_remove_file_rmap(struct page *page) 1112 { 1113 struct mem_cgroup *memcg; 1114 1115 memcg = mem_cgroup_begin_page_stat(page); 1116 1117 /* page still mapped by someone else? */ 1118 if (!atomic_add_negative(-1, &page->_mapcount)) 1119 goto out; 1120 1121 /* Hugepages are not counted in NR_FILE_MAPPED for now. */ 1122 if (unlikely(PageHuge(page))) 1123 goto out; 1124 1125 /* 1126 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1127 * these counters are not modified in interrupt context, and 1128 * pte lock(a spinlock) is held, which implies preemption disabled. 1129 */ 1130 __dec_zone_page_state(page, NR_FILE_MAPPED); 1131 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); 1132 1133 if (unlikely(PageMlocked(page))) 1134 clear_page_mlock(page); 1135 out: 1136 mem_cgroup_end_page_stat(memcg); 1137 } 1138 1139 /** 1140 * page_remove_rmap - take down pte mapping from a page 1141 * @page: page to remove mapping from 1142 * 1143 * The caller needs to hold the pte lock. 1144 */ 1145 void page_remove_rmap(struct page *page) 1146 { 1147 if (!PageAnon(page)) { 1148 page_remove_file_rmap(page); 1149 return; 1150 } 1151 1152 /* page still mapped by someone else? */ 1153 if (!atomic_add_negative(-1, &page->_mapcount)) 1154 return; 1155 1156 /* Hugepages are not counted in NR_ANON_PAGES for now. */ 1157 if (unlikely(PageHuge(page))) 1158 return; 1159 1160 /* 1161 * We use the irq-unsafe __{inc|mod}_zone_page_stat because 1162 * these counters are not modified in interrupt context, and 1163 * pte lock(a spinlock) is held, which implies preemption disabled. 1164 */ 1165 if (PageTransHuge(page)) 1166 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); 1167 1168 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, 1169 -hpage_nr_pages(page)); 1170 1171 if (unlikely(PageMlocked(page))) 1172 clear_page_mlock(page); 1173 1174 /* 1175 * It would be tidy to reset the PageAnon mapping here, 1176 * but that might overwrite a racing page_add_anon_rmap 1177 * which increments mapcount after us but sets mapping 1178 * before us: so leave the reset to free_hot_cold_page, 1179 * and remember that it's only reliable while mapped. 1180 * Leaving it set also helps swapoff to reinstate ptes 1181 * faster for those pages still in swapcache. 1182 */ 1183 } 1184 1185 /* 1186 * @arg: enum ttu_flags will be passed to this argument 1187 */ 1188 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 1189 unsigned long address, void *arg) 1190 { 1191 struct mm_struct *mm = vma->vm_mm; 1192 pte_t *pte; 1193 pte_t pteval; 1194 spinlock_t *ptl; 1195 int ret = SWAP_AGAIN; 1196 enum ttu_flags flags = (enum ttu_flags)arg; 1197 1198 pte = page_check_address(page, mm, address, &ptl, 0); 1199 if (!pte) 1200 goto out; 1201 1202 /* 1203 * If the page is mlock()d, we cannot swap it out. 1204 * If it's recently referenced (perhaps page_referenced 1205 * skipped over this mm) then we should reactivate it. 1206 */ 1207 if (!(flags & TTU_IGNORE_MLOCK)) { 1208 if (vma->vm_flags & VM_LOCKED) 1209 goto out_mlock; 1210 1211 if (flags & TTU_MUNLOCK) 1212 goto out_unmap; 1213 } 1214 if (!(flags & TTU_IGNORE_ACCESS)) { 1215 if (ptep_clear_flush_young_notify(vma, address, pte)) { 1216 ret = SWAP_FAIL; 1217 goto out_unmap; 1218 } 1219 } 1220 1221 /* Nuke the page table entry. */ 1222 flush_cache_page(vma, address, page_to_pfn(page)); 1223 pteval = ptep_clear_flush(vma, address, pte); 1224 1225 /* Move the dirty bit to the physical page now the pte is gone. */ 1226 if (pte_dirty(pteval)) 1227 set_page_dirty(page); 1228 1229 /* Update high watermark before we lower rss */ 1230 update_hiwater_rss(mm); 1231 1232 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { 1233 if (!PageHuge(page)) { 1234 if (PageAnon(page)) 1235 dec_mm_counter(mm, MM_ANONPAGES); 1236 else 1237 dec_mm_counter(mm, MM_FILEPAGES); 1238 } 1239 set_pte_at(mm, address, pte, 1240 swp_entry_to_pte(make_hwpoison_entry(page))); 1241 } else if (pte_unused(pteval)) { 1242 /* 1243 * The guest indicated that the page content is of no 1244 * interest anymore. Simply discard the pte, vmscan 1245 * will take care of the rest. 1246 */ 1247 if (PageAnon(page)) 1248 dec_mm_counter(mm, MM_ANONPAGES); 1249 else 1250 dec_mm_counter(mm, MM_FILEPAGES); 1251 } else if (PageAnon(page)) { 1252 swp_entry_t entry = { .val = page_private(page) }; 1253 pte_t swp_pte; 1254 1255 if (PageSwapCache(page)) { 1256 /* 1257 * Store the swap location in the pte. 1258 * See handle_pte_fault() ... 1259 */ 1260 if (swap_duplicate(entry) < 0) { 1261 set_pte_at(mm, address, pte, pteval); 1262 ret = SWAP_FAIL; 1263 goto out_unmap; 1264 } 1265 if (list_empty(&mm->mmlist)) { 1266 spin_lock(&mmlist_lock); 1267 if (list_empty(&mm->mmlist)) 1268 list_add(&mm->mmlist, &init_mm.mmlist); 1269 spin_unlock(&mmlist_lock); 1270 } 1271 dec_mm_counter(mm, MM_ANONPAGES); 1272 inc_mm_counter(mm, MM_SWAPENTS); 1273 } else if (IS_ENABLED(CONFIG_MIGRATION)) { 1274 /* 1275 * Store the pfn of the page in a special migration 1276 * pte. do_swap_page() will wait until the migration 1277 * pte is removed and then restart fault handling. 1278 */ 1279 BUG_ON(!(flags & TTU_MIGRATION)); 1280 entry = make_migration_entry(page, pte_write(pteval)); 1281 } 1282 swp_pte = swp_entry_to_pte(entry); 1283 if (pte_soft_dirty(pteval)) 1284 swp_pte = pte_swp_mksoft_dirty(swp_pte); 1285 set_pte_at(mm, address, pte, swp_pte); 1286 } else if (IS_ENABLED(CONFIG_MIGRATION) && 1287 (flags & TTU_MIGRATION)) { 1288 /* Establish migration entry for a file page */ 1289 swp_entry_t entry; 1290 entry = make_migration_entry(page, pte_write(pteval)); 1291 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 1292 } else 1293 dec_mm_counter(mm, MM_FILEPAGES); 1294 1295 page_remove_rmap(page); 1296 page_cache_release(page); 1297 1298 out_unmap: 1299 pte_unmap_unlock(pte, ptl); 1300 if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) 1301 mmu_notifier_invalidate_page(mm, address); 1302 out: 1303 return ret; 1304 1305 out_mlock: 1306 pte_unmap_unlock(pte, ptl); 1307 1308 1309 /* 1310 * We need mmap_sem locking, Otherwise VM_LOCKED check makes 1311 * unstable result and race. Plus, We can't wait here because 1312 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. 1313 * if trylock failed, the page remain in evictable lru and later 1314 * vmscan could retry to move the page to unevictable lru if the 1315 * page is actually mlocked. 1316 */ 1317 if (down_read_trylock(&vma->vm_mm->mmap_sem)) { 1318 if (vma->vm_flags & VM_LOCKED) { 1319 mlock_vma_page(page); 1320 ret = SWAP_MLOCK; 1321 } 1322 up_read(&vma->vm_mm->mmap_sem); 1323 } 1324 return ret; 1325 } 1326 1327 bool is_vma_temporary_stack(struct vm_area_struct *vma) 1328 { 1329 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1330 1331 if (!maybe_stack) 1332 return false; 1333 1334 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1335 VM_STACK_INCOMPLETE_SETUP) 1336 return true; 1337 1338 return false; 1339 } 1340 1341 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) 1342 { 1343 return is_vma_temporary_stack(vma); 1344 } 1345 1346 static int page_not_mapped(struct page *page) 1347 { 1348 return !page_mapped(page); 1349 }; 1350 1351 /** 1352 * try_to_unmap - try to remove all page table mappings to a page 1353 * @page: the page to get unmapped 1354 * @flags: action and flags 1355 * 1356 * Tries to remove all the page table entries which are mapping this 1357 * page, used in the pageout path. Caller must hold the page lock. 1358 * Return values are: 1359 * 1360 * SWAP_SUCCESS - we succeeded in removing all mappings 1361 * SWAP_AGAIN - we missed a mapping, try again later 1362 * SWAP_FAIL - the page is unswappable 1363 * SWAP_MLOCK - page is mlocked. 1364 */ 1365 int try_to_unmap(struct page *page, enum ttu_flags flags) 1366 { 1367 int ret; 1368 struct rmap_walk_control rwc = { 1369 .rmap_one = try_to_unmap_one, 1370 .arg = (void *)flags, 1371 .done = page_not_mapped, 1372 .anon_lock = page_lock_anon_vma_read, 1373 }; 1374 1375 VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); 1376 1377 /* 1378 * During exec, a temporary VMA is setup and later moved. 1379 * The VMA is moved under the anon_vma lock but not the 1380 * page tables leading to a race where migration cannot 1381 * find the migration ptes. Rather than increasing the 1382 * locking requirements of exec(), migration skips 1383 * temporary VMAs until after exec() completes. 1384 */ 1385 if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) 1386 rwc.invalid_vma = invalid_migration_vma; 1387 1388 ret = rmap_walk(page, &rwc); 1389 1390 if (ret != SWAP_MLOCK && !page_mapped(page)) 1391 ret = SWAP_SUCCESS; 1392 return ret; 1393 } 1394 1395 /** 1396 * try_to_munlock - try to munlock a page 1397 * @page: the page to be munlocked 1398 * 1399 * Called from munlock code. Checks all of the VMAs mapping the page 1400 * to make sure nobody else has this page mlocked. The page will be 1401 * returned with PG_mlocked cleared if no other vmas have it mlocked. 1402 * 1403 * Return values are: 1404 * 1405 * SWAP_AGAIN - no vma is holding page mlocked, or, 1406 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem 1407 * SWAP_FAIL - page cannot be located at present 1408 * SWAP_MLOCK - page is now mlocked. 1409 */ 1410 int try_to_munlock(struct page *page) 1411 { 1412 int ret; 1413 struct rmap_walk_control rwc = { 1414 .rmap_one = try_to_unmap_one, 1415 .arg = (void *)TTU_MUNLOCK, 1416 .done = page_not_mapped, 1417 .anon_lock = page_lock_anon_vma_read, 1418 1419 }; 1420 1421 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); 1422 1423 ret = rmap_walk(page, &rwc); 1424 return ret; 1425 } 1426 1427 void __put_anon_vma(struct anon_vma *anon_vma) 1428 { 1429 struct anon_vma *root = anon_vma->root; 1430 1431 anon_vma_free(anon_vma); 1432 if (root != anon_vma && atomic_dec_and_test(&root->refcount)) 1433 anon_vma_free(root); 1434 } 1435 1436 static struct anon_vma *rmap_walk_anon_lock(struct page *page, 1437 struct rmap_walk_control *rwc) 1438 { 1439 struct anon_vma *anon_vma; 1440 1441 if (rwc->anon_lock) 1442 return rwc->anon_lock(page); 1443 1444 /* 1445 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() 1446 * because that depends on page_mapped(); but not all its usages 1447 * are holding mmap_sem. Users without mmap_sem are required to 1448 * take a reference count to prevent the anon_vma disappearing 1449 */ 1450 anon_vma = page_anon_vma(page); 1451 if (!anon_vma) 1452 return NULL; 1453 1454 anon_vma_lock_read(anon_vma); 1455 return anon_vma; 1456 } 1457 1458 /* 1459 * rmap_walk_anon - do something to anonymous page using the object-based 1460 * rmap method 1461 * @page: the page to be handled 1462 * @rwc: control variable according to each walk type 1463 * 1464 * Find all the mappings of a page using the mapping pointer and the vma chains 1465 * contained in the anon_vma struct it points to. 1466 * 1467 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1468 * where the page was found will be held for write. So, we won't recheck 1469 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1470 * LOCKED. 1471 */ 1472 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) 1473 { 1474 struct anon_vma *anon_vma; 1475 pgoff_t pgoff; 1476 struct anon_vma_chain *avc; 1477 int ret = SWAP_AGAIN; 1478 1479 anon_vma = rmap_walk_anon_lock(page, rwc); 1480 if (!anon_vma) 1481 return ret; 1482 1483 pgoff = page_to_pgoff(page); 1484 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { 1485 struct vm_area_struct *vma = avc->vma; 1486 unsigned long address = vma_address(page, vma); 1487 1488 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1489 continue; 1490 1491 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1492 if (ret != SWAP_AGAIN) 1493 break; 1494 if (rwc->done && rwc->done(page)) 1495 break; 1496 } 1497 anon_vma_unlock_read(anon_vma); 1498 return ret; 1499 } 1500 1501 /* 1502 * rmap_walk_file - do something to file page using the object-based rmap method 1503 * @page: the page to be handled 1504 * @rwc: control variable according to each walk type 1505 * 1506 * Find all the mappings of a page using the mapping pointer and the vma chains 1507 * contained in the address_space struct it points to. 1508 * 1509 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma 1510 * where the page was found will be held for write. So, we won't recheck 1511 * vm_flags for that VMA. That should be OK, because that vma shouldn't be 1512 * LOCKED. 1513 */ 1514 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) 1515 { 1516 struct address_space *mapping = page->mapping; 1517 pgoff_t pgoff; 1518 struct vm_area_struct *vma; 1519 int ret = SWAP_AGAIN; 1520 1521 /* 1522 * The page lock not only makes sure that page->mapping cannot 1523 * suddenly be NULLified by truncation, it makes sure that the 1524 * structure at mapping cannot be freed and reused yet, 1525 * so we can safely take mapping->i_mmap_rwsem. 1526 */ 1527 VM_BUG_ON_PAGE(!PageLocked(page), page); 1528 1529 if (!mapping) 1530 return ret; 1531 1532 pgoff = page_to_pgoff(page); 1533 i_mmap_lock_read(mapping); 1534 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1535 unsigned long address = vma_address(page, vma); 1536 1537 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 1538 continue; 1539 1540 ret = rwc->rmap_one(page, vma, address, rwc->arg); 1541 if (ret != SWAP_AGAIN) 1542 goto done; 1543 if (rwc->done && rwc->done(page)) 1544 goto done; 1545 } 1546 1547 done: 1548 i_mmap_unlock_read(mapping); 1549 return ret; 1550 } 1551 1552 int rmap_walk(struct page *page, struct rmap_walk_control *rwc) 1553 { 1554 if (unlikely(PageKsm(page))) 1555 return rmap_walk_ksm(page, rwc); 1556 else if (PageAnon(page)) 1557 return rmap_walk_anon(page, rwc); 1558 else 1559 return rmap_walk_file(page, rwc); 1560 } 1561 1562 #ifdef CONFIG_HUGETLB_PAGE 1563 /* 1564 * The following three functions are for anonymous (private mapped) hugepages. 1565 * Unlike common anonymous pages, anonymous hugepages have no accounting code 1566 * and no lru code, because we handle hugepages differently from common pages. 1567 */ 1568 static void __hugepage_set_anon_rmap(struct page *page, 1569 struct vm_area_struct *vma, unsigned long address, int exclusive) 1570 { 1571 struct anon_vma *anon_vma = vma->anon_vma; 1572 1573 BUG_ON(!anon_vma); 1574 1575 if (PageAnon(page)) 1576 return; 1577 if (!exclusive) 1578 anon_vma = anon_vma->root; 1579 1580 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 1581 page->mapping = (struct address_space *) anon_vma; 1582 page->index = linear_page_index(vma, address); 1583 } 1584 1585 void hugepage_add_anon_rmap(struct page *page, 1586 struct vm_area_struct *vma, unsigned long address) 1587 { 1588 struct anon_vma *anon_vma = vma->anon_vma; 1589 int first; 1590 1591 BUG_ON(!PageLocked(page)); 1592 BUG_ON(!anon_vma); 1593 /* address might be in next vma when migration races vma_adjust */ 1594 first = atomic_inc_and_test(&page->_mapcount); 1595 if (first) 1596 __hugepage_set_anon_rmap(page, vma, address, 0); 1597 } 1598 1599 void hugepage_add_new_anon_rmap(struct page *page, 1600 struct vm_area_struct *vma, unsigned long address) 1601 { 1602 BUG_ON(address < vma->vm_start || address >= vma->vm_end); 1603 atomic_set(&page->_mapcount, 0); 1604 __hugepage_set_anon_rmap(page, vma, address, 1); 1605 } 1606 #endif /* CONFIG_HUGETLB_PAGE */ 1607